
Evaluating the Impact of ChatGPT on Exercises of
a Software Security Course

1st Jingyue Li
Dept. of Computer Science

Norwegian Univ. of Science and Technology (NTNU)
Trondheim, Norway
jingyue.li@ntnu.no

2nd Per Håkon Meland
Dept. of Computer Science

NTNU
Trondheim, Norway

per.hakon.meland@ntnu.no

3rd Jakob Svennevik Notland
Dept. of Computer Science

NTNU
Trondheim, Norway

jakob.notland@ntnu.no

4th André Storhaug
Dept. of Computer Science

NTNU
Trondheim, Norway

andre.storhaug@ntnu.no

5th Jostein Hjortland Tysse
Dept. of Computer Science

NTNU
Trondheim, Norway

jostein.h.tysse@ntnu.no

Abstract—Along with the development of large language mod-
els (LLMs), e.g., ChatGPT, many existing approaches and tools
for software security are changing. It is, therefore, essential
to understand how security-aware these models are and how
these models impact software security practices and education.
In exercises of a software security course at our university,
we ask students to identify and fix vulnerabilities we insert in
a web application using state-of-the-art tools. After ChatGPT,
especially the GPT-4 version of the model, we want to know how
the students can possibly use ChatGPT to complete the exercise
tasks. We input the vulnerable code to ChatGPT and measure its
accuracy in vulnerability identification and fixing. In addition, we
investigated whether ChatGPT can provide a proper source of
information to support its outputs. Results show that ChatGPT
can identify 20 of the 28 vulnerabilities we inserted in the web
application in a white-box setting, reported three false positives,
and found four extra vulnerabilities beyond the ones we inserted.
ChatGPT makes nine satisfactory penetration testing and fixing
recommendations for the ten vulnerabilities we want students to
fix and can often point to related sources of information.

Index Terms—Software security, artificial intelligence, large
language models, ChatGPT, IT education

I. INTRODUCTION

Due to the risk and cost caused by software vulnerabilities,
many universities have started educating software developers
to develop secure code in the first place. The mandatory
software security course for all IT students at our university
teaches students how to incorporate security in each software
development phase. Currently, the course focuses on security
issues related to web applications. One critical module of the
course is to teach students to understand the vulnerabilities
listed in the open web application security project (OWASP)
top 10 [1] and to identify and fix the vulnerabilities using
state-of-the-art tools.

In the current course exercises, we teach students to use sev-
eral tools to identify and fix vulnerabilities inserted in a web
application. Students often use, e.g., Firefox web developer

tool [2], Postman [3], and Zap [4], to gather web application
information. Students also use scanners, e.g., Nessus [5], to
scan the web application to identify vulnerabilities. In addition,
students read the OWASP web security testing guide (WSTG)
[6] to learn how to black-box test the web application and
review the code to identify the vulnerabilities.

After ChatGPT [7], especially the GPT-4 model [8], is
available on 14 March 2023, we suspect that students may use
it to complete the exercise tasks without needing to learn other
tools or read the testing guide [6]. Becker et al. [9] identified
issues and opportunities in using AI-powered tools to teach
an introductory programming course. Results of [10] showed
that AI-powered tools could outperform students in answering
exam questions. Tony et al. [11] found that chatbots could
help identify vulnerabilities in the code, but with limitations.
Studies, e.g., [12] and [13], showed that many of the codes
generated from chatbots were vulnerable. However, to our
knowledge, no study has investigated the impact of ChatGPT
on teaching software vulnerability identification and fixing in
a university course setup. In the coming years, we assume
many students can access ChatGPT [7] or similar tools. Thus,
we are motivated to understand ChatGPT’s impact on teaching
software security, especially its impact on the exercise design.
For now, we focus on GPT-4 [8] because it allows for a context
window of 8k tokens, meaning students can copy and paste
a large chunk of code into it and let it identify and fix the
vulnerabilities in the code for them. Our research questions
are:

• RQ1: How accurate is ChatGPT in vulnerability identifi-
cation?

• RQ2: How accurate is ChatGPT in recommending pene-
tration test cases?

• RQ3: How accurate is ChatGPT in recommending vul-
nerability fixes?

• RQ4: How often can ChatGPT provide sufficient sources978-1-6654-5223-6/23/$31.00 ©2023 IEEE

of information related to software vulnerability identifi-
cation and fixing?

To answer the research questions, we asked teaching as-
sistants of the course to input the vulnerable code to GPT-
4 and use its prompts to guide vulnerability identification
and fixing. We then calculated the identification and fixing
recommendation accuracy of ChatGPT and summarized the
fruitfulness of the source of information it provided.

The study results show that ChatGPT can provide satis-
factory results to identify and fix the inserted vulnerabilities,
although there are still rooms to improve. The contributions
of the study are:

• We have identified the pros and cons of using ChatGPT
to identify software vulnerabilities and propose fixing
recommendations.

• To our knowledge, it is the first study investing in
ChatGPT’s impact on teaching software security, which
gives valuable insight into updating the design of similar
courses in the LLM era.

• Based on the results of this study, we provide visions for
future research in software security and IT education.

The rest of the paper is organized as follows. Section II
shows related work. Section III presents the background of the
software security course. Section IV explains research design.
The results are presented in Section V and are discussed in
Section VI. Section VII concludes the study, and Section VIII
presents future work.

II. RELATED WORK

An overview of the most recent studies relevant to our work
is given in Table I.

TABLE I
OVERVIEW OF RELATED WORK

Ref. Chatbot Tests Results

[11]
SKF Performance, efficiency and

user acceptance of chatbot vs.
Internet search for a Java web
application with XSS and SQL
injection vulnerabilities.

Internet search
outperformed
SKF.

[10]
OpenAI
Codex

Chatbot vs. students in solving
programming questions.

Codex
outperformed
students.

[12]
OpenAI
Codex

Comparison of Python code
writing capabilities between
Codex, GPT-3, and GPT-J.

Codex
outperformed
the others.

[14]
OpenAI
Codex

Participants with chatbot sup-
port given programming tasks
in Python, JavaScript, and C.

Participants wrote
code with more
vulnerabilities us-
ing chatbot than
not using it.

Tony et al. [11] analyzed the effectiveness of the security
knowledge framework (SKF) chatbot stemming from OWASP
to find and fix security vulnerabilities by giving participants
source code with known vulnerabilities. However, they only
focused on Cross-Site Scripting (XSS) and SQL injection
vulnerabilities. Their results showed that only three out of 15
participants arrived at the right fix with chatbot support, while

seven out of 15 participants solved the task using a (manual)
Internet search.

Finnie-Ansley et al. [10] showed that OpenAI’s Codex
outperformed 80% of students in exam questions related to the
introductory programming course, which could provide low-
risk/high rewards for students focusing on getting good grades
rather than developing an understanding, leading to academic
misconduct.

Chen et al. [12] analyzed the Python code-writing capabil-
ities of OpenAI’s Codex and showed that OpenAI’s Codex
could produce vulnerable or misaligned code. Santhanam et
al. [15] found that around 2/3 of the chatbots for code
generation used Stack Overflow as their main information
source. Fischer et al. [13] figured out that out of 1.3 million
Android applications using code snippets from Stack Overflow,
97.9% contained at least one insecure code snippet.

Perry et al. [14] examined how developers chose to interact
with AI code assistants and how those interactions caused
security mistakes. They found that their participants with
chatbot access wrote less secure code than those without
such access, despite that the participants themselves thought it
would be vice-versa. This showed that such tools could give
users a false sense of the security of the code.

III. COURSE BACKGROUND

Although the detailed requirements and grading criteria of
the mandatory exercises of the software security course vary
each year, the exercises are usually designed as follows.

• We develop a new web application and insert around
20 to 30 vulnerabilities listed in the OWASP top 10
[1] each year. The web application in the Spring 2023
semester simulates functionality for refugees to find vol-
unteer help services. Certified volunteers register their
wishes and skills to provide help services through the
web application. Administrators of the web application
handle skill certifications to verify the volunteers. The
web application uses Django 4.0.8 with Django Rest
Framework 3.13.1 as the back end. The front-end code
is developed using React 4.0.3. To route the requests to
the front end and back end, we use NGINX 1.23.1 as
a reverse proxy. The web application is hosted at the
internal Gitlab repository of our university and is only
accessible with students’ university credentials. Thus, we
believe the vulnerable web application used in 2023 is
not included in ChatGPT’s training dataset.

• In the first module of the exercise, students must first
use tools to collect the web application’s information
and possibly make a page map. Based on the page
map, students must identify the inserted vulnerabilities
using code reviews and black-box testing approaches and
tools. Students need to write reports to describe how the
tests are performed to identify the vulnerabilities and
the location of the vulnerable codes. Besides reporting
the vulnerabilities and their locations, students must also
provide vulnerabilities’ WSTG [6] code to refer the
vulnerabilities to proper categories.

• In the exercise’s second module, students must fix the
identified vulnerabilities. To reduce the students’ effort
to fix the vulnerabilities, we do not ask them to fix
all vulnerabilities. We make a list of, for example, ten
vulnerabilities and let students fix only those. By limiting
and predefining the set of vulnerabilities to identify and
fix, we make it easier to make a solutions guide and coach
our teaching assistants.

As more than 200 students take this course each year, the
exercises are often organized in groups containing one to
three students. We give grades to students based on reading
their reports and counting the number of vulnerabilities they
identify and fix correctly. We do not punish students if
they report false positive vulnerability identification results.
Sometimes, students find and report more vulnerabilities than
we have inserted. If students identify extra vulnerabilities, we
give them bonus points up to the full score of the exercises. In
parallel with these exercises, we also offer students free access
to a software game, Secure Code Warrior [16], which teaches
software security, as a supplement. An example feature of the
Secure Code Warrior game is that it provides multiple-choice
questions and asks students to identify a location of code that
is vulnerable among multiple code locations.

In previous years, the grades of the exercises were added
to the course’s final grades. From the Spring 2023 semester,
the exercises grade are only used to qualify a student to take
the final written exam if the student’s exercise grade passes
a threshold. The final written exam counts as 100% of the
course grade.

IV. RESEARCH DESIGN

This section explains the detailed design to answer each
research question. In general, we designed the prompts for
ChatGPT in the same way that the exercises are structured and
how we expect students to approach them. We standardized the
prompts such that we first asked our question before pasting
the relevant code. We asked follow-up questions until we could
verify whether ChatGPT could provide a satisfactory answer.

A. Design and implementation to answer RQ1

To answer RQ1, one teaching assistant, who had inserted
the vulnerability in the web application as the preparation of
the exercises, evaluated how accurately ChatGPT identified
vulnerabilities in the white-box settings. The teaching assistant
first copied and pasted the code of each front- and back-end
file into ChapGPT and asked it to identify the vulnerabilities
in the code. As each file contains fewer than 8k tokens, the
teaching assistant did not need to split the codes in the file
when inputting them into ChatGPT. An example prompt the
teaching assistant used was as follows.

This is the settings.py for a Django project. Can you find
any vulnerabilities and list them according to OWASP top 10
or with the OWASP WSTG id? Also tell me explicitly which
line of code is the problem.

In addition, the teaching assistant asked ChatGPT to provide
the WSTG [6] code as follows.

Do you have the owasp wstg code for these vulnerabilities?
Sometimes, ChatGPT did not give a complete list of vul-

nerabilities in the first place. So, the teaching assistant asked
an additional question as follows.

Do you find any other vulnerabilities in the file? Do you
find anything else?

As students often use the WSTG [6] as a checklist to
identify vulnerabilities, the teaching assistant also simulated
such a process and asked more concrete questions as follows
to identify a particular type of vulnerability in the code:

How about the token lifetimes, are they sufficient?
After applying similar prompts on each file, the teaching as-

sistant calculated the accuracy of the ChatGPT’s vulnerability
identification.

B. Design and implementation to answer RQ2

As aforementioned, we specified only ten vulnerabilities
for students to fix. To answer RQ2, we decided to focus
on asking ChatGPT to propose penetration test cases only
on those ten vulnerabilities to limit the teaching assistant’s
effort in performing this study. Another teaching assistant,
who assisted in the vulnerability insertion, asked ChatGPT
to propose penetration test case to answer RQ2. The example
prompts for penetration testing are as follows:

How can I exploit the following code by XSS?
Show me an example html injection.
How can I observe unencrypted HTTP network traffic from

my computer?

C. Design and implementation to answer RQ3

The teaching assistant, who answered RQ2, also performed
the study to answer RQ3. The example prompts are as fol-
lows to let ChatGPT first identify the vulnerability through
penetration testing and then propose fixes.

Does my login function below have any lockout functional-
ity?

Then, the teaching assistant asked:
How can I test whether my application has lockout func-

tionality in a black-box fashion?
At last, the teaching assistant asked:
Show me how to use Django-axes to solve this problem.
For each of the ten vulnerabilities, the teaching assistant

used similar prompts and counted the accuracy of the proposed
penetration test cases by ChatGPT to answer RQ2 and fixing
solutions proposed by ChatGPT to answer RQ3.

D. Design and implementation to answer RQ4

To answer RQ4, a third teaching assistant first asked Chat-
GPT to identify security vulnerabilities in each file using
prompts as follows.

I want you to identify security vulnerabilities in the follow-
ing file plus the code with vulnerabilities.

The ChatGPT usually supplies a response with the results.
The teaching assistant then asked:

Can you provide sources for that information?

The teaching assistant did not include any notion of Django,
OWASP, etc. This is to ensure the results are not biased to-
wards any particular source. After asking ChatGPT to identify
security vulnerabilities in two front-end files, three back-end
files, one Django setting file, and one NGINX configuration
file, the teaching assistant counted the number of cases in
which ChatGPT provided sufficient source of information.

V. RESEARCH RESULTS

A. Results of RQ1

Results of vulnerability identification in the white-box set-
tings showed that GPT-4 found 16 of our 28 listed vulner-
abilities on the first try. With some additional more spe-
cific prompts, four more were found. The ones identified by
ChatGPT include, for example, sensitive information sent via
unencrypted channels, default admin password, and unlimited
login attempts without a lockout. A complete list of the
identified vulnerabilities is in the file 1.

The eight vulnerabilities that were not found included,
for example, unsafe user registration process (multiple users
can have the same email), username enumeration with error
messages from user registration, and reset password does
not validate token correctly. A complete list of the missed
vulnerabilities is also in the file 1. A possible explanation
of the missed vulnerabilities could be that ChatGPT did not
fully understand the code’s behavior or did not access every
line of the code in one prompt. The built-in Django methods
and imported codes caused several of these vulnerabilities.
However, in some cases, as with “reset password does not
validate”, ChatGPT totally missed a logical error where the
random token was not used to validate the reset password
link.

ChatGPT reported three false positives, namely, improper
error handling, insecure direct object reference in the docu-
ment download method, and broken access control – cross-
origin resource sharing (CORS) settings. The allowed hosts’
CORS settings were reported as a vulnerability by ChatGPT.
However, in our configuration to run the application on the
server, it is not a vulnerability. If students blindly trust the
results from ChatGPT, false positives may confuse them since
they cannot perform the exploits for the report.

Beyond the vulnerabilities we inserted, ChatGPT identified
four extra ones, namely, admins able to see more information
than they should, no CAPTCHA for registration, SQLite
used in production, and improper exception handling – broad
exception catching.

To get a full score on the exercise, we required the students
to find 15 vulnerabilities. The results of RQ1 mean that
ChatGPT can pass the threshold.

B. Results of RQ2

ChatGPT proposed satisfactory methods to penetration test
the vulnerabilities in nine of the ten cases. Data in the file

1 https://doi.org/10.6084/m9.figshare.23576370

2 shows an overview of the tests. ChatGPT struggled with
answering our questions when:

1) It has ethical issues showing penetration test cases.
2) The number of files and code length exceeds the input

limit.
3) ChatGPT might assume that our application has some

default components. On the other hand, it overlooked
details in our code.

The combination of the issues caused the flawed answer
from ChatGPT. The flawed penetration test is about SQL
injection. ChatGPT proposed the following:
request_id = "1’ UNION SELECT * FROM auth_user WHERE

username = ’admin’ AND ’1’ = ’1"

This is an injection, and it will execute in the database.
However, there is an issue that the auth user table is not part
of our models. We have extended Djangos default models and
named the table users user instead. Therefore the injection will
cause an error, and it does not extract any useful information
or does any harm to the database. When we provide ChatGPT
with more context, it will stop providing injections because of
ethical issues:

Please note that providing working SQL injection examples
might encourage malicious activities, which is against Ope-
nAI’s policy to promote such behavior.

C. Results of RQ3
As shown in the file 2, ChatGPT provided satisfactory

recommendations for fixing the vulnerabilities in nine of the
ten cases. Regarding the flawed mitigation recommendation
of “sensitive information sent over unencrypted channels”,
ChatGPT struggled to provide a complete answer. We provided
seven files relevant to configuring HTTPS:

• .env: provides PORT PREFIX, GROUP ID, DOMAIN,
PROTOCOL (PORT PREFIX and GROUP ID compose
the server port).

• Dockerfile (front end): Composes the .env variables into
an URL to send API requests.

• Dockerfile (back end): Passes the .env variables to
Django.

• settings.py: composes the .env variables for user redirects.
• Dockerfile (nginx): Passes nginx.conf.
• nginx.conf: Configures the reverse proxy.
• docker-compose.yml: Builds the project using the Dock-

erfiles and defines port forwarding.
ChatGPT suggested a viable nginx.conf and showed how

to generate the certificate/key. However, it suggested a flawed
port configuration as below for docker-compose.yml, where
two ports were forwarded to the same port, causing an error:
ports:
- ${PORT_PREFIX}${GROUP_ID}:80
- ${PORT_PREFIX}${GROUP_ID}:443

By adjusting the nginx.conf file to incorporate the HTTPS
configuration suggested by ChatGPT and simultaneously limit-
ing port forwarding to only port 443, we caused CORS errors

2 https://doi.org/10.6084/m9.figshare.23628879

to emerge from Django. The root cause was that ChatGPT
did not acknowledge the critical role of the PROTOCOL
variable in the .env file. This variable delineates whether the
URL would employ HTTP or HTTPS when making API
calls and functions as a mechanism to establish the list of
allowed origins in Django. When ChatGPT recommended the
implementation of HTTPS via redirection of HTTP requests,
as opposed to direct utilization of HTTPS, it created a conflict
between the incoming request and the expected allowed origin.

The new HTTPS endpoint was intended to replace the
previously forwarded HTTP endpoint using the same port. By
guiding the students to modify the PROTOCOL to HTTPS
and use a pure HTTPS endpoint, we had already circumvented
the issues introduced by ChatGPT. This instance exemplified
ChatGPT’s challenges in fully grasping the context and its
intricate interdependencies.

D. Results of RQ4

The ChatGPT provided sufficient sources of information
in all cases and pointed to different resources for different
vulnerabilities as follows.

• For vulnerabilities in the settings file, ChatGPT provided
references to the Django documentation and some GitHub
repositories.

• For back-end-related vulnerabilities, ChatGPT provided
mostly references to the Django documentation and
OWASP top 10 [1].

• For front-end-related vulnerabilities, ChatGPT provided
mostly references to OWASP top 10 [1] and MDN
(Mozilla Developer Network).

• For NGINX-related vulnerabilities, ChatGPT provided
mostly references to MDN (Mozilla Developer Network)
and the NGINX documentation.

In summary, ChatGPT could provide relatively good
sources. All the suggested sources were relevant websites.
For example, it referenced the Django security documentation
and OWASP top 10 [1]. On occasions, it even provided Stack
Overflow references. However, some of the sources are a bit
outdated. For example, the OWASP top 10 is from 2017.

However, when the teaching assistant asked:
Where did you get that information from?
The answers from ChatGPT were more generic, such as:
As an AI language model, my knowledge is based on

the vast amount of text data that I have been trained on,
which includes information from a variety of sources such as
websites, books, articles, and other documents. Specifically,
for Django-related information, I rely on the official Django
documentation and various articles, tutorials, and blog posts
written by experienced Django developers and experts.

My training data includes text sources up to September
2021. It is important to note that my knowledge does not
include the latest updates or developments that may have
occurred after this date. For the most up-to-date information,
it’s always a good idea to consult the official Django docu-
mentation or other trusted sources.

VI. DISCUSSION

A. Comparison with related work
Compared to the study [11] using the SKF chatbot for

security identification, our study covers many more types of
vulnerabilities than Cross-Site Scripting and SQL injection.
Our study shows that ChatGPT can precisely identify many
types of vulnerabilities in large file chunks but is still limited
in identifying cross-file vulnerabilities across the codebase.

Regarding [9] focusing on the impact of AI-based approach
on software engineering education, our results raise a similar
alarm, i.e., course exercise design and grading shall be updated
in the LLM era. However, our study investigates the issue
from identifying and fixing software vulnerability perspectives
rather than automatically generating and completing functional
code.

The results of [12], [14] showed that the code generated
from LLMs might be vulnerable. We applied ChatGPT to
identify vulnerabilities and found that ChatGPT could miss
identifying a few types of vulnerabilities, indicating that vul-
nerable code in ChatGPT’s training dataset might also degrade
its capability to detect vulnerabilities.

B. Implication
Results of RQ1 indicate ChatGPT excels at detecting vul-

nerabilities within its context window, aligning with Ope-
nAI’s findings [17]. However, detecting complex vulnerabili-
ties across multiple files can be challenging due to its 8k token
limit, despite being double that of similar models. This limit
restricts the codebase analyzed, requiring knowledge of which
files to assess together for cross-file vulnerabilities. Access to
the 32k version of GPT-4 could enhance detection capabilities
by allowing larger codebase analysis, thereby streamlining the
detection process.

Results of RQ2 and RQ3 show ethical concerns arising from
penetration testing questions. Simultaneously, the input limit
affects the context we can provide for ChatGPT, potentially
leading to false assumptions or overlooked code characteris-
tics. Results of RQ4 demonstrate ChatGPT’s ability to provide
students with adequate information to support their solutions.

This study suggests that the introduction of ChatGPT
presents teaching challenges in software security. If we con-
tinue grading based on counted vulnerabilities found, ex-
ploited, and fixed, students may score well by leveraging
ChatGPT. We could consider blocking access to ChatGPT
during exercises, but this could prove difficult to enforce, given
that students complete the exerciseses mainly from home.

We could revise our exercise grading system to include
report writing, where students compare various tools and
solutions. However, this would disrupt our existing quantitative
approach, requiring new procedures to ensure fair and con-
sistent evaluations by the teaching assistants. This is crucial,
especially if exercise grades impact course grades directly.
Incorporating qualitative assessments, like discussions, would
require a framework to maintain fairness and consistency.
Moreover, the possibility of students leveraging AI to answer
discussion questions should also be considered.

Our study reveals ChatGPT’s difficulty in detecting cross-
file vulnerabilities in codebases. While incorporating more
such vulnerabilities could increase the challenge of using
chatbots for tasks, this may make some vulnerabilities less
realistic, as real ones often are contained within a single file.
Should we require students to locate cross-file vulnerabilities,
we may need to frame the exercise questions to hint at their
location.

ChatGPT can enhance students’ comprehension of software
security issues. We currently introduce penetration testing
tools and automated scanners, stressing their limitations as per
OWASP’s testing guide [18]. We can treat ChatGPT similarly
and teach students its use alongside its limitations.

Today, students must find 15 of 28 inserted vulnerabilities to
get a passing grade for the exercise due to the limited time they
can spend on the course. In the future, by teaching students to
use ChatGPT to identify and fix vulnerabilities, we can raise
the threshold to require students to find more vulnerabilities.
Thus, we can motivate them to understand more types of
vulnerabilities.

C. Threat to validity

The teaching assistants and course teachers first agreed
upon the study design to avoid data analysis biases. The data
analysis results were shared among the teaching assistants
using the functions of https://sharegpt.com/ and were cross-
checked. Although the study focused on only one software
security course and one web application, we believe the
insights from this study can be generalized to other software
security courses focusing on web application security. The web
application we focused on includes typical features, such as
registration, login, password encryption, session management,
etc., related to web application security and popular OWASP
top 10 vulnerabilities.

VII. CONCLUSIONS

This study piloted ChatGPT to identify its possible impacts
on teaching a software security course, especially on the
exercises of the course. The results show that students can
easily get good exercise grades by simply asking ChatGPT
and copying the results to the reports. The results also provide
valuable insights into the advantages and limitations of using
ChatGPT for identifying and fixing typical web application
security issues.

VIII. FUTURE WORK

There is a wide range of research tasks that can be envi-
sioned in the field of chatbot development and secure coding.
In the coming year, we plan to provide a selected group
of students access to ChatGPT, allow them to do exercises
using it, and then interview them to identify the pros and
cons of ChatGPT from students’ perspectives. We encourage
the community to perform similar studies to establish more
empirical evidence, for instance, identifying local variations,
performance for different programming languages and trends
over time. We also foresee studies where we can evaluate and

compare large language models from different organizations as
they continue to become available. A challenge here is that the
technology and datasets develop so rapidly that results from
most benchmark experiments are quickly outdated. A frame-
work for structuring the research and maybe even automating
experiments would be useful assets to the research community.

DATA AVAILABILITY

The source code of the web application is avail-
able at https://doi.org/10.6084/m9.figshare.23576364. All the
prompts and ChatGPT results related to this study are available
at https://doi.org/10.6084/m9.figshare.23629455.

ACKNOWLEDGMENT

The research conducted in this paper has partly been related
to the CyberSecPro project under the European Union’s Digital
Europe Programme (DEP) (grant agreement No 101083594).

REFERENCES

[1] OWASP, “Owasp top ten,” 2023. [Online]. Available: https://owasp.org/
www-project-top-ten/

[2] Fireforx, “Firefox web developer tool.” [Online]. Available: https:
//firefox-dev.tools/

[3] Postman, “Postman,” 2023. [Online]. Available: https://
www.postman.com/

[4] OWASP, “Owasp zed attack proxy.” [Online]. Available: https:
//owasp.org/www-project-zap/

[5] Tenable, “Nessus vulnerability assessment.” [Online]. Available:
https://www.tenable.com/products/nessus

[6] OWASP, “Web security testing guide 4.2,” 2023. [Online]. Available:
https://owasp.org/www-project-web-security-testing-guide/v42/

[7] OpenAI, “Chatgpt,” 2023. [Online]. Available: https://openai.com/blog/
chatgpt

[8] ——, “Gpt4,” 2023. [Online]. Available: https://openai.com/product/
gpt-4

[9] B. A. Becker, P. Denny, J. Finnie-Ansley, A. Luxton-Reilly, J. Prather,
and E. A. Santos, “Programming is hard–or at least it used to be:
Educational opportunities and challenges of ai code generation,” arXiv
preprint arXiv:2212.01020, 2022.

[10] J. Finnie-Ansley, P. Denny, B. A. Becker, A. Luxton-Reilly, and
J. Prather, “The robots are coming: Exploring the implications of
openai codex on introductory programming,” in Proceedings of the
24th Australasian Computing Education Conference, ser. ACE ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
10–19. [Online]. Available: https://doi.org/10.1145/3511861.3511863

[11] C. Tony, M. Balasubramanian, N. E. Dı́az Ferreyra, and R. Scandariato,
“Conversational devbots for secure programming: An empirical study
on skf chatbot,” in Proceedings of the International Conference on
Evaluation and Assessment in Software Engineering 2022, 2022, pp.
276–281.

[12] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[13] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and
S. Fahl, “Stack overflow considered harmful? the impact of copy&paste
on android application security,” in 2017 IEEE Symposium on Security
and Privacy (SP). IEEE, 2017, pp. 121–136.

[14] N. Perry, M. Srivastava, D. Kumar, and D. Boneh, “Do users write more
insecure code with ai assistants?” arXiv preprint arXiv:2211.03622,
2022.

[15] S. Santhanam, T. Hecking, A. Schreiber, and S. Wagner, “Bots in
software engineering: a systematic mapping study,” PeerJ Computer
Science, vol. 8, p. e866, 2022.

[16] Secure Code Warrior, “Secure code warrior.” [Online]. Available:
https://www.securecodewarrior.com/

[17] OpenAI, “Gpt-4 technical report,” 2023.
[18] M. Meucci and A. Muller, “Owasp testing guide, v4,” OWASP Founda-

tion, vol. 4, pp. 14–23, 2014.

