
Computers & Industrial Engineering 186 (2023) 109733

A
0

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier.com/locate/caie

Towards digital twins for safety demonstrations: Interfacing strategies for
FPGA-targeted applications
Ludvig Björklund a,∗, Johannes Schick b, Mary Ann Lundteigen a, Markus Glaser b

a Department of Engineering Cybernetics, Norwegian University of Science and Technology, Norway
b High Integrity Mechatronic Systems, Aalen University, Germany

A R T I C L E I N F O

Keywords:
Digital Twin
Functional Safety
Simulation-based verification
Hardware Description Language
FPGA-based control

A B S T R A C T

For facilitating a framework of digital twins for safety demonstrations, this research paper identifies feasible
interfacing strategies to connect a digital twin of novel all-electric actuation systems with safety-critical
functions targeted for an FPGA device. The framework can improve safety demonstrations with a lifecycle
perspective and one-to-one twinning if the values of the framework are realizable. For selecting a suitable
interfacing strategy, the paper proposes five performance criteria to preserve the framework’s values while
interfacing the controller logic with a digital twin. The paper introduces a safety-critical case study, thereby
establishing reasoning, literature, and simulation testing of the interfacing strategies regarding relevant
interfacing considerations and the performance criteria. We recommend using behavioral models during
the design of FPGA firmware and commercial tools for verification against a reference model during the
synthesizing steps. For the final development stage, we propose an FPGA-based digital twin, which offers high
computational speed, scalability for integration testing, and comprehensive testing of the digital logical circuits.
Implementing the recommendation requires practical implications, including adhering to FPGA configuration
constraints and developing custom resources for interacting with the FPGA-based digital twin.
1. Introduction

The oil and gas industry is shifting towards increasing the digital-
ization and electrification of subsea equipment to reduce production
costs and mitigate environmental impact. The expectation is that elec-
tric subsea production and control systems can bring about several
benefits, including improving system reliability and availability, en-
hancing diagnostic capabilities, and increasing the overall operational
safety (Mahler et al., 2019). A subsea system under consideration for
electrification and digitalization is the actuation control system of a
safety valve, which constitutes a critical part of the subsea Christmas
tree system. The Christmas tree system, installed on top of the wellhead,
comprises a network of pipes, valves, and fittings. Closing the flow
of hydrocarbons is a critical functionality of the safety valves of the
Christmas tree.

An all-electric actuation system can replace existing approaches of
hydraulic-powered safety valves and thereby mitigate costs, reduce
environmental impact, and provide extended controllability and diag-
nostics of the state of the valve. The primary function of the safety
valve is to stop the hydrocarbon flow in the event of a production or
emergency shutdown, making it a critical component in reaching a safe
state of the production process. Available solutions for the safety valve

∗ Correspondence to: Kinnvegen 5, 7045 Trondheim, Norway.
E-mail address: ludvig.bjorklund@ntnu.no (L. Björklund).

are typically spring-based and rely on hydraulic power to store energy
in the spring, transitioning the subsea production system to a safe state
by a power cut. Fig. 1 illustrates a proposal for an all-electric actuation
system to transition a safety valve and cut the hydrocarbon flow.

The figure illustrates the main components of the all-electric actua-
tion system, including the communication lines to topside facilities and
external power supply. The concept operates on an energize-to-close
principle, requiring a power supply to the motor to reach a safe state.
Design and control of the actuator control system of the safety valves
must comply with functional safety standards such as IEC 61508 (IEC
61508, 2010). Safety Integrity Levels (SIL) are a classification system
defined by IEC 61508 to quantify the risk reduction reachable by
safety functions in a system. For actuation systems responsible for
safety-critical valves in the Norwegian oil and gas sector recommended
practices and standards stipulate SIL levels 2 and 3 (GL 070, 2020). The
IEC 61508 standard is a generic standard commonly used for certifying
novel designs and new products for use in safety systems.

To demonstrate functional safety, testing the embedded controllers,
e.g., the Battery Management System (BMS) and the motor controller,
is a critical activity to reach certification. Testing activities of software-
dependent systems are resource intensive and require a manifold of test
vailable online 2 November 2023
360-8352/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.cie.2023.109733
Received 30 January 2023; Received in revised form 16 October 2023; Accepted 3
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

0 October 2023

https://www.elsevier.com/locate/caie
http://www.elsevier.com/locate/caie
mailto:ludvig.bjorklund@ntnu.no
https://doi.org/10.1016/j.cie.2023.109733
https://doi.org/10.1016/j.cie.2023.109733
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2023.109733&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computers & Industrial Engineering 186 (2023) 109733L. Björklund et al.
Fig. 1. A proposed architecture for an all-electric subsea actuation system.

cases to reach adequate test coverage (Kapinski et al., 2016). Rewriting
code, removing errors, or addressing gaps require re-executing the
extensive list of test cases (IEC 61508, 2010). A digital twin cap-
turing safety-relevant behavior of the hardware components, directly
interfacing with logic-embedded functionality, can demonstrate safe
(or unsafe) behavior in software-dependent safety-critical systems. A
digital twin can provide several benefits, simplifying experimental
setup, reducing testing time, eliminating risks, and revealing insights
about hidden states. The potential to scale up testing capabilities and
generate evidence over the entire lifecycle are distinctive benefits
for demonstrating the safe behavior of the system. Furthermore, the
digital twin facilitates demonstrations of future control strategies and
diagnostic tools made available via software updates. An opportune
interface with the safety-critical software modules is critical for reach-
ing the scalability and speed improvements of using digital twins for
safety demonstrations and selecting appropriate interfacing strategies
is crucial for the digital twin framework.

Implementing controllers and diagnostic applications on a Field Pro-
grammable Gate Array (FPGA) provides flexibility, high-speed parallel
processing, and the ability to implement complex algorithms, ensuring
fast response times and high accuracy (Monmasson et al., 2011). The
logic modules, or ‘‘controllers’’ with an FPGA target platform, such
as the battery management system and the motor controller, provide
an interesting case study for arriving at suitable interfacing strategies.
Unlike traditional software, executing on a general-purpose processor,
FPGA firmware is a combination of hardware description languages
(HDL) such as VHDL or Verilog for configuring the digital logical
circuits on the FPGA. In this article, FPGA firmware specifically denotes
the control and diagnostic functions implemented using HDL for exe-
cution on an FPGA. Once physically implemented on the FPGA board,
these functions are still referred to as FPGA firmware, as executable on
the FPGA device.

The design of novel safety-critical systems is often aided by follow-
ing a standard, e.g., IEC 61508, for ensuring conformance and facil-
itating certification. The standard IEC 61508 provides recommended
practices and heuristic approaches for verification and validation ac-
tivities for the functional safety of electrical/electronic/programmable
electronic safety-related systems (IEC 61508, 2010).

1.1. Objective

The paper contributes to digital twins for safety demonstrations
by researching the development of FPGA-targeted controllers, identi-
fying feasible interfacing strategies, and proposing a set of criteria for
2

supporting the decision. The research aims to improve safety demon-
strations in the complete lifecycle by evaluating and selecting inter-
facing strategies capable of preserving the values of digital twins for
safety demonstrations. The case study will contribute to understanding
existing solutions, provide guidance and recommendations for future
implementations, and leverage the lifecycle perspective of digital twins
for future firmware updates. The paper’s contribution lies in facilitating
the integration of a digital twin in the recommended developmental
flow of safety-critical controllers for FPGAs.

1.2. Structure

In Section 2, the paper examines the concept of digital twins,
simulation-based verification procedures, and outlining criteria for as-
sessing the effectiveness of digital twins in safety demonstrations.
Section 3 provides background on FPGAs, recommended design flow,
and the challenges of simulating FPGA firmware on a processor. Sec-
tion 4 introduces strategies for interfacing the digital twin with FPGA
firmware and a set of criteria to evaluate the interfacing strategies.
Subsequently, in Section 5, a case study introduces the challenges and
opportunities of the framework and functions as a basis for determining
the suitability of the interfacing strategies. Section 6 discusses the
results, assumptions, and limitations of the research. The final section
presents the conclusions from the study and a discussion of future work.

2. Digital twins for safety demonstrations

The digital twin concept was initially discussed by Michael Grieves,
in a presentation in 2002, and he is often accredited as the conceptual
father. Arguably, claims that the Apollo 13 mission principally operated
a twin connecting to the actual asset indicate a debatable origin of
digital twins (Mashaly, 2021). Regardless of the conceptual origin, the
digital twin concept is gaining significant attention and interest with
proposed utility for a range of use cases (Liu et al., 2021; Singh et al.,
2021). This section provides a background literature review on digital
twins, offering insights into general values and introducing a use case
of safety demonstrations.

2.1. Defining the digital twin

Three defining components of the digital twin concept are a physical
asset (capable of capturing information in the physical domain), a
digital replica capable of integrating information about the asset, and
a communication layer transferring information between the physical
and the virtual domains (Grieves & Vickers, 2017). The fundamental
idea of the digital twin concept is connecting a physical asset (i.e., a
system, component, or process) to a digital replica. The connection, or
the twinning, between the virtual and physical domain encapsulates
a lifecycle perspective, from an immaterial asset to an operational
instance of the physical asset (Jones et al., 2020). Twinning in the
operational stage connects instances of the physical asset with a unique
and custom digital twin instance. Fig. 2 illustrates the lifecycle perspec-
tive and the subsequent twinning on a one-to-one instance basis of the
digital twin concept.

The idea of the life-cycle-driven view incorporated in the digi-
tal twin-concept is to update and carry information throughout the
life-cycle of the physical asset. The digital twin environment is the
virtual environment for the realization of the digital twin, and tools
for implementing digital twins can differ depending on the use cases
of the digital twin. All simulations of environmental effects and oper-
ating conditions in the physical domain are part of the digital twin
environment (Grieves & Vickers, 2017). The term digital twin ag-
gregate describes a collection of digital twin instances connected to
instances of the physical asset. Aggregating the data from the collection
of digital twin instances can improve predictive capabilities, particu-
larly diagnostics, e.g., by integrating behaviors indicating a fault or

failure (Glaessgen & Stargel, 2012).



Computers & Industrial Engineering 186 (2023) 109733L. Björklund et al.

c

i
i
v
p
t
t
v
(
s
i
f
i
f

l
i
r
i
i
p
T
t
t
t
t
i
p
t
a
c
t
p

s
a
o
l
A
d
(
t
d

Fig. 2. The principal components in the lifecycle of a physical asset with a
orresponding digital twin.

Rasheed et al. (2020) identify key technology enablers in the phys-
cal and the virtual domain for advancing the digital twin concept,
ncluding data compression, communication technologies, sensor ad-
ancements, high-fidelity simulators, and cloud computing. The im-
roved capabilities of technology facilitate the development of digital
wins capable of interacting with the physical asset. However, fur-
her technological developments are needed to achieve the ambitious
ision described by Glaessgen and Stargel in Glaessgen and Stargel
2012), where integrated information from multiple digital twin in-
tances and detailed physics-based models are employed. Nonetheless,
mplementing digital twins allows for initiating the construction of
easible applications on a smaller scale, offering practical benefits and
mprovement over currently existing alternatives without requiring a
ull-scale realization of the perceived integration of the concept.

Twinning is defined as ‘‘the act of synchronization’’ in the systematic
iterature review by Jones et al. (2020). The authors highlight the
mportance of syncing between the physical and the virtual domain to
ealize the digital twin concept, identifying it as a significant character-
stic and critical act in creating digital twins. The twinning process also
nvolves examining the physical asset and adjusting underlying model
arameters that capture expected behavior (Björklund et al., 2022).
he authors of Jones et al. introduce the terminology of ‘‘physical-
o-virtual’’ to describe the process of transferring information from
he physical domain to the virtual domain and ‘‘virtual-to-physical’’ in
he opposite direction of the information flow. Continuously updating
he model parameters of the digital twin, using the physical-to-virtual
nformation transfer, enables tracking and monitoring the state of the
hysical asset. A continuous parameter adjustment enables the digital
win to stay synchronized with the physical asset, providing reliable
nd up-to-date information about its behavior. The virtual-to-physical
ommunication would, for example, allow an operator of the digital
win to update control parameters, subsequently changing the control
arameters of the physical controller (Jones et al., 2020).

The term digital twin in industrial and academic documentation
pans a range from standalone models without direct effect to fully
utomated (change at either end of the twinning causes a change in the
ther, automatically) bidirectional information exchange as noted in a
iterature view of the utilization of the term (Kritzinger et al., 2018).
s evidenced by the vast utilization of the term digital twin the exact
efinition of a digital twin is contested. The authors of Kritzinger et al.
2018) propose an integration-based classification scheme for digital
wins, classifying proposals and applications of digital twins into three
3

istinct categories: digital model, digital shadow, and digital twin. The
communication layer of the digital model is considered entirely man-
ual, i.e., a state change in the physical asset requires user intervention
to update the state in the digital model. The digital shadow includes
the capability to automatically update the digital models to track
state changes of the physical asset and manually transfer information
from the digital twin to the physical asset. The digital twin facilitates
automatic state changes in the physical asset in response to changes in
the digital twin and vice versa (Kritzinger et al., 2018). The term digital
shadow, however, implies a mere mirroring or tracking capability, and
alternative perspectives on classifying digital twins exist. Depending
on the use case, automatically updating the parameters of the physical
assets can become a barrier to development and decision-making. The
term ‘‘twin’’ is more appropriate to cover the automatic physical-to-
virtual direction, because it highlights the capability of simulations to
go beyond the limitations and normal operational conditions. A well-
designed digital twin has underlying computational models capable of
accurately describing the properties of the physical asset and thereby
capturing the behavior of the physical asset. The capability to compute
an expectation of the physical asset behavior enables supporting deci-
sions by producing evidence with the digital twin, even in scenarios
rarely occurring in the physical asset.

Bonsch et al. (2022) propose an alternative to the integration-
based classification methodology, a subject-oriented reference model
for defining the underlying foundations of the digital twin concept. This
reference model serves as a functional decomposition methodology,
similar to the aforementioned digital twin element separation, allowing
for a deeper exploration of the digital twin concept while maintaining
flexibility in the technical specifications that define what constitutes
a digital twin. The authors utilize several use cases to highlight that
digital twins can span maturity levels of functionality. At the first
level, the functionalities amount to collecting data and displaying the
state of the physical asset. The second level of functional maturity
includes data processing, and the third level additionally includes
simulation functionality and enabling predictions of future states. The
final level of maturity includes the ability to act on the predictions,
either prescribing or implementing an action. Additionally, examples of
digital twin use cases in the paper illustrate the different perspectives
between various stakeholders and actors, indicating perceptions and
miscommunication as a potential source of confusion surrounding the
challenge of defining digital twins (Bönsch et al., 2022).

2.2. Digital twin elements

Conceptual descriptions of the digital twin include all information
related to the physical asset, including requirements, specifications, bill
of materials, 3D models, etc., (Glaessgen & Stargel, 2012; Grieves &
Vickers, 2017). Capturing all information and behavior of an asset in
various scenarios to support or implement actions for key decisions
in modern cyber–physical systems can rapidly become unwieldy in
terms of scale. In a recommended practice by DNV on the qualifica-
tion and assurance of digital twins, the authors propose a functional
decomposition of the digital twin into multiple elements. The functional
elements work individually for a specific use, providing the necessary
information and evidence to support key decisions. In an adaption of
the illustration from DNV’s recommended practices in Fig. 3, incor-
porating a connection between the physical and the virtual domain,
the digital models for virtual experiments and then, one can argue
that the functional elements are individual digital twins or digital twin
elements.

The figure depicts the potential to connect a digital twin element
with other digital twin elements to accomplish complex objectives.
Additionally, the recommended practices emphasize the significance of
quality indicators in assessing the trustworthiness of evidence gener-
ated by the digital twin. To make predictions, the digital twin typically
employs computational models to capture the expected behavior of

the corresponding physical asset. The scope of this article centers on



Computers & Industrial Engineering 186 (2023) 109733L. Björklund et al.

o
S
t

d
s
e
i
a
h
V
u
b
m
a
d
m
p
t
c
R
d
t
a
t
o
t

2

t
p
e
i
g
l
o
c
r

o
h
l
a
a
c
e

Fig. 3. Separating the digital twin into digital twin elements facilitates the management
f various use cases.
ource: Adapted from DNVs guideline on qualification and assurance of digital
wins (DNV GL, 2020)

igital twin elements that use underlying computational models for
imulating the expected behavior of the physical asset. Digital twin
lements containing information and facilitating virtual inspection us-
ng 3D models and geometrical models are outside of the scope. For

more general discussion on digital twin concepts, see the compre-
ensive works on digital twins (Glaessgen & Stargel, 2012; Grieves &
ickers, 2017; Jones et al., 2020; Rasheed et al., 2020). By utilizing
nderlying computational models, the digital twin can predict the
ehavior of the physical asset. Design of the underlying computational
odels are either data-driven, physics-driven, or a combination of both

pproaches (Grieves & Vickers, 2017; Rasheed et al., 2020). Data-
riven digital twins utilize statistical models or machine learning to
odel the behavior of the physical asset based on historical data of the
hysical asset. Design of underlying models for physics-driven digital
wins utilizes mathematical relationships of the physical parameters to
apture the expected behavior of the physical asset (Liu et al., 2021;
asheed et al., 2020). This article will be limited to physics-based
igital twins, due to the inherent requirement of traceability and in-
erpretability for demonstrating the safety of cyber–physical systems. In
ddition, safety functions rarely activate, and historical data pertaining
o safety-relevant behavior represents only a minuscule portion of the
perational data, becoming a challenge for creating data-driven digital
wins.

.3. Establishing trust in digital twins to generate evidence

Adil et al. (2019) discuss the limitations of physics-based digital
wins stemming from the current understanding of underlying physical
roperties. Physics-based underlying models powering a digital twin
lement are bound by knowledge of physics and fail to capture behav-
ors or phenomena not fully comprehended within existing theories and
overning equations. The uncertainties inherent in digital twins high-
ight the need for careful consideration in assessing the trustworthiness
f the evidence they generate. All models, including the underlying
omputational models of digital twins, are imperfect representations of
eality but can still provide valuable insights and prove useful.

Organizations such as DNV are proactively addressing the challenge
f establishing trust in the digital twins to generate evidence. DNV
as developed a set of recommended practices, DNVGL-RP-A204, out-
ining a guideline for a successful qualification and assurance process
nd a systematic approach to establishing trust in digital twins. Cre-
tors of digital twin elements can mitigate uncertainties, demonstrate
onformance to the standard and subsequently establish trust in the
4

vidence by following the recommended practices (DNV GL, 2020).
The recommended practices emphasize that the level of qualification
and assurance for digital twin elements should be proportional to the
consequences of the key decision. Following the recommended practice
mitigates uncertainties and enhances confidence in digital twins by
incorporating quality indicators within the digital twin elements, quan-
tifying a numerical value indicating trust in the evidence generated
by the digital twin. It is important to note that the recommended
practices explicitly exclude decisions related to autonomous safety-
critical systems from the process. Instead, the authors emphasize the
need to consider additional requirements from safety standards such as
IEC 61508, highlighting the necessity to conform to established safety
guidelines when utilizing digital twins in safety-critical contexts (DNV
GL, 2020).

Use cases are diverse and span industrial sectors such as health-
care, aviation, and automotive industries, to mention a few (Rasheed
et al., 2020). For example, in the manufacturing industry, digital twins
have been proposed or employed for applications to optimize pro-
duction processes, reduce defects, and enhance product quality (Tao
et al., 2019). Furthermore, in transportation and logistics proposals
for digital twins to optimize fleet operations, improve route planning,
and enhance the supply chain by accessibility and virtual domain
visibility (Glaessgen & Stargel, 2012). Jones et al. (2020) provide a
comprehensive study, including an overview of use cases of digital
twins while characterizing the digital twin (Jones et al., 2020). Ad-
ditionally, for an in-depth perspective on the values of digital twins,
including potential use cases, the article by Adil et al. (2020) offers
valuable insights and discussion (Rasheed et al., 2020). The article "A
classification proposal of digital twin applications in the safety domain"
examines current and proposals for use cases in the safety field (Ag-
nusdei et al., 2021). The authors propose a framework for assessing
digital twin use cases in the safety domain, focusing on data acquisition
systems, data processing models, and specific safety considerations.
The result indicate a potential for digital twins to enhance safety
management and control, improve efficiency in safety assessment, and
support risk prevention measures.

2.4. A digital twin based framework for safety demonstrations

Safety valves are critical to reaching a safe state and shutting the hy-
drocarbon flow. In a software-dependent all-electric actuation system,
reaching the safe state requires the correct execution of several compo-
nents. In traditional systems, the removal of hydraulic power triggers
the transition to a safe state. In stark contrast, the all-electric actuation
system operates on an energize-to-close principle and requires supply-
ing power to the motor for the successful transition to the safe state. The
all-electric actuation system relies on several subsystems, diagnostics,
and control algorithms embedded in controllers utilizing built-in logic
to transition the valve and stop the hydrocarbon flow. Demonstrating
the capacity of the novel and highly software-reliant system requires
fulfilling testing and verification of the system for reaching a target SIL
certification. Sufficient coverage of the behavior via testing and verifi-
cation activities of logic modules controlling cyber–physical systems is
a requirement to conform to IEC 611508. Experiments observe behavior
in the physical domain, and simulations use computational models to
estimate the behavior in the virtual domain. In an article on verification
activities of embedded control systems (Kapinski et al., 2016), the
authors provide a comprehensive exploration of the concepts associated
with computational models for testing and verification activities, in the
context of embedded control systems.

To achieve verification, the test engineer shall prove that the system
satisfies a specific property for all sets of parameters and inputs, possi-
bly infinite. Formal methods apply mathematical techniques to formally
state requirements on the logical module and prove that it is con-
forming to requirements. Successful application of formal methods can
prove that the system’s behavior will be within acceptable conditions

across all parameters and inputs. Formal methods, as noted by Kapinski



Computers & Industrial Engineering 186 (2023) 109733L. Björklund et al.

m
b
c

f
o
o
a
s

r
𝑚
t
t
𝑓
i
w
c

g
i
c
t
i
t
d
o
c

3

d
s
c
o
s
e
a
r
c
o
o
a
a
f
f

3

f
&
t
F
u
i

v
l
a
F
s
t
t
f

Fig. 4. A proposal for interfacing a digital twin with a safety-critical controller for
demonstrating the capability of the system to demonstrate the safety-critical functions
of the controller by evaluating the safety-related behavior.

et al. (2016) require mathematical expertise, are computationally com-
plex, could be problematic in handling continuous systems, and the tool
support can be a limiting factor (Kapinski et al., 2016). In a state-of-the-
art survey on the application of formal methods for internet-of-things
applications, several issues are common in the application of formal
methods in practice. The authors note that simplified models are used
to verify the software on a modular level (neglecting interactions),
state space explosion limit model computational speed, and verification
of timing issues are overlooked in several projects (Souri & Norouzi,
2019).

Simulation-based methods can scale up testing activities using math-
ematical models mirroring the expected behavior of a physical asset in
various scenarios and operational conditions (Kapinski et al., 2016).
Testing, in this context, aims to explore a subset of potential inputs
and parameters for assessing the system’s behavior against predefined
requirements and conclude that satisfactory performance has been
demonstrated based on these tests. Testing acknowledges the limi-
tations of exhaustive testing and instead focuses on representative
scenarios to make claims about the system’s capabilities. Falsification
can be viewed as a subset of testing, utilizing simulations of compu-
tational models to identify parameters, inputs, or combinations that
falsify claims of the system. Since it is impossible to test all possi-
ble parameters using simulation-based, inputs and configurations of
combinations, it is not possible to completely verify the safety of the
system through testing. However, it is possible to achieve sufficient test
coverage, as noted in the IEC 61508 part on software development (IEC
61508, 2010).

A digital twin element capable of capturing all safety-related behav-
ior of the hardware, interfacing with the logic module, can facilitate
simulations of safety-related scenarios and assess the system’s response
in the presence of known and unknown faults. Integration of the digital
twin interfacing with the ‘‘controller’’ in a framework for safety demon-
stration is a critical aspect in the generation of evidence, i.e., capturing
the safety-related behavior of the system as a simulation time series for
analysis and automating the selection. However, logical module may
be a more sensible descriptive term since the intention is to evaluate
all the safety-critical logic solvers embedded in the all-electric actu-
ation system. The simulation-based testing occurs offline, generating
evidence in the virtual domain to support claims about safety. The
safety demonstrations interface the digital twin with the logic modules
within an offline setting and do not impact the operation of the physical
asset. The testing environment of the framework is illustrated in Fig. 4.

To initiate the framework, a set of test case parameters denoted as
𝑡𝑐 ⊂ and an operational scenario 𝑢𝑐 are sent to the simulation environ-

ent generating a time-series capturing the safety-related system of the
ehavior 𝜙(𝑡𝑐 , 𝑢𝑐 ). However, the safety claim is only valid for the test
ase as the safety-related behavior 𝜙(𝑡𝑐𝑖 , 𝑢𝑐 ) is a function of the test case

parameters. Reaching sufficient test coverage requires extensive testing
to cover hardware faults, physical degradation, and potential bugs in
the controller and evaluate the safety-related behavior. The test case
5

is one instance of the set of test cases required to reach sufficient test
coverage, and by utilizing different test case parameters by selecting
parameters from the set of model parameters 𝑚𝑝 ∈ 𝑀𝑝, fault param-
eters 𝑓𝑝 ∈ 𝐹𝑝 and logic module parameters 𝑙𝑝 ∈ 𝐿𝑝. Even working
rom an assumption of a limited set of potential test case parameters,
ptimally selected to maximize the test coverage with a limited amount
f test cases, the number of test cases is likely substantial. Therefore,
n identifiable bottleneck in the framework is the simulation of the
afety-related behavior illustrated in Fig. 4.

The test case parameters 𝑡𝑐 consist of model parameters 𝑚𝑝, fault pa-
ameters 𝑓𝑝, and ‘‘logic module’’ parameters 𝑙𝑝. The model parameters
𝑝 represent a subset of the identified physical parameters that describe

he properties used to construct the mathematical equations that govern
he behavior of the physical asset being twinned. The fault parameters
𝑝 are associated with faults or issues in the physical system, either
nternal or external faults. The logic parameters 𝑙𝑝 describe issues
ith the logic, which can include external commands from interacting

ontrollers or information losses.
To reach sufficient testing of the system, selecting interfacing strate-

ies capable of testing the final implementations of the controller
s critical. The selection of interfacing strategies covering complete
ontroller development can improve the development process through
he transparency of the test case parameters. The feasibility of the
nterfacing strategies will be affected by the target platform for the con-
rollers. Developing a controller for a microcontroller versus an FPGA
evice will require different development flows. This paper centers
n interfacing strategies for connecting the digital twin element with
ontrollers targeted for FPGA devices.

. FPGA as a target platform

FPGAs are electronic devices that offer flexible and reconfigurable
igital logic functionality. FPGAs provide a versatile platform for de-
igning and prototyping complex digital systems by describing the
ircuitry in software, enabling rapid development and deployment
f the final hardware implementation. Demonstrating the functional
afety of the FPGA-based system requires rigorous testing and adher-
nce to safety standards. This section reviews FPGA devices, including
rchitectural capabilities and limitations. Subsequently, we explore
ecommendations for the developmental flow of FPGA firmware ac-
ording to safety standards, highlighting the software-reliant nature
f the development process. Understanding how the hardware design
f FPGAs is primarily configured by software programming, utilizing
software-based language to describe the circuitry, and uploading
programming file to configure the FPGA device and enabling the

unctionality of the control system is of critical importance to identify
easible interfacing strategies.

.1. FPGA as a target device

FPGAs are part of the family of programmable devices, facilitating
ield re-programmability by configuring digital logic circuits (Brown

Rose, 1996; Monmasson & Cirstea, 2007). Design using software
ools describes the layout of the digital logical circuits. The term
PGA firmware describes the complete lifecycle of the logical mod-
les, from initial software textual descriptions of circuits to the final
mplementation on the board.

Since the launch of FPGAs in the 1980s, integration of A/D con-
erters and improvements in component density have driven a techno-
ogical maturation. The technological evolution improves performance,
nd user-friendly tools facilitate the simpler design of FPGA firmware.
PGAs allow for a high degree of configurability and soft proces-
ors can be implemented on FPGAs, enabling configurations to func-
ion as a microcontroller. The inherent configurability can also enable
rue hardware design and facilitate real-time implementation of FPGA
irmware with high sampling requirements and applications requiring



Computers & Industrial Engineering 186 (2023) 109733L. Björklund et al.
Fig. 5. The general architecture of an FPGA. The high degree of configurability is
illustrated, with configurable cell blocks, interconnection networks and input blocks.

high-frequency switching. The general architecture of FPGAs consists
of a pre-fabricated array of Configurable Logic Block (CLB), a pro-
grammable network of interconnections and configurable input/output
blocks as illustrated in Fig. 5. Additionally, the FPGA typically has
external or internal memory cells to control the configuration of the
CLBs.

The programmability of the interconnection enables configuring the
connections between different CLBs of the board, to custom applica-
tions. The CLBs consist of simple combinatorial logic, memories, and
multiplexers. The I/O blocks of the peripheral I/O architecture of the
board implement one or several communication standards. Inside each
CLB there are several logic cells, consisting of a configurable Look-up
Table (LUT), a D Flip-Flop at the output allowing the register of the cell
output, and a multiplexer enabling bypassing the flip-flop. In the zoom-
in on the cell, the architecture is illustrated in Fig. 5. Modern FPGA
boards consist of hundreds of thousands of CLBs, even millions in some
of the larger devices. The LUTs of the CLB are configurable and can be
reprogrammed to realize different outputs upon the incoming signal.
During design of control logic as FPGA firmware, the bits of the LUT are
configured as binaries based on the target truth table. By customizing
the index of the LUT according to the designed FPGA firmware can
create any combinatorial gate logic.

The digital logical circuits implemented and downloaded to an
FPGA have a physical architecture, operate in real-time, and have an
inherent parallelism (Monmasson & Cirstea, 2007). Therefore, devel-
oping safety-critical FPGA firmware targeted for FPGA is dissimilar
to sequentially executed software applications and, during the de-
velopment, industrial standards require unique testing and manage-
ment of FPGA-targeted firmware, e.g., embedding control logic in the
6

FPGA-firmware.
3.2. Standards for development of FPGA firmware

A general standard aiming to define functional safety in a complete
safety lifecycle with the implementation of Electrical, Electronics, and
Programmable Electronics (E/E/PE) is IEC 61508. The standard covers
hazards caused by the E/E/PE systems and applies to all E/E/PE
systems regardless of application and is therefore applicable for design
in many differing industries. The Safety Integrity Level (SIL) is a
performance measurement for the safety-critical function defined in the
IEC 61508, defining the risk reduction provided by a safety function,
or serving as a target level of risk reduction for designing and verifying
a safety-critical function. Depending on the target SIL the standard
provides specific requirements and activities relating to testing and ver-
ification to cover in order to classify the risk reduction achieved by the
safety function. IEC 61508 directly covers verification activities relating
to FPGA firmware with the FPGA as a target device. In addition, the
standard provides a recommended development process for Application
Specific Integrated Circuit (ASIC) applications. Due to a manifold of
similarities between ASIC and FPGA devices, i.e., sharing common
programming languages and proven-in-use verification tools (Kuon &
Rose, 2006), the same development process is considered applicable
for FPGA firmware.

IEC 61508 recommends following the V-model development flow,
which includes activities such as requirements specification, design,
configuration management, testing, verification, and validation activ-
ities following the V-shaped software development process. Develop-
ment of FPGA firmware starts by defining FPGA safety requirements
and deriving specifications of the board. These requirements serve as
the foundation for subsequent development stages. The architecture
design ensures that the FPGA can reach the safety requirements and
provides the necessary resources for implementing the desired func-
tionality. The behavioral modeling stage aims to capture the high-level
behavior of the FPGA firmware, i.e., the application, using model-
ing techniques such as Simulink. This behavioral model serves as a
reference model for subsequent refinement stages.

The module design divides the FPGA firmware into modules, each
serving specific functions and interfaces to fulfill safety requirements.
Subsequently, the module is transformed, manually or automatically,
into a hardware description language (HDL) representation, such as
VHDL or Verilog. Automated tools, compliant with IEC 61508, can be
employed. A test engineer can utilize the reference model to verify
the preservation of the module’s functionality after the conversion
into HDL. Considering the physical properties of FPGA devices, the
languages describing the circuits must achieve certain demands to
be functional HDLs. A HDL language useful for implementing digital
logical circuits requires a syntax capable of expressing the parallelism
of the hardware, sequencing of operations, the delays of the signals,
and representations of internal clocks. VHDL (IEEE, 1987) and Ver-
ilog (Open Verilog International, 1993), are two such languages. Fig. 6
illustrates the use of a generic controller algorithm as FPGA firmware.

In the early design phase, an FPGA-targeted controller algorithm
requires testing at the behavioral level against the specifications. As-
suming conformance to the specifications, testing of the controller
(i.e., the FPGA-firmware) in HDL form is the subsequent step in the
development. In the next step, the engineer refines the HDL to ensure
synthesizability, i.e., the description of the circuits is realizable on an
FPGA. Non-synthesizable HDL cannot be used to generate a gate-level
representation of a digital circuit, however can facilitate simulations
and enable verification activities. The FPGA firmware at this state
contains expressive descriptions of data transfers in sequential and
combinatorial logic, the clocked behavior. A synthesis tool synthesizes
the HDL-code and generates a gate-level netlist or, in other terminology
unrouted netlist, or post-synthesis netlist. In the unrouted netlist, the
configuration of logical elements and interconnections on the target
device are described, however, the physical location of the controller is

absent. The mapping of each logic element and the wiring architecture



Computers & Industrial Engineering 186 (2023) 109733L. Björklund et al.
Fig. 6. A general design flow for model based design FPGA projects.

of the FPGA occur in the next step, the place & route step. After the
place & route step, the resulting bitstream file of the FPGA firmware
can be downloaded to the target device and used to configure the
device. At each stage of this development, the behavioral reference can
be used to verify that the latter stages of the controller still respond
similarly enough to the same stimuli as the behavioral reference. This
verification is enabled through simulations of the RTL-level, unrouted
gate level-, and layout gate level netlist in a logic simulator (marked by
I-III). The simulation of the controller receives an opportune stimulus
which, according to recommendations in IEC 61508 (2010), should be
selected such that a high coverage of the specified function is executed.
After deployment to the FPGA the controller (IV), now completely
implemented in digital logical circuits, receives and responds to a
stimulus aiming to cover the execution of the circuit. The FPGA’s
response is compared with the reference response to verify the im-
plementation’s accuracy. Once the requirements are met, testing and
verification activities extend to integrating additional modules into the
FPGA design. The test engineer then performs validation activities on
the FPGA, incorporating the final and complete set of modules.

Developing controllers and embedded functionalities for ASICs and
FPGAs involves software and hardware development. FPGAs, although
hardware devices, heavily rely on software coding and descriptions in
HDL. IEC 61508 emphasizes the importance of clear documentation,
traceability, and functional safety assessment throughout the ASIC and
FPGA development lifecycle (IEC 61508, 2010). The standard recog-
nizes the need for trustworthy verification and validation activities
to ensure compliance with safety requirements and mitigate potential
risks associated with ASIC/FPGA functionality. Integrating a digital
twin element in the FPGA firmware development, from behavioral
models to final logical circuits, can enhance the veracity of SIL claims,
improve FPGA firmware development, and provide an up-to-date test-
ing environment for introducing novel controller algorithms or software
7

updates.
Fig. 7. Optimally, the engineer can connect development versions of the controller to
the digital twin and subjecting them to testing to cover the development process.

4. Interfacing strategies of a digital twin and FPGA firmware

Digital twins can automate safety demonstrations by leveraging
computational models to capture safety-relevant behavior. In this sec-
tion, we explain the interfacing issue associated with the framework of
digital twins. We identify several feasible interfacing strategies span-
ning the complete development of FPGA firmware. Finally, we propose
criteria for determining the suitability of each interfacing strategy and
reach the desires of the framework.

4.1. Interfacing a digital twin and a controller for safety demonstrations

In the proposed framework of digital twins for safety demonstration,
the simulation environment plays a crucial role. The interfacing of the
digital twin with the controller facilitates the generation of time-series
data capturing the expected and safety-related behavior of the physical
asset. However, the effectiveness relies on the appropriate interfacing
between the controller and the digital twin. Selecting a suitable in-
terface is essential to reach the benefits of the framework. A critical
aspect in the framework of digital twins for safety demonstrations is the
careful selection of interfacing strategies capable of efficiently covering
the complete lifecycle of the physical asset, including the development
flow of the logic modules. Improvements, algorithm optimization, or
bug removal in the controller, inevitably result in different versions of
the logical module. The concept is illustrated in Fig. 7, stacked blocks
of the controller represent various versions of the control logic during
the refinement in the development process.

4.2. Identifying feasible interfacing strategies

As previously noted, developing FPGA firmware involves multiple
development stages. Interfacing each development stage of the FPGA
firmware with the digital twin would facilitate testing over the com-
plete development of the firmware. Fig. 8, adapted from IEC61508,
illustrates three distinguishable developmental and simulation stages
for the recommended development flow. We suggest dividing the devel-
opment of FPGA firmware into three stages of development. The three
stages are denoted in Fig. 8: the behavioral, the descriptive, and the
implemented stages. Identifiable differences in strategies for interfacing
the FPGA firmware with the digital twin delineate the separate stages.
In the behavioral stage, the specifications are used to test a behavioral
model of the FPGA firmware, verifying the behavior against the require-
ments. The first step in the descriptive stage is writing the HDL code,
manually or using an automatic tool to generate HDL from a high-level
language (Pedroni, 2010; Yankova et al., 2007). The HDL describes the
layout, timing specifications, and logical circuits in textual form. In the
implemented stage the FPGA firmware is uploaded and configures the
logical circuits on a FPGA.

Strategy A utilizes an HDL simulator for co-simulating the digital
twin and textual description of the controller during the descriptive
stage. Strategy B and C are instead focusing on the latter stages of FPGA

firmware development, the implemented stage.



Computers & Industrial Engineering 186 (2023) 109733L. Björklund et al.

q
o

d
t
f

f
t

s
m

o

5

t
e
d
s
t
W
f

Fig. 8. The adaption, based on the developmental flow of IEC 61508, illustrate the
suggestion of dividing the development into three stages; the behavioral stage, the
descriptive stage and the implemented stage.

Fig. 9. The three identified strategies cover different stages of the control development
and for Strategy B and C the difference is the platform for simulating the behavior of
the physical asset.

Fig. 9 illustrates the connections between the digital twin with the
controller in the three interfacing strategies.

Strategy A can be classified as a co-simulation strategy, representing
the first method for interfacing the digital twin. The co-simulation
executes a solver for the digital twin in a simulation environment such
as Simulink, interfacing with the HDL simulator simulating the FPGA
firmware.
8

Commercial tools can connect HDL simulators with simulation en-
vironments for the underlying such as Simulink. The approach to
interfacing the two simulation environments can either be local and
single-system, or network-based. The single system integrates a sec-
ondary simulation tool into the primary simulation tool, diverting
timing and synchronization control to the primary simulation tool. The
network-based approach requires a physical interface to link a data
exchange between the simulation environments, facilitating the timing
and synchronization to the linking tool. The network-based approach
method is the more scalable of the approaches.

Strategy C involves implementing the digital twin on an FPGA. This
approach requires converting the mathematical models into a suitable
HDL, followed by synthesis. Constraints and requirements of FPGA
firmware govern the development of the underlying models of the digi-
tal twin, such as fixed-number representations and timing designs. The
digital twin then undergoes a similar process as the controller depicted
in Fig. 6. Once the digital twin is able for FPGA implementation, placing
the digital logical circuits capturing the behavior of the digital twin
can either be realized on a separate FPGA device or on the same FPGA
device as the FPGA-firmware. By implementing the digital twin on the
same FPGA as the FPGA firmware, the digital twin, the FPGA firmware
and the interface are completely hardware-based. There is also the
possibility to implement the digital twin on a separate FPGA board and
enable communication with other FPGAs through various interfaces,
such as serial or parallel buses, Ethernet, or custom protocols.

4.3. Criteria for selecting suitable interface strategies

Efficiently selecting interfacing strategies is critical for a digital
twin-based framework in safety demonstrations. The digital twin en-
hances testing by improving computational speed, scalability, ease of
setup, and remote testing capabilities. It offers accurate and up-to-date
evidence generation and enables software update safety demonstra-
tions. The primary objective of the evaluation criteria is to preserve
the advantages available with the framework of a digital twin for safety
demonstrations.

Criterion 1: Computational speed. To sufficiently demonstrate the
safety, extensive testing is required. Prioritizing a high computational
speed of the simulation environment is important to improve safety
demonstrations.

Criterion 2: Configurability. An effective interfacing strategy re-
uires a high degree of configurability for test case parameters and
perational conditions to facilitate comprehensive testing.
Criterion 3: Scalability. The framework of digital twins for safety

emonstrations shall cover all the components in the all-electric actua-
ion system. This extends to integrating multiple components and FPGA
irmware modules.
Criterion 4: Usability. The interfacing strategy should be user-

riendly, allowing engineers from diverse backgrounds to easily handle
he digital twin for safety demonstrations without specialized expertise.
Criterion 5: Manageability. The criteria of limited effort and re-

ources for implementing the interfacing strategy assesses the ease of
anaging and overcoming implementation and operational challenges.

Optimizing all these criteria are improbable likely requiring a trade-
ff.

. A case study for selecting suitable interfacing strategies

The selection of an interfacing strategy goes beyond considering the
ype of strategy. In this section, we present general interfacing consid-
rations and the challenges of defining the interfacing boundary and
etermining relevant components for the digital twin. We present a case
tudy to illustrate these concepts, highlighting the differences between
he virtual and physical domains and their implications on interfacing.

e then evaluate each feasible interfacing strategy individually and
inally directly assess them based on the proposed performance criteria.



Computers & Industrial Engineering 186 (2023) 109733L. Björklund et al.
Fig. 10. The battery and the motor system are critical components in the capability
of the all-electric actuation system to reach the safe state.

5.1. General interfacing considerations for safety demonstrations

The case study for selecting suitable interfacing strategies centers
on a critical part of the all-electric actuation system; the battery system
and the motor system. A simplified block diagram of the motor system
and the battery system of the case study is illustrated in Fig. 10.

The specific version of the controller is not a significant factor in
the initial general considerations of interfacing and is therefore not
illustrated. effective management of the battery pack is crucial for
maintaining sufficient energy reserves. The Battery Management Sys-
tem (BMS) plays a vital role in internal health management, optimizing
charge and discharge cycles, and ensuring the overall functional safety
of the system, including the ability to close the valve even under
abnormal or malfunctioning conditions. The battery system is an illus-
trative example of the test case parameters of the framework. Model
parameters describe specific properties of the battery pack, such as
diffusion rate coefficients and internal cell resistances. Fault parameters
encompass parameters related to faults, such as internal short circuits
in specific cells. Logic parameters include factors associated with logic
issues, such as data packet losses between the BMS and other control
modules.

Establishing a useful interface between the digital twin and the BMS
logic requires defining the boundary between the controller logic and
the digital twin. The primary goal of cell balancing, whether passive or
active, is to equalize the voltages across cells to prevent rapid aging or
thermal runaway. Regardless of the cell balancing strategy, the methods
are considered to be part of the BMS as illustrated in Fig. 11.

Defining the interfacing boundary between ‘‘hardware’’ components
(e.g., resistors and transistors) and ‘‘software’’ elements (e.g., the cell
balancing algorithm) when interfacing the digital twin with the BMS
is critical. Including the cell balancing circuits and cell measurement
circuits as test case parameters facilitates testing the system in the pres-
ence of faults and degradation in the balancing circuitry and variations
in measurement accuracy.

The selection of safety-critical hardware sub-components to include
in the digital twin can be exemplified by the motor system. The inverter
plays a vital role in converting the DC voltage from the battery system
into a 3-phase AC voltage for the motor. By employing a pulse width
modulator (PWM) signal to control the width of electrical signals
applied to the transistors in the inverter circuit, the motor controller
can realize the required 3-phase AC voltage to the motor. The inverter
and the PWM are essential for generating the AC voltage in the physical
domain. Bypassing the inverter and directly accessing the motor models
of the digital twin mitigates the computational cost stemming from the
intense switching frequencies controlling the inverter. In addition to
improving the computational speed, bypassing the inverter can simplify
integration testing of multiple components and improve scalability.
9

Fig. 11. The battery system illustrates the blurred boundaries of testing logical modules
that also contain hardware actuators.

Fig. 12. The requirements for digital twin to controller inter-communication varies
with the interfacing strategies.

5.2. Evaluating the strategies

Fig. 12 illustrates the timing and steps required to realize implemen-
tations of the interfacing strategies for strategy A, B and C.

Strategy A interfaces the digital twin with the controller at the
descriptive level (I-III), i.e., the controller implemented as HDL. Since



Computers & Industrial Engineering 186 (2023) 109733L. Björklund et al.

T
m
c
s
a
t
t

b
s
e
F
e
d
d
t
a
a
P
s
i
p
a
t
c
S
c
t
c
s
n

w
t

HDL aims to describe physical hardware, including timing characteris-
tics, co-simulation requires emulating the behavior of an actual digital
logic circuit to account for the timing, signal delays, and sequencing of
operations. Commercial tools such as Modelsim enable this interfacing
solution by providing an interface that exchanges data, at fixed time
intervals, between the HDL-emulator and the models, for example,
implemented in the Simulink environment. Inherently, these solutions
are dependent on the sequential exchange of information between the
simulators.

• The gate-level description of the controller would be simulated
in Modelsim enabling emulation of the behavior of the actual
digital logic circuit and the ability to account for the timing,
signal delays, and sequencing of operations (1). The controller
generates the signals to drive the motor.

• The motor model, in Simulink, is connected to the gate-level mo-
tor controller simulated in Modelsim through a network connec-
tion. The connection uses a link for data exchange, to configure
the timing and exchange (2).

• The gate-level motor controller sends the control signals to the
motor model, which updates the motor’s behavior and sends the
sensor data back to the gate-level motor controller in Simulink
(3–4).

• The gate-level motor controller in Simulink receives the sensor
data and updates its control signals accordingly (5–6).

he process of co-simulation connects the gate-level netlist of the
otor controller, with a motor model in Simulink. The two models

ommunicate with each other at fixed time intervals, allowing the
imulation to account for the timing characteristics of the hardware
nd the physical behavior of the motor. This process allows the user
o observe the behavior of the motor and controller over time, and use
his information for safety demonstration and other evaluations.

Commercial tools like Matlab offer local simulation capabilities,
ut their sequential execution limits performance for safety demon-
trations. Network-based approaches provide better scalability. Power
lectronics research focuses on co-simulation techniques, combining
PGA firmware described in HDL with physical asset models. This
nables the emulation of digital logic circuits, accounting for timing,
elays, and sequencing. These approaches enhance the design and
evelopment of power electronic systems. One interesting example of
his is the design of a permanent magnet synchronous motor including
n inverter. The components are designed according to first principles
nd co-simulated with a controller, described in VHDL, which generates
WM signals to the inverter (Jiang et al., 2005). This experimental
etup allows the authors to develop and simulate control strategies
mplemented in VHDL without damaging test equipment. Another ap-
roach focuses on co-simulation of a synchronous buck converter, with
digital controller implemented in VHDL (Zumel et al., 2010). The au-

hors connect the model created in PSIM, a tool for designing electronic
ircuits with Modelsim, running the synchronizations inside Modelsim.
trategy B interfaces the digital twin, realized in Simulink, with the
ontroller implemented on the FPGA. Despite the implementation of
he FPGA firmware as a logical circuit on the FPGA, the information ex-
hange is similar to the co-simulation approach in strategy A. The main
implification between strategy A and strategy B is the logical circuit
ot longer requiring simulation, due to the hardware implementation.

Strategy B requires an interface between the FPGA and the computer
ith the digital twin, and the communication exchange occurs at fixed

ime steps.

• The logical circuit generates a command, and the peripheral I/O
utilizes a communication interface to send the control signal to
the receiving interface of the PC-host (1–2).

• The control signal serves as an input to the actuators modeled as
part of the digital twin, and the models generate a response based
10

on simulating the digital twin (3–4).
• The signal is returned to the interface on the FPGA and used in
the logical circuit to generate a response to the information about
the state of the digital twin (5–6).

• The process repeats for the next simulation step.

Strategy B is expected to achieve faster computations inside the con-
trol algorithm and can improve the total iteration time of a simu-
lation compared with the co-simulation. The implementation of the
FPGA firmware in this stage enables scalability and the inclusion of
several modules on the board (subject to the hardware restrictions
of the board). The computational speed of the control algorithms
benefits from the inherent hardware-based parallelism. However, the
same hardware that accelerates the generation of commands from the
FPGA firmware increases debugging complexity (Zkadek et al., 2015).
In Zkadek et al. (2015), the authors propose a PCIe interface for speed-
ing up Strategy B, including a dynamic debugging tool for debugging
the RTL. While the experimental test shows a modest improvement
of the transmission time compared with an Ethernet cable, the au-
thors argue that overcoming the limitations of third-party internal data
structure can greatly improve the concept (Zkadek et al., 2015).

To realize the FPGA-based digital twin approach, a digital twin
designer can either implement the digital twin element on a shared
FPGA, i.e., the same FPGA as the controller, or on a separate FPGA.

The option of placing the digital twin on a separate FPGA and
connecting the boards will constrain the communication by the trans-
mission capabilities between FPGA boards. One example utilizing strat-
egy C realizes advanced analysis of a motor used for propulsion of
electric vehicles and simulations in real-time (Ruba et al., 2016). The
application also features an interface for communicating the simulated
data to a graphical user interface on a laptop.

An early proposal of FPGA-based real-time simulators evaluates the
characteristics of the strategy in relation to power electronic compo-
nents (Matar & Iravani, 2009). The authors show that by implementing
models of converters onto an FPGA, the simulations can handle very
small time-steps (< 500ns) and scalability (virtually no extra simulation
time despite increasing the total number of simulated converters while
tracking the reference model satisfactorily. In Darba et al. (2012), the
authors implement a electrical motor model onto the same FPGA as the
digital control algorithm. The authors achieve significantly faster test-
ing due to the integration strategy (which enables the block only at a
necessary sample rate) and the absence of an analog-digital conversion
process. To mitigate the risk of damaging equipment during the testing
of different control algorithms (Ruba et al., 2019) suggest an FPGA-
based digital twin twinning the behavior of the testbench . The authors
design a digital twin of the testbench according to first principles, with
experimental identification of key modeling parameters, with real-time
simulation, and a plug-and-play capability of the FPGA-based motor
controller. Another implementation is the application of an FPGA-based
digital twin for monitoring and diagnosing faults in a power electronic
transformer (Xiong et al., 2022). The authors use the digital twin
as a reference model to enable fault diagnostics through comparing
expected and actual responses during fault injections into the physical
asset. A similar utilization of an FPGA-based digital twin as a real-time
reference for fault diagnosis is the proposal to include probabilistic
models to account for the uncertainty of the modeling phase and in the
operational environment (Milton et al., 2020). The motivating factor
for selecting an FPGA-based digital twin in these papers are the inher-
ent parallelism and low latency of the computations and provides the
ability of hardware acceleration of the simulation (Milton et al., 2020;
Xiong et al., 2022). A network of FPGA-based models for simulating
an energy conversion system has been researched (Milton et al., 2019).
In the article, the authors demonstrate a small trade-off in performance
when connecting mathematical models implemented on multiple FPGA
devices and connecting the FPGAs to perform simulations on a larger

scale.



Computers & Industrial Engineering 186 (2023) 109733L. Björklund et al.
Fig. 13. The simulation results, comparison of FPGA in the loop (Strategy B) and
(Strategy C).

5.3. Criteria evaluation

This subsection delves into the evaluation of three interfacing
strategies—Strategy A, Strategy B, and Strategy C—based on prede-
fined criteria functioning as benchmarks for assessing the individual
performances of the strategies.

5.3.1. Criterion 1: Computational speed
Strategy A is the only suggested strategy that interfaces the descrip-

tive level of the FPGA firmware. The literature and reasoning about
the loss of the parallelism of the algorithm indicate a significant loss
in the computational speed. Simulating descriptions of logical circuits
is the slowest of all the strategies due to the loss of parallelism of
the target platform. Additionally, the bi-directional information flow
between the HDL simulator and the simulator environment executing
the digital twin requires the simulators to hold. Using an FPGA for
the FPGA firmware, as described in strategy B, not only allows the
testing of the final version of the FPGA firmware but also accelerates
the execution time. However, the device still requires an interface
for communicating with a digital twin in a simulation environment,
which introduces synchronization issues since the FPGA operates in
real-time, as compared to the environment that executes simulations
of the digital twin. The maturity of verification using an FPGA-in-
the-loop includes the availability of commercial tools for overcoming
synchronization problems. Similarly to strategy A, the commercial tools
focus on verifying the consistency of the FPGA firmware against a
reference behavior. The other alternative is to implement an FPGA-
based digital twin element on the same device or interface two different
FPGAs. The literature indicates that strategy C provide the fastest
simulation iteration, due to interfacing real-time operating device or
directly interfacing the logical circuit that realizes the FPGA firmware
with the logical circuit realizing the behavior of the digital twin.

The computational cost of the various interfacing strategies involves
experimenting by injecting a step change in the controller to compare
the computational speed. A behavioral model of the motor interfacing
with the motor controller responding to a step change can be seen in
Fig. 13 for the motor system completely in Simulink and Strategy B.

Strategy A is omitted from Fig. 13 since the extractable data is the
response from the simulation model rather than the controller. The
time for simulating one iteration links directly to the computational
speed criteria. The simulation results indicate significant variations
11

in computational time across the different strategies. The behavioral
approach exhibits a computational time of 89.641 s. In contrast, Strat-
egy A requires substantially more time, totaling 405.360 s. Strategy B
demonstrates the most efficient computational speed, completing the
simulation in only 8.390 s.

One contributing factor in the increase of computational speed in
strategy B is due to oversampling on the FPGA. The FPGA steps 250
times for a single simulation time-step, thus requiring substantially
fewer simulation steps of the motor model in Simulink. However, while
this sampling methodology can speed up the time for each test case,
executing the simulation of the motor model in Simulink appears to be
a significant limitation. In a separate experiment, the same test case on
a busy processor shows significant increases in the computational time,
despite a doubled oversampling. The behavioral simulation requires
139.823 s on a busy CPU. Strategy B completes the simulation in
10.605 s. The computational speed drop indicates that the digital twin
running on the CPU is a bottleneck in the approaches.

Strategy C is absent from the experimental comparison due to
requiring adjustments to the digital twin development to satisfy the
constraints, fixed point representation, and timing specifications, stem-
ming from requirements on FPGA firmware. Additionally, including the
FPGA-based digital twin can be superfluous since FPGAs have realized
real-time applications since the introduction of the technology. Based
on the evaluation and literature, strategy C is the most effective among
the three strategies for reaching desirable computational speeds. Strat-
egy B is second in computational speed, while Strategy A significantly
lags behind in this criterion.

5.3.2. Criterion 2: Configurability
Strategies A and B, which utilize Simulink for the digital twin,

offer high accessibility for configuring test case parameters. However,
configuring an FPGA-based digital twin in strategy C is more complex.
Adjusting test case parameters either requires reconfiguring the FPGA
or preparing the FPGA to accommodate parameter adjustments. Strat-
egy C requires initial configuration involving integrating the ability
to perform parameter adjustments into the FPGA device. Strategy C,
which involves an FPGA-based digital twin, is the only strategy requir-
ing a specific approach for parameter configuration. Relatively to each
other, strategies A and B outperform strategy C in the configurability
of the test case parameters.

5.3.3. Criterion 3: Scalability
Strategy A facilitates the connection of multiple modules of FPGA

firmware in an HDL simulator, but executing HDL on a processor is
not optimal. Connecting multiple modules of FPGA firmware to digital
twins of multiple components increases the computational cost and in-
troduces scalability issues due to executing increasingly extensive HDL.
The data transfer limitations can significantly impact the scalability
of strategy B, as discussed in previous studies (Zkadek et al., 2015).
Strategy C, on the other hand, offers scalability by the possibility to
use separate FPGA devices for the FPGA firmware and the FPGA-based
digital twins, facilitating real-time simulations and testing of multiple
modules of safety-critical FPGA firmware, applied in the plug-and-play
approach of an FPGA-based digital twin modeling the behavior of a
motor and connecting to FPGA application of the motor controller.
Multiple connected FPGAs in the implementation of real-time FPGA
simulation show no significant scalability issues and applications and
are available in various domains (Matar & Iravani, 2009; Milton et al.,
2019; Xiong et al., 2022). Testing novel control strategies for safety
demonstrations can be done topside using an experimental setup with
multiple FPGA modules. This approach offers reusability and flexibil-
ity for testing and validating software in a controlled environment.
Strategy C is expected to be outperforming in scalability, due to the
possibility of testing multiple modules of safety-critical FPGA firmware

with multiple FPGA-based digital twins.



Computers & Industrial Engineering 186 (2023) 109733L. Björklund et al.
5.3.4. Criterion 4: Usability
In the researched literature, the usability is not distinguishable

between the various interfacing strategies. Commercial tools exist for
interfacing with a digital twin with the FPGA firmware, facilitating the
implementation of strategy A and strategy B. However, for strategy A,
the commercial tools focus on using stimuli to evaluate the behavior,
and additional software is required to interface the digital twin in
Simulink with the controller. Increasing the oversampling in strategy
B was easy with the available tools. The usability of strategy C, in
comparison to the other strategies, is predominantly impacted by the
limitations of the FPGA board when implementing the digital twin
alongside the control systems. The limited space on the FPGA device
restricts the number of test cases, allowing only a limited set of test
case parameters. To extend test case coverage, the user requires a
reprogramming file of the board. Strategy B outperforms the other
strategies due to the availability of current solutions.

5.3.5. Criterion 5: Manageability
For strategy A, most commercial tools focus on injecting stimuli into

the HDL simulator and comparing the response against the reference
model. However, strategy A offers the advantage of configuring test
case parameters using Matlab and Simulink without requiring addi-
tional resources or user interfaces. Challenges in extending simulation
time frames and managing dynamic interactions between the HDL sim-
ulator and the digital twin simulator require research efforts. Strategy
B provides a straightforward solution by connecting an external test
suite to inject test cases into the digital twin element in Simulink.
This approach requires no additional steps to manage the framework of
digital twins for safety demonstrations. In contrast, Strategy C, which
involves implementing an FPGA-based digital twin, presents manage-
rial considerations. It requires the development of an interface for data
communication with the FPGA device. The literature on FPGA-based
digital twins indicates a need for a custom graphical user interface for
data collection, sampling, and writing operational scenarios. To fully
utilize Strategy C, a user interface that allows executing and collecting
data from multiple test scenarios without reprogramming the device for
each case is crucial.

Strategy B excels in manageability due to the availability of tools
that directly connect the digital twin in Simulink to the FPGA firmware,
including sampling options. Strategy A demonstrates satisfactory per-
formance but has challenges related to simulation time frame extension
and dynamic interactions. Strategy C requires additional resources and
efforts, placing it behind the other strategies in this criterion.

6. Discussion

Digital twins can add the benefits of simulation-based testing activ-
ities and augment the approach with a unique one-to-one twinning and
a complete lifecycle perspective. Simulatable and physics-based models
in the digital twin capture the safety-related behavior of the hardware
components. This paper identifies values and benefits reachable by a
digital twin-based framework for safety demonstrations. The frame-
work of digital twins for safety demonstrations interfaces controllers
and logical modules to demonstrate the capability of the system to
reach a safe state in various scenarios. By adjusting test case parameters
for simulating degradation, faults, and communication in the digital
twin, the framework seeks to verify the system’s behavior against
safety requirements. To maximize the framework utility selecting a
suitable interface between the digital twin and the controller is critical.
This paper centers the research on suitable interfacing strategies for
controllers targeted for FPGAs.

The paper researches the fundamentals of FPGAs and emphasizes
the development of controllers for the devices. Digital logical circuits
realize the controller logic as hardware, while a text-based software
language describes the circuits during development. Digital twin-based
testing can cover the entire development of this software–hardware
12
Fig. 14. The performance to each criteria for all the identified strategies.

duality of developing FPGA firmware. The paper proposes dividing
the development flow recommendations from IEC 61508 into three
manageable and distinctly different stages. The first stage consists of
behavioral models of the controller, and interfacing the controller at
this stage is elementary and out of scope for this article.

The first interfacing strategy, strategy A, covers the FPGA firmware,
i.e., the controller, as a hardware description language of the logical
circuits. The other strategies implement the controller on a FPGA
device, but strategy B realizes the digital twin in Simulink, and strategy
C realizes the digital twin on an FPGA. For opportunely selecting one
or several suitable interfacing strategies, we introduce five performance
criteria that aim to preserve the values of the framework: computa-
tional speed, configurability, scalability, usability, and manageability.
The interfacing strategy will affect all the criteria, and maximizing the
performance criteria will facilitate the framework of digital twins for
safety demonstrations, as mentioned in the section on digital twins.

The case study highlights the importance of defining the boundary
between the digital twin and the controller by using cell balancing to
illustrate the issue. Encompassing the hardware actuators and the mea-
surement circuits in the digital twin extends the test case parameters to
increase the test coverage. Including and adjusting the values on model
parameters describing the physical properties of the resistors used to
bypass current from the cells during the charging can test systems
behavior during varying or degraded resistors. Additionally, the case
study covers the opportunity of the framework to bypass components
with non-existing to low safety implications during integration testing
of FPGA firmware. The inverter is computationally expensive due to the
high-frequency requirement for realizing a 3-phase AC voltage in the
physical domain, and unit testing the motor controller with a digital
twin covering the behavior of the inverter can be sufficient.

Literature and simulations indicate significant differences in the
strategies’ performance to the criteria. The case study highlights the
perception of the relative performance of the three interfacing strate-
gies. Fig. 14 visualizes the perception of the criterion performances of
the interfacing strategies.

As illustrated in the radar chart, not one of the interfacing strategies
excels at every criterion. The framework of using the digital twin for
safety demonstrations influences the importance of the criteria. The
computational speed reachable with strategy C through implementing
the digital twin on the FPGA would be a significant advantage and
support the final validation of the FPGA firmware. The results addi-
tionally show that strategy C outperforms strategy B in scalability, a
relative performance supported by the simulations and the literature.
Literature evidence shows several implementations and applications of



Computers & Industrial Engineering 186 (2023) 109733L. Björklund et al.
Table 1
The expected performance of the strategies in relation to derived criteria.

Strategy A: Co-simulation Strategy B: FPGA-in-the-loop Strategy C: FPGA-based digital
twin

Criterion 1:
Computational
speed

Requires a HDL simulator, losing
the real-time of FPGA firmware.
Logical circuits are inherently
parallel which is lost in HDL
simulators.

Vast improvements in
computational speed, experiments
indicate the simulating the digital
twin elements in Simulink as
limiting factor

The FPGA-based digital twin
would interface the controller
directly on the hardware. Existing
implementations show real-time
capabilities.

Criterion 2:
Configurability

The configurability of the
co-simulation solution would only
require the application developer
to re-configure the RTL. Due to
the capabilities of modern tools,
this strategy would work well.

The configurability of the digital
twin in strategy B is the same
process as for strategy A.

Potential improvements of
adjusting parameters, current
solutions limiting.

Criterion 3:
Scalability

Possible to add multiple modules
of FPGA firmware. The scalability
is limited by the processing
power of the HDL simulators

FPGA firmware modules can
share a FPGA, limited by the
available circuits on the FPGA.
The transfer of information is
expected to be a bottleneck

Limited by the available circuits
on the FPGA. Multiple
FPGA-devices can be connected.
Capability to integrate modules of
FPGA firmware and digital twin
elements

Criterion 4:
Usability

Commercial tools exist for
co-simulation of FPGA firmware

Commercial tools are available for
interfacing Simulink with FPGAs.

Data collection is limited

Criterion 5:
Manageability

Tools center on stimuli and
comparing response, requires
more research to interface a
digital twin capable of safety
demonstrations

No additional resources needed,
select sampling time and increase
time frames

Design a testing environment for
extensive test coverage,
customized user interface,
sampling time
digital twins or simulation models realized on FPGA devices interfacing
with other FPGA modules in real time. The simulations in the case study
show a significant decrease in computational speed for strategy B with a
busy processor, indicating the simulations of, and communication with,
the digital twin on the processor as the bottleneck. Including several
digital twin elements and integration testing of multiple controllers will
require additional communication and increase the number of compu-
tations on the processor. Strategy A shares the scalability challenges
with strategy B, while strategy C can overcome these challenges.

Strategy C underperforms relative to the other strategies in config-
urability due to a non-obvious solution to adjust test case parameters
after implementing the digital twin as a digital logical circuit. Config-
uring the test case parameters is of paramount importance to realize
the framework. However, further research could explore capabilities to
store multiple test cases on the FPGA, utilizing the memory capabilities
of modern FPGAs. Creating a custom soft processor capable of realizing
multiple test cases without reprogramming the FPGA is an approach
to reaching a higher configurability score. The potential to improve
the configurability of strategy C indirectly influences the remaining
criteria, usability, and manageability. The usability for engineers of
various backgrounds can benefit from a custom test case interface
to the FPGA-based digital twin. At the same time, both strategy A
and B facilitates a commercial and well-documented user interface,
supporting the usability of the strategies. The necessity to create a user
interface for writing and reading from the FPGA-based digital twin in
strategy C stresses the last criteria.

To fully implement strategy C, the results from the test case em-
phasize several practical implications on manageability. Developing an
FPGA-based digital twin requires adhering to the constraints of the dig-
ital logic circuits. Fixed-point representations of the governing model
parameters and equations and specifications of timing considerations
are two constraints stemming from the practical implications of strategy
C. Realizing the interfacing strategy requires significant resources and
effort relative to the other strategies.

Equally noteworthy are the additional resources and effort for man-
aging strategy A. In literature and applications employing co-simulation
of HDL, the research centers on injecting a stimulus to verify the
controller response against a reference behavioral model. The case
study shows applications reaching sufficient code coverage by injecting
a stimulus and comparing the response to a reference model. The key
13
findings from the case study per the criteria have been summarized into
Table 1.

Higher-level test cases are the objective for the framework utilizing
digital twins for safety demonstrations. An illustrative example of
this is the motor controller; the framework aims to cover a safety-
critical scenario where a stuck valve suddenly becomes unstuck. In this
scenario, an aspect of demonstrating the all-electric actuation system’s
behavior is examining how the motor system responds to the situation.
A foreseeable control action is that the motor controller increases the
torque to the rotational-to-linear actuator by revving up the motor. If
suddenly the valve becomes unstuck, by a rapid decrease of frictional
forces, the motor may ram the valve into the pipe walls, causing
significant damage.

The literature indicates inadequate support in co-simulation tools
of strategy A for these high-level test cases. Additionally, the improve-
ments of interfacing a digital twin with the descriptive level, compared
to injecting stimuli, are not evident. IEC5108 recommends the existing
stimuli-based verification method. In an interfacing strategy covering
the complete development of FPGA firmware, behavioral stage simu-
lations only in Simulink are assumed to be elementary. Assuming an
interfacing strategy capable of covering safety demonstrations in the
first FPGA firmware development stage, i.e., the behavioral stage, and
the last development stage, i.e., the implemented stage, demonstrations
of the safety of the behavior with stimulus approach in the descriptive
stage are sufficient. Furthermore, we believe that the advantages of
strategy C make it more suitable for safety demonstrations of modules
implemented on the FPGA. The performance, as evidenced by the
case study, of key criteria, i.e., the computational speed the scalabil-
ity, and the potential to overcome remaining challenges, leads to a
recommendation of interface strategy C.

Bypassing the inverter in the digital twin environment could im-
prove the scalability of system-level testing and safety demonstrations
of the digital twin elements. Assuming the motor system has demon-
strated safety sufficiently and supported the claim about safety at the
modular level, integration testing by simplifying components, like the
inverter can improve the framework. Modifying the FPGA firmware to
operate in a digital twin mode, facilitating a bypass of computation-
ally expensive components is an approach to reach the computational

speeds. This approach enhances the scalability of all strategies.



Computers & Industrial Engineering 186 (2023) 109733L. Björklund et al.
At the behavioral stage of the FPGA firmware, the digital twin
allows for configurations of the internal parameters. Test cases can
generate evidence on the system behavior. The test cases range from
broken or drifting sensors to degraded or completely broken compo-
nents, i.e., the battery cells, the motor, etc. An opportune amount of
cases can sufficiently cover safety-critical scenarios, and compounding
the results can demonstrate the capability of the all-electric actuation
system to reach a safe state. Upon reaching a sufficient test cover-
age, satisfying demonstrations at the behavioral stage can facilitate
refinements of the FPGA firmware into HDL. In the descriptive stage
we recommend generating stimuli for verifying the response against
a reference model. A bitfile configures the FPGA and realizes the
controller as a logical circuit. At the implementation stage, the rec-
ommended interfacing strategy requires synthesizing the digital twin,
following the same procedure as the controller. At this stage, the FPGA-
based digital twin interfaces directly with the controller, simulating the
system’s behavior and generating evidence of its safety. Moreover, the
FPGA-based digital twin facilitates validating the implementation of
the safety-critical FPGA firmware. Expectations include the hardware-
accelerated computations and enhanced integration testing capabilities
for multiple modules of FPGA firmware in safety demonstrations. A
modification of Fig. 6 illustrates the full concept, highlighting the
testing capabilities in Fig. 15.

The proposed development flow consists of fully testing the be-
havior of the controllers harnessed to a digital twin in Simulink.
The simulations can demonstrate the safety and as the basis for the
reference model. Stimuli can be used to test the FPGA firmware during
HDL development, allowing for an evaluation of the response at each
step. Finally, the implemented FPGA firmware can be tested in real-
time by the FPGA-based digital twin which has been synthesized and
placed and is realized as a logical circuit on an FPGA device.

7. Conclusion

This research paper identifies three feasible interfacing strategies
for connecting a digital twin with safety-critical functions embedded in
FPGA circuits, capable of demonstrating safety-related behavior in the
latter two identified stages of developing controllers as FPGA firmware.
The first stage of creating an FPGA-based controller is out of scope due
to simplicity and existing solutions for interfacing, and already a part of
the framework of digital twins for safety demonstrations. The two latter
stages of FPGA firmware development encompass software and hard-
ware aspects, necessitating a multi-faceted approach to development
and testing.

The introduction of five performance criteria aiming to maximize
the values of the digital twin supports our recommendation for digital
twin-based testing during the design and operational stage of the case
study. We propose behavioral simulations to cover the behavioral stage
and to utilize existing commercial tools to verify behavioral preser-
vation during all synthesizing steps in the descriptive stage. For the
final development stage, we recommend an FPGA-based digital twin
for reaching high computational speed, scaling up to integration testing
of multiple modules, and cover testing of the digital logical circuits
realizing the controller on the FPGA device.

The practical implications of the recommendations require the ad-
herence of the digital twin to the constraints of configuring FPGAs
and creating custom resources for reading, writing, and sampling test
cases to the FPGA-based digital twin. Overcoming the challenges of
usability and configurability requires additional efforts and resources,
but the identifiable improvements of the recommendation outweighs
14

the challenges.
Fig. 15. A proposed flow for developing and testing FPGA firmware. The flow provides
interfacing solutions to provide safety demonstrations for simulation-based verification
and validation activities.

7.1. Further work

The recommendation of the paper is to use an FPGA-based digital
twin for realizing safety demonstrations. Creating a platform suitable
for late-stage testing and validation of FPGA firmware supports the
framework of safety demonstrations using a digital twin. To incor-
porate a digital twin element onto an FPGA device, adhering to the
requirements and constraints for developing a synthesizable digital
twin is necessary. However, further research on an assurance and qual-
ification process for the FPGA-based digital twin is a requirement for
applying the digital twin to generate evidence about the system’s safety-
related behavior. Additionally, the case study provides valuable insights
into the advantages of conducting safety demonstrations in a virtual
domain. Bypassing computationally expensive components, e.g., the 3-
phase inverter, improves the computational speed and scalability of
the safety demonstrations. However, this would require modifications
to the development of FPGA firmware to enable communication with
separate interfaces and bypass the physical components. Creating a
digital twin mode within the FPGA firmware would enhance the over-
all framework, offering additional benefits for safety demonstrations.
Exploring continuous safety demonstrations through an online version
of the digital twin, which interfaces with the operational logic mod-
ule, requires researching the reliability of the interface to ensure safe

operation.



Computers & Industrial Engineering 186 (2023) 109733L. Björklund et al.

r

D

A

I
t
n
m
o
I
s

R

A

B

B

B

D

D

G

G

G

I

I
J

J

K

K

K

L

M

M

M

M

M

M

M

O

P
R

R

R

S

S

T

X

Y

Z

Z

CRediT authorship contribution statement

Ludvig Björklund: Conceptualization, Methodology, Writing – orig-
inal draft, Visualization. Johannes Schick: Validation. Mary Ann
Lundteigen: Writing – review & editing. Markus Glaser: Writing –
eview & editing.

ata availability

Data will be made available on request.

cknowledgments

This work was carried out as a part of SUBPRO, a Research-based
nnovation Centre within Subsea Production and Processing. The au-
hors gratefully acknowledge the project support from SUBPRO (grant
umber 237893), which is financed by the Research Council of Norway,
ajor industry partners and NTNU. Additional acknowledgment goes

ut to the team working on the ISSA project at the Institute for High
ntegrity Mechatronic Systems, Aalen University, for access to the case
tudy.

eferences

gnusdei, G. P., Elia, V., & Gnoni, M. G. (2021). A classification proposal of digital twin
applications in the safety domain. Computers & Industrial Engineering, 154, Article
107137. http://dx.doi.org/10.1016/j.cie.2021.107137.

jörklund, L., Glaser, M., Imle, S., Skofteland, G., & Lundteigen, M. (2022). Design
of a digital twin of gate valves for partial stroke testing. In Proceedings of the
32nd European safety and reliability conference (pp. 3451–3458). Research Publishing
Services.

önsch, J., Elstermann, M., Kimmig, A., & Ovtcharova, J. (2022). A subject-oriented
reference model for digital twins. Computers & Industrial Engineering, 172, Article
108556.

rown, S., & Rose, J. (1996). FPGA and CPLD architectures: a tutorial. IEEE Design &
Test of Computers, 13(2), 42–57. http://dx.doi.org/10.1109/54.500200.

arba, A., De Belie, F., Vyncke, T., & Melkebeek, J. (2012). FPGA-based real-time
simulation of sensorless control of PMSM drive at standstill. In International
symposium on power electronics power electronics, electrical drives, automation and
motion (pp. 1063–1068). IEEE.

NV GL (2020). Qualification and assurance of digital twins. In Recommended practice
DNVGL-RP-A204 (October 2020 ed.).

L 070 (2020). Guidelines for application of IEC 61508 and IEC 61511 in the Norwegian
petroleum industry.

laessgen, E., & Stargel, D. (2012). The digital twin paradigm for future NASA and
US air force vehicles. In 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dy-
namics and materials conference 20th AIAA/ASME/AHS adaptive structures conference
14th AIAA (p. 1818).

rieves, M., & Vickers, J. (2017). Digital twin: Mitigating unpredictable, undesirable
emergent behavior in complex systems. In Transdisciplinary perspectives on complex
systems (pp. 85–113). Springer.

EC 61508 (2010). Functional safety of electrical/electronic/programmable electronic
safety-related systems. Geneva: International Electrotechnical Commission.

EEE (1987). IEEE standard VHDL language reference manual. IEEE.
iang, S., Liang, J., Liu, Y., Yamazaki, K., & Fujishima, M. (2005). Modeling and

cosimulation of FPGA-based SVPWM control for PMSM. In 31st Annual conference
of IEEE industrial electronics society, 2005 (p. 6). IEEE.

ones, D., Snider, C., Nassehi, A., Yon, J., & Hicks, B. (2020). Characterising the digital
twin: A systematic literature review. CIRP Journal of Manufacturing Science and
Technology, 29, 36–52.
15
apinski, J., Deshmukh, J. V., Jin, X., Ito, H., & Butts, K. (2016). Simulation-based
approaches for verification of embedded control systems: An overview of traditional
and advanced modeling, testing, and verification techniques. IEEE Control Systems
Magazine, 36(6), 45–64.

ritzinger, W., Karner, M., Traar, G., Henjes, J., & Sihn, W. (2018). Digital twin in man-
ufacturing: A categorical literature review and classification. IFAC-PapersOnLine,
51(11), 1016–1022.

uon, I., & Rose, J. (2006). Measuring the gap between FPGAs and ASICs. In Proceedings
of the 2006 ACM/SIGDA 14th international symposium on field programmable gate
arrays (pp. 21–30).

iu, M., Fang, S., Dong, H., & Xu, C. (2021). Review of digital twin about concepts,
technologies, and industrial applications. Journal of Manufacturing Systems, 58,
346–361.

ahler, C., Glaser, M., Schoch, S., Marx, S., Schluenss, S., Winter, T., Popp, J., &
Imle, S. (2019). Safety capability of an all-electric production system. In Offshore
technology conference. OnePetro.

ashaly, M. (2021). Connecting the twins: A review on digital twin technology & its
networking requirements. Procedia Computer Science, 184, 299–305.

atar, M., & Iravani, R. (2009). FPGA implementation of the power electronic converter
model for real-time simulation of electromagnetic transients. IEEE Transactions on
Power Delivery, 25(2), 852–860.

ilton, M., Benigni, A., & Monti, A. (2019). Real-time multi-FPGA simulation of energy
conversion systems. IEEE Transactions on Energy Conversion, 34(4), 2198–2208.

ilton, M., De La O, C., Ginn, H. L., & Benigni, A. (2020). Controller-embeddable
probabilistic real-time digital twins for power electronic converter diagnostics. IEEE
Transactions on Power Electronics, 35(9), 9850–9864.

onmasson, E., & Cirstea, M. N. (2007). FPGA design methodology for industrial
control systems—A review. IEEE Transactions on Industrial Electronics, 54(4),
1824–1842.

onmasson, E., Idkhajine, L., & Naouar, M. W. (2011). FPGA-based controllers. IEEE
Industrial Electronics Magazine, 5(1), 14–26. http://dx.doi.org/10.1109/MIE.2011.
940250.

pen Verilog International (1993). Verilog hardware description reference. Open Verilog
International.

edroni, V. A. (2010). Circuit design and simulation with VHDL. MIT Press.
asheed, A., San, O., & Kvamsdal, T. (2020). Digital twin: Values, challenges and

enablers from a modeling perspective. IEEE Access, 8, 21980–22012. http://dx.doi.
org/10.1109/ACCESS.2020.2970143.

uba, M., Hunor, N., Hedesiu, H., & Martis, C. (2016). FPGA based processor in
the loop analysis of variable reluctance machine with speed control. In 2016
IEEE international conference on automation, quality and testing, robotics (pp. 1–6).
http://dx.doi.org/10.1109/AQTR.2016.7501375.

uba, M., Nemes, R. O., Ciornei, S. M., Martis, C., Bouscayrol, A., & Hedesiu, H. (2019).
Digital twin real-time FPGA implementation for light electric vehicle propulsion
system using EMR organization. In 2019 IEEE vehicle power and propulsion conference
(pp. 1–6). http://dx.doi.org/10.1109/VPPC46532.2019.8952428.

ingh, M., Fuenmayor, E., Hinchy, E. P., Qiao, Y., Murray, N., & Devine, D. (2021).
Digital twin: Origin to future. Applied System Innovation, 4(2), 36.

ouri, A., & Norouzi, M. (2019). A state-of-the-art survey on formal verification of the
internet of things applications. Journal of Service Science Research, 11(1), 47–67.

ao, F., Sui, F., Liu, A., Qi, Q., Zhang, M., Song, B., Guo, Z., Lu, S. C. Y., & Nee, A.
Y. (2019). Digital twin-driven product design framework. International Journal of
Production Research, 57(12), 3935–3953.

iong, J., Ye, H., Pei, W., Kong, L., Huo, Q., & Han, Y. (2022). A monitoring and
diagnostics method based on FPGA-digital twin for power electronic transformer.
Electric Power Systems Research, 210, Article 108111.

ankova, Y., Bertels, K., Vassiliadis, S., Meeuws, R., & Virginia, A. (2007). Automated
HDL generation: Comparative evaluation. In 2007 IEEE international symposium
on circuits and systems (pp. 2750–2753). http://dx.doi.org/10.1109/ISCAS.2007.
378622.

kadek, P., Koczor, A., Gołek, M., Matoga, Ł., & Penkala, P. (2015). Improving
efficiency of FPGA-in-the-loop verification environment. IFAC-PapersOnLine, 48(4),
180–185.

umel, P., García-Valderas, M., Lázaro, A., López-Ongil, C., & Barrado, A. (2010).
Co-simulation PSIM-ModelSim oriented to digitally controlled switching power
converters. In 2010 IEEE 12th workshop on control and modeling for power electronics
(pp. 1–7). http://dx.doi.org/10.1109/COMPEL.2010.5562420.

http://dx.doi.org/10.1016/j.cie.2021.107137
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb2
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb2
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb2
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb2
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb2
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb2
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb2
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb3
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb3
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb3
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb3
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb3
http://dx.doi.org/10.1109/54.500200
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb5
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb5
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb5
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb5
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb5
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb5
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb5
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb6
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb6
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb6
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb7
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb7
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb7
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb8
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb8
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb8
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb8
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb8
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb8
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb8
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb9
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb9
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb9
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb9
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb9
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb10
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb10
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb10
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb11
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb12
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb12
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb12
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb12
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb12
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb13
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb13
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb13
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb13
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb13
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb14
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb14
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb14
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb14
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb14
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb14
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb14
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb15
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb15
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb15
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb15
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb15
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb16
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb16
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb16
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb16
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb16
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb17
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb17
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb17
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb17
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb17
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb18
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb18
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb18
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb18
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb18
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb19
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb19
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb19
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb20
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb20
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb20
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb20
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb20
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb21
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb21
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb21
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb22
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb22
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb22
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb22
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb22
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb23
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb23
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb23
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb23
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb23
http://dx.doi.org/10.1109/MIE.2011.940250
http://dx.doi.org/10.1109/MIE.2011.940250
http://dx.doi.org/10.1109/MIE.2011.940250
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb25
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb25
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb25
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb26
http://dx.doi.org/10.1109/ACCESS.2020.2970143
http://dx.doi.org/10.1109/ACCESS.2020.2970143
http://dx.doi.org/10.1109/ACCESS.2020.2970143
http://dx.doi.org/10.1109/AQTR.2016.7501375
http://dx.doi.org/10.1109/VPPC46532.2019.8952428
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb30
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb30
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb30
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb31
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb31
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb31
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb32
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb32
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb32
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb32
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb32
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb33
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb33
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb33
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb33
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb33
http://dx.doi.org/10.1109/ISCAS.2007.378622
http://dx.doi.org/10.1109/ISCAS.2007.378622
http://dx.doi.org/10.1109/ISCAS.2007.378622
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb35
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb35
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb35
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb35
http://refhub.elsevier.com/S0360-8352(23)00757-X/sb35
http://dx.doi.org/10.1109/COMPEL.2010.5562420

	Towards digital twins for safety demonstrations: Interfacing strategies for FPGA-targeted applications
	Introduction
	Objective
	Structure

	Digital Twins for Safety Demonstrations
	Defining the digital twin
	Digital twin elements
	Establishing trust in digital twins to generate evidence
	A digital twin based framework for safety demonstrations

	FPGA as a target platform
	FPGA as a target device
	Standards for development of FPGA firmware 

	Interfacing strategies of a digital twin and FPGA firmware
	Interfacing a digital twin and a controller for safety demonstrations
	Identifying feasible interfacing strategies
	Criteria for selecting suitable interface strategies

	A case study for selecting suitable interfacing strategies
	General interfacing considerations for safety demonstrations 
	Evaluating the strategies
	Criteria evaluation
	Criterion 1: Computational speed
	Criterion 2: Configurability
	Criterion 3: Scalability
	Criterion 4: Usability
	Criterion 5: Manageability


	Discussion
	Conclusion
	Further work

	CRediT authorship contribution statement
	Data availability
	Acknowledgments
	References


