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Abstract

The Breit-Rosenthal effect for the five 6p3 ground states of bismuth, 2P o
1/2,

4So
3/2,

2Do
3/2,

2P o
3/2, and 2Do

5/2, were examined using a multiconfigurational
Dirac-Hartree-Fock approach with relativistic and quantum electrodynamical
corrections included in a configuration interaction calculation (MCDHF-CI),
using the general-purpose relativistic atomic structure package GRASP2018.
Concurrently, an exploration of the optimal expansions in the active set ap-
proach was done. Based on the calculations, with the Breit-Rosenthal effect
quantified as ∆BR = λδ⟨r2⟩, the following recommendations for the propor-
tionality constant λ were found: λ(2P o

1/2) = −0.039(2) %fm−2, λ(4So
3/2) =

−0.249(10) %fm−2, λ(2Do
3/2) ≈ −0.1 %fm−2, λ(2P o

3/2) = 0.105(26) %fm−2,

and λ(2Do
5/2) = −0.017(8) %fm−2. An attempt was made at comparing the

calculated Breit-Rosenthal effect with the hyperfine anomalies between 209Bi
and 12 other bismuth isotopes, though the uncertainties in the available ex-
perimental data made such comparison difficult. The exploration of the active
set approach showed that rather than achieving better accuracy by indiscrim-
inately expanding the active space, better results at far lower computational
cost can be achieved by systematic and strategic expansion of it. Better con-
vergence towards experimentally measured values were achieved for expansions
consisting of ≈ 30 000 configurations, than for expansions in excess of 700 000
configurations.





Sammendrag

Størrelsen p̊a Breit-Rosenthal-effekten ble estimert for de fem 6p3-grunntilstandene
i vismut, 2P o

1/2,
4So

3/2,
2P o

3/2,
2Do

3/2, og
2Do

5/2. Utregningene ble gjort med en
multikonfigurasjons Dirac-Hartree-Fock-metode, med
konfigurasjonsinteraksjons-utregninger gjort for å korrigere for relativistiske og
kvanteelektrodynamiske effekter (MCDHF-CI). Samtidig ble det gjort en vur-
dering av den optimale mengden konfigurasjoner som inkluderes i beregningene,
mot oppn̊add presisjon, med aktivt-sett-metoden. Basert p̊a utregningene, med
Breit-Rosenthal-effekten kvantifisert som ∆BR = λδ⟨r2⟩, vil de følgende verdi-
ene kunne anbefales for proporsjonalitetskonstanten λ: λ(2P o

1/2) = −0.039(2)

%fm−2, λ(4So
3/2) = −0.249(10) %fm−2, λ(2Do

3/2) ≈ −0.1 %fm−2, λ(2P o
3/2) =

0.105(26) %fm−2, og λ(2Do
5/2) = −0.017(8) %fm−2. Resultatene samsvarer

i størrelsesorden med tilsvarende undersøkelser gjort p̊a kvikksølv og bly. Et
forsøk ble gjort p̊a å estimere hvor stor andel av hyperfinanomaliene mellom
ulike vismut-isotoper Breit-Rosenthal-effekten utgjør, men grunnet stor usikker-
het i tilgjengelige eksperimentelle data, var det ikke mulig å treffe en sikker
konklusjon. Hva ang̊ar aktivt-sett-metoden, ble det funnet at en strategisk og
systematisk utvidelse av det aktive settet gav høyere presisjon med mindre bruk
av dataressurser enn mindre “forsiktige” utvidelser.





Unit system

Hartree atomic units will be used throughout this thesis, unless otherwise spec-
ified. In this system, the following quantities are all set to unity:

• Electron mass, me

• Elementary charge, e

• The inverse Coulomb constant, 4πϵ0

• The reduced Planck constant, h̄ = h/2π

Of note is the fact that in this system, the speed of light is written as the
inverse of the fine-structure constant: c = α−1.
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Chapter 1

Introduction

In measuring atomic or nuclear parameters, such as the electromagnetic multi-
pole moments, the experimental methods available at the present time may not
be generally applicable. One may for instance run into trouble when dealing
with radioactive isotopes that decay before a measurement can be done, or in
producing and storing high-quality, clean samples of the isotopes. In the present
work, one way of bypassing these issues will be presented; given a stable ref-
erence isotope1, one can infer the properties of other isotopes by establishing
relations between measurable quantities and variations in certain key param-
eters. One such inference can be made for the values of the magnetic dipole
moment µ, which can be calculated for some isotope using values acquired for
some reference isotope, with [1]

µ′ = µref
I ′

Iref

A′

Aref
(1.1)

A here denoting the magnetic dipole hyperfine constants, and I the nuclear
spins of the isotopes. This approximation is based on a model of the nucleus
as a perfect magnetic dipole. In reality, the nucleus is an extended charge- and
current distribution, giving rise to the Breit-Rosenthal and Bohr-Weisskopf ef-
fects, respectively, which have to be accounted for. By quantifying these effects,
the uncertainties on values of magnetic dipole moments may be reduced along
chains of isotopes, based on the calculations done on a reference isotope. In the
following thesis, a parametric study of the Breit-Rosenthal effect in the neutral
Bi I isotopes using a multiconfiguration Dirac-Hartree-Fock method with a con-
figuration interaction calculation (MCDHF-CI) will be reported. The size of the
effect will be determined by considering the dependence of the dipole magnetic
hyperfine constant A on variations in two parameters, the nuclear mean squared
charge radius, and the nuclear skin thickness, in the reference isotope 209Bi.

1Now, the isotope considered in this work is not actually stable. 209Bi decays by α-particle
emission, though with a half-life of 2 · 1019 years, it can be treated as stable. It is also the
only naturally occurring bismuth isotope, making it the obvious choice for a reference isotope
in the present work.
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Calculations were done using the general-purpose relativistic atomic structure
package (GRASP2018, henceforth denoted by just “GRASP”).

1.1 Thesis structure

The thesis will start off, in chapter 2, with a brief historical perspective on
the interconnection between atomic structure and -spectroscopy, ending with a
qualitative discussion of the modern atomic model. Chapters 3 through 6 will
set up the theory underlying the calculations, following along with the workflow
of a single calculation of the hyperfine constant (see figure 1.1). In order, the
topics covered here will be the nuclear and electronic models used in GRASP,
the self-consistent calculation of the wave functions using multiconfigurational
Dirac-Hartree-Fock theory, the application of relativistic and quantum electro-
dynamical (QED) effects in the configuration interaction calculation, before a
discussion of hyperfine structure rounds out the theory section. After that, the
methods of the present work will be discussed in chapters 7 and 8, with special
focus on the exploration of optimal expansions with regards to the balancing
of computational resource use and accuracy. Finally, the results of the calcu-
lations will be reported in chapter 9, and discussed in chapter 10, before the
whole thesis is concluded in chapter 11. In addition to the structure outlined
above, three appendices are included, containing examples of the scripting of
calculations, a figure to be discussed in chapter 9, and complete expansion sizes
for the methods to be discussed.

2
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Chapter 3: The atomic model of GRASP2018

Chapter 4: The self-consistent calculation
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Chapter 6: Hyperfine structure

Figure 1.1: Flowchart outlining both a single calculation of the hyperfine con-
stant, as well as the structure of the theory section of the thesis. The arrow
going from rmcdhf to rwfnestimate indicates that previously calculated wave
functions may be used as input for subsequent calculations, improving accuracy
and reducing computational cost.

1.2 Motivation

The raison d’être of this thesis, is to provide calculations which in turn can be
used to decrease uncertainties in the measured values of the magnetic dipole
moment of bismuth [2]. In addition, the methodology which is typically applied
to similar atomic structure calculations will be examined, hopefully providing
results applicable to further research within the field. The study of atomic
structure generally, and hyperfine structure specifically has applications in ev-
erything from classifying astronomical objects, to leading up to tests of some of
the most accurate theories currently known, like QED. In addition to these con-
crete benefits, and as will be discussed later in this thesis, there is an inherent
value in comparing theory to experiment, as thus far unnoticed discrepancies
may be found, further deepening our understanding of the fundamental laws
that govern our existence.

3



1.3 Theoretical background

As a last note before getting into the actual thesis: it is assumed that the reader
is familiar with the physics and terminology of atomic systems. For those to
whom that does not apply, some standard texts within this topic are “The
Theory of Atomic Structure and Spectra” by R. D. Cowan [3], as well as “The
Theory of Atomic Spectra” by E. U. Condon and G. H. Shortley [4].

4



Chapter 2

A brief look at the
development of atomic
physics

In the same manner as for archaeological finds, removing a physical phenomenon
from its proper context may render it meaningless to the observer. Therefore,
this chapter will give a brief account of the development of the modern atomic
model.

2.1 History of atomic physics

As detailed in the book “Inward Bound” by Abraham Pais [5], the study of
atomic spectra were of major importance to the development of not only the
models used to describe the atom, but of quantum mechanics as a whole. The
spark that ignited the “quantum revolution”1 was Planck’s ad hoc assumption
on the quantum nature of light emission in describing blackbody radiation [5].
In the years around the turn of the century, a time in which great leaps in our
understanding of matter occurred, atomic spectra and the physical structure of
atoms were developed in tandem. During this time, there were a few curious
atomic models in circulation, from Thomson’s description of the atom as alike an
English plum pudding, to Nagaoka’s speculation that the atom was like Saturn,
with electrons orbiting a central body like the gas giant’s rings, to the entire line
of thought that atoms were built up from hundreds or thousands of electrons,
no massive positive charge in sight [5]. Though some were more prescient than
others, these interpretations and thought experiments have been left by the
wayside of history. It was, however, in this time of intense speculation, that

1Pais raises the excellent question “as seen by whom?” with regards to terms like “scientific
revolution”, due to the importance of Planck’s quantum hypothesis going somewhat unnoticed
for a time after it was posed.

5



Bohr proposed his atomic model, combining the quantum hypothesis of Planck,
with the atomic structure theorized by Rutherford2: a positive nucleus with
electrons moving in circular orbits around it, akin to a planet orbited by moons,
except that the electrons could only assume specific orbits corresponding to the
energy state of the atom. Bohr’s atomic model can even today be used as a
pedagogical tool, as it does not deviate too far from the general structure of
the atom, in addition to it describing the properties of atomic spectra in an
intuitive way.

One of the great successes of Bohr’s model, was that its predicted spec-
tral lines for hydrogen coincided with the Balmer series, the empirically found
formula describing some of the spectral lines of that element:

k = RH

(
1

22
− 1

n2

)
, n > 2 (2.1)

k here being the wavenumber of the photon making up a line in the hydrogen
spectrum, and RH being the Rydberg constant for hydrogen.

In Bohr’s theory, the wavenumber of the photon emitted in a transition
between two states i and f , is given by [6, p. 103]

k = R∞

(
1

n2
f

− 1

n2
i

)
, ni > nf (2.2)

With the n’s now known to represent specific energy states of the atom, and
R∞ being given by (in SI units)

R∞ =

(
1

4πϵ0

)2
me4

4πh̄3c
(2.3)

which by experimental verification is very nearly equal to RH [6, p. 103]. If
nf = 2 is inserted into equation (2.2), the Balmers series is reproduced.

This example illustrates that the correct description of atomic spectra was
a priority in the development of the modern atomic model, and that even as
far back as the beginning of the previous century, atomic theory was already
quite sophisticated. However, the Bohr model is not the end of the line3. As
the Schrödinger equation laid the groundwork for the more complete theory of
quantum mechanics, our understanding of the atom continued to develop.

2Based on the scattering angles measured by firing α particles at a thin gold foil, an
experiment carried out by Marsden and Geiger, Rutherford came up with a description of
the atom as mostly empty, with a central charge heavy enough for high-energy α-particles to
scatter off.

3Already in Bohr’s time, refinements to the model were made, for instance by introducing
elliptical orbits, known as Bohr-Sommerfeld orbits. The jump is made directly from the Bohr
model to the modern one, as only the broad strokes of this history is necessary to set the
context for this thesis.
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2.2 Modern atomic theory

The modern atomic model is somewhat less intuitive than that of Bohr. Instead
of ball-like electrons in circular orbits around a hard nucleus, the electrons must
be described as a cloud of probability surrounding a “fuzzy” nucleus with no
clear edge. In this model, the wave functions of the electrons may even be
non-vanishing at the atomic centre, giving a non-zero percent chance of finding
an electron within the nucleus, a fact that is of great importance to the effect
studied in this thesis.

The equations describing the energy states of the modern atom are solu-
tions to either the Schrödinger equation, in the non-relativistic case, or the
Dirac equation, in the relativistic one. The non-relativistic approximation is
mainly valid for light atoms, whereas heavier atoms require a relativistic treat-
ment, either in full, using the Dirac equation, or as corrective terms to the
non-relativistic Hamiltonian, using the Breit-Pauli approximation. Due to the
complexity4 of atomic systems, exact solutions are only possible for a very few
number of atoms, mainly hydrogen, and hydrogen-like systems [7, p. 6]. Since
the object of study for this thesis, 209Bi, is both heavy and complex, solutions
of its equations of motion require relativistic approximations, which will be
discussed in later chapters.

2.2.1 On the electron cloud

In the modern understanding of atomic theory, the electrons surround the nu-
cleus as a cloud of probability; wave functions which only have determinate
positions when measured. These wave functions can be quite complex and
beautiful, as showcased in figure 2.1.

4By “complexity” is meant that the atom contains many electrons, requiring the use of
atomic many-body theory.
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Figure 2.1: Electron orbitals belonging to 6s (blue), 6p (yellow), 3d (red), and
4f (green). Higher density of dots indicate a higher probability of finding an
electron in an area.
Image source: https://winter.group.shef.ac.uk/orbitron/

As can be seen in the figure above, the probability distribution of the s
orbital does not, in fact, vanish towards the nuclear centre. This is also true
for the relativistic p1/2 orbitals (more on relativistic orbitals later). Since the
goal of the current study is to quantify the effect of variations in the spatial
distribution of the nucleus on the hyperfine structure of the atom, such orbitals
are of special significance.

Though the Bohr model has been supplanted, it’s explanation of atomic
spectra still holds, to a large degree. When an atom is excited, for instance
by heat or specifically tuned lasers, the added energy may cause an electron
to move from its ground state orbital, to one of a higher energy. With a bit of
careful anthropomorphizing, we can say that the atom now “wants” to return to

8



its ground state of lower energy, and as such needs to get rid of the energy added
by the excitation. It achieves this by emitting photons, the total energy of which
must exactly match the energy added to the system in the first place. These
photons are emitted when an electron moves from a higher to a lower orbital, and
thus the atom can only emit photons of frequencies matching specific, discrete
energy differences. By exciting atoms, and measuring the energies of the photons
emitted by their relaxation, one acquires a spectrum made up of all the different
allowed transition energies, characteristic for each atomic species.

Electronic shell model

The reason for the discreteness of atomic energy states is the Pauli exclusion
principle, which states that two fermions, the class of particle to which the
electron belongs, may not simultaneously exist in the exact same state. An
electron in the cloud of an atom has a quantum state that can be described in
terms of four5 quantum numbers, those being the principal quantum number
n, which describes electron’s energy level, the azimuthal quantum number l,
describing the orbital of the electron, and the magnetic quantum numbers ml

and ms, which describe the orientation of the orbital and the spin state of the
electron, respectively.

The principal quantum number can take any integer value ≥ 1:

n = 1, 2, 3, 4, ...

The azimuthal quantum number can take any value from zero to n− 1, and
is, for historical reasons, denoted by letters in the fashion shown in the table
below.

Table 2.1: The first 8 azimuthal quantum numbers, and their corresponding
letter symbol. After k, the rest are in alphabetical order, only omitting s and p
due to them being represented by l = 0, 1.

l = 0 1 2 3 4 5 6 7
Denoted by: s p d f g h i k

The orbital magnetic quantum number may take any value ml ∈ [−l, l], and
the spin quantum numbers can only take on two values, those being ms = ±1/2,
representing electrons of the spin-up and spin-down varieties, respectively.

Each shell may contain up to n subshells, where each subshell may contain
up to 2(l + 1) orbitals, within each of which a maximum of two electrons may
reside. The filling of a subshell is usually denoted on the form (nl)w, where w
is the number of electrons in said subshell. For atomic systems consisting of m
subshells, the notation becomes

5As will be discussed shortly, this is not the case in the relativistic regime.
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(n1l1)
w1(n2l2)

w2(n3l3)
w3 ...(nmlm)wm (2.4)

Now, in systems which must be treated relativistically, the subshells are
denoted with an additional quantum number j, which is an eigenvalue to the
total angular momentum operator J = L + S, seeing as l and s are no longer
good6 quantum numbers on their own. A relativistic subshell is thus defined
not by nl, but by nlj.

For larger systems, a useful shorthand is to find the largest noble gas whose
electronic structure one can build from the filled subshells in an atom, and
gather those subshells into a symbol representing said gas. For instance, the
electronic structure of neutral bismuth in the ground state may be represented
by the following

[Xe] + 4f145d106s26p3

Due to Xenon having filled n = 1, 2, 3 shells, along with the subshells
4s4p4d5s5p.

2.2.2 On the nucleus

Far from being the ball of positive charge often found in simplistic illustrations
of the atom, the nucleus is a complicated entity, with a rich inner life. The
nucleus is built up of two types of particles, called nucleons: the proton with
charge +e, and the neutron with no charge. Each of these is in turn made up of
two types of particle found in the Standard Model of particle physics, quarks and
gluons. This inner structure of the nucleons requires quantum chromodynamics
(QCD) to explain, and is outside the scope of this thesis. A discussion on the
nuclear model employed by GRASP will be given in chapter 3.

Nuclear shell model

Akin to the electron cloud, the nucleus is also filled in a structured fashion.
Protons and neutrons have separate shells, that are filled independently of one
another. Both are filled at the same number of their respective nucleons, which
are 2, 8, 20, 28, 40, 50, 82, and 126 [8, p. 245]. These are called the magic
numbers of the nuclear shell model, and isotopes with magic numbers of either
protons or neutrons tend to be more stable than their non-magic counterparts,
due to such nuclei having higher binding energies. The object of study for this
thesis, 209Bi, has 83 protons and 126 neutrons, only a single proton away from
being doubly magic.

Also analogously to the electron shells, the nucleons within a shell create
spin-up spin-down pairs, resulting in a contribution of zero to the total nuclear
spin. Thus, the spin properties of the nucleus is dependent on the unpaired
nucleons. In the case of 209Bi, we have a closed neutron shell (N = 126), and

6A good quantum number is one corresponding to a conserved quantity.
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a single unpaired proton (Z = 83), being a h9/2 proton, giving a total nuclear
spin of I = 9/2.
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Chapter 3

The atomic model of
GRASP2018

According to the flowchart seen in figure 1.1, the first steps in a calculation
of the magnetic dipole hyperfine constant are to define the properties of the
isotope, in terms of the nuclear structure of the atom, and the manner in which
electronic orbitals are included.

3.1 Defining the nucleus

The first step in the flowchart uses the program rnucleus for defining the iso-
tope in question, 209Bi, in the present case. When running the program, the user
is prompted to input eight parameters defining the charge, mass, spatial distri-
bution, and angular momentum properties of the nucleus. These parameters,
with the values used in the current project, are listed in table 3.1.
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Table 3.1: Parameters used in defining the isotope 209Bi. Note that the values
of mean squared charge radius and skin thickness will be varied in later cal-
culations. The parameters were found using the International Atomic Energy
Agency’s (IAEA) Livechart (accessed 12.05.2024). The sources are those listed
in the Livechart.

Name Symbol Value
Atomic number Z 83
Mass number A 209

Mean squared charge radius[9] ⟨r2⟩1/2 5.5211(26) fm
Skin thickness t 2.3 fm

Mass of neutral atom[10] M 208.9803986(15) amu
Nuclear spin quantum number I 9/2

Nuclear magnetic dipole moment[11] µI 4.092(2) µN

Nuclear electric quadrupole moment[12] Q -0.516(15) b

In the table above, µN refers to the nuclear magneton, and is in SI units
given by µN = eh̄/2mp, mp being the mass of the proton. The mean squared
charge radius and skin thickness are used to define the two parameters of the
Fermi distribution (see below). The latter two values, the multipole moments,
are defined in terms of the expectation value of the nuclear multipole moment
operator in the state in which the nuclear orbital magnetic quantum number
has its maximal value, MI = I1:

µI = ⟨νII|M(1)|νII⟩ (3.1)

Q = 2⟨νII|M(2)|νII⟩ (3.2)

As we will see later, in chapter 6, these values directly relate to the tensor
algebra formulation of the magnetic dipole and electric quadrupole hyperfine
constants, A and B, allowing for the calculation of the latter quantities knowing
the former, or vice versa.

3.1.1 Nuclear model - The Fermi distribution

As hinted at in the historical perspective, the nucleus cannot be conceptualized
as a hard ball of positive charge. A more accurate description would be to call it
a charge- and current distribution that tapers off away from the nuclear centre,

1Note that for the remainder of this thesis, to follow the conventions of the field of theo-
retical atomic structure, the angular momentum quantum numbers will be denoted by capital
letters.
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rather than end abruptly. In the GRASP suite, this charge distribution2 will be
approximated using a two-parameter Fermi distribution, which can be shown
to be valid for nuclei with mass numbers A > 20 [13, p. 28]:

ρ(r) =
ρ0

1 + e(r−c)/a
(3.3)

Here, ρ0 represents the nucleon density at the nuclear centre, c, is the dis-
tance at which the charge density is half of what it is at the nuclear centre, and a
is related to the so-called skin thickness t, by t = 4a ln 3; by simple manipulation
of the expression above, it is easily seen that the skin thickness is the distance
over which the charge density goes from 90% to 10% of its central value.

0 c
r

0%
10%

50%

90%
100%

ρ(
r)/

ρ 0

t

General normalized Fermi distribution

Figure 3.1: A general, normalized Fermi distribution, with c and t marked.

When choosing the nuclear parameters seen in table 3.1, the default values
found in the rnucleus program were opted for. The mean squared charge
radius is safely anchored in the literature, being the value tabulated by Angeli
and Marinova [9]. The skin thickness, however, is a bit less clear cut. In his
monograph “Nuclear Sizes”, Elton reports nuclear parameters for a selection
of isotopes, including 209Bi, found by electron scattering experiments. In that
work, the skin thickness is reported as 2.7 fm, with error bars placing the value
at least above 2.5 fm [13, pp. 31-32]. In 1987, De Vries, De Jager, and De
Vries published a compilation of nuclear parameters, wherein the skin thickness
of 209Bi is reported as approximately 2.06 fm [14]. In the present project, the
default value implemented in the rnucleus program, t = 2.3 fm was used,
as is in line with what is given in the “Handbook of Relativistic Quantum

2The properties arising from the extended current distribution (i.e. magnetization) of the
nucleus will be mentioned in brief when dealing with hyperfine structure, in chapter 6, but is
not the focus of this thesis. GRASP, at date of writing and to the author’s knowledge, has
no simple way of implementing the current distribution into the nuclear model used in the
calculations.
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Chemistry3” [15, p. 57]. Due to the small dependency of A on variations in skin
thickness (see chapter 8), further pursuit of this topic was dropped.

3.2 Electron orbitals

It is a well known fact that many-body systems with mutual interactions be-
tween all N components, are not generally analytically solvable when N > 2.
In atomic physics, this means that neither the Schrödinger equation nor the
Dirac equation have general exact solutions for any atomic system other than
those of the simple hydrogen-like class of atoms and ions. For this reason, the
field of atomic many-body theory has to rely on approximations and simplifying
models, for which solutions can be found. For an electronic orbital in an atomic
system, two strict symmetries have to be obeyed:

1. The wave function must be anti-symmetric with respect to the interchange
of any two electrons.

2. The Pauli exclusion principle must be respected, meaning that a wave
function in which any two electrons share the same set of quantum num-
bers can not exist.

We will now develop the orbital wave functions used by the GRASP suite,
in which these symmetries are shown to hold.

3.2.1 The relativistic central-field approximation

In the strictest sense, the potential felt by a single electron in the atomic cloud
consists of the Coulomb attraction from the nucleus, as well as the Coulomb
repulsion from all other electrons

Vi(ri) = −Z

ri
+
∑
j=1
j ̸=i

1

rij
(3.4)

Where rji = |r⃗j − r⃗i|. Using this, we quickly encounter the difficulties of a
many-body problem, as discussed above. If we rather assume that the potential
from the other electrons can be written as a spherically symmetric, averaged
potential measured relative to the atomic centre,

Vi(ri) ≈ Vav(ri) (3.5)

we can greatly simplify the calculations, as in doing so, the problem is re-
duced from a non-central many-body problem, to a central two-body problem,
reducing the complexity of finding a solution. As will be discussed in chapter
4, this central-field assumption also forms the framework of the Hartree-Fock

3For the sake of transparency: the value was not selected based on the handbook, but on
the default value in GRASP.
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theory used to iteratively calculate the wave functions in the self-consistent cal-
culation. With the central-field approximation in place, the Hamiltonian of a
single electron becomes

HCF =
∑
i

(
α−1
f α⃗i · p⃗i + α−2

f (βi − I4×4) + Vav(ri)

)
(3.6)

With the kinetic energy operator in the expression above derived from the
Dirac equation. Note that the fine-structure constant α ≈ 1/137 is here written
with the subscript “f”, to distinguish it from the α-matrices. These, and the
β-matrix are given by

α⃗i =

[
0 σ⃗i

σ⃗i 0

]
, βi =

[
I2×2 0
0 −I2×2

]
(3.7)

with σ⃗ being the Pauli spin matrices, and In×n denoting the n× n identity
matrix.

Since the Hamiltonian (3.6) only contains single-particle operators, we can
write its eigenfunctions as products of many single-particle, or in this case,
single-electron wave functions

HCFΨ(α;R) = ECFΨ(α;R) ⇒ Ψ(α;R) =

N∏
i=1

ϕ(γi; r⃗i) (3.8)

Where α are the quantum numbers defining the eigenfunction of the total
central-field Hamiltonian, R = {r⃗1, r⃗2, . . . r⃗m} denotes the set of electron co-
ordinates, and γi are the quantum numbers defining a state on the form [16,
p. 99]

ϕ(γ, r⃗) =

(
ξ(γ; r⃗)
ξ̄(γ; r⃗)

)
=

(
r−1Pnκ(r)ζκm(θ, φ, σ)

ir−1Qnκ(r)ζ−κm(θ, φ, σ)

)
(3.9)

Where P and Q are the so-called large and small radial components of the
wave function, so-called as Q → 0 in the non-relativistic regime. The function
ζκm(θ, φ, σ) is defined by

ζκm(θ, φ, σ) =
∑
ν,µ

⟨sνlµ|jm⟩χν(σ)Ylµ(θ, φ) (3.10)

χν(σ) being the spin eigenfunction of the system, Ylµ(θ, φ) representing the
well known spherical harmonics, and ⟨sνlµ|jm⟩ being the vector-coupling co-
efficients, also known as the Clebsch-Gordan coefficients. There is also a new
quantum number at play here, κ, which is defined in terms of the spin- and
orbital angular momentum operators, and the ζ-function defined above:

(σ⃗ · l⃗ + 1)ζκm = −κζκm (3.11)

and has the values
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κ = l(l + 1)− j(j + 1)− 1

4
=

{
−(j + 1/2) = −(l + 1) for j = l + 1/2

(j + 1/2) = l for j = l − 1/2
(3.12)

By using the fact that HCF is invariant under permutations of the electron
coordinates of (3.8), the product function may be used to form a wave function
on the form of a Slater determinant [17, p. 9]

Φ(Γ;R) =
1√
N !

∣∣∣∣∣∣∣∣∣
ϕ(γ1; r⃗1) ϕ(γ1; r⃗2) . . . ϕ(γ1; r⃗N )
ϕ(γ2; r⃗1) ϕ(γ2; r⃗2) . . . ϕ(γ2; r⃗N )

...
...

. . .
...

ϕ(γN ; r⃗1) ϕ(γN ; r⃗2) . . . ϕ(γN ; r⃗N )

∣∣∣∣∣∣∣∣∣ (3.13)

Here, Γ represents all quantum numbers defining the state. Now, from the
basic properties of determinants, it is obvious that the exchange of any two
sets of quantum numbers γi ↔ γj or electron positions r⃗i ↔ r⃗j will lead to a
sign change, and that any wave function containing two elements of identical
position and quantum numbers will be zero. Thus, the central-field approxima-
tion facilitates a formulation of the wave function that by its nature obeys the
symmetries described above.

3.2.2 Configuration state functions

Though the Slater determinant form of the wave function (3.13) gives us a
useful tool for finding approximate solutions to the Dirac equation, it has a
key weakness. Unlike the exact wave functions, the determinant ones are not
necessarily eigenfunctions of the total angular momentum operators [17, p. 12].
In the theory of GRASP, this is solved by formulating wave functions as linear
combinations of Slater determinants, built up of wave functions from within
the same subshell, i.e. with the same principal and total angular momentum
quantum numbers and parity, called configuration state functions, or CSFs [17,
p. 12].

Θ(ϑJMJπ;R) =
∑
i

Φ(Γi;R) (3.14)

Where π indicates the parity of the wave function, and ϑ the quantum
numbers of the state. Now, in multiconfigurational Dirac-Hartree-Fock theory,
this goes one step further. The so-called atomic state function, or ASF, is a
linear combination of CSFs[18]

Ω(ωJMJπ;R) =

N∑
k=1

CFcωJ
k Θ(ϑkJMJπ;R) (3.15)

With ω this time representing all quantum numbers not otherwise specified.
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Generating the CSFs

In the GRASP suite, the generation of configuration states is handled by the
rcsfgenerate program. In any computational project, and especially large
and/or complex ones, a key goal should be to maximise computational accu-
racy while minimizing computational cost. The user-defined limitations on the
generation of CSFs, as well as the removal of unimportant ones, are the main
tools used to achieve this. The generation of CSFs is easily limited, as the user
defines for each calculation which electron orbitals are to be taken into account,
as well as to what degree excitations between orbitals occur, and the symmetry
properties of the resultant ASF. These parameters afford the user a high degree
of freedom in how large an expansion ends up being.

Removing CSFs from the generated list

GRASP includes a program, rcsfinteract, which looks through a generated
list of CSFs, and compares it with a user-defined reference, called the multiref-
erence (MR), removing any configuration for which the following holds

⟨MR|H|CSF⟩ = 0 (3.16)

The Hamilton operator either being the Dirac-Coulomb Hamiltonian, or as
will be the case for the present work, the Dirac-Coulomb-Breit Hamiltonian,
given by

HDCB =
∑
i

[α−1
f α⃗i · p⃗i + α−2

f (βi − I4×4) + Vav(ri)]

−
N∑

j>i=1

1

2rij

[
(α⃗i · α⃗j) +

(α⃗i · r⃗ij)(α⃗j · r⃗ij)
r2ij

]
(3.17)

Where the first sum is the central-field Hamiltonian presented in equation
(3.6), and the second sum accounts for the coupling between spins and orbital
motion in the atomic system. The latter is also known as the Breit interaction,
and is what the transverse-photon interaction reduces to in the long-wavelength
limit.

The selective generation and removal of CSFs from the calculations are the
basis for what is known as the active set approach, which will be discussed at
length in chapter 7.
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Chapter 4

The self-consistent
calculation

4.1 The multiconfigurational
Dirac-Hartree-Fock method

In the present work, we will follow along with the broad strokes of the derivations
of the Hartree-Fock equations presented by I. Lindgren and A. Rosén in an
article published in “Case Studies in Atomic Physics” in 1974 [16]. For the
omitted steps, the reader is referred to the original work. As a primer before
delving into the mathematics of it: the Hartree-Fock equations are found by
minimizing the total energy expression with respect to the radial parts P and
Q of the wave functions (3.9).

4.1.1 The energy expression

Starting with the exact Dirac-Coulomb Hamiltonian

HDC =
∑
i

fi +
1

2

∑
i,j

gij

=
∑
i

(
α−1
f α⃗i · p⃗i + α−2

f (βi − I4×4)−
Z

ri

)
+

1

2

∑
i,j

1

rij
(4.1)

and the Slater determinant of (3.13), we get the following expression for the
total energy of the atomic system

E = ⟨Φ|HDC |Φ⟩ =
∑
i

⟨ϕi|f |ϕi⟩+
1

2

∑
i,j

[
⟨ϕiϕj |g|ϕiϕj⟩ − ⟨ϕiϕj |g|ϕjϕi⟩

]
(4.2)
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This can be rewritten in terms of three integrals: one, Ii, involving a single
electron, and two, Jij and Kij , involving two electrons

E =
∑
i

Ii +
1

2

∑
i,j

[
Jij −Kij

]
(4.3)

Where the one-electron integral is given by [16, p. 101]

I = ⟨ϕ|f |ϕ⟩ =
∫ [

cP

(
dQ

dr
− κ

r
Q

)
− α−1

f Q

(
dP

dr
+

κ

r
P

)
− 2α−2

f Q2 − Z

r

(
P 2 +Q2

)]
dr (4.4)

and the two-electron integrals are on the form [16, p. 101]

⟨ϕaϕb|r−1
ij |ϕcϕd⟩ =

∑
kq

(−1)qRk(abcd)⟨ϕa|Ck
q |ϕc⟩⟨ϕb|Ck

−q|ϕd⟩ (4.5)

with abcd = abab for Jij , and abcd = abba for Kij . In the expression above,
Ck

q is a tensor related to spherical harmonics1, and Rk(abcd), called a Slater
integral, is given by

Rk(abcd) =

∫ ∫
rk<
rk+1
>

[
Pa(r1)Pc(r1) +Qa(r1)Qc(r1)

]
×
[
Pb(r2)Pd(r2) +Qb(r2)Qd(r2)

]
dr1dr2

=

∫
1

r2
Yk(ac, r2)

[
Pb(r2)Pd(r2) +Qb(r2)Qd(r2)

]
dr2 (4.6)

where

rk<
rk+1
>

=
min(r1, r2)

k

max(r1, r2)k+1
(4.7)

and the function

Yk(ac, r2) = r2

∫
rk<
rk+1
>

[
Pa(r1)Pc(r1) +Qa(r1)Qc(r1)

]
dr1 (4.8)

is introduced for the sake of future convenience.
Since the matrix elements with Ck

q in (4.5) only depend on the angular
properties of the wave functions, they can be rewritten as the angular coefficients

1TheC-tensor, as defined in “Atomic Many-Body Theory” is given by the following relation

Ck
q =

√
4π

2k + 1
Y k
q (θ, φ)

where Y k
q (θ, φ) are spherical harmonics.
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of the energy expression, C(abk) for Jij and D(abk) for Kij . The total energy
expression can thus be formulated in terms of the one-electron integral, the
angular coefficients, and the Slater integrals as

E =
∑
a

qa

[
Ia +

1

2

∑
b,k

[
C(abk)Rk(abab) +D(abk)Rk(abba)

]]
(4.9)

where the summations have been nested to highlight the fact that each term
in a corresponds to the total energy of the qa electrons in a subshell defined
by nlj. Assuming, of course, that all electrons within an orbital have the same
energy.

To derive the Hartree-Fock equations, the total energy (4.9) must be min-
imized with respect to P and Q. This approach is based on the variational
method, so a brief introduction to that approximation method is in order be-
fore moving on.

4.1.2 The variational method

In the most general terms, the variational method is based on the fact that for
a bound state f , the energy functional

E(f) = ⟨f |H|f⟩
⟨f |f⟩

(4.10)

should be stationary in variations f → f + δf . By now looking for functions
that satisfy this condition, as well as requiring that

⟨f + δf |f + δf⟩ = 1 (4.11)

we get an optimization problem under the normalization constraint. This
problem can be solved by use of the following theorem [17, p. 14]

If f is a solution to the optimization problem under the normal-
ization constraint, then there exists a so called Lagrange multiplier
λ such that the functional

F(f) = E(f) + λ⟨f |f⟩ (4.12)

is stationary to first order with respect to all variations δf in f
satisfying the boundary conditions.

To approximate wave functions using this theorem, one may define the func-
tional on the left-hand side not in terms of the wave function f , but rather in
terms of the set of parameters η = {η1, η2, . . . , ηn} on which the wave func-
tion depends. Equation (4.12) may also be further generalized by imposing any
number of constraint functions C(η) with corresponding Lagrange multipliers,
yielding
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F(η) = E(η) +
∑
i

λiCi(η) (4.13)

With the stationary condition now being that the partial derivatives of the
functional with respect to the parameters ηi must be zero:

∂F
∂ηi

= 0, ∀ηi (4.14)

This way of formulating the variational problem opens it up for computa-
tional solution, on which the self-consistent calculation is based.

4.1.3 The relativistic Hartree-Fock equations

By now using as our variational function the energy expression E in (4.9), and
enforcing the orthogonality conditions

Nab =

∫ (
PaPb +QaQb

)
dr = δa,b (4.15)

we end up with the variational equation

∆E = ∆

[
E −

∑
a

qaϵaaNaa −
∑
a ̸=b

qaqbϵabNab

]
(4.16)

where, according to Koopman’s theorem, the diagonal Lagrange multiplier
ϵaa equals the energy of a single electron in subshell a.

By requiring that the energy functional E be stationary with respect to
variations in P and Q, one ends up with the expression2

∆E = qa∆Ia +
1

2
qa

∑
k

[
C(aak)∆Rk(aaaa) +D(aak)∆Rk(aaaa)

]
+ qa

∑
b ̸=a,k

[
C(abk)∆Rk(abab) +D(abk)Rk(abba)

]
− qaϵaa∆Naa − 2qa

∑
b̸=a

qbϵab∆Nab = 0 (4.17)

which for arbitrary ∆Pa and ∆Qa should be zero. Inserting each of these
conditions into (4.17) will give a set of coupled differential equations in Pa and
Qa, the relativistic Hartree-Fock equations

2The steps in which the expressions for the variations in the one- and two-electron integrals
with respect to variations in P and Q are derived have been omitted, as it would only serve to
clutter up the text, without giving much additional information. Again, the interested reader
is referred to the original text [16]
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1

αf

dQa

dr
− κ

αfr
Qa −

Z

r
Pa

+
∑
b,k

[
C(abk)Pa

1

r
Yk(bb) +D(abk)Pb

1

r
Ykab

]
= ϵaaPa +

∑
b̸=a

qbϵabPb (4.18)

− 1

αf

dPa

dr
− κ

αfr
Pa −

2

α2
f

Qa −
Z

r
Qa

+
∑
b,k

[
C(abk)Qa

1

r
Yk(bb) +D(abk)Qb

1

r
Yk(ab)

]
= ϵaaQa +

∑
b ̸=a

qbϵabQb (4.19)

Solving these equations is handled by two different programs in GRASP.
First, rangular determines the angular coefficients C(abk) and D(abk), then
rmcdhf iterates upon the wave functions until self-consistent solutions for all
orbitals have been found, i.e. orbitals which create a potential from which they
themselves can be calculated. Note that with the wave functions of the system
assumed to be on the ASF form discussed in chapter 3, this method is called
the multiconfigurational Dirac-Hartree-Fock method.

4.1.4 On the radial grid

The solution of the Hartree-Fock equations (4.18,4.19) is done on a radial grid
defined by

ri = RNT
(
eH(i−1) − 1

)
i=1, ..., NP (4.20)

where the default values are RNT = (2 · 10−6)/Z, H = 0.05, and NP = 590
[18]. For heavier atoms, such as bismuth, it becomes necessary to expand the
grid to encompass more points. In the present work, this was done in two ways:
(1) before compiling GRASP, the value of NP was edited in the source code, to
NP = 2990, and (2) when running the programs, non-default grid parameters
were input where possible. These non-default values were RNT = (1 · 10−6)/Z,
and H = 0.01. On this grid, the program solves the Hartree-Fock equations
using methods of finite difference.

4.1.5 Initialization of the self-consistent calculation

The goal of the self-consistent calculations is to iteratively estimate the orbital
wave functions based on the central potential in which the orbitals reside. To
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begin this process, the program requires some starting potential upon which
it can iterate. This starting point is input in the program rwfnestimate.
In the case of repeat calculations on the same system, the program allows for
previous results to be input as the starting estimate, as indicated in figure
(1.1). If that is not the case, for instance when calculating the wave functions
of the multireference, or when including a not preciously used subshell, another
starting point must be given. GRASP affords the user three options to choose
from, those being the Thomas-Fermi potential, and two varieties of screened
hydrogenic potentials. The former is based on the minimization of the total
energy of the electron cloud as a number-density distribution with the kinetic
energy density of a zero-temperature free-electron gas [3, p. 191]. The latter
methods, devised by J. C. Slater, determine the electronic wave functions under
the assumption that the potential felt by one electron can be modelled as that
felt by an electron in a hydrogen-like system with a nucleus of charge Z − s, s
here being the screening constant [19]. In the present project, the Thomas-Fermi
approximation was used for the initial estimates of all newly opened subshell,
except for the 6h subshell, where the basic screened hydrogenic approximation
was used, due to the Thomas-Fermi approximation not being successful.

24



Chapter 5

Configuration interaction

In the final step before calculating the hyperfine structure, some additional
terms must be added to the energy expression to account for relativistic and
QED effects. With all the information about the CSFs calculated in the previous
steps, the CI calculation, handled by rci, solves the eigenvalue problem [18]

Hc⃗ = Ec⃗ (5.1)

where what is included in the Hamiltonian is decided by the user, depending
on which effects are to be included, and c⃗ = (c1, c2, . . . , cNCF ) is the eigenvector
corresponding to the total energy E of the system. The elements ci are called
the mixing coefficients, and are calculated in the rmcdhf routine. Based on
this equation, and energy corrections to be discussed, rci calculates new wave
functions, including the relativistic and QED effects, as well as correlation effects

5.1 The Hamiltonian

In the present project, the Hamiltonian used in the CI calculation consists of five
terms, corresponding to the aforementioned Dirac- and Coulomb Hamiltonians
with the transverse-photon interaction, along with terms introducing self-energy
and vacuum polarization, two effects stemming from QED.

H = HDirac +HCoulomb +HTP +HSE +HV P (5.2)

In addition to these terms, the program allows for the application of two
mass shift corrections, the normal and specific mass shifts. These are, along
with the field shift, two of the mechanisms responsible for the isotope shift to
be discussed in chapter 6. Due to the magnitude of the mass shift between large
isotopes, being proportional to (A1A2)

−1 [20], this effect will be disregarded in
this thesis. The three other corrections will be treated briefly in the next couple
of paragraphs.
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5.1.1 The transverse photon effect

This effect, which was briefly discussed in chapter three, comes from the ex-
change of virtual photons due to couplings between the angular momenta of
the electrons: spin-(own)-orbit coupling, spin-other-orbit coupling, spin-spin
coupling, and orbit-orbit coupling. The latter two only being very small correc-
tions compared to the first two. This effect is in the current project included
in the long-wavelength limit, in which it reduces to the Breit interaction, the
rightmost term in (3.17). In GRASP, the frequencies of these transverse pho-
tons are scaled, “forcing” the interaction into the low-frequency regime. In the
present work, the default scaling factor of 10−6 was used for all calculations.

5.1.2 Self-energy

The self-energy correction arises due to the fact that the electron may inter-
act with its own electromagnetic field. In the rci program, the user sets the
largest principal quantum number for which the self-energy correction should
be applied. In accordance with the user manual [21, p. 35], this value was set
to n = 7, slightly higher than the highest spectroscopic n.

p k p

p− k

Figure 5.1: Feynman diagram of the self energy interaction of an electron with
itself.

The figure above shows the Feynman diagram representation of the electronic
self-energy, with the electron emitting a photon which then interacts with the
same electron.

5.1.3 Vacuum polarization

The vacuum polarization is the spontaneous creation of a virtual electron-
positron pair within the field of the nucleus, i.e. the energy of the nucleus
makes the vacuum into a polarizable medium of sorts. Due to the energy re-
quired for this to happen, this effect becomes more important when dealing with
heavy or superheavy atoms, than when dealing with lighter ones.
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γ γ

e −

e +

Figure 5.2: Feynman diagram of vacuum polarization; the spontaneous creation
of virtual electron-positron pairs in the field of the nucleus.

The figure above shows the Feynman diagram representation of vacuum po-
larization, with a photon splitting into an electron-positron pair, which promptly
annihilates.
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Chapter 6

Hyperfine structure

In examining the energy spectrum of an atomic species, one may notice that
what at first seemed like unique spectral lines, in fact consist of several, tightly-
spaced lines. By looking even closer, one may again notice that these lines can
be further split into another set of lines. These new sets of spectral lines are
known as the fine structure and hyperfine structure, in contrast to the original
spectrum which is known as the gross structure of the atom. The gross atomic
structure, as described in chapter 2, stems from the transitions between the
distinct stationary states of the atom. The fine structure splitting comes from
the couplings of the angular momenta of electrons; that which is included in
the Breit interaction. Lastly, hyperfine splitting is an effect stemming from the
interactions between the multipole moments of the nucleus and the electrons.

For the remainder of this chapter, hyperfine structure will be given a thor-
ough treatment, using the tensor algebra formulation found in much of the
literature upon which the methods used in this thesis are based. The chapter
will end with discussions of the isotope shift, the shifting of energy levels for
different isotopes, and the hyperfine anomaly, the deviation of theoretically eval-
uated isotope shifts arising as a consequence of the inaccuracies in the magnetic
dipole approximation of the nucleus.

6.1 Tensor operator form of the hyperfine inter-
action

The hyperfine splitting of energy levels occurs due to multipole interactions
between the electrons and the nucleus. As a result, there are two components of
this that must be discussed: the electric interaction stemming from the multipole
expansion terms of even order, and the magnetic interaction from those of odd.
The operator representing the hyperfine interaction can be written as a sum
over scalar tensor products [17, p. 165]:
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Hhfs =
∑
K≥1

T(K) ◦M(K) (6.1)

Here, T and M are tensor operators acting on the electronic and nuclear
subsystems, respectively, and “◦” is the general notation for a scalar tensor
product.

Luckily, the relative contributions of each new multipole term is less than
the previous, meaning that for a discussion of hyperfine structure, only the first
two terms are necessary, those being the magnetic dipole interaction (K = 1),
and the electric quadrupole interaction (K = 2) [17, p. 165].

In the usual way, the energy added to a state by the hyperfine interaction
can be calculated as the matrix element of said state with the operator (6.1):

Ehfs =
〈
νγIJFMF |Hhfs|νγIJFMF

〉
=

〈
νγIJFMF |T(1) ◦M(1)|νγIJFMF

〉
+
〈
νγIJFMF |T(2) ◦M(2)|νγIJFMF

〉
= EM1 + EE2 (6.2)

The state in question is defined in terms of the non-angular electronic and
nuclear quantum numbers γ, ν, the angular momentum of the electrons, J, the
angular momentum of the nucleus, I, and the total angular momentum F=I+J.

It is worth noting here that this way of adding the hyperfine interaction
hinges on perturbation theory, i.e. the assumption that the effects can be added
to the Hamiltonian as a small “perturbative term”: H = H0+H′. This is usually
the case if the perturbation is small compared to the original Hamiltonian, which
will be justified in the present chapter.

6.1.1 The magnetic dipole interaction

The two K = 1 tensors in the hyperfine operator are [17, pp. 165-166]:

T(1) =
α2
f

2

N∑
i=1

[
2L(1)

e (i)r−3
i − gs,e

√
10

[
C(2)(i)× S(1)

e (i)
]
r−3
i

+ gs,e
8

3
πδ(r⃗i)S

(1)
e (i)

]
(6.3)

for the electronic part, and

M(1) = µN

nucleons∑
i=1

∇
(
riC

(1)(i)
)
·
[
gl,nL

(1)
e (i) + gs,nS

(1)
e (i)

]
(6.4)

for the nucleonic.
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In the first equation, (6.3), gs,e ≈ 2.00232 is the electronic g-factor , Le

and Se are the orbital and spin angular momentum operators of the electrons,
and C(2) is the C-tensor of rank 2, and δ(r⃗i) is the Dirac delta-function. The
three terms in the sum represent three different physical mechanisms. The first
term is called the orbital term, and represents the field generated by the orbital
motion of the electrons. The second term, the spin-dipole term represents the
field generated by the electron spins. Lastly, the third term, also known as
the Fermi contact term, represents the contact interaction between the nucleus
and the electrons, and is proportional to the spin-density at the nucleus [17,
pp.165-166]. This last effect is the origin of the aforementioned significance of
the s and p1/2 orbitals, which overlap the nucleus, and is thus responsible for the
Breit-Rosenthal effect, i.e. the effect on the hyperfine spectrum of the nucleus
having an extended charge distribution, rather than being point-like.

On to the second equation, (6.4). We have gl,n and gs,n, being the orbital
and spin g-factors of the nucleons, and Ln and Sn the orbital and spin angular
momentum operators of the nucleons, as well as the rank-one C-tensor.

The magnetic dipole hyperfine constant

By looking at the dependence of the magnetic dipole energy on the quantum
number F, we can quite elegantly derive an expression for the magnetic dipole
hyperfine constant, a scaling factor connecting the differently coupled I and J
states to the resulting hyperfine energy levels. Using some tensor algebraic iden-
tities 1, the F-dependency of the magnetic dipole contribution to the hyperfine
energy can be shown to be [22, p. 339]

EM1 = ⟨γνIJFMF |T(1) ◦M(1)|γνIJFMF ⟩

= (−1)I+J+F

{
I J F
J I 1

}
⟨γJ ||T(1)||γJ⟩⟨νI||M(1)||νI⟩ (6.5)

Where the expression in the braces is the Wigner 6-j symbol. Using the
exact same relation on the scalar product I · J, we get:

⟨IJFMF |I · J|IJFMF ⟩ = (−1)I+J+F

{
I J F
J I 1

}
⟨J ||J||J⟩⟨I||I||I⟩ (6.6)

Since the F-dependencies are clearly the same, the dipole operator can be
rewritten as

Hdip = T(1) ◦M(1) = A(I · J) (6.7)

with [22, p. 339][17, p. 168]

1The identities in question are the Wigner-Eckart theorem, and the Wigner 3n-j symbols.
For anyone interested, [22], [23], and [7] give good introductions to the application of tensor
algebra to atomic systems.
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A =
⟨γJ ||T(1)||γJ⟩⟨νI||M(1)||νI⟩

⟨J ||J||J⟩⟨I||I||I⟩

=
µI

I

[
J(J + 1)(2J + 1)

]−1/2⟨γJ ||T(1)||γJ⟩ (6.8)

This “A”, with units of frequency, is called the dipole interaction constant, or
the magnetic dipole hyperfine constant. Notice that the magnetic dipole moment
has appeared in the equation above, as hinted at in chapter 3.

It is worth noting that equation (6.8) is only valid for diagonal matrix prod-
ucts [22, p. 339]. The rhfs program in GRASP also calculates the off-diagonal
hyperfine constants AJ,J−1, though these will not be of use in the present
project. The expressions and energy shifts for these off-diagonal elements can
be found in [24].

By simple algebraic manipulation, the scalar product in (6.7) can be rewrit-
ten in terms of the eigenvalues of I, J, and F:

F = I+ J (6.9)

⇒ F2 = I2 + J2 + 2I · J (6.10)

⇒ I · J =
1

2
(F2 − I2 − J2) (6.11)

Which, when inserting the standard eigenvalues of angular momentum op-
erators, yields:

EM1 = A(I · J) = 1

2
A
[
F (F + 1)− I(I + 1)− J(J + 1)

]
(6.12)

From the equation above it is also clear that the energy difference due
to the magnetic dipole interaction between the two states |γνIJFMF ⟩ and
|γνIJ(F − 1)MF ⟩, must be AF .

Example I: Magnetic dipole hyperfine splitting in the 4So
3/2 state of

209Bi

As an illustration of this effect, consider the unperturbed spectral line for the
ground state 4So

3/2 of 209Bi. According to experimental data tabulated by
Wilman, Ruczkowski, and Elantkowska, this state has a hyperfine constant
A0 = 446.937(1) MHz [25]. The nuclear angular momentum of 209Bi is I = 9/2,
and the electronic angular momentum of the state in question is J = 3/2. The
allowed values of F lie within the interval [|i − j|, i + j], which in this case
means F ∈ {3, 4, 5, 6}, giving four distinct hyperfine levels: A0−4134.167 MHz,
A0 − 2346.419 MHz, A0 − 111.734 MHz, and A0 + 2569.888 MHz.
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Figure 6.1: The magnetic dipole hyperfine levels of the 4So
3/2 state of 209Bi.

Though the range spanned by the hyperfine levels may seem large, translat-
ing it into a more “intuitive” form using the standard result E = hν, ν being
frequency and h the Planck constant, shows that the levels are separated by at
most 28 µeV. Not a large effect compared to the gross atomic structure, with
line separations typically measured in eV. This is also why, as mentioned above,
perturbation theory is applicable to hyperfine interactions; the relative change
in energy is usually very small.

6.1.2 The electric quadrupole interaction

The other main contributor to hyperfine level splitting, is the interaction be-
tween the electric quadrupole moments of the electron orbitals and the atomic
nucleus. The operators of (6.1) with K=2, are [17, pp. 165-166]:

T(2) = −
N∑
i=1

C(2)(i)r−3
i (6.13)

and

M(2) =

protons∑
i=1

r2iC
(2)(i) =

protons∑
i=1

(3z2i − r2i ) (6.14)

Notice in the nuclear quadrupole term (6.14) that the sum is only over the
protons in the nucleus, whereas the dipole term (6.4) contained a sum over all
nucleons.
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The electric quadrupole hyperfine constant

In the same manner as the magnetic dipole hyperfine constant, there exists an
electric quadrupole hyperfine constant B. With the same diagonality restriction
as for the magnetic dipole hyperfine constant, the electric quadrupole hyperfine
constant can be written [17, p. 168]:

B = 2Q

[
J(2J − 1)

(J + 1)(2J + 1)(2J + 3)

]1/2
⟨γJ ||T(2)||γJ⟩ (6.15)

Where Q is the nuclear electric quadrupole moment, which for 209Bi is Q =
−0.516(15) b[12]. The energy shift due to the this interaction can be written as
[17, p. 168]:

EE2 = B
3
4C(C + 1)− I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1)
(6.16)

With C = F (F + 1) − I(I + 1) − J(J + 1). In the same manner as for A,
GRASP calculates the off-diagonal hyperfine constants BJ,J−1 and BJ,J−2 [24].

Example II: Electric quadrupole hyperfine splitting in the 4So
3/2 state

of 209Bi

By again looking at the 4So
3/2 state, and using the value B = 305.067(2) MHz

from the aforementioned article [25], we find that the electric quadrupole in-
teraction shifts the spectral lines in figure 6.1 by at most 140 MHz, so only a
small change compared to the magnetic dipole splitting. In units of energy, the
electric dipole interaction at most shifts the spectral lines by approximately 0.5
µeV.

J=3
2

I=9
2

3

4

5

F=6

6A

5A

4A

Electric quadrupole
hyperfine splitting

Magnetic dipole
hyperfine splitting

Unperturbed state
+11
24B

- 524B

-1024B

+ 6
24B

Figure 6.2: The electric quadrupole hyperfine levels of the 4So
3/2 state of 209Bi.

33



As the figure shows, the splitting due to the electric quadrupole interaction
is less significant than the magnetic dipole interaction, for this state.

6.1.3 Higher-order multipole terms

Now, it is obvious that the electric quadrupole interaction contributes far less
to the hyperfine splitting than does the magnetic dipole interaction, negating
the need for including the next electric term, the electric hexadecapole term. It
is not so obvious that the next magnetic one, the octupole term, can excluded,
as even though it contributes less than the dipole interaction, there is no guar-
antee that the octupole interaction will be negligible. For that, we may look to
the literature. According to an atomic-beam magnetic-resonance measurement
carried out by Hull and Brink, the hyperfine line separations in the ground
state of 209Bi are ∆E3→4 = 1584.502(2) MHz, ∆E4→5 = 2171.419(2) MHz,
and ∆E5→6 = 2884.666(2) MHz [26]. The subscripts indicate the values of F
the line separations are measured between. With the energies calculated using

(6.12) and (6.16), we get ∆E
(calc)
3→4 = 1584.370 MHz, ∆E

(calc)
4→5 = 2171.130 MHz,

and ∆E
(calc)
5→6 = 2885.000 MHz. Comparing these values to those of Hull and

Brink, we see that even with only the first two terms in the multipole expansion
included, the values are within approximately 0.01% of the experimentally mea-
sured values for the hyperfine line distances of the 4So

3/2 state2. Higher-order
terms might be necessary when dealing with deformed nuclei, as higher degrees
of asymmetry will lead to larger multipole moments. These nuclei are generally
found in the ranges A < 190 and A > 220, and so this does not apply to most
bismuth isotopes.

6.2 Isotope shift

When comparing the atomic spectra of two isotopes of the same element, the
lines will not match exactly; there will be a shift in the energy levels between
isotopes. This shift is typically separated into two separate mechanisms, the
mass shift and the field shift, also known as the mass effect and the volume
effect.

6.2.1 Mass shift

As mentioned briefly in the previous chapter, the mass shift is really the com-
bined effect of two mechanisms. The normal mass shift, and the specific mass
shift. As given by Cowan, the kinetic energy of an N-electron atom with a
nucleus of mass M is [3, p. 505]

2Note that the thesis concerns itself with not just the ground state, but also the states
2P o

1/2
, 2Do

3/2
, 2P o

3/2
, and 2Do

5/2
. Though 4So

3/2
, being the ground state, is used as a bench-

mark for the system as a whole.
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E =
∑
i

p2i
2µ

+
1

M

(∑
i<j

p⃗i · p⃗j
)

(6.17)

where µ = Mme/(M +me) is the reduced mass of the atom (me is included
here for clarity). The first of these two effects is the normal mass shift, and
the second the specific mass shift. By using this equation, it is easy to show
that when comparing isotopes of masses M , M ′, these two effects will both be
proportional to (M ′ −M)/MM ′. In the case of bismuth, the numerator in this
expression will typically be < 20 amu, while the denominator will be > 40 000
amu2. For that reason, the mass shifts will not be included in the present work.
In general, the mass shift becomes less significant (and the field shift more so),
for the heavier atoms. According to Rudzikas, the mass shift can be neglected
around Z=60 [7, p. 269].

6.2.2 Field shift

The field shift, also known as the volume shift, is the isotopic shift of interest to
the present work. When we go from a description of the atomic nucleus as an in-
finitesimal point charge to an extended charge distribution, the potential felt by
the electrons will change. Specifically, where the electron orbitals overlap with
the nucleus, the electrons will feel a smaller potential, due to them now being
inside the charge distribution. Since the addition or subtraction of nucleons will
affect the geometry of the nucleus, the energy levels of separate isotopes will
be shifted due to this effect. This shift is proportional to the electron density
at the centre of the nucleus, as well as the mean squared charge radius of the
nucleus [17, p. 158]:

Efs =
2π

3
Zρe(⃗0)⟨r2⟩ (6.18)

where Z is the atomic number, ρe(⃗0) is the electronic charge density at
the nuclear centre3, and ⟨r2⟩ is the mean squared charge radius of the nucleus.
Comparing equations (6.17) and (6.18), we see that as we go towards larger, and
thus heavier atoms, the mass shift becomes less important, while the significance
of the field shift only grows. The fact that the field shift is linear in ⟨r2M ⟩
allows for the isotope shift, and the closely related Breit-Rosenthal effect4 to be
estimated using simple linear regression.

3The derivation is based on the assumption that electronic charge distribution varies little
over typical nuclear distances, and as such can be set equal to its value at the centre.

4As will be discussed, the Breit-Rosenthal effect also arises due to the volume effects of a
non-pointlike nucleus, and can therefore also be expected to be linear in ⟨r2⟩.
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6.3 Corrections to the magnetic dipole hyper-
fine constant

With the relative contributions of the multipole terms established, it is time to
take a look at some corrections to the largest contributor - the magnetic dipole
interaction.

The model of the nucleus as a point dipole, a current loop of infinitesimal
physical extent, is a mathematical approximation. The real nucleus is a quan-
tity with both an extended charge distribution, as discussed in chapter 2, and
an extended current distribution, i.e. magnetization. These two properties of
the nucleus will displace the spectral lines calculated in the point dipole approx-
imation above, (6.12).

6.3.1 The Breit-Rosenthal effect

The former of the two aforementioned effects was first described in an article
published by Jenny Rosenthal and Gregory Breit in 19325, after whom the effect
is named6. Based on the observation that the isotope shifts seen in experiments
differed by theoretical calculations in such a way as to not be explainable by the
mass shift, they found that the shifts could be explained by modifying the nu-
clear electric field from that of the simple Coulomb law. They also showed that
this effect was mainly due to s electrons, and that the shift was roughly propor-
tional to the probability of finding an electron in the nuclear centre, |Ψ(⃗0)|2 [27].
Due to the fact that the overlap of the electrons with the nucleus will serve to
lower the potential felt by said electrons, the Breit-Rosenthal correction should
reduce the magnetic dipole hyperfine constant for isotopes with larger mean
squared charge radii.

6.3.2 The Bohr-Weisskopf effect

As this effect is not the focus of this thesis, it will only be treated briefly. In
the same manner as done by Breit and Rosenthal almost two decades earlier,
Aage Bohr7 and Victor Weisskopf sought to explain another discrepancy in iso-
tope shifts. They found that the distribution of the magnetizations of different
isotopes could affect their spectra, similar to the distribution of charge in the
Breit-Rosenthal case [29]. Since the field line density of a perfect dipole will be
higher than that of a physical dipole, the Bohr-Weisskopf effect will also lead
to a lowering of the magnetic dipole hyperfine constant.

5Amusingly, the paper ends with a note about how, after writing the paper, the authors
were informed of Heisenberg’s new theory that “the nucleus is supposed to consist of protons
and neutrons” [27].

6The effect may also be found in the literature as the Breit-Rosenthal-Crawford-Schawlow
effect, with the latter researchers credited with experimentally verifying Breit-Rosenthal’s
results [28].

7Niels’ son.
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6.3.3 The hyperfine anomaly

The two “non-dipole” corrections can both be applied to the magnetic dipole
hyperfine constant as simple multiplicative factors [30]:

A′ = Ap(1 + ϵBW )(1 + ϵBR) (6.19)

Where Ap is the hyperfine constant of a point charge nucleus, and the
subscripts on the corrective ϵ factors refer to the Bohr-Weisskopf and Breit-
Rosenthal effects. In comparing two isotopes, the quantity of interest will be
the ratio of two magnetic dipole hyperfine constants:

A′
1

A′
2

=
µ1/I1
µ2/I2

(1 + ϵ
(1)
BW )(1 + ϵ

(1)
BR)

(1 + ϵ
(2)
BW )(1 + ϵ

(2)
BR)

(6.20)

Where the quantity µ/I is also known as the gyromagnetic ratio gl.
By working with the assumption that the Bohr-Weisskopf and Breit-Rosenthal

effects are small, this can be rewritten in terms of the differential quantities
1∆2 = ϵ(1) − ϵ(2):

A′
1

A′
2

≈ µ1/I1
µ2/I2

(1 +1 ∆2
BW )(1 +1 ∆2

BR) (6.21)

If, as is often the case, one of the effects dominates, only that effect need be
included, and the subscripts can be dropped:

A′
1

A′
2

≈ µ1/I1
µ2/I2

(1 +1 ∆2) (6.22)

Where the differential 1∆2 now describes the hyperfine anomly in its entirety.
Looking back at the first equation of this thesis (1.1), we see that quantifying
the hyperfine anomaly allows for the application of a corrective factor to the
calculated magnetic dipole moment.

The quantity of interest in this study, is the Breit-Rosenthal correction,
which will be quantified on the form

1∆2
BR = λδ⟨r2⟩1,2 (6.23)

With δ⟨r2⟩1,2 being the difference in mean squared charge radius between
isotopes 1 and 2.
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Chapter 7

Active set approach

When doing calculations on large, complicated systems, such as 209Bi, there are
in principle two ways to approach the issue. One is to feed an arbitrarily large
dataset into a supercomputer, allowing it to crunch the numbers for however
long it needs. The amount of time such a calculation requires might be on
the order of hours, or it might be on the order of days, months, or years, if at
all possible. Such computational times are obviously not ideal, nor necessarily
possible, depending on the time allotted to a project. In addition to this being
a waste of the researcher’s time, and other’s time if the calculation is run on a
shared mainframe, it also wastes a lot of energy, all to compute every minute,
unimportant detail of the system.

The other, more sensible method, which is used in this project, is to do a
preliminary exploration of the system, to figure out which parts are important,
and which can be discarded. The drawbacks of this strategy are mainly the
increased complexity of the calculations, and the extra time it takes to do the
preliminary exploration. However, the larger and more complex a system is, the
more this time pays off.

As mentioned in chapter three, the main avenue for researcher control when
it comes to computational resources, is in the number of configuration states
generated. In what is known as the active set approach, the orbitals of the
atom are systematically evaluated in terms of their contribution to the calcu-
lated hyperfine constant, with unimportant orbitals being excluded from the
calculation.

7.1 Spectroscopic and virtual orbitals

In GRASP, the orbitals of the active set are separated into two main categories:
the spectroscopic orbitals which make up the so-called multireference (MR) of
the system, and the virtual orbitals to which excitations from the spectroscopic
orbitals are allowed. Since the spectroscopic orbitals are selected from those
orbitals which are occupied in the ground state, they are also referred to as core
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orbitals. Similarly, since the virtual orbitals are used to calculate correlation
energies, they are also known as correlation orbitals. When generating the list
of CSFs with rcsfgenerate, the user gives a set of limitations to the sys-
tem, those being which core orbitals are active, which spectroscopic orbitals are
active, how many excitations may occur between them, and what the total an-
gular momentum of the resultant state should be. If all possible CSFs resulting
from N excitations between the spectroscopic and virtual sets are generated,
the resulting expansion is called a complete active space (CAS). If, on the other
hand, some restriction is placed upon the generation of CSFs, one is using a
restricted active space (RAS). In this chapter, the use of both complete and
restricted active spaces will be examined, with the accuracy and computational
strain resulting from both being a key aspect of the methods chosen.

7.2 Choosing a multireference

As mentioned in chapter three, an important part of limiting the computational
cost of a calculation, is the removal of relatively unimportant CSFs from the
active space. To do that, the matrix element from (3.16) is calculated, and all
CSFs that yield zero, are removed. The bra-function in (3.16) is the ASF for
the multireference (MR), which will be discussed presently.

When selecting the MR, it is common to include all closely-degenerate states,
to improve the accuracy of the results [21, p. 40]. In the case of 209Bi, one
could for instance start with the valence subshells 6s26p3, and then expand the
multireference by also including the configurations 6s6p36d and 6s26p27p. These
specific examples are based on an exploration of the MR, done in the current
work, using the program rcsfmr. Due to issues with achieving convergence for
any expanded MR, however, only the first of the three configurations mentioned
above was included 1. These convergence issues also arose when attempting to
do calculations on even-parity states. This will be discussed further in chapter
10.

7.3 Excitations/substitutions

When improving the ASF, lists of CSFs are generated where, in addition to
the MR, excitations are allowed from spectroscopic orbitals to virtual ones, as
discussed above. When generating the list of configurations, the user inputs
the allowed number of excitations, which rcsfgenerate uses to generate all
permutations of electrons within the user-set limits. In the present project single
(S), double (D), and triple (T) excitations will be used. Note that when double
excitations are input, the program generates all electron configurations possible
with both single and double excitations. For that reason, double excitations

1Chapter 13 of the GRASP user manual [21, pp. 271-298] outlines some methods for
achieving convergence. Of these, all except running the programs with non-default options
were attempted. The results acquired with only the ground state valence shells were accurate
enough so as to not create the need for further attempts at expanding the MR
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will be denoted SD, and triple excitations SDT. In addition, the letter “r” will
be used to indicate restricted excitations.

7.3.1 Correlation interactions

By improving the ASF with additional CSFs created by excitations from the
MR, one includes correlation effects into the energy expression of the system.
The correlation effects can be separated into two groups, those arising from
single excitations, and those from double.

Single excitations - polarization effects

Due to the pairing of electrons in filled subshells, the spin-density at the nucleus
will be zero from a closed electron subshell, in the central-field approximation,
leading to the contact term in (6.3) vanishing. Were the valence electrons to
generate a field to “pull apart” the spin-up and spin-down electrons within filled
subshells, the spin-density would no longer be zero, and a contact interaction
would occur. This spin polarization effect is emulated in the GRASP package
by single excitations from core subshells. Due to this, most of the hyperfine
interaction is accounted for using single excitations. There is also an effect
arising due to the valence shell distorting the spherical symmetry of closed
subshells, called “orbital polarization”, though the effect of this polarization
on the magnetic dipole hyperfine constant is small, compared to that of the
spin polarization [17, p. 173]. There is also another type of single-excitation
correlation effect, radial correlation, stemming from single excitations that only
differ from the reference in principal quantum number, retaining the reference’s
angular coupling [17, p. 70]. Due to only the polarization effects being treated
in [17] with regards to their effect on the hyperfine structure, radial correlation
will not be discussed further here.

Double excitations - correlation effects

The correlation effects arising from double excitations are sorted into three
groups, based on which orbitals are being excited. In valence correlation, exci-
tations only occur from the valence subshells, in core-valence correlations, one
excitation is from a core subshell and one from a valence subshell, and in core-
core correlation both excitations come from core subshells.

7.4 A word on notation

Before delving in to the actual calculations, a quick word on notation might be
of use. In the literature surrounding GRASP, there are several shorthands for
describing the active set of orbitals. In this thesis, the following are adopted:
the subset containing spectroscopic orbitals will be described by principal and
angular momentum quantum number. In this notation, 6sp5spd refers to two
orbitals in the sixth shell, 6s, 6p, and three orbitals in the fifth, 5s, 5p, 5d.
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For virtual orbitals, the scheme used by Bieroń and Pyykkö [31] was found to
be most practical, in which virtual layers are described in terms of how many
orbitals of each symmetry are included. In this notation, for 209Bi, 2spd1f would
refer to the set {5f,6d,7s,7p,7d,8s,8p}, i.e., the set of virtual orbitals containing
two orbitals each of symmetries l = s, p, d, and one orbital with symmetry l = f .
Beware that some authors use a similar notation, but with the total number of
orbitals of each symmetry in the active set included, not just those in the virtual
subset.

When the active spaces are described in the next chapter, relativistic sub-
shells are not indicated, as the non-relativistic notation is used in GRASP for
including (or excluding) subshells. The relativistic subshells are implicit, so to
say.
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Chapter 8

Computational methods

In the following, the use of eight different expansion methods of both the com-
plete and restricted active space approaches will be outlined for the calculation
of the hyperfine constant in 209Bi. Both due to the size and complexity of the
isotope in question, and the large number of repeat calculations for mapping
out the dependence of A on variations in mean squared charge radius and skin
thickness, limiting expansion size bloat has been a priority in the methods that
follow. Of the methods below, three are CAS expansions, and five are RAS
expansions. Most of the calculations reported in this project were performed
on the high-performance computing (hpc) cluster Idun[32], at the Norwegian
University of Science and Technology (NTNU).

8.1 Expanding the active set

The active set was explored in two separate series of calculations, one focused
on the systematic expansion of the virtual space, and one on the systematic
expansion of the spectroscopic set. Note that, as mentioned in the previous
chapter, the multireference used in this project was the simplest one, 6s26p3.

8.1.1 Virtual orbitals

The virtual orbitals were opened one by one, and S and/or SD excitations from
one or both of the valence shells n = 5, 6 were allowed to the entirety of open
virtual subshells. At each step, the “outermost1” layer of virtual subshells were
optimized, and all others kept frozen. Based on this exploration, results not
shown, the virtual spaces appropriate for single excitations were on the form
Nspdf , whereas for expansions including double excitations, g- and h-orbitals
had to be included, giving the active spaces Nspdfg1h. Note that with l = h,
only the orbital with n = 6 had to be included.

1Defined by the highest azimuthal quantum number l for each principal quantum number
n
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8.1.2 Spectroscopic orbitals

The spectroscopic orbitals, too, were opened one at a time, now allowing for
excitations up to the virtual space spanned by four virtual layers on the form
Nspdfg1h. At each step, the core orbitals were optimized only in the MR
calculation, and kept frozen when the virtual layers were added. The virtual
layers were optimized as described above. Based on these explorations, the
orbitals 1s2sp3d were excluded2, all other orbitals were included. For each
of the methods described below, the spectroscopic set was expanded in steps,
wherein all orbitals in the same shell were included simultaneously.

8.2 The methods

Eight different methods of expanding the active set were examined in this
project. Three were CAS expansions based on S, SD, and SDT expansions.
The remaining five were all RAS methods, whereof four were based on the ad-
mittedly sparse description of the method used by Bieroń and Pyykkö when
calculating the electric quadrupole moment of 209Bi [31].

8.2.1 Methods I-III: Complete active set
expansions

In the simplest methods, the expansions were generated by unrestricted S, SD,
and SDT excitations. Due to the sizes of the latter two, the expansions of the
spectroscopic sets were cut short after the fifth and sixth shells, respectively.
The expansions are detailed in the table below, with the total number of CSFs
generated in an expansion denoted by NCF.

Table 8.1: Summary of the largest expansions of methods I-III.

Mthd. From Exc. To NCF
I 6sp5spd4spdf3sp S 4spdf 6 865
II 6sp5spd SD 4spdfg1h 768 994
III 6sp SDT 4spdf1gh 771 194

It is worth noting that due to the Dirac-Coulomb-Breit Hamiltonian only
containing one- and two-particle operators, the rcsfinteract method of re-
moving CSFs was not applicable in method III, which used SDT excitations.

2There is a possibility that the calculations could have benefited from the inclusion of the
2s orbitals, however, satisfactory results were achieved with only n = 3, 4, 5, 6.
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8.2.2 Method IV: Restricted SD excitations

Since the majority of the hyperfine interaction is accounted for via single exci-
tations, a way to combat the sharp increase in NCF with adding excitations,
is to restrict said excitations in some way. In this method, unrestricted SD
excitations were allowed from 6sp, plus restricted SD excitations from all sub-
shells, wherein at most one excitation at a time could come from the core. The
valence 6sp subshells were fully open for all excitations. Note that due to these
calculations originally being part of the preliminary exploration of the core, the
3s subshell was closed.

Table 8.2: Summary of the the largest expansion of method IV.

Mthd. From Exc. To NCF
IV 6sp5spd4spdf3p SrD 4spdfg1h 714 496

8.2.3 Methods V-VIII: Bieroń-Pyykkö

The method common to all the following methods, is that single excitations are
augmented by double excitations from differing subsets of the spectroscopic set.

Table 8.3: Summary of the the largest expansions of methods V-VIII. Configu-
rations only allowing J=3/2 highlighted in bold.

Mthd. From Exc. To NCF
6sp5spd4spdf3sp S 4spdfg1h

V 6sp SD 4spdfg1h 83 725
5spd6sp SD 1spdfgh
6sp5spd4spdf3sp S 4spdfg1h

VI 6sp SD 4spdfg1h 41 723
6sp5spd SrD 1spdfgh
6sp5spd4spdf3sp S 4spdfg1h

VII 6sp SD 4spdfg1h 203 299
6sp5sp4spd SrD 4spdfg1h
6sp5spd SrD 1spdfgh
6sp5sp4sp3sp2sp1s S 4spdfg1h

VIII 6sp SD 4spdfg1h 29 389
6sp5sp SrD 1spdfgh

The one row highlighted in bold type had the additional restriction that only
excitations in which the resultant state had total angular momentum J=3/2
were allowed, due to method VII being an attempt at improving convergence
for the 2Do

3/2 state.
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8.2.4 Summary of all methods

In the table below the largest expansions of all methods described above are
summarized. Note that direct comparison of expansions sizes across methods
is not necessarily possible due to the expansions being generated with different
active sets.

Table 8.4: Summary of all methods. Note that in all cases, restricted SD ex-
citations include unrestricted SD excitations from 6sp. Beware that the active
sets vary from method to method, so direct comparison between active sets
is not possible. Excitations with the aforementioned J=3/2 restriction again
highlighted in bold.

Mthd. From Exc. To NCF
I 6sp5spd4spdf3sp S 4spdf 6 865
II 6sp5spd SD 4spdfg1h 768 994
III 6sp SDT 4spdf1gh 771 194
IV 6sp5spd4spdf3p SrD 4spdfg1h 714 496

6sp5spd4spdf3sp S 4spdfg1h
V 6sp SD 4spdfg1h 83 725

5spd6sp SD 1spdfgh
6sp5spd4spdf3sp S 4spdfg1h

VI 6sp SD 4spdfg1h 41 723
6sp5spd SrD 1spdfgh
6sp5spd4spdf3sp S 4spdfg1h

VII 6sp5sp4spd SrD 4spdfg1h 203 299
6sp5sp4spd SrD 4spdfg1h
6sp5spd SrD 1spdfgh
6sp5sp4sp3sp2sp1s S 4spdfg1h

VIII 6sp SD 4spdfg1h 29 389
6sp5sp SrD 1spdfgh

8.3 The Breit-Rosenthal effect

The Breit-Rosenthal effect is quantified by calculating the dependence of A on
the nuclear spatial distribution parameters mean squared charge radius and
skin thickness. These were varied in two separate series of calculations, with
mean squared charge radius varied for methods I, V, VI, and VIII, and skin
thickness for methods VI and VIII. Both parameters were varied in the program
rnucleus, with their values defining the parameters of the Fermi distribution
(3.1).
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8.3.1 Mean squared charge radius

The mean squared charge radius was varied in increments of 0.25 fm2 from
⟨r20⟩ − 1.5 fm2 to ⟨r20⟩+1.0 fm2. This range was selected based on an extension
of the range tabulated by Angeli and Marinova [9]. Since their tabulated values
encompass approximately ⟨r20⟩±0.4 fm2, with only bismuths 202−213 included,
the range used in this project was assumed to include most of the isotopic
variation in mean squared charge radius for bismuth. The hyperfine constant
was then calculated with these new charge radii, and simple linear regression
was used to find the proportionality constant λ, such that δA = λδ⟨r2⟩, δA here
measured in percentages of the A calculated with ⟨r2⟩ = 5.5211(26) fm2. This
proportionality constant then served as a proxy value for the Breit-Rosenthal
effect.

8.3.2 Skin thickness

Skin thickness was varied in in four steps, ±0.1 fm, and ±0.2 fm. Again, A was
calculated for each skin thickness, and linear regression was used to determine
the relation between variations in skin thickness and A. In the same manner as
for mean squared charge radius, a linear fit was used to find the proportionality
constant τ , such that δA = τδt, with δA this time being measured in percentages
of the A calculated with t = 2.3 fm.

8.3.3 Linear regression

To quantify the Breit-Rosenthal effect, using the linear relationship of equation
(6.18), a simple linear regression on the form y = a+ bx was used, with

a = ȳ − bx̄ (8.1)

b =

∑
i(xi − x̄)(yi − ȳ)∑

i(xi − x̄)2
(8.2)

Where, of course, x = δ⟨r2⟩, and y = A. The coefficient of determination,
also known as R2, was calculated using

R2 =
(x̄y − x̄ȳ)

(x̄2 − x̄2)(ȳ2 − ȳ2)
(8.3)

This coefficient gives an indication on the quality of the linear fit, i.e. how
justified the assumption of a linear correlation between the two variables are;
the closer R2 is to unity, the better the correlation.

8.4 Workflow optimization

In this project, a large number of calculations had to be done, both in the
preliminary exploration of the active set, and in the actual calculation of the
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target values. Due to this, good workflow was crucial, both to limit time usage,
as well as to keep track of calculations.

8.4.1 Computational speed

As seen in the previous section, the number of configurations included in the
calculation was typically in the tens to hundreds of thousands. Since the ma-
trices of the equations to be solved grow with (NCF)2, doing these calculations
in a sequential fashion would quickly give unmanageable computational times.
To avoid this, calculations were run using the Message Passing Interface (MPI)
library OpenMPI [33], where possible. This allows for parallelization of the
calculation, letting a single program run on several processor cores (or several
CPUs), drastically cutting down time use. Somewhat counter-intuitively, the
speed of calculation does not necessarily increase along with the number of pro-
cesses used, and may in fact decrease in some cases. Some programs may be
more difficult to parallelize, such as rmcdhf. A simple test of time use as a
function of number of processes was run, once on a workstation used in the
initial phase of the project, and once after moving the project over to Idun.
Though most of the calculations used in the project were done on Idun, the
results from the workstations are included to highlight the importance of actu-
ally considering each system, and not making assumptions based on calculations
done on other computers. The optimal numbers of parallel tasks on the work-
stations were found to be two for rangular mpi3 4 and rmcdhf mpi, and five
or six for rci mpi. On Idun, however, the optimal number was found to be
approximately 32 for rangular mpi and rmcdhf mpi, and >48 for rci mpi.

3Note that almost all of the calculations done in this project were done with the name mpi
versions of the programs, even though the programs are referred to by their “main” name in
the rest of the thesis.

4A quirk of GRASP is that rmcdhf mpi reads from the same directory as rangular mpi
writes to, and the file tree of that directory is dictated by the number of tasks. All of this to
say that even though rangular mpi could benefit from having a higher number of tasks than
rmcdhf mpi, GRASP requires them to have use the same number of tasks. Since rmcdhf mpi
is the most computationally intense of these programs, it was prioritised over rangular mpi
when deciding on the number of tasks.
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Figure 8.1: Relative increase in computational time as a function of number of
MPI processes. The plot on the left shows the results for a desktop workstation
used in the early phases of the project, and the one on the right shows the
results for Idun.

Though it may be a bit difficult to see in (8.1), the vast increase in the time
taken by rmcdhf, led to the total computational time being three times longer
with six tasks than with one.

The discrepancy in optimal number of processes between the workstations
and the cluster might be a result of the specifications of each, for instance a
difference in read speed, or it might have to do with the general architecture of
each system. Idun is specifically built for large calculations, after all.

Only the three MPI compatible programs, rangular, rmcdhf, and rci
were tested. Increasing the number of compute nodes did not increase com-
putational speed much when keeping the total number of processes constant.
Whether the speedup was dependent on the size of the particular calculation
was not considered, as only one configuration was tested. All subsequent calcu-
lations, run with these results in mind, were completed in so reasonable times as
to not create the need for further optimization. Also, the main limiting factor
in processor usage, was scheduling on the cluster. As more processor cores were
requested, waiting times grew, and the program had to be restarted with a lower
amount of cores to be able to run. Though a more thorough examination of the
optimal settings could be of some use, the main purpose of this test was to get
a rough idea of how to run the calculations without experiencing the kind of
slowdown seen in figure 8.1.

8.4.2 Scripts

The amount of input required by each of the programs used in this project
varies a lot, from one line in rangular, to 19 in rmcdhf. Inputting these
parameters by hand is a tedious task, especially when doing calculations on a
large number of subshells. Giving the inputs manually also increases the risk
of human errors. Luckily, the input to the GRASP programs varies little from
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run to run, allowing new calculations to be initiated with just a few new lines of
input. Using simple bash5 scripts to pass arguments to the programs, the input
process was vastly simplified.

The basic script structures were similar to those described in chapter 10
of the user manual [21, pp. 213-228]. The programs rcsfgenerate, rcsfin-
teract, and rwfnestimate were all gathered in a single script, init, and all
subsequent program calls were done in separate scripts. This structure made for
easy repetition of singular steps in the calculation, allowing for better control.

Handling errors

In GRASP, there are a few key ways a calculation may end without completing.
The easiest to deal with are the fatal errors; if the program encounters erroneous
inputs, or missing files, it might end with some error message describing the
problem. Since these end the calculation, they are hard to miss, and can often
be fixed by redoing the calculations from an earlier step, or by proofreading the
scripts. The ones that are harder to handle, are the non-fatal errors, where the
program encounters a problem, but powers through it. One such non-fatal error
that was frequently encountered in the later calculations run on Idun, had to
do with a faulty call to some of the MPI protocols. The error message warns
that the program may act unpredictably and/or abort, though these effects were
never observed, the program was restarted as many times as needed for it to run
without error. Another “error” occurs if the self-consistent calculation exceeds
the maximum number of iterations allotted to it6. To handle non-fatal errors on
Idun, a simple script was used that read through the output files, and returned
the line containing one of the errors included in the script. It was mostly used to
avoid the aforementioned MPI error, but was also used to check for convergence
in the self-consistent calculation, as well as anything output as “error”.

8.4.3 Changing the default parameters of the
package

In an attempt to solve a problem with the scripts 7, the values for RNT and
H in the source code were rewritten. This was done using the standard bash
commands “sed” and “grep”, with care taken not to change unrelated variables.
These changes did not seem to adversely affect the program’s ability to run, and
the results matched well with results attained without these edits, both from
previous and subsequent runs. The main difference seemed to be the changing
of the default accuracy of rmcdhf, which increased the time needed to run
that program by up to several times the “unedited” time. The accuracy of

5For the uninitiated: bash is short for Bourne-Again SHell, and is the command language
used in the terminal of most Linux distributions.

6Though this is not an error, it may impact the accuracy of the calculations if the maximum
number of iterations is set too low. This did not happen in the present work, though there
were instances of the calculation exceeding the maximum number of iterations due to the
program running in a loop.

7The problem turned out to be a non-issue, a result of lacking experience with bash scripts.
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the rmcdhf program is defined by ACCY = H6 [34], which fits well with
the observed behaviour of the program. Considering that the default accuracy
when determining convergence in rmcdhf is on the order of 10−8, the increase
in precision was deemed too small to make up for the increase in computational
time. It is worth noting that the default grid parameters and accuracy can easily
be changed by answering “n” (no) to any prompt asking if default parameters are
to be used [34]. The results found in this report were all acquired on computers
with the standard (source code) values for RNT and H, with grid parameters
updated as part of the program inputs. The only edits to the source code were in
expanding the number of radial grid points from the default N=590, to N=2990,
which was done according to the manual [21, pp. 20-21].
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Chapter 9

Results

In what follows, the results of the three main calculations of this project, con-
verging A towards experimental values, determining the proportionality con-
stant λ such that δA = λδ⟨r2⟩, and determining the proportionality constant τ
such that δA = τδt, will be given for each method.

9.1 Convergence of A

Attempts at achieving convergence towards the experimentally measured val-
ues of A from [25] were made for all methods. The results will be given in a
“quantitative” fashion, highlighting which subshells were included at each step,
rather than the total size of the active set. This has the added benefit of making
comparisons between different virtual sets easier. Tables containing the total
active spaces can be found in appendix C.

9.1.1 Method I

With only single excitations allowed, two of the five states converged to within
±5% of the experimentally measured values. Of the other three, none came
closer than 22%, though the calculations converged fairly well towards the wrong
values.
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Figure 9.1: Convergence towards experimentally measured A for all five states
using method I.

As the figure shows, most of the effects on A came from the expansion of the
spectroscopic set, as expanding the virtual set had little effect after the second
virtual layer was added. The largest expansion with this method yielded 6 895
CSFs.

9.1.2 Method II

With method II, using unrestricted SD excitations, the expansion sizes quickly
grew unmanageable, so only one additional expansion of the spectroscopic set
was included.
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Figure 9.2: Convergence towards experimentally measured A for all five states
using method II.

The plots indicate that the convergence achieved with this method does not
make up for the computational cost, considering that the largest expansion gave
768 994 CSFs. The relatively large difference between the calculation done with
three virtual layers and the one with four also shows that at least five virtual
layers should be included when using unrestricted SD excitations only.

9.1.3 Method III

With unrestricted SDT excitations, the number of CSFs exceeded 700 000 al-
ready at n=6, so no further expansions were made.
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Figure 9.3: Convergence towards experimentally measured A for all five states
using method III.

Though the plots above are a bit hard to read, only having one data point
per virtual layer, they show that unrestricted SDT excitations do not give good
convergence, compared to the number of configurations, which for the fourth
virtual layer was 771 194.

9.1.4 Method IV

With restricted SD excitations, a higher number of spectroscopic orbitals could
be included for a comparable number of configurations as the unrestricted meth-
ods.
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Figure 9.4: Convergence towards experimentally measured A for all five states
using method IV.

The convergence is markedly improved from the previous three methods,
however the largest expansion still generated 714 496 CSFs, thus coming at a
high computational cost. There is also the same problem as for method II,
namely that the convergences indicate the need for a fifth virtual layer.

9.1.5 Method V

The first of the Bieroń-Pyykkö methods, which used S excitations augmented
by unrestricted SD excitations.
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Figure 9.5: Convergence towards experimentally measured A for all five states
using method V.

As the plots show, fair convergence was achieved in three of the five states. At
NCF = 83 725, the method also generated far fewer CSFs than the three previous
methods. The relative change when going from three to four virtual layers was
small enough that expanding the virtual space further was not necessary.

9.1.6 Method VI

When imposing restrictions on the SD excitations from the previous method,
the following convergences were achieved:
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Figure 9.6: Convergence towards experimentally measured A for all five states
using method VI.

With restrictions, four out of the five states converged satisfactorily, at ap-
proximately half the number of “unrestricted” CSFs: 41 723. In the same
manner as for method V, there was no need for a fifth virtual layer. There
is a possibility that further expanding the spectroscopic set, including some
n=2 subshells, could have benefited the project, but the convergence was good
enough that this was not deemed necessary.

9.1.7 Method VII

This method expanded on the restricted Bieroń-Pyykkö method by adding an
extra set of restricted SD excitations in the J=3/2 states. Note that in the plots
below, the extra calculations with this method are appended to the plots of the
previous method, marked with “VII”. Only the maximal expansion, with n=3,
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was included. The results for n=6,5,4,3 are the same as in figure 9.6.
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Figure 9.7: Convergence towards experimentally measured A for all five states
using method VII.

Compared to the previous method, there is an improvement in the conver-
gence of most states. The largest expansion of this method generated 203 299
CSFs, almost five times the amount of method VI.

9.1.8 Method VIII

This last method implemented the restricted Bieroń-Pyykkö method (VI), but
with only l = s, p subshells included in the spectroscopic set.
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Figure 9.8: Convergence towards experimentally measured A for all five states
using method VIII.

As for the previous method, only the largest expansion, with n=3, of this
method was included in the calculations. The results are marked “VIII” in
the figure above. The convergence is clearly comparable to the previous two
methods, but at the second-to-lowest number of CSFs of all methods: 29 389.

9.2 Variation in mean squared charge radius

Based on the convergences in the section above, four methods were selected for
variations in nuclear mean squared charge radius, those being methods I, VI,
VII, and VIII. For each of these methods, a linear fit δA = λδ⟨r2⟩ was made.
In the figure below, these linear fits will be shown, overlapped to highlight
agreement across methods.
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Figure 9.9: Linear fit of the relation δA = λδ⟨r2⟩ for methods I, VI, VII, and
VIII.

The table below contains the proportionality constants λ and coefficients of
determination, R2 attained from the linear fits in the figure above, as well as the
discrepancy between calculated and experimentally measured A, in percentages
of the latter.
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Table 9.1: Summary of all the methods for which λ were calculated. The units
are [%fm−2] for λ, and [%] for ∆A.

Mthd. Var. 2P o
1/2

4So
3/2

2Do
3/2

2P o
3/2

2Do
5/2

I λ -0.039 -0.167 -0.131 0.169 -0.013
R2 >0.999 >0.999 >0.999 >0.999 >0.999
∆A 3.83 82.44 32.0 22.29 4.42

VI λ -0.040 -0.248 -0.109 0.095 -0.017
R2 >0.999 >0.999 >0.999 >0.999 >0.999
∆A 1.83 4.96 12.29 3.55 0.00

VII λ -0.039 -0.249 -0.110 0.103 -0.016
R2 >0.999 >0.999 >0.999 0.998 0.996
∆A 1.04 2.06 9.65 4.45 1.02

VIII λ -0.039 -0.253 -0.110 0.108 -0.014
R2 >0.999 >0.999 >0.999 >0.999 >0.999
∆A 2.81 4.58 9.98 0.39 1.96

9.3 Variation in skin thickness

Only two methods were selected for variations in skin thickness, VI and VIII,
due this effect being assumed to be less important than variations in mean
squared charge radius. As will be shown below, this assumption was correct,
and further exploration of the relationship between A and t was not pursued.

61



−0.2 −0.1 0.0 0.1 0.2
δ⟨r2⟩⟨[fm2]

−0.002

0.000

0.002

0.004
δ⟨
A⟨
[⟩

]
2P1/2

−0.2 −0.1 0.0 0.1 0.2
δ⟨r2⟩⟨[fm2]

−0.02

−0.01

0.00

0.01

0.02

δ⟨
A⟨
[⟩

]

4S3/2

−0.2 −0.1 0.0 0.1 0.2
δ⟨r2⟩⟨[fm2]

−0.010

−0.005

0.000

0.005

0.010

δ⟨
A⟨
[⟩

]

2D3/2

−0.2 −0.1 0.0 0.1 0.2
δ⟨r2⟩⟨[fm2]

−0.010

−0.005

0.000

0.005

δ⟨
A⟨
[⟩

]

2P3/2

−0.2 −0.1 0.0 0.1 0.2
δ⟨r2⟩⟨[fm2]

−0.001

0.000

0.001

δ⟨
A⟨
[⟩

]

2D5/2

Method⟨VI
Method⟨VIII

Figure 9.10: Linear fit of the relation δA = τδt for methods VI and VIII.

When varying the skin thickness using the expansions of method VIII, some
strange results appeared. With δt = 0.1fm, values of δA several times higher
or lower than for the neighbouring points were calculated. These were assumed
to be random artefacts of the computation, and additional calculations were
done with δt = 0.9, 0.95, 0.11, to rule out any actual, physical effects at this skin
thickness. Except for a single point in the plot for 2P o

3/2, the figure shows that
these additional calculations indicate that the strange values were erroneous, as
first believed. A plot including the aberrant values can be found in appendix B.

The table below summarizes the results for variations in skin thickness.
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Table 9.2: Summary of all the methods for which τ were calculated. The units
are [%fm−1] for τ , and [%] for ∆A.

Mthd. Var. 2P o
1/2

4So
3/2

2Do
3/2

2P o
3/2

2Do
5/2

VI τ 0.017 0.102 0.046 -0.039 0.008
R2 0.996 0.995 0.996 0.997 0.994
∆A 1.83 4.96 12.29 3.55 0.00

VIII τ 0.017 0.103 0.047 -0.045 0.007
R2 >0.999 0.999 0.999 0.981 >0.999
∆A 2.81 4.58 9.98 0.39 1.96
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Chapter 10

Discussion

10.1 On the results

Akin to previous results acquired for the similarly heavy isotopes 199Hg [35] and
207Pb [36], the majority of the Breit-Rosenthal effect was found to originate
from the change in the nuclear mean squared charge radius, with the effect of
variations in skin thickness generally being an order of magnitude or more lower
than that of the charge radius.

10.1.1 Convergence of A

As figures 9.1-9.8 show, the convergence of the calculated magnetic dipole hy-
perfine constants to the experimentally measured ones varied a lot between
methods. As mentioned in chapters 8 and 9, four of the eight methods gave
poor convergence compared to computational cost, and were not included for
calculations on the Breit-Rosenthal effect. Three of the methods (II, III, IV)
generated more than 700 000 CSFs, which even on an hpc cluster like Idun re-
quires many hours of computational time. The unrestricted SDT excitations of
method III had the poorest performance, due to only one spectroscopic subshell
being feasible to include. The Bieroń-Pyykkö methods, especially the restricted
ones, generally gave good convergence compared to computational cost, and can
be recommended as a starting point for explorations of similarly large systems
in future research.

The benchmark of acceptable convergence in this project, was whether the
calculated hyperfine constant got to within ±5% of the experimentally mea-
sured values tabulated by Wilman, Ruczkowski, and Elantkowska [25]. In the
table below, the quantity

√∑
|∆A|2, with ∆A = Aexp−Acalc is used as a mea-

sure of convergence, reported for the largest expansion for each of the methods
described above. The maxima and minima of ∆A for each method are also
listed.
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Table 10.1: Summary of the different methods, with the quantity√∑
|Aexp −Acalc|2 =

√∑
|∆A|2 used as an indicator for the convergence to-

wards the experimentally measured values of the hyperfine constant, along with
the highest and lowest ∆A for each method.

Mthd. NCF
√∑

|∆A|2 (∆A)min (∆A)max

I 6 865 91.39 3.83 82.44
II 768 994 32.3 0.98 30.16
III 771 194 22.82 5.97 18.71
IV 714 496 64.93 10.12 55.07
V 83 725 30.39 1.21 24.83
VI 41 723 13.84 0.00 12.29
VII 203 299 10.92 1.02 9.65
VIII 29 389 11.51 0.39 9.98

As the table shows, a higher number of configuration states does not neces-
sarily imply more accurate results. Due to poor convergence vis-à-vis number
of CSFs, methods II, III, IV, and V were not used in the calculations on the
Breit-Rosenthal effect, as mentioned earlier. Method I was included, despite its
generally poor convergence, due to its low computational cost. It also showed
good convergence for the two J=1/2, 5/2 states, allowing it to be used as a sim-
ple test of whether calculated values of λ were dependent on expansion method,
and not just convergence to Aexp.

On the state 2Do
3/2

As is clear from figures 9.1-9.8, the state 2Do
3/2 was exceedingly difficult to

achieve convergence for. The closest approach was with method IV, the re-
stricted SD excitations. With that method, the calculated A(2Do

3/2) got to

within about 6% of the experimentally measured value, though at too great a
computational cost to be useful in estimating the Breit-Rosenthal effect. Method
VII was an attempt at combining methods IV and VI, thus, hopefully, attaining
good convergence for 2Do

3/2 while not creating infeasible calculations. The at-
tempt worked somewhat, as this method gave better convergence for the state
than the previous method, however similar convergence at a far lower compu-
tational cost was attained in method VIII. While further exploration of the
expansion methods could be useful, it was decided to prioritize the other states,
especially the ground state 4So

3/2.

10.1.2 Variation in mean squared charge radius

As can be seen from table 9.1, the calculated values of λ are quite independent
of the chosen method, depending more strongly on the value of ∆A. Consider-
ing method VIII in light of this observation, we see that even though s and p1/2
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orbitals are the orbitals that contribute to the Breit-Rosenthal effect, deep-core
orbitals are not necessary to estimate its size. However, the acquired accuracies
were comparable to the other methods, but required fewer configurations, mean-
ing that only including l = s, p orbitals might be a valid approach to calculating
the Breit-Rosenthal effect.

By only including λ’s for which ∆A < 5% (thus excluding 2Do
3/2 in its

entirety) we see that λ falls within the following intervals for the four remaining
states

2P 0
1/2 : λ ∈ (−0.040,−0.039) ⇒ ∆λ = 0.001 = 2.56%

4S0
3/2 : λ ∈ (−0.253,−0.248) ⇒ ∆λ = 0.005 = 2.01%

2P o
3/2 : λ ∈ (0.095, 0.108) ⇒ ∆λ = 0.013 = 12.04%

2Do
5/2 : λ ∈ (−0.017,−0.013) ⇒ ∆λ = 0.004 = 23.53%

Where the rightmost values give the length of the interval as a percentage of
the λ calculated with the smallest ∆A. Somewhat surprisingly, there seems to
be little correlation between accuracy of estimated A, and length of the intervals,
indicating that the different states may have differing sensitivities to variations
in ⟨r2⟩. The best accuracies (lowest ∆A’s) were in fact attained for the 2Do

5/2,
the state with the highest percentage-wise uncertainty in λ. Now, it is worth
mentioning that even though the percentage-wise errors do vary, the absolute
errors are quite stable. Except for in the case of 2P o

3/2, all errors are in the third
decimal, which indicates that the method used to calculate the values has high
reliability.

Based on the values above, as well as those in table 9.1, the recommended
values for the four most precisely calculated states are given in the table below.
The uncertainties are set at twice the interval spanned by the calculated values
of λ. For comparison, the results acquired by Heggset and Persson for Hg [35],
and Karlsen and Persson for Pb [36] are included.
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Table 10.2: Recommended values for the proportionality constants λ, as cal-
culated in the present work. Previously calculated results for Hg and Pb are
included for comparison.

State λ [%fm−2] Source
Bi I 6p3 2P o

1/2 -0.039(2)

6p3 4So
3/2 -0.249(10)

6p3 2Do
3/2 ≈ -0.1

6p3 2P o
3/2 0.105(26)

6p3 2Do
5/2 -0.017(8)

Hg I 6s6p 3 3P1 -0.11(1) [35]
6s6p 3 3P2 -0.12(1) [35]

Pb I 6p2 3P1 -0.083(2) [36]
6p7s 3P1 -0.065(3) [36]
6p2 3P2 -0.009(4) [36]
6p2 1D2 0.09(2) [36]

When comparing the results in this project with the values calculated for Hg
and Pb, we can see that all values fall within the same two orders of magnitude,
indicating that the values calculated in the present work are reasonable.

On λ(2Do
3/2)

As the table above shows, it was chosen to only give a rough estimate of the
proportionality constant λ(2Do

3/2). The results shown in figure 9.9 indicate
that this value lies in the vicinity of 0.1, probably closer to 0.11, due to the
consistency of the three lines corresponding to methods VI, VII, and VIII, but
since the calculated values of A did not meet the set criteria for convergence, it
was chosen to take the safe approach, and only give an approximate value.

10.1.3 Variation in skin thickness

As the last plot in chapter 9 (figure 9.10), as well as table 9.2, show, variations
in skin thickness have little impact on the calculated hyperfine constant A. Even
by extending the range of possible skin thicknesses to t ∈ [2.0, 3.0] fm, which
exceeds that found in the literature, the values of A across that interval would
differ by, at most, approximately 0.1%, based on the calculated values of τ .
This validates the approach used in this project, wherein the value t = 2.3 fm
is used as the standard skin thickness for heavier isotopes, as posited in the
“Handbook of Relativistic Quantum Chemistry” [15, p. 57]. Based on this, as
well as the previous results for Hg and Pb [35, 36], it does not seem vital to have
precision measurements of the skin thickness in order to get good estimates of
the Breit-Rosenthal effect.
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10.1.4 Comparison with hyperfine anomalies

Little effort has been made in measuring the hyperfine anomalies of bismuth,
and even less for the non-ground states, so the comparisons to literature will
only deal with the 4So

3/2 state. Thanks to Billowes and Campbell [37] combining
their own laser spectroscopy measurements, with previously acquired results for
the hyperfine constants and magnetic dipole moments of most bismuth isotopes
with A ∈ [202, 213], there is ample opportunity to compare the predicted values
of the Breit-Rosenthal effect in the present work, with calculated hyperfine
anomalies along the isotopic chain. Sadly, the results reported by Billowes and
Campbell carry with them quite significant uncertainties, so the results will be
discussed in terms of intervals gotten by calculating the maximal and minimal
values of the hyperfine anomaly, with the given uncertainties. The values for
209Bi will be the ones given in table 3.1.

Table 10.3: Calculated hyperfine anomalies based on previously measured values
of A(4So

3/2) and µ. Values are taken from [37] unless otherwise specified.

A(Iπ) A [MHz] µ [µN ] A∆209
min [%] A∆209

max [%] λδ⟨r2⟩A,209

202 (5+) -405(10) 4.259 (14) 1.25 5.29 0.102(5)
202 (6+) -343(7) 4.325(13) 1.55 4.83 0.102(5)

203 ( 92
−
) -433(6) 4.017(13) 0.313 2.31 0.0822(38)

204 (6+) -433(6) 4.322(15) -2.41 14.9 0.0760(38)

205 ( 92
−
) -437.0(10) 4.065(7) 1.566 1.582 0.0558(25)

206 (6+) -356.1(15) 4.361(8) 0.1307 0.5077 0.0488(22)

207 ( 92
−
) -443.99(24) 4.0915(9) 0.63077 0.66375 0.0296(17)

208 (5+) -462(5) 4.633(10) -0.612 -2.27 0.0177(12)
208 (5+) [38] -446.05(32) 4.570(10) 0.51329 0.90198 0.0177(12)
210 (1−) 21.78(3) -0.04451(6) 0.3904 0.4932 -0.0247(17)
210m (9−) -147(6) 2.728(42) -1.09 3.83 -0.0247(17)

213 ( 92
−
) -399.3(18) 3.716(7) 1.409 1.830 -0.104(4)

Clearly, from the table, the absolute magnitude of the calculated Breit-
Rosenthal effect is significantly smaller than the hyperfine anomaly intervals
suggested by Billowes and Campbell1. Though the values are too spread to
make any precise inferences on their actual relative importances. It is also in-
teresting to note that for the values of 205Bi and 206Bi, measured to similar
precision, the table indicates that the Breit-Rosenthal effect is a larger contrib-
utor to the hyperfine anomaly in the case of the even-numbered isotope, than
the odd-numbered one. One would expect that the Breit-Rosenthal effect is, rel-

1Except for in the cases of 204Bi and 210mBi, where the intervals span both positive and
negative values. This is of little importance, however, due to the large uncertainties in the
measurements.
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atively speaking, largest for the odd-A isotopes, as their identical nuclear spins
makes for smaller variation in magnetization, and thus a smaller contribution
from the Bohr-Weisskopf effect. When comparing the results for the hyperfine
anomaly 208∆209 calculated with the values from Billowes and Campbell [37]
and the ones from Schmidt et al. [38], we see that it is difficult to directly
compare the calculated values, with measurements from the literature as the
experimental values may differ greatly. High-precision measurements of the hy-
perfine anomalies along the bismuth isotopic chain are necessary before such
comparisons can be made.

10.2 On the methods used

10.2.1 On the linear correlation between A, and δ⟨r2⟩, and
A and δt

As is easily seen from the plots in chapter 9 (9.9-9.10), the assumption of a
linear correlation between the magnetic dipole hyperfine constant and the nu-
clear mean squared radius and skin thickness seems justified. Looking at the
coefficients of determination, most of the linear fits have R2 > 0.99, indicating
very good fits. The outlier here being the results for variations in skin thickness
for the state 2P o

3/2, due to the aberrant values around δt = 0.1 fm.

10.2.2 On the active set approach

The expansions and accuracies reported in the present project highlight both the
importance of systematically exploring the active set with different expansion
methods, and of adapting the workflow to the computer architecture on which
the calculations are to be performed. There is a large difference, in terms of
computational time, between doing non-optimized calculations on active sets in
excess of 700 000 expansions on a desktop workstation, and doing calculations
on a few tens of thousand configurations on a hpc cluster. The computational
time might, in fact, be the difference between a project doable within a few days
or weeks, and one that is not feasible in the slightest. For future calculations on
large atomic systems, it can be recommended to consider the restricted Bieroń-
Pyykkö methods, as they showcase the possibility of combining high accuracy
with low computational cost.

Simultaneous optimization of all states

Though several methods were tested, none gave simultaneous convergence to
within ±5% for all five states considering in this thesis. At best, four out of the
five states converged to a satisfactory degree, while the fifth, without exception
being 2Do

3/2, got to within about ±10%. Method III, using SrD excitations got

this troublesome state to within ±6%, though at the cost of generating more
than 700 000 configurations. Though further exploration may have led to a
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“silver bullet” expansion for 209Bi, it was decided to leave well enough alone.
As table 9.1 shows, the calculated values of λ did not necessarily depend heavily
on the accuracy of the corrected A, with calculated values being of the same
order of magnitude even when the absolute value of ∆A = Aexp −Acalc were in
excess of 80 percentage points. The table also highlights the fact that simply
throwing more configurations at a problem does not necessarily lead to a higher
accuracy. Comparing ∆A and NCF for the J=3/2 states using method VII and
method VIII, we see that at more than ten times the number of configurations,
method VII did not markedly improve convergence towards Aexp, in one case
even giving a less accurate result. This shows that a more selective approach
towards generating expansions is well preferable to the brute force approach.

Partitioning of the list of CSFs (rcsfzerofirst)

Chapter 14 of the GRASP user manual [21, pp. 299-318] is dedicated to manag-
ing large expansions by separating the CSFs into zeroth- and first-order spaces,
based on the relative importance of the CSFs in building the ASF. Neither the
manual nor the accompanying theoretical paper [18] give a threshold for when
this method should be employed, only that it is useful when the “CSF expan-
sions get so large that the cannot be handled by the normal SCF procedure” [21,
p. 299]. By the use of the Bieroń-Pyykkö methods in this project, the expansion
sizes were of such a scale that the calculations were easily done within minutes
to hours on Idun. Were this not the case, for instance, if the SD or SDT expan-
sions gave far superior results, this partitioning may have been employed in the
calculations, but as it stands, the need never arose. Future studies seeking to
either improve upon the results, or in similar calculations on other elements, in
which the active set are further expanded, may benefit from this method.

10.2.3 Selection of states

In this project, only the 6p3 states of bismuth were examined. Of interest, due
to its frequent appearances in the literature, would be the state 6p27s1 4P1/2,

which is responsible for the well-studied 3067-Å line [39–41]. Though this was
considered, convergence issues made it difficult to work with. Even attempting
to do calculations with only the three J = 1/2 even parity states, gave conver-
gence issues not salvageable by changing Z, nor by gradually building up the
core, as described in chapter 13 of the manual [21, pp. 271-298]. Calculations on
this state were not pursued further, and quantifying the Breit-Rosenthal effect
for the most important even-parity states is left for future study.

70



Chapter 11

Conclusion

In this thesis, the size of the Breit-Rosenthal effect for the 6p3 states of bismuth
(2P o

1/2,
4So

3/2,
2Do

3/2,
2P o

3/2, and
2Do

5/2) was studied using a multiconfigurational
Dirac-Hartree-Fock calculation with relativistic and QED corrections applied in
a configuration interaction calculation (MCDHF-CI), using the general-purpose
relativistic atomic structure package GRASP2018. The Breit-Rosenthal effect
was quantified as ∆BR = λδ⟨r2⟩, where ⟨r2⟩ is the mean squared charge radius
of the nucleus, and λ is a proportionality constant describing how the magnetic
dipole hyperfine constant A changes with variations in mean squared charge
radius. The Breit-Rosenthal corrections for the five states were found to be
λ(6p3 2P o

1/2) = −0.039(2), λ(6p3 4So
3/2) = 0.249(10), λ(6p3 2Do

3/2) ≈ −0.1,

λ(6p3 2P o
3/2) = 0.105(26), λ(6p3 2Do

5/2) = −0.017(8), the orders of magnitude

of which line up with previous calculations done on Hg [35] and Pb [36]. It was
found that variations in nuclear skin thickness had little impact on the calcu-
lated Breit-Rosenthal corrections, the effect of which was therefore neglected in
the reported results, also indicating that a “standard” skin thickness of 2.3 fm
can be implemented in similar calculations. Further, the connection between
expansion size and accuracy in the active set approach was examined, finding
that rather than increase the size of the calculations, strategic and systematic
explorations of the active set yielded the best result for the lowest computa-
tional cost. With the methods described in this project, calculations on heavy
atoms, such as bismuth, may even be achievable on consumer-grade personal
computers, eliminating the need for large, and expensive mainframes.

11.1 Future study

Further optimization of the expansions in this project, specifically with the aim
of improving convergence for the 2Do

3/2 state, and expanding the multireference,
could serve to strengthen the reliability of the results reported in this thesis.

Solving the convergence issues with the even-parity states, especially the
important 4P1/2 state could give further insight into the composition of the

71



hyperfine anomaly in the bismuth isotopes.
Lastly, improving the experimental results for the hyperfine anomalies in

the bismuth isotopes, would open the results of the present work up for further
application in estimating the relative importance of the Breit-Rosenthal effect
on the anomalies along the isotopic chain. As it stands, the uncertainties in the
available data are too severe for such comparison.
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31. Bieroń, J. & Pyykkö, P. Nuclear Quadrupole Moments of Bismuth. Phys.
Rev. Lett. 87, 133003. https://link.aps.org/doi/10.1103/PhysRevLett.
87.133003 (13 Sept. 2001).
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Appendix A

Script examples

In the tables below, the scripts for a calculation of 6sp5spd4spdf→4spdfg1h
using method VI will be given, to illustrate the computational workflow of the
present work. The leftmost column will give the line number, the middle column
contains the inputs used in this calculation, and the rightmost column contains
slightly rewritten versions of the prompts each input corresponds to.



# Filename: init Corresponding prompt in GRASP

*SLURM PREAMBLE*

1 rcsfgenerate <<EOF1
2 u Default, reverse, symmetry or user specific ordering?
3 3 Select core
4 3d(10,c)4s(2,*)4p(6,*)4d(10,*)4f(14,*)5s(2,*)5p(6,*)5d(10,*)6s(2,*)6p(3,*) Give configuration 1
5 Give configuration 2
6 10s,10p,9d,8f,8g,6h Give set of active orbitals
7 1,5 Resulting 2*J-number?
8 1 Number of excitations
9 y Generate more lists?
10 3d(10,c)4s(2,i)4p(6,i)4d(10,i)4f(14,i)5s(2,i)5p(6,i)5d(10,i)6s(2,*)6p(3,*) Give configuration 1
11 Give configuration 2
12 10s,10p,9d,8f,8g,6h Give set of active orbitals
13 1,5 Resulting 2*J-number?
14 2 Number of excitations
15 y Generate more lists?
16 3d(10,c)4s(2,i)4p(6,i)4d(10,i)4f(14,i)5s(2,1)5p(6,i)5d(10,i)6s(2,*)6p(3,*) Give configuration 1
17 3d(10,c)4s(2,i)4p(6,i)4d(10,i)4f(14,i)5s(2,i)5p(6,5)5d(10,i)6s(2,*)6p(3,*) Give configuration 2
18 3d(10,c)4s(2,i)4p(6,i)4d(10,i)4f(14,i)5s(2,i)5p(6,i)5d(10,9)6s(2,*)6p(3,*) Give configuration 3
19 Give configuration 4
20 7s,7p,6d,5f,5g,6h Give set of active orbitals
21 1,5 Resulting 2*J-number?
22 2 Number of excitations
23 n Generate more lists?
24 EOF1
25



Filename: init

26 \cp rcsf.out rcsf.inp
27
28 rcsfinteract <<EOF2
29 2 DC Hamiltonian (1) or DCB Hamiltonian (2)?
30 EOF2
31
32 \cp rcsf.out rcsf.inp
33
34 rwfnestimate <<EOF3
35 n Default settings?
36 n Generate debug printout?
37 File erwf.sum will be created...
38 y Change default speed of light or grid parameters?
39 n Change speed of light?
40 y Change grid parameters?
41 1.2048192771084337E-008 Enter RNT:
42 1E-002 Enter H:
43 0 Enter HP:
44 2990 Enter N:
45 1 Read subshell radial wave function
46 rwfn 20V3 Enter the filename:
47 * List of relativistic subshells:
48 2 *In case some subshells cannot be estimated by (1)*
49 * List of relativistic subshells:
50 3 *In case some subshells cannot be estimated by (2)*
51 * List of relativistic subshells:
52 n Revise estimates?
53 EOF3
54
55 sbatch rang *Initiate rangular*



# Filename: rangular Corresponding prompt in GRASP

*SLURM PREAMBLE*

1 mpirun rangular mpi <<EOF4
2 y Full interaction?
3 EOF4
4
5 sbatch rmcdhf *Initiate rmcdhf*

Filename: rmcdhf

*SLURM PREAMBLE*

1 mpirun rmcdhf mpi <<EOF5
2 n Default settings?
3 n Generate debug output?
4 y Change default speed of light or grid parameters?
5 n Change speed of light?
6 y Change grid parameters?
7 1.2048192771084337E-008 Enter RNT:
8 1E-002 Enter H:
9 0 Enter HP:
10 2990 Enter N:
11 n Change default accuracy?
12 1 Enter ASF serial numbers for block 1
13 1-3 Enter ASF serial numbers for block 2
14 1 Enter ASF serial numbers for block 3
15 5 Level weights
16 11s,11p-,11p,10d-,10d,9f-,9f,9g-,9g,6h-,6h Enter orbitals to be varied
17 Which of these are spectroscopic?
18 50 Maximum number of iterations
19 n Modify other defaults?
20 1 Orthonormalization order?
21 EOF5
22
23 \ cp rwfn.out rwfn 20V4
24 rsave 20V4
25
26 sbatch rci *Initiate rci*



# Filename: rci Corresponding prompt in GRASP

*SLURM PREAMBLE*

1 mpirun rci mpi <<EOF6
2 y Default settings?
3 20V4 Name of state?
4 y Include transverse-photon interaction?
5 y Modify all transverse photon frequencies?
6 1.d-6 Enter scale factor
7 y Include vacuum polarization?
8 n Include normal mass shift?
9 n Include specific mass shift?
10 y Estimate self-energy?
11 7 Largest principal quantum number for self-energy?
12 1 Enter ASF serial numbers for block 1
13 1-3 Enter ASF serial numbers for block 2
14 1 Enter ASF serial numbers for block 3
15 EOF6
16
17 sbatch rhfs *Initiate rhfs*

# Filename: rhfs Corresponding prompt in GRASP
*SLURM PREAMBLE*

1 rhfs <<EOF7
2 n Default settings?
3 20V4 Name of state
4 y Mixing coefficients from a CI calculation?
5 n Generate debug printout?
6 n Change speed of light?
7 n Treat some contributions as first-order perturbations?
8 y Change grid parameters?
9 1.2048192771084337E-008 Enter RNT:
10 1E-002 Enter H:
11 0 Enter HP:
12 2990 Enter N:
13 EOF4



Appendix B

Figure 9.10, extended
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Figure B.1: Linear fit of the relation δA = τδt for method VIII, with erroneous
values indicated as “x”. Note that these values were not included in the linear
fit.



Appendix C

Full tables of expansion
sizes

Included here are the number of CSFs for all steps in all methods. These
tables are intended as supplementary material to the figures in chapter 9 (9.1-
9.8), meant to serve as a guide to the expected accuracies available at different
expansion sizes.



C.1 Methods I-IV

Table C.1: Expansion sizes for all calculations done with methods I-IV

Mthd. From Exc. To NCF Mthd. From Exc. To NCF
I 6sp S 1spdf 107 II 6sp SD 1spdfgh 1 341

2psdf 209 2spdfg1h 4 536
3spdf 311 3spdfg1h 9 629
4spdf 413 4spdfg1h 16 620

6sp5spd S 1spdf 637 6sp5spd SD 1spdfgh 61 501
2spdf 1 250 2spdfg1h 208 668
3spdf 1 863 3spdfg1h 444 499
4spdf 2 476 4spdfg1h 768 994

6sp5spd4spdf S 1spdf 1 469 III 6sp SDT 1spdfgh 20 981
2spdf 2 880 2spdf1gh 116 822
3spdf 4 291 3spdf1gh 347 131
4spdf 5 702 4spdf1gh 771 194

6sp5spd4spdf3sp S 1spdf 1 774
2spdf 3 471
3spdf 5 168
4spdf 6 865

Mthd. From Exc. To NCF
IV 6sp SrD 1spdfgh 1 341

2psdfg1h 4 536
3spdfg1h 9 629
4spdfg1h 16 620

6sp5spd SrD 1spdfgh 19 499
2spdfg1h 66 724
3spdfg1h 142 603
4spdfg1h 247 136

6sp5spd4spdf SrD 1spdfgh 51 513
2spdfg1h 173 492
3spdfg1h 368 359
4spdfg1h 636 114

6sp5spd4spdf3p SrD 1spdfgh 57 884
2spdfg1h 194 848
3spdfg1h 413 732
4spdfg1h 714 496



C.2 Methods V and VI

Table C.2: Expansion sizes for all calculations done with methods V and VI

Mthd. From Exc. To NCF Mthd. From Exc. To NCF
V 6sp SD 1spdfgh 1 341 VI 6sp SD 1spdfgh 1 341

2psdfg1h 4 536 2psdfg1h 4 536
3spdfg1h 9 629 3spdfg1h 9 629
4spdfg1h 16 620 4spdfg1h 16 620

6sp5spd SD 1spdfgh 61 501 6sp5spd1 SD 1spdfgh 61 501
6sp5spd S 2spdfg1h 65 329 6sp5spd S 2spdfg1h 23 327
6sp SD 2spdfg1h 6sp SD 2spdfg1h
6sp5spd SD 1spdfgh 6sp5spd SrD 1spdfgh
6sp5spd S 3spdfg1h 71 055 6sp5spd S 3spdfg1h 29 053
6sp SD 3spdfg1h 6sp SD 3spdfg1h
6sp5spd SD 1spdfgh 6sp5spd SrD 1spdfgh
6sp5spd S 4spdfg1h 78 679 6sp5spd S 4spdfg1h 36 677
6sp SD 4spdfg1h 6sp SD 4spdfg1h
6sp5spd SD 1spdfgh 6sp5spd SrD 1spdfgh
6sp5spd4spdf S 1spdfgh 62 578 6sp5spd4spdf S 1spdfgh 20 576
6sp5spd SD 1spdfgh 6sp5spd SrD 1spdfgh
6sp5spd4spdf S 2spdfg1h 67 326 6sp5spd4spdf S 2spdfg1h 25 324
6sp SD 2spdfg1h 6sp SD 2spdfg1h
6sp5spd SD 1spdfgh 6sp5spd SrD 1spdfgh
6sp5spd4spdf S 3spdfg1h 73 972 6sp5spd4spdf S 3spdfg1h 31 970
6sp SD 3spdfg1h 6sp SD 3spdfg1h
6sp5spd SD 1spdfgh 6sp5spd SrD 1spdfgh
6sp5spd4spdf S 4spdfg1h 82 516 6sp5spd4spdf S 4spdfg1h 40 514
6sp SD 4spdfg1h 6sp SD 4spdfg1h
6sp5spd SD 1spdfgh 6sp5spd SrD 1spdfgh
6sp5spd4spdf3sp S 1spdfgh 62 902 6sp5spd4spdf3sp S 1spdfgh 20 900
6sp5spd SD 1spdfgh 6sp5spd SrD 1spdfgh
6sp5spd4spdf3sp S 2spdfg1h 67 945 6sp5spd4spdf3sp S 2spdfg1h 25 943
6sp SD 2spdfg1h 6sp SD 2spdfg1h
6sp5spd SD 1spdfgh 6sp5spd SrD 1spdfgh
6sp5spd4spdf3sp S 3spdfg1h 74 886 6sp5spd4spdf3sp S 3spdfg1h 32 884
6sp SD 3spdfg1h 6sp SD 3spdfg1h
6sp5spd SD 1spdfgh 6sp5spd SrD 1spdfgh
6sp5spd4spdf3sp S 4spdfg1h 83 725 6sp5spd4spdf3sp S 4spdfg1h 41 723
6sp SD 4spdfg1h 6sp SD 4spdfg1h
6sp5spd SD 1spdfgh 6sp5spd SrD 1spdfgh



C.3 Methods VII and VIII

Table C.3: Expansion sizes for all calculations done with methods VII and
VIII. Since these were modifications of method VI, they were only done with
the maximal spectroscopic sets. The highlighted rows of method VII were those
for which only configurations resulting in J=3/2 were allowed.

Mthd. From Exc. To NCF
VII 6sp5spd4spdf3sp S 1spdfgh 38 296

6sp SD 1spdfgh
6sp5spd4spd2 SrD 1spdfgh
6sp5spd4spdf3sp S 2spdfg1h 66 085
6sp SD 2spdfg1h
6sp5spd SrD 1spdfgh
6sp5spd4spd SrD 2spdfg1h
6sp5spd4spdf3sp S 3spdfg1h 123 989
6sp SD 3spdfg1h
6sp5spd SrD 1spdfgh
6sp5spd4spd SrD 3spdfg1h
6sp5spd4spdf3sp S 4spdfg1h 203 299
6sp SD 4spdfg1h
6sp5spd SrD 1spdfgh
6sp5spd4spd SrD 4spdfg1h

VIII 6sp5sp4sp3sp2sp1s S 1spdfgh 10 339
6sp5sp SrD 1spdfgh
6sp5sp4sp3sp2sp1s S 2spdfg1h 14 791
6sp SD 2spdfg1h
6sp5sp SrD 1spdfgh
6sp5sp4sp3sp2sp1s S 3spdfg1h 21 141
6sp SD 3spdfg1h
6sp5sp SrD 1spdfgh
6sp5sp4sp3sp2sp1s S 4spdfg1h 29 389
6sp SD 4spdfg1h
6sp5sp SrD 1spdfgh

1This was accidentally run with unrestricted SD excitations.
2This was accidentally run without the J=3/2 restriction.




