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Abstract—Numerous real-life systems exhibit complex nonlin-
ear input-output relationships. Kernel adaptive filters, a popular
class of nonlinear adaptive filters, can efficiently model these
nonlinear input-output relationships. Their growing network
structure, however, poses considerable challenges in terms of
their hardware implementation, making them inefficient for real-
time applications. Random Fourier features (RFF) facilitate the
development of kernel adaptive filters with a fixed network
structure. For the first time, this paper attempts to implement
the RFF-based kernel least mean square (RFF-KLMS) algorithm
on hardware. To this end, we propose several reformulations of
the feature functions (FFs) that are computationally expensive in
their native form so that they can be implemented in real-time
VLSI. Specifically, we reformulate inner product evaluation, co-
sine, and exponential functions that appear in the implementation
of FFs. With these reformulations, the proposed delayed RFF-
KLMS (DRFF-KLMS) is then synthesized using 45-nm CMOS
technology with 16-bit fixed-point representations. According
to the synthesis results, pipelined DRFF-KLMS architectures
require minimal hardware increase over the state-of-the-art con-
ventional delayed LMS architecture while significantly improving
estimation performance for the nonlinear model. Our results
suggest that the cosine feature function-based DRFF-KLMS is
appropriate for applications requiring high accuracy, whereas
the exponential function-based DRFF-KLMS may be well suited
for resource-constrained applications.

Index Terms—VLSI architectures, nonlinear adaptive filters,
kernel LMS, random Fourier features, cosine implementation,
nearest power-of-two quantization.

I. INTRODUCTION

THE benefit of adaptive filters for processing infor-
mation in dynamic environments is well established.

Linear adaptive filters, including least-mean-squares (LMS),
affine projection algorithm (APA), and recursive least-squares
(RLS) [1], assume that inputs and outputs are linearly re-
lated. Nonlinear models are handy tools to describe the be-
havior of highly complex systems. For example, multiple-
input multiple-output (MIMO) communication systems have
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nonlinear components, such as power amplifiers that exhibit
distortion owing to nonlinear effects [2]. Consequently, in a
MIMO system using high-speed communication, equalizers
that reconstruct the actual signal using adaptive filters can
be modeled better using nonlinear adaptive filtering to guard
against the inter-symbol interference (ISI). Similarly, many
engineering problems can be modeled and solved effectively in
nonlinear domains, including biomedical signal processing [3],
time-series prediction [4], and channel equalization [5].

In contrast to conventional linear adaptive filters, Volterra
filters [6], spline filters [7], and kernel methods [8] can
model these nonlinear relationships effectively. Among these,
kernel methods that operate in reproducing kernel Hilbert
space (RKHS) have gained popularity due to their mathemat-
ical simplicity and universal approximation capabilities [9].
In modeling the nonlinear input-output relationships, kernel
methods use a Mercer kernel to convert the original input space
into an infinite-dimensional RKHS, where the inner product
operation is efficiently performed using the kernel trick. The
kernel tricks operate in an implicit, high-dimensional space
without necessitating the computation of the coordinates of
the input data on the feature plane, but rather by calculating
the inner products of the input pairs of data in the dual
space [10]. Kernel least mean square (KLMS) [11], kernel
affine projection algorithm (KAPA) [12], kernel recursive least
squares (KRLS) [13] are well-known kernel adaptive filtering
algorithms (KAFs).

Although KAFs are effective at modeling nonlinear input-
output relationships, they suffer from a linearly growing net-
work structure, popularly known as the growing dimensionality
problem in KAFs [14]. The problem of growing dimensionality
leads to a substantial computational cost and large storage
requirements. Several sparsification methods [15], such as
novelty criterion, coherence criterion [8], and quantification
method [16], [17] were proposed as a solution to the growing
dimensionality problem. Under these methods, the network
length is restricted by learning a finite-dimensional dictionary.
While learning the dictionary, these methods employ thresh-
olding and carefully weed out ‘uninformative’ sample inputs.
Though these sparsification methods are efficient in model-
ing nonlinear relationships, the dictionary must be retrained
whenever the underlying system experiences changes.

To deal with the growing dimensionality problem in KAFs,
a comprehensive solution has been proposed utilizing random
Fourier features (RFF) [18]. RFF maps the input data into a
finite-dimensional space (supposed to be larger than the input
regressor dimension) in which the inner products provide an
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acceptable approximation of the kernel function evaluations.
The nonlinear input-output relationship can be modeled using
transformed input data together with a set of fixed-size linear
parameters. As opposed to KLMS, RFF-based KLMS (RFF-
KLMS) maintains a fixed network structure and does not
require sparsification, so its computational load is significantly
reduced, and suitable for various real-life applications [19]–
[25]. While implementing the RFF-KLMS, various feature
functions (FFs) have been used in the literature. More details
on these FFs can be found at [19], [20]. Due to their inherent
complexity, however, these FFs may be prohibited for imple-
mentation in hardware in their native form.

Due to the iterative nature of the adaptive filtering algo-
rithms, their implementation involves high complexity and
memory consumption. Consequently, the power and through-
put requirements for adaptive filters cannot be met by soft-
ware solutions or digital signal processing processors, espe-
cially in real-time applications, such as the rapidly growing
fifth-generation (5G) and sixth-generation (6G) communica-
tion technologies [26], the internet-of-things (IoT), wearable
biomedical devices [27], etc. An application-specific integrated
circuit (ASIC) or field-programmable gate array (FPGA) pro-
vides a low-power alternative and benefits from the fixed-
point operation. For example, the 5G new-radio (NR) global
standard has higher throughput, lower latency, and new spec-
trum bands compared to LTE-advanced of fourth-generation
(4G) communication technology [28]. The adaptive decision-
feedback equalizer (ADFE) is typically used to get rid of
the inter-symbol interface (ISI) in the received signal [26].
In FR1 spectrum [29], 5G NR operates in 450 MHz to 6
GHz, and provides a throughput of 1.80 to 10.85 Gbps with
time-division duplex (TDD). For ADFE implementation to
meet these throughput requirements, RFF-KLMS is a bet-
ter choice than conventional KLMS since it has fixed-scale
network structures with stable complexity. However, in the
literature, most research efforts have focused on developing
high-performance adaptive filter algorithms with linear prop-
erties [30], [31]. Less research is known about implementing
nonlinear adaptive filters on hardware [32]–[34]. To best of
our knowledge, this paper is the first attempts to enable a
hardware-friendly implementation of RFF-KLMS with a fixed
network structure, and that can be used as generic intellectual
property (IP) in real-time applications.

Our main contributions are:
• We propose several reformulations for feature functions

(FFs) evaluation such as cosine implementation through
angle mapping and Taylor series expansion, selective
application of logarithmic number system (LNS) to
exponential and division operations, nearest power of
two quantization for inner product evaluation. We then
propose a pipelined VLSI architecture for the resultant
algorithm termed as delayed RFF-KLMS (DRFF-KLMS)
algorithm.

• To examine the impact of these reformulations on the es-
timation performance, we conduct numerical simulations
and bit-width analysis. We provide a comparative study
on the performance of the reformulated DRFF-KLMS
algorithm against the original RFF-KLMS algorithm.

This study reveals that the reformulated DRFF-KLMS
is as efficient as the original RFF-KLMS algorithm.

• We present ASIC synthesis results of the proposed DRFF-
KLMS architecture with various FFs using 45-nm CMOS
technology. Considering the tradeoffs between perfor-
mance and complexity, we present a comparative study
of the DRFF-KLMS with different feature functions.
The synthesis results demonstrate that despite the perfor-
mance improvement the DRFF-KLMS architecture can be
implemented with a minimal area and power overhead
over the the existing pipelined delayed LMS (DLMS)
architectures.

The remainder of this paper is organized as follows. Sec-
tion II presents a detailed discussion on KLMS and RFF-
KLMS. The performance of RFF-KLMS with different FFs
is examined in Section III. Section IV presents a VLSI ar-
chitecture for the DRFF-KLMS. ASIC synthesis results of the
proposed DRFF-KLMS and comparison with other existing
architectures are presented in Section V. Finally, Section VI
concludes the paper.

II. KERNEL ADAPTIVE FILTERS

Conventional adaptive filter methods, such as LMS, RLS,
and their variants, assume a linear relationship between the
input un and the desired output dn in applications like
system identification and regression. In such cases, the relation
between un and dn can be described as

dn = uT
n h? + νn, (1)

where h∗ ∈ RL is an optimal parameter vector to be es-
timated, un = [un, un−1, . . . , un−L+1]

T is the input signal
vector and νn is zero-mean observation noise with variance
σ2
ν . Here, T represent transpose operator. However, in many

engineering problems in real-life applications, we frequently
encounter nonlinear models whose input-output relationships
are described as

dn = f(un) + νn, (2)

The function f : RL → R is a continuous nonlinear function.
Linear adaptive filters cannot model these sophisticated input-
output relationships [32]–[34]. In order to estimate f(·) based
on the data pairs {ui, di}i=1:n, various methods have been
proposed in the literature. Among these, kernel adaptive filters,
namely nonlinear adaptive filters operating in the reproducing
kernel Hilbert space (RKHS), have attracted considerable
attention considering their mathematical simplicity.

Kernel methods evaluate the nonlinear function f(·)
by mapping the input regressors {ui}i=1:n onto a high-
dimensional feature space as φ(ui), in which the inner prod-
ucts can be calculated using kernels [8], [35]. A continuous,
symmetric, and positive-definite kernel function κ(·, ·) : RL×
RL → R, satisfies the following Mercer’s condition [8]:

κ(ui,un) = φT(ui)φ(un). (3)

Without knowing the mapping φ(·), inner products in higher
dimensional space can be obtained via kernel function evalu-
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ation. According to [8], a kernel is a reproducing kernel if it
fulfills the following requirements:

κ(ui,un) = 〈κ(·,ui), κ(·,un)〉H, (4)

where H is the RKHS in which the reproducing kernel is
defined and 〈·, ·〉H represents the corresponding inner product.
In (4), κ(·,ui) is a representer evaluation at xi. This paper
focuses exclusively on the Gaussian kernel, a well-known
Mercer kernel due to its universal approximation capabilities
[8], [16]. Considering the data pairs {ui, di}n−1i=1

⋃
{un}, from

the representer theorem [8], the evaluation of the nonlinear
model output dn, denoted by d̂n, is given by

d̂n =

n−1∑
i=1

αi κ(un,ui). (5)

One can observe how the model order grows with time n by
looking at (5). Growing model order makes the kernel methods
unsuitable for applications that require real-time updates [36].
There are various sparsification methods that can be used to
learn a fixed-size dictionary while dealing with this issue.
The methods decide whether or not to include a candidate
regressor in the dictionary by using a similarity metric [36]
between the candidate and the current dictionary. Due to the
fact that dictionary training must be repeated whenever the
underlying system changes, these methods are unsuitable for
time-varying environments. Additionally, they are not flexible
with the distributed network settings [36].

A. KLMS using RFF (RFF-KLMS)
A flexible alternative solution to sparsification methods

can be obtained using RFF [18]. The shift-invariant kernel
function evaluation can be approximated with an inner-product
in the P -dimensional RFF space. Thus, the nonlinear filtering
problem becomes a linear one in large but finite-dimensional
RFF space. Consider xn as the mapping of un into the
P -dimensional RFF space RP . Then, the kernel function
evaluation can be approximated as κ(ui,un) ≈ xT

i xn; as a
result, d̂n can be alternatively expressed as

d̂n =

n−1∑
i=1

αi κ(ui,un) ≈
( n−1∑
i=1

αi xi

)T
xn = wTxn. (6)

In the above, w ∈ RP is a linear representation of nonlinear
function f(·) in the P -dimensional RFF space. The kernel
function can be well approximated as P increases. By solving
the following optimization problem, the linear representation
of f(·) in the RFF space, i.e., w, can be estimated:

min
w∈RP

E[(dn − xT
nw)2]. (7)

The following RFF-based KLMS update rule results from
stochastic gradient descent iterations:

wn = wn−1 + µenxn (8)

with en = dn − d̂n, where d̂n = xT
nwn and µ is the

adaptation step size. The range of µ is dependent on the
maximum eigenvalue of the mapped data correlation matrix,
i.e., 0 < µ < 1/λmax(R), where R = E[xnxT

n] [22]. The
input un can be mapped into the P -dimensional RFF space
RP using cosine, exponential and Gaussian FFs.

1) Cosine feature function: From the cosine feature func-
tion, the mapped vector xn can be computed as follows [14]:

xn = (P/2)−
1
2 [cos(vT

1un + b1), . . . , cos(vT
Pun + bP )]

T
,
(9)

where the phase terms {bi}i=1:P are drawn from a uniform
distribution on the interval [0, 2π]. Vectors {vi}i=1:P are
drawn from the probability density function p(v) such that

k(un − ui) =

∫
p(v) exp (jvT(un − ui))dv, (10)

where j2 = −1. In other words, the Fourier transform of
k(un − ui) is given by p(v).

2) Exponential feature function: Using the exponential
feature function, the mapped vector xn can be generated as
[20]:

xn =
[
exp (− (vT

1un + b1)), . . . , exp (− (vT
Pun + bP ))

]T
,

(11)

where the phase terms {bi}i=1:P are drawn from a uniform
distribution and vectors {vi}i=1:P are the same as discussed
in the Section II-A1.

3) Gaussian feature function: Using the Gaussian feature
function, the mapped vector xn can be obtained as [19]:

xn =
[
exp(−‖un − v1‖2

2 b21
), . . . , exp(−‖un − vP ‖2

2 b2P
)
]T
,

(12)
where the phase terms {bi}i=1:P are drawn from a uniform
distribution and location parameters {vi}i=1:P are generated
from the same probability density function as the input.

III. STUDY ON THE PERFORMANCE OF RFF-KLMS FOR
DIFFERENT FFS

This section investigates the performance of the RFF-KLMS
algorithm using cosine, exponential, and Gaussian FFs. To this
end, we conducted a series of experiments in the context of
nonlinear system identification. In all experiments, both the
input signal un and the observation noise νn were considered
to be zero-mean Gaussian random processes with input signal
variance σ2

u = 1 and noise variance σ2
ν = 0.03, respectively.

The mean square error (MSE), defined by MSE = E[e2n],
is considered as a performance metric. The first experiment
tested the RFF-KLMS in identifying and tracking the follow-
ing nonlinear systems:

f1(un) = 0.9− 0.5 exp(−u21,n)u2,n + 0.2
√
sin (πu2,n),

f2(un) = 0.9− 0.5 exp(−u22,n)u1,n + 0.2
√
sin (πu1,n).

(13)

An abrupt change was considered halfway through the
iterations, i.e., after 4000 samples, the underlying nonlinear
system changes from f1(un) to f2(un). The dimensionality
of the RFF space was set to P = 32. The learning curves,
i.e., MSE in dB vs. iteration index (n), are displayed in
Fig. 1. All simulations in this section were performed using
MATLAB. The step sizes µ were adjusted so that the learning
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Fig. 1. Learning curves (MSE vs iterations (n)) of RFF-KLMS for different
FFs when P = 32. Also included the learning curve of conventional LMS,
least mean logarithmic square (LMLS) [30], and KLMS with coherence
criterion (KLMS-CC) [8] with a dictionary size (Ds) of 500.

curves attain the same initial convergence rate or steady-state
MSE. For comparative assessment, the learning curve of con-
ventional LMS, least mean logarithmic square (LMLS) [30],
and KLMS with coherence criterion (KLMS-CC) [8] with a
dictionary size of 500 is plotted in Fig. 1. From Fig. 1, we see
that RFF-KLMS with different FFs successfully identifies and
tracks the nonlinear systems while the conventional LMS and
LMLS fails to do so. KLMS-CC has a growing dimensionality
problem with time n, requiring a large dictionary size for
decent steady-state values. In addition, KLMS-CC with a
limited dictionary size exhibits poor tracking performance
since the dictionary is not updated when the system to be
identified changes. Furthermore, RFF with cosine FF attained
lowest steady-state MSE (i.e., −19dB), while exponential and
Gaussian FFs based RFF-KLMS reached −13dB and −15dB,
respectively. Finally, we can see that the RFF-KLMS with
any FF performs identification and tracking tasks consistently
regardless of the initial conditions.
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Fig. 2. Steady-state MSE vs. the dimensionality of the RFF space (P ) for
various FFs.

Next, to examine the effect of P (i.e., the dimensionality

of the RFF space) on the performance of RFF-KLMS with
various FFs, we repeated the above simulation exercise for dif-
ferent values of P , where P ∈ {2, 4, 8, 16, 32, 64, 128, 256}.
The rest of the settings remain unchanged. The corresponding
steady-state MSE (in dB) vs. P is shown in Fig. 2. From
Fig. 2, we can see that the cosine feature function based RFF-
KLMS performs poorly compared to other variants for very
small values of P (e.g., 2 and 4). As the P value increases
(i.e., P ≥ 8), it achieves lower steady-state MSE than other
variants. Beyond P = 64, as P increases further, we observe
a minor decrease in the steady-state MSE of all variants of
RFF-KLMS. Therefore, in the remainder of this paper, the
dimensionality of the RFF-space is set to P = 64 for a
better trade-off between steady-state MSE and computational
complexity.

Finally, to examine the effect of kernel bandwidth σ on the
performance of RFF-KLMS for both cosine and exponential
FFs, we carried out the system identification exercise for
f1(·) with different values of σ. The resulting learning curves
are presented in Fig. 3 for P = 64. We can see that the
optimal σ values are 1 and 3.5 for RFF-KLMS with cosine
and exponential FFs, respectively. The learning curve of the
exponential feature function diverges when the value of σ is
less than 3.5.

A. Bit-Width Consideration of the Proposed DRFF-KLMS
Fixed-point Implementation

The DRFF-KLMS algorithm with reformulated FFs was
simulated for the same system identification problem men-
tioned in section III using 16-bit, 12-bit, and 8-bit fixed-
point representations. The corresponding learning curves are
presented Fig. 4. For comparative assessment, the original
floating-point DRFF-KLMS was also simulated. From Fig. 4,
it is apparent that the 16-bit fixed-point representation ex-
hibits approximately the same steady-state performance as the
DRFF-KLMS floating-point algorithm. Due to its stochastic
and iterative nature, the reformulated DRFF-KLMS is tolerant
to all proposed approximations. In addition, DRFF-KLMS
performance deteriorates with reduced bit-width. Therefore, a
16-bit architecture is preferable for the VLSI implementation
of DRFF-KLMS.

IV. VLSI ARCHITECTURE FOR PROPOSED DELAYED
RFF-KLMS ALGORITHM

This section details the proposed VLSI architecture for RFF-
KLMS with different FFs. We propose several reformulations
to RFF-KLMS FFs that result in minimal algorithmic perfor-
mance loss with significant computational complexity reduc-
tion. In the following, we explain the proposed reformulations.

A. RFF-KLMS Architecture

The VLSI architecture of RFF-KLMS consists of two main
blocks, namely the feature function block and the LMS-
type adaptive filter block. Features function block generates
mapped data in a P -dimensional RFF-space from an input
vector un. The LMS-type adaptive filter block then updates
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Fig. 3. Learning curves (MSE vs iterations (n)) of RFF-KLMS for different
values of kernel bandwidth (σ). Dimensionality of the RFF space (P ) is 64.

the filter weights using the mapped data. An adaptive filter
block of the LMS type can be implemented using any LMS
architecture available in the literature. It is important to note
that the LMS architecture can be transformed into a RFF-
KLMS by adding a feature function block prior to that. How-
ever, in real-time VLSI implementations of high-throughput
adaptive filter blocks, the LMS algorithm cannot be directly
mapped into hardware [30], [37]. After each iteration, the LMS
algorithm evaluates the error en and updates the weight vector
wn. This feedback loop restricts pipelining of the architecture.
Therefore, re-timing techniques [38]–[40] must be applied to
the VLSI architecture to formulate a DRFF-KLMS algorithm.
For the resultant DRFF-KLMS algorithm, the weight update
equation is

wn+1 = wn + µ en−Mxn−M , (14)

where M is the delay in adaptation. As the number of
adaptation delays increases, however, the convergence rate of
DRFF-KLMS decreases accordingly. Therefore, the adaptation
delay should be kept low to maintain a good performance-
throughput trade-off.

The VLSI architecture of the proposed DRFF-KLMS al-
gorithm is shown in Fig. 5. The architecture essentially im-
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(c)
Fig. 4. Learning curves (MSE vs iterations (n)) of DRFF-KLMS floating point
and fixed-point representations for various FFs: (a). Cosine. (b). Exponential.
(c). Gaussian.

plements (14). We can see that the proposed architecture has
two blocks, i.e., the feature function block and the adaptive
filter block. Considering that the exponential, cosine, and
Gaussian FFs involve different reformulations, we provide a
detailed analysis and corresponding architectural diagram for
each separately. Throughout the architecture, the bit widths
of all the intermediate signals are shown in Qn.m format
(where n and m denote the number of integers and fractional
bits, respectively). Note that the value of j is calculated
using expression µ = 2−j . In order to prevent overflows,
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Fig. 5. Proposed VLSI architecture of DRFF-KLMS

the bit widths are determined by the MATLAB floating-point
to fixed-point conversion methods. In the following sections,
we describe the proposed reformulation for efficient hardware
development of feature function modules.

B. Feature Function Module

The feature function module maps the input vector un into
P -dimensional RFF-space using either of the FFs discussed in
Section II-A. The feature function module contains P number
of sub-blocks, where ith sub-block takes un as the input
and produces ith element of the mapped data vector xn, i.e.,
xi,n for 1 ≤ i ≤ P . A straightforward implementation of
FFs in hardware is inefficient due to vector multiplications,
cosine/exponential operations in the case of cosine/exponential
FFs, and square, exponential, and division operations in the
case of Gaussian FFs. Therefore, we propose certain ap-
proximations and reformulations to achieve efficient hardware
implementations of FFs with minimal loss of accuracy. The
choice of feature function depends on the application at hand.
Following is a detailed description of how the feature function
module is implemented on hardware.

1) Inner product calculation: The input mapping process
given in (9) and (11), begins with the evaluation of the inner
product, i.e., (vT

i un) for i = 1, 2, . . . P . Here, {vi}i=1:P is
a random weight vector drawn from the probability density
function p(v). Due to the large number of multipliers required,
direct evaluation of inner product is costly in VLSI. Using
the fact that the elements of the vector vT

i are fixed both
in cosine and exponential FFs, we can employ multipliers-
free vector multiplication methods [41]–[43] for a hardware
friendly implementation of feature function module.

Multiplier-free multiplication using distributed arithmetic
(DA) has the advantage of minimizing the area of imple-
mentation. DA removes the need for conventional multipliers

by distributing multiply operations across shifters, read-only
memories (ROMs), and adders [44], [45]. The vector vi in
inner product (pi = vT

i un) is a constant. Therefore, by con-
sidering the contents of vector vi = [vi,1, vi,2, vi,3, . . . , vi,L]

T

and input signal vector un = [un, un−1, un−2, . . . , un−L+1]
T,

this inner product can be implemented using DA. The inner
product of these two vectors can be alternatively expressed as

(15)pi =

L∑
k=1

vikun−k+1

= vi1un + vi2un−1 + vi3un−2 + · · ·+ viLun−L+1

Here, vik = −v0ik +
∑B−1
j=1 v

j
ik2
−j (where v0ik is the sign bit)

and un = −u0n+
∑B−1
j=1 u

j
n2
−j (where u0n is the sign bit) are

fractional numbers represented using B-bit signed fixed-point
notation. Using B-1 bits, we represent fractional part, and the
remaining bit (MSB) represents the sign of the number. In the
fixed-point notation with the terms rearranged according to the
weights of the bits, (15) can be written as follows:

pi = −
(
vi1u

0
n + vi2u

0
n−1 + vi3u

0
n−2 + · · ·+ viLu

0
n−L+1

)
+
(
vi1u

1
n+ vi2u

1
n−1 + vi3u

1
n−2 + · · ·+ viLu

1
n−L+1

)
2−1

+
(
vi1u

2
n+ vi2u

2
n−1 + vi3u

2
n−2 + · · ·+ viLu

2
n−L+1

)
2−2

+· · ·+
(
vi1u

B−1
n +vi2u

B−1
n−1 +· · ·+viLu

B−1
n−L+1

)
2−(B−1)

(16)

The partial inner-products (PPs) in (16) is denoted by,

(17)fi
(
utn, u

t
n−1, . . . , , u

t
n−L+1

)
=

L∑
j=1

viju
t
n−j+1
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Equation (16) can be represented using (17) as

(18)

pi = −fi
(
u0n, u

0
n−1, . . . , u

0
n−L+1

)
+ fi

(
u1n, u

1
n−1, . . . , u

1
n−L+1

)
2−1

+ fi
(
u2n, u

2
n−1, . . . , u

2
n−L+1

)
2−2 + · · ·

+ fi
(
uB−1n , uB−1n−1 , . . . , u

B−1
n−L+1

)
2−(B−1)

The function, say fi(.) has 2L distinct values
(0, vi1, vi2, vi1 + vi2, vi3, . . . ) for all possible value
combinations of utn, u

t
n−1, u

t
n−2, . . . , u

t
n−L+1. Instead

of calculating (17) at run-time, we can pre-compute and
store these values in a read only memory (ROM). We can
implement (18) by supplying tth bit values of all elements
(utn, u

t
n−1, u

t
n−2, . . . , u

t
n−L+1) as address inputs to the

ROM. In every cycle, the accumulator content is added with
the fetched value from the ROM and shifted to the right to
accommodate weights at different bit locations. The evaluation
is complete when the ROM contents (corresponding to MSBs
address) are subtracted from the accumulator contents. So,
we need B clock cycles to finish this computation. Hereafter,
these implementations are referred to as bit-serial DA designs,
as they involve serial operations. The serial shifting in bit-
serial DA slows down the computation, making it unsuitable
for applications which require high performance.

To overcome the limitations of bit-serial DA, approximate
bit-parallel DA architecture has been proposed in [46]. In bit-
parallel DA designs, all the PPs are processed in parallel using
B LUTs. The final result is obtain by performing addition
operation on these PPs using shift-adder-tree (SAT) [47]. The
total area of bit-parallel DA design is dominated by the LUTs
and adder-width of the SAT. To reduce the area and energy
by maintaining better mean error distance (MED), authors in
[48], truncate m LSBs of PPs as well as on the m LSBs of the
inputs. Truncation on m LSBs of PPs reduces the adder-width
by m in SAT and reduces the corresponding LUT width by m.
In addition to it, truncation on m LSBs of coefficients reduces
the number of LUTs to B−m, and number of adders required
in SAT. To perform truncation on LSBs of PPs, authors in [48]
propose two weight dependent truncation approaches called,
row truncation (DA RT) and column truncation (DA CT)
approach. In DA RT, m LSBs of PPs and inputs are truncated.
Similarly, in DA CT, m LSBs of the inputs are truncated and
number of LSBs of PPs to be truncated calculated using [48].
The area of DA RT and DA CT dominated by LUTs, makes
it unsuitable for low-power applications.

Meanwhile, powers-of-two quantization reduces the time
needed to evaluate inner products by replacing the multi-
plication step with a simple shifted operation [41]. So, we
quantize the vector {vi}i=1:P to the nearest power of 2
using the Algorithm 1. In Algorithm 1, {v′i}i=1:P represents
the quantize output of the vector {vi}i=1:P . After that, we
calculate the inner product (vT

i un) using wired shift operation
followed by the addition operation.

To verify the effect of nearest powers-of-two quantization
(NPTQ) on the performance of DRFF-KLMS, we carried out
the same simulation exercise presented in Section III-A. The
corresponding learning curves are shown in Fig. 4. Fig. 4

Algorithm 1 Nearest power-of-two quantization method
Input: {vi}i=1:P , L, P
Output: {v′i}i=1:P

1: fi, ei,gi = 0L, ∀i ∈ {1, 2, . . . , P};
2: for i ← 1 to P do
3: gi = sign(vi);
4: end for
5: for i ← 1 to P do
6: fi = 2blog2|gi|c ;
7: ei = 2dlog2|gi|e;
8: end for
9: for i ← 1 to P do

10: for j ← 1 to L do
11: if |vi,j − fi,j |< |vi,j − ei,j | then
12: v′i,j = fi,j ;
13: else
14: v′i,j = ei,j ;
15: end if
16: end for
17: end for

confirms that the performance loss is negligible due to power-
of-two quantization. We have implemented the inner product
using the above approaches in Verilog and synthesized using
cadence 45-nm CMOS library. As in [44], we implement the
inner product using bit-serial DA. Approximate parallel DA
using row and column truncation approach implemented using
[48]. For all the designs, we set 1 bit for the integer part
and 15 bits for the fractional part. Note that bit-serial DA
synthesis results are presented at 131.02 MHz clock frequency.
Because bit-serial DA requires two sources of clock [49]. The
actual operation of the bit-serial DA is performed using bit
clock clkb while the design calculates the output at every
sample clock clks. The values of clks is B times slower than
clkb. In the case of clkb, the maximum frequency reached
is 2096.43MHz, therefore clks is 131.02MHz. Thus, for bit-
serial DA, the sample clock frequency is listed in Table I.
A comparison of the synthesis results is presented in Table
I. From these synthesis results, we see that the powers-of-
two quantization is 8 times faster and requires 80% less area
compared to the DA approach. We also observe that the NPTQ
reduces area by 89%, 86%, and 84% compared to DA RT
for m = 2, 3, and 4 respectively. Similarly, we observe that
the NPTQ reduces area by 80%, 79%, and 79% compared
to DA CT for m = 2, 3, and 4 respectively. Importantly, the
dynamic power consumption of the bit-serial DA, DA RT (for
m = 4), and DA CT (for m = 4) are 81.4%, 81.6%, and
74.8% more than that of the NPTQ respectively. Taking these
findings into account, we continue our architectural design
with the NPTQ.

After adding the phase term bi to the inner product vT
i un,

the result will be fed to the cosine or exponential function to
generate the mapped data xi,n−k. In the following, we present
an efficient implementations of these functions.

2) Cosine feature function: Many efficient fixed-point im-
plementations of trigonometric functions are available in the
literature. Of these, CORDIC-based implementations [50] are
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TABLE I
SYNTHESIS RESULTS OF INNER PRODUCT IMPLEMENTATION USING DA

AND NEAREST POWERS-OF-TWO QUANTIZATION METHODS.

Design m
Clock freq.

(MHz)

Total Area

(µm2)

LPa

(µW)

DPb

(mW)

Bit-serial DA [44] - 131.02 2357 0.332 7.69

2 1052.63 4322 0.492 10.98

3 1052.63 3591 0.408 9.26DA RT [48]

4 1052.63 2994 0.339 7.79

2 1052.63 2349 0.247 6.02

3 1052.63 2287 0.236 5.83DA CT [48]

4 1052.63 2248 0.231 5.69

NPTQc - 1052.63 472 0.056 1.43

Leakage Powera, Dynamic Powerb, nearest powers-of-two quantizationc

popular and hardware efficient. However, CORDIC algorithms
utilize considerable space and require a higher number of clock
cycles to evaluate trigonometric functions, making them ineffi-
cient for area-efficient high-speed applications. As a solution,
we implement the cosine function using approximated Taylor
series.

Let ai = vT
i un + bi. Then, Taylor series expansion of

cosine(ai) is

cosine(ai) = 1− a2i
2!

+
a4i
4!
− · · · (19)

For efficient implementation of (19) on hardware, we
consider only the first three terms. The error due to this
approximation is less if the value of ai ∈ [−π/2, π/2]. So,
we transform the given value of ai to lie in the range −π/2
to π/2 with appropriate sign correction. The transformation
of the value of ai and its sign correction is summarized in
Algorithm 2. In Algorithm 2, ti represents the mapping of ai
into the range −π/2 to π/2.

Algorithm 2 Angle Mapping
Input: ai
Output: ti, sign

1: if sign(ai) then
2: ai = |ai|
3: end if
4: if 0 ≤ ai ≤ π/2 then
5: ti = ai
6: sign = 1
7: else if π/2 ≤ ai ≤ 3π/2 then
8: ti = |π − ai|
9: sign = -1

10: else
11: ti = |2π − ai|
12: sign = 1
13: end if

Taylor series expansion of cosine(ai) given in (19) contains
division, square and fourth power terms. Fixed-point imple-
mentations of these terms are complex and require more clock
cycles. Usage of logarithmic number system (LNS) makes

these implementations simpler and hardware friendly [40].
The LNS transforms the division operation into subtraction,
and square and fourth power operations turn into shifting
operations. Note that LNS does increase the complexity of
additions and subtractions. For this reason, LNS was used only
in the feature function block which contains many exponentia-
tion, division and multiplication operations. Using LNS, Taylor
series approximation-based cosine function implementation is
described as follows:

R = log2

(
t2i
2

)
= 2 log2(ti)− 1 (20a)

Q = log2

(
t4i
4!

)
= 4 log2(ti)− log2(4! ) (20b)

cosine(ai) = sign× (1− 2R + 2Q) (20c)

We use Mitchell’s scheme [30], [51] for the fixed-point im-
plementation of logarithm and antilogarithm in (20). To exam-
ine the accuracy of the proposed Taylor series approximation-
based cosine function evaluation, we compared it with the
floating-point cosine function as shown in Fig. 6. The cosine
function is implemented using Verilog 16-bit fixed-point rep-
resentation.In addition, we set 4 bits for the integer part and 12
bits for the fractional part. Fig. 6 compares the cosine values
computed from the Verilog simulations and the actual values
computed from the MATLAB floating-point simulations. From
Fig. 6, we see that the proposed Taylor series approximation-
based cosine function implementation produces negligible
error compared to the original cosine function implementation.

-180 -90 0 90 180

-1

-0.5

0

0.5

1

Fig. 6. Comparison of cosine function implemented using Taylor series (2-
terms) with actual cosine values.

TABLE II
SYNTHESIS RESULTS OF CORDIC AND TAYLOR SERIES

APPROXIMATION-BASED COSINE FUNCTION IMPLEMENTATIONS FOR
CLOCK FREQUENCY 1052.63 MHZ.

Design
Total Area

(µm2)

Leakage Power

(µW )

Dynamic Power

(mW )

TSAa 2059 0.18 0.77

CORDIC [53] 16322 1.88 10.50
a Taylor series approx.

Synthesis results of cosine function implementation using
the proposed Taylor series approximation are summarized in
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b1

v11 v12 v13 v14 v1L

un

×× × × ×

ALOG

1

ALOG

c

−

+

AM LOG <<<2

<<<1

5.11

4.12

4.12

4.12

2.14 7.9

6.10 6.10 1.15

5.11 1.15

sign

1.15

×

1

1.15

1.15

x1,(n−k)

AM: Angle Mapping

FF1

1.15

1.15

1.15

c = log224

:UnitDelayRegister

Fig. 7. Cosine feature function architecture for subblock (FF1).

Table II. For comparative assessment, we also implemented the
cosine function using the CORDIC [52], [53]. In this imple-
mentation, we set 4 bits for the integer part and 12 bits for the
fractional part. The Taylor series approximation approach and
CORDIC were implemented in Verilog and synthesized using
Cadence 45-nm CMOS library. The CORDIC algorithm re-
quires 16 pipeline stages, while the proposed approach requires
only one pipeline stage for achieving the clock frequency of
1052.63 MHz. The synthesis results reveal that the CORDIC-
based cosine function implementation occupies 7.9 times more
area and consumes 13.6 times more power than the proposed
Taylor series approximation-based implementation. Therefore,
we use Taylor series approximation-based cosine function
implementation while designing the architecture for the cosine
feature function. Integrating all these reformulations together,
the reformulated cosine feature function is then implemented
using Mitchell’s scheme, as shown in Fig. 7.

3) Exponential feature function: Realization of the expo-
nential feature function (11) involves inner product followed
by exponential operation. The vector multiplication is the same
as in the cosine feature function and can be implemented
using the nearest powers-of-two quantization. To reduce the
implementation cost of exponential operation in hardware,
we replace the exponential with 2x function as in [30]. The
reformulated exponential feature function is then implemented
using Mitchell’s scheme, as shown in Fig. 8.

4) Gaussian feature function: Realization of Gaussian fea-
ture function (12) involves l2-norm, exponential and division
operations. A straightforward VLSI implementation of these
operations occupies a large chip area. Therefore, we propose
certain reformulations in the following for efficient real-time
VLSI implementation of the Gaussian feature function.

To reduce the implementation cost of the exponential func-
tion presented in (12), we replace it with the 2x function,
which is easy to implement in hardware, as discussed in the
case of the exponential feature function. To further reduce

b1

v11 v12 v13 v14 v1L

un

×× × × ×

1.15

1.15

x1,(n−k)

FF1

ALOG

2.15

1.15

1.15

1.15

:UnitDelayRegister

Fig. 8. Exponential feature function architecture for subblock (FF1).

−

+

:sign conversion unit

x1,(n−k)

5.11

ALOG

ALOG

<<<1b1
5.11 6.10 7.9 4.12

4.12
4.12

ABS

LOG

4.12

v11 v12 v13 v14

+ + + +
− − − −

un

4.12

+
−

v1L

ABS

LOG

4.12

ABS

LOG

4.12

ABS

LOG

4.12

ABS

LOG

4.12

4.124.124.124.124.12

4.12 4.124.12 4.12 4.12

FF1

Fig. 9. Gaussian feature function architecture for subblock (FF1).

the hardware complexity, we employ the LNS and transform
the l2-norm, exponential and division operations into addition,
shifting, logarithm, and antilogarithm that are comparatively
easy to implement in hardware. With these reformulations, the
Gaussian feature function becomes

xn =
[
2−2

2 (s1−c1)

, 2−2
2 (s2−c2)

, . . . , 2−2
2 (sP −cP )

]T
, (21)

with

si =

L∑
j=1

log2|un − vi|]T , and ci = L log2(
√
2 bi), (22)

where (1 ≤ i ≤ P ). The feature function block for the
Gaussian feature function employing the above-proposed re-
formulations is shown in Fig. 9. From the architecture, one
can easily see that the reformulated feature function subblock
containing LNS, addition, and shifting operations is hardware-
friendly compared to its original form.

To examine the VLSI implementation aspects, we imple-
mented all the above-discussed reformulated designs of cosine,
exponential, and Gaussian FFs in Verilog and synthesized
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TABLE III
SYNTHESIS RESULTS OF A FEATURE FUNCTION(FF) MODULE

IMPLEMENTED USING DIFFERENT FFS AT CLOCK FREQUENCY 1052.63
MHZ.

Feature function
Total Area

(µm2)

Leakage Power

(µW)

Dynamic Power

(mW)

Cosine 3642 0.42 8.01

Exponential 1212 0.14 3.15

Gaussian 3550 0.39 7.78

using Cadence 45-nm technology libraries. The bit-widths for
integer and fractional parts of all the intermediate signals in
the designs are specified in their corresponding architectural
designs, i.e., in Figs. 7, 8, and 9. Note that k is the pipeline
depth of the architecture and will be determined by the critical
path.

Table III shows the hardware requirement of the sub-
block module for different FFs. So the additional hardware
requirement for DRFF-KLMS to be implemented compared
to delayed least mean square (DLMS) architecture is P× the
hardware requirement of the sub-block module. An important
feature of the proposed algorithm is that the logic specific
to DRFF-KLMS can be integrated into any LMS architecture
described in the literature. Based on the synthesis results
presented in Table IV, we see that the exponential FF design
requires a minimal area and power but exhibits higher steady-
state MSE than its counterparts, as shown in Fig. 1. On the
other hand, cosine FF requires a larger area and power but
lower steady-state MSE than its counterparts, as shown in
Fig. 1. In order to select the appropriate FF, it is necessary
to weigh the trade-offs between MSE value and VLSI imple-
mentation aspects (such as area and power) relevant to the
application.

Please note that LNS is employed selectively in the pro-
posed design. It is only used in the feature function block
that contains many exponentiation, division, and multiplication
operations. ABS and LOG units in the feature function archi-
tectures convert the operands from 2’s complement to LNS,
while ALOG and sign conversion units convert the results back
to 2’s complement representation.

V. ASIC SYNTHESIS RESULTS

The proposed DRFF-KLMS architectures were imple-
mented in Verilog HDL and simulated using the Cadence
NCSim simulator. We implemented all the operations in
the DRFF-KLMS architecture, including LOG and ALOG,
in fixed-point MATLAB, and we used the results as our
golden reference values. MATLAB’s golden reference output
sets were compared to Verilog simulation results for various
random input sets. Following verification, the designs were
synthesized using the Cadence Genus tool using 45nm CMOS
technology. The designs were all represented in a 16-bit fixed-
point representation. Fig. 6 and Fig. 9, for instance, explicitly
mention the bit widths of the FFs in their respective architec-
tures. A set of 100000 input samples was used for Verilog
simulation, and the results were verified against MATLAB

outputs. After verification, the designs were synthesized with
the Cadence Genus tool in 45-nm CMOS technology. The
DRFF-KLMS uses cosine, exponential, and Gaussian FFs
designed separately. Each of these DRFF-KLMS variants was
synthesized with filter orders of 16, 32, and 64 to verify the
scalability of the proposed architectures. Results of the synthe-
sis are tabulated in Table IV. A prior architecture for DRFF-
KLMS is not available, so the results are compared to state-
of-the-art DLMS [37] architectures. The DLMS architectures
from [37] were also coded in Verilog and synthesized using
the same 45-nm libraries for a fair comparison. Since DLMS is
one of the lowest complexity adaptive filtering algorithms that
can be implemented in hardware, we chose it for comparing
DRFF-KLMS synthesis results. In both DRFF-KLMS and
DLMS, we have set M=3 so that the critical path of their
designs is Tmult with a slack value of 0. Table III compares
synthesis results of cosine module implemented with CORDIC
and the Taylor series approximation approach. Tables III
and IV represent dynamic power values that were extracted
from post-synthesis power reports by annotating switching
activity interchange format (SAIF) files which are generated
from gate-level timing simulations with 100000 random inputs
generated from a Gaussian distribution. In comparison with the
DLMS architecture, implementing the RFF module contributes
to additional area and power consumption. Even though there
is an increase in area and power overhead for DRFF-KLMS
implementations over the DLMS, the improvement in steady-
state MSE and convergence rate achieved by DRFF-KLMS
over DLMS (which did not converge in the task of nonlinear
system identification as shown in Fig. 1) calls for DRFF-
KLMS VLSI implementation.

The synthesis results of DRFF-KLMS architectures with
different FFs for various filter orders are also given in Ta-
ble IV. From Table IV, we see that compared to DLMS synthe-
sis results the DRFF-KLMS using cosine feature function has
an increase of 31.44%, 31.33%, 51.79% in area and 31.92%,
33.93%, 57.82% in dynamic power for 16, 32, and 64 tap
sizes, respectively. Whereas in the case of DRFF-KLMS using
the Gaussian feature function, there is an increase in area by
20.35%, 11.56% and 14.05% and increases in dynamic power
by 13.59%, 14.26% and 12.21% for 16, 32, and 64 tap sizes,
respectively when we compare with DLMS. In the case of
exponential feature function-based DRFF-KLMS, there is an
increase in area by 5.93%, 3.03%, 19.16% and an increase
of 17.18%, 16.01%, 35.74% for 16, 32, and 64 tap sizes,
respectively.

Proposed DRFF-KLMS using cosine feature function has
27.84%, 29.96%, and 51.05% area increase, and 25.92%,
30.40%, and 55.86% dynamic power increase compared to
DLMLS for 16, 34, and 64 taps, respectively. Whereas in
the case of DRFF-KLMS using exponential feature function
has 3.02%, 1.95%, and 18.58% area increase, and 11.85%,
12.95%, and 34.06% dynamic power increase compared to
DLMLS for 16, 34, and 64 taps, respectively. In the case of
DRFF-KLMS using Gaussian feature function has 17.05%,
10.39%, and 13.49% area increase, and 8.42%, 11.25%, and
10.82% dynamic power increase compared to DLMLS for 16,
34, and 64 taps, respectively.
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TABLE IV
SYNTHESIS RESULTS OF DRFF-KLMS VARIANTS, DLMS AND DLMLS WITH DIFFERENT FILTER ORDER USING CADENCE 45-NM CMOS LIBRARY

FOR CLOCK FREQUENCY 1.052GHZ

Algorithm
RFF-Space

Dimension (P )

MSE

(dB)

Cell Area

(kGE)a
Total Area

(µm2)

Leakage Power

(µW)

Dynamic Power

(mW)

16 -14.8 39.29 176397 22.57 458.18

32 -18.5 78.86 353508 45.63 917.76
DRFF-KLMS

(Cosine)
64 -19.3 174.12 772667 102.68 2042.74

16 -12.8 32.65 142160 19.11 406.99

32 -13.3 63.58 277324 37.04 794.98
DRFF-KLMS

(Exponential)
64 -14.1 139.89 606557 82.25 1756.98

16 -12.4 36.18 161516 21.01 394.50

32 -15.7 67.90 300290 39.70 782.96
DRFF-KLMS

(Gaussian)
64 -15.9 178.62 580530 76.02 1452.46

16 0.55 30.48 134202 18.44 347.30

32 0.5 61.34 269174 36.58 685.24DLMS [37]

64 0.38 116.26 509016 68.21 1294.34

16 0.51 31.27 137981 18.88 363.87

32 0.38 62.21 272004 36.87 703.78DLMLS [30]

64 0.28 117.10 511513 69.87 1310.56
a One Gate Equivalent (GE) corresponds to the size of a two input NAND gate of size 3.25 µm2

As discussed earlier, the additional logic used to project
the input into RFF-space contribute to the area and power
overhead over the DLMS architecture. When compared to the
various feature functions-based DRFF-KLMS designs, cosine
feature function-based implementation consumes more area
and power. Gaussian feature function-based implementation
requires slightly reduced area and power consumption than
the cosine feature function-based implementation. Exponential
feature function-based implementation only has a marginal
increase in area and dynamic power over DLMS and DLMLS
implementation. However, DRFF-KLMS using the cosine fea-
ture function converges to a better steady-state MSE value than
their counterparts. Among Gaussian and exponential FFs, the
Gaussian feature function converges to a better steady-state
value over the exponential feature function (ref. Fig. 2). Hence,
the FFs for VLSI implementation can be selected based on the
requirements of the application. The DRFF-KLMS with cosine
feature function is the best option if the application demands
stringent steady-state MSE values. On the other hand, if area
and power are critical for the application, it is best to select
DRFF-KLMS with exponential feature function. The DRFF-
KLMS with Gaussian feature function has intermediate area
and power requirements.

VI. CONCLUSION

Kernel adaptive filters exhibit superior performance when
identifying nonlinear systems compared to conventional adap-
tive filtering algorithms that assume a linear relationship
between input and output signals. However, kernel adaptive
filters are computationally expensive, and their native form
is unsuitable for VLSI implementations. In this paper, we
proposed a VLSI architecture that implements one of the

more well-known kernel adaptive filters, namely the DRFF-
KLMS algorithm. This can be accomplished with high-speed
and area-efficient methods of implementing inner products and
cosine functions. The simulation results demonstrated that the
proposed DRFF-KLMS algorithm performed well with various
FFs. Using synthesis results, we compared DRFF-KLMS to
delayed LMS architecture in terms of hardware complexity.
The proposed work offers a promising avenue for designing
efficient VLSI architectures for nonlinear adaptive filtering in
complex systems.
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