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1 Abstract
The behavior of animals is influenced by genetic and environmental factors as well as the

interactions between the two. It is also influenced by the behavior of others. The Producer-
Scrounger model is a classic model that looks at two behaviors in an inverse frequency
relationship to predict population level frequencies of tactic usage. Previous studies have
conflated learning and non-learning plastic strategies, leading to confusion and a lack of
comparison for all possible strategy types. Here, we utilized an agent based model to follow
individuals in populations through time, observing genetic changes, strategy choices and
levels of producers and scroungers. This model uses a deterministic correlation function to
cause variability in the environment in a predictable fashion through the modification of the
producers bonus, as well as utilizing an underlying liability reaction norm framework to treat
the act of producing or scrounging as a threshold trait. We ran scenarios that allowed and
prevented plasticity from evolving. These scenarios varied in how the environment changed
over time and how fast. We confirm that the type of environmental fluctuation and its
speed has an impact on the types of strategies evolved in a population. In addition, we test
learning strategists in an environment with conditional plastic, non-plastic mixed, and pure
strategies and confirm that learning strategies can become fixed in a population and are the
most successful and numerous in an environment that allows for plasticity to evolve.
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2 Introduction
In the course of an individual animal’s life it must make many decisions. These decisions

range from protection of resources (Grant 1993), if it should fight an opponent, to if it should
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migrate. Each time a decision needs to be made, it must be made in its own unique context.
However, it is not possible for an individual to account for all of the possible variation found
in life, and so how behavioral strategies cope with this uncertainty is an important problem.
For example, the individual might behave in a way that ensures decent success in a wide
range of conditions, or it alter its behavior to better fit the specific context that it finds itself
in (Clements and Stephens 19951995).

An assumption often made in the field of behavioral ecology is that individuals, through
natural selection, evolve optimal strategies for making decisions that maximize fitness (Parker
and J. Smith 19901990), as the individual that behaves more optimally than its competitors
may survive and reproduce more successfully, passing its strategies to the next generation
through its genes (Davies et al. 20122012, McNamara and Leimar 20202020). One way an individ-
ual may optimize chances of surviving and reproducing is how it obtains food through its
foraging behavior, and an example of this optimization of foraging behavior is the marginal
value theorem. In the marginal value theorem, individuals gain private information of the
environment through their experiences of the travel time between patches of food and the
diminishing returns an individual receives from revisiting a food patch multiple times. Uti-
lizing this information, there exists an optimal amount of visits-made-to/time-spent-at a
food patch before the individual should move to a new one (Charnov 19761976). An individual
using such information to adjust their behavior may gain higher food intake than individuals
using a constant strategy.

These decisions are not only made in isolation, as in reality no individual operates in a
vacuum and is surrounded by members of both its own and other species from which the
individual can obtain public information, in addition to the private information it gathers
itself. For social groups, individuals can assess the optimal decisions in various situations by
obtaining public information from other group members through a variety of cues, behavioral
patterns and signals that can inform the individual of threats, resource availability and
locations, hazardous foods and more (Templeton and Luc-Alain Giraldeau 19951995, Kacsoh et
al. 20182018). The information gained from others influences an individual’s decisions and their
outcomes, having just as much of an impact on the fitness of the individual as environmental
factors (Katsnelson, Motro, M. W. Feldman, et al. 20082008). In some cases, the common
phrase “knowledge is power” could be changed to “knowledge is fitness” as higher quality
information can improve individual survival and other fitness enhancing activities.

Individuals don’t make one decision in life and will need to make many in a multitude of
circumstances and contexts over time, requiring different strategies to navigate each situation
in an optimal way. The optimal strategy in the one context may not be as successful in
the next. Adopting a strategy that works decently in most cases or optimal in a different
environmental context could cause an individual to potentially miss out on resources it could
have exploited. One technique to aid an animal in the diverse situations it will encounter
in its life is learning. When an animal uses learning, it draws upon the memories of the
successes and errors in past experiences to inform the decision it must make in its current
context (Harley 19811981), granting it the flexibility to both adapt to and succeed in a wider range
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of contexts. The more experience an individual has and the more it has observed others,
the more likely they will be able to make the best possible decision. Katsnelson et al (2011)
described learning as a dynamic process involving stochastic sampling errors that influence
subsequent sampling steps, and eventually produce a wide distribution of possible outcomes
(Katsnelson, Motro, M. Feldman, et al. 20112011). By encountering and more importantly
remembering errors in its own judgement or remembering observed errors in others, an
individual using learned strategies can select against tactics that previously produced a
negative or lackluster outcome in environmental contexts it has already experienced.

As mentioned before no individual acts in a vacuum. There are other individuals that
interact with both the environment and the initial individual. Game Theory is used to study
these interactions where the rewards of an individuals actions or decisions are dependent on
the actions and decisions of other individuals in the game (J. M. Smith 19821982). As stated in
Table 11 games consist of 1 or more rounds where distinct actions or behaviors are known
as “tactics” are played by individuals. In round 1 of a game, an individual might choose to
play tactic "A" out of a set of tactics ["A","B"]. An example of a tactic in a social context is
where one member of a conspecific group moves to a high position and watches for threats
while other members forage/graze (Bednekoff 19971997).

Strategies are precise descriptions of what tactic an individual will use in a given situation
or state (flee when you encounter something that eats you). The importance of strategies
to the evolution of populations and species is that they are the basic unit through which
selection acts (McNamara and Leimar 20202020) because the strategies an individual employs
will determine its reproductive success. The effectiveness of a strategy will be demonstrated
by the proportion of the population that utilizes it as more successful strategies will spread
through the population. Strategies can vary in the number of tactics they consist of and
how tactics are chosen. Pure strategies employ one tactic for each possible situation. Mixed
strategies have many tactics played in different conditions or at different probabilities. Con-
ditional strategies integrate information to determine what tactic should be selected in each
case and can be extremely diverse.

2.1 ESS
In theory there are an infinite number of strategies that can be employed, but we often

only observe one in a population, the evolutionary stable strategy (J. M. Smith 19821982). The
Evolutionary Stable Strategy (ESS) as described by Maynard Smith (1982) is the strategy
most stable under natural selection because if a majority of a population adopts it, no
“mutant” strategy can invade and give a higher reproductive fitness. The ESS can be fixed
or plastic (‘conditional’), and can be a universal (‘pure’) strategy that every individual uses
or can be a (‘mixed’) combination of different pure strategies played by individuals used in
the same population. (Maynard Smith 19741974). Fixed strategies simply use one tactic in all
situations. A mixed strategy involves one or more tactics that are each chosen a proportion
of the time. A conditional plastic strategy samples the environment at that moment in time
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Term Definition
Private information Information obtained by an individual through its own experiences. Here, compar-

ison of payoffs of playing alternative tactics (eq. 55)
Public information Information available to all individuals that can be observed from the surroundings.

Here, tracking the numbers of producers and scroungers in the population (eq. 66)
Game Theory Mathematical modeling approach involving two or more individuals with competing

or aligning interests, where the tactics played by one individual are influenced by
acts played by the other. Games consist of 1 or more rounds, moves or time steps
where each individual plays 1 tactic a round from a set of available acts

Tactic In Game theory, a discrete act played by the individual during a time step in the
game. Manifests in animal populations as a phenotype or behavior displayed

Decision rule A description of the relationship between an internal or external stimulus and the
choices an individual makes

Strategy In Game theory, a set of decision rules for a sequence of tactics played by the
individual for the duration of the game. Each chosen tactic is selected based on
decision rules and can depend on an organism’s internal state (e.g. body condition,
informational state), the (social) environment, etc.

“Simple” or “Pure” Strate-
gies

A strategy only using either one tactic or the other, so individuals do not alternate
between them.

“Complex” or “Mixed”
Strategies

A strategy playing a specified combination of different tactics at different probabil-
ities

"Fixed" or Non-Plastic
Strategy

A strategy that plays the same tactic or combination of tactics regardless of the
environment

"Conditional" or Plastic
Strategy

A strategy played by an individual that that displays different tactics in different
environmental conditions and incorporates information about the payoffs of alter-
native tactics

ESS A strategy (tactic or mixture of tactics) that, once adopted by a population, cannot
be invaded by any other mutant strategy. In a game there may be more than one
ESS. ESSs are properties of populations and not individuals

Pure ESS An ESS in which each individual plays only one tactic
Mixed ESS An ESS in which each individual randomly plays one or both of the alternative

tactics, such as fight with probability p and sneak with probability 1—p, or through
a genetically polymorphic evolutionary stable state in which different individuals
play different strategies within the population

Conditional ESS An ESS that operates through a mechanism (physiological, neurological, or devel-
opmental) that detects appropriate cues and plastically alters the strategy

Phenotypic plasticity The ability of single genotypes to produce different phenotypes in different environ-
ments based on informative cues

Learning The ability to use the memory of past payoffs of strategies played by the individual
or others to alter the current strategy

Behavioral Reaction Norm Graphical depiction of the relationship between an expressed behavior or phenotype
and different environmental conditions

Liability An underlying genetic or environmental trait that determines the displayed pheno-
type depending if it is above or below a certain threshold

Liability Reaction Norm Graphical depiction of the relationship between liability of a trait across various
environments

Animal personality Consistent differences between individuals in their behaviour across time and con-
texts. This implies that interindividual correlations exist in behaviour across time
or contexts (also referred to as ‘behavioural syndromes’)

Continuous trait A trait that is continuously distributed on observed phenotypic scale.
Threshold trait A trait that shows two (or more) discrete phenotypic states, where phenotypic

expression directly depends on the value of an underlying “liability” relative to
a threshold. Individuals above the threshold display one tactic while individuals
below the threshold(s) display an alternate morph

Table 1: Glossary of terms adapted from J. M. Smith 19821982, Dingemanse et al. 20102010, Reid
and Acker 20222022, Roff et al. 19971997, Dugatkin and Reeve 19981998, Modelling Animal Decisions
Group: et al. 20142014
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to make a decision on which particular tactic to use. Plastic learning is distinguished from
other plastic strategies in that it uses memory of past experiences to influence its decision
and is useful in a stochastic environment and/or where high quality information for sampling
is unavailable.

2.2 Frequency dependent populations in Producer-scrounger so-
cial games

A population can consist of multiple individuals adopting different strategies. When this
occurs, the strategies played by individuals interact with each other and can affect their
overall success in a way not seen with the strategies in isolation. An example of a game theory
model that incorporates interacting strategies is the producer-scrounger model. Developed
in the early 1980s (Barnard and Sibly 19811981). Using captive house sparrows, the producer-
scrounger model involves a population with two mutually exclusive tactics: ’Producers’,
individuals that search for and discover new food patches, and ’Scroungers’, individuals that
forage at food patches that have already been discovered by producers. The payoffs of these
tactics are frequency dependent, where the success of each is linked to the proportion of
each tactic being played in the population. When most of the population is composed of
producers, it is more advantageous to be a scrounger, and vice-versa. The ESS, i.e the
ratio of tactic use at which producer and scrounger payoffs are equal is also affected by other
factors, such as group size (Vickery et al. 19911991) and distribution of food patches (Beauchamp
20082008). Empirical studies show that other factors not related directly to resource availability,
like genetic relatedness, dominance, predation risk, allocation of food among scroungers, and
time of day also can have an impact on the population’s ESS (Tóth et al. 20092009, Katsnelson,
Motro, M. W. Feldman, et al. 20082008, T. Caraco et al. 19891989, Coolen and Luc-Alain Giraldeau
20032003, Lendvai et al. 20042004).

A key parameter controlling the ESS proportion of scroungers is the amount of food from
a patch a producer can eat before scroungers join and food is shared, known as the producer
bonus, or finder’s share Tóth et al. 20092009. Namely, an increase in the producer bonus leaves
less food for possible scroungers and lowers the average proportion of individuals playing the
scrounger tactic. This empirical result agrees with the prediction of theoretical models with
static, rate-maximizing environments (Vickery et al. 19911991, Thomas Caraco and Giraldea
19911991). However, the dynamic model by Barta and Luc-Alain Giraldeau 20002000 suggests that
in a changing environment, higher levels of scroungers can be found at these same share
values than are predicted by the static model.

Many older models of the producer scrounger game are deterministic and static (Barnard
and Sibly 19811981, Vickery et al. 19911991). These models make the assumption that the act
of foraging for food is used to replace energy lost throughout the day, that there is only
one rate of obtaining energy, and that individuals focus on achieving the maximum rate of
fitness and obtaining energy over time, and making predictions on behavior based on this
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one rate (Thomas Caraco and Giraldea 19911991). The environments these models take place
in do not take into account temporal variation in energy acquisition nor the threat of death
from starvation and the urgency both place on foraging individuals (Thomas Caraco and
Giraldea 19911991).

Models like the those found in Beauchamp 20082008, utilize an agent-based approach involv-
ing stochastic simulation models, where each individual has its entire life cycle and social
interactions with others modeled. Following an individual through timesteps allows for an
environment that changes over time, producing a variance in the ability of individual to gain
food and avoid starvation. Experimental studies like Houston and McNamara 19871987 suggest
that in order to fulfill energy requirements, individuals will forgo a strategy that gains more
food on average in the long term for a strategies that fulfills their immediate requirement,and
that optimum behaviors rely not only on the mean energy intake, but the energetic state of
the individual. Empirical studies like Young et al. 19901990 and Thomas Caraco, Martindale,
et al. 19801980 support this theory. An agent-based approach gives the researcher access to re-
liable information and enables them to explore the effects more stochastic food availability
have on an ESS. This allows the model to handle situations that are more similar to those
we find in nature than the deterministic analytical models. More recently, some modelling
studies have begun using the producer-scrounger game to study the evolution of learning
in game-theoretical contexts, including Dubois, Morand-Ferron, et al. 20102010 and Katsnelson,
Motro, M. Feldman, et al. 20112011. The two studies have differing techniques and therefore
slightly different results.

Dubois, Morand-Ferron, et al. 20102010 utilizes a mathematical model approach, and deliber-
ately looks at the outcome of learning while ignoring the underlying mechanisms of learning.
The model begins with a population of individuals using fixed strategies in equilibrium, fol-
lowed by the introduction of a mutant learning individual and observation of its fate. In
this study, learning happens instantaneously with no time lag or storage of information,
and a learner always chooses the most profitable of three possibilities: producer, scrounger,
or a given combination that alternates as a set rate. Dubois, Morand-Ferron, et al. 20102010
refer to these individuals as using a mixed strategy as they are more akin to the usage of
conditional plastic strategies than that of learning, as there is no memory involved and the
environment is assumed to be perfectly sampled to choose the most productive strategy in
that situation. When the mean populations of producers and scroungers are observed, the
"learning" individuals are included in the count with fixed individuals.

The Dubois et al. (2010) study suggests that “learning individuals will play a pure pro-
ducer tactic, regardless of initial conditions” because the first learning individual to play
against individuals with fixed strategies will optimize its own allocation of food and favor a
mixture of tactics that tends to include a higher ratio of producer tactic to scrounger. This
causes a feedback loop leading fixed individuals to adopt scrounger exclusive tactics in the
next generation, leading to learning individuals to use the producer tactic even more. At a
certain point, these "learning" strategies are simply not viable and are unlikley to become
fixed in the population, especially if the learners assess the the payoffs of alternate strate-
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gies. “Learners can do better than fixed producers or fixed scroungers, but never better than
both” (Dubois, Morand-Ferron, et al. 20102010).

Katsnelson et al. (2011) use an agent-based approach to observe how the phenomenon of
learning, expressed as a linear operator (LO) rule, can evolve to fixation in a population,
depending on environmental conditions and degree of phenotypic asymmetry (differences in
their ability to succeed with a chosen strategy stemming from various possible origins). This
study tests two learning rules under 4 payoff types to observe their effect on the learned
strategy choice. These learning rule test cases were used in two populations. The first
being a population of pure strategists at equilibrium, with a learning gene added later.
The second population tested was composed of non-learners all using a mixed strategy and
“coin flipping” to choose their tactics with equal probabilities. In this study, contrary to
Dubois, Morand-Ferron, et al. 20102010, the learning strategy was able to become fixed in the
population of pure strategists and was “consistently successful in invading a population of
mixed strategy players” when the player phenotypes were asymmetric(Katsnelson, Motro,
M. Feldman, et al. 20112011).

2.3 Types of information in the Producer/Scrounger game
An individual in a game is privy to two types of information, public and private, as

defined in table 11. In the producer-scrounger game the choice of tactics (whether to produce
or scrounge) can utilize any information about the environment. Private information about
the payoffs of different tactics is obtained each time a tactic is chosen. Public information is
obtained when an individual assesses the social environment(Valone 19891989), but it is unknown
if each information type is more beneficial under certain conditions.

3 Behavioral Reaction norms and Liabilities

3.1 Behavioral Reaction Norms
To visualize the range of phenotypes an individual expresses in response to a given stimulus

or environment it is typical to utilize a Behavioral Reaction Norm (BRN) approach to show
an individual’s response to different environmental conditions. The elevation, slope, and
shape of the line allows the identification of different animal personalities and behavior
types. Personality in animals is defined as a consistent difference between individuals in their
behavior across time and contexts, implying that there are interindividual correlations that
exist (Dingemanse et al. 20102010). A simple example is shown in figure 1c1c. All three individuals
express the same level of plasticity (none), but express different mean levels of behavior.
Because of that, these individuals show consistent differences across different environmental
contexts and can be labeled as having different personalities. Figure 11 showcases different
behavioral types and personalities for a group of three hypothetical individuals in a changing
environment.
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(a) Non-plastic BRNs (b) Plastic BRNs

(c) Non-plastic BRNs with differing personalities (d) Plastic BRNs with differing personalities

(e) Plastic BRNs with different levels of plasticity (f) BRNs with non-linear shapes

Figure 1: Examples of Behavioral reaction norm shapes

8



(a) High Phenotypic Precision (b) Low Phenotypic Precision

Figure 2: Examples of Phenotypic precision

While these BRNs aid in understanding and even predicting animal behavior, this as-
sumes perfect phenotypic precision or low phenotypic noise. Phenotypic precision describes
how closely the expressed phenotypes of an individual follows the phenotype predicted by its
genotype (David. F. Westneat et al. 20192019, Hansen et al. 20062006). Inversely, phenotypic noise or
phenotypic variance describes the random deviation individual phenotypes might show from
the predicted phenotype of a reaction norm. The amount of noise or variance an individual
displays can be affected by selection and is not universal amongst individuals (Orzack and
Sober 19941994), nor does it consist of the same components (David F. Westneat et al. 20152015).
The effect of this random noise is that it is the inverse of repeatability, a commonly used
measure in behavioral studies detailing consistency amongst individuals over multiple ob-
servations in the same environment (Bell et al. 20092009). If one were to record the phenotypic
reactions of a group of individuals with high phenotypic precision or low noise, one would
see results similar to figure 2a2a where 7 observations of 5 individuals are both clustered near
the reaction norm and show a repeated, predictable pattern amongst eachother. In contrast,
observing individuals with low phenotypic precision or high noise would give results more
similar to figure 2b2b where the 5 individuals are spread across the behavioral space amongst
7 observations and show different patterns to each other and the BRN.

3.1.1 Liability Reaction norms

As mentioned earlier, not every behavioral or phenotypic trait can be described using
a continuous linear frame work. Some traits manifest as discrete phenotypes or behaviors
where there is an underlying, continuous liability, which produces one phenotype or the other
depending on whether the liability exceeds a treshold or not. These liability values can consist
of genetic factors, individual differences in environmental factors, a combination of both, or
other unobserved factors. Traits that display different phenotypes based on a threshold that
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is passed are known as threshold traits. Examples of these threshold traits include making a
decision to forage or stay in hiding based on perceived threat level (Turney and Godin 20142014),
when a crocodile hatchling’s sex is determined by its incubation temperature (Hutton 19871987),
or in our case, whether to produce or scrounge. The liability to produce can be tracked using
the same technique as the BRN and is called a Liability Reaction Norm (LRN).

In the following example, two populations of individuals are capable of displaying two
color variants, red and blue. One has a color morph dependent on a single gene, while
the other’s depends on the combined effect of multiple genes. In the single locus example,
displaying a certain phenotype depends on the additive property of the present alleles. In
figure 3a3a, "B" alleles add a value of 0.2 to the liability total, "A" alleles add a value of
0.3 to the liability, and the threshold of displaying phenotype "Blue" is 0.5. Homozygous
"B" individuals will display the "Red" phenotype as the total liability of 0.4 does not cross
the threshold. Heterozygous and homozygous dominant individuals will both display the
"Blue" phenotype as the respective liability totals of 0.6 and 0.8 cross the threshold. In the
multi-locus example, the liability of displaying a certain phenotype depends on the additive
property of multiple gene effects, i.e. a ’quantitative genetic’ trait. By plotting the frequency
distribution of the individuals and their total underlying liability levels in the population
as shown in figure 3b3b, we can get a similar illustration of the threshold trait. Once again,
individuals to the left of a threshold will display "Red" as their phenotype while those on
the right display "Blue" as their phenotype.

LRNs can be "translated" into BRNs by taking the x-axis point or points at which that the
LRN crosses the threshold and using it as the inflection point where the phenotype changes
in the BRN. For a deterministic LRN, the corresponding BRN will be a step function, only
giving probabilities 0 or 1 of expressing the alternative phenotypes. Using the previous
example, say we have a population that has a liability threshold of 0 to display a blue
phenotype that corresponds to a linear LRN as seen in figure 4a4a. The corresponding BRN
seen in figure 4b4b would consist of a step function where an individual changes the displayed
phenotype from 0% blue to 100% blue once the total additive value of the alleles surpasses
0.5.

In these threshold traits, the LRNs can also differ in slope, elevation and shape, yielding
different corresponding BRNs. Figure 55 shows five linear LRNs (left column) with differing
elevations (top row) or differing slopes (bottom row) and their corresponding BRNs (right
column). The LRNs in this example consist of environmental factors (social environment
information) instead of the genetic factors of the previous example. In each line the individual
does not display a producing phenotype in their BRN until the corresponding LRN line
crosses the threshold. Moving from the dark green line to the dark red line in figures 5a5a and
5c5c, decreasing the elevation or slope of the LRN causes the LRN to cross the threshold at a
higher information value. This causes the translated BRNs displayed in figures 5b5b and 5d5d to
move their cross-over points correspondingly to display 100% producing at the value of social
environment information where the LRN crosses the threshold. However, this example of
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(a) Single Locus (b) Multi Locus

Figure 3: Examples of two populations that use single and multi-locus genes to display red
or blue color morphs with an underlying liability threshold of 0.5 that separate red and blue
color morphs

(a) Liability Reaction norm (b) Behavioral Reaction Norm

Figure 4: LRN and BRN of a population showing the transition of red and blue phenotypes
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LRN depends on the assumption of perfect phenotypic precision and an environment devoid
of noise.

Any reaction norm is subject to noise or variance and this can arise from a number of
sources. It can arise from genetic components of the individual relative to the population,
environmental conditions during development, differences in how individuals react to the
same environmental stimuli, or some other unobserved factor (David F. Westneat et al. 20152015).
In addition, these components are both heritable by offspring and subject to evolutionary
selection (Henriksen et al. 20202020). When noise is present in LRNs, it typically arises from
residual stochastic liability components that do not arise from genetic, environmental or
plasticity variance. It further alters the shape of the corresponding BRN. Noise can “bump”
a point on the LRN close to its threshold over, potentially causing an individual that displays
one phenotype to display another. This makes it probabilistic whether the LRN crosses the
threshold or not, creating a sigmoid BRN shape similar to the red line in 1f1f rather than the
green step shape in the same figure. The amount of noise required to do so increases the
further from the threshold the point on the LRN is.

Figure 66 shows two sets of five linear LRNs (left column) with differing elevations (top
row) or differing slopes (bottom row) and their corresponding BRNs (right column) in the
presence of added noise. In the yellow line of 6a6a, the closer a point on the LRN is to the
threshold of y=0 the greater the effect of noise is on the BRN point in figure 6b6b, causing
the translated BRN point to be closer to y=0.5. At the furthest dark red LRN, no amount
of noise can bring the LRN completly over the threshold enough to cause it to switch to
100% producing behaviour at any level of social information in the BRN. Similarly, in the
dark green line no amount of noise can move the LRN point low enough to display 100%
scrounging behavior.

When altering the slope of the LRN (bottom row of figure 66), moving from the dark
green line to the dark red line, an increase in slope reduces the effect noise has on flattening
the BRN. Thus a steep slope with environmental noise will look more similar to the step
function seen in an example with no noise, while the dark green LRN with its shallow slope
bringing all its points close to the threshold produces a near-linear BRN.

4 Aims
This model attempts to rectify shortcomings found in prior models.

• First, we aim to use an agent-based modelling approach to examine the evolution of
individual strategies in a game theoretical context, going beyond ESS models only
predicting population level frequencies of tactic use. We investigate how this depends
on regimes of environmental variation changing the ESS, formulated as fluctuation in
the producer bonus.
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(a) LRNs with differing elevations (b) Resulting BRNs from 5a5a

(c) LRNs with differing slopes (d) Resulting BRNs from 5c5c

Figure 5: LRNs (left) of differing elevation (top row) and slope (bottom row) with their
corresponding BRNs (right)
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(a) LRNs with differing elevations with noise (b) Resulting BRNs from 6a6a

(c) LRNs with differing slopes with noise (d) Resulting BRNs from 6c6c

Figure 6: LRNs(left) of differing elevation (top row) and slope (bottom row) with their
corresponding BRNs(right) in the presence of noise
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• Second, I aim to address the shortcomings of Dubois, Morand-Ferron, et al. 20102010 and
Katsnelson, Motro, M. Feldman, et al. 20112011. These models face a problem where
they mix the concepts of non-plastic mixed strategies, conditional plastic strategies
and plastic learning strategies as well as only comparing pure or non-plastic mixed
strategies to a learning strategy. The "learners" in Dubois, Morand-Ferron, et al.
20102010 are more akin to conditional plastic in their behavior, whereas the "learners" in
Katsnelson, Motro, M. Feldman, et al. 20112011, while behaving like learners, are not pitted
against non learning plastic individuals. The model proposed will resolve this confusion
by explicitly evolving learning(through memories of past experiences) alongside plastic,
non-plastic-fixed and/or mixed strategies, distinctly defining each kind of strategy.

• Third, the addition of a liability framework transforms the decisions of probabilistically
producing vs scrounging into a threshold trait. This allows for a flexible range of non-
plastic (flat) and plastic (linear, sigmoid, step function) behavioral reaction norms to
evolve through only evolving liability reaction norm elevation and slope (eq. 44).

4.1 Questions
Along with the above aims, we attempted to answer some direct questions with the model

• If plasticity (slope) is unable to evolve, when will populations consist of pure strategists
at ESS frequencies, or mixed strategies playing each tactic in the ESS proportions, or
intermediate combinations?

• If plasticity is allowed to evolve, what proportion of plastic as opposed to non-plastic
strategists emerges under which conditions?

• If plasticity is allowed to evolve, what LRN elevations and slopes, and resulting BRN
shapes, will emerge in the population?

• When will non-learning versus learning plastic strategies be favored?

• How does the range of variation in empirical observations of producer-scrounger game
reaction norms evolve?

4.2 Hypothesis
There were a few hypotheses on the reaction of populations to the different types of envi-
ronmental variation and variation speeds.

• The speed of the environmental change may affect the relative success of fixed vs mixed
non-plastic strategies, plastic vs non-plastic strategies, and learning vs non-learning
strategies.
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– Environments that change slowly would allow for individuals to easily follow the
optimal ESS described in equation 33 closely and enable individuals to display
more diverse types of behavior.

– In environments that were too slow however, there would be little incentive for
behaviors to evolve and change over time, as a behavioral type could work for
many generations. Environments like these would probably see individuals gravi-
tate towards fixed strategies as the slowly changing environment could more easily
exploited at the maximum level.

– In environments that changed quickly, it would be difficult for a population to
follow the optimum ESS closly.

– In environments that changed too quickly, there would also be little incentive
for plastic behaviors to evolve as the environment would change before any one
behavior could be successful for long. Environments like these would most likely
be composed of individuals who would choose strategies that were good enough
in most cases instead of attempting to perfectly track the conditions.

• Environments in the control scenario with no fluctuation between generations or within
generations would most likely see very specialized, pure fixed strategies, with the possi-
bility of mixed strategists, as the lack of change would allow for the optimum elevations
to be quickly found, and once achieved, there would be no incentive to change, making
costly plasticity highly unlikely to evolve. Memory would see no use as non-plastic
strategies would not change the phenotype regardless of information held.

• Populations in environments that fluctuated within generations would include indi-
viduals that encounter variability in their own lives. For the population to survive,
individuals would either need to display mixed behaviors that work decently in differ-
ent conditions or evolve some plasticity to handle the change they experience in their
life. Memory would have an important role for plastic learning individuals here to allow
them to recall the past and inform their behavior. At a population level the average
elevation would remain constant and plasticity would evolve, but at an individual level
there would be both non-plastic mixed individuals at different elevations and plastic
individuals.
If enough individuals had strategies that supported eachother (enough individuals play-
ing the producer tactic at a specific time to support themselves and the individuals
playing the scrounger tactic) there is a possibility a pure strategist could live long
enough to reproduce. Pure strategies could persist this way due to the average environ-
ment between generations being the same allowing an individual from one generation
playing a pure strategy to have an equal chance of success as its predecessor, but they
would be very rare.

• Environments that fluctuated between generations would have individuals that expe-
rience different conditions from their ancestors, but only one condition in their own
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lifetime. Pure strategists would do fine within their own lifetime, but their offspring
would encounter a completely different environment that they would probably be un-
suited for, leading to the death of the lineage. To ensure the survival of their progeny,
individuals would need to evolve an even higher level of plasticity to allow their de-
scendants to be able to succeed in the new environments they find themselves in.
Alternatively, they could again evolve a more mixed strategy that would work in most
environments instead of the ability to change their behavior to suit the environment.
Memory might not be important in this scenario as the environment an individual
experiences never changes. At a population level, plasticity and elevation could stay
constant, with the individual variety translating into a consistent average. Another
possibility is that both plasticity and elevation at population scale could fluctuate
together, with a decrease in the ability to switch behaviors (plasticity) corresponding
with an increase in utilizing a strategy that will do decently in different conditions.

• Environments that fluctuated between generations and within generations would pro-
duce the greatest amount of plasticity. Pure strategists would never survive without
the highly unlikely chance the entire population changed to support the pure strategists
generation after generation. Non-plastic mixed strategists, while being able to survive
in this environment for a short time, would be out-competed by plastic individuals.
Variability in elevation could still exist, but plasticity would be a constant both at the
individual and population level.

5 Methods

5.1 Model
The model was based on the rate-maximisation producer-scrounger model proposed by

(Vickery et al. 19911991), where fitness increases linearly with food intake. Each simulation
represents a foraging game where N haploid, asexually reproducing individuals compete
for food, distributed in patches, in a changing environment. These individuals play the
producer-scrounger game and reproduce for a set number of generations. Each generation
lasts a set amount of steps. At the end of the set number of timesteps, the generation ends,
and individual selection for fitness and reproduction occurs. All individuals are removed at
the end of the generation and replaced with the offspring of those that met the selection
criteria. In this way, the population size remains constant and there are no overlapping
generations.

Each timestep consists of a round of the producer scrounger game. At the beginning of
each timestep the individual is able to choose between searching for food (“producing”),
or joining others that have already found food (“scrounging”). If the individual chooses to
produce, it has a set chance p of finding a food patch, consisting of F food items. If food
is found, the producing individual enjoys a set amount of a food items afs (the "producer
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advantage", or finder’s bonus) before any scrounging individuals are able to arrive. If the
individual chooses to scrounge, it will equally divide the remaining F-a food items of a patch
with the producer and all other scroungers. The assumption made is that scroungers are not
limited to a single food patch, but are able to scavenge from any and all producers. Violation
of this assumption alters the exact ESS frequency of scroungers (Ohtsuka and Toquenaga
20092009, Dubois and Richard-Dionne 20202020, Tóth et al. 20092009, McNamara and Leimar 20202020), but
does not change the fundamental frequency-dependent aspect of the game.

For producers, expected food intake per time step is thus

Ip = afs + (f − afs)/(1 + S) (1)

where S is the number of individuals scrounging in that time step. Scrounger payoff is

Is = afs + (f − afs)/(1 + S) (2)

provided that at least one producer finds food. If not, Is=0. The expected ESS under such
a game is

ESS = afs/f + 1/N (3)

where N is total population size.
The model was developed in Rstudio and to visualize results, the packages ggplot, MASS,

RColorBrewer and vioplot were used. Parameters and values used in the simulation are listed
in table 33 below.

5.2 Selection and Reproduction
As the individuals in the model asexually reproduce, it is impossible for them to not find

a mate. Instead of sexual success, this model utilizes food intake as its selection criteria.
When a population reaches the end of a generation, individuals that have either not found
food, have used more energy than the food can replenish, or have too high of a cost from
their gene values will have an intake value<0 and die off. This new population is further
diminished by truncation selection, eliminating all individuals in the lowest quartile of food
intake. The final remaining population is weighted by their final food intake. The higher
weight individuals are more likely to be chosen to reproduce. When individuals reproduce,
their offspring inherit their genetic profile and strategies, except when mutations occur (see
below).

5.3 Gene Evolution
For each round and generation four genes were tracked in this model, Elevation, Slope,

Memory, and Information. The four genes together are used to calculate the liability of
producing and the weight the individual gives information.
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5.3.1 Calculation of Liability

The choice of producing or scrounging was treated as a threshold trait, such that whether
or not the underlying liability y exceeds the threshold of y=0 dictates the expression of
either tactic(Reid and Acker 20222022). Individuals whose liabilities fell below 0 were displaying
the scrounging tactic and individuals with a liability above 0 were displaying the producing
tactic. The liability of producing for an individual i at time step t is given by

yi,t = ai + bixi,t + ciεi,t (4)
where a is the elevation gene value, b is the value of the slope gene, and x is the value of

the individual’s information about its social environment. ϵ represents residual, irreducible
noise from undefined sources, and has Gaussian distribution of mean 0 and standard devia-
tion 1. The constant c is set to 1, scaling the effect of noise.

5.3.2 Information and Memory

In this model two different sources of information about the social environment are avail-
able to individual, public and private information. Their information gene determines which
of the information types an individual uses to inform its decisions. Private information
compares the payoffs of producing versus scrounging,

µpriv = Vp

Vp + Vs

(5)

where Vp and Vs are the payoffs of respectively producing and scrounging, such that
higher values indicate that producing is better relative to scrounging. Each time and indi-
vidual produces or scrounges its stored Vp and Vs values are updated.

Public information surveys the tactic use in the population,

µpub = S

P + S
(6)

where P=N-S is the number of producers in the population, such that higher values
indicate that there are more scroungers in the environment, again causing higher values to
indicate that producing is better relative to scrounging. The information gene has only two
alleles (0/1), where individuals observing the amount of scroungers in the population had a
value of 0, and individuals using the payoffs of tactics had an info gene value of 1.

Furthermore, plastic individuals can utilize memory of prior information to weigh deci-
sions and update their information over time ("learning"). Information was updated using
the Rescorla-Wagner learning rule using equation (Afshar and Luc-Alain Giraldeau 20142014),

xi,t = xi,t−1mi,t + x
′(1 − mi) (7)

with m representing the weight of information from previous timesteps x, and (1-m)
representing the weight given to newly acquired information x ’. Thus, the individual’s per-
ception of its environment depends on its current and/or past public or private information
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We utilized a memory cutoff value of 0.01 to classify individual using a learning strategy. A
value >0.01 represents an individual that is able to learn while a value of <0.01 represents
a non-learning individual.

5.3.3 Mutations

Mutations occur at the end of each generation with a probability determined by the
mutation rate. When a mutation occurs for the slope, elevation and memory continuous
genes, a new value is given to the offspring based on a Gaussian distribution around the
parents gene value, with a standard deviation equal to the mutation size incrementally
changing it over generations. As the info gene is binary and not continuous, when a mutation
occurs the offspring’s gene simply alternates between the values of 1 and 0.

5.3.4 Costs

We assume that the memory and plasticity genes are able to impose a cost to the fitness
of an individual. If the benefit of a higher gene level to an individuals fitness outweighs its
cost, the individual will tolerate the cost in order to receive the advantage that higher gene
value might have. Costs imposed by genes were represented by reducing food intake linearly
with increasing gene values,

Ii = Ii,u × (1 − αcost × |α|) (8)

where Ii is the modified intake of individual i, Ii,u the unmodified intake, αcost the cost
imposed by gene α (plasticity or memory). No costs were implemented for the elevation or
info type genes.

5.4 Tactics
5.4.1 Strategy Types

We defined 4 distinct strategy types that individuals could display. These definitions were
applied to individuals after the genes had been allowed to evolve freely throughout the game.
Figure 77 represents a decision tree of these strategies.

• The pure fixed strategy is a strategy that plays one tactic 100% of the time in all
environmental conditions. We classified individuals as using pure fixed strategies if
they had slope genes with an absolute value of <0.01 and an elevation gene with a
absolute value >5. This large elevation value ensures that with the chosen size of
environmental noise (c=1), the opposite phenotype is never chosen. This strategy
looks like a more extreme version of the green and red examples in 1c1c.

• The non-plastic mixed strategies are strategies that play multiple tactics at different
probabilities. These probabilities do not change based on the environment. We classi-
fied individuals as mixed strategies if they had slope genes with an absolute value of
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Variable
Name

Variable Symbol

ESS ESS proportion of producers
afs Producers bonus or "finders share"
f Food items in a food patch
N # of individuals in the population
Is Produced food at time step s
as Producers bonus at time step s
S # of scroungers exploiting the producer
y Liability to produce
yi,t Liability of producing for an individual i at time t
a Elevation
b Slope
x Value of the information gathered by the individual
c Noise of an individual related to within-genotype and within-individual variance(in

this model c=1)
ε Residual noise
Vp Payoff of the producing tactic
Vs Payoff of the scrounger tactic
#P # of producers
#S # of scroungers
xi,t Information value at time t for individual i
mi Value of the memory gene of individual i
1 − mi Weight given to new information gathered by individual i
x

′ Past information gathered
I Individuals food intake after application of genetic costs
Ii Unmodified food intake
α Gene value
αcost Cost imposed by gene α
x̄ Mean value sin wave was centered on
A Amplitude
Gs Time step in a generation
T Period
v Frequency or cycles
S The number of timesteps in a generation

Table 2: Variables and symbols in equations
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Varible Name Variable Sym-
bol

Value

Replicate simulations Rounds 20
Adult population size N 50
Timesteps per generation S 50
Number of generations G 2000 for "Nofluct","Intragen" and "Intergen".

5000 for “Both”
Food items per patch F 20
Producers advantage A 9
Probability of finding food while pro-
ducing

P 0.25

Mutation rate Mrate 0.1(Elevation),0.25(Slope)
0.1(Memory),0.1(Information type),0.1

How many sine waves the fluctuations
make through the given number of
time steps (specific for generations)

Cycles_gen 1

How many sine waves the fluctuations
make through the given number of
time steps (specific for timesteps)

Cycles_step 1

How long a wave should be in
timesteps (specific for generations)

period_gen Slow: 2000 Medium: 200 Fast: 20

How long a wave should be in
timesteps (specific for timesteps)

period_step Slow: 50 Medium: 50 Fast: 50

How high a wave should be (specific
for generations)

Amplitude_gen 3

How high a wave should be (specific
for timesteps)

Amplitude_step 1

Elevation sine waves will be symmet-
rical (specific for generations)

Mean_gen 0

Elevation sine waves will be symmet-
rical (specific for timesteps)

Mean_step 0

Mutational effect size msize 0.1
Cost of being plastic (fraction of in-
take) Scales with LRN Slope gene

pcost 0.01

Cost of using memory (fraction of in-
take)Scales with memory gene

mcost 0

Cost of switching tactic (fraction of in-
take)

scost 0

Truncation selection sel_trunc 0.25
Producers bonus fluctuation type prodbonus_fluct “none”,”"Intragen"”,”"Intergen"”,”"Both"”

Table 3: Parameters and values used in simulation
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<0.01 and an elevation gene with a absolute value <5. These strategies reaction norms
look like the orange example in figure 1c1c.

• Plastic strategies were classified as Adaptive or Mal-Adaptive depending on the sign of
their BRN slope. Adaptive strategies had slopes >0.01 and increased the probability
of producing as information values increased and Maladaptive strategies had slopes <
-0.01 and decreased their probability in the same conditions. These plastic strategies
were also further broken into the following strategies:

• Step conditional strategies had behavioral reaction norms that formed a step function
as seen in the green example in 1f1f. These individuals are characterized by their high
slope gene with an absolute value >6.5. These strategies were further split by which
information type they used. Those who use payoffs had an Info gene of 1, while those
that used the %scrounger in a population had a value of 0.

• Log conditional strategies had behavioral reaction norms that formed a sigmoid func-
tion similar to the red example in 1f1f. These individuals are characterized by their lower
slope gene with an absolute value <6.5 and >0.01. These strategies were further split
by which information type they used. Those who use payoffs had an Info gene of 1,
while those that used the %scrounger in a population had a value of 0.

• The Learning strategies had slope genes with an absolute value >0.01 and a memory
gene with an absolute value >0.01. These strategies were further split by which infor-
mation type they used. Those who use payoffs had an Info gene of 1, while those that
used the %scrounger in a population had a value of 0.

5.4.2 Individual Variation

Population level ESSs do not always portray accurately what occurs at the individual level.
It is possible for a population to display a phenotype while the individuals in the population
do not display the same phenotype(Maynard Smith 19741974). For example the population
strategy could be mixed 50% producing and scrounging while individuals are a combination of
pure 100% scrounging or 100% pure producing strategies. Alternatively the same population
ESS could be achieved by individuals playing a pure 50/50 producer scrounger strategy For 10
of the replicates that were run the reaction norms of 20 random individuals in the population
were isolated at the final timesteps and plotted by the information (Payoffs or %producers)
and the probability to produce (y-axis). This was done in order to observe the differences
between the ESS strategy of the population and what strategies were actually being utilized
by individuals.

5.5 Environmental variation
Previously, this particular model utilized an auto-correlation function to manage variabil-

ity in the environment by creating variability in food intake (Bharath 20232023). While the
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Figure 7: Strategy tree detailing the possible strategies found in the model

autocorrelation produced a varied environment, it was difficult to predict. In contrast, in
this model the producers bonus afs was altered to change the benefit of producing for a
corresponding generation or timestep using a predictable deterministic correlation through
a sinusodial function. By altering the producers bonus, the ESS fraction of producers and
scroungers would also change. This was done to create a changing, but more predictable
environment than using an autocorrelation function.

In order to vary the environment across time a deterministic function was used that
produced a sine wave of a length equal to the total number of generations with a period
divisible by the number of timesteps in a generation. This sine wave was then centered
around a mean of zero to ensure the wave would be centered around the long-term mean.
The resulting y value on any point in the sine wave could then be used to modify the
environment through any selected variable. This environmental variability can be set to act
each generation, each timestep within generations, or both, and intra- or intergenerational
variability can be independently modified. The following sinusoidal function was used to
generate environmental variation,

y = x̄ + (A × sin(G × 2π/T ) (9)

where x̄ represents the mean the wave was centered on, A represents amplitude, G represents
a generation, T represents the period.
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Figure 8: Different types of environmental fluctuation with the environment changing within
generations(red), between generations(green) or both(blue)

5.6 Types of Environmental Fluctuations
4 types of environmental fluctuation were tested with this model. Each scenario differed

in how the producers bonus and the optimal ESS changed over time and is shown in figure
88.

• The "NoFluct" scenario was a control scenario where no environmental variation oc-
curred either between or within generations.

• The "Intragen" scenario involved an environment that changed only within generations.

• The "Intergen" scenario involved an environment that changed only between genera-
tions.

• The "Both" scenario involved an environment that changed both between and within
generations

Non-plastic Scenarios

In order to have a control scenario for plasticity, 3 non-plastic scenarios were run to both
observe changes occurring through cycle speed and fluctuation types. The slow scenarios
involved an environment that changed slowly with a complete cycle taking 2000 generations.
Medium scenarios involved an environment that changed with a complete cycle taking 200
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generations and fast scenarios involved an environment that changed very fast with a com-
plete cycle taking only 20 generations. Any changes in plasticity and memory in comparison
to the plastic scenarios would be a result of the slope and memory gene, the mutation size
and the cost of plasticity and memory. For the non-plastic scenarios, the slope mutation
rate was set to a value of 0 and the memory gene had a value of 0.1, and neither gene had
a cost.

Plastic scenarios

The plastic scenario was run with an increased slope mutation rate and a cost to plasticity
and memory of 0.02. The environmental fluctuation speed was identical to the medium
scenario. All other parameters were identical.

6 Results

6.1 Non-Plastic scenarios
Non-plastic scenarios were characterized through the inability of plasticity to evolve. The

main variation in non plastic individuals was unsurprisingly the elevation gene. This varia-
tion in elevation would show which tactic a mixed individual would be more inclined to use.
A mixed individual could play more producer tactics than scrounger, more scrounger than
producer, or it could have a strategy closer to 50/50 of each tactic.

In figure 99 the values of the slope, elevation and memory are shown for different envi-
ronmental fluctuation types and speeds. Values were taken from the final 500 generations
of the simulation and can be found in table 44. Medium and fast environments gave similar
results to each other as seen in figures 9b9b and 9c9c. Notably, when environments change suffi-
ciently quickly between generations (medium and fast "Intragen" and "Both" scenarios), the
variation in the elevation gene is much smaller than otherwise (see also 1111).

In most non-plastic scenarios, the mean elevation gene was negative, indicating that
individuals would be slightly more inclined to scrounge, capturing the long-term ESS of
approximately 45% producing. However, in the slowly changing environment, averaging over
the last 500 years of the simulation captures only the part of the environmental sine wave
where the producer bonus is higher than the long-term average, favoring more producing
and causing positive elevations. Similar patterns were seen for the "Intergen" and "Both"
scenarios. In all cases, the memory gene is selectively neutral (since there is no benefit and
no cost) and so it drifts around 0.5.

The ESS proportion of producers was also affected by the speed of environmental fluc-
tuation and became more difficult to follow for the population as the conditions of the
environment became faster and began to change between generations, with the population
completely unable to follow in a fast environment that changed between generations. The
effect of environmental speed can be seen in figure 1010. At lower speeds, populations were
able to follow the optimum ESS with some lag. At high speeds however, these environments
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showed ratios of producers and scroungers more similar to environments that only changed
within generations, as the population could not begin to follow the ESS.

Figure 1111 shows some strategies (reaction norms) used by individuals in a non-plastic,
medium speed environment. Non plastic scenarios were dominated by mixed strategists, with
pure strategies only seen in a few individual reaction norms at medium "Nofluct" and slow
"Intergen" environmental conditions. For most environmental conditions, mixed strategies
were the only strategies in the population. Figure 1111 also shows that as the environment
begins to change between generations, the elevations of individuals begin to condense and
are on average closer to the ESS (0.45) than in environments that do not change or only
change within generations.

6.2 Plastic scenario
The plastic scenario was run with the same speed of environmental fluctuation as the

medium non-plastic scenario. Unlike the non-plastic examples, there were costs to the evo-
lution of the slope and memory gene. In the plastic non-fluctuating environment in figure
1212 the mean values of all genes were closer to zero. The standard deviations were also
lower than those seen in the non-plastic scenarios, most likely due to the gene costs. In
scenarios with environmental variation, the elevation and slope gene both diverge from a
zero value. The slope gene increases and the elevation gene decreases. The memory gene
stays relatively stable, with the mean increasing slightly. Elevation and slope would reach
their furthest separation when environments fluctuated between generations only, and move
towards each-other again when the environment changed both between and within genera-
tions. The memory gene would have its largest increase in this environment type. Figure 1313
details how these genes evolved in the plastic scenario over time and shows this same pattern.
This shows how elevations and slopes tend to covary over time, where the population tracks
the fluctuating ESS by either using positive higher elevations and high plasticity, or lower
elevations and less plasticity.

Figure 1414 shows the classification of strategies found in the different plastic scenarios.
Learning strategies were the most common strategy type in the plastic scenario, given the
high evolved memory factors. Non-learning plastic strategies were less common, and non-
plastic mixed strategies were very rare. In both learning and non-learning plastic strategies,
there were equal numbers of individuals utilizing the %producer as information as the payoffs.

7 Discussion
Our model set out to address the short-comings of prior models and provide a more infor-
mative picture of the evolution of various strategies in the producer scrounger game and
how they are impacted by a changing environment. We were able to observe the success of

27



(a) Slow (b) Medium

(c) Fast

Figure 9: Scaleplots of non-plastic scenarios
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(a) Slow

(b) Medium

(c) Fast

Figure 10: Producer/Scrounger ratio plots of slow, medium and fast non-plastic scenarios
in environments that fluctuate within and between generations. Increasing speed causes the
population to struggle to follow the ESS 29



(a) NoFluct (b) Intragen

(c) Intergen (d) Both

Figure 11: Individual strategies found in the medium non-plastic scenario. Information
on the x-axis refers to the combination of information about the payoffs of strategies and
the %scroungers in the population. Environments that do not change between genera-
tions(11a11a,11b11b) show a larger range of elevation values, while environments that change be-
tween generations(11c11c,11d11d) have a more condensed range.
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Figure 12: Scaleplot of plastic scenarios
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(a) NoFluct (b) Intragen

(c) Intergen (d) Both

Figure 13: Gene-plots of plastic scenarios with slope and elevation showing an inverse fre-
quency relationship
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(a) NoFluct (b) Intragen

(c) Intergen (d) Both

Figure 14: Strategies found in plastic scenarios. Learning plastic strategies in orange and
pink were the most numerous across all plastic scenarios. Non-learning plastic in dark and
light blue was the second most numerous, followed by non-plastic mixed in black
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Environmental condi-
tions

Mean
a

SD a Mean b SD b Mean
m

SD m

Non-Plastic-Slow-No Fluct -0.130 0.722 0.000 0.000 0.514 0.275
Non-Plastic-Slow-Intragen -0.210 0.626 0.000 0.000 0.471 0.280
Non-Plastic-Slow-Intergen 0.130 0.856 0.000 0.000 0.500 0.284
Non-Plastic-Slow-Both 0.139 0.654 0.000 0.000 0.524 0.293
Non-Plastic-Medium-No
Fluct

-0.173 0.629 0.000 0.000 0.532 0.277

Non-Plastic-Medium-
Intragen

-0.165 0.692 0.000 0.000 0.466 0.279

Non-Plastic-Medium-
Intergen

-0.198 0.448 0.000 0.000 0.480 0.268

Non-Plastic-Medium-Both -0.205 0.433 0.000 0.000 0.520 0.266
Non-Plastic-Fast-No Fluct -0.149 0.663 0.000 0.000 0.508 0.286
Non-Plastic-Fast-Intragen -0.172 0.637 0.000 0.000 0.499 0.280
Non-Plastic-Fast-Intergen -0.152 0.364 0.000 0.000 0.516 0.279
Non-Plastic-Fast-Both -0.154 0.357 0.000 0.000 0.477 0.286
Plastic-No Fluct -0.090 0.446 -0.017 0.369 0.335 0.163
Plastic-Intragen -0.254 0.282 0.309 0.342 0.351 0.153
Plastic-Intergen -0.370 0.458 0.755 0.362 0.374 0.146
Plastic-Both -0.326 0.242 0.394 0.327 0.472 0.155

Table 4: Means and Standard deviations of genes taken from the final 500 gener-
ations.Displayed in graphical form in figures 99 and 1212. a=elevation gene, b=slope
gene,m=memory gene
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learning strategies in an environment with mixed and pure strategists. We were also able to
answer some direct questions.

• When plasticity is prevented from evolving, almost all populations played mixed tactics
with varying ratios of producing and scrounging, the rare pure tactic was seen in the
population in certain conditions, but it would always die out.

• If plasticity is allowed to evolve, plastic strategies greatly outnumber non plastic strate-
gies.

• In an environment where plasticity is allowed to evolve, plastic learning and non-
learning strategies would have curved BRNs with positive slopes and a negative eleva-
tion on average. This suggests that these strategies tend to prefer scrounging in the
absence of information, but as they gain information on their environment are more
likely to produce. This is not the only option, variation seen in the fainter lines in Fig.
1313 shows that individuals with negative slopes and positive elevations can appear.

• In environments where plasticity was allowed to evolve, plastic learning strategies out-
numbered plastic non-learning strategies and non-plastic strategies. There would need
to be a larger cost to memory than one used for non learning strategies to be more
successful than learning strategies.

• In situations where plasticity is allowed to evolve and when it is prevented, how an
environment changes and how fast it changes appears to be the root cause of variation
in individual reaction norms. Faster speeds and variation between generations appear
to reduce variation in these reaction norms.

7.1 Future Work
There are still areas of this model that can and should be explored further. First, no
alternate environmental speed was run for the plastic scenario. This does leave a hole in
our understanding of how environmental speed affects the evolution of plastic strategies. It
would be interesting to see if subjecting the plastic scenarios to slow and fast environments
would result in the patterns similar to those seen in the non-plastic scenarios or if strategy
type preferences would be altered in any way.

This model has the capability to simulate different speeds and levels of environmental
fluctuation within generations than between generations. Future work with this model could
explore the effect of environments whose within generation fluctuation is not the same as the
fluctuation found between generations. How would a population evolve in an environment
that has smaller, faster fluctuations within generations, but very large, slow fluctuations
between generations?

Another angle that could be approached is the addition of a reproductive cost. There
must be a number of individuals whom are only just making the cutoff for surviving, but
it is quite another hurdle to have the energy to both survive and reproduce. Adding a
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reproductive cost should cull strategies that are only able to support an individual, but not
successful enough to grant it the energy reserves to be able to invest in reproduction.

There is a question if certain information types are more beneficial in specific environ-
mental conditions or for specific strategies. As of this study they appear to be evenly split,
but they were not fully investigated. Another item of interest that was not fully looked at
was the presence of a pattern of fluctuating pattern of levels of adaptive and mal-adaptive
strategies. Figures detailing the patterns of adaptive and mal-adaptive strategies can be
found in the appendix attached.

Finally, in previous work this model utilized a "noise" gene to reflect within-individual
and within-genotype noise. This current iteration of the model set this as a constant so that
this would not have an affect on our results, but re-implementing this noise gene could have
an effect on what kinds of strategies evolve.
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