
NP-Free: A Real-Time Normalization-free and
Parameter-tuning-free Representation Approach for

Open-ended Time Series
Ming-Chang Lee

Dept. of Computer Science
Høgskulen på Vestlandet (HVL)

Bergen, Norway
mingchang1109@gmail.com

ming-chang.lee@hvl.no

Jia-Chun Lin
Dept. of Information Security and Communication Technology

Norwegian University of Science and Technology (NTNU)
Gjøvik, Norway

jia-chun.lin@ntnu.no

Volker Stolz
Dept. of Computer Science

Høgskulen på Vestlandet (HVL)
Bergen, Norway

volker.stolz@hvl.no

Abstract—To help analyze time series in data mining appli-
cations, many time series representation approaches have been
proposed to convert a raw time series into another series for rep-
resenting the original time series. However, existing approaches
are not designed for open-ended time series (which is a sequence
of data points being continuously collected at a fixed interval
without any length limit) because these approaches need to know
the total length of the target time series in advance and pre-
process the entire time series using a normalization method.
Furthermore, many representation approaches require users to
configure and tune some parameters beforehand in order to
achieve satisfactory representation results. In this paper, we
propose NP-Free, a real-time Normalization-free and Parameter-
tuning-free representation approach for open-ended time series.
Without needing to use any normalization method or tune any
parameter, NP-Free can generate a representation for a raw time
series on the fly by converting each data point of the time series
into a root-mean-square error (RMSE) value based on Long
Short-Term Memory (LSTM) and a Look-Back and Predict-
Forward strategy. To demonstrate the capability of NP-Free in
representing time series, we conducted several experiments based
on real-world open-source time series datasets. We also evaluated
the time consumption of NP-Free in generating representations.

Index Terms—open-ended time series, time series repre-
sentation, dimensionality reduction, parameter-tuning-free, z-
normalization, time series analysis, data mining

I. INTRODUCTION

In recent years, there has been an increasing need for
time series analysis such as clustering, classification, anomaly
detection, forecasting, indexing, etc. [2] [5] [6] [18] [25]
[26] due to the explosion of the Internet of Things in a
cyber-physical world. Large volumes of time series data are
continuously measured and collected from connected devices
and sensors. Analyzing raw time series can be challenging
and undesirable due to high computation cost and memory
requirement [13]. One solution to achieve effective and ef-
ficient time series analysis is via high-level representation
approaches, which aim to extract features of time series or
reduce the dimensionality of the time series while preserving
the fundamental characteristics of the time series [16].

A number of time series representation approaches have
been proposed in the last few years. However, many of
them work only on fixed-length time series, rather than on

open-ended time series. This is something to do with their
underlying designs. Before generating a representation for a
time series, these approaches need to preprocess the time series
using z-normalization (also known as z-score normalization),
a commonly used normalization approach for time series
[14]. However, z-normalization might cause two distinct time
series to become indistinguishable [7], therefore misleading
the representation approaches and negatively affecting sub-
sequent data mining tasks. Another shortcoming with most
representation approaches is that users require to configure
certain parameters (e.g., the length of the time series, the
size of sliding window, or the size of Alphabet, etc. [8])
in advance. Without a proper value to each parameter, these
approaches may generate improper representations for time
series, consequently affecting subsequent data mining tasks.

To address aforementioned issues, this paper introduces NP-
Free, which is a real-time Normalization-free and Parameter-
tuning-free representation approach for open-ended time se-
ries. Inspired by one of the state-of-the-art real-time time
series anomaly detection approaches called RePAD [2], NP-
Free adopts Long Short-Term Memory (LSTM) and the Look-
Back and Predict-Forward strategy used by RePAD to generate
representations for time series. Note that NP-Free does not
need to preprocess time series using any normalization ap-
proach or require users to tune any parameter. In fact, NP-Free
can directly generate a representation for a raw time series on
the fly by transforming the time series into a root-mean-square
error (RMSE) series in real time (i.e., instantaneously).

More specifically, NP-Free keeps predicting the next data
point of the target time series based on three historical data
points and keeps calculating the corresponding RMSE value
between the observed and predicted data points. By doing so,
NP-Free can convert the target time series into a RMSE series.
To adapt to any pattern change in the time series, NP-Free
also retrains a new LSTM model as needed based on the self-
adaptive detection threshold introduced in [2].

NP-Free can be applied to any open-ended univariate time
series regardless of the pattern (i.e., recurrent or non-recurrent)
since NP-Free does not require the knowledge of the total
length of the target time series in advance. To demonstrate



the capability of NP-Free in representing time series, we
performed experiments based on real-world open-source time
series datasets. The results demonstrate that the representations
generated by NP-Free can retain the fundamental structural
properties of the corresponding time series and can therefore
represent the time series.

The rest of the paper is organized as follows: Sections II
and III present z-normalization and related work, respectively.
In Section IV, we introduce NP-Free. Section V presents
and discusses the experiments and the corresponding results.
Section VI concludes this paper and outlines future work.

II. Z-NORMALIZATION

Z-normalization, also known as z-score normalization, is
the process of normalizing each value in a dataset such that
the mean of all values is approximately 0 and the standard
deviation is in a range close to 1 [20]. The formula of z-
normalization is shown below.

xi =
xi − µ

σ
(1)

In the context of time series, xi is the i-th data point of the
time series, µ is the mean of all data points in the time
series, σ is the standard deviation of all the data points, and
xi is normalized data point derived from the equation. Z-
normalization is considered an essential preprocessing step
which allows time series representation approaches to focus on
the structural similarities/dissimilarities of time series rather
than on the original data point values [20]. However, z-
normalization has some shortcomings. When it encounters a
flat time series, any fluctuations (e.g., noises) will be enhanced,
resulting in an negative impact to a data mining technique,
such as Matrix Profile [17]. According to [7], z-normalization
might also destroy potentially relevant properties to distinguish
time series since the time series are shifted to have zero
mean. In other words, two distinct time series might become
indistinguishable after z-normalization. Similarly, according to
[14] [20] [21], z-normalization might not produce normalized
data with the exact same scale, causing a negative impact to
subsequent data mining tasks. This phenomenon is also shown
in our preprint paper1.

III. RELATED WORK

As mentioned earlier, time series representations are often
treated as the first component of time series analysis [16].
According to [13], time series representation approaches can
be classified into two categories: data adaptive and non-
data adaptive. Data adaptive representation methods, includ-
ing Symbolic Aggregate approXimation (SAX) [8] and the
clipped representation approach [19], try to minimize the
global reconstruction error using arbitrary length segments
[16]. According to [16], this type of methods can better
approximate each time series in datasets, but the comparison
of several time series is difficult. In contrast, non-data adaptive
approaches, including Piecewise Aggregate Approxmiation

1NP-Free preprint, https://doi.org/10.48550/arXiv.2304.06168

(PAA) [12] and Discrete Fourier Transformation (DFT) [32],
considered local properties of time series and constructed an
approximate representation accordingly [28]. Hence, non-data
adaptive approaches are suitable for time-series with equal-
length segmentation, and it is straightforward to compare the
representations of several time series [16].

Despite the above classification, existing representation ap-
proaches are designed to generate representations for fixed-
length time series because they require to normalize the target
time series using z-normalization before generating a represen-
tation for the time series. Example approaches include SAX
[8], PAA [12], Symbolic Aggregate approXimation and Vector
Space Model (SAX-VSM) [15], the clipped representation
approach [19], etc. Furthermore, they also require users to
set some parameters in advance. Without a proper value to
each parameter, these approaches might not be able to generate
proper representations for time series.

IV. METHODOLOGY OF NP-FREE

NP-Free aims to convert an open-ended univariate time
series into a RMSE series in real time for representing the time
series. To achieve this goal, NP-Free adopts some strategies
used by a lightweight real-time time series anomaly detection
approach called RePAD [2], including the simple LSTM
network structure (i.e., one hidden layer with ten hidden units),
the Look-Back and Predict-Forward strategy, and the main
idea of the detection threshold. In addition, NP-Free follows
the suggestion from [4] to set the Look-Back parameter to
3. In other words, NP-Free always uses three historical data
points to predict each upcoming data point.

However, unlike RePAD, NP-Free is not designed to detect
anomalies. Instead, it is to predict every upcoming data point
in the target time series and calculate the corresponding RMSE
value. To make sure the deterministic property of NP-Free
(i.e., the same RMSE series will always be generated given
the same time series), NP-Free removes all randomness by
fixing all LSTM hyperparameter setting (including the number
of hidden layers, the number of hidden units, learning rate,
the number of epochs, etc.) and following the hyperparameter
setting used by RePAD [2].

Fig. 1 illustrates the algorithm of NP-Free where T denotes
the current time point and T starts from 0, which is the time
point when NP-Free is launched. Let dT be the real data point
collected at time point T, and d̂T be the data point predicted by
NP-Free for time point T. There are four differences between
NP-Free and RePAD. First, NP-Free always uses three data
points to predict each upcoming data point. In other words, it
removes the Look-Back parameter by fixing the value of it to
three, followed by the suggestion made by [4].

The second difference is that NP-Free uses RMSE to
measure its prediction error instead of using AARE. Equation
6 shows how RMSET (i.e., the RMSE at time point T) is
calculated.

RMSET =

√∑T
z=T−2 (dz − d̂z)2

3
, T ≥ 5 (2)



It is clear that given any two time series (says A and B), RMSE
is to evaluate the absolute error between A and B, meaning that
the error would be always identical no matter A is the observed
time series or the predicted one. On the contrary, AARE is to
evaluate the relative error. Hence, the relative error of A to B
might not be the same as the relative error of B to A. Due to
the above reason, NP-Free chose RMSE to help achieve the
above-mentioned deterministic property.

Fig. 1. The algorithm of NP-Free.

The third difference is that NP-Free keeps calculating its
threshold thdRMSE (see Equation 3) based on a fixed number
of RMSE values, rather than all past AARE values.

thdRMSE = MRMSE + 3 · σ (3)

MRMSE is the average RMSE at time point T as shown below.

MRMSE =

{
1

T−4 ·
∑T

z=5 RMSEz, 7 ≤ T < W + 4
1
W ·

∑T
z=T−W+1 RMSEz, T ≥ W + 4

(4)

Variable W is the length of a sliding window to control how
many previous RMSE values should be considered to derive
the threshold. For instance, when W is set to 100, NP-Free
will always use the 100 most recently derived RMSE values
to calculate MRMSE if the total number of historical RMSE
values is sufficient. Since NP-Free is designed to generate
representations for open-ended time series, it is important to
include a limited sliding window so that the underlying system
resources will not be exhausted by Equation 3.

Equation 5 shows how to calculate standard deviation σ at
time point T. Similarly, sliding window W is also considered
to derive σ.

σ =


√∑T

z=5 (RMSEz−MRMSE)2

T−4 , 7 ≤ T < W + 4√∑T
z=T−W+1

(RMSEz−MRMSE)2

W , T ≥ W + 4

(5)

Whenever time point T advances and it is greater than or
equal to 7 (i.e., either line 11 of Fig. 1 or line 23 of Fig.
1 is evaluated to be true), NP-Free re-calculates RMSET and
thdRMSE . If RMSET is not greater than the threshold (see lines
15 and 28), RMSET will be immediately outputted by NP-Free.

Otherwise, it might mean that the data pattern of the target
time series has changed. In this case, NP-Free will try to
adapt to the change by retraining an new LSTM model to
re-predict d̂T and re-calculate both RMSET and thdRMSE either
at current time point (i.e., lines 17 to 20) or at the next time
point (i.e., lines 24 to 27) by setting its Flag to be “False”.
If the re-calculated RMSET is not larger than thdRMSE, NP-
Free immediately outputs RMSET. Otherwise, NP-Free outputs
RMSET and sets its Flag to be “False”, which will trigger
LSTM model retraining at the next time point.

The last difference between NP-Free and RePAD is that
NP-Free does not announce if a data point is anomalous or
not because detecting anomalies is not its goal. By repeating
the same process, an open-ended time series can be converted
into a RMSE series on the fly in real time. In the next section,
we will demonstrate the RMSE series generated by NP-Free
can indeed represent the corresponding time series.

V. EXPERIMENTAL RESULTS

We conducted a set of experiments to demonstrate the
capability of NP-Free in generating time series representa-
tions. Note that we did not compare NP-Free with other
representation approaches because none of them was de-
signed to generate representations for open-ended time se-
ries in real time. In other words, we did not use TLB
(Tightness of Lower Bound) [13] to evaluate NP-Free even
though TLB is a common measure for comparing represen-
tation approaches. According to the equation of TLB, i.e.,
TLB=LowerBoundDist(X,Y)/TrueEuclideanDist(X,Y), where X
and Y are two z-normalized time series. Since NP-Free works
directly on raw time series, rather than on z-normalized time
series, TLB cannot be applied to evaluate NP-Free.

TABLE I
THE HYPERPARAMETER AND PARAMETER SETTING USED BY NP-FREE.

Hyperparameters and parameters Value
The number of hidden layers 1
The number of hidden units 10
The number of epochs 50
Learning rate 0.005
Activation function tanh
Random seed 140
The sliding window 1440

TABLE I lists all hyperparameters and parameters used and
pre-fixed by NP-Free. Note that all of them (except the sliding
window) were used or suggested by [2] and [4]. Regarding
the sliding window, we conducted an experiment to study
how different sliding window sizes impact NP-Free. We chose
288, 576, 864, 1152, 1440, 1728, 2016, and 4032 to be the
sliding window, but found that all of them had no significant
impact to NP-Free in terms of representation generation and
time consumption. Hence, we chose one of them (1440) to be
the sliding window in our experiments. In other words, users
do not need to tune any hyperparameters or parameters for



using NP-Free. That is why we said that NP-Free is parameter-
tuning-free. The main purpose of fixing all hyperparameters
and parameters is to ensure that NP-Free can always produce
the same RMSE series for the same time series (i.e., the
deterministic property).

In this paper, NP-Free was implemented in Deeplearning4j
[37], and all experiments were conducted on a MacBookPro
laptop running MacOS Monterey 12.5.1 with Apple M1 Pro
chip and 16GB Memory. The purpose is to demonstrate that
NP-Free can be easily deployed on a commodity machine.

We chose three time series from an open-source repository
called NAB [3] and one time series from Melbourne Pedestrian
Foot Traffic [33]. TABLE II lists the details of the four time
series. The first two time series are separately called rds-cpu-
utilization-e47b3b (B3B for short) and ec2-cpu-utilization-
825cc2 (CC2 for short), and both exhibit a non-recurrent data
pattern. The last two time series are separately called art-daily-
small-noise (ADSN for short) and Bourke Street Mall South
(BSMS for short), and they exhibit a recurrent data pattern.
The reason of choosing these time series is to show that NP-
Free works on any time series regardless of their data patterns.

TABLE II
FOUR OPEN-SOURCE TIME SERIES USED.

Name Time Period Total number of
data points

Time
Interval

B3B From 2014-04-10, 00:02 to
2014-04-23, 23:57

4032 5 min

CC2 From 2014-04-10, 00:04 to
2014-04-24, 00:09

4032 5 min

ADSN From 2014-04-01, 00:00 to
2014-04-14, 23:55

4032 5 min

BSMS From 2016-01-01, 00:00 to
2016-06-30, 23:00

4368 1 hour

To show that NP-Free always generates similar RMSE series
for similar non-recurrent time series, we created 12 variants
for time series B3B and named them B3B+100, B3B+200,
..., B3B+1000, B3B+1500, and B3B+2000 by increasing each
data point value of the B3B time series by 100, 200, ..., 1000,
1500, and 2000, respectively. Due to page limit, we only show
B3B and B3B+100 in Fig. 2. It is clear that these two time
series have the exactly the same shape and data pattern but
have different offsets in the Y axis. In fact, all the B3B variants
have the same shape and data pattern as B3B.

Fig. 2. All data points in B3B and B3B+100.

Then we used NP-Free to generate a RMSE series for B3B
and each B3B variant. Just for illustration, Fig. 3 depicts the
RMSE series generated by NP-Free for B3B and B3B+100.

Apparently, it is difficult to distinguish the two RMSE series
with human eyes because they almost overlap with each other.
Therefore, we utilized Euclidean Distance [11] (see Equation
6) to compare the two RMSE series.

ED(Ri,Rj) =

√√√√ L∑
z=1

(Ri,z − Rj,z)
2 (6)

where Ri and Rj are any two RMSE series (i=1, 2,..., n, and
j=1, 2,..., n, but i ̸= j), Ri,z denotes the z-th data point of Ri,
and Rj,z denotes the z-th data point of Rj, where z=1, 2, ...,
L. We calculated the Euclidean Distance between the RMSE
series of B3B and the RMSE series of every other B3B variant
separately. As listed in TABLE III, all Euclidean Distance
values are very low, meaning that the RMSE series generated
by NP-Free for all the B3B variants are individually similar
to the RMSE series generated by NP-Free for B3B.

Fig. 3. The RMSE series generated by NP-Free for B3B and B3B+100.

TABLE III
THE EUCLIDEAN DISTANCE BETWEEN THE RMSE SERIES OF EACH B3B

VARIANT AND THE RMSE SERIES OF B3B.
Variant Name Euclidean Distance to B3B

B3B+100 0.060
B3B+200 0.62

B3B+300, B3B+400 0.060
B3B+500, B3B+600, ..., B3B+900 0.62

B3B+1000 0.216
B3B+1500, B3B+2000 0.213

TABLE IV
THE EUCLIDEAN DISTANCE BETWEEN THE RMSE SERIES OF EACH CC2

VARIANT AND THE RMSE SERIES OF CC2.
Variant Name Euclidean Distance to CC2

CC2+100 0.007
CC2+200, CC2+300, CC2+400 0.016

CC2+500, CC2+600, ..., CC2+900 0.017
CC2+1000, CC2+1500 0.23

CC2+2000 0.227

We repeated the same procedure to create 12 variants for
CC2, and used NP-Free to generate a RMSE series for CC2
and each CC2 variant. TABLE IV shows that the Euclidean
Distance between the RMSE series of each CC2 variant and
that of CC2 is very short, i.e., NP-Free indeed generates
similar RMSE series for similar non-recurrent time series.

Now we continue to demonstrate that NP-Free can generate
similar RMSE series for similar recurrent time series. To do
it, we followed the same procedure to separately create 12
variants for ADSN and BSMS so that all the variants for
ADSN have the same data pattern as ADSN, and that all the
variants for BSMS have the same data pattern as BSMS.

Due to the page limit, we only show ADSN and one
of its variants (called ADSN+100) in Fig. 4. Apparently,



they have exactly the same shape and data pattern. Fig. 5
depicts the RMSE series generated by NP-Free for ADSN and
ADSN+100. Clearly, it is hard to distinguish the two RMSE
series due to the significant overlapping. Hence, we further
calculated the Euclidean Distance between the RMSE series
of ADSN and the RMSE series of each ADSN variant. As
shown in TABLE V, all distance values are very low.

We also obtained similar results when NP-Free was used to
generate RMSE series for BSMS and each BSMS variant. As
listed in TABLE VI, all Euclidean Distance values are very
low as well. Based on the above results, we confirm that NP-
Free generates similar RMSE series for similar time series.
The results for demonstrating that NP-Free does not generate
similar RMSE series when time series have an opposite data
pattern can be found in our preprint2.

Fig. 4. All data points in ADSN and ADSN+100.

Fig. 5. The RMSE series generated by NP-Free for ADSN and ADSN+100.

TABLE V
THE EUCLIDEAN DISTANCE BETWEEN THE RMSE SERIES OF EACH

ADSN VARIANT AND THE RMSE SERIES OF ADSN.
Variant Name Euclidean Distance to ADSN

ADSN+100, ADSN+200, ..., ADSN+400 0.08
ADSN+500, ADSN+600, ..., ADSN+900 0.083

ADSN+1000, ADSN+1500 0.247
ADSN+2000 0.246

TABLE VI
THE EUCLIDEAN DISTANCE BETWEEN THE RMSE SERIES OF EACH

BSMS VARIANT AND THE RMSE SERIES OF BSMS.
Variant Name Euclidean Distance to BSMS
BSMS+100 0.005
BSMS+200 0.008
BSMS+300 0.011
BSMS+400 0.014

BSMS+500, BSMS+700, BSMS+700 0.016
BSMS+800 0.020
BSMS+900 0.022

BSMS+1000 0.023
BSMS+1500 0.027
BSMS+2000 0.035

Recall that NP-Free has a lightweight design. To demon-
strate that NP-Free is indeed lightweight, we separately eval-

2NP-Free preprint, https://doi.org/10.48550/arXiv.2304.06168

uated the time consumption of NP-Free in generating RMSE
representations for time series B3B, CC2, ADSN, and BSMS.
Recall that NP-Free only trains an LSTM model in the begin-
ning and when it finds that current RMSE value is greater than
the current value of thdRMSE. TABLE VII shows the number
of LSTM model training required for each time series. When
NP-Free converted B3B into the corresponding RMSE time
series, only 59 data points out of 4032 data points triggered
LSTM model training, implying that the training ratio is 1.46%
(=59/4032). It is also clear from TABLE VII that the training
ratios for the other three time series are very low, implying
that NP-Free did not need to train its LSTM models often.

TABLE VII
TOTAL NUMBER OF REQUIRED LSTM MODEL RETRAINING.

Time Series Number of data points triggering LSTM model training
B3B 59 out of 4032
CC2 61 out of 4032

ADSN 127 out of 4032
BSNS 15 out of 4368

When LSTM model retraining is required, NP-Free might
require more time to generate a RMSE value. TABLE VIII lists
the average time required by NP-Free to generate a RMSE
value for each data point in the four different time series
while LSTM model retraining is required. On the other hand,
TABLE IX shows the average time required by NP-Free while
LSTM model training is not required. Apparently, when LSTM
model retraining is required, NP-Free needs more time to
generate a RMSE value. Nevertheless, we can see that NP-
Free is very efficient since it does not need to retrain LSTM
models very often and that even when it needs to do so, it can
generate a RMSE value in a short time. That is why we said
NP-Free can generate representations in real time.

TABLE VIII
TIME CONSUMPTION WHILE LSTM MODEL RETRAINING IS REQUIRED.

Time Series Average time of generating a RMSE Value Std dev
B3B 0.233 sec 0.045 sec
CC2 0.241 sec 0.061 sec

ADSN 0.217 sec 0.048 sec
BSNS 0.291 sec 0.073 sec

TABLE IX
TIME CONSUMPTION WHILE MODEL RETRAINING IS NOT REQUIRED.

Time Series Average time of generating a RMSE Value Std dev
B3B 0.007 sec 0.004 sec
CC2 0.008 sec 0.07 sec

ADSN 0.008 sec 0.003 sec
BSNS 0.007 sec 0.005 sec

VI. CONCLUSION AND FUTURE WORK

In this paper, we have introduced NP-Free. It can generate
a representation for an open-ended univariate time series in
real time by predicting each upcoming data point of the time
series and calculating the corresponding RMSE value on the
fly. Different from existing representation approaches, NP-
Free does not need to go through any offline normalization
preprocessing. Besides, it does not require users to tune or
configure any hyperparameter or parameter.



The experiment based on real-world open-source time series
datasets demonstrated that the RMSE series generated by NP-
Free can indeed represent the corresponding time series. The
results show that NP-Free indeed generates similar RMSE
series for similar time series regardless of their offsets in the Y
axis. Furthermore, the experiments also show that NP-Free is
very lightweight because it employs a simple LSTM network
(only one hidden layer with ten hidden units), always uses
three data points to train its LSTM model, and performs LSTM
model retraining only when necessary. Therefore, NP-Free can
be easily deployed on commodity computers and used as a
pre-processing tool for real-time time series analysis, such as
clustering and classification.

As for future work, we plan to design a real-time cluster-
ing algorithm for clustering time series based on NP-Free.
Additionally, we intend to propose a real-time online pattern
recognition approach based on NP-Free.

REFERENCES

[1] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[2] M.-C. Lee, J.-C. Lin, and E. G. Gran, “RePAD: real-time proac-
tive anomaly detection for time series,” In Proceedings of the 34th
International Conference on Advanced Information Networking and
Applications (AINA 2020), pp. 1291–1302, 2020. (The updated version
of the RePAD algorithm from arXiv was used in this NP-Free paper.
See arXiv:2001.08922)

[3] NAB [Online code repository], Available:
https://github.com/numenta/NAB [accessed 12-April-2023]

[4] M.-C. Lee, J.-C. Lin, and E. G. Gran, “How Far Should We Look
Back to Achieve Effective Real-Time Time-Series Anomaly Detec-
tion?,” International Conference on Advanced Information Networking
and Applications (AINA 2021), pp. 136–148, 2021. arXiv preprint
arXiv:2102.06560.

[5] M.-C. Lee, J.-C. Lin, and E. G. Gran, “ReRe: a lightweight real-
time ready-to-go anomaly detection approach for time series,” 2020
IEEE 44th Annual Computers, Software, and Applications Conference
(COMPSAC), pp. 322–327, 2020. arXiv preprint arXiv:2004.02319.

[6] M.-C. Lee, J.-C. Lin, and E. G. Gran, “SALAD: Self-adaptive
lightweight anomaly detection for real-time recurrent time series,” 2021
IEEE 45th Annual Computers, Software, and Applications Conference
(COMPSAC), pp. 344–349, 2021. arXiv preprint arXiv:2104.09968.

[7] F. Höppner, “Less is more: similarity of time series under linear trans-
formations,” Proceedings of the 2014 SIAM International Conference
on Data Mining, pp. 560–568, 2014.

[8] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing SAX: a novel
symbolic representation of time series,” Data Mining and knowledge
discovery, vol. 15, no. 2, pp. 107–144, 2007.

[9] E. Keogh, S. Lonardi, and C. A. Ratanamahatana, “Towards parameter-
free data mining,” Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 206–215,
2004.

[10] N. Passalis, A. Tefas, J. Kanniainen, M. Gabbouj, and A. Iosifidis,
“Deep adaptive input normalization for time series forecasting,” IEEE
transactions on neural networks and learning systems, vol. 31, no. 9, pp.
3760–3765, 2019.

[11] E. Keogh and S. Kasetty, “On the need for time series data mining
benchmarks: a survey and empirical demonstration,” Proceedings of the
eighth ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 102–111, 2002.

[12] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, “Dimensionality
reduction for fast similarity search in large time series databases,”
Knowledge and information Systems, vol. 3, no. 3, pp. 263–286, 2001.

[13] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh,
“Querying and mining of time series data: experimental comparison
of representations and distance measures,” Proceedings of the VLDB
Endowment, vol. 1, no. 2, pp. 1542–1552, 2008.

[14] H. A. Dau et al. “The UCR time series archive,” IEEE/CAA Journal of
Automatica Sinica, vol. 6, no. 6, pp. 1293–1305, 2019.

[15] P. Senin and S. Malinchik, “Sax-vsm: Interpretable time series classifi-
cation using sax and vector space model,” 2013 IEEE 13th international
conference on data mining, pp. 1175–1180, 2013.

[16] S. Aghabozorgi, A. S. Shirkhorshidi, and T. Y.Wah, “Time-series
clustering–a decade review,” Information systems, vol. 53, pp. 16–38,
2015.

[17] D. D. Paepe, D. N. Avendano, and S. V. Hoecke, “Implications of Z-
Normalization in the Matrix Profile,” International Conference on Pattern
Recognition Applications and Methods, pp. 95–118, Springer, Cham,
2019.

[18] C. Ratanamahatana, E. Keogh, A. J. Bagnall, and S. Lonardi, “A novel
bit level time series representation with implication of similarity search
and clustering,” In Pacific-Asia conference on knowledge discovery and
data mining, pp. 771–777, Springer, Berlin, Heidelberg, 2005.

[19] A. Bagnall, et al., “A bit level representation for time series data mining
with shape based similarity,” Data mining and knowledge discovery, vol.
13, no. 1, pp. 11–40, 2006.

[20] P. Senin, “Z-normalization of time series,” https://jmotif.github.io/sax-
vsm site/morea/algorithm/znorm.html [accessed 12-April-2023]

[21] Normalization, https://www.codecademy.com/article/normalization [ac-
cessed 12-April-2023]

[22] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[23] K. Cho, et al., “Learning phrase representations using RNN
encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[24] M. Santini, “Advantages Disadvantages of k-Means
and Hierarchical clustering (Unsupervised Learning),”
http://santini.se/teaching/ml/2016/Lect 10/10c UnsupervisedMethods.pdf
[accessed 12-April-2023]

[25] A. Bagnall, et al., “The great time series classification bake off: a
review and experimental evaluation of recent algorithmic advances,”
Data mining and knowledge discovery, vol. 31, no. 3, pp. 606–660,
2017.

[26] H. Ismail Fawaz, et al., “Deep learning for time series classification:
a review,” Data mining and knowledge discovery, vol. 33, no. 4, pp.
917–963, 2019.

[27] Root-mean-square deviation, https://en.wikipedia.org/w/index.php?title=
Root-mean-square deviationoldid=1108025020 [accessed 12-April-
2023]

[28] X. Wang, et al., “Experimental comparison of representation methods
and distance measures for time series data,” Data Mining and Knowledge
Discovery, vol. 26, no. 2, pp. 275–309, 2013.

[29] S. Hochreiter, “The vanishing gradient problem during learning recurrent
neural nets and problem solutions,” International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, vol. 6, no. 2, pp. 107–116,
1998.

[30] Joe H Ward Jr, “Hierarchical grouping to optimize an objective func-
tion,” Journal of the American statistical association, vol. 58, no. 301,
pp. 236–244, 1963.

[31] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A k-means
clustering algorithm,” Journal of the royal statistical society. series c
(applied statistics), vol. 28, no. 1, pp. 100–108, 1979.

[32] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, “Fast subsequence
matching in time-series databases,” Acm Sigmod Record, vol. 23, no.
2, pp. 419–429, 1994.

[33] ”City of Melbourne - Pedestrian Foot Traffic.”
www.pedestrian.melbourne.vic.gov.au [accessed 12-April-2023].

[34] J. Hochenbaum, O. S. Vallis, and A. Kejariwal, “Automatic anomaly
detection in the cloud via statistical learning,” arXiv preprint
arXiv:1704.07706, 2017.

[35] N. Zou, J. Wang, G.L. Chang, J. Paracha, “Application of advanced
traffic information systems: field test of a travel-time prediction system
with widely spaced detectors,” Transportation Research Record, vol.
2129, no. 1, pp. 62–72, 2009.

[36] T. J. Lee, J. Gottschlich, N. Tatbul, E. Metcalf, and S. Zdonik,
“Greenhouse: A Zero-Positive Machine Learning System for Time-
Series Anomaly Detection,” arXiv preprint arXiv:1801.03168, 2018.

[37] Deeplearning4j, https://deeplearning4j.konduit.ai/, [accessed 12-April-
2023].


	Introduction
	Z-normalization
	Related Work
	Methodology of NP-Free
	Experimental Results
	Conclusion and Future Work
	References

