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Abstract. We study hereditary completeness of systems of exponentials on an interval

such that the corresponding generating function G is small outside of a lacunary sequence

of intervals Ik. We show that, under some technical conditions, an exponential system is

hereditarily complete if and only if the logarithmic length of the union of these intervals

is infinite, i.e.,
∑

k

∫
Ik

dx
1+|x| =∞.

1. Introduction

Let {vn}n∈N be a complete and minimal system of vectors in a separable Hilbert space

H, that is, Span{vn} = H and Span{vn}n6=m 6= H for any m. For any such sequence there

exists its unique biorthogonal system {wn}n∈N such that 〈vn, wm〉 = δnm. In general, the

system {wn}n∈N needs not be complete (e.g., consider vn = e1 + en+1 in H = `2(N)), but

even if it is complete, it is possible that for some partition N = A ∪ B, A ∩ B = ∅, the

“mixed” system {vn}n∈A ∪ {wn}n∈B is incomplete. If it is not the case for any partition

N = A∪B, then we call the system {vn}n∈N hereditarily complete. Hereditary completeness

can be understood as a weakest form of reconstruction of a vector f from its generalized

Fourier series ∑
n∈N

〈f, wn〉vn,

since it is equivalent to the fact that each vector f ∈ H can be approximated by linear

combinations of the partial sums of its Fourier series. Clearly, if the Fourier series with

respect to the biorthogonal pair (vn, wn) admit a linear summation method, then the system

{vn} is hereditarily complete.

Hereditarily complete systems are also known as strong M -bases or systems which admit

spectral synthesis due to the relation of this property to the structure of invariant subspaces

for certain classes of linear operators discovered by A. Markus [14]. Various geometrical
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Basic Research grant 20-51-14001-ANF-a.
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aspects of abstract hereditary complete systems were considered in [9, 10] while in [1, 12]

some interesting relations with operator algebras can be found.

1.1. Exponential systems. We are interested in the case when H = L2(−π, π) and vn
is a system of exponentials, vn = eiλnt for some set Λ = {λn}n∈N ⊂ C. R. Young [19]

proved that in this case the biorthogonal system is always complete and there has been a

number of papers establishing hereditary completeness and existence of a linear summation

method for nonharmonic Fourier series under some additional hypothesis about the set Λ

(see, e.g., [7] or [17, 18]). Nevertheless, in [3] an example was constructed which shows that

in general hereditary completeness for exponential systems does not necessarily hold. This

result was extended to other functional systems (reproducing kernels in de Branges spaces

of entire functions, Gaussian Gabor systems) in [4, 5] (see also a survey paper [2]). It

should be mentioned that the synthesis for exponential systems fails with one-dimensional

defect only: each mixed system has codimension at most one [3].

The construction in [3] was ingenious, but it had very few “degrees of freedom”, i.e., free

parameters. Therefore, the structure of such examples remained rather mysterious. Our

aim is to give a larger class of examples. Moreover, under some regularity conditions we

are able to arrive to a certain qualitative characterization (finite logarithmic length) which

we believe is intrinsic for the phenomenon of nonhereditary completeness of exponential

systems.

It is well-known that if {eiλt}λ∈Λ is a complete and minimal system, then the following

canonical product converges in the sense of principal value, see, e.g., [13, Lecture 18,

Theorem 4],

G(z) = p.v.
∏
λ∈Λ

(
1− z

λ

)
= lim

R→∞

∏
λ∈Λ,|λ|<R

(
1− z

λ

)
.

The function G is called the generating function of the system {eiλt}λ∈Λ. Numerous prop-

erties of exponential systems can be expressed in terms of G, see, e.g., [7, 16].

1.2. Logarithmic length. We are interested in the case when the function G is small

outside some lacunary sequence of intervals {Ik}∞k=1,

(1.1) Ik = [ρk − dk, ρk + dk], 2ρk ≤ ρk+1, 1 < dk ≤ 0.1ρk.

We prove that under some additional restrictions the system of exponentials (reproducing

kernels of PWπ) is hereditarily complete if and only if the total logarithmic length of these
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intervals is infinite, that is,
∞∑
k=1

dk
ρk

=∞,

see Theorems 2.1, 4.1. Theorem 2.1 gives sufficient conditions for the failure of hereditary

completeness, whereas Theorem 4.1 gives sufficient conditions for hereditary completeness;

these two results are in a sense converse to each other.

To illustrate this we present one example which immediately follows from Theorems 2.1

and 4.1.

Example. Let {λn} = Λ be a locally dense real sequence, i.e., supn |λn+1 − λn| <∞ such

that the generating function G is of exponential type π, and

(1.2)
|G(z)|

dist(z,Λ)
� max

k

1√
|Ik|(dist2(z, Ik) + 1)

, |Im z| < 1,

where {Ik} is a lacunary system of intervals satisfying (1.1) and dk/ρk < 1/k. Then the

system {eiλt}λ∈Λ is hereditarily complete if and only if
∑∞

k=1
dk
ρk

=∞.

The existence of sequences Λ satisfying (1.2) can be deduced via standard atomization

technique, see, e.g., [6]. From [13, Lecture 18, Theorem 4] it follows that the system

{eiλt}λ∈Λ is always complete and minimal in L2(−π, π).

In Section 3 we apply these results to give an example of a nonhereditarily complete (i.e.,

complete and minimal but not hereditarily complete) exponential system which partially

answers a problem posed in [2]: which perturbations of integers can produce complete and

minimal systems of exponentials which are not hereditarily complete? Let λn ∈ R and

(1.3) δ = sup
n∈Z
|λn − n|.

By the results of Kadets and Ingham any sequence with δ < 1/4 generates a Riesz basis

of exponentials (see, e.g., [15, Part D, Chapter 4]). One can ask, however, for which

δ any complete and minimal system {eiλnt} satisfying (1.3) is automatically hereditarily

complete.

Question. Find δcrit which is the infimum of δ > 0 such that there exists nonhereditarily

complete system {eiλnt} with |λn − n| < δ.

The exact value of the synthesis constant δcrit is not known. Theorem 3.1 shows that

such δcrit cannot exceed 1/2. Therefore,

1

4
≤ δcrit ≤

1

2
.
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1.3. Paley–Wiener space. The classical approach to the study of the properties of ex-

ponential systems is to consider Fourier transform F of our system: in this case the Hilbert

space becomes the Paley–Wiener space PWπ = FL2(−π, π) (the space of all entire func-

tions of exponential type at most π which belong to L2(R)) and the functions eiλnt are

mapped to the reproducing kernels of PWπ (cardinal sines)

Kλn(z) =
sin π(z − λn)

π(z − λn)

corresponding to the points λ̄n. In the case when the exponential system is complete and

minimal, its biorthogonal system {wn} is mapped to the functions Gn ∈ PWπ which vanish

on {λm,m 6= n}. It is easy to see that

Gn(z) =
G(z)

G′(λn)(z − λn)

where G is the generating function of the system {eiλnt} (or, simply put, of the set Λ).

The function G vanishes on Λ and has no other zeros, it is of exponential type π (with

the diagram [−πi, πi]). Clearly, G /∈ PWπ, however G ∈ L2
(
R, dx

1+x2

)
. Thus, the spec-

tral synthesis problem for exponentials is equivalent to the same problem for systems of

reproducing kernels in the Paley–Wiener spaces. This equivalence will be frequently used.

Organization of the paper. In Section 2 we give a sufficient condition for an exponential

system to be nonhereditarily complete (Theorem 2.1, the case of finite logarithmic length).

In Section 3 we apply this result to give an explicit example of a nonhereditarily complete

system of exponentials whose frequencies are sufficiently small perturbations of integers. In

Section 4 we prove a converse result (Theorem 4.1) establishing hereditary completeness in

the case of infinite logarithmic length. Finally, in Section 5, we show that for an incomplete

mixed system its exponential part must be always sufficiently irregular and, in particular,

cannot be a part of Riesz basis of exponentials with some additional regularity.

Acknowledgement. The authors are grateful to the referee for numerous helpful remarks

and suggestions.

2. Case of finite logarithmic length

In this section we will need the following assumptions on Λ and G:

(a) dist(Z,Λ) > 0;

(b) Λ is locally dense on R, i.e., there exists some C > 0 such that any interval I ⊂ R,

|I| ≥ C, contains at least one element of Λ;
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(c) |G(iy)| = o(eπ|y|), |y| → ∞.

Recall that the family {Kn}n∈Z =
{ sinπ(z−n)

π(z−n)

}
n∈Z is an orthonormal basis in PWπ and,

therefore,
∑

n∈Z |g(n)|2 = ‖g‖2
L2(R) < ∞ for any g ∈ PWπ. We will often use this fact in

what follows.

On the other hand, note that the series
∑

n∈Z |G(n)|2 diverges for the generating function

G of any complete and minimal system satisfying condition (c). Indeed, otherwise we can

find a function F ∈ PWπ such that F (n) = G(n), and by the Phragmén–Lindelöf principle

we have F (z)−G(z)
sinπz

≡ 0. This implies that F ≡ G, thus G ∈ PWπ, which contradicts

completeness.

For our construction of nonhereditarily complete systems to work, we just need G(n) to

be an `2-sequence on the most part of Z\
⋃
Ik. But in some neighborhood of Ik we want

G(n) to be slightly better than `2 (see condition (ii) below).

Theorem 2.1. Let G be the generating function of some complete and minimal system

{eiλt}λ∈Λ satisfying (a)–(c). Let Ik be a system of intervals of the form (1.1) such that

dist(ρk,Z) ≥ 1
3

for each k and G(ρk) 6= 0. Put gk =
∑
n∈Ik

G2(n), sk =
√
dkgkρk and

Jk = J−k ∪ J
+
k = [ρk − dk − 2sk, ρk − dk − sk] ∪ [ρk + dk + sk, ρk + dk + 2sk].

Assume that the function G satisfies the following conditions :

(i) {G(n) : n ∈ Z\
⋃
k

Ik} ∈ `2;

(ii)
∑
k

sk
∑
n∈Jk

G2(n) <∞;

(iii) sk ≤ 0.1ρk;

(iv)
∑
k

dk
ρk

<∞.

Then the system {eiλt}λ∈Λ is not hereditarily complete.

Proof. First, we note that to prove that the system {vn} = {eiλnt} is not hereditarily

complete it is enough to find a partition N = A∪B and two vectors η, ν ∈ L2(−π, π) such

that η ⊥ {vn}n∈A and ν ⊥ {wn}n∈B, but η and ν are not orthogonal. Indeed, if the system

{vn}n∈A ∪ {wn}n∈B were complete, then the vector ν would lie in the span of {vn}n∈A and

η would lie in the span of {wn}n∈B and so they would be orthogonal.

Since the Fourier transform F is a unitary operator from L2(−π, π) to PWπ, we can

pass to the equivalent problem and search for

f = Fη, g = Fν
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such that for some partition Λ = Λ1 ∪ Λ2 we have f ⊥ {Kλ}λ∈Λ1 and g ⊥
{G(z)
z−λ

}
λ∈Λ2

, but

f and g are not orthogonal.

Step 1. Construction of f . We will construct a function f as a small perturbation of

the function G so that they will share most of their zeros and therefore f is orthogonal to

the most of Kλn , and then construct function g by the fixed point theorem so that it is

orthogonal to the remaining functions Gn.

It follows from (1.1) and (iii) that all intervals Ik, Jk are pairwise disjoint. Also we can

assume without loss of generality that sk ≥ 3C, where C is the constant from the local

density condition (b), and so there exists at least one zero of G on each J±K . Indeed, if

sk < 3C < 3Cdk, then gk ≤ 9C2 dk
ρk

. Since the series
∞∑
k=1

dk
ρk

converges, we can pass to a

smaller collection of intervals Ik by throwing away the intervals with sk < 3C and condition

(i) still will be satisfied. Later we will throw away some extra finite set of intervals – it

also will not break our assumptions.

Let tk ∈ Jk be a zero of G whose choice will be specified later. Put

f(z) = G(z)m(z),

where

m(z) =
∞∏
k=1

1− z/ρk
1− z/tk

.

It is easy to see from the lacunarity of ρk that this product converges locally uniformly on

C\{tk}, and since G(tk) = 0 we conclude that the function f is entire.

Step 2. f ∈ PWπ. We will select two candidates t±k ∈ 1
2
J±k for tk (as always, by the

half of the interval we mean the interval with the same center and twice smaller length).

Subsequently we choose one of them in such a way that

(2.1) 0.001 ≤
N∏
k=1

tk
ρk
≤ 1000

for all N (we can always do so by (iii)). Note that in this case we have

(2.2) |m(z)| �
∣∣∣∣z − ρkz − tk

∣∣∣∣, ρk−1 + ρk
2

≤ |z| ≤ ρk + ρk+1

2
.

Therefore the function f is of exponential type at most π and |f(iy)| = o(eπ|y|). Thus, to

prove that f ∈ PWπ, it is enough to show that {f(n)} ∈ `2(Z).
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Trivially, {f(n)} ∈ `2(Z\
⋃
k

(Ik ∪ Jk)) since |m(n)| . 1 for those n. For n ∈ Ik we have

|x−ρk|
|x−tk|

≤ dk
sk

and, therefore,

∞∑
k=1

∑
n∈Ik

|f(n)|2 .
∞∑
k=1

d2
k

s2
k

gk =
∞∑
k=1

dk
ρk

<∞.

For n ∈ Jk we have |m(n)| � sk
n−tk

. Let us divide 1
2
J±k into rk � sk intervals of length C

and choose one root of G from each of them (there is always at least one by our assumption

(b)). Denote these roots in 1
2
J+
k by λj, j = 1, . . . rk. Since dist(Λ,Z) > 0, we have

rk∑
j=1

∑
n∈Jk

s2
kG

2(n)

(n− λj)2
. s2

k

∑
n∈Jk

G2(n),

whence there exists λj such that∑
n∈Jk

|f(n)|2 .
∑
n∈Jk

s2
kG

2(n)

(n− λj)2
. sk

∑
n∈Jk

G2(n)

with constants in. independent on k. We put t+k = λj. Similarly, one can choose t−k ∈ 1
2
J−k .

By condition (ii),
∑
k

∑
n∈Jk
|f(n)|2 < ∞ regardless of which of t−k or t+k we choose to satisfy

(2.1).

Step 3. Construction of the function g. Put an = (−1)nf(n). We are going to

construct a real sequence {bn} ∈ `2(Z) such that
∑
n∈Z

anbn 6= 0 and the function

S(z) =
∑
n∈Z

anbn
z − n

has zeros at each ρk.

Let us show that once such system {bn} is constructed, the functions f and

g(z) =
sin πz

π

∑
n∈Z

bn
z − n

=
∑
n∈Z

(−1)nbnKn(z)

will achieve our goals. By construction, f is orthogonal to all Kλn except for tk and

〈f, g〉PWπ =
∑
n∈Z

anbn 6= 0. It remains to prove that g is orthogonal to G(z)
z−tk

for all k whence

the mixed system

{Kλ}λ∈Λ1 ∪
{
G(z)

z − λ

}
λ∈Λ2
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with Λ2 = {tk}k≥1, Λ1 = Λ \ Λ2, is incomplete. Thus, we need to prove that

(2.3)
〈 G(z)

z − tk
, g
〉
PWπ

=
∑
n∈Z

(−1)nbnG(n)

n− tk
= 0.

We are going to prove that

G(z)S(z)

f(z)
=
∑
n∈Z

(−1)nbnG(n)

z − n
.

If we do so, then substituting z = tk we get (2.3) (note that f(tk) 6= 0). Consider the

function

H(z) =
G(z)S(z)

f(z)
−
∑
n∈Z

(−1)nbnG(n)

z − n
.

Trivial computation shows that its residues at Z are zero and since GS vanish in all zeros

of f we conclude that H is entire. On the other hand, by comparing indicator diagrams

of corresponding functions we see that H is of minimal exponential type. Finally, from

|m(iy)| � 1, y → ∞ and the definitions of f and S we see that |H(iy)| = o(1), |y| → ∞.

Therefore, by the Phragmén–Lindelöf principle, H ≡ 0.

It remains to construct a sequence {bn}n∈Z with the desired properties.

Step 4. Construction of the sequence {bn}. Put b0 = 1
a0

, bn = 0 for n ∈ Z\
⋃
Ik, n 6= 0,

and bn = ck
an
ρk−n

for n ∈ Ik for some ck. We want to construct a sequence ck such that

S(ρk) = 0 for all k.

Consider the Banach space B of sequences {ck}k≥1 with the norm ‖c‖B = sup
k≥1

|ck|
dk

, and

consider the following operator on it:

(Tc)k =

(∑
n∈Ik

a2
n

(ρk − n)2

)−1(
− 1

ρk
−
∑
j 6=k

∑
n∈Ij

anbn
ρk − n

)

=

(∑
n∈Ik

a2
n

(ρk − n)2

)−1(
− 1

ρk
−
∑
j 6=k

cj
∑
n∈Ij

a2
n

(ρk − n)(ρj − n)

)
.

It is easy to see that if {ck} is a fixed point of this operator then S(ρk) = 0 for all k. Thus

it remains to prove that T is contractive.

Recall that (−1)nan = f(n) = G(n)/m(n). We have

(2.4)
∑
n∈Ik

a2
n

(ρk − n)2
=
∑
n∈Ik

G2(n)

m2(n)(ρk − n)2
�
∑
n∈Ik

G2(n)

(tk − n)2
� gk
s2
k

� 1

dkρk
.
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On the other hand, for j 6= k, by (2.2),∑
n∈Ij

a2
n

|(ρk − n)(ρj − n)|
.

1

ρk

∑
n∈Ij

a2
n

|ρj − n|
.

1

ρk

∑
n∈Ij

G2(n)|ρj − n|
|tj − n|2

≤ gjdj
ρks2

j

=
1

ρkρj
.

Clearly, the operator T is the sum of a constant vector and some linear operator. Moreover,

by (2.4), this vector is in B. So it remains to prove that the linear part of T is contractive.

Denoting it by Tlin we have

|(Tlinc)k|
dk

.
dkρk
dk

∑
j 6=k

|cj|
ρkρj

≤ ‖c‖B
∑
j

dj
ρj
.

As we mentioned in the beginning of the proof, we can safely throw away any finite number

of intervals. Thus, we can assume that
∑
j

dj
ρj

is as small as we like and so ‖Tlinc‖B ≤ ‖c‖B
2

.

Therefore, T has a fixed point c.

It remains to prove that {bn} ∈ `2(Z) and
∑
n∈Z

anbn 6= 0. We have, by (2.4),

∑
n∈Z

|bn|2 = |b0|2 +
∑
k

|ck|2
∑
n∈Ik

a2
n

(ρk − n)2
. |b0|2 + ‖c‖2

B

∑
k

dk
ρk

<∞.

and, again using (2.4),∑
n

anbn = 1 +
∑
k

ck
∑
n∈Ik

a2
n

ρk − n
≥ 1− ‖c‖B

∑
k

dk
∑
n∈Ik

a2
n

|ρk − n|
≥ 1− A‖c‖B

∑
k

dk
ρk

for some absolute constant A. We can once again throw away some intervals Ik so that

the expression in the right-hand side be positive (note that since ‖Tlin‖ ≤ 1/2, we can give

uniform upper bound for ‖c‖B so it is enough to make
∑
k

dk
ρk

sufficiently small). �

Remark 2.2. We can replace condition (iii) by sk ≤ Cρk – just replace sk with εsk for

sufficiently small ε.

Remark 2.3. Note that in the proof of Theorem 2.1 we actually need only that we have a

locally dense subset of the zeroes of G on ∪Jk ⊂ R\ ∪ Ik which has positive distance from

Z.

We will now use the Theorem 2.1 to construct a completely explicit example of a function

G which gives us a nonhereditarily complete system.

Theorem 2.4. Let Λ be the set of zeros of the entire function

(2.5) G(x) = cos πx

(
1

x− 1/2
+

∞∑
k=10

(
1

x− 2k + 1/2
− 1

x− 2k − 1/2

))
.
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Then the system {eiλt}λ∈Λ is not hereditarily complete.

Proof. It is easy to see that G /∈ PWπ, but G ∈ PWπ + zPWπ. Moreover, |G(z)| &
|z|−1eπ|Imz| for |z| = 2k + 2k−1 and k ∈ N is sufficiently large. Therefore, one cannot

multiply G by an entire function and remain in PWπ. By [13, Lecture 18, Theorem 4] G

is the generating function of some complete and minimal system of exponentials.

Put ρk = 2k and dk = ρ
1/5
k . Conditions (a)–(c) and (iii), (iv) are easy to verify (for

conditions (a), (b) see Remark 2.3). Let us now verify conditions (i) and (ii). We begin

with the condition (i).

For |n| ∈ [ρk−1+ρk
2

, ρk+ρk+1

2
] we have from (2.5)

(2.6) |G(n)| . 1

|n− ρk|2
+

1

2k
+
k

4k
.

1

|n− ρk|2
+
k

2k
.

Therefore ∑
n/∈∪Ik

G2(n) .
∞∑
k=1

(
1

d3
k

+
k2

2k

)
<∞.

To prove (ii) note that gk =
∑
n∈Ik

G2(n) � 1 and so sk � ρ
3/5
k . By the bound (2.6) we get

(2.7)
∞∑
k=1

sk
∑
n∈Jk

G2(n) .
∞∑
k=1

sk

(
1

s3
k

+
k2sk
4k

)
<∞.

�

Note that the minus sign in (2.5) is absolutely essential to verify the condition (ii),

similar cancelation can be observed implicitly in the example from [3]. Moreover, if we

enumerate zeros of the function G in increasing order then for all n ∈ Z we would have

(after shifting by 1
2
) |λn − n| ≤ 1 just as in [3] (one can check that all the roots of the

function G are real). The drawback of these examples is that they do not use the full

potential of the Theorem 2.1 – we could have chosen dk as any positive power of ρk and

the analysis would still work. In the following section we will construct a more advanced

example which will break this barier and give us |λn − n| < 1
2

+ ε.

3. Example of a nonhereditarily complete sequence

In this section we give another explicit example of a sequence Λ satisfying conditions of

Theorem 2.1. Moreover, this system will be a sufficiently small perturbation of integers.

Theorem 3.1. For any δ > 1
2

there exist G and Λ satisfying all conditions of Theorem

2.1 and such that Λ satisfies (1.3).
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Proof. We will start with the following auxiliary function. Let δ0 ∈ [1/2, 1). Consider the

function

G0(z) = (z − 1/2)
∏
n∈N

(
1− z2

(n+ δ0)2

)
.

It is well known that

|G0(x)| � (|x|+ 1)−2δ0dist(x,ZG0)

(here and in what follows we denote by ZF the zero set of an entire function F ), whence

G0 ∈ PWπ and, in particular, |G0(iy)| = o(eπ|y|), |y| → ∞.

Now let δ ∈ (δ0, 1). The idea is to shift a part of the zeros of G0 which belong to some

lacunary sequence of intervals ∆k = [ρk − dk, ρk + dk] back to the origin. Let ρk be an

arbitrary sequence such that ρk+1 > 2ρk > 0 and choose dk so that

(3.1) dδ0+δ
k = ρ2δ0

k .

Of course, we may assume that dk ≤ ρk/100 for all k. Now put

G(z) = G0(z)
∏
k

∏
n∈∆k

z − (n− δ)
z − (n+ δ0)

= G0(z)
∏
k

∏
n∈∆k

(
1 +

δ + δ0

z − (n+ δ0)

)
.

Let x ∈
[ρk−1+ρk

2
, ρk+ρk+1

2

]
. Then∑

m 6=k

∑
n∈∆m

1

|x− (n+ δ0)|
.

1

ρk

∑
m<k

dm +
∑
m>k

dm
ρm

.

Since
∑

k
dk
ρk
<∞, the corresponding product converges and, moreover,∣∣∣∣ ∏
m 6=k

∏
n∈∆m

(
1 +

δ + δ0

x− (n+ δ0)

)∣∣∣∣ � 1, x ∈
[ρk−1 + ρk

2
,
ρk + ρk+1

2

]
.

Also, let n0 + δ0 and n1 − δ, n0, n1 ∈ ∆k, be respectively the zeros of G0 and G closest to

x. Then

log

∣∣∣∣ ∏
n∈∆k

(
1 +

δ + δ0

x− (n+ δ0)

)∣∣∣∣ = log
|x− (n1 − δ)|
|x− (n0 + δ0)|

+
∑

n∈∆k,n6=n0,n1

δ + δ0

x− (n+ δ0)
+O(1)

= log
|x− (n1 − δ)|
|x− (n0 + δ0)|

+ (δ + δ0) ln
|x− (ρk − dk)|+ 1

|x− (ρk + dk)|+ 1
+O(1).

Thus, for x ∈
[ρk−1+ρk

2
, ρk+ρk+1

2

]
, we have

(3.2) |G(x)| � |G0(x)| · dist(x,ZG)

dist(x,ZG0)
·
(
|x− (ρk − dk)|+ 1

|x− (ρk + dk)|+ 1

)δ0+δ

.
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We will show that G satisfies all conditions of Theorem 2.1 with intervals

Ik = [ρk − 2dk, ρk + 2dk]

(note that there is a small change in notations since the length of Ik is 4dk in place of 2dk).

Obviously, G is an entire function of exponential type π (with the diagram [−πi, πi])
and |G(iy)| = o(eπ|y|), y → ∞, since |G(iy)| � |G0(iy)|. Thus, all conditions (a)–(c) are

satisfied.

Let us show that G is the generating function of some complete and minimal system of

reproducing kernels in PWπ. It is clear from (3.2) that |G(x)| & (|x| + 1)−Kdist(x,ZG),

x ∈ R, for some K > 0. Thus, if GT ∈ PWπ for some entire function T of zero exponential

type, then T is a polynomial. However, by (3.1), for any n ∈ [ρk + dk, ρk + dk + 2] we have

|G(n)| � ρ−2δ0
k dδ0+δ

k = 1. Thus, GT /∈ PWπ for any polynomial T . By (3.2) we also have

|G(x)| � (|x|+ 1)−2δ0dist(x,ZG), x /∈ ∪kIk,

and so {G(n) : n ∈ Z \ ∪kIk} ∈ `2. Also,

1 . gk =
∑
n∈Ik

|G(n)|2 . dδ0+δ
k

ρ2δ0
k

∑
n∈Ik

1

(|n− (ρk + dk)|+ 1)δ0+δ
. 1.

It follows that G
z−λ ∈ PWπ for any λ ∈ ZG and so G is the generating function of some

complete and minimal system which satisfies (i) of Theorem 2.1.

Since gk =
∑

n∈Ik G
2(n) � 1 we have sk =

√
2dkgkρk �

√
ρkdk < ρk/100 for sufficiently

large k. It remains to verify (ii). Let Jk = [ρk − 2dk − 2sk, ρk − 2dk − sk] ∪ [ρk + 2dk +

sk, ρk + 2dk + 2sk]. Then∑
k

sk
∑
n∈Jk

G2(n) .
∑
k

s2
kρ
−4δ0
k =

∑
k

ρ
1+

2δ0
δ+δ0

−4δ0

k <
∑
k

ρ
2δ0
δ+δ0

−1

k .

Since δ > δ0, we conclude that the above sum converges.

Note that the constants δ > δ0 ≥ 1/2 were arbitrary and so Theorem 3.1 is proved. It

is clear from the last step of the proof that the condition δ0 ≥ 1/2 is essential for this

construction. �

4. Case of infinite logarithmic length

Throughout this section the symbols Ik, ρk, dk and gk will have the same meaning as in

Section 2 (note that Jk will denote a different object).
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For a statement which will be in a sense converse to Theorem 2.1 we need to somehow

formalize the statement “G is big on the intervals Ik”. This must include the following

two ingredients: first of all we do not want, for some k, the sum gk =
∑
n∈Ik
|G(n)|2 to be

significantly larger than the same sum for its neighbours because otherwise we will not

“feel” them in G and the total logarithmic length may become finite; secondly, we do not

want the main contribution to gk be due to the values of G on a small part of Ik because

in that case we will only “feel” this small part of Ik and logarithmic length may again

become finite. These two parts corresponds to the assumptions (i) and (ii) of the following

theorem.

Theorem 4.1. Let G be the generating function of some complete and minimal system

{eiλt}λ∈Λ such that Λ ⊂ C, Λ ∩ Z = ∅ and∑
n∈Z

|G(n)|2 + |G(n)|
|n|+ 1

<∞.

Assume that there exists a constant C > 0 such that for all k we have

(i)
∑
n/∈Ik

|G(n)|2

|n− ρk|
≤ C

gk
dk

;

(ii)

√
gk
dk
≤ C|G(x)|, x ∈ Ik;

(iii)
∑
k

dk
ρk

=∞.

Then the system {eiλt}λ∈Λ is hereditarily complete.

Remark 4.2. Formally, Theorems 2.1 and 4.1 apply to different classes of functions G,

since condition (ii) of Theorem 4.1 is incompatible with the existence of any roots of G on

Ik (condition (b) in Theorem 2.1). However, for the Theorem 2.1 we do not need condition

(b) in full, but only its weaker form indicated in the Remark 2.3 which is consistent with

the assumptions of Theorem 4.1. Alternatively, we can weaken condition (b) and assume

that for every x ∈ R there exists λ ∈ Λ with |x − λ| < C. For example, a locally dense

subset Λ of (R + i) ∪ (R − i) is compatible with the condition (ii). Thus, there exists a

class of functions G for which hereditary completeness depends only on finiteness of the

logarithmic length of the intervals Ik.

For the proof of Theorem 4.1 we need the following proposition.

Proposition 4.3. Let tk ∈ R be an increasing sequence (one-sided or two-sided) which is

separated, i.e., tk+1− tk ≥ δ for some δ > 0, and let µk > 0, {µk} ∈ `1(Z). Let {γn} be an
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increasing separated sequence such that dist({γn}, {tk}) = d > 0 and
∑
n

1
γn

=∞. Then, if

for the function

f(z) =
∑
k

µk
z − tk

we have {f(γn)} ∈ `1(N), then µk ≡ 0.

Proof of Proposition 4.3. Let us assume that sup{tk} = ∞. Otherwise, f(x) � x−1, x →
∞, and the statement is trivial.

Clearly, f has a unique zero sk in each interval (tk, tk+1). It is known and not difficult

to show (see [3, Proposition 5.4]) that these zeros in a sense approach the “outer” ends of

the intervals (tk, tk+1), namely,∑
tk>0

tk+1 − sk
sk

<∞,
∑
tk<0

sk − tk
|sk|

<∞.

Put f̃(z) = f(z) − µ0
2(z−t0)

and denote by s̃k the unique zero of f̃ in (tk, tk+1). Then we

also have

(4.1)
∑
tk>0

tk+1 − s̃k
s̃k

<∞.

Consider first those γn which belong to ∪kEk, where Ek = (s̃k, tk+1). Since {γn} is

separated and dist({γn}, {tk}) = d > 0, we conclude that for a fixed k the number of

points γn ∈ Ek does not exceed C(tk+1 − s̃k) for some C > 0 independent on k. In

particular, the interval Ek contains no points γn if tk+1 − s̃k < d. Hence,∑
tk>0

∑
γn∈Ek

1

γn
.
∑
tk>0

tk+1 − s̃k
s̃k

<∞.

Thus, we may assume without loss of generality that γn /∈ ∪tk>0(tk, s̃k) for all n. Since f̃ is

decreasing on each interval (tk, tk+1) we have f̃(γn) ≥ f(s̃k) = 0 whenever γn ∈ (tk, tk+1),

and so

f(γn) =
µ0

2(γn − t0)
+ f̃(γn) &

1

γn
.

This contradicts the assumption that {f(γn)} ∈ `1. �

In the proof of Theorem 4.1 we will need some auxiliary Hilbert space of meromorphic

functions in C \ Z. Put

H =

{∑
n∈Z

bnG(n)

z − n
: {bn} ∈ `2

}
,

〈∑
n∈Z

bnG(n)

z − n
,
∑
n∈Z

cnG(n)

z − n

〉
H

=
∑
n∈Z

bncn.
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Recall that Λ ∩ Z = ∅. Therefore, G(n) 6= 0, n ∈ Z, and the inner product in H is well

defined. It is easy to see that H is a Hilbert space whose reproducing kernel at λ ∈ C \ Z
is given by Kλ(z) =

∑
n∈Z

|G(n)|2
(z−n)(λ̄−n)

and, in particular,

(4.2) ‖Kλ‖2
H =

∑
n∈Z

|G(n)|2

|λ− n|2
.

Next, consider the function

(4.3) M(t) =
∑
n

|G(n)|2

n− t
.

Each interval (n, n + 1) contains exactly one root of the equation M(t) = 0. Pick those

roots which lie in Jk = 1
2
Ik = [ρk− dk

2
, ρk+ dk

2
] for some k and denote the resulting sequence

by {tn}.
Note that, for real z 6= w, we have

〈Kw,Kz〉 = Kw(z) =
M(z)−M(w)

z − w
.

Since M(tn) = 0 for all n, the functions Ktn form an orthogonal system in H.

Lemma 4.4. There exist sets Nk ⊂ N ∩ Jk and a constant C > 0 (independent of k) such

that |Nk| ≥ dk/2 and

(4.4) ‖Kn+ 1
2
‖2
H ≤ C

gk
dk
,

∣∣∣M(n+
1

2

)∣∣∣ ≤ C
gk
dk
, n ∈ Nk.

Proof. Throughout the proof, symbol C will denote different constants independent on k.

We have ∑
n∈Jk

‖Kn+ 1
2
‖2
H =

∑
n∈Jk

∑
m∈Z

|G(m)|2

(n−m+ 1
2
)2
.

By condition (i) of Theorem 4.1,∑
n∈Jk

∑
m/∈Ik

|G(m)|2

(n−m+ 1
2
)2
≤ Cgk,

while ∑
n∈Jk

∑
m∈Ik

|G(m)|2

(n−m+ 1
2
)2

=
∑
m∈Ik

|G(m)|2
∑
n∈Jk

1

(n−m+ 1
2
)2
≤ Cgk.

We conclude that
∑
n∈Jk
‖Kn+ 1

2
‖2
H ≤ Cgk, whence, for any ε > 0, we have ‖Kn+ 1

2
‖2
H ≤ Cε−1 gk

dk

for n ∈ Nk, where Nk is a subset of N ∩ Jk with |Nk| ≥ (1− ε)dk.
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Estimate for |M(n + 1
2
)| is more delicate. First, we split it into the sums over Ik and

Z\Ik

(4.5) M

(
n+

1

2

)
=
∑
m∈Ik

|G(m)|2

m− n− 1
2

+
∑
m/∈Ik

|G(m)|2

m− n− 1
2

= S1(n) + S2(n).

For n ∈ Jk as above we can deduce from the assumption (i) that |S2(n)| ≤ C gk
dk

. Therefore

it remains to estimate S1(n).

For a sequence x = (xm) ∈ `1(Z) consider the operator T defined as

(4.6) (Tx)n =
∑
m∈Z

xm
m− n− 1

2

.

It is well known that the discrete Hilbert transform T satisfies a weak-type (1, 1) bound

(4.7) |{n ∈ Z : |(Tx)n| > τ}| ≤ C
||x||`1
τ

, τ > 0,

where C is an absolute constant.

Applying this bound to the sequence xn = |G(n)|2χIk(n) with τ = 100Cgk/dk we get

(4.8) |{n ∈ Z : |S1(n)| > 100Cgk/dk}| ≤
dk
100

.

Therefore for n ∈ Jk and outside of this exceptional set we get the desired estimate.

Since |Jk| − 1
100
dk = 99

100
dk >

dk
2

the lemma is proved. �

Lemma 4.5. Let Nk be the sets from Lemma 4.4. Then there exists ε > 0 such that for

any k and for any n ∈ Nk the zero t of the function M in the interval (n, n+ 1) belongs to

(n+ ε, n+ 1− ε).

Proof. Assume that M(n+ 1
2
) > 0. We have

M ′(t) =
∑
m∈Z

|G(m)|2

(t−m)2
≥ |G(n)|2

(t− n)2
.

Since |G(n)|2 ≥ C gk
dk

and M
(
n + 1

2

)
≤ C gk

dk
there exists ε > 0 (depending on C but not

on k and n) such that M(n + ε) ≤ M
(
n + 1

2

)
− |G(n)|2

∫ n+ 1
2

n+ε
dt

(t−n)2
< 0. Thus, for some

t ∈ (n+ ε, n+ 1
2
) we have M(t) = 0.

In the case when M(n + 1
2
) < 0, one shows by the same argument that the root of M

will lie in (n+ 1
2
, n+ 1− ε). �
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Proof of Theorem 4.1. Assume that the system of reproducing kernels {Kλ}λ∈Λ is not

hereditarily complete. Then there exists a nonzero function f ∈ PWπ,

f(z) =
sin πz

π

∑
n∈Z

(−1)nān
z − n

,

and a set Λ1 ⊂ Λ such that f is orthogonal to Kλ for all λ ∈ Λ1, and to Gλ = G(z)
G′(λ)(z−λ)

for all λ ∈ Λ2 = Λ\Λ1. Then〈G(z)

z − λ
, f
〉
PWπ

=
∑
n∈Z

anG(n)

n− λ
= 0, λ ∈ Λ2.

Our first step is to prove the following equality:

(4.9) f(z)
∑
n

anG(n)

z − n
= G(z)

∑ |an|2

z − n
.

Indeed, note that f(n) = ān and so the residues at Z coincide. Since the left-hand side of

(4.9) vanishes at λ ∈ Λ, there is an entire function T such that

(4.10) f(z)
∑
n

anG(n)

z − n
−G(z)

∑ |an|2

z − n
= G(z)T (z).

It is clear that T is of zero exponential type. Recall that G
z−λ ∈ PWπ for any zero λ of G.

Hence, the left-hand side of (4.10) is in the class PWπ + zPWπ. If T has at least one zero

ζ, we conclude that G · T
z−ζ ∈ PWπ, a contradiction to the fact that G is the generating

function of a complete sequence of reproducing kernels. Thus, T = c ∈ C and

f(z)
∑
n

anG(n)

z − n
= G(z)

(
c+

∑ a2
n

z − n

)
.

It remains to exclude the case when c 6= 0. Put Ek = Jk \ ∪n∈Z(n − 1/10, n + 1/10).

Then, for x ∈ Ek,∣∣∣∣∑
n

anG(n)

x− n

∣∣∣∣2 ≤∑
n/∈Ik

|G(n)|2

|x− n|
∑
n/∈Ik

|an|2

|x− n|
+
∑
n∈Ik

|G(n)|2
∑
n∈Ik

|an|2

(x− n)2
. gk

by (i). Thus, ∫
Ek

∣∣∣∣f(x)
∑
n

anG(n)

x− n

∣∣∣∣2dx . gk

∫
Ek

|f(x)|2dx = o(gk),

as k →∞. Note also that
∑
n

a2n
x−n → 0 when x→∞, x ∈ Ek. Therefore, if c 6= 0, then∫

Ek

∣∣∣∣G(x)
(
c+

∑ a2
n

x− n

)∣∣∣∣2dx & ∫
Ek

|G(x)|2dx & gk
dk
· dk = gk



18 ANTON BARANOV, YURII BELOV, AND ALEKSEI KULIKOV

by (ii). This contradiction shows that c = 0 and (4.9) is proved.

Now, put

H(z) =
∑
n

anG(n)

z − n
, h(z) =

∑
n

a2
n

z − n
.

Since H ∈ H and {Ktn} is an orthogonal system in H, we have
{

H(tn)
‖Ktn‖H

}
∈ `2. Also,

{f(tn)} ∈ `2 by the classical Plancherel–Pólya inequality. Equality (4.9) yields

h(tn)
G(tn)

‖Ktn‖H
=

H(tn)

‖Ktn‖H
f(tn) ∈ `1.

Denote by {t̃j} the sequence of all zeros of M which belong to the intervals (n, n + 1)

for n ∈ Nk, where the sets Nk are constructed in Lemma 4.4. By Lemma 4.5 we have

dist({t̃j},Z) ≥ ε > 0. Hence, if t̃j ∈ (n, n + 1), then ‖Kt̃j‖
2
H/‖Kn+ 1

2
‖2
H is bounded from

above and from below by some positive constants depending on ε, since this is true for all

the summands in their definitions (see (4.2)). By Lemma 4.4 and (iii) we have

|G(t̃j)| ≥ C

√
gk
dk
, ‖Kt̃j‖H ≤ C

√
gk
dk

for any t̃j ∈ Jk. We conclude that h(t̃j) ∈ `1. Also, since |Nk| ≥ dk/2 we have∑
j

1

t̃j
=
∑
k

∑
t̃j∈Jk

1

t̃j
�
∑
k

|Nk|
ρk
�
∑
k

dk
ρk

=∞.

Applying Proposition 4.3 to h(z) =
∑

n∈Z: an 6=0

|an|2
z−n and t̃j in place of γn we conclude that

an ≡ 0 for all n. This contradiction proves the theorem. �

Remark 4.6. Theorem 4.1 can be extended to a wider class of generating func-

tions. Namely, we can allow some functions G with divergent sum
∑

n∈Z
G2(n)
n

with

the following modification of the above method: we consider the function M(x) =∑
n∈ZG

2(n)
(

1
x−n + n

n2+1

)
and on the interval Ik we will consider the points λn ∈ (n, n+ 1)

which are the solution to the equation

(4.11) M(x) =
∑

n≤ρk+dk

nG2(n)

n2 + 1
.

Although normalized reproducing kernels at the points λn are not an orthonormal sequence

anymore, they come in big groups of pairwise orthogonal kernels corresponding to one

interval Ik. Thus, one can still prove that they form a Riesz sequence by examining the

Gram matrix and Riesz sequence is sufficient for our proof. This, in particular, allows us
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to consider |G| � 1 on Ik and (with slight modifications) even non-lacunary case |G| � 1

on R. We leave the details to the interested reader.

5. A remark on exponential parts of incomplete mixed system

Assume that {eiλt}λ∈Λ is a nonhereditary complete system of exponentials and the system

{Kλ}λ∈Λ1∪
{G(z)
z−λ

}
λ∈Λ2

is incomplete for some partition Λ = Λ1∪Λ2. We have seen in Section

3 that Λ can be a sufficiently small perturbation of integers. However, the system must

also have a certain irregularity. We will show that the exponential part {eiλt}λ∈Λ1 cannot

be a part of a Riesz basis of exponentials with some additional properties. E.g., Λ1 cannot

be a subset of Z.

Theorem 5.1. Let {eiλt}λ∈Λ be a complete and minimal system in L2(−π, π), Λ ⊂ R.

Assume that Λ1 ⊂ Λ and there exists Λ̃2 ⊂ R such that {eiλt}λ∈Λ1∪Λ̃2
is a Riesz basis in

L2(−π, π) whose generating function F satisfies |F ′(ζ)| . 1, ζ ∈ ZF . Let {wλ}λ∈Λ be the

system biorthogonal to {eiλt}λ∈Λ. Then the system

{eiλt}λ∈Λ1 ∪ {wλ}λ∈Λ2 ,

where Λ2 = Λ \ Λ1, is complete in L2(−π, π).

Proof. Since Riesz bases of exponentials are stable under small perturbations (even in

Euclidean metric) we can perturb slightly Λ̃2 so that Λ2 ∩ Λ̃2 = ∅ and still |F ′(ζ)| . 1,

ζ ∈ ZF . We also assume in what follows that Λ2 and Λ̃2 are infinite (otherwise it is well

known that the corresponding mixed system is complete).

We pass again to the equivalent formulation for the Paley–Wiener space PWπ. Put

Z = ZF = Λ1∪ Λ̃2. Since {Kζ}ζ∈Z is a Riesz basis, its biorthogonal system
{ F (z)
F ′(ζ)(z−ζ)

}
ζ∈Z

also is a Riesz basis. Consider the Hilbert space

H =
{
f(z) =

∑
ζ∈Z

cζ
F (z)

F ′(ζ)(z − ζ)
: (cζ) ∈ `2

}
with the norm ‖f‖H = ‖(cζ)‖`2 . Then H coincides with PWπ with equivalence of norms

and the system
{ F (z)
F ′(ζ)(z−ζ)

}
ζ∈Z is an orthonormal basis of reproducing kernels in H (note

that cζ = f(ζ), f ∈ H).

Assume now that the system

{Kλ}λ∈Λ1 ∪ {Gλ}λ∈Λ2 , Gλ(z) =
G(z)

G′(λ)(z − λ)
,
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is not complete in PWπ. This means that there exists a nonzero function f ∈ PWπ such

that f |Λ1 = 0 and

f /∈ SpanPWπ

{
Gλ : λ ∈ Λ2

}
= SpanH

{
Gλ : λ ∈ Λ2

}
.

Note that the system {Gλ}λ∈Λ is biorthogonal also to the system of reproducing kernels

{K̃λ}λ∈Λ of H. Thus, there exists a function f ∈ H = PWπ such that

f ⊥ {K̃λ}λ∈Λ1 ∪ {Gλ}λ∈Λ2

with respect to the inner product of H. Let f(z) =
∑

ζ∈Z cζ
F (z)

F ′(ζ)(z−ζ) . Recall that Z =

Λ1 ∪ Λ̃2 whence cζ = f(ζ) = 0, ζ ∈ Λ1. Also,

(5.1)
〈
Gλ, f

〉
H =

1

G′(λ)

∑
ζ∈Λ̃2

G(ζ)cζ
ζ − λ

= 0, λ ∈ Λ2,

and so

F (z)
∑
ζ∈Z

G(ζ)cζ
z − ζ

= G(z)T (z)

for some entire function T . Comparing the indicator diagrams of the left and right hand

sides we see that T of zero exponential type. Since
{ G(ζ)
|ζ|+1

}
∈ `2, the left-hand side of the

above equality belongs to PWπ + zPWπ. If T has at least one zero, say z0, then G T
z−z0 ∈

PWπ, a contradiction to the fact that G is the generating function of a complete sequence.

Thus, T = c for some c ∈ C. Comparing the values at ζ ∈ Λ̃2 we get F ′(ζ)G(ζ)cζ = cG(ζ)

and so |cζ | = |F ′(ζ)|−1|c| & 1, ζ ∈ Λ̃2, a contradiction. �

Condition |F ′(ζ)| . 1, ζ ∈ ZF , is essential and the result is no longer true as soon as

this condition is not satisfied. Note that the following example gives yet another method

to construct nonhereditarily complete systems of exponentials. As an example of a Riesz

basis of exponentials with growing |F ′(ζ)| one can take the system corresponding to Z =

{n− δ signn}n∈Z with 0 < δ < 1
4
, which is a Riesz basis in L2(−π, π), e.g., by the Kadets

1/4 theorem [15, Part D, Chapter 4].

Example. Let F be the generating function of an exponential Riesz basis {eiλt}λ∈Z with

Z ⊂ R and supζ∈Z |F ′(ζ)| =∞. We show that there exists a partition Z = Λ1 ∪ Λ̃2 and a

set Λ = Λ1 ∪ Λ2 such that {eiλt}λ∈Λ is a complete and minimal system in L2(−π, π), but

the mixed system {eiλt}λ∈Λ1 ∪ {wλ}λ∈Λ2 is incomplete.

Choose Λ̃2 ⊂ Z, Λ̃2 = {ζnk}k∈N, such that {|F ′(ζ)|−1}ζ∈Λ̃2
∈ `2. Then

f(z) =
∑
ζ∈Λ̃2

F (z)

|F ′(ζ)|2(z − ζ)
∈ PWπ
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(in this expansion cζ = 1/F ′(ζ), ζ ∈ Λ̃2, and cζ = 0 otherwise). Without loss of generality

let {ζnk}k∈N be positive, increasing and
∑

k ζ
−1
nk

< ∞. We construct Λ2 as a perturbation

of Λ̃2:

Λ2 = {ζnk + αk}k∈N, 0 ≤ αk ≤ ζnk+1
− ζnk .

Let G be the generating function of Λ = Λ1 ∪ Λ2, i.e.,

G(z) = F (z)
∏
k

1− z/(ζnk + αk)

1− z/ζnk
.

Note that if αk = 0, then G = F , while for αk = ζnk+1
− ζnk we have G(z) =

F (z)/(z − ζn1) ∈ PWπ. Therefore, by a certain “continuity” argument one can always

find perturbations αk such that

lim
y→∞

∣∣∣∣G(iy)

F (iy)

∣∣∣∣ = 0,
∑
ζ∈Z

|G(ζ)|2 =∞,
∑
ζ∈Z

|G(ζ)|2

|ζ|2 + 1
<∞.

We omit an elementary but tedious proof of this fact. From the two last conditions one

easily deduces that G is the generating function of a complete and minimal system, while

the first one guarantees that the interpolation formula

(5.2)
G(z)

F (z)
=
∑
ζ∈Z

G(ζ)

F ′(ζ)(z − ζ)
=
∑
ζ∈Λ̃2

G(ζ)

F ′(ζ)(z − ζ)

holds (the difference of the left and right hand sides is an entire function of zero exponential

type who tends to zero along the imaginary axis).

Now consider the Hilbert space H constructed from F as in the proof of Theorem 5.1.

By construction, f is orthogonal to reproducing kernels {Kλ}λ∈Λ1 in PWπ and to {K̃λ}λ∈Λ1

in H. It remains to show that f ⊥ {Gλ}λ∈Λ2 in H, which follows immediately from (5.2)

and (5.1).
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