
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Ba
ch

el
or

’s
th

es
is

Karl-Henrik Horve
Marcus Eugen Brockstedt Mathisen
Fredrik Leonard Stenersen
Bjørn Kristian Strand

Creating a Scalable Log Analytics
Pipeline with GitOps

Bachelor’s thesis in Bachelor in Digital Infrastructure and Cyber
Security
Supervisor: Erik Hjelmås
Co-supervisor: Jørn Skjerven
May 2024

Karl-Henrik Horve
Marcus Eugen Brockstedt Mathisen
Fredrik Leonard Stenersen
Bjørn Kristian Strand

Creating a Scalable Log Analytics
Pipeline with GitOps

Bachelor’s thesis in Bachelor in Digital Infrastructure and Cyber
Security
Supervisor: Erik Hjelmås
Co-supervisor: Jørn Skjerven
May 2024

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Department of Information Security and

Communication Technology

DCSG2900 Bachelor Thesis

Creating a Scalable Log Analytics
Pipeline with GitOps

Author:
Karl-Henrik Horve

Marcus Eugen Brockstedt Mathisen
Fredrik Leonard Stenersen
Bjørn Kristian Strand

May, 2024

Abstract

The increasing importance of observability and log analytics in incident response and operational
monitoring has driven the need for scalable and efficient logging solutions, particularly in cloud-
native environments. The Norwegian University of Science and Technology’s Security Operations
Center (NTNU SOC) recognizes this need and seeks to enhance its capabilities in managing the
increasing volume and diversity of log data.

This project focuses on the design, implementation, and evaluation of such a pipeline, utilizing
open-source components like Apache Kafka, Vector, and Opensearch. Throughout the project’s
lifecycle, we adhered to Infrastructure as Code (IaC) and GitOps principles, and methodologies.
The finished log analytics pipeline, designed and implemented in accordance with the NTNU SOC’s
requirements, showcases a viable, scalable, and open-source solution for effective log management
within cloud environments. Future work will address the identified bottlenecks, expand the pipeline
functionality, and incorporate further security measures to create a production-ready solution.

This POC log analytics pipeline not only demonstrates the feasibility of an open-source, cloud-
native solution for log management but also provides a reference architecture for the NTNU SOC
and other organizations seeking to enhance their observability capabilities.

i

Sammendrag

Norges Teknisk-Naturvitenskapelige Universitet (NTNU) sin SOC ser økende behov for observas-
jonsevne og logganalyse for å effektivt h̊andtere hendelser og overv̊ake driften av infrastrukturen
de beskytter. Dette er spesielt viktig i kontainermiljøer, hvor en kontainer kan være avsluttet n̊ar
en hendelse oppdages, noe som gjør logganalyse essensielt for å forst̊a hva som har skjedd. For å
forbedre sin sin støtte for cloud-native logging, foreslo NTNU SOC å bygge en proof-of-concept
(POC) logganalyse-pipeline. Prosjektet fokuserer p̊a å designe, implementere og evaluere en slik
pipeline, med bruk av åpen kildekode-verktøy som OpenSearch, Apache Kafka og Vector. I tillegg
skulle prosjektet bygge p̊a IaC-verktøy som Terraform og Ansible for automatisert provisjonering
av infrastrukturen i SkyHiGh, NTNU sin implementasjon av OpenStack-skyen.

Projektet har resultert i en fungerende logganalyse-pipeline, som demonstrerer hvordan man kan
h̊andtere store mengder data fra ulike kilder i et cloud-native miljø. Pipelinen er definert som kode,
noe som sikrer sporbarhet og reproduserbarhet, og er implementert ved hjelp av GitOps-metodikk.

Gjennom testing av pipelinen ble dens funksjonalitet og skalerbarhet evaluert. Vi oppn̊adde en
fungerende referanse arkitektur for en skalerbar logg innhenting og prosesserings-infrastruktur, som
vil fungere som et utgangspunkt for videre arbeid. Imidlertidig avdekket testingen ogs̊a ytelsesut-
fordringer med OpenSearch under høy belastning. Dette indikerer behov for videre optimalisering
av OpenSearch-konfigurasjonen for å h̊andtere store datamengder effektivt.

ii

Preface

The Norwegian University of Science and Technology’s Security Operations Center (NTNU SOC)
recognizes the growing importance of observability and log analytics. In an ever-evolving threat
landscape, robust log analytics capabilities are essential for threat detection, efficient incident
response, and overall resilience of digital infrastructure. The ability to collect, process, and analyze
vast amounts of log data in real-time is fundamental for information security teams to identify
anomalies and potential threats and to respond quickly to security incidents.

This thesis, titled ”Creating a Scalable Log Analytics Pipeline with GitOps”, marks the completion
of our studies in the bachelor’s course ”Digital Infrastructure and Cyber Security” at the NTNU
in Gjøvik. We are grateful to the people at the NTNU SOC for providing valuable insight and
guidance throughout the duration of the project. We would also like to extend our thanks to our
academic supervisors at NTNU for providing guidance and constructive feedback both in, and
outside of meetings. We hope this thesis provides a comprehensive overview of our journey in
designing and implementing a proof of concept log analytics pipeline.

iii

Table of Contents

List of Figures x

List of Tables xiii

1 Introduction 1

1.1 Background . 1

1.1.1 Academic Background . 1

1.1.2 Knowledge Gaps . 1

1.1.3 Thesis Rationale . 2

1.2 Problem Area . 2

1.3 Scope and Framework . 2

1.3.1 Timeframe . 2

1.3.2 Software . 2

1.4 Project Goals . 3

1.4.1 Learning Goals . 3

1.4.2 Effect Goals . 3

1.4.3 Result Goals . 3

1.5 Target Group . 3

1.6 Thesis Structure . 3

2 Requirement Specifications 5

2.1 Solution Requirements . 5

2.1.1 Licensing . 5

2.1.2 Design . 5

2.2 Chosen Methods and Principles For The Pipeline 6

2.2.1 Infrastructure As Code . 6

2.2.2 CI/CD . 6

2.2.3 GitOps . 6

iv

2.3 Chosen Technologies For The Pipeline . 7

2.3.1 Kubernetes . 7

2.3.2 Grafana K6 . 7

2.3.3 Kafka . 7

2.3.4 Vector . 8

2.3.5 OpenSearch . 8

2.3.6 Terraform . 8

2.3.7 Ansible . 8

2.3.8 FluxCD . 8

3 Methodology 10

3.1 Project And Development Process . 10

3.1.1 GitLab Issues And Kanban Board . 10

3.1.2 GitOps Workflow . 11

3.1.3 Timeline . 11

3.1.4 Meetings . 12

3.2 Architecture . 12

3.2.1 Components . 12

3.3 Implementation Overview . 15

3.3.1 Infrastructure . 15

3.3.2 Kafka Redundancy And Robustness . 16

4 Implementation & Challenges 17

4.1 Environment . 17

4.2 Tooling . 17

4.2.1 Terraform . 17

4.2.2 Ansible . 18

4.2.3 FluxCD . 18

4.3 Automated Infrastructure Management With IaC 18

4.3.1 Provisioning . 18

4.3.2 Orchestration . 19

4.3.3 Bridging Terraform and Ansible . 20

4.4 The Deployment Pipeline . 22

4.4.1 Pipeline Structure . 22

4.4.2 Terraform Pipeline . 22

4.4.3 Ansible Pipeline . 24

v

4.4.4 Cross Repository Integration . 24

4.4.5 Proof of Concept . 25

4.5 Log Indexing And Storage With OpenSearch . 25

4.5.1 Deploying OpenSearch Via Terraform . 25

4.5.2 Creating and Distributing Certificates . 26

4.5.3 Ansible Playbooks . 28

4.5.4 Deploying OpenSearch Via GitLab Pipelines 29

4.6 Kubernetes Deployment Strategy . 29

4.6.1 Deployment Choices . 29

4.6.2 Deploying With Terraform . 30

4.6.3 Provisioning Additional Credentials To FluxCD 31

4.7 Gitops And Continuous Delivery In Kubernetes . 32

4.7.1 Orchestration Strategy . 32

4.7.2 Repository Structuring . 34

4.7.3 FluxCD And Git Integration . 36

4.8 Log Aggregation . 37

4.8.1 GitOps Implementation . 37

4.8.2 Deploying The Operator . 38

4.8.3 Deploying The Kafka Cluster . 39

4.8.4 Configuring Data-Replication . 40

4.8.5 Exposing Metrics . 42

4.8.6 Deploying The Kafka Topic . 42

4.8.7 Autoscaling . 43

4.9 Log Processing . 43

4.9.1 The GeoLite2 Geodata Database . 44

4.9.2 Vector Transformations . 45

4.10 Log Routing Strategies . 46

4.10.1 Route Handling - What Are The Options? 46

4.10.2 Route-handling - Why Does It Matter? . 49

4.10.3 Data Routing With Vector . 50

4.11 Metrics and Monitoring . 52

4.11.1 Prometheus . 53

4.11.2 Grafana . 57

4.12 Traffic Simulation . 58

4.12.1 The Citadel Cluster . 58

vi

4.12.2 Grafana K6 . 58

5 Security 63

5.1 Threat Model . 63

5.2 Supply Chain Security . 64

5.3 Secret Management . 65

5.3.1 Certificates And SSH Keys . 65

5.3.2 Terraform State File . 65

5.4 Kubernetes Security . 65

5.4.1 Network Policies . 65

5.4.2 Resource Constraints . 66

5.4.3 Role Based Access Control . 66

5.5 GitOps Security . 67

6 Results 68

6.1 Performance Evaluation With OpenSearch . 68

6.2 Performance Evaluation Without OpenSearch . 71

7 Discussion 74

7.1 Choice Of Tools and Technologies . 74

7.1.1 Containerization vs. Virtualization . 74

7.1.2 Managed vs. Self-deployed Kubernetes . 75

7.1.3 Event Streaming Platform . 75

7.1.4 Log Processing And Routing Solution . 76

7.1.5 Hashicorp Transitions To Business Source License 77

8 Conclusion 78

8.1 Project Goal Achievements . 78

8.1.1 Learning Goals . 78

8.1.2 Effect Goals . 79

8.1.3 Result Goals . 79

8.2 Further Work . 80

8.2.1 Replace Terraform With OpenTofu . 80

8.2.2 Product Hardening . 80

8.2.3 Expand Deployment Pipelines . 80

Bibliography 81

vii

Appendix . 83

A Project Plan 84

A.1 Introduction . 84

A.2 Goals and Restrictions . 85

A.2.1 Background . 85

A.2.2 Project Goals . 85

A.2.3 Framework . 86

A.3 Scope . 87

A.3.1 Problem Statement . 87

A.4 Project Organization . 88

A.4.1 Roles and area of responsibility . 88

A.4.2 Routines . 89

A.4.3 Group rules . 90

A.5 Planning, followup and reporting . 92

A.5.1 Project Management Methodology . 92

A.6 Organization of quality assurance . 93

A.6.1 Documentation . 93

A.6.2 Plan for testing and inspection . 93

A.6.3 Risk Analysis . 94

A.7 Plan for execution . 96

A.7.1 Gannt . 96

A.8 Signatures . 97

B OpenSearch Ansible-Playbook modification 98

B.1 Original opensearch security.yml . 98

B.2 New opensearch security.yml . 104

B.3 certificate configuration template added to role . 108

C Results analysis 109

C.1 With OpenSearch . 109

C.1.1 Dataset . 109

C.1.2 Jupyter notebook . 132

C.2 Without OpenSearch . 139

C.2.1 Dataset . 139

C.2.2 Jupyter notebook . 151

viii

D Meeting Minutes 158

E Time sheet 179

ix

List of Figures

3.1 Snippet of the Kanban board for the Thesis repository 11

3.2 Project timeline . 12

3.3 Solution components overview . 13

3.4 Visualization of Log Forwarder responsability . 13

3.5 Overview of the event streamer functionality . 14

3.6 Overview of the processor and router architecture 14

3.7 Overview of the storage architecture . 15

3.8 Cluster traffic overview . 15

3.9 Pipeline components in the Bastion cluster . 16

4.1 Terraform - Provisioning an OpenSearch node . 19

4.2 Ansible - Configuring OpenSearch nodes with Ansible 20

4.3 Ansible - Configuring dynamic inventories with the cloud.terraform 21

4.4 Terraform - Including the ansible provider in Terraform configuration 21

4.5 Deployment pipeline in Gitlab . 22

4.6 Terreform plan as a CI/CD job in YAML . 23

4.7 GitLab Runner Output from terraform apply CI/CD job in figure 4.6 23

4.8 Running ansible playbooks as a CI/CD job in YAML 24

4.9 Including jobs from CI/CD repository . 25

4.10 Translated excerpts from stakeholder communication 26

4.11 Importing certificates stored in OpenStack . 26

4.12 Creating HTTP/HTTPS certificates for OpenSearch Master nodes 27

4.13 ”ansible host” resource for OpenSearch master nodes 28

4.14 Opensearch main playbook . 28

4.15 Kubernetes - Deploying Kubernetes cluster via the module block 30

4.16 Kubernetes - Merging labels to enable auto-scaling 31

4.17 Kubernetes - Deleting the CSI Cinder Controllerplugin via Terraform 31

x

4.18 Kubernetes - Providing credentials to FluxCD for additional repositories 32

4.19 Kubernetes Kustomization example . 33

4.20 FluxCD Kustomization example . 34

4.21 Repository structure example . 35

4.22 Bootstrap Repository . 35

4.23 Change Propagation Workflow . 37

4.24 Strimzi Directory structure . 38

4.25 Select Strimzi operator settings . 38

4.26 Kafka Nodepool configuration . 39

4.27 Configuring Kafka pod affinity rules . 40

4.28 Kafka partition replication . 41

4.29 Kafka Cluster - Default replication configurations for Kafka Topics 41

4.30 Configuring prometheus exporter . 42

4.31 Configuring the ’K6’ Kafka Topic . 42

4.32 Kafka partition replication after cluster scaling . 43

4.33 Log contents before processing . 44

4.34 Geodata - GeoLite2 database configuration . 44

4.35 Geodata - Transforming the logs . 45

4.36 Vector - Geodata enrichment process . 46

4.37 Log contents after processing . 47

4.38 Centralized Log-Routing . 48

4.39 Self-Contained Log Routing . 49

4.40 Component-To-Component Routing . 49

4.41 Vector configuration . 50

4.42 Helm values for our vector deployment . 51

4.43 Configuring a data-source for Vector . 51

4.44 Configuring data sinks in Vector . 52

4.45 Prometheus Helm values . 53

4.46 Default Prometheus pod-selector configuration . 53

4.47 PodMonitor for the strimzi namespace . 54

4.48 Kafka Pod Monitor configuration . 55

4.49 Vector service configuration . 56

4.50 Vector Service Monitor . 57

4.51 ServiceMonitor for the vector namespace . 57

4.52 Grafana Helm values . 58

xi

4.53 k6 log generation - traffic spikes . 59

4.54 k6 log generation - log content . 59

4.55 Generating configmaps for the cronjob . 60

4.56 K6 RBAC - Creating role that can interact with testrun resources 60

4.57 Cron - Shell commands run by deployment job . 61

4.58 K6 testrun template - selected configuration options 61

4.59 Cron - Shell commands run by the cleanup job . 62

6.1 Kafka - Messages in and consumed per second over time 69

6.2 Kafka - Consumer latency . 69

6.3 Records indexed in OpenSearch . 69

6.4 OpenSearch index size . 70

6.5 Example Vector warning . 70

6.6 Opensearch cluster - free memory . 71

6.7 Opensearch cluster - Disk I/O Time . 71

6.8 Kafka - Messages in and consumed per second over time 72

6.9 Kafka - Consumer latency . 72

6.10 Vector - Events and transform utilization . 73

A.1 Gannt chart . 96

B.1 Playbook modification example . 98

xii

List of Tables

A.1 Risk Matrix . 94

xiii

Acronyms

2FA Two-Factor Authentication. 67

API Application Programming Interface. 7–9

CIS Center for Internet Security. 63

CISA Cybersecurity and Infrastructure Security Agency. 63, 64, 66, 67

CRD Custom Resource Definition. 60, 74

FOSS Free Open Source Software. 2, 3, 5, 76, 77, 79, 80

GUI Graphical User Interface. 77

HPA Horizontal Pod Autoscaler. 43

IaC Infrastructure as Code. i, ii, 1–3, 5, 6, 8, 11, 17, 18, 78, 79

KMS Key Manager Service. 67

NSA National Security Agency. 63, 64, 66, 67

NTNU Norwegian University of Science and Technology. ii, iii, 1, 43, 63

NTNU SOC NTNU Security Operations Centre. i–iii, 1–3, 5, 8, 12–14, 16, 18, 76, 77, 79, 80

POC Proof Of Concept. i, ii, 2, 3, 30, 44, 63, 64, 66, 67, 76, 78–80

RBAC Role Based Access Control. 66, 67

SOC Security Operations Centre. ii, 1, 43, 63

SSH Secure Shell. 32, 36

VRL Vector Remap Language. 43, 45

YAML Yet Another Markup Language. x, 19, 24, 78

xiv

Glossary

Ansible An open-source IT automation tool used for configuration management, application de-
ployment, orchestration, and provisioning . 17–21

Broker A server in an Apache Kafka cluster responsible for storing and managing log data within
topics and partitions. Brokers handle requests from producers to write messages and from
consumers to read messages. 37, 39, 41, 42

Cruise Control Is a tool designed to manage several operational aspects of Kafka clusters, such
as partition rebalancing, Broker failure detection, or Replica distribution for topics. 74

FluxCD A GitOps toolkit for Kubernetes that automates the deployment and management of
applications based on configurations stored in Git repositories. .. 8, 9, 30–33, 35

GitOps An operational framework that applies DevOps best practices to infrastructure automa-
tion, using Git as the single source of truth for infrastructure and application configuration.
i, 10, 17, 18, 34

Grafana An open-source visualization and analytics platform that allows you to query, visualize,
and alert based on metrics. 52, 57, 58

Kafka A distributed event streaming platform for building real-time data pipelines. 16, 39, 42,
52, 54, 55, 74–76

Kubernetes An open-source container orchestration platform that automates the deployment,
scaling, and management of containerized applications. 1–3, 7–9, 15, 16, 52, 54–56, 74–77

Observability Pipeline A system that collects, processes, and routes telemetry data (logs, met-
rics, and traces) from various sources.. 77

OpenStack An open-source cloud computing platform that provides Infrastructure as a Service
(IaaS). It allows users to provision and manage virtual machines, networks, and storage
resources in a cloud environment. ii, 6, 29, 30, 75

Orchestration The automated configuration, coordination, and management of computer sys-
tems, middleware, and services. 7, 18, 19

Partition A partition is a segmentation of a topic into several logs, where each partition is an
ordered, immutable sequence of records that are continually appended in seperate kafka
brokers. 41

Prometheus An open-source monitoring and alerting toolkit. It collects time-series data, stores
it in a time-series database, and provides a query language and visualization tools to analyze
and create alerts based on that data. 26, 28, 52, 55–57

Provisioning The process of allocating and preparing IT infrastructure resources, like virtual
machines, networks, and storage, to support the deployment of applications and services. x,
18, 19, 21, 32, 33

xv

Terraform An open-source Infrastructure as Code (IaC) tool used for building, changing, and ver-
sioning infrastructure. It lets you define and provision infrastructure resources declaratively
across various providers. ii, 8, 21, 77, 80

Topic A Kafka topic is a logical channel for organizing and storing a stream of records to brokers,
allowing producers to send data and consumers to read it. 41, 42, 48, 51

Vector An open-source observability data pipeline tool used to collect, transform, and route logs,
metrics, and traces.. 8, 74, 76, 77

xvi

Chapter 1

Introduction

1.1 Background

NTNU Security Operations Centre, from now referred to as NTNU SOC, is an operations center
affiliated with the digital security section at NTNU’s IT division, and is responsible for coordin-
ation of the operational digital security at NTNU, and is NTNU’s official point of contact for
digital security incidents. NTNU SOC provides services like Intrusion Detection, Technical Secur-
ity Analysis, and Incident Management for all NTNU campuses [22]. NTNU is Norway’s largest
university measured in the number of students, with 43 194 students in 2023 [29]. As development
in the digital sector continues, the infrastructure NTNU SOC is monitoring grows larger and more
complex. To monitor and protect NTNU’s assets across all campuses, NTNU SOC needs a log
collection pipeline capable of handling peak load generated by their dynamic workload.

A log collection pipeline is a system tasked with collecting logs from many sources and aggregating
them before indexing them in a log management system like OpenSearch or Splunk. Security
Operations Centres can search through logs for debugging, threat-hunting, and other operational
tasks. Complete and accurate log data is a prerequisite for reliable performance analysis, threat-
hunting, and infrastructure troubleshooting within log management systems; therefore, the log
collection pipeline must ensure that all logs written to the pipeline are aggregated correctly and
indexed in the log management system.

1.1.1 Academic Background

The members of the group are all in the last year of their bachelor’s degree in Digital Infrastructure
and Cybersecurity at NTNU Gjøvik and have, through their studies, acquired knowledge in topics
of hosting infrastructure, securing services, and designing scalable applications. This serves as the
basis of knowledge the group builds upon in this thesis.

1.1.2 Knowledge Gaps

Since Kubernetes is a technology not covered by the study program, the group had to learn what
Kubernetes does and how to run both stateless and stateful applications in a Kubernetes cluster.
In addition, the group members that have not had Infrastructure as Code had to acquire knowledge
about the concept of Infrastructure as Code and the technical use and implementation of CI/CD
pipelines.

1

1.1.3 Thesis Rationale

The group chose this task based on several factors. The high degree of technical work in log
collection and Infrastructure as Code was a big motivator as this is of high interest amongst
the group members, both during the degree through subjects and part-time jobs and for further
work after the degree. In addition, Kubernetes is the leading tool for orchestrating containerized
applications and is in high demand within the industry. Since we have little to no experience
with Kubernetes from the degree, we chose this task to gain hands-on experience and improve our
competency with Kubernetes and Infrastructure as Code.

1.2 Problem Area

As the cybersecurity landscape constantly develops and the number of services running in the cloud
continues to grow, the need for a consistent and scalable log collection and management system
increases. Logging important infrastructure is a key element in ensuring desired performance and
detecting and taking action against any threat actors attempting to conduct malicious activity
against the infrastructure. Therefore, the NTNU SOC wants us to develop a Proof Of Concept
(POC) infrastructure for a log collection pipeline that is both scalable and can be easily redeployed.
The pipeline covers all stages, from extracting logs generated by each service or machine to being
indexed into a log management system for further analysis.

1.3 Scope and Framework

The thesis covers the implementation of a POC infrastructure for log collection and processing
pipeline through IaC on Kubernetes. Since the product is a POC, some features that a production-
ready infrastructure requires have been scoped out.

Firstly, since the product is a POC, most of the security features will not be configured to be
production-ready.

Additionally, the NTNU SOC had already decided to use OpenSearch and created Ansible play-
books to configure this to their needs. Configuring OpenSearch has been scoped out, as the group
would get access to these playbooks to configure OpenSearch.

1.3.1 Timeframe

The project duration is from January 8th, 2024, to May 21st, 2024. We agreed to have a first draft
ready by May 6th, giving us three weeks to finalize the report.

1.3.2 Software

The client requires that all software used in the POC infrastructure is Free Open Source Software
(FOSS) and that the source code of the finished product is licensed under a FOSS license. Defining
what licenses comply with the definition of FOSS licenses is further discussed in section 2.1.1
Licensing.

2

1.4 Project Goals

1.4.1 Learning Goals

• L1: Gain practical experience in implementing and configuring cloud-based infrastructure.

• L2: Acquire skills in leveraging GitOps practices to optimize and automate infrastructure
workflows.

• L3: Develop the team’s understanding of Kubernetes principles, particularly in relation to
scaling and managing cloud-native applications.

• L4: Learn to design and implement multi-component software solutions as Infrastructure as
Code.

1.4.2 Effect Goals

• E1: Simplify data-flow management by implementing flow-based programming tools.

• E2: Automate and streamline infrastructure management with GitOps methodologies.

• E3: Reduce licensing costs for NTNU SOC.

1.4.3 Result Goals

• R1: Have a POC solution that can collect a log from the source, process it, and index it for
long-term storage in OpenSearch.

• R2: Have the POC solution be defined and deploy-able through IaC, and adheres to GitOps
principles.

• R3: Present a log analytics pipeline capable of dynamically scaling in response to fluctuating
traffic volumes.

1.5 Target Group

The main target group of the thesis is NTNU SOC as they intend to use the POC infrastructure
as a reference for improving their current infrastructure. Additionally, since the client has required
that only FOSS is used in the product, and the source code of our product must be licensed under
a FOSS license, additional target groups include any organization or individual that wishes to
deploy a log collection and management system through IaC on Kubernetes.

1.6 Thesis Structure

The thesis consists of 7 sections.

Requirements Spesifications details the framework the group had to work with, what methods
and principles the group chose for the project, and lastly, what choices the group made regarding
the software included in the solution.

Methodology goes over what methods the group has chosen to develop the product, and provides
a high-level overview of the solution.

Implementation & Challenges details how the group has implemented the solution, what
configuration choices have been made, and outlines the challenges the group has faced in the
technical implementation.

3

Security details how the group has created the infrastructure regarding security, what measures
have been taken, and what parts have been left out.

Results details the performance testing the group has done on the infrastructure.

Discussion details the parts of the process where the group has made important decisions, and
the rationale behind them.

Conclusion discusses if the project objectives have been achieved and what work can be expanded
upon.

4

Chapter 2

Requirement Specifications

2.1 Solution Requirements

2.1.1 Licensing

The NTNU SOC required that all the software used in the final product must be licensed under a
FOSS license, this is to reduce their current licensing costs.

To determine what software is eligible for use in the product, the group had to define what licenses
permit the use of the software in a production setting without cost. The GNU Project1 is a
collaborative initiative to create free and open-source software and maintains a strict definition of
free software principles. The initiative has a list of licenses that comply with its definition of free
software 2, which has served as a foundation for the group to determine what software is eligible
for use in the project.

The group has decided to uphold the requirements of the NTNU SOC by only using software in the
finished product with an approved license from the GNU Project. Additionally, the final product
created by the group is to be licensed with an approved license from the GNU Project.

2.1.2 Design

For the product’s design, the NTNU SOC required that the product and underlying infrastructure
be configured and deployed through IaC technologies. Additionally, since the group decided to
deploy the pipeline on Kubernetes, the NTNU SOC required that the cluster automatically scale
to meet the demand of the current workload without operator interference.

1https://www.gnu.org/
2https://www.gnu.org/licenses/license-list.html

5

2.2 Chosen Methods and Principles For The Pipeline

2.2.1 Infrastructure As Code

The practice of managing infrastructure as code (IAC) involves using code to define and manage
IT infrastructure, such as servers, networks, or storage. This approach simplifies and streamlines
infrastructure management by allowing administrators to describe the desired state of their in-
frastructure in code, which is then automatically executed to create, configure, and manage the
infrastructure’s resources.

The three core practices as defined by the cloud infrastructure engineer Kief Morris [20, p.9] are
as follows:

• ”Define everything as code”

• ”Continuously test and deliver all work in progress”

• ”Build small, simple pieces that you can change independently”

2.2.2 CI/CD

Continuous Integration: Continuous Integration is a software development practice where a
team of developers integrates one or more changes daily [26, p. 5]. A common tool used for CI
is Git, which is the most widely used software for version control [26, p. 5]. This practice allows
developers working on the same project to store their code in a central repository, ensuring version
control. Code pushed to a Git repository is merged with other developers’ code, and automated
testing steps ensure the code can be merged successfully.

Continuous Delivery/Deployment: Continuous Deployment is a software engineering ap-
proach in which software changes are delivered frequently through automated deployment processes
[26, p. 8]. Tools such as GitLab Runners can pull code from a Git repository and perform the
necessary configurations to make the application deployable automatically. Continuous Delivery,
while involving many of the same principles, requires manual intervention by a developer before
deployment.

2.2.3 GitOps

Triggered by a talk at the Agile 2008 conference [20, preface. xix] by Andrew Clay-Shafer and
Patrick Debois, the DevOps movement has grown with the IaC concept. DevOps is a set of
practices that aims to reduce resistance between developing and operating software applications.

The process of GitOps emphasizes communication and collaboration between the developers and
the people operating the applications, focusing on automated deployment via Continuous Integ-
ration/Continuous Delivery (CI/CD). GitOps methodology, which is an extension of DevOps,
encourages not just the applications to be managed through Git but also the infrastructure. [26, p.
26]. By managing all the infrastructure deployments in a version-controlled and structured manner,
we establish a single source of truth, ensuring that all changes made to the pipeline are tracked,
easier collaboration, and much simpler recovery from misconfiguration. Additionally, having all
infrastructure defined in Git allows for streamlined deployment with CI/CD pipelines.

Gitlab runners

A Gitlab runner is a machine that runs the jobs defined in our Gitlab CI/CD pipelines. The
runners can be registered in various environments, either on physical machines, virtual machines
locally, or as virtual machines in the cloud, as we do in OpenStack. [11] When a pipeline triggers,

6

Gitlab assigns the job to a runner, who then carries out the instructions, which could be deploying
virtual machines, as is described in 4.4.

2.3 Chosen Technologies For The Pipeline

This section covers the different technologies and tools implemented in the solution and aims to
lay a technical foundation for the rest of the thesis.

2.3.1 Kubernetes

Kubernetes is an open-source container Orchestration platform introduced by Google in 2014[18]
and builds upon their decade-long previous experience with clustering management through Google
Borg.[31]. The platform lets developers define containerized application deployments declaratively
while providing robust automation and scaling capabilities for modern distributed systems. Kuber-
netes runs deployments in a cluster comprising two main components: the control plane and the
worker nodes.

Control Plane:

The control plane detects changes to the cluster and cluster configuration and performs operations
to ensure the cluster is running in the desired state. It performs tasks like detecting and restarting
failing nodes, assigning newly created pods to available nodes, and connecting the cluster to the
cloud provider API[18].

Worker Node:

The worker nodes are configured with the container runtime and are responsible for hosting the
containerized applications. They can be virtual or physical machines, and can be configured to
run single-application pods or multi-application pods [18].

Helm Charts:

Helm Charts are an abstraction of application deployment on Kubernetes. The charts are a collec-
tion of configuration files that define a set of required Kubernetes resources, and the application’s
configuration can typically be customized by modifying a values.yaml file [5].

2.3.2 Grafana K6

Grafana K6 is a load-testing tool used to simulate traffic to different components in the infrastruc-
ture [19]. In this project, the group has used Grafana K6 to emulate log collection and forwarding
software to test the performance and auto-scaling capabilities of the pipeline.

2.3.3 Kafka

Apache Kafka is an open-source distributed event-streaming platform from the Apache Software
Foundation[15]. It works as an endpoint for incoming data streams and sorts the different streams
into a set of queues (topics). These queues can be configured to store data until certain criteria
are met, working like a buffer for the incoming events before they are further processed.

Strimzi Project:

Strimzi is an open-source Apache Kafka operator that facilitates the deployment of Apache Kafka
on Kubernetes. The Strimzi Project provides images, operators, and custom resource definitions for
Kafka designed to run on Kubernetes. Additionally, Strimzi supports monitoring and metrics tools

7

like Prometheus for extracting metrics from the different components that the Strimzi operator
deploys[28].

2.3.4 Vector

Vector, an open-source project maintained by Datadog, is a versatile tool for building observability
pipelines. Its primary function is collecting, processing, and routing data, [34] including logs
and metrics within distributed systems. The tool uses a component-based approach, where each
component performs a specific function, like collecting data from various sources, transforming,
enriching, or routing the data to different destinations. Furthermore, Vector’s extensive list of pre-
built sources, sinks, and transformations, along with its vendor-neutral nature, makes it compatible
with a wide range of systems and technologies.

2.3.5 OpenSearch

OpenSearch, a distributed search and analytics engine derived from Elasticsearch, is the chosen
solution for log data indexing at NTNU SOC. This decision follows Amazon AWS’s fork and
continued maintenance of OpenSearch after Elastic NV transitioned Elasticsearch and Kibana to
non-open-source licenses[8]. Leveraging the OpenSearch Dashboard, the NTNU SOC analytics
team gains a comprehensive infrastructure monitoring suite. This includes custom dashboard
creation, alerting based on query triggers, and active threat-hunting capabilities within log data.

The extensive range of first-party, free features and plugins available within OpenSearch further
enhances the SOC’s ability to visualize and analyze the state of its monitored infrastructure[13].

2.3.6 Terraform

HashiCorp Terraform is an IaC tool that allows you to define computer and network infrastructure
as declarative, human-readable code. Terraform serves as a middle layer between the systems
administrators and the cloud platforms where the infrastructure is hosted, takes the declarative
configuration files for the infrastructure, and makes requests to the cloud provider API endpoint
to provision the infrastructure as shown in 4.3.1. Terraform has thousands of providers, which
enables Terraform to work with any service with an accessible API. [33]. This allows for consistent
infrastructure deployments and integration with other IaC technologies like CI/CD pipelines for
automatic deployments and reconfigurations as detailed in 4.4. Terraform is also idempotent,
meaning it will only execute commands to apply changes to the components not currently in the
desired state.

2.3.7 Ansible

Ansible is an automation engine capable of handling provisioning, configuration management, and
application deployment through a set of playbooks written by a systems architect or administrator.
The playbooks define what jobs should be carried out and what systems the plays should be applied
to. Ansible is a decentralized solution, meaning that the Ansible program/binary is not required
to be installed on the hosts it configures. Instead, Ansible is installed on a machine called the
Control Node, and this node uses Ansible playbooks to perform a set of plays on the defined target
devices[16].

2.3.8 FluxCD

FluxCD is a continuous delivery solution for Kubernetes that integrates with Git providers to
enable a GitOps workflow. FluxCD can be configured to observe an application repository for

8

configuration changes and apply these changes to the Kubernetes cluster through the Kubernetes
API extensions. This means that the group can configure applications by making changes to
the Kubernetes manifest and push the changes to Git, and FluxCD will handle the deployment,
eliminating the need for an operator to run kubectl commands[9].

9

Chapter 3

Methodology

3.1 Project And Development Process

The project plan for this thesis is outlined in Appendix A. This chapter will discuss the methods
utilized by the group for developing the solution and writing the thesis. Additionally, the chapter
details the methods used to decide what software was chosen for the project, and how the group
designed the solution.

The group has chosen a combined process of Kanban and GitOps (2.2.3) for this thesis. Since
certain group members have external commitments that render them unavailable for a certain
amount of time, the group opted not to adopt a Scrum-based method, as the short timescale of
the sprints and the daily scrum meetings would be challenging to enforce. The use of Kanban and
GitOps allows the group to have a structured view of the process for the project as a whole, and
by utilizing the GitLabs integrated issue and issue board features, the group was able to work with
a GitOps workflow to document the progress on the project better.

3.1.1 GitLab Issues And Kanban Board

The group used the GitLab integration issues and issue board to structure the issues and Kanban
board. This was chosen to minimize the use of third-party apps the group had to keep track of
during the project and to allow the group to integrate the Kanban and GitOps workflow closer.

Having the issues in GitLab allowed the group to organize them in their related repositories instead
of having a monolithic issue board with all issues related to the project. For bigger sections of the
project where issues would span multiple repositories, the group also linked the issues to epics or
milestones to better visualize progress on a larger scale.

Since most of the context and progress for the issues were documented inside the issues themselves
with tagged commits and issue history, the group designed the Kanban boards with a minimal
approach. For the kanban structure, the group organized the tasks into four states: open, doing,
blocked / waiting, and closed. The open state represents issues that any group member can start
on. To work on the issue, one or more group members assign the issues to them and move them
to the doing queue. Issues in the doing queue are issues that are currently being worked on, and
no conflicts are hindering further progress on the issue. When a conflict arises, halting progress
to an issue, or the need for input from the client or the supervisors is required, the issue is moved
to the blocked / waiting queue until the conflict is resolved. When an issue has been resolved, the
issue is moved to the done queue, and marked as resolved.

10

Figure 3.1: Snippet of the Kanban board for the Thesis repository

3.1.2 GitOps Workflow

It was established early on in the project that the group would focus on developing the product
using IaC practices. Therefore, the group chose to implement a GitOps workflow, using CI/CD
solutions to automate the deployment and configuration of the solution. This allowed the team to
redeploy the infrastructure without manual configuration of the components and streamlined the
development and subsequent troubleshooting steps by applying changes to the infrastructure by
committing changes to the source-code repositories.

The group tagged each commit to the source-code repositories with the corresponding issue to
integrate the GitOps and Kanban methods. This ensured better documentation on the issue’s
progress, as the issue will contain a history of all the commits regarding that specific issue.

3.1.3 Timeline

As mentioned above, the group would collect issues into bigger epics and milestone collections.
By doing this, GitLab would give us a timeline of the project’s different parts and visualize the
progress for each part.

11

Figure 3.2: Project timeline

3.1.4 Meetings

Meetings with the client

An important part of setting the scope for the task, and for defining requirements for both the
solution and its components were meetings with the client, NTNU SOC. The group decided in
coordination with the NTNU SOC to arrange meetings as needed during the project’s duration,
and would instead use a collective Teams workspace for communication outside of the meetings.
Additionally, the group was granted access to work on the premises of NTNU SOC, which allowed
the group to clear up any questions about the project in a more informal conversation.

Meetings with supervisors

The group was assigned two supervisors for the project and started by arranging meetings as
needed. This was later changed to weekly meetings to display progress and discuss further work
on both the solution and the thesis. The group would send the thesis to the supervisors two days
before the weekly meetings to give the supervisors enough time to revise the progress of the thesis
for further discussion with the group during the weekly meetings.

Group meetings/work sessions

Since the group had multiple members with obligations requiring them to take extended periods
of time away from campus 1, and since one member of the group was a remote student, the
group elected not to have weekly or daily meetings, but would instead meet one day a week for a
collective working session. These working sessions were planned so that all members of the group
could participate, and they were mandatory to participate in.

3.2 Architecture

3.2.1 Components

To create the solution, the group has divided the architecture into three main components: a log
forwarder tasked with collecting, formatting, and forwarding logs, a log processor responsible for
transforming and routing logs, and a storage system for indexing logs for further analytic work.

1Extended: potentially two or more days a week, two or three times a month

12

Log Forwarder Log Processor Log Storage

Figure 3.3: Solution components overview

Log Forwarder

The first component of the solution is the log forwarder. This component is tasked with collecting
logs from the system or services that the NTNU SOC wish to monitor and perform basic formatting
on the log data before forwarding the logs to the log processor component of the pipeline.

The log forwarder sits on the same server as the service or server that the NTNU SOC wishes to
collect logs from. This means that the log forwarder is decoupled from the rest of the solutions
infrastructure, and must be configured on a per-host basis, as visualized in figure 3.4.

Logs

Produces

Server / Service

Collected by

Log Forwarder

Forwarding to

Log Processor

Figure 3.4: Visualization of Log Forwarder responsability

Log Processor and Router

The log processor and router component of the solution is further subdivided into two smaller
components: an event streaming platform and a log transformation and routing component. To-
gether these components are tasked with ingesting logs from the log forwarders and routing them
through a set of processors before forwarding them to the storage solution.

The first sub-component of the Log Processor component is the event streaming platform 3.5. This
component collects the logs sent by the log forwarders and organizes them into a set of N queues.
These queues determine how the next step of the component handles the logs. Sorting the logs
into queues through an event streaming platform allows for scaling either the log forwarders or the
log transformers independently of each other, and works as a buffer for the log processor during
activity spikes.

13

Logs

Ingest Endpoint

Queue 1

Queue 2

Queue N

Event Streaming
Platform

Log Transformation
and routing Storage

Figure 3.5: Overview of the event streamer functionality

The second sub-component is the log transformation and routing solution. This component re-
trieves logs from the queues of the event streaming platform and performs transformations on the
log data by routing them to and from an internal or external processor. Internal processors are
processors built into the solution for the log router that the group has chosen. In contrast, external
processors can be microservices hosted by the NTNU SOC independent of the log router 3.6.

Event Streaming
Platform

Internal
Processor A

External
Processor A

Storage

Router

Internal
Processor B

External
Processor B

Figure 3.6: Overview of the processor and router architecture

Log Storage

The final component of the solution is the log storage component. When the logs have been
processed, the logs are indexed into one of the N indexes in the log management system for further
work by the analyst team at NTNU SOC. Additionally, the router has the capability to forward
logs to an API endpoint to share log data with cooperating partners, illustrated in 3.7.

14

Router

Index 1 Index N API Endpoint

Figure 3.7: Overview of the storage architecture

3.3 Implementation Overview

This section provides a high-level overview of how the project components are implemented, how
they interact, and what choices have been made to implement the solution. This section will not
detail the technical implementation and the challenges associated with the software development
process as this is covered in Chapter 4.

3.3.1 Infrastructure

BastionCitadel OpenSearch

Unprocessed Data Processed Data

Figure 3.8: Cluster traffic overview

The team has elected to use two solutions to host the project’s infrastructure. Specifically, it has
elected to run some services in a Kubernetes cluster while others run directly on virtual machines.

Because the solution’s components have different use cases and needs, the team has chosen the
underlying infrastructure to fit each component’s needs. The team has used two other hosting
solutions for the components: running applications on Kubernetes or running applications directly
on virtual machines.

Log forwarder component

In our implementation, the group has used Grafana K6 as a log forwarder to simulate log traffic. In
a production setting, this would be exchanged for a solution like FluentBit to collect the logs from
the applications or servers, before forwarding them to the log processing and routing component.

Log Processing and Routing Component

For various reasons, the team decided to host the applications inside a Kubernetes cluster for the

15

solution’s log processing and routing component.

Firstly, the NTNU SOC wanted the team to integrate a solution for implementing containerized
microservices into the solution.

VectorLoad- Balancer

Geodata Suspicious?

Broker 3

Broker 2

Broker 1

Unprocessed Data

Bastion

Figure 3.9: Pipeline components in the Bastion cluster

Secondly, the team envisions this as part of the solution where automatic scaling to meet the
demand of a higher workload is most critical. In the events where there are no more available
resources to process incoming logs, the log processor component will drop log data it cannot
process, causing incomplete log history. We want to avoid this, as having complete log data is
an important factor for the NTNU SOC. By running this component in a Kubernetes cluster, the
operator can define threshold values for automatic cluster scaling, meaning that the cluster will
provision new nodes without operator input. Likewise, predefined threshold values will cause the
cluster to decommission excess worker nodes when the component is under lower workloads.

Log Storage Component

In our solution, the log storage component runs directly on virtual machines, partly because of the
need for persistent data storage and dedicated resources to handle the workload from an analytics
team. Still, the team chose to run the log storage component on virtual machines because the
team would get access to the NTNU SOC’s playbooks for configuring this with Ansible.

3.3.2 Kafka Redundancy And Robustness

Due to the retention requirements for logs in Kafka, it was necessary to configure the storage to
be more robust and available than the standard setup in Strimzi. The team adjusted the Kafka
cluster configuration to reduce the risk of data loss in case of failure. It increased the replication
factor of topics to maintain data integrity if a Kubernetes pod fails. The full configuration can be
read in section 4.8.4, ”Configuring Data-replication.”

16

Chapter 4

Implementation & Challenges

4.1 Environment

This project is deployed on NTNU’s OpenStack implementation called ”SkyHiGh”, an infrastructure-
as-a-service (IaaS) platform. This choice closely mirrors the SOCSTACK environment the NTNU-
SOC is currently developing, ensuring that our implementation aligns with their future infra-
structure. A GitOps workflow is implemented using NTNU’s git.gvk.idi.ntnu.no GitLab instance,
establishing a single source of truth for infrastructure and configuration management.

4.2 Tooling

This project leverages a combination of IaC and GitOps to streamline and automate infrastructure
provisioning, system configuration, and application deployment. Terraform and Ansible are tools
that we use to collectively offer a robust solution for configuring infrastructure and system-level
settings. Terraform defines the infrastructure components such as routers, networks, and servers,
while Ansible specializes in managing system-level configurations, encompassing tasks like software
installation and further system setup after Terraform has made basic settings. FluxCD, on the
other hand, is employed to automate the deployment and synchronization of Kubernetes resources,
ensuring that the desired state defined in Git is consistently maintained in the cluster.

4.2.1 Terraform

Terraform serves as one of the two primary IaC tools due to, but not limited to the following
reasons:

• Provider Ecosystem: Extensive support for cloud providers 1 (like SkyHiGh’s OpenStack),
version control systems (GitHub, Gitlab, ...), and Kubernetes simplifies resource declaration
and management within our mixed environment.

• Ansible Integration: The Ansible provider’s 2 ability to dynamically generate Ansible
inventories fosters seamless interaction between infrastructure provisioning and configuration
steps.

• GitOps Alignment: Remote state storage in GitLab reinforces our GitOps practice, main-
taining a comprehensive audit trail of changes.

1https://registry.terraform.io/browse/providers
2https://registry.terraform.io/providers/ansible/ansible/latest/docs

17

• Documentation: The Terraform Registry’s 3 detailed documentation aids in rapid learning
and troubleshooting.

4.2.2 Ansible

Ansible provides agentless configuration management for virtual machines outside of the Kuber-
netes clusters. Its key benefits include [16]:

• Simplicity: Ansible’s YAML-based playbooks are human-readable, promoting maintainab-
ility.

• Flexibility: Ansible can manage various configuration tasks, from software installation and
package updates to system-level settings.

• Idempotency: Ansible’s declarative language makes it easy to write playbooks that ensure
systems converge to the desired state, regardless of their starting point. This minimizes
unexpected changes and simplifies re-runs of playbooks.

4.2.3 FluxCD

FluxCD enables a GitOps-based continuous delivery approach within Kubernetes clusters. We
adopted FluxCD for:

• GitOps Integration: FluxCD aligns with our Git-centric methodology, treating Git repos-
itories as the source of truth for cluster configurations and deployments.

• Terraform Compatibility: Easy bootstrapping of FluxCD using Terraform ensures stream-
lined cluster initialization.

• Automation: FluxCD continuously reconciles desired states from Git with the live cluster,
automating updates and reducing drift.

4.3 Automated Infrastructure Management With IaC

To automate and streamline infrastructure management for our log analytics pipeline, we have
adopted a GitOps-based approach. This methodology, which prioritizes Git as the single source
of truth for infrastructure configuration, has guided the development of our automated system
for managing IaC. While this section focuses on the Provisioning and, later, the Orchestration
of OpenSearch nodes as a representative example, it is important to note that the entire log
analytics pipeline, including networking, storage, and other components, is also managed using IaC
principles. This aids in consistency, reproducibility, and adherence to the project’s requirements.

4.3.1 Provisioning

The log analytics pipeline relies on a cluster of OpenSearch nodes to store and index log data for
efficient search and analysis by the NTNU SOC. To automate the Provisioning of these nodes, we
have utilized Terraform, as shown in the following code example (4.1); it showcases the declarative
configuration used to provision an OpenSearch dashboard node within our OpenStack environment.
It is written in a declarative style, which means that the code defines the desired state of the
instance without specifying the exact steps to create it. This Terraform block configures the initial
features of an OpenStack node that is used to host the OpenSearch dashboard. The following

3https://registry.terraform.io

18

figure and table provide an overview of the parameters used and their significance in Provisioning
the OpenSearch nodes.

1 resource "openstack_compute_instance_v2" "dashboard_node" {

2 count = var.dashboard_node_count

3 name = "opensearch-dashboard-${count.index}"

4 image_name = "CentOS 7.6 x86_64"

5 flavor_name = var.dashboard_flavor_name

6 key_pair = var.keypair_name

7 security_groups = ["default", openstack_compute_secgroup_v2.sc_os_dashboard.name,

8 openstack_compute_secgroup_v2.sc_os_1.name]

9

10 network { uuid = openstack_networking_network_v2.network.id }

11 depends_on = [openstack_networking_subnet_v2.subnet]

12 }

Parameter Description
resource type openstack compute instance v2 is used to specify that we want to create a virtual machine

instance in OpenStack.
resource name dashboard node is used as the name for this resource.
count Dynamically creates multiple instances based on a variable.
name Provides a unique name for each instance.
image name Specifies the OS image to use.
flavor name Determines the CPU and RAM resources for the instance.
security groups Attaches wanted security groups to control network traffic.
network Specifies the OpenStack network to which the instance is connected.
depends on Ensures the subnet exists before creating the instance.

Figure 4.1: Terraform - Provisioning an OpenSearch node

4.3.2 Orchestration

With the instances provisioned by Terraform, the next step in creating and managing instances is
to configure these into fully functioning OpenSearch nodes. The following YAML code block in
figure 4.2 is the Ansible task 1 where Ansible is used to configure an OpenStack instance once it has
been provisioned with Terraform. These tasks automate the installation and setup of Opensearch,
it is important to note that this is not all the Ansible code, it is just a snippet that is used to
provide the general image of how Orchestration is done on a technological level. To clarify, the
code in this example is from the official OpenSearch Ansible playbook and is not code written by
the team. It is demonstrated here as it provides a good insight into how the OpenSearch nodes
are configured.

1https://github.com/opensearch-project/ansible-playbook/blob/main/roles/linux/opensearch/tasks/opensearch.yml

19

1 - name: OpenSearch Install | Download opensearch {{ os_version }}

2 ansible.builtin.get_url:

3 url: "{{ os_download_url }}/{{ os_version }}/opensearch-{{ os_version }}-linux-x64.tar.gz"

4 dest: "/tmp/opensearch.tar.gz"

5 register: download

6

7 - name: OpenSearch Install | Create opensearch user

8 ansible.builtin.user:

9 name: "{{ os_user }}"

10 state: present

11 shell: /bin/false

12 create_home: true

13 home: "{{ os_home }}"

14 when: download.changed or iac_enable

15

16 - name: OpenSearch Install | Create home directory

17 ansible.builtin.file:

18 path: "{{ os_home }}"

19 state: directory

20 owner: "{{ os_user }}"

21 group: "{{ os_user }}"

22 when: download.changed or iac_enable

Task Purpose and Key Parameters
Task 1: Download OpenSearch Idempotently downloads the specified OpenSearch version if needed.

get url: Ansible module for file downloads.
url: URL for the OpenSearch archive.
dest: Destination path on the target system.

Task 2: Create OpenSearch User Creates a dedicated system user (non-interactive) for running OpenSearch.
user: Ansible module for user management.
name: Specifies the username.
state: present: Ensures the user exists.
shell: /bin/false: Disables shell access for security.
create home: true: Creates a home directory.

Task 3: Create Home Directory Creates the home directory for the OpenSearch user with correct ownership
and permissions.
file: Ansible module for file/directory operations.
path: Specifies the directory path.
state: directory: Ensures it’s a directory.
owner: Owner of the directory (OpenSearch user).
group: Group ownership for the directory.

Figure 4.2: Ansible - Configuring OpenSearch nodes with Ansible

4.3.3 Bridging Terraform and Ansible

These tools can also facilitate the creation of dynamic inventories, ensuring that Ansible targets
the correct machines. This synchronization is achieved by using the Terraform output data (IP
addresses, hostnames, etc.) as input for Ansible’s inventory file.

The cloud.terraform plugin for Ansible

The cloud.terraform 2 Ansible plugin automates this process by pulling the information straight
from the statefiles created by Terraform. We include it in the hosts.yaml inventory file as shown
in figure 4.3.

2https://github.com/ansible-collections/cloud.terraform

20

1 ---

2 plugin: cloud.terraform.terraform_provider

Figure 4.3: Ansible - Configuring dynamic inventories with the cloud.terraform

Ansible provider for Terraform

The Ansible provider for Terraform, as shown in figure 4.4, is a vital component for integrating
Terraforms infrastructure Provisioning capabilities with Ansible configuration management. By
defining the Ansible provider within the terraform configuration, we create a connection that
allows direct interaction between these tools. This enables us to use outputs from terraform (like
IP addresses of instances that are created) as input variables for Ansible playbooks, ensuring a
very streamlined configuration of the provisioned infrastructure. 1

1

2 terraform {

3 required_providers {

4 ansible = {

5 source = "ansible/ansible"

6 version = "1.2.0"

7 }

8 }

9 }

10

Figure 4.4: Terraform - Including the ansible provider in Terraform configuration

In short, these two components work together in the following way.

- Terraform (With the ansible provider):

”Hey, Ansible, here is the infrastructure I just created. Please configure it.”

- Ansible (With the cloud.terraform plugin):

”Thank you, Terraform! Let me check your state file to see what I need to work on. ”

1https://registry.terraform.io/providers/ansible/ansible/latest/docs

21

4.4 The Deployment Pipeline

Deployment pipelines are commonly employed to automate the deployment of infrastructure as
code to the cloud. These pipelines consist of predefined jobs that can be implemented within
various CI/CD tools. While GitHub, Jenkins, and other platforms offer similar capabilities, for
our project, we specifically chose GitLab as our CI/CD platform, and all of our pipelines are
defined within GitLab and executed by Gitlab runners. We structured our deployment pipeline in
the following way.

4.4.1 Pipeline Structure

The deployment pipeline for our log analytics solution is divided into five stages: initialize, plan,
deploy, populate, and optionally destroy. These stages are further divided into jobs, which are
instructions given to the runner to execute. Completion of one stage will trigger the execution of
the next. Meanwhile, the destroyed stage is manually executed when needed. The design of our
deployment pipeline has been crafted to ”only include stages that add value,” in line with Kief
Morris’s recommendation to avoid unnecessary overhead in the delivery process [20, p. 112].

Initialize Plan Deploy Populate DestroyManually executed

terraform_fmt

terraform_vaidate

terraform_plan terraform_apply ansible_dependencies_install

run_ansible_playbook

terraform_destroy

Figure 4.5: Deployment pipeline in Gitlab

• Initialize: Validate and format Terraform code.

• Plan: Creates an execution plan,

• Deploy: Executes the generated plan

• Populate: Configure the instances with ansible

• Destroy : Safely deprovision all resources created by terraform

4.4.2 Terraform Pipeline

The following section will break down what is happening on the Gitlab Runners to give a better
understanding of how the Terraform code transforms into actual virtual machines running in the
cloud. As demonstrated in figure 4.6, we can automate an otherwise manual job, which is then
executed by the CI/CD operator, in this case, the GitLab runner. Without automated jobs like
this, you would have to type in the terminal manually; now it runs as a job in the pipeline, which
would then run when the previous job succeeded.

22

1 terraform_apply:

2 stage: Deploy

3 image:

4 name: hashicorp/terraform:latest

5 dependencies:

6 - terraform_plan

7 script:

8 - terraform apply -auto-approve tfplan

9 when: on_success

Figure 4.6: Terreform plan as a CI/CD job in YAML

Gitops in practice

The terraform plan job, shown in figure 4.7, highlights the benefits of GitOps in practice. Triggered
by a commit to the Git repository, this job automatically executes the Terraform plan, making the
desired infrastructure changes a reality in the OpenStack environment.

In this specific example, the output of the terraform plan command indicates the successful creation
of a security group rule, directly corresponding to a change made in the Git commit ”Added security
rule to allow port 9100...”. This demonstrates the core principle of GitOps: using Git as the single
source of truth for infrastructure definitions. [26, p. 26] Any modifications to the configuration
files in GitLab trigger the pipeline, ensuring that the live infrastructure always aligns with the
desired state defined in the repository.

Figure 4.7: GitLab Runner Output from terraform apply CI/CD job in figure 4.6

23

This automation streamlines the deployment process and enhances reliability and traceability.
By relying on Git’s version control system, we can easily track changes, roll back to previous
configurations if needed, and collaborate effectively on infrastructure updates. The terraform apply
job, therefore, exemplifies how GitOps principles can be effectively implemented to manage and
deploy cloud infrastructure.

4.4.3 Ansible Pipeline

Once the OpenSearch master and worker nodes are created, they are empty machines that need
to be configured with the required software. This includes downloading and installing OpenSearch
and configuring it thereafter. The code in figure 4.8 contains the most important parts of the job
that runs the ansible playbook to configure the OpenSearch nodes automatically from the GitLab
runners. This consists of executing the playbook to configure the hosts defined in the hosts.yaml
file. This is the same file as mentioned in 4.3. Further explanation of configuring OpenSearch
nodes are provided in section 4.5.

1 run_ansible_playbook:

2 stage: Populate

3 script:

4 - >

5 ANSIBLE_SCP_IF_SSH=True

6 ansible-playbook

7 -i ../ansible/inventories/opensearch/hosts.yaml

8 ../ansible/main.yaml

9 -u centos --become

10 --private-key=/home/gitlab-runner/.ssh/opensearch.pem

11 --extra-vars "admin_password=$OPENSEARCH_ADMIN_PASSWORD"

12 --extra-vars "kibanaserver_password=$OPENSEARCH_KIBANA_PASSWORD"

13 --extra-vars "logstash_password=$OPENSEARCH_LOGSTASH_PASSWORD"

14 artifacts:

15 paths:

16 - ansible/

17 cache:

18 paths:

19 - ~/.ansible/

20 dependencies:

21 - ansible_dependencies_install

22 - terraform_apply

Figure 4.8: Running ansible playbooks as a CI/CD job in YAML

While this YAML code is responsible for running, the code in 4.2 is an example of the actual
changes being made. Everything that is configured here is stored and managed in the OpenSearch
repository in GitLab, ensuring that a single source of truth is used. i.e., having all configurations
in one place.

4.4.4 Cross Repository Integration

To facilitate the reusability of the CI/CD pipelines, the YAML code was worked on in its own
repository, ”CICD-Log-analytics”. Relevant pipelines that might need them are then included in
the repository. The following YAML code in 4.9 is the entire content of the OpenSearch repositories
.gitlab-ci.yml file; this demonstrates how smoothly the jobs are integrated where needed.

24

1 # Includes the terraform deployemt job from the CICD repository

2 include:

3 - project: 'bachelor/2024/log-analytics/cicd-log-analytics'

4 ref: main

5 file: 'deployment_pipeline/deploy_terraform/.terraform_deployment_pipeline.yml'

6

7 # Includes the ansible deployemt job from the CICD repository.

8 - project: 'bachelor/2024/log-analytics/cicd-log-analytics'

9 ref: main

10 file: 'deployment_pipeline/deploy_ansible/.ansible_deployment_pipeline.yml'

Figure 4.9: Including jobs from CI/CD repository

There are a few advantages to separating them into their own repository. Some of the advantages
are:

• Modularity: Reduces the need for multiple identical pieces of code across the repositories

• Scalability: CI/CD pipelines are efficiently integrated as needed

• Clear versioning: Separate version control and a secluded environment support troubleshoot-
ing or rollbacks if needed.

4.4.5 Proof of Concept

There are a couple of reasons the deployment pipelines were not integrated across all the infra-
structure. While this would mean just a few clicks would deploy and configure both the OpenSarch
nodes and all the other infrastructure stored in the other repositories as well, it would also take
considerable amounts of time to implement, as some of the Terraform code would need to be
tailored to take Gitlab secrets as environment variables and not locally stored variables in .tfvar
files and such.

Although the project initially aimed to automate deployment for all infrastructure components,
time constraints and the complexity of adapting existing Terraform code to handle GitLab secrets
securely led us to prioritize implementing deployment pipelines only for the OpenSearch nodes.
This focused approach allowed us to demonstrate the core principles and benefits of automated
deployment while establishing a working proof-of-concept for future expansion of the remaining
infrastructure.

4.5 Log Indexing And Storage With OpenSearch

In this section, we detail the implementation and challenges encountered while integrating OpenSearch
(as introduced in 2.3.5) into our infrastructure stack. Due to OpenSearch’s stateful nature and
persistence requirements, as well as not being within the project’s scope, we opted to deploy it
directly on virtual machines rather than within a containerized Kubernetes environment.

4.5.1 Deploying OpenSearch Via Terraform

Terraform was employed to automate the provisioning of the OpenSearch cluster within SkyHigh.
To maintain a clear separation of concerns and enhance security, a dedicated network was estab-
lished for the OpenSearch nodes. This network segmentation ensures the OpenSearch cluster’s
communication remains isolated from other components of the infrastructure.

25

Two distinct security groups were created to govern traffic flow: one for worker and master nodes,
permitting ingress traffic only on essential ports (22 for SSH, 9100 for Prometheus scraping, and
9200 for HTTP/HTTPS API traffic), and another for dashboard nodes, allowing ingress on ports
22 and 5601 (for the dashboard interface). Internal cluster communication occurs over port 9300,
which did not require explicit exposure due to the nodes residing within the same isolated network.

...

The OpenSearch role should be seen as input for your own playbook. I've had to remove a lot due to

the way we do things, which wouldn't give you any more understanding or meaning.

Mostly, it's installing packages that are needed before Ansible copies config files to the correct

locations, local firewall and system files to the host. This also depends a bit on which

distribution you use, etc.

...

The moment you start fiddling with TLS and OpenSearch, the difficulty level increases

significantly.

Figure 4.10: Translated excerpts from stakeholder communication

During the project’s planning phase, it was agreed that pre-configured scripts would be provided
to streamline the OpenSearch cluster deployment. However, as demonstrated in Figure 4.10, the
scripts shared by the stakeholders would require additional work before they could be implemented.
We spent a substantial amount of time trying to adapt the provided scripts but ultimately opted to
instead adapt the official OpenSearch Ansible playbooks directly. This decision allowed us greater
control and customization of the deployment process. Modifications were made to the playbooks
to align with the project’s specific requirements. Consult Appendix B for a comparison between
the original and modified playbook.

4.5.2 Creating and Distributing Certificates

A core requirement from the stakeholders was that all traffic within the infrastructure be encrypted
using TLS. This necessitated the creation and distribution of certificates trusted by all components
of the infrastructure stack. Terraform was used to facilitate the retrieval of the root CA’s PEM
file and signing key from the OpenStack keymanager4. These resources were then used to generate
and distribute certificates to the OpenSearch cluster.

1 data "openstack_keymanager_secret_v1" "ca_cert_pem" {

2 name = "bastion-ca-cert-pem"

3 }

4

5 data "openstack_keymanager_secret_v1" "ca_cert_signing_key" {

6 name = "bastion-ca-cert-signing-key-pem-pkcs8"

7 }

Figure 4.11: Importing certificates stored in OpenStack

4The Root CA is generated and provided to the key manager via the ’gitlab-infra’ repository, which is used to
deploy the baseline components necessary for automation (GitLab Runners, etc.)

26

1 resource "tls_private_key" "opensearch_master_http" {

2 count = length(openstack_compute_instance_v2.master_node)

3 algorithm = "RSA"

4 }

5

6 resource "tls_cert_request" "opensearch_master_http" {

7 count = length(tls_private_key.opensearch_master_http)

8 private_key_pem = tls_private_key.opensearch_master_http[count.index].private_key_pem

9 dns_names = ["${openstack_compute_instance_v2.master_node[count.index].name}.bastion.com"]

10 subject {

11 country = "NO"

12 common_name =

"${openstack_compute_instance_v2.master_node[count.index].name}.bastion.com"↪→

13 organizational_unit = "CA"

14 organization = "bastion.com, Inc."

15 }

16 }

17

18 resource "tls_locally_signed_cert" "opensearch_master_http" {

19 count = length(tls_private_key.opensearch_master_http)

20 cert_request_pem = tls_cert_request.opensearch_master_http[count.index].cert_request_pem

21 ca_private_key_pem = data.openstack_keymanager_secret_v1.ca_cert_signing_key.payload

22 ca_cert_pem = data.openstack_keymanager_secret_v1.ca_cert_pem.payload

23 validity_period_hours = 43800

24 allowed_uses = [

25 "digital_signature",

26 "key_encipherment",

27 "server_auth",

28 "client_auth",

29]

30 }

Figure 4.12: Creating HTTP/HTTPS certificates for OpenSearch Master nodes

Figures 4.11 and 4.12 illustrate the Terraform configuration for importing the root CA certific-
ate and signing key from OpenStack and creating HTTP/HTTPS certificates for the OpenSearch
master nodes. To streamline the distribution process, the raw certificate data was directly embed-
ded into the dynamically generated Ansible inventories. Considering the OpenSearch cluster was
not initially within the project’s scope, this approach was deemed a suitable compromise for the
proof-of-concept nature of this project.

Figure 4.13 demonstrates how Ansible hosts were defined within Terraform, incorporating the
necessary certificate information as inventory variables. These variables were then utilized by the
modified Ansible playbooks to configure the OpenSearch nodes with the appropriate certificates,
allowing infrastructure-wide TLS.

27

1 resource "ansible_host" "os_master_node" {

2 count = length(openstack_compute_instance_v2.master_node)

3 name = openstack_compute_instance_v2.master_node[count.index].name

4 groups = ["os-cluster", "master"]

5 variables = {

6 ansible_host = openstack_networking_floatingip_v2.master_fip[count.index].address

7 ansible_user = "root"

8 ip = openstack_compute_instance_v2.master_node[count.index].network.0.fixed_ip_v4

9 roles = "data,master"

10

11 root_ca_pem = data.openstack_keymanager_secret_v1.ca_cert_pem.payload

12 root_ca_key = data.openstack_keymanager_secret_v1.ca_cert_signing_key.payload

13 internal_cert_key =

tls_private_key.opensearch_master_internal[count.index].private_key_pem_pkcs8↪→

14 internal_cert_pem = tls_locally_signed_cert.opensearch_master_internal[count.index].cert_pem

15 http_cert_key = tls_private_key.opensearch_master_http[count.index].private_key_pem_pkcs8

16 http_cert_pem = tls_locally_signed_cert.opensearch_master_http[count.index].cert_pem

17 admin_cert_key = tls_private_key.opensearch_admin.private_key_pem_pkcs8

18 admin_cert_pem = tls_locally_signed_cert.opensearch_admin.cert_pem

19

20 additional_ssh_keys = var.opensearch_authorized_key

21 }

22 }

Figure 4.13: ”ansible host” resource for OpenSearch master nodes

4.5.3 Ansible Playbooks

After provisioning the OpenSearch nodes with Terraform, Ansible was employed to automate
their configuration. Figure 4.14 depicts the main playbook, which orchestrates the execution
of playbooks to allow root SSH access, install and configure OpenSearch, and installs both the
Prometheus exporter plugin5 and node-exporter6.

A notable modification made to the Ansible playbooks was the removal of the automatic certificate
generation functionality. Instead, the playbooks were adapted to utilize the certificates created and
distributed by Terraform, as detailed in the previous subsection.

In addition to the modifications related to certificate management, adjustments were made to the
Ansible inventory to dynamically incorporate the IP addresses and hostnames of the provisioned
OpenSearch nodes as explained in 4.3.3.

1 ---

2 - name: Allow root ssh

3 import_playbook: allow_root_ssh.yaml

4

5 - name: Install and configure Opensearch

6 import_playbook: opensearch.yaml

7

8 - name: Install prometheus exporter plugin

9 import_playbook: prometheus_exporters.yaml

Figure 4.14: Opensearch main playbook

5https://github.com/Aiven-Open/prometheus-exporter-plugin-for-opensearch
6https://github.com/prometheus/node exporter

28

4.5.4 Deploying OpenSearch Via GitLab Pipelines

Figure 4.9 illustrates our OpenSearch repository’s GitLab CI file, which triggers the deployment
pipelines outlined in section 4.4, aligning with the GitOps methodology we decided on.

4.6 Kubernetes Deployment Strategy

The decision to utilize Kubernetes as the foundation for our logging infrastructure was driven by the
advantages it offers in terms of scalability, containerization benefits, and orchestration capabilities.
Key considerations behind this choice include:

Scalability: Kubernetes is well known for its inherent ability to manage resources dynamically.
As the volume of logs generated by our infrastructure increases, Kubernetes enables us to scale
our computing resources seamlessly to accommodate the rising demand[4].

Containerization: A logging system naturally lends itself to modular components like data
collection agents, specialized parsers and processors, and robust storage solutions. Containerization
provides a good foundation for packaging and deploying these elements independently, simplifying
management and promoting streamlined updates.

Orchestration: Kubernetes excels in managing complex workloads, automating tasks like the
scheduling of containers, monitoring their health, and executing seamless updates with minimal
disruption. In the context of our implementation, this translates to increased reliability and reduced
administrative overhead[4].

Overall, Kubernetes was the logical choice for this project due to its alignment with the anti-
cipated needs for scalability, streamlined deployment, and efficient management of our logging
infrastructure.

4.6.1 Deployment Choices

When considering Kubernetes deployment, we evaluated two primary approaches: a self-deployed
cluster and the OpenStack template. By consulting ’Kubernetes Up and Running’[4] and examining
the Kubernetes Templates available in Skyhigh, we created a simple pros and cons list to narrow
down the decision:

Self-Deployed Cluster
Pros: Offers greater flexibility in configuring the cluster’s components and tailoring it specifically
to our needs. Provides granular control of customization options.
Cons: Requires a significantly higher level of in-house Kubernetes expertise. Increases complexity
related to the initial setup and ongoing management of the cluster.

OpenStack Template
Pros: Provides a simplified deployment path and reduces the administrative overhead compared
to a self-deployed approach. May include pre-configured integrations with the existing OpenStack
environment.
Cons: Limits customization possibilities. New features and updates to the Kubernetes cluster
may be dependent on updates to the OpenStack template itself.

Ultimately, we opted for the OpenStack template approach. The appeal of a faster deployment
process and the potential synergy with our existing OpenStack environment outweighed the lim-
itations in customization. While some adjustments were required to address specific component
issues, as we’ll discuss later, this approach aligned well with our project’s timeline and available
resources.

29

1 module "k8s_bastion" {

2 source = "./modules/k8s_with_fluxcd"

3

4 k8s_cluster_name = "bastion"

5 k8s_cluster_master_count = 1

6 k8s_cluster_node_count = 3

7 keypair = data.openstack_compute_keypair_v2.jumpbox.name

8 k8s_cluster_delete_csi_cinder_controllerplugin = true

9 flux_bootstrap_repo = var.flux_bastion_bootstrap_repo

10 flux_bootstrap_folder_path = "flux/bastion/bootstrap"

11 gitlab_repository_ssh_url =

"ssh://git@${var.gitlab_host}/${var.gitlab_group}/${var.flux_bastion_bootstrap_repo}.git"↪→

12 gitlab_repository_path = "${var.gitlab_group}/${var.flux_bastion_bootstrap_repo}"

13 }

Figure 4.15: Kubernetes - Deploying Kubernetes cluster via the module block

4.6.2 Deploying With Terraform

To avoid the monolithic stack antipattern, as described by Kief Morris[20, Patterns and Anti-
patterns for Structuring Stacks], we adopted a modular and logically organized approach within
Terraform. Frequently used blocks of code were encapsulated into distinct modules, simplifying the
configuration of multiple clusters (e.g., Bastion and Citadel). Additionally, we grouped Terraform
resources based on their function, improving the readability and structure of our infrastructure
configuration.

Figure 4.15 demonstrates the use of a Terraform module to provision our ’Bastion’ Kubernetes
cluster. This module defines the cluster’s core configuration in OpenStack. It specifies the cluster
name, the OpenStack template to use, the number of master and worker nodes, their flavors (com-
pute resources), and any necessary network settings. This module also handles the bootstrapping
of FluxCD for configuration management and the removal of the CSI Cinder plugin.

Deployment Challenges

Despite the benefits of the OpenStack template, we faced several challenges that required resolu-
tion:

Mismatched Drivers:
The CSI Cinder plugin version bundled within the OpenStack template was incompatible, result-
ing in issues with attaching provisioned volumes to pods. We had to troubleshoot the specific
component issue (the CSI-Attacher version) and either consider a patch if possible or update the
images used by the CSI Cinder Controllerplugin

Non-Functional Scaling:
While we were unable to directly deploy a functional auto-scaling cluster from the ”kubernetes-
v1.23.16-ha” OpenStack template, we successfully managed to tailor the cluster labels during our
Terraform deployment to enable node auto-scaling and self-healing for the ’non-ha’ template (see
Figure 4.16). We did not encounter any issues with clusters deployed with this configuration, but
for our POC we ultimately opted for the default, non-auto-scaling version.

Addressing Challenges:
Resolving these issues often involved in-depth analysis and the implementation of customized
solutions. For instance, we had to delete the default CSI Cinder statefulset(see Figure 4.17) and
redeploy it using FluxCD with the updated container images.

30

1 resource "openstack_containerinfra_cluster_v1" "bastion" {

2 ## Non-relevant configuration excluded from example ##

3

4 merge_labels = true # Merges the custom labels with the ones provided by the cluster template

5 labels = {

6 auto_scaling_enabled: true

7 auto_healing_enabled: true

8 min_node_count: 2

9 max_node_count: 5

10 }

11 }

Figure 4.16: Kubernetes - Merging labels to enable auto-scaling

1 resource "null_resource" "delete_statefulset" {

2 count = var.k8s_cluster_delete_csi_cinder_controllerplugin? 1 : 0

3 depends_on = [openstack_containerinfra_cluster_v1.k8s]

4 triggers = {

5 cluster_id = openstack_containerinfra_cluster_v1.k8s.id

6 }

7

8 provisioner "local-exec" {

9 command = #<<EOT

10 TMP_KUBECONFIG=$(mktemp)

11 echo "${openstack_containerinfra_cluster_v1.k8s.kubeconfig.raw_config}" > $TMP_KUBECONFIG

12 kubectl --kubeconfig=$TMP_KUBECONFIG delete statefulset csi-cinder-controllerplugin

--namespace kube-system↪→

13 rm -f $TMP_KUBECONFIG

14 EOT

15 interpreter = ["/bin/sh", "-c"]

16 }

17 }

Figure 4.17: Kubernetes - Deleting the CSI Cinder Controllerplugin via Terraform

4.6.3 Provisioning Additional Credentials To FluxCD

Our infrastructure components are distributed across multiple GitLab repositories for better or-
ganization. FluxCD requires additional credentials to access these repositories, which are created
and provided as Kubernetes secrets through the ’flux git repo credentials’ module - Figure 4.18
shows how this is used when provisioning the ’Bastion’ cluster.

31

1 module "flux_git_repo_credentials_bastion" {

2 source = "./modules/flux_git_repo_credentials"

3 for_each = { for repo in var.flux_bastion_additional_repos : repo => repo }

4 providers = {

5 kubernetes = kubernetes.bastion

6 }

7

8 repository_path = "${var.gitlab_group}/${each.key}"

9 gitlab_host_key = var.gitlab_host_key

10

11 depends_on = [module.k8s_bastion]

12 }

Figure 4.18: Kubernetes - Providing credentials to FluxCD for additional repositories

4.7 Gitops And Continuous Delivery In Kubernetes

Our infrastructure Provisioning process leverages Terraform to orchestrate the initial deployment of
FluxCD within our Kubernetes clusters. This establishes the foundation for our GitOps workflow
and continuous delivery pipeline. The process outline is summarized in the following steps:

FluxCD Provider
Our Terraform configuration includes a dedicated FluxCD provider, configured to interact with
our Kubernetes clusters. The Git integration within the flux provider specifies the SSH credentials
FluxCD will use to authenticate with our GitLab instance.

SSH Key Generation
To ensure secure Git access, we use Terraform to generate SSH key pairs for FluxCD. These keys
are subsequently added as deploy keys to our GitLab projects.

FluxCD Bootstrap
Flux’s bootstrap Terraform resource deploys the FluxCD components into the Kubernetes cluster
and configures it to synchronize with our bootstrap Git repository.

Repository Secrets
We create Kubernetes Secrets containing the FluxCD SSH identities for our application repositories
(Figure 4.18). These secrets are made available in the flux-system namespace and will be used by
FluxCD to interact with the repositories.

4.7.1 Orchestration Strategy

Kubernetes Kustomizations (kustomization.yaml files) play a central role in how we group and de-
ploy related resources. Kustomizations define logical collections of Kubernetes manifests, ensuring
they are applied together in a consistent manner.

Our ”cluster-configuration” directory contains the kustomization.yaml file presented in Figure 4.19,
which defines the initial resources to be deployed as a logical collection within our cluster.

32

1 ---

2 apiVersion: kustomize.config.k8s.io/v1beta1

3 kind: Kustomization

4 resources:

5 - namespace.yaml

6 - kustomizations/cluster-roles.yaml

7 - kustomizations/storage-classes.yaml

Resource Description
namespace.yaml Deploys the namespace for our cluster configuration resources.
kustomizations/cluster-roles.yaml Contains the Kustomization for deploying cluster-wide RBAC roles.
kustomizations/storage-classes.yaml Contains the Kustomization for Provisioning persistent storage classes.

Figure 4.19: Kubernetes Kustomization example

Kustomizations like this serve as a stepping stone for implementing dependency-driven workflows
with FluxCD’s custom resources, which we’ll explore in the next subsection.

Dependency-Driven Deployments

In complex deployments involving multiple components, we leverage FluxCD’s Kustomization
CRDs7 to orchestrate deployments based on explicit dependencies. This ensures that resources
are deployed in the correct order, preventing failures and streamlining the overall process.

Why dependencies matter: If an application relies on the existence of specific namespaces, Con-
figMaps, or other Kubernetes resources, deploying it prematurely can lead to errors. Dependency-
driven deployments mitigate these issues.

FluxCD Kustomizations: Flux Kustomizations allow us to specify these dependencies, instruct-
ing FluxCD on the correct deployment sequence. Consider the Flux Kustomization file presented
in Figure 4.20:

7https://fluxcd.io/flux/components/kustomize/kustomizations/

33

1 ---

2 apiVersion: kustomize.toolkit.fluxcd.io/v1

3 kind: Kustomization

4 metadata:

5 name: storage-classes

6 namespace: cluster-config

7 spec:

8 interval: 10m

9 path: "./bootstrap/cluster-config/storage-classes"

10 prune: true

11 dependsOn:

12 - name: csi-cinder-controllerplugin-rbac

13 namespace: kube-system

14 sourceRef:

15 kind: GitRepository

16 name: flux-system

17 namespace: flux-system

Parameter Description
dependsOn This section defines that deployment of resources in the ./bootstrap/cluster-config/storage-classes

directory should occur only after the csi-cinder-controllerplugin-rbac resources in the kube-system
namespace are successfully deployed.

interval FluxCD will check for dependency status changes every 10 minutes.
prune If the dependency is removed, FluxCD will also remove the resources defined within this Kus-

tomization.

Figure 4.20: FluxCD Kustomization example

4.7.2 Repository Structuring

Careful repository organization is key to avoiding the monolithic antipattern [20] and maintaining
a scalable and well-structured GitOps implementation. We approach this in the following manner:

Normalizing the repository structure

To manage resource deployment effectively, we adhere to a specific directory structure within our
Git repositories. Each directory defines a logical group of Kubernetes manifests that FluxCD will
synchronize:

34

[sync-dir]

namespace.yaml

kustomization.yaml

kustomize

example-resource-dir-1.yaml

example-resource-dir-2.yaml

example-resource-dir-1

... Resource collection.

example-resource-dir-2

... Resource collection.

Directory/File Description
[sync-dir] The root directory that FluxCD synchronizes.
namespace.yaml Creates the namespace for all subsequent resources.
kustomization.yaml The top-level Kubernetes Kustomization file, outlining which resources to initially

deploy.
kustomize Holds FluxCD Kustomizations for dependency-driven deployments within this dir-

ectory.
example-resource-dir-1/2 Directories containing YAML manifests for specific applications or infrastructure

components.

Figure 4.21: Repository structure example

Bootstrap repository

Our ”bootstrap” repository contains the Kubernetes manifests initially deployed by FluxCD during
the bootstrapping process. Figure 4.22 details the directory structure and a short summary of the
manifests within.

bootstrap

cert-manager

cluster-config

flux-sources

flux-system

kube-system

nginx-ingress

Directory Description
cert-manager Manages deployment and configuration of cert-manager for TLS certificate issuance.
cluster-config Deploys low-level resources like cluster roles and storage classes.
flux-sources Declares other Git repositories and directories that FluxCD should subsequently synchronize

(enabling nested GitOps workflows). These resources are only deployed when all other config-
uration from this repository are succesfully deployed.

flux-system Holds FluxCD’s own configuration, entirely managed by FluxCD itself.
kube-system Contains necessary modifications and replacements to kube-system resources deployed by Sky-

High Kubernetes templates.
nginx-ingress Deploys and configures the nginx-ingress-controller.

Figure 4.22: Bootstrap Repository

Additional repositories

While our primary ’applications’ repository houses the majority of our application deployments,
certain applications have been separated into their own repositories to demonstrate the viability
of managing components independently and showcase how this is achieved within our GitOps
framework. For instance, the Citadel cluster’s traffic simulation (detailed in 4.12) is deployed from
its own dedicated repository.

In a production environment, we recommended adopting a multi-repository approach, where each

35

application is maintained in its own repository. This adoption can introduce several benefits, two
of them being:

Reduced Blast Radius
Isolating applications into separate repositories limits the impact of a potential security breach or
misconfiguration. If one repository is compromised, the others remain unaffected, enhancing the
overall resilience of the system.[20, Pattern: Service Stack]

Granular Access Control
Managing permissions on a per-repository basis allows for finer-grained control over who can modify
specific application configurations. This minimizes the risk of unauthorized changes and improves
security.

4.7.3 FluxCD And Git Integration

Our GitOps implementation relies on secure and streamlined interaction between FluxCD and our
Git repositories. In this section, we’ll delve into authentication methods and the workflow of how
changes propagate from Git to our Kubernetes cluster.

Authentication and Authorization

We employ SSH key-based authentication to ensure secure communication between FluxCD and
our Git repositories. Here’s how it works:

• Dedicated SSH Keys: We generate separate SSH key pairs for each repository that FluxCD
needs to access.

• GitLab Deploy Keys: These SSH keys are added as project-level deploy keys in GitLab,
granting both read and write access. Write access is required for FluxCD to update certain
resources related to its own state tracking within the repository.

• Flux Source Configuration: Within each Flux source (GitRepository custom resource),
we specify the repository URL, the branch to track, and reference the corresponding SSH
key (identity) stored as a Kubernetes Secret.

Change Propagation Workflow

1. Developer Change: A developer modifies a YAML manifest (deployment, configuration,
etc.) within a Git repository.

2. Git Push: The developer commits and pushes the change to the repository’s tracked branch.

3. FluxCD Detection: FluxCD, according to its configured interval, detects the change in
the Git repository.

4. Manifest Retrieval: FluxCD fetches the updated manifests from the Git repository.

5. Kubernetes Reconciliation: FluxCD compares the desired state (from Git) with the live
state of the Kubernetes cluster. It then applies necessary changes (creations, updates, or
deletions) to bring the cluster in line with the Git repository.

36

Kubernetes

Developer

1. Edit resource

Git Repo
2. Push changes
0. Pull resource

FluxCD
4. Pull changes
3. Detect change

StatefulSet

5. Reconciliation
Deployment

5. Reconciliation

RBAC5. Reconciliation

Figure 4.23: Change Propagation Workflow

4.8 Log Aggregation

This section covers the aggregation layer responsible for collecting, buffering, and routing high
volumes of diverse log data from various sources. Apache Kafka provides a scalable and fault-
tolerant message Broker, while Strimzi simplifies the deployment and management of Kafka within
the Kubernetes environment.

4.8.1 GitOps Implementation

Our GitOps approach leverages FluxCD and a carefully designed folder structure to manage the
lifecycle of Strimzi and its subsequent Kafka resources within our Kubernetes environment. The
following outlines our approach:

Directory structure

A dedicated Strimzi directory within our primary application Git repository houses all Strimzi-
related manifests and configuration.

37

strimzi

kafka-cluster

bastion

kafka-cluster.yaml

kafka-nodepool.yaml

metrics-config.yaml

kafka-topic

k6-traffic-sim.yaml

kafka-ui

helm-deploy.yaml

ingress.yaml

kustomizations ... Kustomization files for the fluxCD API. These are

used to ensure that the resources are deployed in

the correct order and only when it’s dependencies

are ready.

kafka-cluster.yaml

kafka-topic.yaml

kafka-ui.yaml

rbac.yaml

strimzi-operator.yaml

rbac

kafka-cluster-bastion-rbac.yaml

strimzi-operator

helm-deploy.yaml

helm-repo.yaml

kustomization.yaml

namespace.yaml

pod-monitor.yaml

Figure 4.24: Strimzi Directory structure

4.8.2 Deploying The Operator

We employed the Helm deployment approach outlined in the Strimzi documentation8, adapting it
for integration with our FluxCD-based GitOps workflow. The ’rbac.create:true’ setting was enabled
to grant the Strimzi operator the ability to manage necessary Role-Based Access Control (RBAC)
resources. Finally, we enabled Strimzi’s built-in Grafana dashboards (’dashboards.enabled:true’ in
Figure 4.25) for enhanced observability. These dashboards will be deployed to our Prometheus
namespace, offering pre-configured visualizations of Kafka metrics.

1 strimzi/strimzi-operator/helm-deploy.yaml

2 ---

3 values:

4 replicas: 1

5 rbac:

6 create: true

7 dashboards:

8 enabled: true

9 namespace: prometheus

Figure 4.25: Select Strimzi operator settings

8https://github.com/strimzi/strimzi-kafka-operator/blob/main/helm-charts/helm3/strimzi-kafka-
operator/README.md

38

4.8.3 Deploying The Kafka Cluster

In light of ZooKeeper’s deprecation within Apache Kafka9, we’ve adopted Kafka’s Raft mode
(KRaft) for cluster metadata management. Raft mode is well-suited for Kubernetes due to its re-
duced dependencies and alignment with operator-based management. With Strimzi version 0.40.0
and above, Raft is deployed by default when using Node Pools10, further simplifying our config-
uration. We’ve assigned both controller and Broker roles to each node. This ensures that in the
event of a node failure, the cluster maintains its quorum through the seamless re-election of a
controller. Furthermore, persistent-claim volumes provide data persistence for each Kafka Broker.
If a node or the entire cluster experiences issues, the data is preserved. Upon recovery, Kafka can
re-synchronize from these persistent volumes.

1 strimzi/kafka-cluster/bastion/kafka-nodepool.yaml

2 ---

3 spec:

4 replicas: 3

5 roles:

6 - controller

7 - broker

8 storage:

9 type: jbod

10 volumes:

11 - id: 0

12 type: persistent-claim

13 size: 20Gi

14 class: strimzi-cluster-storage

15 deleteClaim: false

Figure 4.26: Kafka Nodepool configuration

Distributing Brokers across multiple nodes in case of node-failure
We utilize the affinity rules as detailed in Figure 4.27 to guide the deployment of our Kafka cluster.
The ’nodeAffinity’ setting, with the ’requiredDuringSchedulingIgnoredDuringExecution’ rule, en-
sures that Kafka pods are scheduled on Kubernetes nodes labelled ’magnum.openstack.org/nodegroup:
Kafka-nodegroup’. These nodes are provisioned with resources suitable for Kafka workloads.

The ’podAntiAffinity’ rule distributes Kafka Brokers across different physical nodes within the
designated node group. This strategy enhances resilience by preventing a single node failure from
disrupting the entire Kafka cluster. Additionally, the ”kubernetes.io/hostname” topology key
ensures that the anti-affinity rule considers individual physical nodes for optimal placement.

9https://kafka.apache.org/documentation/#zk depr
10https://github.com/strimzi/strimzi-kafka-operator/releases/tag/0.40.0

39

1 strimzi/kafka-cluster/bastion/kafka-cluster.yaml

2 ---

3 spec.kafka.template.pod.affinity:

4 nodeAffinity:

5 requiredDuringSchedulingIgnoredDuringExecution:

6 nodeSelectorTerms:

7 - matchExpressions:

8 - key: magnum.openstack.org/nodegroup

9 operator: In

10 values:

11 - kafka-nodegroup

12 podAntiAffinity:

13 preferredDuringSchedulingIgnoredDuringExecution:

14 - weight: 100

15 podAffinityTerm:

16 labelSelector:

17 matchExpressions:

18 - key: strimzi.io/cluster

19 operator: In

20 values:

21 - bastion

22 topologyKey: "kubernetes.io/hostname"

Figure 4.27: Configuring Kafka pod affinity rules

4.8.4 Configuring Data-Replication

In Apache Kafka, each topic is divided into partitions to enhance scalability and parallelism. Parti-
tion replication (visualized in Figure 4.28) is the process of maintaining multiple copies (replicas) of
each partition across different brokers in the cluster. One broker acts as the leader for a partition,
handling all reads and writes to that partition. The other brokers act as followers, replicating the
data from the leader and maintaining an identical copy. This replication mechanism ensures data
redundancy and high availability, as if the leader broker fails, one of the follower brokers can be
elected as the new leader, allowing the topic to continue functioning without data loss.

Configuring data replication is crucial for maintaining resilience and high availability. As seen in
Figure 4.29, we’ve configured several replication-related parameters to achieve this.

We decided to set the default replication factor and the minimum in-sync replicas to three to match
the amount number of brokers in our cluster. With three replicas, we can tolerate the failure of up
to two brokers without losing data. Additionally, by requiring acknowledgments from all in-sync
replicas for each write, we guarantee that data is durably stored across multiple brokers, and it
allows the configuration of a minimum amount of in-sync replicas. This instructs the Kafka brokers
to only consider writes to a topic successful when it has been confirmed written by a quorum of
replicas.

40

Kafka Cluster - Partition Replication

Broker 0 Broker 1 Broker 2

Topic partition 0

Topic Partition 1

Topic Partition 0 Topic Partition 0

Topic Partition 2

Topic Partition 1

Topic Partition 2

Topic Partition 1

Topic Partition 2

Figure 4.28: Kafka partition replication
Blue nodes represent Partition leaders, and green nodes represent partition followers - I.E. the replicated

partitions.

1 strimzi/kafka-cluster/bastion/kafka-cluster.yaml

2 ---

3 spec.kafka.config:

4 acks: all

5 offsets.topic.replication.factor: 3

6 transaction.state.log.replication.factor: 3

7 transaction.state.log.min.isr: 3

8 default.replication.factor: 3

9 min.insync.replicas: 3

10 num.partitions: 10

Parameter Description
acks The ’all’ value mandates that the leader Broker waits for acknowledg-

ments from all in-sync replicas before confirming a write as successful.
offsets.topic.replication.factor This setting controls the replication of the internal offsets Topic, which

stores the progress of consumers within each topic Partition. A replic-
ation factor of 3 means that offset information is maintained on three
distinct Brokers.

transaction.state.log.replication.factor This parameter governs the replication of the transaction state log,
another internal Topic crucial for managing the state of transactions,
guaranteeing that transactions are either fully committed or aborted.

transaction.state.log.min.isr This setting dictates the minimum number of replicas that must ac-
knowledge a transaction-related write for it to be considered successful.

default.replication.factor This establishes the default replication factor for automatically created
topics within the cluster.

min.insync.replicas In conjunction with the ’acks: all’ setting, this parameter requires a
minimum of three replicas to acknowledge a write before it’s considered
committed.

num.partitions This defines the default number of Partitions for Topics with no spe-
cified partition count.

Figure 4.29: Kafka Cluster - Default replication configurations for Kafka Topics

41

4.8.5 Exposing Metrics

To enable monitoring of our Kafka cluster’s health and performance, we’ve configured metrics
export. Kafka exposes internal metrics in JMX (Java Management Extensions) format. The
Strimzi operator facilitates the use of the Prometheus JMX Exporter11 to bridge these metrics
into the Prometheus ecosystem.

Our configuration instructs the Strimzi operator to deploy the JMX Exporter alongside each Kafka
Broker. This exporter translates Kafka’s JMX metrics into a format that Prometheus can under-
stand and collect. We’ve adapted the example provided by Strimzi12 to align with our specific
monitoring requirements. Upon deployment, said configuration is fetched from the defined con-
figMap.

1 strimzi/kafka-cluster/bastion/kafka-cluster.yaml

2 ---

3 spec.kafka.metricsConfig:

4 type: jmxPrometheusExporter

5 valueFrom:

6 configMapKeyRef:

7 name: kafka-metrics

8 key: kafka-metrics-config.yml

Figure 4.30: Configuring prometheus exporter

4.8.6 Deploying The Kafka Topic

To facilitate testing and validation of our Kafka infrastructure, we’ve created a Kafka Topic named
’k6’, as described in Figure 4.31.

1 strimzi/kafka-topic/k6-traffic-sim.yaml

2 ---

3 apiVersion: kafka.strimzi.io/v1beta1

4 kind: KafkaTopic

5 metadata:

6 name: k6

7 namespace: strimzi

8 labels:

9 strimzi.io/cluster: bastion

10 spec:

11 partitions: 10

12 replicas: 3

13 config:

14 retention.ms: 604800000

15 segment.bytes: 1073741824

Parameter Description
strimzi.io/cluster This value of this label specifies which Kafka Cluster the topic should be assigned to.
retention.ms This parameter controls how long a message is retained before cleanup. In this case, it will

be retained for 604800000ms, ie 7 days.
segment.bytes This controls the segment file size for the message. Larger file sizes will give us a lower file

count but less fine-tuned retention control since retention and cleanup are done one file at
a time.

Figure 4.31: Configuring the ’K6’ Kafka Topic

11https://github.com/prometheus/jmx exporter
12https://github.com/strimzi/strimzi-kafka-operator/blob/main/examples/metrics/kafka-metrics.yaml

42

4.8.7 Autoscaling

While the concept of autoscaling is attractive for adapting to dynamic workloads, implementing it
effectively for Kafka clusters presents several challenges.

Horizontally scaling the Kafka cluster by adding brokers through a Horizontal Pod Autoscaler
(HPA)13 is technically possible. However, the benefits would be limited. Newly added brokers
would only be able to handle partitions for newly created topics. Existing topics with pre-allocated
partitions would remain on the original brokers, leading to an imbalanced cluster (See Figure 4.32).

Kafka Cluster - Partition replication, with newly create empty brokers

Broker 0 Broker 1 Broker 2 Broker 3 Broker 4

Topic partition 0

Topic Partition 1

Topic Partition 0 Topic Partition 0

Topic Partition 2

Topic Partition 1

Topic Partition 2

Topic Partition 1

Topic Partition 2

Figure 4.32: Kafka partition replication after cluster scaling

Addressing this imbalance would necessitate automatic cluster rebalancing, a process that involves
migrating vast amounts of data across brokers, resulting in a surge of read/write operations and
potentially impacting overall cluster performance[17]. Achieving true autoscaling would, therefore,
require orchestrating two intertwined processes: broker scaling and cluster rebalancing.

Moreover, if the cluster scales reactively in response to a sudden load spike, initiating rebalancing
during this period could further strain the system, hindering its ability to handle the increased
traffic. Proactive scaling using machine learning algorithms to anticipate load fluctuations could be
explored, but wouldn’t account for unpredictable events like cyber attacks, which could significantly
increase traffic to the NTNU SOC.

4.9 Log Processing

To enhance log messages with geodata, we elected to leverage Vector’s built-in message transform-
ation abilities using Vector Remap Language (VRL) and enrichment tables. This integration offers
efficiency gains by minimizing data handoffs between separate external processing components. For
this proof of concept, we’ve limited the scope of log processing to geodata enrichment and a basic
suspicious origin check. Further processing, such as threat detection or anomaly identification, was
deemed unnecessary for the scope of this project.

13https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

43

1 {

2 "method": "PUT",

3 "source_ipv4": "106.220.83.40",

4 "source_mac": "84:62:98:f3:a4:a3",

5 "timestamp": "2024-05-10T10:31:18.071Z",

6 "url": "https://www.centralbleeding-edge.name/strategic/seamless/channels/utilize"

7 }

Figure 4.33: Log contents before processing

4.9.1 The GeoLite2 Geodata Database

For this POC, the GeoLite2 database is used to provide geodata enrichment. This freely available
database offers a straightforward solution for demonstrating the concept of geodata augmentation.
To simplify the POC setup, we utilize a version of the GeoLite2 database accessible directly from
GitHub(14). It’s important to note that this specific version might have limitations in terms of
accuracy or update frequency and introduces a security risk compared to the versions available
from MaxMind(15). In a production environment, integrating the most up-to-date Geodata source
directly from MaxMind should be done to ensure data precision and security.

To optimize geodata retrieval performance, the GeoLite2 database is deployed within a RAMdisk.
This technique leverages the significantly faster read/write speeds of RAM compared to tradi-
tional disk storage. In a high-volume log processing scenario, the RAMdisk approach minimizes
latency during frequent geodata lookups. This configuration, as illustrated in Figure 4.34, involves
using an initContainer to fetch and place the GeoLite2 database within a Kubernetes emptyDir
volume backed by the in-memory storage medium. Then the GeoLite2 database is used to create
a corresponding enrichment table.

1 k8s-applications/clusters/bastion/vector/helm-deploy.yaml

2 ---

3 values:

4 initContainers:

5 - name: fetch-geolite2-mmdb

6 image: curlimages/curl:7.78.0

7 command: ['sh', '-c', 'curl -L https://git.io/GeoLite2-City.mmdb -o

/geolite2/GeoLite2-City.mmdb']↪→

8 volumeMounts:

9 - name: geolite2

10 mountPath: /geolite2

11 extraVolumes:

12 - name: geolite2

13 emptyDir:

14 medium: Memory

15 extraVolumeMounts:

16 - name: geolite2

17 mountPath: /geolite2

18 customConfig:

19 enrichment_tables:

20 geoip:

21 locale: "en"

22 path: "/geolite2/GeoLite2-City.mmdb"

23 type: "geoip"

Figure 4.34: Geodata - GeoLite2 database configuration

14https://github.com/P3TERX/GeoLite.mmdb
15https://dev.maxmind.com/geoip/geolite2-free-geolocation-data

44

While RAMdisks typically face challenges related to data persistence, our implementation mitigates
these concerns through the use of an initContainer. This container downloads the database before
the main Vector container starts, guaranteeing 16 that even upon pod restarts, the database remains
accessible, rendering the RAMdisk’s volatility and lack of persistence a non-issue.

4.9.2 Vector Transformations

1 k8s-applications/clusters/bastion/vector/helm-deploy.yaml

2 ---

3 values.customConfig.transforms.geodata:

4 type: remap

5 inputs:

6 - kafka_cluster_bastion_k6

7 drop_on_abort: false

8 source: |-

9 . = parse_json!(.message)

10 .geodata = find_enrichment_table_records!("geoip", {"ip": .source_ipv4})

11 .suspicious = includes(["RU", "CN"], .geodata[0].country_code)

Figure 4.35: Geodata - Transforming the logs

The geodata transformation logic within Vector is configured as a ’transform’, as can be seen in
Figure 4.35. The ’source’ field contains an inline VRL script that is responsible for the message
transformations. First, the contents of the ’message’ field from the incoming event are extracted
and set as the root datastructure17(Figure 4.33). Second, the IP address (source ipv4) is parsed
from the message. Vector then queries the GeoLite2 enrichment table to associate geographical
information with that IP address and appends this under the ’geodata’ key. Finally, a rule-based
evaluation determines if the log message should be flagged as suspicious based on the retrieved
country code (e.g., ”RU”, ”CN”). This process is visualized in Figure 4.36, and Figure 4.37 details
the message contents after processing.

16Given that the GeoLite2 source is available
17This removes other metadata appended by the Kafka brokers. Should this metadata be required, simply extract

the incoming event in its entirety.

45

Transform:
 Geodata

Source:
 Kafka broker

Parse message

Sink:
 OpenSearch

Lookup IP address

Append Geodata

Lookup country

Append flag - Suspicious origin

Figure 4.36: Vector - Geodata enrichment process
Actions taken by the ’Geodata’ transformation

4.10 Log Routing Strategies

In complex data processing systems, it’s sometimes necessary to route data between different
components for specialized transformations, enrichments, or other processing steps that cannot be
performed by a single tool or application. This section focuses on the various routing strategies
that can be employed in such scenarios. It’s important to note that, whenever possible, it’s more
efficient to consolidate processing steps into a single component. This helps minimize latency and
computational overhead introduced by transferring data between different locations.

4.10.1 Route Handling - What Are The Options?

As we see it, routing data through a pipeline essentially boils down to 2 essential components;

Pipeline-definition:
This component serves as the blueprint or configuration that details all the parts and operations of
a pipeline. It specifies how data should be routed through various components within the system.

Message-handler:
This dynamic component actively processes and routes data according to the rules defined in the

46

1 {

2 "geodata": [

3 {

4 "city_name": "Pune",

5 "continent_code": "AS",

6 "country_code": "IN",

7 "country_name": "India",

8 "latitude": 18.6161,

9 "longitude": 73.7286,

10 "metro_code": null,

11 "postal_code": "411001",

12 "region_code": "MH",

13 "region_name": "Maharashtra",

14 "timezone": "Asia/Kolkata"

15 }

16],

17 "method": "PUT",

18 "source_ipv4": "106.220.83.40",

19 "source_mac": "84:62:98:f3:a4:a3",

20 "suspicious": false,

21 "timestamp": "2024-05-10T10:31:18.071Z",

22 "url": "https://www.centralbleeding-edge.name/strategic/seamless/channels/utilize"

23 }

Figure 4.37: Log contents after processing

pipeline definition. It manages data transfer from one stage to another or from one component to
another within the pipeline.

If we consider that each component can come in two states, centralized or decentralized, we can
design a system, or system components, according to the following 4 principles:

Centralized pipeline-definition and centralized message-handling
In this system, both the pipeline definition and message handling are controlled from a single
central point. A central authority determines how data should move through the network and also
directly manages the message transfer.

Centralized pipeline-definition and decentralized message-handling
Here, while the pipeline definition is centrally defined, the actual handling of messages is distrib-
uted among various components. This means that multiple decentralized components execute the
centrally planned routes.

Decentralized pipeline-definition and centralized message-handling
In this model, different components within a larger system can have independent pipeline defini-
tions. However, all messages are forwarded through a central system that handles the data transfer
between the individual components.

Decentralized pipeline-definition and decentralized message-handling
In this approach, each component in the pipeline is responsible for both the pipeline definition
and the message handling. There is no central oversight; instead, each component independently
handles the message routing according to its part of the pipeline definition.

These approaches are further explained in the following subsections.

47

Centralized Log-Routing

Centralized log router Indexing and storage
10

Log processor 1

2

Log processor 2

4

Log processor 3

6

Log processor 4

8

Kafka broker
1

3 5 7 9

Figure 4.38: Centralized Log-Routing

This system reflects the centralized pipeline definition and centralized message handling. This
approach establishes a core service that acts as the central hub for all message traffic. This service
holds the pipeline definition, and once established, the message transfer is exclusively handled by
this service. The operational steps taken for a select pipeline by the service, as depicted in Figure
4.38, include:

1. Message Consumption: The service consumes a message from the defined Kafka topic.

2. Forwarding: The message is forwarded to the next designated service for processing.

3. Return and Re-forwarding: Once processing is complete, the message is returned to the
centralized service, which determines the next step in the pipeline and forwards the message
accordingly.

4. Final Delivery: After all processing stages are complete, the log is sent to its final storage
destination.

Self-contained log-routing

This system reflects the centralized pipeline definition and decentralized message handling. In
this approach, we shift the message-handling away from the centralized service. Since the pipeline
definition is central, we have an initial routing service embedded into the message itself. Subsequent
components can then read the embedded pipeline definition and forward the message accordingly.
Here’s a general overview, exemplified in Figure 4.39:

• Message consumption: The routing service consumes a message from the Kafka Topic
defined in the pipeline definition.

• Embedding Routing-logic: The pipeline definition is embedded into the message.

• Forwarding: The routing service forwards the message to the first component in the
pipeline.

• Processing and Re-forwarding: When a component receives a message, it -

1. Executes its designated task.

2. Reads the instructions within the message to determine the next component in the
sequence.

3. Forwards the message to that service.

• Final Delivery: Eventually, all messages will be forwarded to the final storage destination.

48

Routing service

Log processor 1
1

1

Log processor 4

1

Kafka broker

Indexing and storage

4

Log processor 2

2

2 3

Log processor 3

3
4

4

2

3

Figure 4.39: Self-Contained Log Routing

Component-To-Component Routing

This system reflects the definition of a decentralized pipeline and the decentralized message-
handling approach. To build a pipeline with this method, you effectively need to configure the
routing logic in each pipeline component. One way to achieve this is to forward messages accord-
ing to the ingress port. For example, imagine we have a processing service involved in 3 unique
pipelines. We need to configure the service to listen on a unique port for each pipeline it’s a
component in. The message is then forwarded according to the port from which it was retrieved.

As these pipelines are built per component, anytime the remaining components of a pipeline
converge with another, said pipeline can be routed into that point in the existing pipeline. See the
green pipeline in Figure 4.40

Kafka broker

LP 2

LP 3

LP 1

Indexing and
 storage

LP 1 LP 3LP 4

LP 1 LP 2 LP 4

LP 3 LP 5

Figure 4.40: Component-To-Component Routing
LP = Log Processor

4.10.2 Route-handling - Why Does It Matter?

The choice between centralization and decentralization impacts both the design and behavior of
your system. Here are the 3 most important considerations:

Parsing Efficiency:
In a centralized model, message parsing is often streamlined. Logs pass through a single component
responsible for parsing. This optimizes parsing logic and prevents the message from being parsed
multiple times in different locations. Additionally, only the relevant portions of the message need
to be sent to external processors, reducing unnecessary data transfer.

Decentralized routing can lead to redundant parsing. Each component in the pipeline might need
to parse the entire message, even if only a small segment is relevant to its task. This increases
computational overhead and can negatively impact overall system performance.

Message Size:

49

Centralized systems enable more control over message size. After initial parsing, specific fields
or data elements can be extracted and sent to external processors independently. This reduces
network traffic and the processing burden on downstream components.

Messages in a decentralized system can grow in size as they pass through the pipeline. Each
processing step might add enrichments or metadata, increasing the overall message footprint. This
can lead to higher bandwidth costs and slower processing times.

Message Frequency:
Since the message has to return to the central hub to determine the next step in the pipeline, the
frequency of message transfers doubles in the context of a centralized system. Consequently, this
pattern increases network traffic and might introduce additional latency.

In a decentralized system, messages do not need to return to the central hub. As such, the frequency
should be half that of the centralized version.

4.10.3 Data Routing With Vector

Vector is both the log processor and router in our solution, and this section details how to configure
Vector as a log router.

Source Transforms Sink

Kafka Topic Geodata Enrichment1

1
Geodata Flagging

2
OpenSearch

2

3

Figure 4.41: Vector configuration
Every node-connection is configured separately, arrows corresponds to the node’s input source.

Configuration - Autoscaling

Our current configuration leverages CPU utilization as the primary scaling metric. Figure 4.42
showcases how we define autoscaling parameters within the helm-deploy.yaml file.

50

1 helm-deploy.yaml

2 ---

3 values:

4 role: "Aggregator"

5 autoscaling:

6 enabled: true

7 minReplicas: 3

8 maxReplicas: 5

9 targetCPUUtilizationPercentage: 80

10 behaviour:

11 scaleDown:

12 stabilizationWindowSeconds: 300

Parameter Description
autoscaling.enabled Activates autoscaling for this Vector deployment.
minReplicas Sets the minimum number of Vector instances to maintain, even during low

traffic periods.
maxReplicas Defines the upper limit for the number of Vector instances that can be

spawned during peak loads.
targetCPUUtilizationPercentage Triggers autoscaling when average CPU utilization across Vector instances

reaches 80%.
stabilizationWindowSeconds Introduces a delay of 300 seconds before scaling down to prevent Vector from

oscillating between adding and removing instances due to minor fluctuations
in CPU usage.

Figure 4.42: Helm values for our vector deployment

As mentioned earlier, future deployment iterations will incorporate consumer latency as a scaling
metric. This will allow Vector to react to the volume of incoming logs and the processing time
required for each log message. This can lead to more targeted and efficient autoscaling, ensuring
optimal resource utilization.

Configuration - Data Sources

Figure 4.43 demonstrates how we configure a Kafka data source within the helm-deploy.yaml file.

1 helm-deploy.yaml

2 ---

3 values:

4 customConfig:

5 sources:

6 kafka_cluster_bastion_k6:

7 type: kafka

8 bootstrap_servers: bastion-kafka-bootstrap.strimzi.svc.cluster.local:9092

9 group_id: vector

10 topics:

11 - k6

Parameter Description
type Specifies the data-source type, Kafka in this case.
bootstrap servers This points Vector to the Kafka cluster it should connect to by specifying the hostname and

port of the bootstrap server.
group id Assigns a unique group identifier for this Vector instance within the Kafka cluster. This is

particularly important when using consumer groups for parallel processing within Kafka.
Topics Defines a list of Kafka topics that Vector should subscribe to. In this case, Vector will listen

for and ingest messages published to the ”k6” topic.

Figure 4.43: Configuring a data-source for Vector

51

Configuration - Data Sinks

Figure 4.44 showcases how we configure an OpenSearch data sink within the helm-deploy.yaml file.

1 helm-deploy.yaml

2 ---

3 values.customConfig.sinks:

4 opensearch_k6_geodata:

5 type: elasticsearch

6 endpoints:

7 - https://10.212.170.251:9200

8 inputs:

9 - geodata

10 api_version: v8

11 auth:

12 strategy: basic

13 user: admin

14 password: MySuperSecretPassword123!

15 mode: bulk

16 bulk:

17 index: "k6-geodata"

18 action: "create"

19 tls:

20 verify_certificate: false

21 verify_hostname: false

Parameter Description
type Specifies that we’re configuring an ElasticSearch data sink.
endpoints Defines the URL of the OpenSearch cluster endpoint.
inputs Identifies a specific data stream within Vector that should be routed to this sink.
api version Specifies the ElasticSearch API version that Vector should use for communication.
auth.strategy Basic authentication is used in this example.
auth.user Username for accessing OpenSearch.
auth.password Password for accessing OpenSearch.
mode This setting instructs Vector to send log data to OpenSearch in batches for improved

efficiency.
bulk.index Specifies the OpenSearch index where the log data should be stored.
bulk.action Allows Vector to create the specified OpenSearch index if it doesn’t already exist.
tls.verify certificate Disables certificate verification.
tls.verify hostname Disables host name verification.

Figure 4.44: Configuring data sinks in Vector

4.11 Metrics and Monitoring

To gain insights into the health and performance of our Kubernetes infrastructure and Kafka
deployment, we’ve chosen Prometheus and Grafana as our monitoring stack.

52

4.11.1 Prometheus

1 prometheus/helm-deploy.yaml

2 ---

3 values:

4 prometheus:

5 enabled: true

6 ingress:

7 enabled: true

8 ingressClassName: nginx

9 hosts:

10 - prometheus.bastion.local

11 prometheusSpec:

12 logLevel: debug

13 podMonitorSelector: {}

14 podMonitorSelectorNilUsesHelmValues: true

Parameter Description
ingress.enabled Enables the creation of an ingress resource.
ingress.ingressClassName This defines which ingress class the ingress resource

should be created as.
ingress.hosts Specifies the hostname where the Prometheus in-

stance will be accessible.
prometheusSpec.logLevel Log verbosity level.
prometheusSpec.podMonitorSelector By setting this selector as empty(’’), Prometheus is

instructed to discover all PodMonitors for metrics
scraping.

prometheusSpec.podMonitorSelectorNilUsesHelmValues When enabled, if podMonitorSelector is set to Nil or
, selectors use values from helm deployment.[25]

Figure 4.45: Prometheus Helm values

The configuration snippet presented in Figure 4.45 will deploy a Prometheus resource in our cluster.
Notably, these selector settings result in the pod-selector configuration displayed in Figure 4.46.
This effectively means that Prometheus will discover monitors in any namespace, so long as they
have the ”release: kube-prometheus-stack” label-value pair.

1 ---

2 apiVersion: monitoring.coreos.com/v1

3 kind: Prometheus

4 spec:

5 podMonitorNamespaceSelector: {}

6 podMonitorSelector:

7 matchLabels:

8 release: kube-prometheus-stack

Figure 4.46: Default Prometheus pod-selector configuration

53

Namespace: Strimzi

PodMonitor:
 Target discovery

Pod: Kafka broker 0
 strimzi.io/kind: Kafka

match

Pod: Kafka broker 1
 strimzi.io/kind: Kafka

match

Pod: Kafka broker 2
 strimzi.io/kind: Kafka

match

Pod: Kafka UI
 [no strimzi.io/kind label]

no match

Pod: Cluster Operator
 strimzi.io/kind: cluster-operator

no match

Figure 4.47: PodMonitor for the strimzi namespace
The PodMonitors target discovery is configured to match pods with the label-value pair ’strimzi.io/kind:

Kafka’ in the ’strimzi’ namespace.

Pod Monitors

Pod Monitors are custom Kubernetes resources used by Prometheus to define how metrics should be
scraped from pods. More specifically, they’re used to discover the endpoints from which Prometheus
should scrape metrics. In Figure 4.48, you can see the key settings we need to configure the pod-
monitor we deploy for our Kafka clusters - consult also Figure 4.47:

54

1 strimzi/pod-monitor.yaml

2 ---

3 apiVersion: monitoring.coreos.com/v1

4 kind: PodMonitor

5 metadata:

6 name: kafka-resources-metrics

7 namespace: prometheus

8 labels:

9 app: strimzi

10 release: kube-prometheus-stack

11 spec:

12 selector:

13 matchExpressions:

14 - key: "strimzi.io/kind"

15 operator: In

16 values: ["Kafka", "KafkaConnect", "KafkaMirrorMaker", "KafkaMirrorMaker2"]

17 namespaceSelector:

18 matchNames:

19 - strimzi

20 podMetricsEndpoints:

21 - path: /metrics

22 port: tcp-prometheus

Parameter Description
metadata.labels.release Adding this label allows the podmonitor to be discovered by Prometh-

eus.
spec.selector.matchExpressions In this stanza we can configure fine-grained targeting for the podmon-

itor. Specifically, we configure the podmonitor to target pods with the
label ”strimzi.io/kind” and any value from the array. In simpler terms,
we configure the podmonitor to target any resources that could be de-
ployed by the operator - including our Kafka clusters.

spec.namespaceSelector.matchNames This limits the podmonitor to only discover pods in the ’strimzi’
namespace.

spec.podMetricsEndpoints Here we configure the URL and port where the metrics are exposed.

Figure 4.48: Kafka Pod Monitor configuration

Service Monitors

Similar to Pod Monitors, Service Monitors are custom resources within the Prometheus Oper-
ator ecosystem. However, instead of targeting individual pods directly, Service Monitors instruct
Prometheus to scrape the metrics via the Kubernetes service endpoints instead.

55

1 ---

2 apiVersion: v1

3 kind: Service

4 metadata:

5 labels:

6 app.kubernetes.io/component: Aggregator

7 app.kubernetes.io/instance: vector

8 app.kubernetes.io/name: vector

9 spec:

10 ports:

11 - name: api

12 port: 8686

13 protocol: TCP

14 targetPort: 8686

15 - name: prometheus-exporter

16 port: 9598

17 protocol: TCP

18 targetPort: 9598

19 selector:

20 app.kubernetes.io/component: Aggregator

21 app.kubernetes.io/instance: vector

22 app.kubernetes.io/name: vector

Parameter Description
metadata.labels The label-value pairs in this stanza is what is targeted by the Service Monitor for target

discovery.
spec.ports Each entry in this list defines the ports exposed by the service, and how traffic should

be directed to the associated pods.
spec.ports.name Assignes a descriptive name to each port, which can be referenced in the ServiceMonitors

’endpoints’ section.
spec.ports.port The external port number on which the service will accept traffic.
spec.ports.protocol Specifies the protocol used for connections to this port.
spec.ports.targetPort The port on the pods where the incoming traffic will be forwarded.
spec.selectors This defines the label-value pairs that pods must possess to be considered part of the

service. Kubernetes uses these selectors to maintain the association between the service
and its corresponding backend pods.

Figure 4.49: Vector service configuration

As can be seen from the configuration stanzas in Figure 4.49, the Kubernetes Service effectively
ties all the pods into one service. We can then use a ServiceMonitor to discover the scrape-targets
for Prometheus. Here we instruct the ServiceMonitor to discover services where all 3 labels match
in the namespace ’vector’. Additionally, we define the endpoint as the ”prometheus-exporter”
port we defined in the service. Consult Figure 4.51 for a visual explanation of the configuration
demonstrated in Figure 4.50.

56

1 vector/servicemonitor.yaml

2 ---

3 apiVersion: monitoring.coreos.com/v1

4 kind: ServiceMonitor

5 metadata:

6 name: vector-metrics

7 namespace: prometheus

8 labels:

9 app: vector

10 release: kube-prometheus-stack

11 spec:

12 selector:

13 matchLabels:

14 app.kubernetes.io/component: Aggregator

15 app.kubernetes.io/instance: vector

16 app.kubernetes.io/name: vector

17 namespaceSelector:

18 matchNames:

19 - vector

20 endpoints:

21 - port: prometheus-exporter

Figure 4.50: Vector Service Monitor

Namespace: vector

ServiceMonitor:
 Target discovery

Service: vector
match

Service: vector-ui

no match

Pod: vector_0

port: 8686

port: 9598

Pod: vector_1

port: 8686

port: 9598

Pod: vector_2
port: 8686

port: 9598

Pod: vector ui 0

port: 8080

Pod: vector ui 1port: 8080

Figure 4.51: ServiceMonitor for the vector namespace
Labels are not included in the figure for visual clarity. However, The ”vector” service exactly matches all

3 labels defined in the ServiceMonitor.

4.11.2 Grafana

Grafana provides a flexible dashboarding solution to visualize the vast amounts of metrics collected
by Prometheus. We deploy Grafana alongside Prometheus within ’the kube-prometheus-stack’
Helm chart for ease of use and configuration. Figure 4.52 highlights and explains the relevant
configuration settings.

57

1 prometheus/helm-deploy.yaml

2 ---

3 values:

4 grafana:

5 enabled: true

6 adminPassword: prom-operator

7 ingress:

8 enabled: true

9 ingressClassName: nginx

10 hosts:

11 - grafana.bastion.local

Parameter Description
grafana.enabled Whether or not to deploy Grafana with the chart.
grafana.adminPassword Sets the initial administrative password for Grafana. In a production set-

ting, this value should be dynamically provisioned.
grafana.ingress.enabled Whether or not to create an ingress resource for Grafana.
grafana.ingress.ingressClassName Defines the ingress class for the created ingress resource.
grafana.ingress.hosts specifies the hostname where Grafana can be accessed.

Figure 4.52: Grafana Helm values

The operator can deploy a sidecar container used for dashboard discovery 18. This discovery works
much like the way monitors discover their resources. In this case, it will deploy all dashboard
configurations from configMaps that match the label-value pair ”grafana dashboard:1”. This is
what allows us to easily deploy Strimzi’s bundled Grafana dashboards, as seen in Figure 4.25.

4.12 Traffic Simulation

A traffic simulation component is necessary to test the capacity and resilience of the proposed in-
frastructure thoroughly. This section outlines the design and implementation of a traffic simulation
strategy that generates dummy log data, enabling us to evaluate the infrastructure performance
under load.

4.12.1 The Citadel Cluster

To ensure realistic simulation, we deployed a separate Kubernetes cluster where we could deploy
and scale the log-generation workloads according to our needs. This cluster is dedicated to run-
ning the traffic generation tools, isolating them from the main Bastion cluster where the primary
infrastructure resides. This separation is done to more accurately mimic the real-world scenario
where log sources would originate externally from the Bastion cluster.

4.12.2 Grafana K6

Grafana K6 was selected as the primary tool for traffic simulation due to its flexibility, extensibility,
and performance testing capabilities. Additionally, the Kafka extension19 allows direct streaming
of generated logs to a Kafka topic, while the Faker extension20 provides ”realistic” data generation
to enhance the simulation.

18’https://github.com/prometheus-community/helm-charts/blob/main/charts/kube-prometheus-
stack/values.yaml’ see line 1034-1053

19https://github.com/grafana/xk6-output-kafka
20https://github.com/szkiba/xk6-faker

58

1 const vuCounts = [];

2 if (randomIntBetween(1, 10) < 10) {

3 for (let i = 0; i < 5; i++) {

4 vuCounts.push(randomIntBetween(1, 100));

5 }

6 } else {

7 for (let i = 0; i < 5; i++) {

8 vuCounts.push(randomIntBetween(100, 500));

9 }

10 };

11

12 export const options = {

13 stages: [

14 { target: vuCounts[0], duration: "1m" },

15 { target: vuCounts[1], duration: "1m" },

16 { target: vuCounts[2], duration: "1m" },

17 { target: vuCounts[3], duration: "1m" },

18 { target: vuCounts[4], duration: "1m" }

19]

20 };

Figure 4.53: k6 log generation - traffic spikes

K6 simulation script

The K6 simulation script is the core component responsible for generating realistic log data and
simulating the desired traffic patterns for testing the infrastructure. The Faker extension provides
the ability to populate fields like IP addresses, HTTP methods, and URLs with realistic values,
enhancing the quality of the simulation (Figure 4.54 shows a snippet of this logic). To simulate the
dynamic nature of real-world traffic, the script incorporates traffic spikes with varying intensities
(Figure 4.53). These spikes are designed to stress the logging infrastructure under different load
conditions, helping to identify potential bottlenecks or limitations in its ability to scale effectively.
It should be noted that the code snippets provided in the figures are excerpts from the full K6
script.

1 export default function () {

2 const now = new Date();

3 writer.produce({

4 messages: [

5 {

6 value: schemaRegistry.serialize({

7 data:{

8 timestamp: now.toISOString(),

9 source_ipv4: faker.internet.ipv4Address(),

10 source_mac: faker.internet.macAddress(),

11 method: faker.internet.httpMethod(),

12 url: faker.internet.url(),

13 },

14 schemaType: SCHEMA_TYPE_JSON,

15 }),

16 },

17],

18 });

19 sleep(1);

20 }

Figure 4.54: k6 log generation - log content

59

1 k6-log-simulator/k8s/log-simulator/kustomization.yaml

2 ---

3 configMapGenerator:

4 - name: k6-log-simulator-config

5 files:

6 - k6-log-simulator.js

7 - name: k6-load-simulator-testrun

8 files:

9 - testrun.template.yaml

10 generatorOptions:

11 disableNameSuffixHash: true

Figure 4.55: Generating configmaps for the cronjob

Preparing the necessary resources

Before deploying the simulation workloads, some resources need to be prepared and available for
the testing process. Kustomize is used to generate ConfigMaps (Figure 4.55) that encapsulate the
K6 simulation script and the template for the testrun CRDs.

Furthermore, since RBAC plays a vital role in managing permissions within Kubernetes, a Role
(Figure 4.56) is created to define a specific set of permissions granted to the automation mechanism
(in this case, Cron), such as the ability to create new testrun jobs. This Role is linked to a service
account via a RoleBinding, ensuring that Cron possesses the necessary authorization to interact
with the K6 testrun CRDs.

1 k6-log-simulator/k8s/log-simulator/rbac.yaml

2 ---

3 apiVersion: rbac.authorization.k8s.io/v1

4 kind: Role

5 metadata:

6 name: k6-log-simulator

7 rules:

8 - apiGroups:

9 - k6.io

10 resources:

11 - testruns

12 verbs:

13 - create

14 - delete

15 - get

16 - list

17 - patch

18 - update

19 - watch

Figure 4.56: K6 RBAC - Creating role that can interact with testrun resources

Cronjobs are leveraged to schedule the deployment of K6 workloads at regular intervals, enabling
continuous and scalable traffic simulation that will thoroughly test the logging infrastructure.

Deploying Workloads

Cronjobs are utilized within the Kubernetes environment to automate the deployment of the pre-
viously mentioned workloads. A dedicated Cronjob schedules a container that executes shell com-

60

mands (Figure 4.57).

1 export TEST_RUN_NAME="k6-log-simulator-$(date +'%Y%m%d%H%M%S')";

2 envsubst < /tmp/config/testrun.template.yaml > /tmp/workdir/testrun.yaml;

3 kubectl apply -f /tmp/workdir/testrun.yaml;

Figure 4.57: Cron - Shell commands run by deployment job

These commands are responsible for:

1. Generating a unique name for the K6 testrun instance.

2. Applying substitutions to a testrun template (substituded fields not included in Figure 4.58),
ensuring the testrun CRD’s are uniquely named.

3. Deploying the generated testrun using kubectl apply.

1 k6-log-simulator/k8s/log-simulator/testrun.template.yaml

2 ---

3 spec:

4 parallelism: 5

5 separate: false

6 script:

7 configMap:

8 name: k6-log-simulator-config

9 file: k6-log-simulator.js

10 runner:

11 image: karlhenh/k6-kafka-faker:runner-v1.0

12 env:

13 - name: KAFKABOOTSTRAP

14 value: 10.212.170.52.9094

15 - name: KAFKATOPIC

16 value: k6

17 starter:

18 image: karlhenh/k6-kafka-faker:starter-v1.0

Figure 4.58: K6 testrun template - selected configuration options

Workload cleanup

To avoid accumulating thousands of stale testruns, a separate Cronjob is deployed for cleanup
purposes. It executes a shellscript (Firuge 4.59) that performs the following:

• Retrieves a list of K6 testruns along with their ages.

• Parses the age, calculating the total age in seconds.

• For testruns exceeding a defined threshold (e.g., 10 minutes), it triggers a kubectl delete
command to remove the testrun.

61

1 kubectl get testrun --namespace k6 | awk 'NR>1 {print $1, $3}' | while read name age; do

2 if [[$age =~ .*m.*]]; then

3 minutes="${age%m*}"

4 seconds="${age#*m}"

5 seconds="${seconds%s}"

6 total_age_in_seconds=$((minutes * 60 + seconds))

7 else

8 total_age_in_seconds=$age

9 total_age_in_seconds="${total_age_in_seconds%s}"

10 fi

11

12 if [[$total_age_in_seconds -gt 600]]; then

13 echo "Deleting testrun: $name (older than 10 minutes)"

14 kubectl delete testrun $name --namespace k6

15 fi

16 done

Figure 4.59: Cron - Shell commands run by the cleanup job

62

Chapter 5

Security

While security was a key consideration throughout development, the POC nature of the project
means that not all security measures have been implemented to the standards required for a
production environment.

This chapter serves as an overview and starting point for the security measures that needs to be
changed and/or implemented in the project by the NTNU SOC before deploying it to production.
The chapter is heavily influenced by the ’Kubernetes Hardening Guidance’ [2] and ’Defending Con-
tinuous Integration/Continuous Delivery Environments’ [1] documents published by the National
Security Agency (NSA) and the Cybersecurity and Infrastructure Security Agency (CISA). In ad-
dition, some minor insights have been drawn from the Kubernetes Benchmark [14] published by
the Center for Internet Security (CIS).

It’s important to acknowledge that this chapter does not exhaustively cover every potential secur-
ity aspect. Rather, it serves as a foundational reference, highlighting the importance of consulting
established security guides and benchmarks before transitioning this POC into a production en-
vironment.

5.1 Threat Model

Based on the Kubernetes Hardening Guidance [2], the three most likely threats to a Kubernetes
cluster are:

1. Supply Chain Compromise1: These risks stem from the interconnected nature of the
components and dependencies involved in building and maintaining a Kubernetes environ-
ment. Vulnerabilities or malicious code can be introduced at various points in the supply
chain, including:

• Container/Application Level: Malicious actors can inject harmful code into third-
party applications or containers, which, if deployed within the cluster, can compromise
its security.

• Container Runtime: The software responsible for running containers can have vul-
nerabilities that, if exploited, could lead to container breakouts or unauthorized access
to the underlying host system.

• Infrastructure: The infrastructure on which Kubernetes runs, including the hardware
and software components, can be compromised, providing attackers with a foothold to
exploit the cluster.

1Technically considered a technique by MITRE: https://attack.mitre.org/techniques/T1195/

63

2. Malicious Threat Actors: External attackers actively seek to exploit vulnerabilities or
leverage stolen credentials to gain unauthorized access to the cluster. They may target
various entry points:

• Control Plane: As the control plane is responsible for managing the cluster, threat
actors frequently exploit exposed control plane components with inadequate protection
layers.

• Worker Nodes: Worker nodes host the kubelet and kube-proxy service. Vulnerabilities
or misconfigurations in these nodes allow threat actors to exploit the kubelet and kube-
proxy services.

• Containerized Applications: Applications accessible from outside the cluster can
serve as entry points, enabling attackers to move laterally within the cluster or escalate
privileges.

3. Insider Threats: Individuals within the organization, whether intentionally or unintention-
ally, can misuse their privileges or knowledge to compromise the cluster. Potential actors
include:

• Administrators: Administrators with broad control over containers can execute com-
mands or access sensitive information, potentially leading to a complete cluster takeover.

• Users: Users with access to containerized services can exploit vulnerabilities in applic-
ations or other cluster components.

• Cloud Service or Infrastructure Provider: If compromised, these providers with
access to physical systems or hypervisors can undermine the entire Kubernetes envir-
onment.

5.2 Supply Chain Security

The security of a Kubernetes environment is linked to the integrity of its supply chain. As high-
lighted in the NSA/CISA Kubernetes Hardening Guidance[2], supply chain attacks can introduce
vulnerabilities at multiple levels, potentially compromising the entire logging infrastructure.

In the POC, container images were sourced from various locations, including Helm charts and
public registries like Docker Hub. While Helm charts and official registries provide some degree
of trust, the guidance emphasizes the importance of verifying the integrity and authenticity of all
container images, regardless of their source. Consider the following security measures as a starting
point for mitigating supply-chain related risks:

• Image Source Verification:

– Limit the use of container images to trusted sources with established security practices.

– Utilize private registries for storing and managing images, especially those modified
in-house.

– Regularly scan all container images for vulnerabilities and malware using reputable
scanning tools. Integrate image scanning into the CI/CD pipeline to automate this
process.

• Image Integrity Verification:

– Deploy container images with name, tag, and digest(SHA256) to ensure the image hasn’t
been changed or tampered with in transit2.

– Consider using digital signatures to verify the authenticity of container images, espe-
cially those from third-party sources.

2https://kubernetes.io/docs/concepts/containers/images/#image-names

64

5.3 Secret Management

5.3.1 Certificates And SSH Keys

Currently, all certificates, most SSH keys, and some sensitive Kubernetes configuration files are
created and/or distributed via Terraform (or Ansible by extension). This includes the root CA
certificate and key, SSH keypairs for internal communication, GitLab deploy keys, kubeconfig files,
and OpenSearch certificates.

Since we were informed that the NTNU SOC had established procedures for generating and dis-
tributing certificates, we opted for a simplified approach to certificate creation and management,
as the NTNU SOC is expected to integrate our solution with their existing systems at a later time.
To facilitate this, Cert-manager is deployed to streamline the integration between the Kubernetes
clusters and the certificate distribution servers. To alleviate these shortcomings, we recommend
starting with the following:

• Integrate with NTNU certificate distribution: Replace our current certificate gen-
eration and distribution with the NTNU SOC’s established procedures. This will ensure
consistency with organizational security standards and leverage existing infrastructure.

• 1Password as a KMS: For secrets not already covered by NTNU SOC procedures, im-
plement 1Password as a dedicated KMS. 1Password provides a centralized and secure way
to manage secrets, reducing the risk of exposure. It integrates well with both Kubernetes
through its operator3, and with FluxCD4.

Once the NTNU SOC’s certificate distribution procedures are in place and the infrastructure is
integrated with their DNS services, it’s important to enable hostname and certificate verification
everywhere TLS is implemented.

5.3.2 Terraform State File

The Terraform state file currently stores sensitive information, including secrets and infrastructure
details. This poses a significant risk if the state file is compromised. However, since we use GitLab
as a remote backend, the state file is encrypted both at rest5, and in transit via TLS. Additionally,
due to the nature of Terraform remote backends, the state file is only held in memory when
in use6, mitigating the risk of exposure. To further enhance security, implement the following
recommendations:

• Strict Access Controls: Implement strict access controls for the Terraform state file within
GitLab. Only authorized personnel should have access, and their permissions should be
regularly reviewed.

• Regular Backups: Maintain regular backups of the state file in a secure location. This will
allow for recovery in case of accidental deletion or corruption.

5.4 Kubernetes Security

5.4.1 Network Policies

The default networking policies within Kubernetes is to allow all pods within the cluster to commu-
nicate with each other. Network policies allow granular definition of rules that can control traffic

3https://developer.1password.com/docs/k8s/k8s-operator/
4https://fluxcd.io/flux/security/secrets-management/
5https://docs.gitlab.com/ee/administration/terraform state
6https://developer.hashicorp.com/terraform/language/state/sensitive-data

65

flow between pods and external resources. As emphasized in the NSA/CISA Kubernetes Hardening
Guidance, network policies are essential for limiting the blast radius of a potential compromise. In
the event of a security breach, network policies can prevent attackers from easily moving laterally
within the cluster and accessing sensitive components. Consider the following improvements before
deploying the POC into production:

• Default Deny: Start with a default deny policy for all namespaces. This means that no
traffic is allowed unless explicitly permitted by a network policy. The NSA/CISA guidance
strongly recommends this approach as it significantly reduces the attack surface by isolating
each namespace from all other namespaces in the cluster.

• Least Privilege: Each component should be granted only the necessary permissions for com-
munication between other components. For instance, a network policy should be implemented
to allow Prometheus to scrape metrics from specified endpoints in specific namespaces.

• Network Segmentation: Consider segmenting the network into different zones and apply
network policies to control traffic between these zones. This adds another layer of security
by restricting communication paths and making it harder for attackers to move laterally. For
example, a network policy could be implemented that only allows traffic from the frontend
zone to the backend zone, and only allows traffic from the backend zone to the data zone.

5.4.2 Resource Constraints

Resource constraints are essential for preventing resource exhaustion attacks, a type of denial of
service attack where an attacker intentionally consumes excessive resources by exploiting uncon-
trolled resource quotas7. Within Kubernetes, this could involve an attacker deploying a pod that
rapidly consumes all available CPU or memory resources, starving legitimate pods and disrupting
the operation of critical services. For example, an attacker could create a pod that runs a compu-
tationally intensive task, such as cryptocurrency mining, or a pod that allocates large amounts of
memory without releasing it.

Kubernetes provides the LimitRange8 and ResourceQuota9 resources to mitigate these types of
events. LimitRanges allow you to set minimum and maximum resource limits for individual pods
or containers within a namespace. For instance, you could define a LimitRange that prevents any
single pod from using more than 500 millicores of CPU or 1GB of memory. ResourceQuotas, on
the other hand, enables you to restrict the aggregate resource consumption of an entire namespace.
This ensures that even if multiple pods within a namespace try to consume excessive resources,
the overall resource usage remains within acceptable limits. In summary:

• Limit Ranges: Define limit ranges for each namespace to set minimum and maximum
resource limits (CPU, memory) for pods and containers.

• Resource Quotas: Implement resource quotas for each namespace to limit the total resource
consumption of the namespace.

These constraints prevent any single pod or namespace from monopolizing resources, ensuring
the stability and availability of the Kubernetes cluster even in the face of malicious or accidental
resource exhaustion attempts.

5.4.3 Role Based Access Control

Role Based Access Control (RBAC) is one of the baseline provided security mechanisms in Kuber-
netes, governing permissions for users and service accounts to interact with cluster resources. As

7https://cwe.mitre.org/data/definitions/400.html
8https://kubernetes.io/docs/concepts/policy/limit-range/
9https://kubernetes.io/docs/concepts/policy/resource-quotas/

66

recommended in the NSA/CISA Kubernetes Hardening Guidance, the principle of least privilege
should be central to RBAC implementation. This means granting users and service accounts only
the permissions necessary to perform their specific tasks, minimizing the potential damage from
compromised credentials.

the POC includes some examples of RBAC implementation, but further refinement is needed for
a production environment:

• Disable anonymous access: Ensure that kubelets are started with the ’–anonymous-
auth=false’ flag.10

• Service Account Permissions: Since the POC is primarily operated through automated
processes like GitOps, prioritize defining and restricting permissions for service accounts.
Limit the scope of service account permissions to the specific resources and actions they need
to perform. For example, the Prometheus service account should only have permission to
scrape metrics from the specified endpoints and store them in its time-series database.

5.5 GitOps Security

Given that the Git repository serves as the single source of truth in our GitOps implementation,
ensuring its security should be of high priority. Unauthorized modifications to the repository could
lead to the deployment of compromised or malicious code and configurations.

As advised by NSA and CISA in their ’Defending CI/CD Environments’ document[1], implement-
ing least-privilege access controls ensures that only authorized personnel can modify infrastructure
and application configurations. This can be achieved with GitLab’s built-in RBAC11, where per-
missions should be granted based on roles and responsibilities. Additionally, enforcing the use
of strong authentication mechanisms, such as Two-Factor Authentication (2FA)12, can further
protect against unauthorized access to the pipelines.

While GitOps promotes storing configurations as code, sensitive information like passwords, API
keys, and tokens should never be stored in plain text within the repository. This can be avoided
by leveraging GitLab’s ’CI/CD variables’ feature, as demonstrated in the OpenSearch Deployment
pipeline(4.4), or by integrating with a KMS like 1Password. In addition to securely storing and
managing secrets, these solutions can dynamically inject the secrets into the environments during
deployment, mitigating the possibility of secrets being reverse-engineered out of applications[12].
Consequently, ensure that secrets are not written to persistent storage by any of the pipeline
components. In summary:

• Least-privilege policies: Utilize GitLab’s built-in access controls to enforce the principle
of least-privilege.

• Secure secret storage and injection: Utilize GitLab CI/CD variables or a KMS tool to
handle secrets within the pipelines.

• Ensure ephemeral secrets: Verify that no pipelines store secrets in persistent storage.

10https://kubernetes.io/docs/reference/access-authn-authz/kubelet-authn-authz/#kubelet-authentication
11https://docs.gitlab.com/ee/user/permissions.html
12https://docs.gitlab.com/ee/security/two factor authentication.html

67

Chapter 6

Results

In this chapter, we present the results of our performance evaluation of the log analytics pipeline.
We conducted two main tests: one with OpenSearch as the log storage and indexing solution, and
another without OpenSearch, using a blackhole sink to isolate the performance of the pipeline’s
core components.

These tests aimed to assess the pipeline’s ability to handle varying workloads, identify potential
bottlenecks, and evaluate OpenSearch’s impact on overall performance.

To review the jupyter notebooks and corresponding datasets used in this analysis, consult Appendix
C.

6.1 Performance Evaluation With OpenSearch

Figure 6.1 provides insights into the pipeline’s message-handling capabilities. During the peak
load periods, Kafka reports a steady influx of 50,000 messages per second, and we can see that
Vector scales the pod count both up and down as expected. However, there are no indications of an
eventual convergence of message ingestion and consumption. The baseline message consumption
rate does not increase as expected with the increased pod count. Instead, we see spikes in message
consumption that align with said increases in pod count, suggesting high batch consumption when
Vector scales up and re-coordinates pods. This indicates a potential limitation in Vector’s ability
to process the incoming message volume consistently.

68

2024-05-10 12:00:00 2024-05-10 12:05:00 2024-05-10 12:10:00 2024-05-10 12:15:00 2024-05-10 12:20:00 2024-05-10 12:25:00
Time

0

50000

100000

150000

200000

250000

300000

350000

M
es

sa
ge

s (
in

 a
nd

 c
on

su
m

ed
)

Messages in
Messages consumed

4

6

8

10

12

14

Po
d

co
un

t

Kafka - Messages and Pod Count Over Time
Vector - Pod count

Figure 6.1: Kafka - Messages in and consumed per second over time

The impact of this processing limitation becomes evident in Figure 6.2, which depicts the latency of
message consumption. As the load increases, Vector falls significantly behind, reaching a maximum
of 11 million messages behind the head of the Kafka topic. The latency graph shows two distinct
peaks that coincide with the end of each traffic burst, further emphasizing the pipeline’s struggle
to keep pace with the incoming data. This lag in message consumption is a clear indicator that the
pipeline, in its current configuration, cannot adequately handle the volume of messages received
during peak load.

2024-05-10 12:00:00 2024-05-10 12:05:00 2024-05-10 12:10:00 2024-05-10 12:15:00 2024-05-10 12:20:00 2024-05-10 12:25:00
Time

0M

1M

2M

3M

4M

5M

6M

7M

8M

9M

10M

11M

M
es

sa
ge

s b
eh

in
d

Kafka - Consumer delay over time
Messages behind

Figure 6.2: Kafka - Consumer latency

Figure 6.3: Records indexed in OpenSearch

69

While the pipeline successfully indexes over 21 million messages in OpenSearch (Figure 6.3), several
anomalies raise concerns about the stability and efficiency of either the indexing process or the
OpenSearch cluster as a whole. Figure 6.4 reveals unexpected fluctuations in the reported index
size, with abrupt decreases and increases that do not correlate with the expected data influx. These
fluctuations suggest potential issues with OpenSearch’s internal mechanisms for managing index
segments or handling incoming data.

Furthermore, Vector logs warning messages like the one shown in Figure 6.51, indicates that re-
quests to OpenSearch are timing out. This could be attributed to several factors, such as network
latency, resource contention within OpenSearch, or an overload of indexing requests.

2024-05-10 12:00:00 2024-05-10 12:05:00 2024-05-10 12:10:00 2024-05-10 12:15:00 2024-05-10 12:20:00 2024-05-10 12:25:00
Time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

In
de

x
Si

ze
 (G

B)

Opensearch - Index Size over time
OS - Index size GB

Figure 6.4: OpenSearch index size

1 vector 2024-05-08T13:44:18.631975Z WARN sink{component_kind="sink"

component_id=opensearch_k6_geodata_test component_type=elasticsearch}:request{request_id=619}:

vector::sinks::util::retries: Request timed out. If this happens often while the events are

actually reaching their destination, try decreasing `batch.max_bytes` and/or using

`compression` if applicable. Alternatively `request.timeout_secs` can be increased.

internal_log_rate_limit=true

↪→

↪→

↪→

↪→

↪→

Figure 6.5: Example Vector warning

A closer look at OpenSearch’s resource utilization provides additional evidence of performance
bottlenecks. As depicted in Figure 6.6, the cluster nodes consistently operate with minimal free
memory, often hovering near critically low levels. This lack of available memory can lead to
increased garbage collection activity, degraded performance, and potential instability. Moreover,
the persistently high disk I/O time (Figure 6.7) suggests that OpenSearch is struggling to keep up
with the rate of incoming data, resulting in substantial strain on the underlying storage system.

The combination of erratic index size fluctuations, request timeouts, and strained resource utiliza-
tion strongly suggests that the indexing process in OpenSearch becomes a major bottleneck under
the tested load.

1The timestamp in the figure is inconsistent with the presented graphs as this message is from one of the
preliminary load tests where we saw the same performance patterns. We did see the same messages presented in
the graphs during the test but simply forgot to record the message then.

70

2024-05-10 12:00:00 2024-05-10 12:05:00 2024-05-10 12:10:00 2024-05-10 12:15:00 2024-05-10 12:20:00 2024-05-10 12:25:00
Time

0

5

10

15

20

25

30

35

Fr
ee

 M
em

or
y

(%
)

Opensearch - Free Memory In Percent
OS Master 1
OS Worker 1
OS Worker 2

Figure 6.6: Opensearch cluster - free memory

2024-05-10 12:00:00 2024-05-10 12:05:00 2024-05-10 12:10:00 2024-05-10 12:15:00 2024-05-10 12:20:00 2024-05-10 12:25:00
Time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Di
sk

 I/
O

Ti
m

e(
%

)

Opensearch - Disk I/O time
OS Master 1
OS Worker 1
OS Worker 2

Figure 6.7: Opensearch cluster - Disk I/O Time

Based on the observations presented, it is evident that OpenSearch, in its current configuration,
cannot sustain the required performance levels to handle the data volumes encountered during
testing. Given the challenges encountered with OpenSearch and the fact that both configuration
and optimization were outside the initial project scope, we decided to shift our focus to evaluating
the pipeline’s core components.

6.2 Performance Evaluation Without OpenSearch

To evalute the pipeline’s core components in isolation, we replaced the OpenSearch sink with a
blackhole sink, which discards incoming data after it has been processed by the pipeline. This
eliminates the potential interference and bottlenecks introduced by OpenSearch and gives a clearer
understanding of its capabilities and limitations when not constrained by the storage layer.

71

2024-05-10 15:20:00 2024-05-10 15:25:00 2024-05-10 15:30:00 2024-05-10 15:35:00 2024-05-10 15:40:00 2024-05-10 15:45:00
Time

0

10000

20000

30000

40000

50000

60000

M
es

sa
ge

s (
in

 a
nd

 c
on

su
m

ed
)

Messages in
Messages consumed

4

6

8

10

12

14

Po
d

co
un

t

Kafka - Messages and Pod Count Over Time
Vector - Pod count

Figure 6.8: Kafka - Messages in and consumed per second over time
without OpenSearch

Figure 6.8 demonstrates a marked improvement in message handling compared to the previous
test with OpenSearch. The number of messages consumed by Vector closely tracks the incoming
message rate from Kafka, indicating that Vector is now able to process messages at the rate they
are received. This is further supported by the consumer latency graph in Figure 6.9. While a slight
delay exists, it remains consistent throughout the test and does not exhibit the escalating pattern
observed previously.

The lower graph in Figure 6.9 clearly contrasts the consumer latency with and without OpenSearch.
The dramatic reduction in latency when using the blackhole sink underscores the significant impact
OpenSearch had on the pipeline’s performance. This comparison highlights the pipeline’s ability
to maintain a steady pace when not constrained by the storage layer.

2024-05-10 15:20:00 2024-05-10 15:25:00 2024-05-10 15:30:00 2024-05-10 15:35:00 2024-05-10 15:40:00 2024-05-10 15:45:00
Time

0

20000

40000

60000

80000

100000

120000

M
es

sa
ge

s b
eh

in
d

Messages behind

0 Minutes 5 Minutes 10 Minutes 15 Minutes 20 Minutes 25 Minutes
Relative Time

0M
1M
2M
3M
4M
5M
6M
7M
8M
9M

10M
11M

M
es

sa
ge

s b
eh

in
d

Messages behind - without opensearch
Messages behind - with opensearch

Figure 6.9: Kafka - Consumer latency
The bottom graph depicts the difference in latency with and without the OpenSearch sink

Figure 6.10 provides insights into Vector’s internal event processing. The number of input events
registered by Vector is roughly double the number of messages reported by Kafka. This is likely

72

due to Vector’s internal event handling, where each message may generate multiple events as it
passes through different stages of processing.2

The ”Geodata” transform’s utilization, representing the percentage of time the transform is actively
processing data, peaks at around 40% during the initial surge of traffic and settles to a stable 20%
during sustained load. This indicates that the transform has sufficient capacity to handle the
incoming data volume.

2024-05-10 15:20:00 2024-05-10 15:25:00 2024-05-10 15:30:00 2024-05-10 15:35:00 2024-05-10 15:40:00 2024-05-10 15:45:00
Time

0

20000

40000

60000

80000

100000

120000

Ev
en

ts
 p

er
 se

co
nd

Vector - Input events
Kafka - Messages consumed

0

20

40

60

80

100

Ut
iliz

at
io

n
(%

)

Vector - Events and transform utilization
Vector - Utilization (%)

Figure 6.10: Vector - Events and transform utilization

In contrast to the results obtained with OpenSearch, the pipeline demonstrates significantly im-
proved performance when utilizing the blackhole sink. Message consumption closely matches the
incoming rate, consumer latency remains stable, and the ”Geodata” transform operates well within
its capacity. These findings suggest that the pipeline’s core components can effectively handle the
tested load when not hindered by the OpenSearch bottleneck.

2More specifically, we suspect that the data received from the enrichment table in use by the ”Geodata” Transform
is registered as an event.

73

Chapter 7

Discussion

7.1 Choice Of Tools and Technologies

7.1.1 Containerization vs. Virtualization

The team successfully implemented a functional Kubernetes environment but encountered a few
challenges. As detailed in section 2.1.2, the decision to favor Kubernetes over virtual machines
was influenced by Kubernetes’ capability to horizontally auto-scale applications based on workload
demands1. Additionally, a virtualized approach would require more overhead per instance and has
an increased deployment time.

As explained in section 4.8.7, we encountered a challenge with auto-scaling the Kafka cluster.
Although we could implement auto-scaling to effectively increase the number of available brokers
based on usage, it would lead to an unbalanced workload across broker partitions. Consequently,
auto-scaling is restricted to the Vector component. Testing revealed that this limitation does not
significantly impact the pipeline, as the auto-scaling for the Vector component alone was sufficient.

Planning for scaling in Kubernetes necessitates allocating sufficient resources to accommodate
internal service and pod scaling, which can potentially result in a significant amount of resources
underutilized within the Kubernetes cluster. With virtualization, new VMs are created only as
needed. Although VMs have a higher CPU, storage, and RAM overhead, these resources will only
be taken up by deployed VMs, potentially leading to less reservation of underutilized resources.

A fully virtual-machine-based pipeline has limitations, especially for nodes dedicated to Kafka.
This setup requires a ”rolling restart” to implement changes, involving the manual restart of each
Kafka broker sequentially.2 Additionally, when scaling horizontally by adding new VMs, partitions
need manual reassignment across the Kafka cluster, increasing management overhead.

Kubernetes operators such as Strimzi can alleviate these issues. Strimzi automates configuration
changes and rolling restarts through Custom Resource Definitions (CRDs) for topics and brokers.
Additionally, Cruise Control helps rebalance broker workloads, enhancing system adaptability
during Kafka scaling operations3.

Moreover, operating Vector within a virtual machine is feasible but introduces some of the issues
seen in Kafka. Scaling the routing process will take longer since a new virtual machine must be
provisioned and booted. This illustrates that using virtual machines for pipeline components that
require autoscaling, will lead to increased scaling latency in response to fluctuating traffic volumes,
as well as an ineffective use of resources.

In conclusion, considering that a log analytics pipeline experiences varying traffic throughout the

1https://kubernetes.io/docs/concepts/workloads/autoscaling/
2https://docs.confluent.io/platform/current/kafka/post-deployment.html
3Strimzi Documentation

74

day or across different seasons, integrating most parts of the pipeline within a container-based
environment is advantageous. This approach facilitates timely scaling, which is crucial when re-
ceiving a large influx of logs, potentially preventing bottlenecks or at worst, crashes. Additionally,
a container-based system simplifies scaling down the pipeline, thereby saving on resource-costs.

7.1.2 Managed vs. Self-deployed Kubernetes

Kubernetes has emerged as an ideal platform for pipeline implementation, leading to a decision
favoring a managed Kubernetes deployment facilitated by OpenStack’s Magnum component. Mag-
num simplifies the deployment process by allowing users to specify cluster requirements through
a ClusterTemplate, negating the need for expertise in Kubernetes.4 This contrasts with self-
managed Kubernetes, which demands extensive operational efforts and technical skills for manual
infrastructure management.5

Despite the advantages of managed Kubernetes in terms of setup ease, selecting a managed en-
vironment via OpenStack’s Magnum introduced notable challenges, particularly when integrating
with OpenStack services like the Cinder volume service. Issues with the Cinder CSI attacher,
which failed to allocate volumes to pods properly, resulted in troubleshooting and workarounds,
including manual updates to the CSI plugin within Magnum.

In contrast, deploying self-deployed Kubernetes, while initially demanding, offers greater flexib-
ility and is not constrained by the limitations of Magnum. This flexibility enables a customized
deployment of Kubernetes and utilizing OpenStack resources, tailored specifically to project re-
quirements.

These experiences underscore a drawback of managed Kubernetes deployments: their dependency
on the underlying infrastructure being up-to-date. Cloud services like Amazon Elastic Kubernetes
Service (Amazon EKS) circumvent these complexities by providing managed Kubernetes without
the challenges of maintaining an open-source orchestration system like OpenStack.6

Consequently, deploying a pipeline in a managed OpenStack environment requires regular updates
to ensure compatibility with Kubernetes. Alternatively, a self-deployed Kubernetes environment
may offer better control over deployment and reduce the risk of compatibility issues with OpenStack
components. This comparison suggests that while managed Kubernetes deployments expedite
setup, they also introduce dependencies that can complicate integration with existing infrastructure
and services.

7.1.3 Event Streaming Platform

For the choice of what event streaming platform the group would implement, the group chose to go
for Apache Kafka as it has an extensive list of adaptors [23] and is a part of the Apache Software
Foundation, meaning that the software will always be available to use for free 7. The group chose
a Kubernetes operator for Apache Kafka instead of running the standard Apache Kafka software
on Kubernetes for two main reasons.

Reason 1: Apache Kafka does not offer any official container images for Apache Kafka. This
would mean the group must rely on third-party container images or build and maintain images
from the Kafka source code. Neither of these options guarantees that the container image that
would be used in the project would be stable and maintained on a long-term basis.

Reason 2: In addition to Strimzi being the most viable option for containerizing Kafka, the
Strimzi project is also a Kubernetes operator8, meaning that it also extends the automation cap-
abilities of Kubernetes with its own set of custom resources. This means that the configuration

4https://docs.openstack.org/magnum/latest/user/index.html
5https://www.digitalocean.com/resources/article/unmanaged-vs-managed-kubernetes
6https://aws.amazon.com/eks/features/
7https://www.apache.org/free/#always-free
8https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

75

of Kafka on Kubernetes is abstracted one layer further with the Kubernetes operator handling
the application-specific configuration. Since Kafka is a complex system requiring several intercon-
nected components to work correctly, using a Kubernetes operator drastically simplifies Kafka’s
deployment and configuration.

Since the group decided to use Strimzi, the group had to ensure that the project would be main-
tained and available as FOSS in the long term. The Strimzi Project was accepted to the Cloud
Native Computing Foundation (CNCF) in August 2019 and was, in February 2024, officially a
CNCF incubated project [24]. As part of the CNCF, the Strimzi Project must abide by the found-
ation’s charter, which requires that all inbound and outbound code be licensed under the Apache
2.0 License, and all projects must be completely licensed under an OSI-approved open source li-
cense [6]. Given that the Strimzi Project is part of the CNCF and has a solid team of contributors
and funding, the group has concluded that the team behind it is determined to keep the project
free and open source on a long-term scale.

7.1.4 Log Processing And Routing Solution

At the beginning of the project, the NTNU SOC wanted us to consider implementing Apache
NiFi as the log processing and routing solution. Apache NiFi is a widely adopted solution for this
purpose, but the group opted to use Vector By Datadog for a multitude of reasons.

Since Apache NiFi’s official administrators guide only has directions for installation on the Linux /
Unix / macOS and Windows operating systems, the group had to find alternatives for configuring
it on Kubernetes, for this, the group landed on the NiFikop Project [7]. While the NiFikop Project
gave us a running configuration of Apache NiFi on Kubernetes, the group found four major issues
that resulted in not going forward with NiFikop.

Reason 1: NiFikop is still in the early days of development and is therefore prone to potentially
breaking updates according to their own Git repository 9. Since our product is a POC infrastructure
that the NTNU SOC intends to reference when developing their production infrastructure, the
group did not want to introduce technologies that has the potential to break the pipeline after an
update.

Reason 2: NiFikop has a relatively small development team currently working on the project with
only 29 contributors as of May 2024 [21]. While Orange Open Source is still a major contributor
to the project, the small team of contributors may result in a longer waiting time for new features
and potential security updates.

Reason 3: Given the small development team and an empty list of adopters, the group is uncertain
of the project’s longevity. Prior attempts to make NiFi run on Kubernetes have been archived due
to a lack of maintainers, notably the Cetic/NiFi helm chart 10.

Reason 4: The group had problems indexing logs into OpenSearch. Apache NiFi still recommends
using the ElasticSearch sink to index logs into OpenSearch. Still, the group had trouble connecting
to the OpenSearch nodes and could not index any logs. This could result from a configuration
error on the group’s part, but alternative log processing and routing solutions managed to index
logs into OpenSearch without a problem.

Because of these reasons, the group elected to look for alternative log processing and routing
solutions and chose Vector By Datadog. Vector is an alternative tool to Apache NiFi that offers
many of the same features we want, and Vector addresses most of the main issues we have with
Apache NiFi.

Firstly, The development team behind Vector maintains the Vector helm chart, meaning the group
had fewer issues setting up and configuring Vector than NiFi on Kubernetes. For configuration,
Vector supports declarative configuration natively with support for YAML, TOML, and JSON
files, meaning that all the configurations for Vector can be kept in a centralized place with a single

9https://github.com/konpyutaika/nifikop?tab=readme-ov-file#issues-feature-requests-and-roadmap
10https://github.com/cetic/helm-nifi

76

source of truth.

Secondly, Vector is part of the DataDog software family, while still being open-sourced under the
Mozilla Public License (MPL). This gives the project stability by having a reliable funding source,
and the MPL license ensures that individuals and companies can use the software for any purpose.
The Datadog team has stated that a big part of their focus over the last couple of years has been
building up Vector at the core of their Observability Pipeline product [30]. Because of this, the
group anticipates that the project will be maintained and supported in the long term.

The drawback of implementing Vector over Apache NiFi is the lack of a GUI for configuring and
redirecting data flow. This ability in the log processor and router was one of the main reasons
the NTNU SOC wanted to implement Apache NiFi. Still, because of the reasons listed, the group
concluded that a solution with Vector would be more stable and future-proof than implementing
Apache NiFi on Kubernetes. The group has chosen to leave the configuration of Apache NiFi in
the source code so that in the event that the NiFikop project becomes a more viable option, the
NTNU SOC has a point of reference for setup and configuration.

7.1.5 Hashicorp Transitions To Business Source License

The group has defined in section 2.1.1 that the solution must be comprised of only FOSS products,
and in August 2023, Hashicorp changed its license on Terraform from the Mozilla Public License
v2.0 (MPL 2.0) to the Business Source License (BSL). The Mozilla Public License v2.0 (MPL 2.0)
is a license approved by the GNU Project as a FOSS license, but the new Business Source License
(BSL) is not on the list of the approved licenses, but the group has chosen to implement Terraform
as a core component of the solution because of the following reasons.

No licensing cost: While the new Business Source License is not an approved FOSS license by
the GNU project, the current license of Terraform11 allows for the use of Terraform in production
environments like the NTNU SOC, as long as they don’t offer the services to third parties. This
means using Terraform for this product will not lead to additional costs for the NTNU SOC. Since
one of the main motivators for redesigning the infrastructure was to reduce the current licensing
costs for the NTNU SOC, the group chose to use Terraform even though it technically is not
licensed under a FOSS license because it will not cost bring any licensing costs like the license
change of ElasticSearch did.

Established and Robust: Given that the implementation and use of Terraform for this project
will not lead to additional licensing costs, the group also decided to favor Terraform over other
alternatives because Terraform is an established product and the leading infrastructure orchestra-
tion technology. While there are forks of Terraform, notably OpenTofu12, these alternatives are
relatively new and in the early days of further development.

11May 2024: https://github.com/hashicorp/terraform?tab=License-1-ov-file
12https://opentofu.org/

77

Chapter 8

Conclusion

8.1 Project Goal Achievements

The team aimed to achieve several learning objectives throughout this project, primarily focused on
cloud-based infrastructure, GitOps methodologies, Kubernetes, and Infrastructure as Code (IaC)
practices. The following section will discuss and evaluate the extent to which these goals were met,
providing an overview of the project’s successes and challenges.

8.1.1 Learning Goals

L1: Gain practical experience implementing and configuring cloud-based infrastructure.

This goal was successfully met. The team gained significant hands-on experience with working on
OpenStack, setting up virtual machines, network components, and storage resources with IaC to
support the pipeline.

L2: Acquire skills in leveraging GitOps practices to optimize and automate infrastructure work-
flows.

The team successfully adopted GitOps principles, using GitLab as a single source of truth for
infrastructure and configuration management. The implementation of FluxCD automated the
deployment and synchronization of Kubernetes resources.

L3: Develop the team’s understanding of Kubernetes principles, particularly in relation to scaling
and managing cloud-native applications.

The team gained a solid understanding of central Kubernetes principles, particularly in the areas
of container orchestration and resource management. We demonstrated proficiency in defining
Kubernetes manifests using YAML, deploying applications using Helm charts (4.8.2), and managing
resources within the cluster. Although the complexities of autoscaling posed challenges within the
limited project scope, we successfully explored alternative scaling strategies (7.1.1). Our experience
with Kubernetes introduced the members to its power and flexibility for managing complex, cloud-
native applications.

L4: Learn to design and implement multi-component software solutions as Infrastructure as Code.

Given that the group has successfully made a solution where multiple applications are intercon-
nected and are left with a working POC, the group considers this goal to be achieved.

78

8.1.2 Effect Goals

E1: Simplify data-flow management by implementing flow-based programming tools.

The NTNU SOC wanted a flow-based programming solution for their data-flow pipelines to redirect
dataflow through a GUI. This goal has not been met since the group decided to go for Vector over
NiFikop, as outlined in section 7.1.4. The group accepts that this goal has not been met as
we concluded that the drawbacks of not implementing NiFikop did not outweigh the benefits of
implementing Vector. The group also kept the configuration of NiFikop in the source code that
the NTNU SOC has access to, so should they opt to use NiFikop instead, they have a base config
they can expand upon.

E2: Automate and streamline infrastructure management with GitOps methodologies.

The group implemented GitOps technologies and adopted GitOps methodologies early on in the
project, and they have proven useful when performing tasks such as redeploying the Kubernetes
cluster and performing configuration changes. The group also created deployment pipelines for
OpenSearch, which can serve as a POC reference for creating deployment pipelines for the rest of
the infrastructure. The group considers this goal to be achieved.

E3: Reduce licensing costs for NTNU SOC.

Since one of the primary motivators for the task by the NTNU SOC was to reduce their current
licensing costs, the group has only chosen software that is either licensed under a FOSS license or is
free to use in the context of the work being done by the NTNU SOC. Since there are no associated
licensing costs with the new solution, as opposed to the old solution, the group considers this goal
to be achieved.

8.1.3 Result Goals

R1: Have a POC solution that can collect a log from the source, process it, and index it for
long-term storage in OpenSearch.

The group has demonstrated in chapter 6 that the solution is capable of ingesting logs, processing
them, routing them, and indexing them into OpenSearch. The group considers this goal to be
achieved.

R2: Have the POC-solution be defined and deploy-able through IaC, and adheres to GitOps
principles.

The group implemented GitOps technologies and methodologies early on in the project and has
actively developed the product while utilizing GitOps principles. As a result, the solution requires
minimal operator involvement to redeploy the infrastructure and can be further automated with
deployment pipelines. Since the entire solution is written declaratively and uses Git as a single
source of truth, the group considers this goal to be achieved.

R3: Present a log analytics pipeline capable of dynamically scaling in response to fluctuating
traffic volumes.

This goal was partially met. As demonstrated in 6, the processing and routing components of
the pipeline dynamically scale in response to fluctuating traffic volumes. However, due to Kafka’s
stateful nature, the group was unable to implement a meaningful solution for automatically scaling
the Kafka Cluster.

79

8.2 Further Work

8.2.1 Replace Terraform With OpenTofu

Since Terraform is no longer licensed under a FOSS license, if the NTNU SOC wants to transition
away from using Terraform, OpenTofu looks like the most viable option at the time of writing.
OpenTofu is a fork of Terraform, licensed under the GNU Project approved Mozilla Public License,
version 2.0 (MPL-2.0), and is a part of the Linux foundation. They aim to make a drop-in
replacement for Terraform that is backward compatible with your current Terraform code and will
continue to be licensed as FOSS.

8.2.2 Product Hardening

Since the group has focused on creating a POC infrastructure and pipeline, the cluster and compon-
ents have not been configured to follow best practices concerning security. Therefore, to transition
from a POC to a production-ready solution, further work would include hardening of the solution
and implementation of security best practices.

8.2.3 Expand Deployment Pipelines

The group created deployment pipelines for the OpenSearch cluster but did not allocate time
and resources to creating pipelines for the rest of the solutions. Since the base for the deploy-
ment pipelines has been made, creating pipelines for the rest of the infrastructure is relatively
straightforward.

80

Bibliography

[1] National Security Agency, Cybersecurity and Infrastructure Security Agency. Defending
Continuous Integration/Continuous Delivery Environments. Tech. rep. National Security
Agency, June 2023. url: https : / /media . defense . gov / 2023 / Jun / 28 / 2003249466/ - 1/ -
1/0/CSI DEFENDING CI CD ENVIRONMENTS.PDF.

[2] National Security Agency, Cybersecurity and Infrastructure Security Agency. Kubernetes
Hardening Guide Version 1.2. Tech. rep. National Security Agency, Aug. 2022. url: https:
//media.defense.gov/2022/Aug/29/2003066362/-1/-1/0/CTR KUBERNETES HARDENING
GUIDANCE 1.2 20220829.PDF.

[3] A. Arildset et al. ‘Securing the Software Development Life Cycle’. Bachelor Thesis. NTNU,
Norwegian University of Science and Technology, May 2023.

[4] Joe Beda Brendan Burns and Kelsey Hightower. Kubernetes Up & Running: Dive into the
Future of Infrastructure. 2nd ed. O’Reilly, 2019.

[5] Charts. The Linux Foundation. url: https://helm.sh/docs/ (visited on 15th May 2024).

[6] Cloud Native Computing Foundation (“CNCF”) Charter. Section 11. Cloud Native Comput-
ing Foundation (“CNCF”). url: https://github.com/cncf/foundation/blob/main/charter.md
(visited on 7th May 2024).

[7] Docs. NiFiKop. url: https ://konpyutaika .github . io/nifikop/docs/1 concepts/1 start here
(visited on 9th Apr. 2024).

[8] Stepping up for a truly open source Elasticsearch. Carl Meadows, Jules Graybill, Kyle Davis,
Mehul Shah. url: https://aws.amazon.com/blogs/opensource/stepping-up-for-a-truly-open-
source-elasticsearch/ (visited on 19th May 2024).

[9] fluxcd.io. Cloud Native Computing Foundation. url: https://fluxcd.io/ (visited on 28th Feb.
2024).

[10] git.gvk.idi.ntnu.no - Log Analytics Repository. NTNU. url: https ://git .gvk . idi .ntnu .no/
bachelor/2024/log-analytics.

[11] Gitlab Runner. Gitlab docs. url: https://docs.gitlab.com/runner/ (visited on 9th May 2024).

[12] Michael Hill. ‘Hard-coded secrets up 67% as secrets sprawl threatens software supply chain’.
In: CSO Online (Mar. 2023). url: https://www.csoonline.com/article/574687/hard-coded-
secrets-up-67-as-secrets-sprawl-threatens-software-supply-chain.html.

[13] Amazon Web Services Inc. What is OpenSearch? url: https : / /aws . amazon . com/what -
is/opensearch/ (visited on 19th May 2024).

[14] Center for Internet Security. CIS Kubernetes Benchmark V1.9.0. Tech. rep. Center for Inter-
net Security, Mar. 2024. url: https://learn.cisecurity.org/l/799323/2024-03-28/4tkz99.

[15] Introduction. Apache. url: https://kafka.apache.org/intro (visited on 19th Mar. 2024).

[16] Introduction to Ansible. Ansible project contributors. url: https://docs.ansible.com/ansible/
latest/getting started/introduction.html (visited on 16th May 2024).

[17] Kafka Rebalancing. Redpanda. url: https://redpanda.com/guides/kafka-performance/kafka-
rebalancing (visited on 21st May 2024).

[18] Kubernetes Documentation. Cloud Native Computing Foundation. url: https://kubernetes.
io/docs/concepts/overview/ (visited on 23rd Feb. 2024).

81

https://media.defense.gov/2023/Jun/28/2003249466/-1/-1/0/CSI_DEFENDING_CI_CD_ENVIRONMENTS.PDF
https://media.defense.gov/2023/Jun/28/2003249466/-1/-1/0/CSI_DEFENDING_CI_CD_ENVIRONMENTS.PDF
https://media.defense.gov/2022/Aug/29/2003066362/-1/-1/0/CTR_KUBERNETES_HARDENING_GUIDANCE_1.2_20220829.PDF
https://media.defense.gov/2022/Aug/29/2003066362/-1/-1/0/CTR_KUBERNETES_HARDENING_GUIDANCE_1.2_20220829.PDF
https://media.defense.gov/2022/Aug/29/2003066362/-1/-1/0/CTR_KUBERNETES_HARDENING_GUIDANCE_1.2_20220829.PDF
https://helm.sh/docs/
https://github.com/cncf/foundation/blob/main/charter.md
https://konpyutaika.github.io/nifikop/docs/1_concepts/1_start_here
https://aws.amazon.com/blogs/opensource/stepping-up-for-a-truly-open-source-elasticsearch/
https://aws.amazon.com/blogs/opensource/stepping-up-for-a-truly-open-source-elasticsearch/
https://fluxcd.io/
https://git.gvk.idi.ntnu.no/bachelor/2024/log-analytics
https://git.gvk.idi.ntnu.no/bachelor/2024/log-analytics
https://docs.gitlab.com/runner/
https://www.csoonline.com/article/574687/hard-coded-secrets-up-67-as-secrets-sprawl-threatens-software-supply-chain.html
https://www.csoonline.com/article/574687/hard-coded-secrets-up-67-as-secrets-sprawl-threatens-software-supply-chain.html
https://aws.amazon.com/what-is/opensearch/
https://aws.amazon.com/what-is/opensearch/
https://learn.cisecurity.org/l/799323/2024-03-28/4tkz99
https://kafka.apache.org/intro
https://docs.ansible.com/ansible/latest/getting_started/introduction.html
https://docs.ansible.com/ansible/latest/getting_started/introduction.html
https://redpanda.com/guides/kafka-performance/kafka-rebalancing
https://redpanda.com/guides/kafka-performance/kafka-rebalancing
https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/overview/

[19] Grafana Labs. Grafana k6 documentation. url: https://grafana.com/docs/k6/latest/ (visited
on 19th May 2024).

[20] Kief Morris. Infrastructure as Code, Dynamic Systems for the Cloud Age. O’Reilly Media,
Inc, 2021.

[21] Nifikop. konpyutaika. url: https://github.com/konpyutaika/nifikop (visited on 8th May 2024).

[22] NTNU SOC - Security Operations Centre. NTNU. 2023. url: https://www.ntnu.edu/web/
adm-it/ntnu-soc (visited on 17th Jan. 2024).

[23] POWERED BY. Apache Kafka. url: https : / / kafka . apache . org /powered - by (visited on
10th May 2024).

[24] Projects, Strimzi. Cloud Native Computing Foundation (“CNCF”). url: https://www.cncf.
io/projects/strimzi/ (visited on 7th May 2024).

[25] Prometheus-Community. Helm-Charts. https://github.com/prometheus- community/helm-
charts/blob/main/charts/kube-prometheus-stack/values.yaml. 2024.

[26] Rohit Salecha. Practical Gitops. Apress Berkeley, CA, 2022.

[27] Security Operations Center (SOC). IBM. 2024. url: https://www.ibm.com/topics/security-
operations-center (visited on 22nd Jan. 2024).

[28] Strimzi. Ckoud Native Computing Foundation. url: https://www.cncf.io/blog/2024/02/08/
strimzi-joins-the-cncf-incubator/ (visited on 30th Apr. 2024).

[29] Studenter i universitets- og høgskoleutdanning. Statistisk Sentralbyr̊a. 2023. url: https://
www.ssb.no/utdanning/hoyere-utdanning/statistikk/studenter-i-universitets-og-hogskoleutdanning
(visited on 5th Apr. 2024).

[30] Vector. Datadog Open Source Hub. url: https://opensource.datadoghq.com/projects/vector/
(visited on 9th May 2024).

[31] Abhishek Verma et al. ‘Large-scale cluster management at Google with Borg’. In: Proceedings
of the European Conference on Computer Systems (EuroSys). Bordeaux, France, 2015.

[32] What is Kanban? Here’s what your Agile team needs to know. Asana. 2022. url: https :
//asana.com/resources/what-is-kanban (visited on 23rd Jan. 2024).

[33] What is terraform? HashiCorp. url: https://developer.hashicorp.com/terraform/intro (visited
on 9th May 2024).

[34] What is vector? Datadog. url: https://vector.dev/docs/about/what- is-vector/ (visited on
16th May 2024).

[35] Why Are Cloud-Native Applications Necessary? SolarWinds. 2024. url: https : / / www .
papertrail.com/solution/tips/cloud-native-applications-and- log-management-best-practices/
(visited on 25th Jan. 2024).

82

https://grafana.com/docs/k6/latest/
https://github.com/konpyutaika/nifikop
https://www.ntnu.edu/web/adm-it/ntnu-soc
https://www.ntnu.edu/web/adm-it/ntnu-soc
https://kafka.apache.org/powered-by
https://www.cncf.io/projects/strimzi/
https://www.cncf.io/projects/strimzi/
https://github.com/prometheus-community/helm-charts/blob/main/charts/kube-prometheus-stack/values.yaml
https://github.com/prometheus-community/helm-charts/blob/main/charts/kube-prometheus-stack/values.yaml
https://www.ibm.com/topics/security-operations-center
https://www.ibm.com/topics/security-operations-center
https://www.cncf.io/blog/2024/02/08/strimzi-joins-the-cncf-incubator/
https://www.cncf.io/blog/2024/02/08/strimzi-joins-the-cncf-incubator/
https://www.ssb.no/utdanning/hoyere-utdanning/statistikk/studenter-i-universitets-og-hogskoleutdanning
https://www.ssb.no/utdanning/hoyere-utdanning/statistikk/studenter-i-universitets-og-hogskoleutdanning
https://opensource.datadoghq.com/projects/vector/
https://asana.com/resources/what-is-kanban
https://asana.com/resources/what-is-kanban
https://developer.hashicorp.com/terraform/intro
https://vector.dev/docs/about/what-is-vector/
https://www.papertrail.com/solution/tips/cloud-native-applications-and-log-management-best-practices/
https://www.papertrail.com/solution/tips/cloud-native-applications-and-log-management-best-practices/

Appendix

83

Appendix A

Project Plan

A.1 Introduction

The team has assembled a project plan as a road-map throughout the project phase. The plan
elaborates on the client’s reason for the project and outlines the desired result for both the client
and the team. It details everything from the project’s scope, to the teams structure and project
methodologies.

84

A.2 Goals and Restrictions

A.2.1 Background

NTNU Security Operations Center, from now referred to as NTNU SOC is the digital security and
emergency response center for NTNU and covers the Trondheim, Gjøvik and Aalesund campuses.
NTNU SOC is the official point of contact for all security incidents and provides services like
intrusion detection, technical security analysis and incident management [22]. A Security Opera-
tions Center (SOC) is a team that focuses on monitoring infrastructure and devices to detect and
act upon cybersecurity events. Their main tasks are to analyze threats and threat data, respond
to incidents and take necessary preventative measurements to prevent unwanted activity on the
infrastructure [27].

Security Operation Centers uses logs for a variety of analysis purposes, so having an efficient and
scalable log collection and processing pipeline is essential to making sure the data-set that the
security analysts are working on is complete and up to date. With more and more services being
created for cloud native systems using containers and container-clusters, the complexity of log
gathering and analysis has increased. Some of the challenges with log gathering from cloud native
systems are more logging from the different micro-services, differences in logs from e.g. a Docker
container versus a Linux based operating system, and the fact that all log files are lost when
a container execution is halted [35]. Demonstrating a proof of concept solution for scalable log
collection & processing will serve as a foundation for the further development of NTNU SOC, and
can be beneficial for other organizations looking to implement a more scalable solution.

A.2.2 Project Goals

The project goals are inspired by and partially overlapping with the bachelor-thesis of A. Arildset
et al.[3]

The project goals for this project will be split into three sections: Effect goals, Result goals, and
Learning goals. Effect goals are wanted improvements for the client as a result of the project.
Result goals are objectives directly related to the project’s outcome, defining what the team aims
to accomplish by the project’s end. Learning goals pertain to the skills, knowledge, and experience
that the team aims to have acquired by the time the project concludes.

Effect goals

1. The new solution should be able to scale up & down to meet demands in times of higher
activity, and save resources in times of lower activity.

2. Operators should be able to change data-flow and modify how the data is aggregated while
the system is running.

3. The new system should reduce current licensing-costs for NTNU SOC

Result goals

1. Have a proof of concept system that is able to collect and aggregate logs before feeding it to
long-term storage in OpenSearch.

2. Have a system that is easily scalable for log gathering, processing, storing and utilizing.

Learning goals

1. The team aims to have learned more about log gathering and how to process logs for real
world analysis applications.

85

2. Acquire knowledge on how to design systems with scalability as a main focus.

A.2.3 Framework

Timeframe

- Deadline for signing and delivering the project plan: 1. February 2023

- Deadline for delivering the finished project: 21. May 2023

86

A.3 Scope

A.3.1 Problem Statement

NTNU SOC is moving to a cloud-native, open-source system for log collection and monitoring,
aiming to reduce costs from their current Elasticsearch-based system. Notably, NTNU SOC has
largely developed the Search and Indexing section, including Opensearch nodes for storage and
indexing. Our project will integrate with this existing infrastructure, utilizing the code shared by
NTNU SOC.

Our project’s main goal is to develop and integrate the ’unified data transform and transfer bus’
and ’data ingest’ layers of the infrastructure. These components will be integrated to work in
conjunction with the Search and Indexing infrastructure. A key task is developing and configuring
the services required by the aforementioned layers, and deploying them via Kubernetes. This will
include containerizing services related to aggregation, processing, normalization, and enrichment.
NTNU SOC requests the use of Apache Kafka and Nifi for log- aggregation and routing. If these
cannot be effectively containerized and deployed in Kubernetes, they will be handled externally.

This approach allows for scalable, flexible data handling to meet NTNU SOC’s needs. By us-
ing Infrastructure as Code (IaC) for deployment, we aim for efficient, reproducible infrastructure
management. Containerization is crucial for scalability and maintainability. The choice of Kuber-
netes is due to its capacity for managing containerized applications, essential for automatic scaling,
load balancing, and recovery. In summary; the project strives to create a resilient, efficient, and
adaptable log-processing pipeline for NTNU SOC.

87

A.4 Project Organization

A.4.1 Roles and area of responsibility

Team coordinator

The Team Coordinator ensures the smooth operation of the group. They are responsible for
orchestrating the workflow among members, ensuring that tasks are evenly distributed and aligned
with each member’s strengths and expertise.

Key responsibilities:

• Coordinate and facilitate workloads between group members, ensuring a harmonious and
efficient workflow.

• Lead meetings according to a pre-determined itinerary.

• Mediate and resolve internal issues and conflicts, acting as a neutral party to maintain group
harmony.

• Act as a tiebreaker in tied internal votes, ensuring decision-making continues to move forward.

• Implement and oversee the enforcement of group rules, including the issuing of fines for
broken rules.

• May sign on behalf of other group members for documents regarding the bachelor´s thesis

Quality assurance coordinator

The Quality Assurance Coordinator is tasked with safeguarding the standards of the project’s
output. Their focus is on ensuring the clarity, coherence, and overall quality of the final report,
code-base and supporting documentation.

Key responsibilities:

• Oversee the readability and cohesion of the final report, ensuring it meets academic and
professional standards.

• Guarantee high-quality project documentation, including detailed and accurate records of
the project’s progress and outcomes.

• Maintain an intuitive and organized file and code structure within the code-base.

88

Administrative coordinator

The Administrative Coordinator is the organizational hub of the team, focusing on the logistics of
meeting coordination and documentation. They ensure that all administrative tasks are executed
efficiently and effectively.

Key responsibilities:

• Organize and schedule meetings, ensuring all members are informed and prepared.

• Prepare and distribute meeting itineraries, contributing to focused and effective meetings.

• Record and circulate meeting minutes, providing a clear and concise record of discussions
and decisions.

• Document and disseminate reports from meetings with clients and academic supervisors,
ensuring transparency and clear communication.

Document coordinator

The Document Coordinator is responsible for the management and organization of all project-
related documents, ensuring that important information is readily accessible and well-organized.

Key responsibilities:

• Ensure timely storage of documents in their designated locations, facilitating easy access and
organization.

• Guarantee that documents are distributed as planned and are readily available to all group
members.

• Oversee LaTeX templating for the final report, ensuring a professional and consistent format.

A.4.2 Routines

Collaborative work-sessions

To foster a collaborative and productive environment, weekly work-sessions are mandatory for
all group members. These sessions aim to ensure that ideas are exchanged effectively and that the
group progresses cohesively.

Client meetings

Our project involves regular, weekly meetings with our client. The primary focus of these meetings
is to keep the client updated on our progress, discuss and receive feedback on our functional choices,
and address any new requirements or changes that may arise.

Academic supervisor meetings

In order to maintain academic rigor in our work, we will conduct bi-weekly or weekly meetings
with our academic supervisors. These meetings are intended to ensure that our project aligns with
academic standards and objectives.

89

Code review

As our code is intended to be open-source and available to be used, quality assurance in our coding
process is of utmost importance. Therefore, all commits to the production branch must undergo a
thorough review. This review must be performed by a group member who did not participate in
the specific update, ensuring impartiality and a fresh perspective on the work done.

Time expenditure and registration

Each group member is expected to dedicate a minimum average of 30 hours per week to the
project. To track and manage this commitment, all time spent on any project-related activity
must be recorded in the ’Timeføring.xlsx’ sheet, available on the group’s Teams channel.

Communication platforms

For effective communication, our team will utilize Microsoft Teams for formal communication
and Discord for informal interactions. This dual-platform approach is designed to separate and
streamline our professional and casual communications, ensuring clarity and organization.

Internal social gatherings

Recognizing the importance of a positive team dynamic and mental health of the group members,
we will arrange for non-project related social activities on a weekly or bi-weekly basis.

A.4.3 Group rules

Celebration fund

To encourage adherence to the group’s rules and add a positive spin to rule enforcement, any fines
incurred for breaking rules are contributed to a ’Celebration Fund’. This fund will be used to
finance a celebration for the team upon successful delivery of our project report.

Meetings with clients and academic supervisors

Attendance at meetings with clients and academic supervisors is mandatory. A fine of 300 NOK
will be levied for failing to attend these meetings without prior notification. Additionally, tardiness
exceeding 10 minutes will require the late member to offer each group member a non-alcoholic drink
or snack of their choice, capped at a cost of 30 NOK, as a gesture of apology and commitment to
punctuality.

Collaborative work-sessions

In-person attendance at the collaborative work-sessions is mandatory. In the case of unnotified
absence, a fine of 150 NOK will be imposed. Should a group member be more than 30 minutes late,
they are expected to offer each group member a non-alcoholic drink or snack, with a maximum
value of 30 NOK, as a form of apology for the delay.

90

Task progression

Timely completion of tasks is fundamental to the project’s success. If a member is unable to
complete a task within the expected time-frame, they are required to inform the team and seek
assistance or guidance. Failure to communicate and manage task progression in a timely manner
may result in a fine of 150 NOK.

Internal conflicts

Should internal conflicts arise, they should be resolved amicably between the parties involved. If
a resolution cannot be reached, the Team Coordinator will intervene as a mediator. Should the
conflict remain unresolved after the Coordinator’s intervention, the matter will be escalated to the
appropriate authorities for further action. No fines are associated with internal conflicts, emphas-
izing the importance of open communication and mutual respect in resolving disagreements.

91

A.5 Planning, followup and reporting

A.5.1 Project Management Methodology

The NTNU-SOC has shown a great willingness to accept different technologies and solutions for
their problem. They have given us the freedom to choose our methods with only a few requirements.
Because of this, we have selected an agile working method. This approach allows us to experiment
with various technologies and solutions, while continuously receiving feedback from our client.

When deciding on a specific methodology, we considered several factors:

1. The client’s preference for us to adopt a DevOps approach, maintaining transparency in our
project and the flexibility to add new features if we are ahead of schedule.

2. The fact that none of our team members have prior experience with the requested technolo-
gies.

3. The varied work schedules of our team members due to part-time jobs.

As a result, we decided against frameworks like Scrum, which require daily meetings and short-term
planning, as it might not be possible with members potentially unavailable for extended periods of
time. Additionally, estimating the duration of sprints was challenging due to our lack of experience
in this field. This led us to choose the Kanban framework, which allows us to limit the amount of
work in progress and focus on completing tasks sequentially.

Kanban

Kanban is an Agile management method built on a philosophy of continuous improvement, where
work items are “pulled” from a product backlog into a steady flow of work. The framework
is applied using Kanban boards—a form of visual project management.[32] Our team plans to
implement this using GitLab’s issue board, where each issue represents a distinct task.

Weekly in-person meetings will be conducted to review our progress, collaborate on task resolution,
and plan our individual assignments for the upcoming week. which will ensure that all team
members are fully informed and aligned with our goals. This approach will enable us to prioritize
critical tasks and, if necessary, reassign tasks among team members to accommodate availability.
Additionally, we will have weekly status meetings with our client to align with project goals and
incorporate any requested changes or additional features.

Followup

• The team will convene weekly at the NTNU campus for collaborative work sessions, with the
specific date and time determined at the previous meeting.

• Meetings with our client will be scheduled weekly or biweekly, as required, to ensure ongoing
alignment and progress updates.

• The team coordinator will promptly organize additional meetings in response to any critical
challenges or urgent issues that require immediate attention.

92

A.6 Organization of quality assurance

A.6.1 Documentation

The bachelor thesis will be written and produced using Overleaf, an online LaTeX editor. This
choice ensures consistent formatting and professional presentation of the final document.

For project coordination, we will utilize the Microsoft Office suite to create and manage documents
such as meeting minutes, time-usage logs, and resource budgets. These files will be stored in
our shared team channel on Microsoft Teams, guaranteeing high availability and collaborative
accessibility.

Our code-base, including the developed software and scripts, will be stored and version-controlled in
the GitLab repository git.gvk.idi.ntnu.no/fredrlst/log-analytics-bachelor-project. We will employ
a feature-branch strategy for version control, where new features and bug fixes are developed in
separate branches and merged into the main branch upon completion and review.

In addition, this repository will house the documentation for our infrastructure stack. Adhering to
the principle of ”Documentation as Code,” all documentation will be written in Markdown. This
ensures that documentation updates are trackable and reviewable through Git. We will structure
the documentation according to the following example:

Repository-root

• README.md (Project Overview and Setup Instructions)

• OpenSearch

– OpenSearch.md (Installation, Configuration, and Usage)

• Kafka

– kafka.md (Integration Points, Data Flows)

• fluentbit

– fluentbit.md (Logging Conventions, Output Formats)

A.6.2 Plan for testing and inspection

Given the cloud-native nature of our project, a robust CI/CD (Continuous Integration/Continuous
Deployment) workflow is crucial. In our GitLab repository, we will set up automated pipelines to
run a variety of tests, ensuring the reliability and stability of our code. These tests will include:

• Unit Tests: To validate individual components in isolation.

• Integration Tests: To ensure different modules work together seamlessly.

• System Tests: To verify the complete and integrated software product.

We will structure our CI/CD pipeline into three primary stages:

• Testing: For running automated tests on new code submissions.

• Staging: A pre-production environment for final verification.

• Production: Where validated changes go live to end-users.

Each pull request to the production branch will require approval from at least one project member
not involved in its development, ensuring an additional layer of quality control.

93

https://www.overleaf.com/
https://git.gvk.idi.ntnu.no/fredrlst/log-analytics-bachelor-project
https://www.writethedocs.org/guide/docs-as-code/

A.6.3 Risk Analysis

Effective risk management is crucial for the successful completion of our project. This subsection
outlines potential risks and proposes strategies to mitigate them, ensuring the project stays on
track.

Catastrophic
Major 4
Moderate 5 2 1
Minor 6 3
Insignificant

C
o
n
se
q
u
en
ce

Rare Unlikely Possible Likely Certain
Probability

Table A.1: Risk Matrix

Risk 1: External Commitments

Description Team members may have external commitments, such as work,
renovations, or long commutes, that could limit their availability
and resources.

Probability Likely
Consequence Moderate
Overall risk

Serious

Mitigation Strategy: Regularly schedule check-ins to assess each member’s availability and re-
distribute tasks as needed to accommodate fluctuating schedules.

Risk 2: Scope creep

Description Our high motivation and adaptability, coupled with big aspira-
tions, might lead to taking on more than we can feasibly handle.

Probability Possible
Consequence Moderate
Overall risk

Moderate

Mitigation Strategy: Establish clear project boundaries and objectives at the outset. Regularly
review project scope against set milestones to ensure alignment.

94

Risk 3: Nit-picking

Description Perfectionist tendencies in some team members may lead to spend-
ing excessive time optimizing code in areas where it is not neces-
sary.

Probability Likely
Consequence Minor
Overall risk

Moderate

Mitigation Strategy: Implement a policy where optimization efforts are time-boxed. For in-
stance, allocate a specific amount of time for refining code after primary functionalities are achieved.
This approach helps to limit over-optimization.

Risk 4: Unresolvable Interpersonal Conflict

Description While unlikely, there exists a non-zero chance of interpersonal
conflicts that cannot be easily resolved.

Probability Unlikely
Consequence Major
Overall risk

Moderate

Mitigation Strategy: Establish a conflict resolution protocol at the project’s onset. Include a
neutral mediator role, possibly a mentor, to facilitate resolution.

Risk 5: Long-term Illness

Description Key project members may suffer from long-term illnesses, signi-
ficantly delaying project milestones.

Probability Unlikely
Consequence Moderate
Overall risk

Moderate

Mitigation Strategy: Implement a system where key tasks are not solely dependent on one
individual. Having at least two members familiar with each critical task can reduce the impact if
one member becomes unavailable.

Risk 6: Sunk Cost Fallacy

Description The team might continue to invest in a particular approach or
component due to the significant resources already expended, even
if it’s no longer viable.

Probability Possible
Consequence Minor
Overall risk

Moderate

Mitigation Strategy: Regular project evaluations to assess the viability and effectiveness of
ongoing efforts. Encourage open discussions and be ready to pivot strategies if necessary.

95

A.7 Plan for execution

A.7.1 Gannt

Figure A.1: Gannt chart

96

A.8 Signatures

I, the undersigned, hereby acknowledge and agree to the terms outlined in this document.

Karl-Henrik Horve Date

Marcus Eugen Brockstedt Mathisen Date

Fredrik Leonard Stenersen Date

Bjørn Kristian Strand Date

97

Appendix B

OpenSearch Ansible-Playbook
modification

This appendix details the changes made to the Opensearch ansible-playbooks sourced from the
https://github.com/opensearch-project/ansible-playbook/tree/main git repository.

B.1 Original opensearch security.yml

1 ###

2 ##### PLAYBOOK MODIFICATION EXAMPLE #####

3 ###

Figure B.1: Playbook modification example

The below yaml code is the original ’security.yml’, that we modified for use in our project. Com-
ments following the format exemplified by Figure B.1 signify sections deleted in the playbook.

1 ---

2 ##

3 ##### DELETED PLAYBOOK SECTION 1 START #####

4 ##

5

6 ## Here we are going to use self-signed certificates for Transport (Node-Node communication) & REST

API layer↪→

7 ## Using searchguard offline TLS tool to create node & root certificates

8 - name: Security Plugin configuration | Force remove local temporary directory for certificates

generation↪→

9 local_action:

10 module: file

11 path: /tmp/opensearch-nodecerts

12 state: absent

13 run_once: true

14 become: false

15 when: iac_enable

16

17 - name: Security Plugin configuration | Create local temporary directory for certificates

generation↪→

18 local_action:

19 module: file

98

https://github.com/opensearch-project/ansible-playbook/tree/main

20 path: /tmp/opensearch-nodecerts

21 state: directory

22 run_once: true

23 register: configuration

24 become: false

25

26 - name: Security Plugin configuration | Download certificates generation tool

27 local_action:

28 module: get_url

29 url:

https://search.maven.org/remotecontent?filepath=com/floragunn/search-guard-tlstool/1.5/search-guard-tlstool-1.5.tar.gz↪→

30 dest: /tmp/opensearch-nodecerts/search-guard-tlstool.tar.gz

31 run_once: true

32 when: configuration.changed

33 become: false

34

35 - name: Security Plugin configuration | Extract the certificates generation tool

36 local_action: command chdir=/tmp/opensearch-nodecerts tar -xvf search-guard-tlstool.tar.gz

37 run_once: true

38 when: configuration.changed

39 become: false

40

41 - name: Security Plugin configuration | Make the executable file

42 local_action:

43 module: file

44 dest: /tmp/opensearch-nodecerts/tools/sgtlstool.sh

45 mode: a+x

46 run_once: true

47 when: configuration.changed

48 become: false

49

50 - name: Security Plugin configuration | Prepare the certificates generation template file

51 local_action:

52 module: template

53 src: tlsconfig.yml

54 dest: /tmp/opensearch-nodecerts/config/tlsconfig.yml

55 run_once: true

56 when: configuration.changed

57 become: false

58

59 - name: Security Plugin configuration | Generate the node & admin certificates in local

60 local_action:

61 module: command /tmp/opensearch-nodecerts/tools/sgtlstool.sh -c

/tmp/opensearch-nodecerts/config/tlsconfig.yml -ca -crt -t

/tmp/opensearch-nodecerts/config/

↪→

↪→

62 run_once: true

63 when: configuration.changed

64 become: false

65

66 ##

67 ##### DELETED PLAYBOOK SECTION 1 END #####

68 ##

69

70 - name: Security Plugin configuration | IaC enabled - Check certificate

71 when: iac_enable

72 block:

73 - name: Security Plugin configuration | Check cert exists

74 ansible.builtin.stat:

75 path: "{{ item }}"

76 get_attributes: false

77 get_checksum: false

78 get_mime: false

79 register: cert_stat_result

80 with_items:

81 - "{{ os_conf_dir }}/root-ca.pem"

82 - "{{ os_conf_dir }}/root-ca.key"

99

83 - "{{ os_conf_dir }}/{{ inventory_hostname }}.key"

84 - "{{ os_conf_dir }}/{{ inventory_hostname }}.pem"

85 - "{{ os_conf_dir }}/{{ inventory_hostname }}_http.key"

86 - "{{ os_conf_dir }}/{{ inventory_hostname }}_http.pem"

87 - "{{ os_conf_dir }}/admin.key"

88 - "{{ os_conf_dir }}/admin.pem"

89

90 - name: Security Plugin configuration | Set fact. The initial value "Don't update certs"

91 ansible.builtin.set_fact:

92 force_update_cert: false

93

94 - name: Security Plugin configuration | Set fact. Update certificates if at least one

certificate is not found↪→

95 ansible.builtin.set_fact:

96 force_update_cert: true

97 with_items: "{{ cert_stat_result.results }}"

98 when: item.stat.exists == False

99

100 - name: Security Plugin configuration | Show the force_update_cert setting

101 ansible.builtin.debug:

102 msg: "force_update_cert: {{ force_update_cert }}"

103

104 - name: Security Plugin configuration | Count force_update_cert nodes

105 ansible.builtin.set_fact:

106 force_update_cert_nodes_count: "{{ hostvars | dict2items |

selectattr('value.force_update_cert', 'defined') |

rejectattr('value.force_update_cert', 'equalto', false) |

map(attribute='value.force_update_cert') | list | length }}"

↪→

↪→

↪→

107

108 - name: Security Plugin configuration | Show the force_update_cert_nodes_count setting

109 ansible.builtin.debug:

110 msg: "force_update_cert_nodes_count: {{ force_update_cert_nodes_count }}"

111

112 - name: Security Plugin configuration | Do need to update certificates

113 ansible.builtin.debug:

114 msg: "Need to update certificates..."

115 when: force_update_cert_nodes_count | int > 0

116

117 - name: Security Plugin configuration | IaC disabled - Count force_update_cert nodes

118 ansible.builtin.set_fact:

119 force_update_cert_nodes_count: 0

120 when: not iac_enable

121

122 - name: Security Plugin configuration | Copy the node & admin certificates to opensearch nodes if

at least one certificate is not found on at least one server↪→

123 ansible.builtin.copy:

124 src: "/tmp/opensearch-nodecerts/config/{{ item }}"

125 dest: "{{ os_conf_dir }}"

126 mode: 0600

127 with_items:

128 - root-ca.pem

129 - root-ca.key

130 - "{{ inventory_hostname }}.key"

131 - "{{ inventory_hostname }}.pem"

132 - "{{ inventory_hostname }}_http.key"

133 - "{{ inventory_hostname }}_http.pem"

134 - admin.key

135 - admin.pem

136 when: (configuration.changed and not iac_enable) or (iac_enable and force_update_cert_nodes_count

| int > 0)↪→

137

138 - name: Security Plugin configuration | Copy the security configuration file 1 to cluster

139 ansible.builtin.blockinfile:

140 block: "{{ lookup('template', 'templates/security_conf.yml') }}"

141 dest: "{{ os_conf_dir }}/opensearch.yml"

142 backup: true

100

143 insertafter: EOF

144 marker: "## {mark} OpenSearch Security common configuration ##"

145 when: configuration.changed or iac_enable

146

147 - name: Security Plugin configuration | Copy the security configuration file 2 to cluster

148 ansible.builtin.blockinfile:

149 block: "{{ lookup('file', '/tmp/opensearch-nodecerts/config/{{ inventory_hostname

}}_elasticsearch_config_snippet.yml') }}"↪→

150 dest: "{{ os_conf_dir }}/opensearch.yml"

151 backup: true

152 insertafter: EOF

153 marker: "## {mark} opensearch Security Node & Admin certificates configuration ##"

154 when: configuration.changed or iac_enable

155

156 - name: Security Plugin configuration | Create security plugin configuration folder

157 ansible.builtin.file:

158 dest: "{{ os_sec_plugin_conf_path }}"

159 owner: "{{ os_user }}"

160 group: "{{ os_user }}"

161 mode: 0700

162 state: directory

163 when: configuration.changed or iac_enable

164

165 - name: Security Plugin configuration | Copy the security configuration file 3 to cluster

166 ansible.builtin.template:

167 src: security_plugin_conf.yml

168 dest: "{{ os_sec_plugin_conf_path }}/config.yml"

169 backup: true

170 owner: "{{ os_user }}"

171 group: "{{ os_user }}"

172 mode: 0600

173 force: true

174 when: auth_type == 'oidc' or copy_custom_security_configs

175

176 - name: Security Plugin configuration | Prepare the opensearch security configuration file

177 ansible.builtin.command: sed -i 's/searchguard/plugins.security/g' {{ os_conf_dir

}}/opensearch.yml↪→

178 when: configuration.changed or iac_enable

179

180 - name: Security Plugin configuration | Set the file ownerships

181 ansible.builtin.file:

182 dest: "{{ os_home }}"

183 owner: "{{ os_user }}"

184 group: "{{ os_user }}"

185 recurse: true

186

187 - name: Security Plugin configuration | Set the folder permission

188 ansible.builtin.file:

189 dest: "{{ os_conf_dir }}"

190 owner: "{{ os_user }}"

191 group: "{{ os_user }}"

192 mode: 0700

193

194 - name: Security Plugin configuration | Restart opensearch with security configuration

195 ansible.builtin.systemd:

196 name: opensearch

197 state: restarted

198 enabled: true

199

200 - name: Wait for opensearch to startup

201 ansible.builtin.wait_for:

202 host: "{{ hostvars[inventory_hostname]['ip'] }}"

203 port: "{{ os_api_port }}"

204 delay: 5

205 connect_timeout: 1

206 timeout: 120

101

207

208 - name: Security Plugin configuration | Copy the opensearch security internal users template

209 ansible.builtin.template:

210 src: internal_users.yml

211 dest: "{{ os_sec_plugin_conf_path }}/internal_users.yml"

212 mode: 0644

213 run_once: true

214 when: configuration.changed or iac_enable

215

216 - name: Security Plugin configuration | Copy custom configuration files to cluster

217 ansible.builtin.template:

218 src: "{{ item }}"

219 dest: "{{ os_sec_plugin_conf_path }}/"

220 owner: "{{ os_user }}"

221 group: "{{ os_user }}"

222 backup: true

223 mode: 0640

224 force: true

225 with_items: "{{ custom_security_plugin_configs }}"

226 when: copy_custom_security_configs

227

228 - name: Security Plugin configuration | Set the Admin user password

229 ansible.builtin.shell: >

230 sed -i '/hash: / s,{{ admin_password }},'$(bash {{ os_sec_plugin_tools_path }}/hash.sh -p {{

admin_password }} | tail -1)','↪→

231 {{ os_sec_plugin_conf_path }}/internal_users.yml

232 environment:

233 JAVA_HOME: "{{ os_home }}/jdk"

234 run_once: true

235 when: configuration.changed or iac_enable

236

237 - name: Security Plugin configuration | Set the kibanaserver user pasword

238 ansible.builtin.shell: >

239 sed -i '/hash: / s,{{ kibanaserver_password }},'$(bash {{ os_sec_plugin_tools_path }}/hash.sh

-p {{ kibanaserver_password }} | tail -1)','↪→

240 {{ os_sec_plugin_conf_path }}/internal_users.yml

241 environment:

242 JAVA_HOME: "{{ os_home }}/jdk"

243 run_once: true

244 when: configuration.changed or iac_enable

245

246 - name: Security Plugin configuration | Check that the files/internal_users.yml exists

247 ansible.builtin.stat:

248 path: files/internal_users.yml

249 register: custom_users_result

250 delegate_to: localhost

251 run_once: true

252 become: false

253

254 - name: Security Plugin configuration | Check for a custom configuration for internal users and

hash passwords for them↪→

255 when: custom_users_result.stat.exists

256 block:

257

258 - name: Security Plugin configuration | Load custom internal users configuration

259 ansible.builtin.include_vars:

260 file: files/internal_users.yml

261 name: custom_users

262 run_once: true

263

264 # In the internal_users file.yml each user is described by the block:

265 # username:

266 # hash: "{{ username_password }}"In addition to the user description blocks, there is a _meta

block↪→

267 # ...

268 # In addition to the user description blocks, there is a _meta block

102

269 # In this task, all usernames are selected from the file (excluding the _meta block), for which

hashed↪→

270 # passwords will be written next

271 - name: Security Plugin configuration | Filter service keys from the list of users

272 ansible.builtin.set_fact:

273 custom_users_filtered: '{{ custom_users | dict2items | rejectattr("key", "equalto",

"_meta") | list | items2dict }}'↪→

274

275 # Hashed passwords are written for all users found in the previous task. Passwords are searched

in variables↪→

276 # set by the user when starting the role (admin_password, kibanaserver_password, etc.).

277 - name: Security Plugin configuration | Set passwords for all users from custom config

278 ansible.builtin.shell: >

279 sed -i '/hash: / s,{{ lookup('vars', item + '_password') }},'$(bash {{

os_sec_plugin_tools_path }}/hash.sh -p {{ lookup('vars', item + '_password') }} | tail

-1)','

↪→

↪→

280 {{ os_sec_plugin_conf_path }}/internal_users.yml

281 environment:

282 JAVA_HOME: "{{ os_home }}/jdk"

283 run_once: true

284 when: configuration.changed or copy_custom_security_configs

285 with_items: "{{ custom_users_filtered }}"

286

287 - name: Security Plugin configuration | Initialize the opensearch security index in opensearch with

custom configs↪→

288 ansible.builtin.shell: >

289 bash {{ os_sec_plugin_tools_path }}/securityadmin.sh

290 -cacert {{ os_conf_dir }}/root-ca.pem

291 -cert {{ os_conf_dir }}/admin.pem

292 -key {{ os_conf_dir }}/admin.key

293 -cd {{ os_sec_plugin_conf_path }}

294 -nhnv -icl

295 -h {{ hostvars[inventory_hostname]['ip'] }}

296 environment:

297 JAVA_HOME: "{{ os_home }}/jdk"

298 run_once: true

299 when: configuration.changed and copy_custom_security_configs

300

301 - name: Security Plugin configuration | Initialize the opensearch security index in opensearch with

default configs↪→

302 ansible.builtin.shell: >

303 bash {{ os_sec_plugin_tools_path }}/securityadmin.sh

304 -cacert {{ os_conf_dir }}/root-ca.pem

305 -cert {{ os_conf_dir }}/admin.pem

306 -key {{ os_conf_dir }}/admin.key

307 -f {{ os_sec_plugin_conf_path }}/internal_users.yml

308 -nhnv -icl

309 -h {{ hostvars[inventory_hostname]['ip'] }}

310 environment:

311 JAVA_HOME: "{{ os_home }}/jdk"

312 run_once: true

313 when: configuration.changed and not copy_custom_security_configs

314

315 ########################

316 ##### DELETED TASK #####

317 ########################

318 - name: Security Plugin configuration | Cleanup local temporary directory

319 local_action:

320 module: file

321 path: /tmp/opensearch-nodecerts

322 state: absent

323 run_once: true

324 when: configuration.changed

325 become: false

103

B.2 New opensearch security.yml

The below yaml code is the modified ’security.yml’ file we employ in our project. Comments
following the format exemplified by Figure B.1 signify that the task has more than just semantic
alterations.

1 ---

2 ## Placeholder task to set configuration to changed

3 ## This is a workaround implemented to handle the changes to the ansible role

4

5 ######################

6 ##### ADDED TASK #####

7 ######################

8 - name: Security Plugin configuration | Set configuration to changed

9 ansible.builtin.set_fact:

10 configuration:

11 changed: true

12

13 ### CONSIDER DELETING FROM HERE ###

14 # These tasks might not be necessary either when distributing the already made certificates to the

nodes↪→

15 # Consider replacing tasks with verification, if all certs are not available -> fail task.

16 - name: Security Plugin configuration | IaC enabled - Check certificate

17 when: iac_enable

18 block:

19 - name: Security Plugin configuration | Check cert exists

20 ansible.builtin.stat:

21 path: "{{ item }}"

22 get_attributes: false

23 get_checksum: false

24 get_mime: false

25 register: cert_stat_result

26 with_items:

27 - "{{ os_conf_dir }}/root-ca.pem"

28 - "{{ os_conf_dir }}/root-ca.key"

29 - "{{ os_conf_dir }}/{{ inventory_hostname }}.key"

30 - "{{ os_conf_dir }}/{{ inventory_hostname }}.pem"

31 - "{{ os_conf_dir }}/{{ inventory_hostname }}_http.key"

32 - "{{ os_conf_dir }}/{{ inventory_hostname }}_http.pem"

33 - "{{ os_conf_dir }}/admin.key"

34 - "{{ os_conf_dir }}/admin.pem"

35

36 - name: Security Plugin configuration | Set fact. The initial value "Don't update certs"

37 ansible.builtin.set_fact:

38 force_update_cert: false

39

40 - name: Security Plugin configuration | Set fact. Update certificates if at least one

certificate is not found↪→

41 ansible.builtin.set_fact:

42 force_update_cert: true

43 with_items: "{{ cert_stat_result.results }}"

44 when: item.stat.exists == False

45

46 - name: Security Plugin configuration | Show the force_update_cert setting

47 ansible.builtin.debug:

48 msg: "force_update_cert: {{ force_update_cert }}"

49

50 - name: Security Plugin configuration | Count force_update_cert nodes

51 ansible.builtin.set_fact:

52 force_update_cert_nodes_count: "{{ hostvars | dict2items |

selectattr('value.force_update_cert', 'defined') |

rejectattr('value.force_update_cert', 'equalto', false) |

map(attribute='value.force_update_cert') | list | length }}"

↪→

↪→

↪→

53

104

54 - name: Security Plugin configuration | Show the force_update_cert_nodes_count setting

55 ansible.builtin.debug:

56 msg: "force_update_cert_nodes_count: {{ force_update_cert_nodes_count }}"

57

58 - name: Security Plugin configuration | Do need to update certificates

59 ansible.builtin.debug:

60 msg: "Need to update certificates..."

61 when: force_update_cert_nodes_count | int > 0

62

63 - name: Security Plugin configuration | IaC disabled - Count force_update_cert nodes

64 ansible.builtin.set_fact:

65 force_update_cert_nodes_count: 0

66 when: not iac_enable

67 ### TO HERE ###

68

69 ###

70 ##### CERTIFICATE DISTRIBUTION TASKS CHANGED HERE #####

71 ###

72

73 - name: Security Plugin configuration | Create certificate files from inventory variables

74 ansible.builtin.copy:

75 dest: "{{ os_conf_dir }}/{{ item.filename }}"

76 content: "{{ item.content }}"

77 mode: 0600

78 loop:

79 - { filename: "root-ca.key", content: "{{ root_ca_key }}" }

80 - { filename: "root-ca.pem", content: "{{ root_ca_pem }}" }

81 - { filename: "{{ inventory_hostname }}.key", content: "{{ internal_cert_key }}" }

82 - { filename: "{{ inventory_hostname }}.pem", content: "{{ internal_cert_pem }}" }

83 - { filename: "{{ inventory_hostname }}_http.key", content: "{{ http_cert_key }}" }

84 - { filename: "{{ inventory_hostname }}_http.pem", content: "{{ http_cert_pem }}" }

85 - { filename: "admin.key", content: "{{ admin_cert_key }}" }

86 - { filename: "admin.pem", content: "{{ admin_cert_pem }}" }

87 when: (configuration.changed and not iac_enable) or (iac_enable and force_update_cert_nodes_count

| int > 0)↪→

88

89 - name: Security Plugin configuration | Copy the security configuration file 1 to cluster

90 ansible.builtin.blockinfile:

91 block: "{{ lookup('template', 'templates/security_conf.yml') }}"

92 dest: "{{ os_conf_dir }}/opensearch.yml"

93 backup: true

94 insertafter: EOF

95 marker: "## {mark} OpenSearch Security common configuration ##"

96 when: configuration.changed or iac_enable

97

98 ###

99 ##### THIS TASK REFERENCES THE ADDED #####

100 ##### 'template_security_conf.yml' FILE #####

101 ###

102

103 ## Copies from a simple template instead of dynamically generating based on the search-guard tool.

104 - name: Security Plugin configuration | Copy the security configuration file 2 to cluster

105 ansible.builtin.blockinfile:

106 block: "{{ lookup('template', 'templates/security_conf_certs.yaml') }}"

107 dest: "{{ os_conf_dir }}/opensearch.yml"

108 backup: true

109 insertafter: EOF

110 marker: "## {mark} opensearch Security Node & Admin certificates configuration ##"

111 when: configuration.changed or iac_enable

112

113 - name: Security Plugin configuration | Create security plugin configuration folder

114 ansible.builtin.file:

115 dest: "{{ os_sec_plugin_conf_path }}"

116 owner: "{{ os_user }}"

117 group: "{{ os_user }}"

118 mode: 0700

105

119 state: directory

120 when: configuration.changed or iac_enable

121

122 - name: Security Plugin configuration | Copy the security configuration file 3 to cluster

123 ansible.builtin.template:

124 src: security_plugin_conf.yml

125 dest: "{{ os_sec_plugin_conf_path }}/config.yml"

126 backup: true

127 owner: "{{ os_user }}"

128 group: "{{ os_user }}"

129 mode: 0600

130 force: true

131 when: auth_type == 'oidc' or copy_custom_security_configs

132

133 ### TO HERE ###

134

135 - name: Security Plugin configuration | Prepare the opensearch security configuration file

136 ansible.builtin.command: sed -i 's/searchguard/plugins.security/g' {{ os_conf_dir

}}/opensearch.yml↪→

137 when: configuration.changed or iac_enable

138

139 - name: Security Plugin configuration | Set the file ownerships

140 ansible.builtin.file:

141 dest: "{{ os_home }}"

142 owner: "{{ os_user }}"

143 group: "{{ os_user }}"

144 recurse: true

145

146 - name: Security Plugin configuration | Set the folder permission

147 ansible.builtin.file:

148 dest: "{{ os_conf_dir }}"

149 owner: "{{ os_user }}"

150 group: "{{ os_user }}"

151 mode: 0700

152

153 - name: Security Plugin configuration | Restart opensearch with security configuration

154 ansible.builtin.systemd:

155 name: opensearch

156 state: restarted

157 enabled: true

158

159 - name: Wait for opensearch to startup

160 ansible.builtin.wait_for:

161 host: "{{ hostvars[inventory_hostname]['ansible_host'] }}"

162 port: "{{ os_api_port }}"

163 delay: 5

164 connect_timeout: 1

165 timeout: 180

166

167 - name: Security Plugin configuration | Copy the opensearch security internal users template

168 ansible.builtin.template:

169 src: internal_users.yml

170 dest: "{{ os_sec_plugin_conf_path }}/internal_users.yml"

171 mode: 0644

172 run_once: true

173 when: configuration.changed or iac_enable

174

175 - name: Security Plugin configuration | Copy custom configuration files to cluster

176 ansible.builtin.template:

177 src: "{{ item }}"

178 dest: "{{ os_sec_plugin_conf_path }}/"

179 owner: "{{ os_user }}"

180 group: "{{ os_user }}"

181 backup: true

182 mode: 0640

183 force: true

106

184 with_items: "{{ custom_security_plugin_configs }}"

185 when: copy_custom_security_configs

186

187 - name: Security Plugin configuration | Set the Admin user password

188 ansible.builtin.shell: >

189 sed -i '/hash: / s,{{ admin_password }},'$(bash {{ os_sec_plugin_tools_path }}/hash.sh -p {{

admin_password }} | tail -1)','↪→

190 {{ os_sec_plugin_conf_path }}/internal_users.yml

191 environment:

192 JAVA_HOME: "{{ os_home }}/jdk"

193 run_once: true

194 when: configuration.changed or iac_enable

195

196 - name: Security Plugin configuration | Set the kibanaserver user pasword

197 ansible.builtin.shell: >

198 sed -i '/hash: / s,{{ kibanaserver_password }},'$(bash {{ os_sec_plugin_tools_path }}/hash.sh

-p {{ kibanaserver_password }} | tail -1)','↪→

199 {{ os_sec_plugin_conf_path }}/internal_users.yml

200 environment:

201 JAVA_HOME: "{{ os_home }}/jdk"

202 run_once: true

203 when: configuration.changed or iac_enable

204

205 - name: Security Plugin configuration | Check that the files/internal_users.yml exists

206 ansible.builtin.stat:

207 path: files/internal_users.yml

208 register: custom_users_result

209 delegate_to: localhost

210 run_once: true

211 become: false

212

213 - name: Security Plugin configuration | Check for a custom configuration for internal users and

hash passwords for them↪→

214 when: custom_users_result.stat.exists

215 block:

216

217 - name: Security Plugin configuration | Load custom internal users configuration

218 ansible.builtin.include_vars:

219 file: files/internal_users.yml

220 name: custom_users

221 run_once: true

222

223 # In the internal_users file.yml each user is described by the block:

224 # username:

225 # hash: "{{ username_password }}"In addition to the user description blocks, there is a _meta

block↪→

226 # ...

227 # In addition to the user description blocks, there is a _meta block

228 # In this task, all usernames are selected from the file (excluding the _meta block), for which

hashed↪→

229 # passwords will be written next

230 - name: Security Plugin configuration | Filter service keys from the list of users

231 ansible.builtin.set_fact:

232 custom_users_filtered: '{{ custom_users | dict2items | rejectattr("key", "equalto",

"_meta") | list | items2dict }}'↪→

233

234 # Hashed passwords are written for all users found in the previous task. Passwords are searched

in variables↪→

235 # set by the user when starting the role (admin_password, kibanaserver_password, etc.).

236 - name: Security Plugin configuration | Set passwords for all users from custom config

237 ansible.builtin.shell: >

238 sed -i '/hash: / s,{{ lookup('vars', item + '_password') }},'$(bash {{

os_sec_plugin_tools_path }}/hash.sh -p {{ lookup('vars', item + '_password') }} | tail

-1)','

↪→

↪→

239 {{ os_sec_plugin_conf_path }}/internal_users.yml

240 environment:

107

241 JAVA_HOME: "{{ os_home }}/jdk"

242 run_once: true

243 when: configuration.changed or copy_custom_security_configs

244 with_items: "{{ custom_users_filtered }}"

245

246 - name: Security Plugin configuration | Initialize the opensearch security index in opensearch with

custom configs↪→

247 ansible.builtin.shell: >

248 bash {{ os_sec_plugin_tools_path }}/securityadmin.sh

249 -cacert {{ os_conf_dir }}/root-ca.pem

250 -cert {{ os_conf_dir }}/admin.pem

251 -key {{ os_conf_dir }}/admin.key

252 -cd {{ os_sec_plugin_conf_path }}

253 -nhnv -icl

254 -h {{ hostvars[inventory_hostname]['ip'] }}

255 environment:

256 JAVA_HOME: "{{ os_home }}/jdk"

257 run_once: true

258 when: configuration.changed and copy_custom_security_configs

259

260 - name: Security Plugin configuration | Initialize the opensearch security index in opensearch with

default configs↪→

261 ansible.builtin.shell: >

262 bash {{ os_sec_plugin_tools_path }}/securityadmin.sh

263 -cacert {{ os_conf_dir }}/root-ca.pem

264 -cert {{ os_conf_dir }}/admin.pem

265 -key {{ os_conf_dir }}/admin.key

266 -f {{ os_sec_plugin_conf_path }}/internal_users.yml

267 -nhnv -icl

268 -h {{ hostvars[inventory_hostname]['ip'] }}

269 environment:

270 JAVA_HOME: "{{ os_home }}/jdk"

271 run_once: true

272 when: configuration.changed and not copy_custom_security_configs

273

B.3 certificate configuration template added to role

We needed to include the following configuration template to facilitate external certificate creation
and distribution.

1 plugins.security.ssl.transport.pemcert_filepath: {{ inventory_hostname }}.pem

2 plugins.security.ssl.transport.pemkey_filepath: {{ inventory_hostname }}.key

3 plugins.security.ssl.transport.pemtrustedcas_filepath: root-ca.pem

4 plugins.security.ssl.transport.enforce_hostname_verification: false

5 plugins.security.ssl.transport.resolve_hostname: false

6 plugins.security.ssl.http.enabled: true

7 plugins.security.ssl.http.pemcert_filepath: {{ inventory_hostname }}_http.pem

8 plugins.security.ssl.http.pemkey_filepath: {{ inventory_hostname }}_http.key

9 plugins.security.ssl.http.pemtrustedcas_filepath: root-ca.pem

10 plugins.security.nodes_dn:

11 {% for item in groups['os-cluster'] %}

12 - CN={{ item }}.{{ domain_name }},OU=CA,O={{ domain_name }}\, Inc.,C=NO

13 {% endfor %}

14 plugins.security.authcz.admin_dn:

15 - CN=admin.{{ domain_name }},OU=CA,O={{ domain_name }}\, Inc.,C=NO

108

Appendix C

Results analysis

Presented here is the dataset generated by aggregating metrics from multiple prometheus sources,
followed by merging these by timestamp into one dataset. For a full overview of the individual data-
sets and the merging process, consult the /bachelor-thesis/results folder in our Gitlab-Project[10].

C.1 With OpenSearch

C.1.1 Dataset

109

Part 1

Time Kafka - Mes-
sages behind

Kafka - Mes-
sages inges-
ted

Kafka -
Messages
consumed

Vector - Pod
count

OS - free memory
percent: OS worker
1

OS - free
memory
percent: OS
master 1

OS - free memory
percent: OS worker
2

2024-05-10
12:00:00

465.000000 410.000000 518 5 36.000000 3 37.000000

2024-05-10
12:00:10

1400.000000 398.000000 305 5 36.000000 3 37.000000

2024-05-10
12:00:20

1360.000000 387.000000 391 5 36.000000 3 37.000000

2024-05-10
12:00:30

127000.000000 20807.000000 8194 5 36.000000 3 37.000000

2024-05-10
12:00:40

301000.000000 34103.000000 16790 5 34.000000 3 35.000000

2024-05-10
12:00:50

486000.000000 30222.000000 11692 5 32.000000 3 32.000000

2024-05-10
12:01:00

599000.000000 35635.000000 24283 5 29.000000 3 30.000000

2024-05-10
12:01:10

791000.000000 36075.000000 16877 5 27.000000 3 27.000000

2024-05-10
12:01:20

1070000.000000 44259.000000 16096 5 24.000000 3 30.000000

2024-05-10
12:01:30

1330000.000000 50649.000000 25002 5 27.000000 3 27.000000

2024-05-10
12:01:40

1610000.000000 47379.000000 19502 5 23.000000 3 24.000000

2024-05-10
12:01:50

1550000.000000 51366.000000 56877 7 20.000000 3 23.000000

2024-05-10
12:02:00

1220000.000000 43730.000000 77462 7 21.000000 3 20.000000

Continued on next page

110

Time Kafka - Mes-
sages behind

Kafka - Mes-
sages inges-
ted

Kafka -
Messages
consumed

Vector - Pod
count

OS - free memory
percent: OS worker
1

OS - free
memory
percent: OS
master 1

OS - free memory
percent: OS worker
2

2024-05-10
12:02:10

1550000.000000 46811.000000 13607 7 17.000000 3 16.000000

2024-05-10
12:02:20

1930000.000000 48922.000000 11028 7 14.000000 3 13.000000

2024-05-10
12:02:30

2220000.000000 39966.000000 10757 7 16.000000 3 15.000000

2024-05-10
12:02:40

2600000.000000 51734.000000 13950 7 12.000000 3 13.000000

2024-05-10
12:02:50

3010000.000000 52155.000000 10898 7 8.000000 3 10.000000

2024-05-10
12:03:00

3390000.000000 52509.000000 14042 7 4.000000 3 5.000000

2024-05-10
12:03:10

3800000.000000 52060.000000 11486 7 2.000000 3 13.000000

2024-05-10
12:03:20

4140000.000000 52743.000000 19148 7 13.000000 3 9.000000

2024-05-10
12:03:30

4540000.000000 54110.000000 13765 7 9.000000 3 6.000000

2024-05-10
12:03:40

5010000.000000 54223.000000 7140 7 5.000000 3 7.000000

2024-05-10
12:03:50

5380000.000000 53482.000000 16716 7 6.000000 3 3.000000

2024-05-10
12:04:00

5760000.000000 52570.000000 14737 7 3.000000 3 2.000000

2024-05-10
12:04:10

6200000.000000 53964.000000 9845 7 2.000000 3 2.000000

2024-05-10
12:04:20

6630000.000000 55457.000000 12098 7 2.000000 3 7.000000

Continued on next page

111

Time Kafka - Mes-
sages behind

Kafka - Mes-
sages inges-
ted

Kafka -
Messages
consumed

Vector - Pod
count

OS - free memory
percent: OS worker
1

OS - free
memory
percent: OS
master 1

OS - free memory
percent: OS worker
2

2024-05-10
12:04:30

7000000.000000 53232.000000 16039 7 15.000000 3 13.000000

2024-05-10
12:04:40

7380000.000000 53143.000000 15597 7 12.000000 3 9.000000

2024-05-10
12:04:50

7770000.000000 52690.000000 13410 7 8.000000 3 4.000000

2024-05-10
12:05:00

8170000.000000 54058.000000 14090 7 9.000000 3 10.000000

2024-05-10
12:05:10

8450000.000000 52501.000000 24612 7 6.000000 3 6.000000

2024-05-10
12:05:20

8650000.000000 47359.000000 27424 7 3.000000 3 3.000000

2024-05-10
12:05:30

8030000.000000 17437.000000 79141 8 2.000000 3 2.000000

2024-05-10
12:05:40

7100000.000000 0.000000 93178 9 2.000000 3 6.000000

2024-05-10
12:05:50

5420000.000000 0.000000 168253 9 7.000000 3 2.000000

2024-05-10
12:06:00

5300000.000000 0.000000 11787 9 3.000000 3 2.000000

2024-05-10
12:06:10

5440000.000000 24883.000000 11267 9 2.000000 3 6.000000

2024-05-10
12:06:20

5690000.000000 36916.000000 11044 9 12.000000 3 10.000000

2024-05-10
12:06:30

6030000.000000 49143.000000 15332 9 9.000000 3 8.000000

2024-05-10
12:06:40

6320000.000000 49565.000000 21238 9 4.000000 3 5.000000

Continued on next page

112

Time Kafka - Mes-
sages behind

Kafka - Mes-
sages inges-
ted

Kafka -
Messages
consumed

Vector - Pod
count

OS - free memory
percent: OS worker
1

OS - free
memory
percent: OS
master 1

OS - free memory
percent: OS worker
2

2024-05-10
12:06:50

6580000.000000 50608.000000 24275 9 4.000000 3 2.000000

2024-05-10
12:07:00

6790000.000000 51639.000000 30198 9 7.000000 3 10.000000

2024-05-10
12:07:10

6990000.000000 52908.000000 33680 9 8.000000 3 7.000000

2024-05-10
12:07:20

7190000.000000 50229.000000 29484 11 5.000000 3 4.000000

2024-05-10
12:07:30

5720000.000000 50827.000000 197756 12 2.000000 3 2.000000

2024-05-10
12:07:40

6090000.000000 50832.000000 14078 12 2.000000 3 3.000000

2024-05-10
12:07:50

6400000.000000 53273.000000 22039 12 11.000000 3 2.000000

2024-05-10
12:08:00

6740000.000000 49200.000000 16074 12 7.000000 3 2.000000

2024-05-10
12:08:10

7100000.000000 51161.000000 14728 12 5.000000 3 2.000000

2024-05-10
12:08:20

7530000.000000 54642.000000 11511 12 2.000000 3 2.000000

2024-05-10
12:08:30

7990000.000000 53475.000000 7654 12 2.000000 3 2.000000

2024-05-10
12:08:40

8450000.000000 53142.000000 7252 12 7.000000 3 12.000000

2024-05-10
12:08:50

8960000.000000 56529.000000 5453 12 5.000000 3 10.000000

2024-05-10
12:09:00

9360000.000000 53935.000000 13541 12 2.000000 3 6.000000

Continued on next page

113

Time Kafka - Mes-
sages behind

Kafka - Mes-
sages inges-
ted

Kafka -
Messages
consumed

Vector - Pod
count

OS - free memory
percent: OS worker
1

OS - free
memory
percent: OS
master 1

OS - free memory
percent: OS worker
2

2024-05-10
12:09:10

9770000.000000 55406.000000 14967 12 3.000000 3 14.000000

2024-05-10
12:09:20

9840000.000000 52330.000000 44924 12 17.000000 3 11.000000

2024-05-10
12:09:30

10100000.000000 52619.000000 25538 12 13.000000 3 7.000000

2024-05-10
12:09:40

10400000.000000 53524.000000 26270 12 13.000000 3 3.000000

2024-05-10
12:09:50

10500000.000000 53412.000000 37954 12 8.000000 3 8.000000

2024-05-10
12:10:00

10800000.000000 56342.000000 31426 12 5.000000 3 5.000000

2024-05-10
12:10:10

10900000.000000 51046.000000 35305 12 8.000000 3 2.000000

2024-05-10
12:10:20

10900000.000000 34800.000000 35002 13 5.000000 3 2.000000

2024-05-10
12:10:30

10800000.000000 30512.000000 46304 14 3.000000 3 9.000000

2024-05-10
12:10:40

7850000.000000 40287.000000 333827 14 2.000000 3 5.000000

2024-05-10
12:10:50

8240000.000000 51820.000000 13093 14 3.000000 3 7.000000

2024-05-10
12:11:00

8440000.000000 49320.000000 29514 14 9.000000 3 4.000000

2024-05-10
12:11:10

8320000.000000 10986.000000 23035 14 4.000000 3 2.000000

2024-05-10
12:11:20

8010000.000000 67.400000 30210 14 6.000000 3 10.000000

Continued on next page

114

Time Kafka - Mes-
sages behind

Kafka - Mes-
sages inges-
ted

Kafka -
Messages
consumed

Vector - Pod
count

OS - free memory
percent: OS worker
1

OS - free
memory
percent: OS
master 1

OS - free memory
percent: OS worker
2

2024-05-10
12:11:30

7640000.000000 129.000000 37513 14 10.000000 3 10.000000

2024-05-10
12:11:40

6950000.000000 190.000000 69317 14 7.000000 3 7.000000

2024-05-10
12:11:50

6610000.000000 252.000000 34341 14 5.000000 3 5.000000

2024-05-10
12:12:00

6380000.000000 313.000000 23277 14 3.000000 3 7.000000

2024-05-10
12:12:10

6270000.000000 367.000000 10843 14 2.000000 3 10.000000

2024-05-10
12:12:20

6210000.000000 378.000000 6504 14 11.000000 3 8.000000

2024-05-10
12:12:30

6120000.000000 385.000000 9372 14 9.000000 3 5.000000

2024-05-10
12:12:40

6040000.000000 391.000000 8953 14 6.000000 3 2.000000

2024-05-10
12:12:50

5910000.000000 399.000000 13292 14 3.000000 3 7.000000

2024-05-10
12:13:00

4990000.000000 406.000000 91870 14 2.000000 3 9.000000

2024-05-10
12:13:10

4040000.000000 415.000000 95628 14 2.000000 3 7.000000

2024-05-10
12:13:20

4040000.000000 430.000000 284 14 7.000000 3 7.000000

2024-05-10
12:13:30

4040000.000000 448.000000 569 14 7.000000 3 6.000000

2024-05-10
12:13:40

4020000.000000 465.000000 2447 14 9.000000 3 4.000000

Continued on next page

115

Time Kafka - Mes-
sages behind

Kafka - Mes-
sages inges-
ted

Kafka -
Messages
consumed

Vector - Pod
count

OS - free memory
percent: OS worker
1

OS - free
memory
percent: OS
master 1

OS - free memory
percent: OS worker
2

2024-05-10
12:13:50

3980000.000000 482.000000 4348 14 8.000000 3 3.000000

2024-05-10
12:14:00

3330000.000000 502.000000 65711 14 7.000000 3 2.000000

2024-05-10
12:14:10

3310000.000000 511.000000 3010 14 7.000000 3 2.000000

2024-05-10
12:14:20

3210000.000000 500.000000 10219 14 3.000000 3 11.000000

2024-05-10
12:14:30

3140000.000000 488.000000 7255 14 2.000000 3 9.000000

2024-05-10
12:14:40

3120000.000000 466.000000 2047 14 2.000000 3 7.000000

2024-05-10
12:14:50

3120000.000000 454.000000 1262 14 2.000000 3 6.000000

2024-05-10
12:15:00

3080000.000000 437.000000 4392 14 NaN 3 2.000000

2024-05-10
12:15:10

3030000.000000 426.000000 5509 14 2.000000 3 7.000000

2024-05-10
12:15:20

2700000.000000 438.000000 32736 14 2.000000 3 6.000000

2024-05-10
12:15:30

2690000.000000 455.000000 1875 14 2.000000 3 5.000000

2024-05-10
12:15:40

2650000.000000 481.000000 4091 14 NaN 3 5.000000

2024-05-10
12:15:50

2650000.000000 571.000000 433 14 2.000000 3 4.000000

2024-05-10
12:16:00

2640000.000000 662.000000 1695 14 2.000000 3 4.000000

Continued on next page

116

Time Kafka - Mes-
sages behind

Kafka - Mes-
sages inges-
ted

Kafka -
Messages
consumed

Vector - Pod
count

OS - free memory
percent: OS worker
1

OS - free
memory
percent: OS
master 1

OS - free memory
percent: OS worker
2

2024-05-10
12:16:10

2640000.000000 479.000000 521 14 2.000000 3 3.000000

2024-05-10
12:16:20

2620000.000000 324.000000 3014 14 7.000000 3 3.000000

2024-05-10
12:16:30

2590000.000000 402.000000 3341 14 6.000000 3 2.000000

2024-05-10
12:16:40

2580000.000000 467.000000 1034 14 NaN 3 2.000000

2024-05-10
12:16:50

2560000.000000 468.000000 2369 14 NaN 3 2.000000

2024-05-10
12:17:00

2540000.000000 463.000000 3069 14 4.000000 3 NaN

2024-05-10
12:17:10

2530000.000000 458.000000 879 14 4.000000 3 2.000000

2024-05-10
12:17:20

2330000.000000 455.000000 20275 14 2.000000 3 2.000000

2024-05-10
12:17:30

2120000.000000 447.000000 21699 14 2.000000 3 2.000000

2024-05-10
12:17:40

2110000.000000 443.000000 1450 14 2.000000 3 2.000000

2024-05-10
12:17:50

2100000.000000 431.000000 1571 13 2.000000 3 2.000000

2024-05-10
12:18:00

2090000.000000 424.000000 1043 13 2.000000 3 7.000000

2024-05-10
12:18:10

2090000.000000 409.000000 966 13 2.000000 3 7.000000

2024-05-10
12:18:20

2090000.000000 400.000000 619 13 2.000000 3 NaN

Continued on next page

117

Time Kafka - Mes-
sages behind

Kafka - Mes-
sages inges-
ted

Kafka -
Messages
consumed

Vector - Pod
count

OS - free memory
percent: OS worker
1

OS - free
memory
percent: OS
master 1

OS - free memory
percent: OS worker
2

2024-05-10
12:18:30

2090000.000000 389.000000 401 13 2.000000 3 NaN

2024-05-10
12:18:40

1980000.000000 383.000000 10793 12 2.000000 3 5.000000

2024-05-10
12:18:50

1970000.000000 393.000000 1667 12 5.000000 3 5.000000

2024-05-10
12:19:00

1960000.000000 405.000000 1780 11 5.000000 3 4.000000

2024-05-10
12:19:10

1880000.000000 417.000000 8082 11 3.000000 3 9.000000

2024-05-10
12:19:20

1680000.000000 431.000000 20010 10 2.000000 3 2.000000

2024-05-10
12:19:30

1640000.000000 442.000000 4731 10 2.000000 3 2.000000

2024-05-10
12:19:40

1630000.000000 450.000000 1743 10 2.000000 3 NaN

2024-05-10
12:19:50

1620000.000000 434.000000 930 10 2.000000 3 2.000000

2024-05-10
12:20:00

1610000.000000 417.000000 1487 10 2.000000 3 2.000000

2024-05-10
12:20:10

1600000.000000 400.000000 1898 10 2.000000 3 3.000000

2024-05-10
12:20:20

1520000.000000 383.000000 7933 9 2.000000 3 3.000000

2024-05-10
12:20:30

1310000.000000 365.000000 21601 9 2.000000 3 2.000000

2024-05-10
12:20:40

1300000.000000 176.000000 868 9 3.000000 3 2.000000

Continued on next page

118

Time Kafka - Mes-
sages behind

Kafka - Mes-
sages inges-
ted

Kafka -
Messages
consumed

Vector - Pod
count

OS - free memory
percent: OS worker
1

OS - free
memory
percent: OS
master 1

OS - free memory
percent: OS worker
2

2024-05-10
12:20:50

1280000.000000 92.400000 2489 9 2.000000 3 9.000000

2024-05-10
12:21:00

1240000.000000 161.000000 3695 8 2.000000 3 8.000000

2024-05-10
12:21:10

1130000.000000 228.000000 11215 8 2.000000 3 7.000000

2024-05-10
12:21:20

1090000.000000 296.000000 5010 8 5.000000 3 6.000000

2024-05-10
12:21:30

865000.000000 363.000000 22424 7 5.000000 3 4.000000

2024-05-10
12:21:40

804000.000000 405.000000 6518 7 5.000000 3 3.000000

2024-05-10
12:21:50

801000.000000 401.000000 669 7 5.000000 3 2.000000

2024-05-10
12:22:00

649000.000000 400.000000 15620 6 7.000000 3 2.000000

2024-05-10
12:22:10

614000.000000 395.000000 3881 6 7.000000 3 2.000000

2024-05-10
12:22:20

500000.000000 392.000000 11850 5 5.000000 3 2.000000

2024-05-10
12:22:30

496000.000000 389.000000 759 5 4.000000 3 2.000000

2024-05-10
12:22:40

390000.000000 388.000000 10935 5 3.000000 3 2.000000

2024-05-10
12:22:50

376000.000000 394.000000 1808 5 1.000000 3 2.000000

2024-05-10
12:23:00

371000.000000 399.000000 964 5 3.000000 3 3.000000

Continued on next page

119

Time Kafka - Mes-
sages behind

Kafka - Mes-
sages inges-
ted

Kafka -
Messages
consumed

Vector - Pod
count

OS - free memory
percent: OS worker
1

OS - free
memory
percent: OS
master 1

OS - free memory
percent: OS worker
2

2024-05-10
12:23:10

365000.000000 403.000000 946 5 3.000000 3 2.000000

2024-05-10
12:23:20

330000.000000 409.000000 3958 5 2.000000 3 2.000000

2024-05-10
12:23:30

305000.000000 414.000000 2901 5 2.000000 3 2.000000

2024-05-10
12:23:40

272000.000000 416.000000 3702 5 7.000000 3 2.000000

2024-05-10
12:23:50

1450.000000 414.000000 27467 5 6.000000 3 2.000000

2024-05-10
12:24:00

1440.000000 410.000000 411 5 7.000000 3 2.000000

2024-05-10
12:24:10

1420.000000 407.000000 409 5 3.000000 3 2.000000

2024-05-10
12:24:20

1420.000000 404.000000 404 5 3.000000 3 2.000000

2024-05-10
12:24:30

1400.000000 400.000000 402 5 9.000000 3 2.000000

2024-05-10
12:24:40

1410.000000 399.000000 398 5 9.000000 3 2.000000

2024-05-10
12:24:50

1410.000000 400.000000 399 5 8.000000 3 2.000000

2024-05-10
12:25:00

1420.000000 401.000000 401 5 13.000000 3 2.000000

Part 2

120

Time OS - disk io
time percent:
OS worker 1

OS - disk io
time percent:
OS master 1

OS - disk io
time percent:
OS worker 2

OS - Index size Vector - Input
events per second

Vector -
Geodata
transform
MB/s

Vector - Geodata
transform utiliza-
tion percent

2024-05-10
12:00:00

0.042100 0.000000 0.042900 13240568.000000 714.000000 0.259000 0.013900

2024-05-10
12:00:10

0.054700 0.000100 0.055300 NaN 471.000000 0.260000 0.013300

2024-05-10
12:00:20

0.050300 0.000600 0.051600 15345053.000000 782.000000 0.265000 0.012700

2024-05-10
12:00:30

0.077400 0.000000 0.070900 NaN 19300.000000 6.770000 0.068200

2024-05-10
12:00:40

0.140000 0.000100 0.157000 76236477.000000 53300.000000 18.000000 0.169000

2024-05-10
12:00:50

0.163000 0.001600 0.169000 NaN 47100.000000 16.000000 0.157000

2024-05-10
12:01:00

0.138000 0.000000 0.166000 289543128.000000 54200.000000 18.400000 0.164000

2024-05-10
12:01:10

0.159000 0.000100 0.169000 NaN 49300.000000 16.700000 0.169000

2024-05-10
12:01:20

0.273000 0.000700 0.273000 805633567.000000 60900.000000 20.600000 0.189000

2024-05-10
12:01:30

0.222000 0.000000 0.219000 NaN 78400.000000 26.500000 0.236000

2024-05-10
12:01:40

0.169000 0.000100 0.177000 1148732848.000000 56100.000000 19.000000 0.184000

2024-05-10
12:01:50

0.214000 0.001700 0.332000 NaN 58600.000000 19.900000 0.191000

2024-05-10
12:02:00

0.222000 0.000000 0.168000 1773548613.000000 64300.000000 22.800000 0.210000

2024-05-10
12:02:10

0.177000 0.000100 0.132000 NaN 54300.000000 18.300000 0.153000

Continued on next page

121

Time OS - disk io
time percent:
OS worker 1

OS - disk io
time percent:
OS master 1

OS - disk io
time percent:
OS worker 2

OS - Index size Vector - Input
events per second

Vector -
Geodata
transform
MB/s

Vector - Geodata
transform utiliza-
tion percent

2024-05-10
12:02:20

0.199000 0.001500 0.238000 2649988947.000000 44300.000000 15.100000 0.117000

2024-05-10
12:02:30

0.182000 0.000000 0.188000 NaN 42600.000000 14.400000 0.104000

2024-05-10
12:02:40

0.166000 0.000000 0.180000 3182579841.000000 58600.000000 19.800000 0.161000

2024-05-10
12:02:50

0.200000 0.001300 0.175000 NaN 44500.000000 15.000000 0.112000

2024-05-10
12:03:00

0.150000 0.000000 0.249000 4112531523.000000 55600.000000 18.900000 0.134000

2024-05-10
12:03:10

0.294000 0.000000 0.280000 NaN 58500.000000 19.800000 0.140000

2024-05-10
12:03:20

0.192000 0.000600 0.156000 4092683131.000000 71500.000000 24.200000 0.161000

2024-05-10
12:03:30

0.198000 0.000000 0.207000 NaN 52500.000000 17.900000 0.125000

2024-05-10
12:03:40

0.217000 0.000100 0.231000 4283226385.000000 31400.000000 10.500000 0.093300

2024-05-10
12:03:50

0.141000 0.001400 0.150000 NaN 71600.000000 24.300000 0.171000

2024-05-10
12:04:00

0.249000 0.000000 0.278000 4989713683.000000 55300.000000 18.700000 0.159000

2024-05-10
12:04:10

0.127000 0.000100 0.125000 NaN 41800.000000 14.200000 0.145000

2024-05-10
12:04:20

0.296000 0.000700 0.431000 5851799677.000000 50600.000000 17.100000 0.176000

2024-05-10
12:04:30

0.208000 0.000000 0.318000 NaN 65400.000000 22.200000 0.268000

Continued on next page

122

Time OS - disk io
time percent:
OS worker 1

OS - disk io
time percent:
OS master 1

OS - disk io
time percent:
OS worker 2

OS - Index size Vector - Input
events per second

Vector -
Geodata
transform
MB/s

Vector - Geodata
transform utiliza-
tion percent

2024-05-10
12:04:40

0.154000 0.000100 0.245000 4798923749.000000 61400.000000 20.800000 0.234000

2024-05-10
12:04:50

0.174000 0.001700 0.298000 NaN 58100.000000 19.600000 0.224000

2024-05-10
12:05:00

0.295000 0.000000 0.183000 5423664081.000000 71100.000000 24.200000 0.284000

2024-05-10
12:05:10

0.126000 0.000000 0.138000 NaN 107000.000000 36.200000 0.448000

2024-05-10
12:05:20

0.171000 0.000700 0.243000 5991881740.000000 114000.000000 38.800000 0.516000

2024-05-10
12:05:30

0.948000 0.000000 0.402000 NaN 49300.000000 16.600000 0.391000

2024-05-10
12:05:40

0.773000 0.000000 0.977000 6465162822.000000 10400.000000 3.540000 0.211000

2024-05-10
12:05:50

0.479000 0.001500 0.361000 NaN 12500.000000 5.570000 0.149000

2024-05-10
12:06:00

0.521000 0.000000 0.408000 6922533804.000000 54500.000000 20.700000 0.223000

2024-05-10
12:06:10

0.615000 0.000100 0.277000 NaN 34900.000000 11.700000 0.143000

2024-05-10
12:06:20

0.785000 0.000900 0.849000 6970992729.000000 44000.000000 15.000000 0.089400

2024-05-10
12:06:30

0.150000 0.000000 0.522000 NaN 59900.000000 20.200000 0.176000

2024-05-10
12:06:40

0.184000 0.000000 0.215000 6832975638.000000 75000.000000 25.400000 0.197000

2024-05-10
12:06:50

0.241000 0.001200 0.311000 NaN 99300.000000 33.800000 0.341000

Continued on next page

123

Time OS - disk io
time percent:
OS worker 1

OS - disk io
time percent:
OS master 1

OS - disk io
time percent:
OS worker 2

OS - Index size Vector - Input
events per second

Vector -
Geodata
transform
MB/s

Vector - Geodata
transform utiliza-
tion percent

2024-05-10
12:07:00

0.373000 0.000000 0.147000 7413786249.000000 119000.000000 40.200000 0.341000

2024-05-10
12:07:10

0.400000 0.000100 0.213000 NaN 128000.000000 43.300000 0.446000

2024-05-10
12:07:20

0.375000 0.000500 0.157000 7627923442.000000 89800.000000 30.500000 0.356000

2024-05-10
12:07:30

0.281000 0.000000 0.161000 NaN 48300.000000 19.600000 0.135000

2024-05-10
12:07:40

0.639000 0.000100 0.198000 8253154903.000000 83800.000000 29.200000 0.190000

2024-05-10
12:07:50

0.224000 0.001300 0.214000 NaN 51800.000000 17.700000 0.144000

2024-05-10
12:08:00

0.959000 0.000100 0.102000 8512823878.000000 51300.000000 17.300000 0.126000

2024-05-10
12:08:10

0.347000 0.000000 0.530000 NaN 47100.000000 15.900000 0.117000

2024-05-10
12:08:20

0.306000 0.000700 1.230000 8988471003.000000 34500.000000 11.700000 0.117000

2024-05-10
12:08:30

0.389000 0.000000 0.737000 NaN 17600.000000 5.860000 0.059300

2024-05-10
12:08:40

0.984000 0.000100 0.796000 9098940101.000000 23700.000000 8.050000 0.060400

2024-05-10
12:08:50

0.239000 0.001400 0.918000 NaN 36600.000000 12.400000 0.099000

2024-05-10
12:09:00

0.240000 0.000000 0.569000 9670858779.000000 54800.000000 18.600000 0.116000

2024-05-10
12:09:10

0.203000 0.000000 0.321000 NaN 82500.000000 28.100000 0.207000

Continued on next page

124

Time OS - disk io
time percent:
OS worker 1

OS - disk io
time percent:
OS master 1

OS - disk io
time percent:
OS worker 2

OS - Index size Vector - Input
events per second

Vector -
Geodata
transform
MB/s

Vector - Geodata
transform utiliza-
tion percent

2024-05-10
12:09:20

0.250000 0.000800 0.321000 9485984092.000000 114000.000000 38.700000 0.261000

2024-05-10
12:09:30

0.621000 0.000000 0.505000 NaN 92400.000000 31.200000 0.229000

2024-05-10
12:09:40

0.771000 0.000100 0.553000 9150629546.000000 112000.000000 38.300000 0.286000

2024-05-10
12:09:50

0.344000 0.001700 0.121000 NaN 142000.000000 48.100000 0.387000

2024-05-10
12:10:00

0.971000 0.000000 0.287000 9773216512.000000 119000.000000 40.500000 0.329000

2024-05-10
12:10:10

0.168000 0.000000 0.132000 NaN 133000.000000 45.200000 0.344000

2024-05-10
12:10:20

0.082300 0.000900 0.234000 10501662167.000000 134000.000000 45.200000 0.351000

2024-05-10
12:10:30

0.201000 0.000000 0.156000 NaN 103000.000000 35.100000 0.331000

2024-05-10
12:10:40

0.184000 0.000100 0.347000 10574149247.000000 46100.000000 21.600000 0.116000

2024-05-10
12:10:50

0.386000 0.001400 0.299000 NaN 71300.000000 33.300000 0.220000

2024-05-10
12:11:00

0.759000 0.000100 0.230000 11440971725.000000 119000.000000 40.500000 0.284000

2024-05-10
12:11:10

0.737000 0.000100 0.521000 NaN 86700.000000 29.600000 0.217000

2024-05-10
12:11:20

0.319000 0.000800 0.686000 11892489202.000000 136000.000000 46.200000 0.287000

2024-05-10
12:11:30

0.914000 0.000100 0.457000 NaN 150000.000000 51.000000 0.316000

Continued on next page

125

Time OS - disk io
time percent:
OS worker 1

OS - disk io
time percent:
OS master 1

OS - disk io
time percent:
OS worker 2

OS - Index size Vector - Input
events per second

Vector -
Geodata
transform
MB/s

Vector - Geodata
transform utiliza-
tion percent

2024-05-10
12:11:40

0.977000 0.000000 0.114000 11283806597.000000 135000.000000 45.800000 0.303000

2024-05-10
12:11:50

0.993000 0.001500 0.140000 NaN 99900.000000 33.900000 0.238000

2024-05-10
12:12:00

0.988000 0.000000 0.252000 11891516023.000000 82800.000000 27.900000 0.155000

2024-05-10
12:12:10

0.977000 0.000100 0.141000 NaN 41500.000000 14.000000 0.099200

2024-05-10
12:12:20

0.981000 0.000600 0.133000 11388369756.000000 25400.000000 8.680000 0.069200

2024-05-10
12:12:30

0.976000 0.000000 0.180000 NaN 43200.000000 14.600000 0.093100

2024-05-10
12:12:40

0.985000 0.000100 0.105000 11809859030.000000 31300.000000 10.600000 0.084600

2024-05-10
12:12:50

0.979000 0.001700 0.760000 NaN 33100.000000 11.300000 0.061700

2024-05-10
12:13:00

0.893000 0.000000 0.973000 12293041162.000000 49200.000000 16.700000 0.116000

2024-05-10
12:13:10

0.960000 0.000100 0.992000 NaN 17500.000000 6.050000 0.073500

2024-05-10
12:13:20

0.999000 0.000700 0.997000 12553321684.000000 634.000000 0.213000 0.060200

2024-05-10
12:13:30

0.996000 0.000100 0.992000 NaN 5350.000000 1.810000 0.038400

2024-05-10
12:13:40

0.995000 0.000100 0.989000 12351665413.000000 9400.000000 3.220000 0.037400

2024-05-10
12:13:50

0.992000 0.001500 0.991000 NaN 14300.000000 4.890000 0.031400

Continued on next page

126

Time OS - disk io
time percent:
OS worker 1

OS - disk io
time percent:
OS master 1

OS - disk io
time percent:
OS worker 2

OS - Index size Vector - Input
events per second

Vector -
Geodata
transform
MB/s

Vector - Geodata
transform utiliza-
tion percent

2024-05-10
12:14:00

0.996000 0.000000 0.995000 12480010130.000000 1780.000000 0.603000 0.029600

2024-05-10
12:14:10

0.989000 0.000100 0.985000 NaN 15800.000000 5.430000 0.035200

2024-05-10
12:14:20

0.981000 0.000600 0.961000 12457010988.000000 43800.000000 14.800000 0.072200

2024-05-10
12:14:30

0.997000 0.000000 0.992000 NaN 23400.000000 7.850000 0.057000

2024-05-10
12:14:40

0.989000 0.000100 0.991000 12846502111.000000 6530.000000 2.210000 0.035500

2024-05-10
12:14:50

0.996000 0.002000 0.989000 NaN 8510.000000 2.920000 0.031700

2024-05-10
12:15:00

0.995000 0.000200 0.997000 7057254550.000000 13700.000000 4.620000 0.042300

2024-05-10
12:15:10

0.996000 0.000200 0.990000 NaN 21800.000000 7.470000 0.047900

2024-05-10
12:15:20

0.998000 0.001000 0.993000 13183472133.000000 6440.000000 2.180000 0.035200

2024-05-10
12:15:30

0.987000 0.000200 0.988000 NaN 6350.000000 2.150000 0.035800

2024-05-10
12:15:40

0.988000 0.000000 0.995000 6728704177.000000 13100.000000 4.440000 0.028500

2024-05-10
12:15:50

1.000000 0.001400 0.999000 NaN 3200.000000 1.080000 0.031400

2024-05-10
12:16:00

0.990000 0.000200 0.994000 13327508250.000000 5410.000000 1.870000 0.034100

2024-05-10
12:16:10

0.999000 0.000200 0.997000 NaN 1350.000000 0.408000 0.033200

Continued on next page

127

Time OS - disk io
time percent:
OS worker 1

OS - disk io
time percent:
OS master 1

OS - disk io
time percent:
OS worker 2

OS - Index size Vector - Input
events per second

Vector -
Geodata
transform
MB/s

Vector - Geodata
transform utiliza-
tion percent

2024-05-10
12:16:20

0.995000 0.000900 0.997000 13546724005.000000 13100.000000 4.450000 0.030900

2024-05-10
12:16:30

0.996000 0.000100 0.995000 NaN 10900.000000 3.680000 0.038200

2024-05-10
12:16:40

0.999000 0.000000 0.989000 6805545273.000000 6330.000000 2.140000 0.036100

2024-05-10
12:16:50

0.997000 0.001800 0.983000 NaN 9050.000000 3.060000 0.033700

2024-05-10
12:17:00

0.996000 0.000000 0.992000 6817367109.000000 10000.000000 3.450000 0.036100

2024-05-10
12:17:10

0.997000 0.000100 0.998000 NaN 2670.000000 0.845000 0.036200

2024-05-10
12:17:20

0.993000 0.000800 0.993000 13715253355.000000 1010.000000 0.344000 0.030300

2024-05-10
12:17:30

0.967000 0.000000 0.995000 NaN 33900.000000 12.300000 0.070200

2024-05-10
12:17:40

0.990000 0.000100 0.989000 13874438350.000000 3630.000000 1.230000 0.039700

2024-05-10
12:17:50

0.996000 0.001400 0.993000 NaN 6280.000000 2.130000 0.023800

2024-05-10
12:18:00

0.993000 0.000100 0.992000 14044061909.000000 2780.000000 0.940000 0.026700

2024-05-10
12:18:10

0.986000 0.000100 0.996000 NaN 3380.000000 1.110000 0.021500

2024-05-10
12:18:20

0.843000 0.000700 0.997000 7233207464.000000 1270.000000 0.392000 0.020700

2024-05-10
12:18:30

0.997000 0.000000 0.990000 NaN 8630.000000 3.050000 0.018400

Continued on next page

128

Time OS - disk io
time percent:
OS worker 1

OS - disk io
time percent:
OS master 1

OS - disk io
time percent:
OS worker 2

OS - Index size Vector - Input
events per second

Vector -
Geodata
transform
MB/s

Vector - Geodata
transform utiliza-
tion percent

2024-05-10
12:18:40

0.998000 0.000100 0.996000 14352615997.000000 11400.000000 3.870000 0.033500

2024-05-10
12:18:50

0.989000 0.001400 0.995000 NaN 7820.000000 2.610000 0.019200

2024-05-10
12:19:00

0.997000 0.000000 0.997000 14399662927.000000 5030.000000 1.740000 0.018000

2024-05-10
12:19:10

0.900000 0.000100 0.995000 NaN 24100.000000 8.280000 0.027300

2024-05-10
12:19:20

0.792000 0.000700 0.901000 14078422956.000000 34300.000000 11.600000 0.053800

2024-05-10
12:19:30

1.150000 0.000000 0.995000 NaN 14300.000000 4.830000 0.036100

2024-05-10
12:19:40

0.827000 0.000100 0.993000 7979010021.000000 3970.000000 1.350000 0.019000

2024-05-10
12:19:50

0.996000 0.002200 1.000000 NaN 5370.000000 1.820000 0.017000

2024-05-10
12:20:00

0.997000 0.000000 0.996000 14869971136.000000 2840.000000 0.964000 0.016000

2024-05-10
12:20:10

0.996000 0.000000 0.988000 NaN 24100.000000 8.210000 0.038500

2024-05-10
12:20:20

0.999000 0.000600 0.986000 15061800403.000000 19100.000000 6.450000 0.046400

2024-05-10
12:20:30

0.998000 0.000000 0.976000 NaN 3540.000000 1.220000 0.021600

2024-05-10
12:20:40

0.999000 0.000200 0.996000 15179379443.000000 8100.000000 2.720000 0.024800

2024-05-10
12:20:50

0.995000 0.001600 0.991000 NaN 15800.000000 5.370000 0.028400

Continued on next page

129

Time OS - disk io
time percent:
OS worker 1

OS - disk io
time percent:
OS master 1

OS - disk io
time percent:
OS worker 2

OS - Index size Vector - Input
events per second

Vector -
Geodata
transform
MB/s

Vector - Geodata
transform utiliza-
tion percent

2024-05-10
12:21:00

0.994000 0.000000 0.995000 15177500830.000000 10100.000000 3.410000 0.027700

2024-05-10
12:21:10

0.995000 0.000100 0.995000 NaN 7560.000000 2.560000 0.024700

2024-05-10
12:21:20

0.984000 0.000700 0.991000 15551665976.000000 28500.000000 9.630000 0.049100

2024-05-10
12:21:30

0.974000 0.000000 0.993000 NaN 30400.000000 10.300000 0.057200

2024-05-10
12:21:40

0.983000 0.000100 0.993000 15292345356.000000 19100.000000 6.420000 0.075600

2024-05-10
12:21:50

0.992000 0.001700 0.997000 NaN 11200.000000 3.810000 0.027800

2024-05-10
12:22:00

0.997000 0.000100 0.970000 15652683829.000000 6480.000000 2.160000 0.032500

2024-05-10
12:22:10

0.980000 0.000100 0.882000 NaN 37500.000000 12.700000 0.087000

2024-05-10
12:22:20

0.990000 0.000900 0.304000 15723594108.000000 24600.000000 8.270000 0.071700

2024-05-10
12:22:30

0.999000 0.000000 0.144000 NaN 6440.000000 2.180000 0.041100

2024-05-10
12:22:40

0.998000 0.000000 0.950000 16177229267.000000 7050.000000 2.460000 0.042800

2024-05-10
12:22:50

0.997000 0.001700 0.994000 NaN 4230.000000 1.430000 0.035600

2024-05-10
12:23:00

0.994000 0.000000 0.993000 16439409851.000000 2550.000000 0.900000 0.031700

2024-05-10
12:23:10

0.990000 0.000100 0.998000 NaN 9010.000000 3.010000 0.036000

Continued on next page

130

Time OS - disk io
time percent:
OS worker 1

OS - disk io
time percent:
OS master 1

OS - disk io
time percent:
OS worker 2

OS - Index size Vector - Input
events per second

Vector -
Geodata
transform
MB/s

Vector - Geodata
transform utiliza-
tion percent

2024-05-10
12:23:20

0.998000 0.000700 0.995000 16588233046.000000 17100.000000 5.840000 0.054600

2024-05-10
12:23:30

0.990000 0.000000 0.990000 NaN 10300.000000 3.530000 0.047800

2024-05-10
12:23:40

0.995000 0.000100 0.988000 16696176068.000000 17000.000000 5.770000 0.062500

2024-05-10
12:23:50

0.997000 0.001400 0.999000 NaN 827.000000 0.280000 0.029800

2024-05-10
12:24:00

0.993000 0.000000 1.130000 16892630685.000000 820.000000 0.278000 0.031000

2024-05-10
12:24:10

0.988000 0.000100 0.844000 NaN 813.000000 0.276000 0.032600

2024-05-10
12:24:20

0.996000 0.000700 0.994000 16892630685.000000 807.000000 0.273000 0.033900

2024-05-10
12:24:30

0.989000 0.000000 0.990000 NaN 800.000000 0.271000 0.033600

2024-05-10
12:24:40

0.994000 0.000100 0.993000 16892630685.000000 797.000000 0.270000 0.033700

2024-05-10
12:24:50

0.988000 0.001900 0.993000 NaN 801.000000 0.271000 0.033800

2024-05-10
12:25:00

0.994000 0.000100 0.992000 16892630685.000000 801.000000 0.271000 0.033600

131

C.1.2 Jupyter notebook

132

import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
from matplotlib.ticker import MultipleLocator

data = pd.read_csv('with_opensearch/merged-dataset-10-05-24.csv')

data

Time
Kafka -

Messages
behind

Kafka -
Messages
ingested

Kafka -
Messages
consumed

Vector
- Pod
count

OS -
free

memory
percent:

OS
worker

1

OS -
free

memory
percent:

OS
master

1

OS
fr

memo
percen

O
work

0
2024-
05-10

12�00�00
465.0 410.0 518 5 36.0 3 37

1
2024-
05-10

12�00�10
1400.0 398.0 305 5 36.0 3 37

2
2024-
05-10

12�00�20
1360.0 387.0 391 5 36.0 3 37

3
2024-
05-10

12�00�30
127000.0 20807.0 8194 5 36.0 3 37

4
2024-
05-10

12�00�40
301000.0 34103.0 16790 5 34.0 3 35

...

146
2024-
05-10

12�24�20
1420.0 404.0 404 5 3.0 3 2

147
2024-
05-10

12�24�30
1400.0 400.0 402 5 9.0 3 2

148
2024-
05-10

12�24�40
1410.0 399.0 398 5 9.0 3 2

149
2024-
05-10

12�24�50
1410.0 400.0 399 5 8.0 3 2

150
2024-
05-10

12�25�00
1420.0 401.0 401 5 13.0 3 2

151 rows × 15 columns

In [10]:

In [11]:

Out[11]:

Kafka - Messages in, Messages Consumed
and Vector pod count

fig_kafka_in_out_pod_count, ax1 = plt.subplots(figsize=(12, 6))

ax1.plot(data['Time'], data['Kafka - Messages ingested'], label='Messages
ax1.plot(data['Time'], data['Kafka - Messages consumed'], label='Messages
ax1.set_xlabel('Time')
ax1.set_ylabel('Messages (in and consumed)')
ax1.tick_params(axis='y')
ax1.xaxis.set_major_locator(MaxNLocator(nbins=6))
ax1.legend(loc='upper left')

ax2 = ax1.twinx()
ax2.plot(data['Time'], data['Vector - Pod count'], label='Vector - Pod co
ax2.set_ylabel('Pod count')
ax2.set_ylim(4,15)
ax2.tick_params(axis='y')
ax2.legend(loc='upper right')

plt.title('Kafka - Messages and Pod Count Over Time')
plt.grid(True)

plt.savefig('./with_opensearch/kafka_in_consumed_podcount_with_opensearch
plt.show()

Kafka - Consumer lag

fig_kafka_consumer_delay, ax1 = plt.subplots(figsize=(12, 6))

Plot Messages in and Messages consumed on the left y-axis
ax1.plot(data['Time'], data['Kafka - Messages behind'], label='Messages b
ax1.xaxis.set_major_locator(MaxNLocator(nbins=6))
ax1.yaxis.set_major_locator(MultipleLocator(1e6))
ax1.yaxis.set_major_formatter(plt.FuncFormatter(lambda x, pos: f'{int(x/1
ax1.set_xlabel('Time')

In [12]:

In [13]:

ax1.set_ylabel('Messages behind')
ax1.tick_params(axis='y')
ax1.legend(loc='upper left')

Set title and grid
plt.title('Kafka - Consumer delay over time')
plt.grid(True)

plt.savefig('./with_opensearch/kafka_consumer_delay_with_opensearch.pdf',
plt.show()

fig_vector_events_per_second, ax1 = plt.subplots(figsize=(12,6))

Plotting each column
ax1.plot(data['Time'], data['Vector - Input events per second'], label='V
ax1.xaxis.set_major_locator(MaxNLocator(nbins=6))

Set titles, legend and grid
plt.title('Vector - Input events per second')
ax1.set_xlabel('Time')
ax1.set_ylabel('Events per second')
ax1.legend()
plt.grid(True)

plt.savefig('./with_opensearch/vector_input_events_with_opensearch.pdf',
plt.show()

In [14]:

fig_kafka_vs_vector_events_per_second, ax1 = plt.subplots(figsize=(12,6))

Plotting each column
ax1.plot(data['Time'], data['Vector - Input events per second'], label='V
ax1.plot(data['Time'], data['Kafka - Messages consumed'], label='Kafka -
ax1.xaxis.set_major_locator(MaxNLocator(nbins=6))

Set titles, legend and grid
plt.title('Message consumption reported by Kafka and Vector')
ax1.set_xlabel('Time')
ax1.set_ylabel('Messages per second')
ax1.legend()
plt.grid(True)

plt.savefig('./with_opensearch/kafka_vector_message_consumption_compariso
plt.show()

fig_opensearch_memory_free, ax1 = plt.subplots(figsize=(12,6))

Plotting each column
ax1.plot(data['Time'], data['OS - free memory percent: OS master 1'], lab
ax1.plot(data['Time'], data['OS - free memory percent: OS worker 1'], lab

In [15]:

In [16]:

ax1.plot(data['Time'], data['OS - free memory percent: OS worker 2'], lab
ax1.xaxis.set_major_locator(MaxNLocator(nbins=6))

Set titles, legend and grid
plt.title('Opensearch - Free Memory In Percent')
ax1.set_xlabel('Time')
ax1.set_ylabel('Free Memory (%)')
ax1.legend()
plt.grid(True)

plt.savefig('./with_opensearch/opensearch_free_memory.pdf', format='pdf')
plt.show()

fig_opensearch_disk_io, ax1 = plt.subplots(figsize=(12,6))

Plotting each column
ax1.plot(data['Time'], data['OS - disk io time percent: OS master 1'], la
ax1.fill_between(data['Time'], data['OS - disk io time percent: OS worker
ax1.fill_between(data['Time'], data['OS - disk io time percent: OS worker
ax1.xaxis.set_major_locator(MaxNLocator(nbins=6))

Set titles, legend and grid
plt.title('Opensearch - Disk I/O time')
ax1.set_xlabel('Time')
ax1.set_ylabel('Disk I/O Time(%)')
ax1.legend()
plt.grid(True)

plt.savefig('./with_opensearch/opensearch_disk_io_time.pdf', format='pdf'
plt.show()

In [17]:

Convert to gigabytes and interpolate values (datapoints here are fetche
data['OS - Index size GB'] = data['OS - Index size'] / 1e9
data['OS - Index size GB'] = data['OS - Index size GB'].interpolate(metho

fig_opensearch_index_size, ax1 = plt.subplots(figsize=(12,6))

ax1.plot(data['Time'], data['OS - Index size GB'], label='OS - Index size
ax1.xaxis.set_major_locator(MaxNLocator(nbins=6))

Set titles, legend and grid
plt.title('Opensearch - Index Size over time')
ax1.set_xlabel('Time')
ax1.set_ylabel('Index Size (GB)')
ax1.legend()
plt.grid(True)

plt.savefig('./with_opensearch/opensearch_index_size.pdf', format='pdf')
plt.show()

In [18]:

In []:

C.2 Without OpenSearch

C.2.1 Dataset

139

Time Kafka - Mes-
sages behind

Kafka - Mes-
sages inges-
ted

Kafka -
Messages
consumed

Vector - Pod
count

Vector - Input
events per second

Vector -
Geodata
transform
MB/s

Vector - Geodata
transform utiliza-
tion percent

2024-05-10
15:20:00

729.000000 291.000000 292.000000 5 582.000000 0.197000 0.008520

2024-05-10
15:20:10

698.000000 281.000000 284.000000 5 565.000000 0.191000 0.008640

2024-05-10
15:20:20

682.000000 273.000000 274.000000 5 547.000000 0.185000 0.007510

2024-05-10
15:20:30

16900.000000 2447.000000 825.000000 5 7580.000000 2.570000 0.019100

2024-05-10
15:20:40

89600.000000 32350.000000 25081.000000 5 54700.000000 18.500000 0.245000

2024-05-10
15:20:50

62400.000000 35170.000000 37893.000000 5 71500.000000 24.200000 0.311000

2024-05-10
15:21:00

77500.000000 46693.000000 45176.000000 5 90200.000000 30.500000 0.392000

2024-05-10
15:21:10

84500.000000 39862.000000 39162.000000 5 83200.000000 28.200000 0.377000

2024-05-10
15:21:20

55100.000000 38728.000000 41668.000000 7 72900.000000 25.100000 0.315000

2024-05-10
15:21:30

44800.000000 48973.000000 50001.000000 7 63000.000000 28.600000 0.351000

2024-05-10
15:21:40

102000.000000 47995.000000 42258.000000 7 62400.000000 29.600000 0.301000

2024-05-10
15:21:50

81700.000000 45469.000000 47517.000000 7 92100.000000 31.200000 0.257000

2024-05-10
15:22:00

79900.000000 36834.000000 37015.000000 8 74900.000000 25.400000 0.208000

2024-05-10
15:22:10

58700.000000 36877.000000 39005.000000 9 72500.000000 25.100000 0.191000

Continued on next page

140

Time Kafka - Mes-
sages behind

Kafka - Mes-
sages inges-
ted

Kafka -
Messages
consumed

Vector - Pod
count

Vector - Input
events per second

Vector -
Geodata
transform
MB/s

Vector - Geodata
transform utiliza-
tion percent

2024-05-10
15:22:20

78700.000000 46904.000000 44896.000000 9 88800.000000 30.100000 0.217000

2024-05-10
15:22:30

76800.000000 50157.000000 50354.000000 9 95800.000000 32.500000 0.201000

2024-05-10
15:22:40

108000.000000 51712.000000 48549.000000 9 103000.000000 34.800000 0.196000

2024-05-10
15:22:50

81100.000000 52626.000000 55356.000000 9 105000.000000 35.600000 0.205000

2024-05-10
15:23:00

84800.000000 53528.000000 53151.000000 9 107000.000000 36.100000 0.208000

2024-05-10
15:23:10

84100.000000 53066.000000 53136.000000 9 107000.000000 36.100000 0.214000

2024-05-10
15:23:20

93300.000000 55383.000000 54465.000000 9 109000.000000 37.000000 0.215000

2024-05-10
15:23:30

90300.000000 55355.000000 55653.000000 9 112000.000000 37.800000 0.228000

2024-05-10
15:23:40

90100.000000 54759.000000 54779.000000 9 109000.000000 36.900000 0.216000

2024-05-10
15:23:50

84400.000000 53359.000000 53938.000000 9 107000.000000 36.400000 0.213000

2024-05-10
15:24:00

109000.000000 53180.000000 50676.000000 9 107000.000000 36.100000 0.216000

2024-05-10
15:24:10

82700.000000 53198.000000 55864.000000 9 107000.000000 36.100000 0.212000

2024-05-10
15:24:20

110000.000000 53897.000000 51220.000000 9 108000.000000 36.600000 0.208000

2024-05-10
15:24:30

81700.000000 49892.000000 52677.000000 9 102000.000000 34.500000 0.205000

Continued on next page

141

Time Kafka - Mes-
sages behind

Kafka - Mes-
sages inges-
ted

Kafka -
Messages
consumed

Vector - Pod
count

Vector - Input
events per second

Vector -
Geodata
transform
MB/s

Vector - Geodata
transform utiliza-
tion percent

2024-05-10
15:24:40

84700.000000 42956.000000 42655.000000 9 85800.000000 29.100000 0.165000

2024-05-10
15:24:50

81500.000000 41753.000000 42073.000000 9 84100.000000 28.500000 0.169000

2024-05-10
15:25:00

84900.000000 42533.000000 42193.000000 9 84400.000000 28.600000 0.172000

2024-05-10
15:25:10

83800.000000 40991.000000 41100.000000 9 81900.000000 27.700000 0.161000

2024-05-10
15:25:20

69000.000000 38172.000000 39653.000000 9 80500.000000 27.300000 0.156000

2024-05-10
15:25:30

21100.000000 38396.000000 43185.000000 9 74000.000000 25.100000 0.183000

2024-05-10
15:25:40

0.000000 0.000000 2108.000000 9 6900.000000 2.340000 0.156000

2024-05-10
15:25:50

50100.000000 21248.000000 16239.000000 9 36700.000000 12.400000 0.091100

2024-05-10
15:26:00

57500.000000 35543.000000 34798.000000 9 69800.000000 23.600000 0.140000

2024-05-10
15:26:10

71400.000000 35585.000000 34199.000000 9 71100.000000 24.100000 0.143000

2024-05-10
15:26:20

68900.000000 34363.000000 34608.000000 9 69900.000000 23.700000 0.141000

2024-05-10
15:26:30

72100.000000 37815.000000 37501.000000 9 72500.000000 24.600000 0.143000

2024-05-10
15:26:40

76100.000000 36492.000000 36093.000000 9 74900.000000 25.400000 0.153000

2024-05-10
15:26:50

56600.000000 37769.000000 39713.000000 9 75500.000000 25.600000 0.150000

Continued on next page

142

Time Kafka - Mes-
sages behind

Kafka - Mes-
sages inges-
ted

Kafka -
Messages
consumed

Vector - Pod
count

Vector - Input
events per second

Vector -
Geodata
transform
MB/s

Vector - Geodata
transform utiliza-
tion percent

2024-05-10
15:27:00

101000.000000 42699.000000 38220.000000 9 84000.000000 28.400000 0.167000

2024-05-10
15:27:10

85400.000000 53728.000000 55332.000000 9 105000.000000 35.700000 0.207000

2024-05-10
15:27:20

84500.000000 51354.000000 51442.000000 9 103000.000000 34.900000 0.209000

2024-05-10
15:27:30

108000.000000 51358.000000 49018.000000 9 103000.000000 35.000000 0.213000

2024-05-10
15:27:40

92800.000000 51246.000000 52754.000000 9 102000.000000 34.500000 0.204000

2024-05-10
15:27:50

79100.000000 39458.000000 40824.000000 9 81900.000000 27.700000 0.161000

2024-05-10
15:28:00

86600.000000 40710.000000 39966.000000 9 82800.000000 28.000000 0.162000

2024-05-10
15:28:10

84300.000000 52744.000000 52977.000000 9 101000.000000 34.200000 0.200000

2024-05-10
15:28:20

108000.000000 52115.000000 49770.000000 9 105000.000000 35.500000 0.211000

2024-05-10
15:28:30

104000.000000 51478.000000 51873.000000 9 104000.000000 35.200000 0.210000

2024-05-10
15:28:40

111000.000000 53966.000000 53252.000000 9 107000.000000 36.100000 0.210000

2024-05-10
15:28:50

82600.000000 53034.000000 55867.000000 9 106000.000000 36.000000 0.208000

2024-05-10
15:29:00

108000.000000 52930.000000 50402.000000 9 106000.000000 35.900000 0.203000

2024-05-10
15:29:10

112000.000000 55492.000000 55102.000000 9 110000.000000 37.300000 0.209000

Continued on next page

143

Time Kafka - Mes-
sages behind

Kafka - Mes-
sages inges-
ted

Kafka -
Messages
consumed

Vector - Pod
count

Vector - Input
events per second

Vector -
Geodata
transform
MB/s

Vector - Geodata
transform utiliza-
tion percent

2024-05-10
15:29:20

102000.000000 51792.000000 52806.000000 9 104000.000000 35.200000 0.205000

2024-05-10
15:29:30

80700.000000 49185.000000 51279.000000 9 98700.000000 33.400000 0.196000

2024-05-10
15:29:40

80700.000000 54707.000000 54705.000000 9 109000.000000 37.100000 0.210000

2024-05-10
15:29:50

112000.000000 56371.000000 53249.000000 9 112000.000000 38.100000 0.212000

2024-05-10
15:30:00

86600.000000 57695.000000 60220.000000 9 115000.000000 38.800000 0.221000

2024-05-10
15:30:10

119000.000000 57296.000000 54058.000000 9 115000.000000 38.900000 0.221000

2024-05-10
15:30:20

115000.000000 57063.000000 57435.000000 9 115000.000000 38.800000 0.224000

2024-05-10
15:30:30

111000.000000 56066.000000 56508.000000 9 112000.000000 37.800000 0.219000

2024-05-10
15:30:40

80800.000000 46763.000000 49770.000000 9 98900.000000 33.500000 0.196000

2024-05-10
15:30:50

6.000000 15464.000000 23543.000000 9 36500.000000 12.400000 0.145000

2024-05-10
15:31:00

113.000000 35.600000 24.900000 9 61.800000 0.020900 0.014000

2024-05-10
15:31:10

223.000000 91.500000 80.500000 9 173.000000 0.058600 0.002150

2024-05-10
15:31:20

334.000000 148.000000 137.000000 9 285.000000 0.096500 0.003230

2024-05-10
15:31:30

447.000000 204.000000 193.000000 9 397.000000 0.135000 0.004510

Continued on next page

144

Time Kafka - Mes-
sages behind

Kafka - Mes-
sages inges-
ted

Kafka -
Messages
consumed

Vector - Pod
count

Vector - Input
events per second

Vector -
Geodata
transform
MB/s

Vector - Geodata
transform utiliza-
tion percent

2024-05-10
15:31:40

554.000000 260.000000 249.000000 9 509.000000 0.172000 0.005380

2024-05-10
15:31:50

661.000000 316.000000 305.000000 9 618.000000 0.209000 0.006390

2024-05-10
15:32:00

648.000000 330.000000 332.000000 9 660.000000 0.224000 0.006450

2024-05-10
15:32:10

621.000000 317.000000 320.000000 9 635.000000 0.215000 0.006650

2024-05-10
15:32:20

603.000000 303.000000 304.000000 9 610.000000 0.206000 0.006690

2024-05-10
15:32:30

577.000000 290.000000 293.000000 9 581.000000 0.197000 0.006170

2024-05-10
15:32:40

545.000000 276.000000 279.000000 9 556.000000 0.188000 0.006030

2024-05-10
15:32:50

518.000000 263.000000 266.000000 9 529.000000 0.179000 0.005730

2024-05-10
15:33:00

534.000000 262.000000 260.000000 9 523.000000 0.177000 0.005710

2024-05-10
15:33:10

551.000000 269.000000 267.000000 9 535.000000 0.181000 0.005960

2024-05-10
15:33:20

559.000000 274.000000 274.000000 9 548.000000 0.186000 0.006030

2024-05-10
15:33:30

564.000000 281.000000 280.000000 9 561.000000 0.190000 0.006210

2024-05-10
15:33:40

577.000000 287.000000 286.000000 9 574.000000 0.194000 0.006370

2024-05-10
15:33:50

580.000000 293.000000 293.000000 9 587.000000 0.199000 0.006320

Continued on next page

145

Time Kafka - Mes-
sages behind

Kafka - Mes-
sages inges-
ted

Kafka -
Messages
consumed

Vector - Pod
count

Vector - Input
events per second

Vector -
Geodata
transform
MB/s

Vector - Geodata
transform utiliza-
tion percent

2024-05-10
15:34:00

581.000000 297.000000 297.000000 9 594.000000 0.201000 0.006430

2024-05-10
15:34:10

589.000000 300.000000 299.000000 9 599.000000 0.203000 0.006490

2024-05-10
15:34:20

590.000000 302.000000 302.000000 9 604.000000 0.205000 0.006510

2024-05-10
15:34:30

601.000000 305.000000 304.000000 9 610.000000 0.207000 0.006610

2024-05-10
15:34:40

608.000000 308.000000 307.000000 9 615.000000 0.208000 0.006640

2024-05-10
15:34:50

609.000000 309.000000 309.000000 9 621.000000 0.210000 0.006540

2024-05-10
15:35:00

463.000000 313.000000 327.000000 9 621.000000 0.211000 0.006630

2024-05-10
15:35:10

607.000000 311.000000 296.000000 9 623.000000 0.211000 0.006570

2024-05-10
15:35:20

614.000000 312.000000 312.000000 9 623.000000 0.211000 0.006560

2024-05-10
15:35:30

620.000000 312.000000 311.000000 9 624.000000 0.211000 0.006810

2024-05-10
15:35:40

654.000000 318.000000 315.000000 9 635.000000 0.215000 0.006970

2024-05-10
15:35:50

487.000000 332.000000 349.000000 9 631.000000 0.214000 0.006250

2024-05-10
15:36:00

228.000000 97.600000 123.000000 9 270.000000 0.091300 0.003390

2024-05-10
15:36:10

328.000000 147.000000 137.000000 9 267.000000 0.090500 0.003450

Continued on next page

146

Time Kafka - Mes-
sages behind

Kafka - Mes-
sages inges-
ted

Kafka -
Messages
consumed

Vector - Pod
count

Vector - Input
events per second

Vector -
Geodata
transform
MB/s

Vector - Geodata
transform utiliza-
tion percent

2024-05-10
15:36:20

280.000000 196.000000 201.000000 8 322.000000 0.109000 0.003940

2024-05-10
15:36:30

641.000000 245.000000 208.000000 7 454.000000 0.154000 0.004890

2024-05-10
15:36:40

377.000000 288.000000 315.000000 6 473.000000 0.160000 0.006200

2024-05-10
15:36:50

727.000000 293.000000 258.000000 6 572.000000 0.194000 0.006690

2024-05-10
15:37:00

718.000000 290.000000 291.000000 5 581.000000 0.197000 0.007040

2024-05-10
15:37:10

711.000000 287.000000 288.000000 5 574.000000 0.194000 0.007380

2024-05-10
15:37:20

703.000000 283.000000 284.000000 5 569.000000 0.193000 0.007430

2024-05-10
15:37:30

703.000000 281.000000 281.000000 5 561.000000 0.190000 0.007380

2024-05-10
15:37:40

703.000000 279.000000 279.000000 5 560.000000 0.190000 0.007350

2024-05-10
15:37:50

742.000000 292.000000 288.000000 5 580.000000 0.197000 0.007390

2024-05-10
15:38:00

779.000000 306.000000 303.000000 5 612.000000 0.207000 0.007570

2024-05-10
15:38:10

821.000000 323.000000 319.000000 5 642.000000 0.218000 0.007760

2024-05-10
15:38:20

861.000000 339.000000 335.000000 5 672.000000 0.228000 0.008130

2024-05-10
15:38:30

906.000000 354.000000 349.000000 5 704.000000 0.238000 0.007920

Continued on next page

147

Time Kafka - Mes-
sages behind

Kafka - Mes-
sages inges-
ted

Kafka -
Messages
consumed

Vector - Pod
count

Vector - Input
events per second

Vector -
Geodata
transform
MB/s

Vector - Geodata
transform utiliza-
tion percent

2024-05-10
15:38:40

921.000000 367.000000 365.000000 5 732.000000 0.248000 0.008410

2024-05-10
15:38:50

916.000000 369.000000 369.000000 5 738.000000 0.250000 0.008220

2024-05-10
15:39:00

928.000000 368.000000 367.000000 5 734.000000 0.249000 0.007960

2024-05-10
15:39:10

909.000000 364.000000 366.000000 5 731.000000 0.247000 0.008490

2024-05-10
15:39:20

896.000000 363.000000 364.000000 5 726.000000 0.246000 0.007920

2024-05-10
15:39:30

912.000000 364.000000 362.000000 5 724.000000 0.245000 0.007950

2024-05-10
15:39:40

884.000000 357.000000 360.000000 5 717.000000 0.243000 0.008170

2024-05-10
15:39:50

847.000000 345.000000 349.000000 5 693.000000 0.235000 0.008090

2024-05-10
15:40:00

805.000000 329.000000 334.000000 5 663.000000 0.225000 0.007860

2024-05-10
15:40:10

770.000000 315.000000 318.000000 5 632.000000 0.214000 0.007580

2024-05-10
15:40:20

732.000000 299.000000 303.000000 5 602.000000 0.204000 0.006800

2024-05-10
15:40:30

696.000000 285.000000 288.000000 5 571.000000 0.194000 0.007070

2024-05-10
15:40:40

28.000000 155.000000 221.000000 5 361.000000 0.122000 0.006690

2024-05-10
15:40:50

0.000000 0.000000 2.800000 5 4.700000 0.001590 0.006690

Continued on next page

148

Time Kafka - Mes-
sages behind

Kafka - Mes-
sages inges-
ted

Kafka -
Messages
consumed

Vector - Pod
count

Vector - Input
events per second

Vector -
Geodata
transform
MB/s

Vector - Geodata
transform utiliza-
tion percent

2024-05-10
15:41:00

17.000000 2.200000 0.500000 5 7.400000 0.002520 0.005420

2024-05-10
15:41:10

123.000000 54.500000 43.900000 5 94.800000 0.032100 0.003250

2024-05-10
15:41:20

371.000000 126.000000 101.000000 5 239.000000 0.080800 0.003980

2024-05-10
15:41:30

558.000000 199.000000 180.000000 5 383.000000 0.130000 0.005910

2024-05-10
15:41:40

744.000000 272.000000 254.000000 5 530.000000 0.179000 0.008140

2024-05-10
15:41:50

921.000000 343.000000 326.000000 5 673.000000 0.228000 0.009430

2024-05-10
15:42:00

1080.000000 415.000000 399.000000 5 810.000000 0.274000 0.010900

2024-05-10
15:42:10

1030.000000 420.000000 424.000000 5 841.000000 0.285000 0.012100

2024-05-10
15:42:20

978.000000 395.000000 401.000000 5 795.000000 0.269000 0.011200

2024-05-10
15:42:30

910.000000 371.000000 377.000000 5 746.000000 0.253000 0.010900

2024-05-10
15:42:40

850.000000 346.000000 352.000000 5 699.000000 0.237000 0.010300

2024-05-10
15:42:50

790.000000 323.000000 329.000000 5 650.000000 0.220000 0.009550

2024-05-10
15:43:00

732.000000 298.000000 304.000000 5 604.000000 0.205000 0.008490

2024-05-10
15:43:10

773.000000 303.000000 299.000000 5 603.000000 0.204000 0.008840

Continued on next page

149

Time Kafka - Mes-
sages behind

Kafka - Mes-
sages inges-
ted

Kafka -
Messages
consumed

Vector - Pod
count

Vector - Input
events per second

Vector -
Geodata
transform
MB/s

Vector - Geodata
transform utiliza-
tion percent

2024-05-10
15:43:20

818.000000 321.000000 316.000000 5 637.000000 0.216000 0.008980

2024-05-10
15:43:30

850.000000 336.000000 333.000000 5 670.000000 0.227000 0.009710

2024-05-10
15:43:40

906.000000 355.000000 349.000000 5 704.000000 0.238000 0.010100

2024-05-10
15:43:50

950.000000 371.000000 366.000000 5 738.000000 0.250000 0.010300

2024-05-10
15:44:00

981.000000 386.000000 383.000000 5 771.000000 0.261000 0.010700

2024-05-10
15:44:10

991.000000 396.000000 395.000000 5 792.000000 0.268000 0.011300

2024-05-10
15:44:20

1010.000000 404.000000 402.000000 5 806.000000 0.273000 0.010500

2024-05-10
15:44:30

1030.000000 411.000000 409.000000 5 820.000000 0.278000 0.011400

2024-05-10
15:44:40

1050.000000 418.000000 416.000000 5 834.000000 0.282000 0.011500

2024-05-10
15:44:50

1070.000000 426.000000 424.000000 5 849.000000 0.288000 0.011700

2024-05-10
15:45:00

1090.000000 432.000000 430.000000 5 860.000000 0.292000 0.011600

150

C.2.2 Jupyter notebook

151

import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator, MultipleLocator

data = pd.read_csv('without_opensearch/merged-dataset-10-05-24.csv')
data_with_opensearch = pd.read_csv('with_opensearch/merged-dataset-10-05-

data

Time
Kafka -

Messages
behind

Kafka -
Messages
ingested

Kafka -
Messages
consumed

Vector
- Pod
count

Vector
- Input
events
per

second

Vector -
Geodata
transform

MB/s

Vec
Geo
trans
utiliz
per

0
2024-
05-10

15�20�00
729.0 291.0 292.0 5 582.0 0.197 0.0

1
2024-
05-10

15�20�10
698.0 281.0 284.0 5 565.0 0.191 0.0

2
2024-
05-10

15�20�20
682.0 273.0 274.0 5 547.0 0.185 0.0

3
2024-
05-10

15�20�30
16900.0 2447.0 825.0 5 7580.0 2.570 0.0

4
2024-
05-10

15�20�40
89600.0 32350.0 25081.0 5 54700.0 18.500 0.2

...

146
2024-
05-10

15�44�20
1010.0 404.0 402.0 5 806.0 0.273 0.0

147
2024-
05-10

15�44�30
1030.0 411.0 409.0 5 820.0 0.278 0.0

148
2024-
05-10

15�44�40
1050.0 418.0 416.0 5 834.0 0.282 0.0

149
2024-
05-10

15�44�50
1070.0 426.0 424.0 5 849.0 0.288 0.0

150
2024-
05-10

15�45�00
1090.0 432.0 430.0 5 860.0 0.292 0.0

151 rows × 8 columns

fig_kafka_in_out_pod_count, ax1 = plt.subplots(figsize=(12, 6))

In [9]:

In [10]:

Out[10]:

In [11]:

ax1.plot(data['Time'], data['Kafka - Messages ingested'], label='Messages
ax1.plot(data['Time'], data['Kafka - Messages consumed'], label='Messages
ax1.set_xlabel('Time')
ax1.set_ylabel('Messages (in and consumed)')
ax1.tick_params(axis='y')
ax1.xaxis.set_major_locator(MaxNLocator(nbins=6))
ax1.legend(loc='upper left')

ax2 = ax1.twinx()
ax2.plot(data['Time'], data['Vector - Pod count'], label='Vector - Pod co
ax2.set_ylabel('Pod count')
ax2.set_ylim(4,15)
ax2.tick_params(axis='y')
ax2.legend(loc='upper right')

plt.title('Kafka - Messages and Pod Count Over Time')
plt.grid(True)

plt.savefig('./without_opensearch/kafka_in_consumed_podcount_without_open
plt.show()

fig_kafka_consumer_delay, ax1 = plt.subplots(figsize=(12, 6))

Plot Messages in and Messages consumed on the left y-axis
ax1.plot(data['Time'], data['Kafka - Messages behind'], label='Messages b
ax1.xaxis.set_major_locator(MaxNLocator(nbins=6))
ax1.set_xlabel('Time')
ax1.set_ylabel('Messages behind')
ax1.tick_params(axis='y')
ax1.legend(loc='upper left')

Set title and grid
plt.title('Kafka - Consumer delay over time')
plt.grid(True)

plt.savefig('./without_opensearch/kafka_consumer_delay_without_opensearch
plt.show()

In [12]:

Create temporary dataframes, and create relative timeframes
tmp_data = data.copy()
tmp_data_with_opensearch = data_with_opensearch.copy()
tmp_data_with_opensearch['Time'] = pd.to_datetime(tmp_data_with_opensearc
tmp_data['Time'] = pd.to_datetime(tmp_data['Time'])
tmp_data_with_opensearch.set_index('Time', inplace=True)
tmp_data.set_index('Time', inplace=True)
tmp_data_with_opensearch['Relative Time'] = (tmp_data_with_opensearch.ind
tmp_data['Relative Time'] = (tmp_data.index - tmp_data.index.min()).total

Create figure
fig_kafka_consumer_delay_comparison, (ax1, ax2) = plt.subplots(nrows=2, n

Plot standard vector consumer delay
ax1.plot(data['Time'], data['Kafka - Messages behind'], label='Messages b
ax1.xaxis.set_major_locator(MaxNLocator(nbins=6))
ax1.set_xlabel('Time')
ax1.set_ylabel('Messages behind')
ax1.tick_params(axis='y')
ax1.legend(loc='upper left')
ax1.grid(True)

Plot relative time comparison graph
ax2.plot(tmp_data['Relative Time'], tmp_data['Kafka - Messages behind'],
ax2.plot(tmp_data_with_opensearch['Relative Time'], tmp_data_with_opensea

ax2.xaxis.set_major_locator(MaxNLocator(nbins=6))
ax2.xaxis.set_major_formatter(plt.FuncFormatter(lambda x, pos: f'{int(x/6
ax2.yaxis.set_major_locator(MultipleLocator(1e6))
ax2.yaxis.set_major_formatter(plt.FuncFormatter(lambda x, pos: f'{int(x/1
ax2.set_xlabel('Relative Time')
ax2.set_ylabel('Messages behind')
ax2.tick_params(axis='y')
ax2.legend(loc='upper left')
ax2.grid(True)

plt.tight_layout()
plt.savefig('./without_opensearch/kafka_consumer_delay_comparison.pdf', f
plt.show()

In [13]:

fig_vector_events_per_second, ax1 = plt.subplots(figsize=(12,6))

Plotting each column
ax1.plot(data['Time'], data['Vector - Input events per second'], label='V
ax1.plot(data['Time'], data['Kafka - Messages consumed'], label='Kafka -
ax1.xaxis.set_major_locator(MaxNLocator(nbins=6))
ax1.set_ylabel('Events per second')
ax1.legend(loc='upper left')

ax2 = ax1.twinx()
ax2.plot(data['Time'], data['Vector - Geodata transform utilization perce
ax2.set_ylim(-4.5,100)
ax2.tick_params(axis='y')
ax2.legend(loc='upper right')

Set titles, legend and grid
plt.title('Vector - Events and transform utilization')
ax1.set_xlabel('Time')
ax1.set_ylabel('Events per second')
ax2.set_ylabel('Utilization (%)')
plt.grid(True)

plt.savefig('./without_opensearch/vector_input_events_and_utilization_wit
plt.show()

In [14]:

fig_kafka_vs_vector_events_per_second, ax1 = plt.subplots(figsize=(12,6))

Plotting each column
ax1.plot(data['Time'], data['Vector - Input events per second'], label='V
ax1.plot(data['Time'], data['Kafka - Messages consumed'], label='Kafka -
ax1.xaxis.set_major_locator(MaxNLocator(nbins=6))

Set titles, legend and grid
plt.title('Message consumption reported by Kafka and Vector')
ax1.set_xlabel('Time')
ax1.set_ylabel('Messages per second')
ax1.legend()
plt.grid(True)

plt.savefig('./without_opensearch/kafka_vector_message_consumption_compar
plt.show()

fig_vector_transform_utilization_and_rate, ax1 = plt.subplots(figsize=(12

ax1.plot(data['Time'], data['Vector - Geodata transform utilization perce
ax1.xaxis.set_major_locator(MaxNLocator(nbins=6))
ax1.set_ylabel('Utilization (%)')
ax1.set_ylim(0,100)

In [15]:

In [16]:

ax1.tick_params(axis='y')
ax1.legend(loc='upper left')

ax2 = ax1.twinx()
ax2.plot(data['Time'], data['Vector - Geodata transform utilization perce
ax2.xaxis.set_major_locator(MaxNLocator(nbins=6))
ax2.set_ylabel('Utilization (%)')
ax2.set_ylim(0,100)
ax2.tick_params(axis='y')
ax2.legend(loc='upper right')

plt.title('Vector - Transform utilization')
plt.grid(True)

plt.savefig('./without_opensearch/vector_geodata_transform.pdf', format='
plt.show()

 In [16]:

Appendix D

Meeting Minutes

This appendix details the minutes of the project meetings with the academic supervisors, providing
a chronological record of decisions, discussions, and progress made throughout the development of
the log analytics pipeline.

158

Meeting Minutes

Møtereferat 15 Jan 2024

Oppmøte

Møtedato: [15. Jan 2024]

Møtetid: [11:00]

Møtested: [Teams]

Til stede

Fraværende

Agenda:

Saksliste:

Sak 1: Planlegging av forprosjekt

Background

Project goals

Framework

Scope

Roles

Marcus Mathisen

Fredrik Stenersen

Karl-Henrik Horve

Bjørn Kristian Strand

Ingen

Innledende møte for å få avklart grunnleggende punkter

Planlegge forprosjektet

Sak 1: Planlegging av forprosjekt

 Background

Project goals

Framework

Scope

Roles

Problem

Risikoanalyse

Gannt chart

Sak 2: Delegerer ansvarsområder

Sak 3: Diskuterer prosjektstyringsapplikasjon

Sak 4: Arbeidsmetodikk

Sak 5: Grupperegler

Går gjennom eksempler av tidligere forprosjekt.

Marcus tar background

Performance Goals

Result Goals

Learning Goals

Time frame 31th january for forprosjektet

Frist for innlevering?

Avventes

Problem

Risikoanalyse

Gannt chart

Sak 2: Delegerer ansvarsområder

Sak 3: Diskuterer prosjektstyringsapplikasjon

Sak 4: Arbeidsmetodikk

Sak 5: Grupperegler

Neste møte:

Agenda:

Oppmøte

Referent: Fredrik Stenersen

Fredrik

Skrive problemstillingen - denne kan gjøres av Marcus

Problemavgrensing - avventes med intill vi er litt lengre inn i forprosjektet. Dette ble anbefalt av Christoffer

Hallstensen

Karl-Henrik

Marcus

Marcus Mathisen som gruppeleder og kommunikasjonsansvarlig

Fredrik Stenersen som sekretær

Bjørn Kristian Strand som dokumentansvarlig

Karl-Henrik Horve som QA - Kvalitetssikringansvarlig

Det foreslås

 Jira

Microsoft Tasks

Trello

Gitlab Issues

Konkluderer med gitlab issues for fin integrasjon med koden og for å unngå for mange applikasjoner

Det foreslås litt forskjellig

Marcus tar dette opp med Erik på møtet i morgen

Arbeidsmengde - min 30 timer i uken

Timeføring - Skal føres ukentlig

Ukentlig worksession - jobber fysisk sammen 1 gang i uka. dette må ha litt slingrinsmånn.

 Fredrik legger inn jobb kalenderen sin.

Statusmøter tar vi litt sporadisk, med litt lenger intervaller.

Møte med veileder, Møte med Christopher. plikt å møte opp. 1 gang i uka

Skrives referat for alle møter

Første møte med veileder Erik Hjelmås

Skal få mer info om Jørn

Generell orientering

Arbeidsmetodikk

Dato: [16. Jan 2024]

Tid: [12:00]

Sted: [Teams og fysisk]

Møtereferat 16 Jan 2024

Oppmøte

Møtedato: [16 Jan 2024]

Møtetid: [12:00]

Møtested: [Teams/fysisk]

Til stede

Veileder:

Fraværende

Agenda:

Saksliste:

Sak 1: Orientering av Veileder

Sak 2: Arbeidsmetodikk

Sak 3: Informerer om møtestruktur

Sak 4: Jørn

Sak 5: Øvrige spørsmål til veileder

Marcus Mathisen

Fredrik Stenersen

Karl-Henrik Horve

Bjørn Kristian Strand

Erik Hjelmås

Ingen

Første møte med veileder Erik Hjelmås

Mer info om Jørn

Innlede spørsmål til forprosjekt

Sak 1: Orientering av Veileder

Sak 2: Arbeidsmetodikk

Sak 3: Informerer om møtestruktur

Sak 4: Jørn

Sak 5: Øvrige spørsmål til veileder

 Dos and donts fra Erik

Gode oppgaver: var en god oppgave

Fremover

Vi har startet

Hatt møte med Christoffer

 Fått en beskrivende problemstilling,

Hvilken resultater de forventer

Gjenstår å få dette ned på papir

Kanban metoden

 Fordi det er stort omfang

 Vi har ingen klare avgrensninger

Scrum hadde virket ulogisk

Har bedt om tilgang til roadmap i gitlab

Får tilbakemelding fra Erik at dette høres fornuftig ut

Gitlab eller github

 Christoffer vil at vi skal bruke gitlab, det vi har begynt med

Ingen faste møtetider

 Vi praktiserer heller faste arbeidsmøter

Så å si ukentlige møter med Christoffer

Begynner i 20% stilling fra og med februar

Jobber egentlig i orange som sysadmin i 15 år, veldig nyttig faglig person

Kommer til Gjøvik en dag i uken

Erfaring med å jobbe som sensor på dataingeniør studiet

Karl-Henrik tar opp spørsmål vedrørende muligens overflødig "fluff"

"Pass på at vi ikke skriver det som en historiefortelling"

Det er ikke vitenskapelig riktig å skrive som en ungdomskolestil, mest mulig nåtid, styr unna personlige pronomen, se på

tidligere rapporter

Loggin er et tema det sannsynligvis finnes det mye vitenskapelige rapporter på. Dette er informasjon vi kan bruke.

Dos and donts fra Erik

Gode oppgaver: var en god oppgave

"Securing the software development life cycle"

"Tick-stack"

"CI/CD pipeline"

Fremover

Referent: Fredrik Stenersen

Hvor er barriærene/hvor siterer vi? Hvorfor velger vi en tjeneste over en annen? Hvordan jobber vi med kilder og siterer

her?

 Fra Erik: "Det er en balanse, vi må bevise at arbeidet er fornuftig, det er en bacheloroppgave, ikke en filosofisk

doktorgrad, det skal være vitenskap i arbeidet, der vi kommer med sterke påstander i teksten ber han oss underbygge

det."

Ber oss gi utkast løpende; der vi hører om vi treffer riktig med sitering og kildehenvisning.

Holder det at vi skriver om hvordan implementeringen har gått?

 Vi behøver ikke skrive og sammenligne i alle ledd, store deler av oppgaven er at vi skal utrede og lage en

testimplementasjon av opensearch, da er det jo hvilken.

Må vi scope ut alt i forprosjektet?

 Sett opp en fremdriftsplan og en dimensjonering vi tror på. I slutten av oppgaven drøfter vi og reflekterer over

hvorfor det ble avvik fra planen.

Begynn å skriv tidlig

Bruk overleaf fra dag 1

Risikovurdering av prosjektet og grupperegler

"Best practice er stjel av andre"

Standardavtalen må fylles ut i løpet av Januar.

Christoffer skal sjekke om vi trenger en utvidet konfidensialitetsavtale utover det som står i standardavtalen.

Send gjerne utkast av rapporten tidlig i april men også fortløpende

 Minst ett ferdig kapittel

Må ikke være ferdig

Sent utkast når vi ønsker det i mai, senest to uker før levering, 5-10 mai området.

Erik informerer nærmere om hvilken dager Jørn er her

Møtereferat 29 Jan 2024

Oppmøte

Møtedato: [29 Jan 2024]

Møtetid: [13:00]

Møtested: [Teams/fysisk NTNU SOC]

Til stede

Fraværende

Oppdragsgiver tilstedet:

Agenda:

Marcus Mathisen

Fredrik Stenersen

Karl-Henrik Horve

Bjørn Kristian Strand

Ingen

Christoffer

Hans Åge

Saksliste:

Sak 1: Forprosjektets status

Sak 2: Generell diskutering av teknisk implementasjon

Hva er treshholden deres?

Statefile håndtering?

Skallerbart

Dummy data

ISTIO

Sak 3: Øvrige spørsmål

Tilgang til cyber rangen

Hovedproblemet

Dataflyt som skal kunne skaleres opp eller ned etter behov

Hvor fort bør vi ha en Minumum Viable Product?

Referent: Fredrik Stenersen

Status-update for forprosjekt innlevering.

Standardavtale

Sak 1: Forprosjektets status

Sak 2: Generell diskutering av teknisk implementasjon

Sak 3: Øvrige spørsmål

Informerer Christoffer og Hans Åge om problemstillingen og rammene vi har satt

Hovedpunktene i forprosjektet blir lagt frem

Container based enrichment

Kan få mye av konfigurasjonen for ansible fra oppdragsgiver

Legger frem pipelinen Karl-Henrik har tegnet:

 Diskuterer hvordan Middleware løses

Kafka inn i NiFi

Nifi kjøres best utenfor cluster, liker egne fysiske servere, bruker alt I/O som er tilgjengelig.

Kafka, Nifi, inni et kubernetes-cluster

 Endrer problemstillingen til at dette blir primærfokuset, tenk dataflyt

Hvordan gjøre dataflyten dynamisk, visst de vil dele data med noen kan de legge inn en link i nifi, slik at dataflyten

deles opp.

Dataprepper istedet for logstash, man kan kanskje sette opp begge om vi vil.

Gitlab runnere brukes en god del, de tenker å fortsette å bruke det, men vi har frihet til å velge det vi syns passer best.

Ser på muligheten for å splitte opp tjenester i flere repo.

Bør vi finne en annen måte å håndtere statefiles?

 Nei, tror ikke det.

Hvordan skalerer vi noe når det er snakk om en logginginfrastruktur?

 Legger på nye noder når det trengs mer kraft.

Opensearch og Elasticsearch liker x antall ytelse vs. lagring, de har et par flavours av noder som legges på.

"Kaster penger på problemet" - Mer noder. mer kraft.

Enda ikke bestemt om vi får tilgang til reell data

 For nå blir det autogenerert data.

Blir informert om at dette er noe vi kan ta ibruk

Når det ikke er i bruk får vi tilgang til fasilitetene.

Til påske

Tiden etter påske går ganske fort.

Møtereferat 29 Jan 2024 Internt

Oppmøte

Møtedato: [29 Jan 2024]

Møtetid: [15:00]

Møtested: [Teams/fysisk]

Til stede

Fraværende

Agenda:

Saksliste:

Sak 1: Generelt - Forprosjekt

Sak 2: Splitting av repo

Sak 3: Formelle mangler i forprosjektet

Sak 4: Faste møter og arbeid

Referent: Fredrik Stenersen

Marcus Mathisen

Fredrik Stenersen

Karl-Henrik Horve

Bjørn Kristian Strand

Ingen

Generelt møte om fremgangen og veien fremover mot innlevering av forprosjektet.

Sak 1: Generelt - Forprosjekt

Sak 2: Splitting av repo

Sak 3: Formelle mangler

Sak 4: Sikter på onsdager som arbeidsdag fysisk

Kalle omskriver problemstillingen

Splitter de forskjellige delene opensearch, producers til kafka, fluentbit etc

Mangler risikomatrise

 Konsensus om at dette er relativt likt på tvers av grupper

Mangler gant bilde

Sikter på onsdager som arbeidsdag fysisk

Sikter inn på å ha fast møte med veileder de dagene Jørn er på campus

Møtereferat 31. Jan 2024

Oppmøte

Møtedato: [31. Jan 2024]

Møtetid: [12:00]

Møtested: [T431]

Til stede

Fraværende

Veileder:

Saksliste:

Sak 1: Prosjektplan - Problemstatement

Sak 2: SkyHigh

Sak 3: Generelt

Sak 4: Tilgjengelighet

Sak 5: Docker images

Sak 6: Kubernetes

Sak 7: Goals

Referent: Marcus Mathisen

Marcus Mathisen

Karl-Henrik Horve

Bjørn Kristian Strand

Fredrik Stenersen (Jobb)

Erik Hjelmås

Jørn Skjerven

Omskriving av problem-statement

 ingen kommentar fra veileder

SkyLow og SkyHigh Nede neste uke

Lite å gjøre med det

Fokusere på teoretisk

K8s as a service

Se på å bruke openstack sin K8sAAS for å deployment av kubernetes-cluster

Eventuellt-saker Møter

 Mulig med møte med oppdragsgiver og veiledere hvis ønskelig / forskjellige oppfatninger o.l.

2 ting å notere

 Hvem har gjort dette før? / mest lignende? Tegn figurer

Bør kunne tegnes for forståelse og presentasjon

Bør repoet være closed source

Skal bare være vi i gruppen som har tilgang på det

Har uansett ingenting å si fra et plagiat standpunkt

Hvordan skal docker images lages, bygges og lagres

Skal data inne i images være hemmelige eller kan det være offentlig tilgjengelig Er dette noe vi må ta for oss i

prosjektet, eller er det en tjeneste de tar hånd om?

Hvordan rulle ut en applikasjon

Helm vs kubernetes-native?

Omskriv performance goals -> effect goals

Hvilken impact vil prosjektet ha på NTNU SOC

Result goals

For generisk formulert

Skreddesy det mer til prosjektet, selvom det kan virke repetitivt

Numerer målene, ikke bruk punktliste

Møtereferat 7 Feb 2024

Oppmøte

Møtedato: [7 Feb 2024]

Møtetid: [13:50]

Møtested: [Teams]

Til stede

Fraværende

Agenda:

Saksliste:

Sak 1: Infrastruktur

Notater fra diskusjonen om infrastruktur:

Hva skal inkluderes innenfor og utenfor containere?

Sak 2: Kort Roadmap

Sak 3: Hva har vi gjort?

Core Infra - Dette inneholder nødvendig infrastruktur for GitOps og CI/CD.

Kubernetes - Dette inneholder konfigurasjonsfiler og manifest for Kubernetes-deploys.

Sak 4: Vi må bestemme antall køer som er nødvendig

Neste møte:

Agenda:

Oppmøte

Marcus Mathisen

Fredrik Stenersen

Karl-Henrik Horve

Bjørn Kristian Strand

Ingen

Starte planleggingen av infrastrukturen:

Utarbeide et kart over hvordan vi har tenkt å sette opp infrastrukturen, inkludert detaljnivået på parsing, antall klynger,

namespaces i Kubernetes, og strukturering av Git-prosjektet for å oppnå det endelige målet.

Sak 1: Infrastruktur

Sak 2: Kort Roadmap

Sak 3: Hva har vi gjort?

Sak 4: Vi må bestemme antall køer som er nødvendig

Vi har besluttet å bruke GitLab og GitLab Runners for å hoste koden og for Continuous Integration (CI) delen.

Hovedsakelig ønsker vi å containerisere alt i clusteret.

 Hvis vi møter utfordringer med å containerisere Nifi og Kafka, vil vi vurdere å kjøre dem utenfor containermiljøet.

Vi diskuterte veien videre.

 Fokusområdet blir å få alle til å forstå Kafka først.

Deretter vil vi sette opp grunnleggende infrastruktur for å integrere Fluentbit og Kafka.

Vi har delt opp repoet i to separate deler:

Vi har besluttet å starte den tekniske implementasjonen med en kø for å få systemet opp og kjøre.

Hva har vi gjort til nå

Hva skal vi gjøre videre?

Dato: [8. Feb 2024]

Tid: [12:00]

Sted: [Teams/T540]

Referent: Fredrik Stenersen

Møtereferat 8 Feb 2024

Oppmøte

Møtedato: [8 Feb 2024]

Møtetid: [12:00]

Møtested: [Teams/T540]

Til stede

Veileder:

Fraværende

Agenda:

Saksliste:

Sak 1: Informasjon til Veiledere om Utførte Oppgaver

Presentasjon av Git Oppsett:

Sak 2: Forprosjekt

Sak 3: Prosjektstyring

Sitat:

"En god bacheloroppgave inneholder mange egendefinerte tegninger og diagrammer."

Sak 5: Fast Møtetidspunkt

Neste møte:

Marcus Mathisen

Fredrik Stenersen

Karl-Henrik Horve

Bjørn Kristian Strand

Erik Hjelmås

Jørn Skjerven

Ingen

Hva har vi gjort til nå

Hva skal vi gjøre videre?

Sak 1: Informasjon til Veiledere om Utførte Oppgaver

Sak 2: Forprosjekt

Sak 3: Prosjektstyring

Sak 5: Fast Møtetidspunkt

Implementering av GitLab Runners

Bruk av Ansible

Oppretting av Terraform Statefile via Ansible

Visning av Gantt-diagrammet

På grunn av nedetid på GitLab kunne ikke fremgangsmåten for forprosjektet demonstreres

Visning av video av Issue Boards

Enighet om fast møtetidspunkt på torsdager kl. 12:00 passer for alle deltakere.

Agenda:

Oppmøte

Referent: Fredrik Stenersen

Statusmøte

Dato: [15 Februar 2024]

Tid: [12:00]

Sted: [Teams/T540]

Møtereferat 22 Feb 2024

Oppmøte

Møtedato: [22 Feb 2024]

Møtetid: [12:00]

Møtested: [T540]

Til stede

Veileder:

Fraværende

Agenda:

Saksliste:

Sak 1: Fremviser skisse for infrastrukturen

Marcus Mathisen

Fredrik Stenersen

Karl-Henrik Horve

Bjørn Kristian Strand

Erik Hjelmås

Jørn Skjerven

Ingen

Fremvise skisse for tiltenkt infrastruktur

Status den siste uken

Sak 1: Fremviser skisse for infrastrukturen

Sak 2: Problematikk relatert til persistent storage

Sak 3: Hvordan ligger vi ann i forhold til planen?

Sak 4: Referansearkitekturen

Vi holder på med kafka og nifi for øyeblikket

Begynner sakte med fluentbit og opensearch

Tilbakemelding:

 Sier ikke så mye om selve dataflyten

Det kan være fint å ha et diagram som viser dataflyten mellom mikrotjenester med forklaring

 Dette kan hjelpe i rapporten

Ønsker en dataskisse for hvordan dataflyten henger sammen

Vi har tenkt til å lage en skikkelig graf for dependencies

grafwiz for dependencies

Sak 2: Problematikk relatert til persistent storage

Sak 3: Hvordan ligger vi ann i forhold til planen?

Sak 4: Referansearkitekturen

Referent: Fredrik Stenersen

Vi ligger litt etter på selve rapportskrivingen

Infrastruktur/implementasjonsmessig ligger vi greit ann

 Forholder oss til gitlab issues når det kommer til prosjektstyring.

Vi ser for oss å ha proof of concept ferdig til påske

 NB: Påsken kommer tidlig i år!

Møtereferat 29 Feb 2024

Oppmøte

Møtedato: [29 Feb 2024]

Møtetid: [12:00]

Møtested: [Teams/fysisk]

Til stede

Veileder:

Fraværende

Agenda:

Saksliste:

Sak 1: Rapporten - Tilbakemeldinger

Marcus Mathisen

Fredrik Stenersen

Karl-Henrik Horve

Bjørn Kristian Strand

Erik Hjelmås

Jørn Skjerven

Ingen

Status for teknisk implementasjon

Tilbakemeldinger fra veileder så langt på rapporten

Roadmap

Sak 1: Rapporten - Tilbakemeldinger

Sak 2: Dypt tekniske problemstillinger? Med i rapporten?

Sak 3: Roadmap

Bruk vitenskapelige kilder, gjerne bøker.

Kubernetesteori - bruk rapporten som Erik viste fra google

 Gjerne kubernetes.io

WOKE ALARM!

 Ikke kall ting for master/slave (det er ikke woke)

Generell rapportkvalitet er viktig

Tenk gjennom om all teorien vi skriver er relevant for VÅR oppgave.

Når vi prater om noe teoretisk, gjerne beskriv hvordan vi bruker det i prosjektet.

Sak 2: Dypt tekniske problemstillinger? Med i rapporten?

Sak 3: Roadmap

Referent: Fredrik Stenersen

Om noe er kort nok til å beskrives i en setning kan det være i en glossary.

Kapittel 2 (teorikapittelet) er gjerne et kapittel man går tilbake til å skriver om/legger til/reviderer.

Gjerne spor opp den opprinnelige kilden til noe. Sensorene er dyktige og vil gjerne se/huske igjen en opprinnelig kilde.

Det er lov å bruke fotnoter, men fem på en side er mye. Generelt bryter dette leseligheten

Ikke kast dokumentasjonen

 Tenk at noen skal ta over arbeidet vårt, ville de forstått nok?

Ta credit for arbeidet vårt.

Dersom vi ikke oppnår ønsket resultat.

 Det kan like godt være en A oppgave.

Får tilbakemelding om at vi er i et godt spor - fortsett i det.

Møtereferat 4 Mars 2024

Oppmøte

Møtedato: [4 Mars 2024]

Møtetid: [14:00]

Møtested: [Teams/A019 Møterom SOC]

Til stede

Oppdragsgiver:

Fraværende

Agenda:

Saksliste:

Sak 1: Presenterer fremgangen til nå og forskjellige problemstillinger

Gir en oppdatering til oppdragsgiver om fremgangen til nå.

Raft vs zookeper?

Marcus Mathisen

Fredrik Stenersen

Karl-Henrik Horve

Bjørn Kristian Strand

Christoffer Vargtass Hallstensen

Ingen

Presentere fremgangen

Forklare valgene våre

Hva vi tenker å gjøre videre.

Innspill fra oppdragsgiver

Spørsmål

Sak 1: Presenterer fremgangen til nå og forskjellige problemstillinger

Sak 2: Ressurser i Openstack

Sak 3: Interne og eksterne sertifikater

Sak 4: UI interface?

Sak 5: Husk fokus på herding av kubernetes.

JSON

JSON er å foretrekke det det passer best med de forskjellige tjenestene. Ex. opensearch lager key/value pairs basert på dette

lett.

NiFi vs Vektor.

Problematikk med openstack vs andre skyløsninger.

Sak 2: Ressurser i Openstack

Forespør mer ressurser på bakgrunn av at det begynner å bli lite igjen og autoscaling får vi ikke testet noe særlig da det ikke

er for eksempel flere kjerner igjen.

Sak 3: Interne og eksterne sertifikater

Sak 4: UI interface?

Sak 5: Husk fokus på herding av kubernetes.

Referent: Fredrik Stenersen

Så lenge kafka funker er det egentlig det samme, funker det med zookeeper og det inngår i en POC er det greit for

oppdragsgiver

NiFi er til å stole på.

Trenger ikke være bleeding edge på alle punkter

Det er viktigere at det funker enn at det er kult.

Vi så ikke for oss at git.gvk hadde de problemene som de hadde. Så for oss at opensearch var plug and play og at certs var

noe vi kunne få utlevert enkelt. Men vi føler det er mye som går utenfor scope, som grunner i openstack som plattform.

 Tenker det er viktig lærdom for SOCen sier Christoffer, vi bør dokumentere det i rapporten.

Kjører en intern CA for å unngå lekkasje ved bruka av tredjeparts CA.

Med tanke på at det er en proof of concept trenger vi ikke fokusere på å konfigurere dette utover det som brukes i f.eks.

NiFi by default.

Populært spørsmål fra en eventuel sensor er hvordan vi har tenkt på sikkerhet.

Ha et avsnitt i rapporten om herding av kubernetes.

Møtereferat 7 Mars 2024

Oppmøte

Møtedato: [7 Mars 2024]

Møtetid: [12:00]

Møtested: [Teams/T540]

Til stede

Veileder:

Fraværende

Agenda:

Saksliste:

Marcus Mathisen

Fredrik Stenersen

Karl-Henrik Horve

Bjørn Kristian Strand

Jørn Skjerven

Ingen

Gå gjennom nylig fremgang

Diskutere problemstillinger vi har støtt på

Sak 1: Problemer med nifikop operatoren og tillatelser

Sak 2: Problematikk med opensearch

Sak 3: Igjen vurderer vi vector.dev i stedet for dataprepper

Sak 4: Cribl som et alternativ for nifi

Sak 5: Forespør tips om DNS og certifikatdistributør

Referent: Fredrik Stenersen

Sak 1: Problemer med nifikop operatoren og tillatelser

Sak 2: Problematikk med opensearch

Sak 3: Igjen vurderer vi vector.dev i stedet for dataprepper

Sak 4: Cribl som et alternativ for nifi

Sak 5: Forespør tips om DNS og certifikatdistributør

Diskuterer måter å løse dette for å få funksjonalitet på plass.

Har fått inntrykket fra før av fra oppdragsgiver om at dette skulle være plug-and-play, det har derimot ikke vært tilfellet

til nå.

SOCen hadde vært borti noe av problematikken fra før av når det kommer til templates for openstack.

Kommunikasjonsvikt fra forrige uke da vi hadde trodd det var snakk om vektor.com.

Ser på muligheter for å gjøre datatransofmasjoner med vector.dev som et alternativ for dataprepper.

Diskuterer dette som en plan B.

Ingen gode gratis alternativer

Ser på muligheter om å forespør en offentlig IPv4 addresse fra NTNU på begrenset tid.

Møtereferat 14 Mars 2024

Bør renskrives

Oppmøte

Møtedato: [14 Mars 2024]

Møtetid: [12:00]

Møtested: [Teams/T540]

Til stede

Veileder:

Fraværende

Agenda:

Saksliste:

Marcus Mathisen

Fredrik Stenersen

Karl-Henrik Horve

Jørn Skjerven

Bjørn Kristian Strand

Presentere fremgangen og nylige problemstil

Innspill fra oppdragsgiver

Spørsmål

Sak 1: Kubernetes plattform

Sak 2: Hvilke logger skal sendes?

Sak 3: Fremviser vellykket logg i Openstack

Sak 4: Stresstesting av robusthet

Sak 5: Tips til rapportskriving fra Jørn

Referent: Fredrik Stenersen

Sak 1: Kubernetes plattform

Sak 2: Hvilke logger skal sendes?

Sak 3: Fremviser vellykket logg i Openstack

Sak 4: Stresstesting av robusthet

Diskuterer kubernetes på bare metal vs. openstack.

Konkluderer med at ingen endring i planen er nødvendig.

Syslog? Hva er hensiktsmessig?

NTNU SOC har ingen spesifikke krav til prosjektets logger i seg selv, det er POC arkitekturen som er hovedleveransen.

Fremviser en enkel syslog som har gått gjennom pipelinen og inn i opensearch.

 Fra kafka, gjennom Vector og inn til OpenSearch

Forklarer hvordan arkitekturen funker til nå.

Skalering og stresstesting, diskuterer måter å simulere ballast

Filtrerings-funkjonalitet?

 "Dette" mønsteret skal filtreres bort

Blackholing

Skallering for å takle ballast

 Horisontalt/vertikalt

Flere clustere? (Brainstorming fra Jørn)

 Hva er av hensikt for socen? Er det grunn for å segmentere logger? Er det av interesse at noen systemer er veldig

kritisk eller at andre KAN gå ned.

Vurdere forskjellige problemstillinger å skrive i rapporten på dette punktet.

Ikke skriv som en dagbok

Selv om vi potensielt ikke får til det vi ønsker å få til produktmessig er det ikke nødvendigvis stryk av den grunn

 Det er prosessen som er viktig, ikke resultatet.

Forklar hva, hvorfor, hvordan vi gjør ting.

Kildehenvisning

Møtereferat 21 Mars 2024

Oppmøte

Møtedato: [21 Mars 2024]

Møtetid: [12:00]

Møtested: [Teams/T540]

Til stede

Fraværende

Agenda:

Marcus Mathisen

Fredrik Stenersen

Karl-Henrik Horve

Bjørn Kristian Strand

Veileder:

Erik Hjelmås

Jørn Skjerven

Ingen

Saksliste:

Sak 1: Tilbakemeldinger til rapporten

Referent: Fredrik Stenersen

Gjennomgå rapporten

Gå gjennom tilbakemeldingene fra Eirik

 (Markeringer i rapporten vi har sendt til gjennomgang)

Statusoppdatering

Sak 1: Tilbakemeldinger til rapporten

Språk, ordlyd, noen korrigeringer

 LTeX vscode extension blir foreslått fra Eirik.

"Det skinner gjennom at vi skriver selv, at vi ordlegger oss med egne ord, dette er bra."

Vi skal sitere etter IEE eller ACM citation style, pr. nå gjør vi ikke det.

Dropp forkortelser, vi har ikke dårlig plass.

 Ex. "k8s".

Husk vektorgrafikk i figurer (svg fil)

Ikke bruk master og worker/slave. Bruk main, control plane eller primary etc.

Husk: Tilstreb å henvis til logoer og bilder som for eksempel er under creative commons lisenser.

(Dette er pirk, mange bsc. oppgaver synder på dette, men greit å gjøre det riktig)

 Ex. Openstack Cinder logo

Når alt er helt ferdig, først DA får vi det til å se pent ut.

 Gå gjennom punktene fra Erik ang. skrifttype f.eks.

Dersom rekkefølge ikke er viktig - bulletpoints, om rekkefølgen er viktig, bruk nummerert liste

Descriptionlist i latex kan være et alternativ til fet skrift i punktlister.

Stor forbokstav etter punktum.

Møtereferat 4 April 2024

Oppmøte

Møtedato: [4 April 2024]

Møtetid: [12:10]

Møtested: [Teams/T540]

Til stede

Fraværende

Agenda:

Saksliste:

Fredrik Stenersen

Karl-Henrik Horve

Bjørn Kristian Strand

Marcus Mathisen (Gyldig, medisinsk)

Statusoppdatering siden påske.

Sak 1: Statusoppdatering etter påske

Sak 1: Statusoppdatering etter påske

Referent: Fredrik Stenersen

Grafana Oppdateringer: Grafana har blitt oppdatert nylig, med fokus på designen av Grafana KCX for bedre visualisering av

data.

Raftmode Kafka Overgang: Overgangen til Raftmode Kafka har vært underveis, og det er behov for å se nærmere på hvordan

dette samsvarer med den nye Grafana KCX.

 Vi ser også på hvordan loggenerering oppskaleres, spesielt med tanke på å gjøre trafikken mer realistisk for Grafana

KCX.

Skaleringsspørsmål:

 Hvordan skalerer vi metrikker?

Plan for autoskalering, som for øyeblikket er statisk.

Vektor skalerer basert på CPU-bruk.

Geo-database i en pod, skalerer den basert på CPU-bruk eller latency?

Status på Påskens Rapportskriving:

 Det har ikke blitt skrevet noe i påsken i rapporten. Vi trenger en oppdatering om fremdriftsplanen og statusen der. Det

bør også nevnes at en person har vært ute, og dette må tas med i rapporten.

Møtereferat 11 April 2024

Oppmøte

Møtedato: [11 April 2024]

Møtetid: [12:00]

Møtested: [Teams/T540]

Til stede

Fraværende

Agenda:

Saksliste:

Sak 1: Oppdatering fra gruppemedlemmer

Sak 2: Tilbakemelding på rapport

Fredrik Stenersen

Karl-Henrik Horve

Bjørn Kristian Strand

Marcus Mathisen (Gyldig Medisinsk)

Oppdatering fra gruppemedlemmer

Tilbakemelding på rapport

Sak 1: Oppdatering fra gruppemedlemmer

Sak 2: Tilbakemelding på rapport

Deployment pipelines i demomiljø

K6 log simulator

Geodata enrichment

Rapport oppdateringer

Gjerne bruk analogier

Bibliografilisten er feil

 Henviser du til bare en nettside kan den puttes i fotnote

 Derimot spesifikt del på nettside kan du bruke bibliografien

Er det flere deler av siden som er brukt kan du introdusere avsnittet med det og legge til som fotnote.

Referent: Fredrik Stenersen

Ikke bruk et. al. inne i teksten. Det er ønskelig å ha alle navn i bibliografien.

Møtereferat 24 April 2024

Oppmøte

Møtedato: [24 April 2024]

Møtetid: [12:00]

Møtested: [Teams/T540]

Til stede

Veileder:

Fraværende

Agenda:

Saksliste:

Sak 1: Veiledere har ikke fått tid til å lese gjennom rapporten

Sak 2: Hva gjør vi om vi ikke har tid til å fikse data?

Sak 3: Tenk kvalitet over kvalitet i skrivingen

Sak 4: Latex figurer på siden av tekst

Marcus Mathisen

Fredrik Stenersen

Karl-Henrik Horve

Bjørn Kristian Strand

Erik Hjelmås

Jørn Skjerven

Ingen

Gjennomgå spørsmål til rapporten

Veien videre

Sak 1: Veiledere har ikke fått tid til å lese gjennom rapporten

Sak 2: Hva gjør vi om vi ikke har tid til å fikse data?

Sak 3: Tenk kvalitet over kvalitet i skrivingen

Sak 4: Latex figurer på siden av tekst

Sak 5: Hvordan dokumentere valgene vi har tatt

Sak 6: Rapport: Husk å skrive om implementeringen

Vi har blitt enige om å sende en endringslogg når vi skal ha tilbakemelding på rapporten

Vi har blitt enige om mandag 6. Mai dato for gjennomgang av første utkast med veiledere

Enighet om at vi tar peer review med en annen gruppe først

 Dermed sende endret versjon til veiledere.

Flytte møtet de to neste torsdagene, til ett møte 6. Mai

Vi må i all hovedsak bare skrive om det vi har gjort

Husk at det er en muntlig fremføring der det er mulighet til å gjennomgå ting om det ikke skulle være mulig å få med i

rapporten

Blir det problematisk kan du ha dem på en egen side

 Henvis dermed til figuren i teksten i stedet

Ikke noe vi ønsker å bruke tid på før rett før innlevering

Sak 5: Hvordan dokumentere valgene vi har tatt

Sak 6: Rapport: Husk å skrive om implementeringen

Referent: Fredrik Stenersen

Husk å dokumenter hvorfor, hva funket, hvorfor ikke? Forklar kildene og hvordan vi brukte dem for å ta valgene vi gjør.

Skriv hvordan vi systematisk løste problemene vi har møtt på

Dokumenter at vi har gjort noe.

Vi har jo brukt mye tid til å "gå forbi vegger" / feilsøking, kan godt nevne dette i rapporten, men resonner tilbake til

dette, ikke trinn for trinn historiemessig.

Begynn å fokuser mer på hvordan vi har implementert det vi har gjort

Metode, result, discussion

Møtereferat 16. Mai 2024

Oppmøte

Møtedato: [16. Mai 2024]

Møtetid: [12:00]

Møtested: [Teams/fysisk]

Til stede

Veileder:

Fraværende

Agenda:

Saksliste:

Sak 1: Kapittel 4

Sak 2: Store grafer

4.20 er for stor, 4.19 er lesbar.

Sak 3: En del å jobbe med i kapittel 5 (sikkerhet)

Sak 4: Grafer i kapittel 6.

Marcus Mathisen

Fredrik Stenersen

Karl-Henrik Horve

Erik Hjelmås

Jørn Skjerven

Bjørn Kristian Strand

Siste møte, gjennomgang av mangler og utbedringspotensiale

Sak 1: Kapittel 4

Sak 2: Store grafer

Sak 3: En del å jobbe med i kapittel 5 (sikkerhet)

Sak 4: Grafer i kapittel 6.

Mye tekst

Bilde av arkitekturen hadde vært lurt (VIKTIG for forståelse)

Hovedsakelig snakker om de tingene vi ville gjort annderledes og de viktigste delene generelt.

Hva har vi gått på akkord med, hva er det som gjør at det ikke er produksjonsklart?

Generelt:

Referent: Fredrik Stenersen

Det er veldig fine grafer, men forfatteren må beskrive og forklare grafene. Ikke bare skrive det samme du kan lese ut av

grafen.

Skiller gjerne A og B om du forankrer påstander i eksisterende litteratur.

Ex. 6.10 Hadde vært kult å vise konkret hvor i pipelinen med en graf hvor i pipelinen flaskehalser oppstår.

Unforseen setbacks 7.2.3. Hva gjorde vi for å komme oss forbi det.

Kapittel 8. Her er det viktig at vi får med alle målene fra introduksjonen med tilhørende grad av hvordan vi har løst dem.

(Ingen oppnår alle målene man setter). Drøft dette i kap 8.

Gantt - en n to Ter

Bibliografi. Sleng på en lærebok og en artikke. Ex kubernetes, da google borg - kubernetes.

Tomme punkter - Bruk øks, eks. 7.7.6 har vi ikke pratet noe om det til nå, er det kanskje ikke så viktig.

Åpenbare mangler: Få på plass helhet ovenfor det å putte inn noe ekstra punkter.

Det skal tilstreves at det ikke ser ut som fire forskjellige har skrevet (fortellermessig). Veldig mye retroskpektivt

språk, "was", "helped", "did".

Få på plass future work.

Bruk frode sin "rettemal" fra rapportskrivingskurset.

Appendix E

Time sheet

179

Timeføring Karl-Henrik

Week Day Hours Work Week Day Hours Work

Monday Monday 3 Meeting the client

Week 2 Tuesday Week 5 Tuesday 5 Research

Wednesday
2

 Meeting with client Wednesday 6

Methodology,

meeting supervisors

Thursday 2 Group Meeting Thursday 5 Project plan

Friday Friday

Saturday Saturday

4 Sunday 19 Sunday

Week Day Hours Work Week Day Hours Work

Monday Monday 7 Research

Week 3 Tuesday 4

Meeting with supervisor,

working on project-plan Week 6 Tuesday 8 Research

Wednesday 3 Research Wednesday 8

Splitting repoes,

Implementation

FluxCD

Thursday 5 Project plan Thursday 8 Openstack, terraform

Friday 5 Project plan Friday 6 K8 cluster

Saturday Saturday

17 Sunday 37 Sunday

Week Day Hours Work Week Day Hours Work

Monday 2

Meeting with supervisor,

working on project-plan Monday 8 Troubleshooting k8s

Week 4 Tuesday 7 Project plan Week 7 Tuesday 6

Troubleshooting

Openstack

Wednesday 5 Project plan Wednesday 5

Troubleshooting

Openstack

Thursday 6 Project plan Thursday 7

Troubleshooting

Openstack

Friday 7 Project plan Friday 8

Troubleshooting

Openstack

Saturday Saturday

27 Sunday 34 Sunday

Week Day Hours Work Week Day Hours Work

Monday 10 Implementation Monday 6 Testing aggregation

Week 8 Tuesday 3

Dataprepper

 troubleshoot Week 11 Tuesday 5 Troubleshooting k8s

Wednesday 8 Troubleshooting Cinder Wednesday 6 Troubleshooting k8s

Thursday 7 Troubleshooting Cinder Thursday 5 Troubleshooting k8s

Friday 9 Certificates Friday 4 Cleaning up flux config

Saturday 10 Certificates Saturday

47 Sunday 26 Sunday

Week Day Hours Work Week Day Hours Work

Monday 2 Writing Thesis Monday 7 TLS config

Week 9 Tuesday 9 Cleaning up repo's Week 12 Tuesday 6 Logging to brokers

Wednesday 8 Setting up Kafka Wednesday 8 Implement Metric

Thursday 9 Setting up Kafka Thursday 4

Prometheus and

Grafana config

Friday 7 Setting up Kafka Friday 4

Prometheus and

Grafana config

Saturday Saturday

35 Sunday 29 Sunday

Week Day Hours Work Week Day Hours Work

Monday 7 Openstack drivers Monday 0 Easter

Week 10 Tuesday 8 Openstack drivers Week 13 Tuesday 0 Easter

Wednesday 9 Openstack drivers Wednesday 0 Easter

Thursday 7

Storage classes,

Csi Cinder Thursday 0 Easter

Friday 6 Documentation Friday 0 Easter

Saturday Saturday 0 Easter

37 Sunday 0 Sunday 0 Easter

Week Day Hours Work Week Day Hours Work

Monday 7 Benchmarking pipeline Monday 7 Writing Thesis

Week 14 Tuesday 6

Troubleshooting

Autoscaling Week 17 Tuesday 6 Writing Thesis

Wednesday 7 Autoscaling Vector Wednesday 7 Writing Thesis

Thursday 8

Moving k6 to new

k8 cluster Thursday Writing Thesis

Friday 3 Testing the pipeline Friday Writing Thesis

Saturday Saturday 6

31 Sunday 26 Sunday

Week Day Hours Work Week Day Hours Work

Monday 6 Change kafka replication Monday 8 Writing Thesis

Week 15 Tuesday 7 Config vector/Geodata Week 18 Tuesday 5 Writing Thesis

Wednesday 5 Config vector/Geodata Wednesday 6 Writing Thesis

Thursday 7

Benchmarking pipeline

Documentation Thursday 1 Writing Thesis

Friday 6 Friday Writing Thesis

Saturday Saturday 5

31 Sunday 30 Sunday 5

Week Day Hours Work Week Day Hours Work

Monday 10 Writing Thesis Monday 6 Writing Thesis

Week 16 Tuesday 8 Writing Thesis Week 19 Tuesday 7 Writing Thesis

Wednesday 10 Writing Thesis Wednesday 4 Writing Thesis

Thursday 8 Writing Thesis Thursday 7 Writing Thesis

Friday 3 Writing Thesis Friday Writing Thesis

Saturday Saturday 9 Writing Thesis

39 Sunday 41 Sunday 8 Writing Thesis

Week Day Hours Work Week Day Hours Work

Monday 6 Writing Thesis Monday 6 Writing Thesis

Week 20 Tuesday 7 Writing Thesis Week 21 Tuesday

Wednesday 6 Writing Thesis Wednesday

Thursday 6 Writing Thesis Thursday

Friday 5 Writing Thesis Friday

Saturday 8 Writing Thesis Saturday

46 Sunday 8 Writing Thesis 6 Sunday

Timeføring Marcus
Week Day Hours Work Week Day Hours Work

Monday 0 Monday 4 Projectplan and meeting with client

Week 2 Tuesday 0 Week 5 Tuesday 7

Project plan

Administrative tasks

Wednesday 2 Meeting with client Wednesday 4 Projectplan, meeting with supervisors

Thursday 2 Group Meeting Thursday 7 Project plan

Friday 3 Researching thesis subject Friday

Saturday 1 Researching project workflow Saturday

8 Sunday 0 22 Sunday

Week Day Hours Work Week Day Hours Work

Monday 3 Administrative tasks& Group meeting Monday 5 Research and testing

Week 3 Tuesday 3

Research

Meeting with supervisor Week 6 Tuesday 7 Research and implementing

Wednesday 4 Reserach Wednesday 7 Reserch and seting up kafka locally

Thursday 7 Writing in project plan Thursday 4

Setting up kafka locally

Meeting with supervisor

Friday 5 writing in project plan Friday 6 Research

Saturday Saturday

22 Sunday 29 Sunday

Week Day Hours Work Week Day Hours Work

Monday 4 Writing in project plan Monday 7 Implementing kafka

Week 4 Tuesday 3

Administrative tasks

Meeting with supervisor Week 7 Tuesday 7 Troubleshooting kafka in K8s

Wednesday 0 Sick Wednesday 7 Troubleshooting kafka in K8s

Thursday 0 Sick Thursday 7

Setting up GIT group and project

management.

Friday 0 Sick Friday 3 Research

Saturday 0 Sick Saturday

7 Sunday 0 Sick 31 Sunday

Week Day Hours Work Week Day Hours Work

Monday 7 Setting up kafka Monday 6 Aggregation log

Week 8 Tuesday 7 Setting up Fluentbit Week 11 Tuesday 5 Writing Thesis

Wednesday 0 Wednesday 6 Writing Thesis

Thursday 7

Connecting fluentbit to kafka brokers

Meeting with supervisor Thursday 5 Writing Thesis

Friday 7 Writing in thesis Friday 6 Writing Thesis

Saturday 4 Writing in thesis Saturday

36 Sunday 4 Writing in thesis 28 Sunday

Week Day Hours Work Week Day Hours Work

Monday 7 Setting up kafka Monday 7 Troubleshooting k8s

Week 9 Tuesday 8

Writing in thesis

Administrating in GIT Week 12 Tuesday 8 Troubleshooting k8s

Wednesday 5

Writin and correcting in thesis

Wednesday 6 Troubleshooting k8s

Thursday 6 Writing in thesis Thursday 5 Fixing Kafka

Friday 7 Writing in thesis Friday 7 Fixing Kafka

Saturday 0 Saturday

33 Sunday 0 33 Sunday

Week Day Hours Work Week Day Hours Work

Monday 5 Setting up kafka Monday 0 Easter

Week 10 Tuesday 6 Setting up kafka Week 13 Tuesday 0 Easter

Wednesday 4 Setting up kafka Wednesday 0 Easter

Thursday 6 Setting up kafka Thursday 0 Easter

Friday 6 Testing Kafka Friday 0 Easter

Saturday Saturday 0 Easter

27 Sunday 0 Sunday 0 Easter

Week Day Hours Work Week Day Hours Work

Monday 0 Injured/sick Monday 4 Writing in thesis

Week 14 Tuesday 0 Injured/sick Week 17 Tuesday 5 Writing in thesis

Wednesday 0 Injured/sick Wednesday 6 Writing in thesis

Thursday 0 Injured/sick Thursday 5 Writing in thesis

Friday 0 Injured/sick Friday 6 Writing in thesis

Saturday Saturday

0 Sunday 0 26 Sunday

Week Day Hours Work Week Day Hours Work

Monday 0 Injured/sick Monday 6 Writing in thesis

Week 15 Tuesday 0 Injured/sick Week 18 Tuesday 6 Writing in thesis

Wednesday 0 Injured/sick Wednesday 8 Writing in thesis

Thursday 0 Injured/sick Thursday 7 Writing in thesis

Friday 0 Injured/sick Friday 8 Writing in thesis

Saturday Saturday 3

0 Sunday 41 Sunday 3

Week Day Hours Work Week Day Hours Work

Monday 0 Injured/sick Monday 6 Writing in thesis

Week 16 Tuesday 0 Injured/sick Week 19 Tuesday 7 Writing in thesis

Wednesday 0 Injured/sick Wednesday 5 Writing in thesis

Thursday 0 Injured/sick Thursday 7 Writing in thesis

Friday 7 Getting back Friday 5 Writing in thesis

Saturday Saturday 7

7 Sunday 44 Sunday 7

Week Day Hours Work Week Day Hours Work

Monday 5 Writing in thesis Monday 12 Writing in thesis

Week 20 Tuesday 7 Writing in thesis Week 21 Tuesday

Wednesday 8 Writing in thesis Wednesday

Thursday 10 Writing in thesis Thursday

Friday 0 Hospital Friday

Saturday 0 Hospital Saturday

38 Sunday 8 Writing in thesis 12 Sunday

Timeføring Fredrik
Week Day Hours Work Week Day Hours Work

Monday Monday 6

Preparation for meeting with

stakeholder, meeting with

Week 2 Tuesday Week 5 Tuesday 0 (Work-part time)

Wednesday 4 Meeting with client, researc Wednesday 0 (Work-part time)

Thursday 5 Group Meeting, planning Thursday 0 (Work-part time)

Friday 4 Research on opensearch Friday 3 Researching nifi

Saturday Saturday

13 Sunday

Total hours:

9 Sunday

Week Day Hours Work Week Day Hours Work

Monday 2 Group Meeting Monday 5 Researching nifi

Week 3 Tuesday 1.5

Meeting with supervisor, working

on issue board in gitlab Week 6 Tuesday 7 Testing

Wednesday 5

Working and planning project

plan report Wednesday 5 Coding

Thursday Thursday 7

Meeting with supervisors,

research

Friday 6 Research Friday 3 Coding

Saturday 3 Research Saturday
Total hours:

17.5 Sunday Sick 27 Sunday

Week Day Hours Work Week Day Hours Work

Monday Sick Monday 3 Researching gitlab runners

Week 4 Tuesday Sick Week 7 Tuesday 8 Setting up gitlab runners

Wednesday Sick Wednesday 3 Setting up gitlab runners
Comment:

Sick Thursday Sick Thursday 5

Meeting with supervisors,

troubleshooting

Friday Sick Friday 7 Testing i Openstack

Saturday Sick Saturday 3 Researching

Total hours: 2 Sunday 2

Report reading, catching up and

preparing for meeting on 29 Sunday

Week Day Hours Work Week Day Hours Work

Monday 6 Researching Nifi Monday 5 Researching

Week 8 Tuesday 5 Testing Nifi helm charts Week 11 Tuesday 6 Coding

Wednesday 3 Troubleshooting Wednesday 5 Setting up deployment pipelines

Thursday 2 Deploying Nifi in k8s Thursday 2 Meeting with supervisors

Friday 5 Deploying Nifi in k8s Friday 7 Data Prepper

Saturday Saturday

21 Sunday 28 Sunday 3 Coding

Week Day Hours Work Week Day Hours Work

Monday 5 Deploying Nifi in k8s Monday 4 Writing in thesis

Week 9 Tuesday 6 Troubleshooting nifi Week 12 Tuesday 7

Structuring git and overleaf,

coding

Wednesday 8 Troubleshooting nifi Wednesday 7 Setting up deployment pipelines

Thursday 7 Meeting with supervisor Thursday 5 Meeting with supervisors

Friday Friday 4 writing in thesis

Saturday Saturday 3 Writing in thesis

29 Sunday 3 Writing in thesis 32 Sunday 2 Writing in thesis

Week Day Hours Work Week Day Hours Work

Monday 6 Meeting with client Monday 0 Easter

Week 10 Tuesday 7 Writing in thesis Week 13 Tuesday 0 Easter

Wednesday 4 Writing in thesis Wednesday 0 Easter

Thursday 2 Meeting with supervisors Thursday 0 Easter

Friday 3 Writing in thesis Friday 0 Easter

Saturday 10 Troubleshooting k8s Saturday

32 Sunday 2 Sunday 2 Research

Week Day Hours Work Week Day Hours Work

Monday 6

Reviewing meeting minutes,

research, report writing Monday 5 Writing in thesis

Week 14 Tuesday 3 Illustrating Week 18 Tuesday 6 Writing in thesis

Wednesday 5 Wednesday 8 Writing in thesis

Thursday 4

Meeting with supervisors,

meeting with the team Thursday 7 Writing in thesis

Friday Sick Friday 7 Writing in thesis

Saturday Sick Saturday

18 Sunday Sick 33 Sunday

Week Day Hours Work Week Day Hours Work

Monday 5 writing in thesis, research, coding Monday 12 Writing in thesis

Week 15 Tuesday 6 Writing in thesis Week 19 Tuesday 9 Writing in thesis

Wednesday 4 Writing in thesis, coding Wednesday 7 Writing in thesis

Thursday 7 Writing in thesis, testing Thursday 13 Writing in thesis

Friday 7 Writing in thesis Friday 7 Writing in thesis

Saturday Saturday

29 Sunday 48 Sunday

Week Day Hours Work Week Day Hours Work

Monday 6 Writing in thesis Monday 8 Writing in thesis

Week 16 Tuesday 8 Writing in thesis Week 20 Tuesday 7 Writing in thesis

Wednesday 5 Research Wednesday 9 Writing in thesis

Thursday 2 Research Thursday 9 Finalizing thesis

Friday 2 Writing in thesis, testing Friday 8 Finalizing thesis

Saturday 6 Writing in thesis Saturday

29 Sunday 46 Sunday 5 Finalizing thesis

Week Day Work Week Day Hours Work

Monday 6

Git deployment pipeline,

writing Monday 12 Finalizing thesis

Week 17 Tuesday 9

Git deployment pipeline,

writing Week 21 Tuesday

Wednesday 10

Git deployment pipeline,

writing Wednesday

Thursday 7 Meeting with supervisors Thursday

Friday Friday

Saturday Saturday

26 Sunday 12 Sunday

Timeføring Bjørn Kristian
Week Day Hours Work Week Day Hours Work

Monday 0 Work Monday 4

Projectplan and meeting with

client

Week 2 Tuesday 0 Work Week 5 Tuesday 4 Projectplan & QA

Wednesday 2 Meeting with client Wednesday 4

Projectplan, research, meeting

with supervisors

Thursday 2 Group Meeting Thursday 5 Project Plan , QA

Friday 0 Friday 0 Work

Saturday 4 Research Saturday 3 Research

8 Sunday 0 24 Sunday 4 Research

Week Day Hours Work Week Day Hours Work

Monday 2 Group Meeting Monday 0

Week 3 Tuesday 4

Meeting with supervisor,

working on project-plan Week 6 Tuesday 0

Wednesday 5 Project plan Wednesday 4 report

Thursday 0 Sick Thursday 5

Meeting with supervisors,

research

Friday 0 Sick Friday 8 Coding

Saturday 0 Sick Saturday 3 coding

11 Sunday 0 Sick 20 Sunday 0

Week Day Hours Work Week Day Hours Work

Monday 0 Monday 0

Week 4 Tuesday 3 Project plan Week 7 Tuesday 5 Report

Wednesday 3 Project plan & Research Wednesday 5 Coding, Research

Thursday 6 Project plan & Research Thursday 5 Meeting with supervisors, Coding

Friday 3 Project plan Friday 3 Report

Saturday 0 Saturday 0 Work

18 Sunday 3 Project plan 18 Sunday 0 Work

Week Day Hours Work Week Day Hours Work

Monday 4 Research Monday 8 Coding, Implementation

Week 8 Tuesday 5 Coding Week 11 Tuesday 7 Meeting with client, research

Wednesday 9 Coding Wednesday 6 Coding

Thursday 10

Meeting with supervisors,

research Thursday 8 Research coding

Friday 0 Work Friday 10 Coding

Saturday 0 Work Saturday

28 Sunday 0 Work 39 Sunday

Week Day Hours Work Week Day Hours Work

Monday 0 Monday 8 Implementation

Week 9 Tuesday 4 Research Week 12 Tuesday 4 Connecting nifi to openstack

Wednesday 5 Research Wednesday 3 Creating sinks

Thursday 6 Meeting with supervisors, report Thursday 5 Benchmarking

Friday 10 Coding Friday 6 Research

Saturday 5 Coding Saturday

30 Sunday 26 Sunday

Week Day Hours Work Week Day Hours Work

Monday 6 Meeting with client, coding Monday 0 Easter

Week 10 Tuesday 0 Week 13 Tuesday 0 Easter

Wednesday 5 Implementation Wednesday 0 Easter

Thursday 8 Meeting with supervisors, Coding Thursday 0 Easter

Friday 9 Implementation Friday 0 Easter

Saturday 3 Implementation Saturday

35 Sunday 4 Implementation 0 Sunday

Week Day Hours Work Week Day Hours Work

Monday 7 Writing in Thesis Monday 4 Writing in Thesis

Week 14 Tuesday 5 Writing in Thesis Week 17 Tuesday 5 Writing in Thesis

Wednesday 4 Writing in Thesis Wednesday 7 Writing in Thesis

Thursday 5 Writing in Thesis Thursday 9 Writing in Thesis

Friday 3 Writing in Thesis Friday 6 Writing in Thesis

Saturday 0 Work Saturday

24 Sunday 0 Work 31 Sunday

Week Day Hours Work Week Day Hours Work

Monday 0 Work Monday 5 Writing in Thesis

Week 15 Tuesday 7 Pipeline Week 18 Tuesday 6 Writing in Thesis

Wednesday 5 Troubleshooting Wednesday 7 Writing in Thesis

Thursday 10 Troubleshooting Thursday 6 Writing in Thesis

Friday 0 Work Friday 5 Writing in Thesis

Saturday 0 Work Saturday

22 Sunday 0 Work 29 Sunday

Week Day Hours Work Week Day Hours Work

Monday 4 Writing in Thesis Monday 7 Writing in Thesis

Week 16 Tuesday 5 Writing in Thesis Week 19 Tuesday 8 Writing in Thesis

Wednesday 7 Writing in Thesis Wednesday 5 Writing in Thesis

Thursday 9 Writing in Thesis Thursday 5 Writing in Thesis

Friday 7 Writing in Thesis Friday 7 Writing in Thesis

Saturday 0 Saturday

32 Sunday 0 32 Sunday

Week Day Hours Work Week Day Hours Work

Monday 8 Writing in Thesis Monday 15 Writing in Thesis

Week 20 Tuesday 9 Writing in Thesis Week 21 Tuesday

Wednesday 4 Writing in Thesis (work) Wednesday

Thursday 4 Writing in Thesis (work) Thursday

Friday 10 Writing in Thesis Friday

Saturday 9 Writing in Thesis Saturday

53 Sunday 9 Writing in Thesis 15 Sunday

	List of Figures
	List of Tables
	Introduction
	Background
	Academic Background
	Knowledge Gaps
	Thesis Rationale

	Problem Area
	Scope and Framework
	Timeframe
	Software

	Project Goals
	Learning Goals
	Effect Goals
	Result Goals

	Target Group
	Thesis Structure

	Requirement Specifications
	Solution Requirements
	Licensing
	Design

	Chosen Methods and Principles For The Pipeline
	Infrastructure As Code
	CI/CD
	GitOps

	Chosen Technologies For The Pipeline
	Kubernetes
	Grafana K6
	Kafka
	Vector
	OpenSearch
	Terraform
	Ansible
	FluxCD

	Methodology
	Project And Development Process
	GitLab Issues And Kanban Board
	GitOps Workflow
	Timeline
	Meetings

	Architecture
	Components

	Implementation Overview
	Infrastructure
	Kafka Redundancy And Robustness

	Implementation & Challenges
	Environment
	Tooling
	Terraform
	Ansible
	FluxCD

	Automated Infrastructure Management With IaC
	Provisioning
	Orchestration
	Bridging Terraform and Ansible

	The Deployment Pipeline
	Pipeline Structure
	Terraform Pipeline
	Ansible Pipeline
	Cross Repository Integration
	Proof of Concept

	Log Indexing And Storage With OpenSearch
	Deploying OpenSearch Via Terraform
	Creating and Distributing Certificates
	Ansible Playbooks
	Deploying OpenSearch Via GitLab Pipelines

	Kubernetes Deployment Strategy
	Deployment Choices
	Deploying With Terraform
	Provisioning Additional Credentials To FluxCD

	Gitops And Continuous Delivery In Kubernetes
	Orchestration Strategy
	Repository Structuring
	FluxCD And Git Integration

	Log Aggregation
	GitOps Implementation
	Deploying The Operator
	Deploying The Kafka Cluster
	Configuring Data-Replication
	Exposing Metrics
	Deploying The Kafka Topic
	Autoscaling

	Log Processing
	The GeoLite2 Geodata Database
	Vector Transformations

	Log Routing Strategies
	Route Handling - What Are The Options?
	Route-handling - Why Does It Matter?
	Data Routing With Vector

	Metrics and Monitoring
	Prometheus
	Grafana

	Traffic Simulation
	The Citadel Cluster
	Grafana K6

	Security
	Threat Model
	Supply Chain Security
	Secret Management
	Certificates And SSH Keys
	Terraform State File

	Kubernetes Security
	Network Policies
	Resource Constraints
	Role Based Access Control

	GitOps Security

	Results
	Performance Evaluation With OpenSearch
	Performance Evaluation Without OpenSearch

	Discussion
	Choice Of Tools and Technologies
	Containerization vs. Virtualization
	Managed vs. Self-deployed Kubernetes
	Event Streaming Platform
	Log Processing And Routing Solution
	Hashicorp Transitions To Business Source License

	Conclusion
	Project Goal Achievements
	Learning Goals
	Effect Goals
	Result Goals

	Further Work
	Replace Terraform With OpenTofu
	Product Hardening
	Expand Deployment Pipelines

	Bibliography
	Appendix

	Project Plan
	Introduction
	Goals and Restrictions
	Background
	Project Goals
	Framework

	Scope
	Problem Statement

	Project Organization
	Roles and area of responsibility
	Routines
	Group rules

	Planning, followup and reporting
	Project Management Methodology

	Organization of quality assurance
	Documentation
	Plan for testing and inspection
	Risk Analysis

	Plan for execution
	Gannt

	Signatures

	OpenSearch Ansible-Playbook modification
	Original opensearch security.yml
	New opensearch security.yml
	certificate configuration template added to role

	Results analysis
	With OpenSearch
	Dataset
	Jupyter notebook

	Without OpenSearch
	Dataset
	Jupyter notebook

	Meeting Minutes
	Time sheet

