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Abstract. In this work, we investigate the problem of diversifying top-k
geosocial queries. To do so, we model the diversification objective as a bi-
criteria objective that maximizes both user diversity and geosocial proximity.
Due to the intractability of the problem, discovering the ideal results is
only possible for limited datasets. Consequently, we introduce two heuris-
tic algorithms to address this challenge. Our experimental findings, based
on real-world geosocial datasets, demonstrate that the proposed algorithms
surpass existing methods in terms of runtime performance and accuracy.

1 Introduction

The rise of location-based social networks (LBSNs) likeYelp andFoursquare has resulted
in an abundance of geosocial data, prompting numerous research efforts to focus on
effectivelymanagingandefficiently searching suchdata.Top-kgeosocial queries, a subset
of queries performed on geosocial data, have gained significant attention due to their
practical applications in location-basedadvertising [2], activityplanning [15,22], andride-
sharing platforms [22]. Despite extensive research on the efficient processing of geosocial
queries [2,3,10,12,13,15,16,22], existing work often overlooks result diversity which
is an essential aspect of the search for enhancing user satisfaction [21] by summarizing
search results [5], addressing query ambiguity, and eliminating redundant results [1].

In this study, we aim to diversify search results for geosocial queries by considering
user similarities derived from vertex embedding techniques and user proximities based
on their locations. By analyzing social ties on the social network graph, we can capture
user similarities and leverage them to diversify query results. For instance, Fig. 1
illustrates how two cliques of users exhibit similarities due to shared vertices (v4 and v5).
We combine these similarities using a max-sum diversification objective function [4].
However, determining an optimal solution for this bi-criteria objective function is
an NP-hard problem. To address this challenge, we propose two algorithms based
on well-designed heuristics. Experimental results indicate that these heuristic-based
algorithms can diversify search results effectively.

2 Problem Formulation

In this section, we first introduce the preliminary definitions of the concepts that are
needed for the formulation of the problem. Then we give a detailed description of the
problem we are addressing.
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Fig. 1: State-of-the-art vertex embedding techniques can capture a wide range of similarities
between users. For example, a typical embedding algorithm such as Node2vec will produce
representations where vertices belonging to each of the two cliques are closer to each other
with respect to some distance, such as Euclidean. Meanwhile, the pair-wise distance between
two vertices from each of the two cliques will normally be larger. In this work, we use this
feature to capture user diversity.

2.1 Basic Definitions

A social graph of users, G=(V,E), is an unweighted and undirected graph, where V
and E are the sets of vertices and edges, respectively. Each vertex v∈V represents a
user and ei,j∈E denotes the edge connecting vi and vj. An embedding on vertices ofG
is a mapping f :V→Rd such that d≪ |V|, where f preserves some measure of similarity
between vertices such as community membership or vertex roles. A user is represented
as a triple u= (v,l,e), where v is the vertex representing the user, l is the current
location of the user, and e is the embedding vector of v. The set of all users is U. Given
G, the social distance between two users is equal to the length of the shortest path
connecting vertices representing them, normalized by the diameter of G. We define the

social proximity as Psocial(ui,uj)=1−
sp(ui.v,uj.v)

spmax
, where spmax is the maximum of the

length of the shortest paths inG, which is its diameter, and sp(ui.v,uj.v) is the length of
the shortest path between ui.v and uj.v. The geographical distance between two users

is defined asDspatial(ui,uj)=
δH(ui.l,uj.l)

dmax
, where δH(ui.l,uj.l) is the distance between

ui.l and uj.l computed using Haversine formula (the distance between objects on the
surface of Earth). And dmax is the maximum spatial distance between locations of any
two pairs of users, used to normalize the value ofDspatial between 0 and 1. The geo-social
proximity of two users, which is the combinedmeasure of how socially and spatially close

they are, is defined as P(ui,uj)=
Psocial(ui,uj)

1+α·Dspatial(ui,uj)
, where variable α∈ [0,1] adjusts the

importance given to social proximity and geographical distance in computing P(). We
measure the social dissimilarity between two users by computing the Euclidean distance
between the embedding vectors associated with vertices representing them, normalized
by the maximum Euclidean distance between any two embedding vectors present in
the database. Although, we chose Euclidean distance, any other distance metric can
be utilized for defining and computing user dissimilarity, depending on the application.

The user dissimilarity is defined as D(ui,uj)=
δ(ui.e,uj.e)

δmax
, where δ(ui.e,uj.e) is the

Euclidean distance between vertex embeddings of ui and uj, and δmax is the maximum
distance between any two distinct embedding vectors from users in U.

2.2 Problem Definition

Given U and G, a diversified top-k geosocial (DTkGS) query, is a quadruple q =
(uq,k,α,β), where uq is the query user, with the goal to find a socially diverse subset
Rq⊆U\{uq} of k users which are geo-socially close to uq. Given the query defined



as q, we formulate the task of finding Rq as an instance of the max-sum diversifica-
tion problem [4] where the goal is to find the optimal Rq such that the value of the
bi-criteria objective function Ψ(Rq)=β×Prox(Rq)+(1−β)×Div(Rq) is maximized.
Prox(Rq)measures the geosocial proximity and Div(Rq)measures diversity of Rq. The
variable β=[0,1] adjusts the trade-off between geo-social proximity and social diversity.
Moreover, proximity and diversity of Rq are defined as Prox(Rq)=

1
k
×
∑

u∈Rq
P(uq,u)

and Div(Rq)=
2

k(k−1)×
∑

ui,uj∈Rq
D(ui,uj).

Lemma 1. Finding the optimal solution for the diversified top-k geosocial query that
maximizes Ψ(Rq) is NP-hard.

Proof. Suppose β=0; then answering the query would be equal to finding the Rq such
that it maximizes the Ψ(Rq)=Div(Rq) which is equivalent to solving the maximum
edge weight clique problem under cardinality constraint (MEWC) [9] which is shown
to be a particular case of the quadratic knapsack problem that is an NP-complete
problem. Consequently, finding the optimal Rq for the query is in NP-Hard [9].

3 Proposed Heuristics

Given the intractability of optimally solving the DTkGS query, we introduce two
efficient algorithms employing distinct heuristics to get reasonably accurate results.

3.1 Fetch and Refine

Fetch and Refine (FnR) is our first heuristic (see Algorithm 1). It produces its result in
two key steps. In the first step, it constructs a candidate set of size K where K>k, and
splits the candidate set into two disjoint subsets Rq and Swhere |Rq|=k, and |S|=K−k.
Rq is initializedwith k users with highest geosocial proximities, while S is initializedwith
the remaining K−k users with highest geosocial proximities. In the second step, which
consists of one ormore iterations, for everyu−∈Rq andu+∈S, the algorithm computes
a gain value for swapping u− with u+ on the score of Rq using the following heuristic:

gain(Rq,u
−,u+)=Ψ(Rq\{u

−}∪{u+})−Ψ(Rq). (1)

At the end of each iteration, the best pair (u−,u+) with the largest positive gain
is chosen, and u− is swapped with u+. The function FindBestPair (in Algorithm 1),
given Rq and S, returns the pair u− and u+ which maximizes the aforementioned gain,
in addition to the actual value of the gain. In Algorithm 1, ∆ indicates the gain of the
pair returned by FindBestPair. This procedure is repeated until no improvement in
gain is achieved via swapping. The intuition behind FnR is that finding the globally
optimal solution may not be feasible due to the hardness of answering the diversified
top-k geosocial query. However, by limiting the size of the search space by only including
top-K users with higher geosocial proximities, we can find the locally optimal result
set with the highest social diversity among these users. The algorithm’s name alludes
to the filter-and-refine algorithmic framework, which utilizes one or more filtering steps
before producing its results to reduce the query processing cost. The complexity of
the FnR algorithm can be conceptualized as follows. It takesO(|U|log|U|) to compute
the geosocial proximities. Moreover, the function FindBestPair takes O(k(K−k))
to run. The loop in Algorithm 1 lines 10-13 runs a finite number of times; the exact
number of times it runs is dependent on the nature of the input data.



Algorithm 1: Fetch and Refine

Input: U, G, uq, k, α, β, K
Output: Rq

1 S,Rq,Q←NewSet(),NewSet(),NewMaxPriorityQueue()
2 foreach u in U\uq do
3 Enqueue(u,P(uq,u),Q)
4 while Size(Rq)+Size(S)<K and not Empty(Q) do
5 if Size(Rq)<k then
6 Add(Dequeue(Q), Rq)
7 else
8 Add(Dequeue(Q), S)

9 u−,u+,∆←FindBestPair(Rq,S)
10 while ∆>0 do
11 Remove(u−, Rq); Remove(u+, S)
12 Add(u+, Rq); Add(u

−, S)
13 u−,u+,∆←FindBestPair(Rq,S)

14 return Rq

3.2 Best Neighbour Search

Best Neighbour Search (BNS) is our second heuristic (see Algorithm 2), which utilizes a
local search procedure to find its result. Similar to FnR, BNS works in twomajor steps.
In the first step, it constructs a candidate result-set. Then, in the second step, which
consists of one to Imax iterations, it identifies the next best neighbouring candidate
result set of current Rq and switches to it. Algorithm 2 works similarly to Algorithm 1.
The major difference between the two is that FnR only probes the neighbouring solu-
tions involving K−k users in S while BNS globally checks all neighbouring candidate
result-sets, and picks the best with respect to the score value. Similar to Algorithm 1,
the function FindBestPair is used to compute a combined gain to choose the best
neighbour at each iteration to move. The complexity of BNS algorithm is computed
as follows. Computing the geosocial proximities takes O(|U|log|U|) to compute, and
FindBestPair takes O(k(K−k)) to run. Furthermore, each iteration of the second
loop takesO(k(K−k)) for maximum of Imax iterations. Thus, the resulting complexity
isO(|U|log|U|+k(K−k)Imax).

4 Experimental Evaluation

In this section, we describe the details of the experiments to evaluate the performance
of the proposed algorithms. To that end, we first describe the data, baselines, setup,
and metrics used for the experiments. Then we present the results and discuss their
subsequent implications. To enable the reproducibility of our study, we make available
the evaluation artefacts here https://github.com/habedi/adbis-2023-paper.

4.1 Data

We used the data of the Gowalla location-based social network from [11], which include
the social network of 196K users and the information about 6.4M user check-ins. We

https://github.com/habedi/adbis-2023-paper


Algorithm 2: Best Neighbour Search

Input: U, G, uq, k, α, β, Imax

Output: Rq

1 Lines 1 to 3 of Algorithm 1
2 while not Empty(Q) do
3 Lines 6 to 8 of Algorithm 1
4 u−,u+,∆←FindBestPair(Rq,S); c←0

5 while ∆>0 and c<Imax do
6 Lines 5 to 8 of Algorithm 1
7 c←c+1

8 return Rq

extracted the largest connected subgraph of users who had at least one check-in. Further-
more, we extracted the largest connected subgraphs of users who had a check-in in four
geographical regions: the USA (|V|=45,474 and |E|=215,726), France (|V|=8,449 and
|E|=29,347), Germany (|V|=7,018 and |E|=25,822), and New York (|V|=2,187 and
|E|=4,958). We used subgraphs of these regional subgraphs with sizes that correspond
to the number of users in the social network in our experiments. For each user, their
latest check-in was used as their location.

4.2 Baselines

We compared the performance of our algorithms with the following baselines:

– Naive Baselines: we implemented two baselines, JGeoSoc and JUserDiss, which
naively pick top-k users based on their respective heuristics. JGeoSoc uses geosocial
proximitymeasure, and JUserDiss utilizes only user dissimilarity touq, respectively.

– GMC and GNE are two state-of-the-art diversification methods from [19] that
utilize a measure called maximal marginal relevance, which is an improvement on
MMR [5], to construct the result-set incrementally. One major difference between
the two algorithms is that GNE uses greedy randomized adaptive search, while
GMC lacks randomization.

– BSwap from [20], is another state-of-the-art diversification method that, given top-k
relevant objects, which in our context are users with higher geosocial proximity, tries
to diversify them by swapping the least dissimilar item in the current result-set with
the next most relevant item. The algorithm uses the parameter θ to set the threshold
on the maximum drop in relevance that it tolerates before terminating. We set this
to θ=0.1 based on [20].

4.3 Settings

All algorithms were implemented in Java.We ran the experiments on amachine with an
Intel Core i9 5.3GHzCPUwith 32GBofRAMrunningUbuntu 22.04.Themetrics used
for evaluation are computed over 50 runs, and their average values are presented. We
usedNode2vec [8] to compute the embeddings,with dimensionalityd=16. Furthermore,
we used Imax=10, K=5×k (these values are determined by an empirical study of



performancewith different parameters), andα=0.5during the experiments.We studied
theperformancewithk ranging from5 to35,β from0 to1, and |U|, i.e., the subgraph size,
from 120 to 2000. The default values for k, β, and |U| were 5, 0.5, and 500, respectively.

4.4 Evaluation Metrics

For measuring the quality of results, the difference between the score of the optimal
result-set, and the result-set produced by each diversification method was used. The
term gap percentage refers to the difference mentioned above when it is scaled to
represent a value between 0 and 100. Moreover, other metrics used in this work include
average response time for the query and average score.

4.5 Results

Due to the problem’s complexity, we can only calculate optimal result-sets for small
query parameters. On each dataset, we obtained an optimal result-set for a 120-user
subgraph, with parameter k=5 and varying β from 0 to 1 over five runs. The optimal
sets were found by searching through every possible k-sized user subset and choosing
the one with the highest Ψ() value. We computed the gap percentage between the score
of the optimal result-set, and the result-set returned by each method. A smaller gap
is better. Fig. 2 includes the gap percentage for each method while varying β. Note
that as β gets larger, the diversity decreases.

Interestingly, for both naive baselines, JGeoSoc and JUserDiss, the gap between
the score of the result-set returned bythese two methods and the optimal result-set is
noticeably large. On the other hand, GMC and GNE have small relative gaps. Our
proposed method BNS has a gap similar to GMC and GNE. Moreover, BSwap’s
performance was relatively stable on three of the datasets. On Germany’s subgraph,
the gap decreased with an increase in value of β. We suspect this is due to the similarity
of the embedding vectors in the subgraph. However, the gap is relatively high when
β is small, and when β gets larger, the gap gets smaller. This is because FnR picks
the subset of K users based on their geosocial proximities. This does not necessarily
lead to a better overall score when the weight given to diversity is larger.

We examined the scalability of themethodswith respect to the score of the result-set,
i.e., Ψ(Rq) and response time, with respect to the value of β (from 0 to 1), k (from 5
to 35), and the number of users associated with vertices of a subgraph, i.e., |U| (ranging
from 120 to 2000 users). Due to the overall similarity between the results, in the rest of
this paper, we omit the results for the subgraphs of Germany and New York since they
are similar to the results for the USA and France subgraphs. Fig. 3 shows the average
score, for parameters k=5, |U|=500, while increasing β.

Our method, BNS, performed on par or better than GMC and GNE on all
datasets. The average score for the method decreases as β becomes larger, which can
be due to the disparity between values of Prox() andDiv(). The score for JUserDiss
dropped on all datasets as β got larger. This is because JUserDiss only utilizes social
dissimilarity between users. On the other hand, the increase in the average score for
JGeoSoc is relatively low. FnR method performed similarly to BSwap regarding
the average score. Both methods had a drop in their average score as β got larger. Fig. 4
shows the average score for parameters β=0.5, k=5, while increasing the size of the
users in the subgraph, i.e., |U| from 120 to 2000. The performance of GMC, GNE,
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Fig. 2: Gap while varying β

and BNS is similar. These three methods performed better on all datasets regardless
of the size of the subgraph. Additionally, the increase in the subgraph size seems not
to have affected the average scores of the result-sets returned by these methods, which
may indicate their stability relative to the input size. On the other hand, JUserDiss
performed the worst, and FnR performed better than BSwap.

Fig. 5 shows the average score for parametersβ=0.5, and |U|=500, while increasing
the value of k from 5 to 20 in steps of 5. With the increase in the result-set size, the
average score for all methods except JUserDiss steadily decreases. On the other
hand, the average score for JUserDiss increases when k gets larger. It shows that
either geosocial proximity or diversity increased by making the result-set larger. BNS
performed similarly to GMC and GNE as before. All three methods have performed
better than other methods, including FnR. Although FnR did not produce result-sets
with high scores as the top threemethods, its performance is better than three of the five
baselines, including BSwap and JGeoSoc. Finally, Fig. 6 shows the average response
time of each method for parameters k=5, β=0.5, while varying k. Our methods FnR
and BNS consistently performed better than the GMC and GNE as the size grew.
The response time for other baselines stayed relatively stable as k got larger.

4.6 Discussion

BNS, GMC, and GNE demonstrated superior result-set scores and stability with
increased data size. Their respective strategies for maximizing relevance, integrating
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Fig. 3: Average score while varying β
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randomization with local search, and diversifying initial result-sets were effective. Naive
baselines underperformed, showing that basic user selection based on geosocial proxim-
ity or social user dissimilarity is ineffective. Our FnR method performed better than
BSwap, JGeoSoc, and JUserDiss, with BNS and FnR providing shorter response
times. As the result-set size increased, GMC and GNE struggled to scale in terms
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Fig. 6: Average response time while varying k

of response time. Although FnR initially outperformed others on response time, it
was surpassed by BNS for k>=10, showing its sensitivity to the size of K.

5 Related Work

Liu et al. [12] introduced the circle of friend query, which finds a cohesive group of people
that share strong social ties and are geographically close. [3] introduced a framework
for processing geo-social queries. [2] investigated the use of different ranking functions
to process geo-social queries. [22] proposed novel geo-social queries which could find
cohesive user groups in an LBSN under acquaintance constraints. [7] gives an extensive
survey covering various aspects of geo-social queries. To the best of our knowledge, no
current work addresses the diversity of results of a top-k geosocial query.

Moreover, the first major work related to query result diversification is due to [5],
where the authors proposed the maximal marginalized relevance to re-rank and sum-
marize documents. [1] applied diversification to counter the effect of ambiguity in web
queries. [19] provide a comprehensive empirical evaluation of various diversification
methods on real-world datasets. [6] and [21] provide surveys on diversifying query
results.Whatmakes our work different fromprevious work is the application of diversity
in the new domain of geosocial data.

Furthermore, DeepWalk [14] was the first to propose a technique to learn a latent
representation of vertices in low-dimensional vector space. Other well-known vertex
embedding techniques include LINE [17], Node2Vec [8], and their variations. Although
the similarity measure employed during the learning embeddings of vertices can be
chosen arbitrarily, most embedding methods mainly work by learning the immediate
neighbourhood of the vertices. A recent deviation from this trend is VERSE [18] which
can capture a wider range of similarities, including the roles of vertices.

6 Conclusion

In our research, we utilized vertex embedding for geosocial query result diversification,
presenting an optimization problem tackled by two heuristics. These methods showed
better overall accuracy and runtime compared to the baselines. Our future plan is
to further improve efficiency through parallel computation for the distance between
embedding vectors.
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