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Abstract

This paper illustrates the main results of a spatio-temporal interpolation process

of PM10 concentrations at daily resolution using a set of 410 monitoring sites,

distributed throughout the Italian territory, for the year 2015. The interpolation

process is based on a Bayesian hierarchical model where the spatial-component

is represented through the Stochastic Partial Differential Equation (SPDE) ap-

proach with a lag-1 temporal autoregressive component (AR1). Inference is

performed through the Integrated Nested Laplace Approximation (INLA). Our

model includes 11 spatial and spatio-temporal predictors, including meteoro-

logical variables and Aerosol Optical Depth. As the predictors’ impact varies

across months, the regression is based on 12 monthly models with the same

set of covariates. The predictive model performance has been analyzed using

a cross-validation study. Our results show that the predicted and the observed

values are well in accordance (correlation range: 0.79 – 0.91; bias: 0.22 – 1.07

μg/m3; RMSE: 4.9 – 13.9 μg/m3). The model final output is a set of 365 gridded

(1km × 1km) daily PM10 maps over Italy equipped with an uncertainty measure.

The spatial prediction performance shows that the interpolation procedure is

able to reproduce the large scale data features without unrealistic artifacts in

the generated PM10 surfaces. The paper presents also two illustrative examples
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of practical applications of our model, exceedance probability and population

exposure maps.

Keywords: particulate matter, Bayesian hierarchical model, GRF, INLA,

GMRF, exceedance probability, exposure map

1. Introduction1

Worldwide, exposure to single pollutants (such as particulate matter, ozone,2

nitrogen dioxide) accounts for a large portion of overall mortality and cardio-3

respiratory morbidity (EEA, 2019). Accordingly, air pollution is recognized as4

a major public health issue. Among pollutants, particulate matter (PM) is the5

one associated most consistently with a variety of adverse health outcomes (Mar-6

tuzzi et al., 2006; Langanke, 2015), even at very low concentrations (Piscitelli7

et al., 2019). WHO (2013) provides a review of the scientific literature concern-8

ing the impacts of air pollutants exposure on human health, while Samoli et al.9

(2013) investigates the adverse health effect of coarse (PM10) and fine (PM2.5)10

particulate matter in ten Mediterranean metropolitan areas. In particular, for11

a 10 μg/m3 increase in PM2.5 concentrations on the day of the death and the12

previous one (lag 0-1), a 0.55%, 0.57% and 0.72% increase was estimated in all-13

cause, cardiovascular and respiratory mortality, respectively. In addition, PM1014

was positively associated with all-cause mortality at lag 0-1 and to cardiovas-15

cular and respiratory mortality for longer periods of cumulative exposure (lag16

0-5).17

In the European context, Italy sadly boasts some of the worst cities and areas18

for air pollution. The Po Valley in the North of Italy is one of the largest Euro-19

pean regions of particular concern in terms of air quality (Raffaelli et al., 2020):20

high and widespread emissions, along with peculiar orographic and meteoro-21

logical conditions favour both stagnation and formation of secondary particles22

in winter, and photochemical smog events in summer (EEA, 2019). Frequent23

PM10 daily limits exceedances are also recorded in south central Italy in the24

Sacco Valley (ISPRA, 2020) and the large Naples-Caserta agglomeration during25
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winter months (De Marco et al., 2018).26

Over the last decades Italy has recorded an important decrease in pollutant27

emissions thanks to more stringent measures undertaken in order to meet the28

targets set by the National Emission Ceilings Directive (Directive 2001/81/EC;29

EU, 2001). Significant PM10, PM2.5 and NO2 downward trends have been30

recorded over large portion of the national monitoring network (ISPRA, 2019).31

Nonetheless, exceedances of the PM10 daily limit value of 50 μg/m3 (not to be32

exceeded more than 35 days a year) and ozone long-term target value of 12033

μg/m3 still remain a problem in many cities and rural areas of the country.34

Understanding how PM10 concentrations vary in both space and time is35

fundamental for a proper assessment of population-wide exposure and to for-36

mulate appropriate pollution mitigation strategies (Chu et al., 2015). While37

daily resolution for PM10 concentrations is often sufficient for exposure assess-38

ments, on the spatial scale, there has been an increasing need of high-resolution39

maps on large domains, in order to capture concentrations gradients both on40

the local and the national scale (Cohen et al., 2017). To this purpose, spatio-41

temporal statistical models have rapidly gained attention in the air quality sci-42

entific community (Hoek, 2017). The reason is that, compared to regional scale43

deterministic models, statistical models are generally easier to implement, re-44

quire medium sized computing resources and provide higher resolution spatial45

predictions (Shahraiyni & Sodoudi, 2016).46

In the statistical literature, the problem of building spatially continuous con-47

centrations maps over large domains has been approached by different angles.48

A popular approach is that of Linear Mixed Models (LMM) which combine the49

possibility to include complex correlation structures, via easy-to-specify random50

effects at a low computational cost (Galecki & Burzykowski, 2013). LMM can51

in fact be easily implemented in a frequentist framework, using, among others,52

the popular R package nlme (Pinheiro et al., 2020). The use of LMM with re-53

gional random effects in the air quality community is reported in recent studies54

such as Kloog et al. (2015) and Stafoggia et al. (2017). One drawback of this55

methodology is that spatial dependence is expressed through discrete random56
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effects that are related to geographic defined areas, resulting in prediction maps57

with spatial artifact (i.e. slabs), e.g. Sarafian et al. (2019) or Zhang et al.58

(2018). In addition, LMM do not incorporate, in the final product (i.e. the59

PM10 concentration maps) the whole uncertainty associated with the unknowns60

(data, parameters, model structure). A practical air quality management strat-61

egy must inform decision makers and stakeholders of such uncertainties, in a62

straightforward and direct manner (Liu et al., 2008).63

Bayesian hierarchical models (Clark & Gelfand, 2006) are another common64

approach in air quality studies (Blangiardo et al., 2019; Huang et al., 2018;65

Shaddick et al., 2017; Forlani et al., 2020). This approach allows to model66

complex phenomena as a hierarchy of simpler sub-models, making it possible67

to deal with the complexity of spatio-temporal processes in a straightforward68

way. Covariates as orography or temperature can be used to explain the large69

scale variability of the phenomenon under study, while residual dependency can70

be modelled through a space-time process which is usually assumed to be a71

Gaussian Random Field (GRF). Moreover, the Bayesian approach allows to72

easily take into account the variability related to models and parameters, thus73

giving a more realistic picture of the uncertainty of the final estimates.74

The main drawback is that GRF is hard to deal with when there is a lot of75

data, making its use for environmental applications on large scale challenging76

(Porcu et al., 2012). Most of the studies using hierarchical models with spa-77

tial GRF concern relatively small areas such as cities (Pollice & Jona Lasinio,78

2010; Sahu, 2011) or regions (in the Italian context see for example Cameletti79

et al., 2011; Cocchi et al., 2007; Grisotto et al., 2016) or consider large domains80

but without the temporal component (Beloconi et al., 2018). In addition, the81

main inferential tool for Bayesian hierarchical models, namely the Markov chain82

Monte Carlo (MCMC) approach (Gilks et al., 1995), despite the existence of83

user friendly programming tools like WinBUGS (Spiegelhalter et al., 1995), JAGS84

(Plummer, 2016) and Stan (Team, 2015), can be viewed by the applied com-85

munity as rather cumbersome, requiring a lot of CPU-time as well as tweaking86

of simulation and model parameters’ specifications.87
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Some strategies have been proposed to alleviate the computational burden88

of fitting complex spatio-temporal hierarchical models (Heaton et al. (2019) for89

an updated review). One of such strategies, the so-called SPDE (Stochastic90

Partial Differential Equation) approach, has received a lot of attention in re-91

cent years (see Bakka et al., 2018 and reference therein). The SPDE approach92

provides a way to represent a continuous GRF through a discretely indexed93

Gaussian Markov Random Field (GMRF; Lindgren et al., 2011). Computation-94

ally, GMRFs are much more efficient as they are based on sparse matrices (Rue95

& Held, 2005). Moreover, GRF with a SPDE representation can be fitted in a96

Bayesian hierarchical framework using the Integrated Nested Laplace approxi-97

mation (INLA) approach (Rue et al., 2009). INLA is a deterministic method98

based on approximating the marginal posterior distributions (by using Laplace99

and other numerical approximations and numerical integration schemes) and is100

usually faster and more accurate than MCMC alternatives. Last, but not least,101

INLA-SPDE comes with a user friendly R implementation, the r-inla package.102

Tutorials and examples are available at the dedicated web site r-inla.org or103

in book form (e.g. Blangiardo & Cameletti, 2015; Gòmez-Rubio, 2020). This104

makes the INLA-SPDE methodology a fast, reliable and easy to use tool also105

to the practitioners.106

In this paper we tested the INLA-SPDE approach to estimate PM10 daily107

concentrations on a large space-time domain, namely the entire Italian territory108

(18 conterminous regions plus two major islands), for one year (2015) based on109

ground daily PM10 records on ca 400 stations. The final result is a collection110

of high resolution (1 Km × 1 Km) daily maps of PM10 concentrations with an111

associated measure of uncertainty. Such maps can aid responsible authorities112

and decision-makers for the development of risk assessment and environmental113

policies.114

The rest of the paper is organized as follows: in Section 2 we present the115

input dataset and introduce the statistical model we have chosen to analyse116

the PM10 concentrations. Section 3 discusses results, model validation and two117

possible applications of the model estimates for the assessment of air quality in118
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Italy. We end with conclusions in Section 4.119

2. Material and Methods120

2.1. Spatial domain121

The Italian peninsula extends into the Mediterranean sea with a narrow122

and long shape of about 7500 km of coast line. It includes two large mountain123

systems (the Alps to the north, and the Apennines which extend north-west to124

south along the country), a large plain (the Po Valley with a surface of 46000125

km2) and two major islands (Sicily and Sardinia). This complex orography126

leads to a variety of climatic conditions which exert a strong influence on the127

observed spatial and seasonal variability of pollutants concentrations (Perrino128

et al., 2020).129

Because of its central position in the Mediterranean Basin, Italy is also130

affected by periodic Saharan dust events which influence air quality. Multiple131

studies (Matassoni et al., 2009; Pey et al., 2013; Barnaba et al., 2017; Pikridas132

et al., 2018) have estimated the impact of such events on the yearly average133

PM10 values in the range 1 - 9 μg/m3, with concentrations decreasing towards134

the north. There is evidence that this increase in PM10 levels has a further135

negative impact on human health (Tob́ıas et al., 2011).136

2.2. Monitoring sites and concentrations data137

This study is based on the 2015 PM10 daily average concentrations (μg/m3)138

belonging to the Regional Environmental Agencies (ARPA) and collected by the139

Italian Institute for Environmental Protection and Research (ISPRA). PM10140

mass concentrations were determined using the European reference or equiva-141

lent methods. The data were fully validated accordingly to standard QA/QC142

procedures Directive 2008/50/EC (EU, 2008). The data set originally accounted143

for more than 500 monitoring sites. To work with a more robust dataset, we144

have kept only stations that had at least 10 valid daily mean concentrations for145

each month. The geographical distribution of the final 410 selected stations is146
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shown in Figure 1. Note that a large portion of the selected time series (83%)147

are characterized by low data missingness, having at least 20 valid daily mean148

concentrations per month.149

The ground PM10 monitoring stations are mostly located in urban and sub-150

urban areas (244 urban stations, 104 suburban and 62 rural). Low elevations are151

over represented with 75% of the monitoring sites lying below 250 m. This bias152

is not unexpected, as high-level polluted areas typically require denser networks153

(EU, 2002).154

The boxplot of Figure 2 shows the PM10 monthly distribution. During155

2015, PM10 daily concentrations ranged between 0 and 337 μg/m3, with a me-156

dian daily PM10 concentrations of 22.3 μg/m3 and an inter-quartile range of157

15 and 33 μg/m3. The boxplots suggest a seasonal trend in the observational158

data: higher PM10 levels, with an average daily median around 30 μg/m3, char-159

acterize the beginning (January-March) and the end (November-December) of160

2015. Conversely, lower values were recorded during spring and summer seasons161

when the average daily median is around 19 μg/m3. A similar trend charac-162

terizes the standard deviation with values around 24 μg/m3 during the win-163

ter months (January-February-December), 14 μg/m3 during the intermediate164

seasons (March-April-September-October-November) and 9 μg/m3 in summer165

including May.166

To conclude this section, we observe that, except for April, all months exhibit167

occasionally daily values greater than 100 μg/m3. The three highest values in168

our input dataset were observed in January (211 μg/m3), in August (196 μg/m3)169

and in December (337 μg/m3). Despite the outlier nature of these values, the170

full PM10 distribution was considered and no value was discarded from our171

analysis.172

2.3. Predictors173

A large number of potential predictors were available. Based on previous174

results in the air quality literature and a preliminary analysis of our data, a set175

of eleven spatial and spatio-temporal predictors was selected to be included in176
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Figure 1: Study domain together with the spatial distribution of the 410 monitoring sites.

The Figure illustrates also the mesh used to build the SPDE approximation to the continuous

Matérn field.
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Figure 2: Monthly distribution of the daily PM10 concentrations for year 2015. The dashed

line indicates the European Community PM10 daily limit value not to be exceeded more than

35 days a year.

the model by using variable selection methods. The complete list is reported in177

Table 1.178

To avoid numerical problems, each predictor (except for the dust indicator)179

was standardized to have mean 0 and standard deviation 1.180

In the following, we describe the selected predictors more in details.181

Meteorological variables. Pollutant concentrations are highly dependent on weather182

conditions (Grange et al., 2018), therefore metereological variables are an im-183

portant part of our model. Hourly surface pressure, total precipitation and184

temperature at 2 meters height were downloaded as netCDF archives from the185

ERA5 reanalysis dataset (Hersbach et al., 2020) of the European Centre for186

Medium-Range Weather Forecasts (ECMWF). Hourly data were averaged (ac-187

cumulated, in the case of precipitation) on a daily level. As particulate matter188

levels depend also on the recent weather history, we have also introduced the189

variable “total precipitation of the previous day” (Barmpadimos et al., 2012).190

Planet Boundary Layer height (PBL) is the height up to which the influence of191

9



Data Source Variable Code Description Unit Spatial Resolution

ERA5

pbl00 Planet Boundary Layer at 00:00 m

31 Km

pbl12 Planet Boundary Layer at 12:00 m

ptp Previous day Total Precipitation mm

sp Surface Pressure hPa

t2m Average temperature at 2 meters ◦C

tp Total Precipitation mm

Copernicus Atmosphere Monitoring Service

aod550 Aerosol Optical Depth at 550 nm nm ∼10 Km

Global Multi-resolution Terrain Elevation Data

q dem Altitude m 1 Km

NMMB-BSC; HYSPLIT-NOAA

dust Saharan dust 0/1 Macroareas

OpenStreetMap

d a1 Linear distance to the nearest highway m 1 km

Copernicus Land Monitoring Service

i surface Imperviousness % 100 m

Table 1: List of the predictors included in the spatio-temporal model.
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the presence of the lower surface is detectable (Shi et al., 2020). PBL at 00:00192

and 12:00 was also obtained from the ERA5 dataset and log transformed.193

Aerosol Optical Depth. Aerosol Optical Depth is a key parameter to measure194

the aerosol “column burden” (Hidy et al., 2009). Namely, it represents the195

extinction of the solar radiation in the atmospheric column attributed to aerosols196

(Segura et al., 2017). PM10 has been shown to correlate with Aerosol Optical197

Depth (Di et al., 2016). In this study, we used numerically simulated estimates of198

AOD data at the wavelength of 550 nm from the CAMS reanalysis (Copernicus199

Atmosphere Monitoring Service), whose horizontal spatial resolution is of about200

10 kms. The interesting aspect of such data is that it does not suffer from the201

presence of non-random missing values, which typically affect the well-known202

satellite product AOD from the Multi-Angle Implementation of Atmospheric203

Correction (MAIAC) algorithm (Lyapustin et al., 2018).204

Elevation. Elevation data were retrieved from the Global Multi-resolution Ter-205

rain Elevation Data of the USGS (Danielson & Gesch, 2011) at a 30-arc-second206

(ca 1Km × 1Km) resolution.207

Dust events. In our model, the occurance of dust events is described in terms208

of a dichotomic variable (dust event/no-dust event). The days with dust events209

have been identified using simulation models (NMMB/BSC-Dust model; Pérez210

et al., 2011) and Lagrangian models for the simulation of trajectories (HYS-211

PLIT; Stein et al., 2015). The final information is available for 5 Italian macro-212

areas: North, Centre, South, Sicily and Sardinia.213

Road traffic emissions. Different proxy variables were considered to estimate214

the impact of road traffic emissions, but only the Euclidean distance from the215

major roads (highways) entered the final model. The road network data come216

from the OpenStreetMap project (Haklay et al., 2010) and were downloaded as217

.pbf (vector) files from the Geofabrik web service (www.geofabrik.de).218
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Impervious surface. Imperviousness represents the percentage of soil sealing219

(the covering of land by an impermeable material). Imperviousness is a key in-220

dicator of urbanization which provides an estimation of population distribution221

(Attarchi, 2020). The degree of imperviousness (0-100%) was downloaded as a222

GeoTIFF raster file from the Copernicus Land Monitoring Service (Langanke,223

2018).224

2.4. Statistical Modeling225

Let H< (C, B8) denote the realization of the space-time process .< (C, B8) that226

represents the log PM10 concentrations at day C = 1, . . . , )< of month < =227

1, . . . , 12 at location B8, 8 = 1, . . . , 410. The logarithmic transformation is a typ-228

ical choice for data with highly right skewed distributions (Ott, 1990; Warsono229

et al., 2001) like the PM10 data reported in Figure 2.230

Our exploratory analysis (results not shown for sake of brevity) highlighted231

that the impact of each predictor on PM10 concentrations varies across time.232

Consequently, we developed twelve models, one for each month of the year, all233

containing the same terms. A similar approach is documented, for example,234

in Al-Hamdan et al. (2009) for the estimation of PM2.5 concentrations in the235

Atlanta metropolitan area using AOD data.236

We assumed the following model:237

H(C, B8) = ` + x(C, B8)#′ + D(C, B8) + I(B8) + n (C, B8) (1)

Since the models are identical for each month, in the above formula we

have omitted the index < to simplify the notation. In Equation (1), ` is the

intercept, x(C, B8) =
(
G1 (C, B8), . . . , G? (C, B8)

)
denotes the vector of predictors at site

B8 in day C (see Table 1) and # =
(
V1, . . . , V?

)
is the corresponding coefficients

vector. The term n (C, B8) represents measurement error and is defined by a

Gaussian white noise process independent over space and time with standard

deviation fn . The process D(C, B8) represents the residual space-time correlation

once the large scale component x(C, B8)#′ is taken into account. As particulate

levels are characterized by inter-daily correlation, we assumed D(C, B8) to change
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in time according to a first order autoregressive process with spatially colored

innovations:

D(C, B8) = 0 D(C − 1, B8) + l(C, B8)

for C = 2; . . . , ) −1, |0 | < 1. We assumed the innovation l(C, B8) to be a Gaussian

process with mean 0 and covariance function given by:

Cov(l(C, B8), l(C ′, B 9 )) =


0, for C ≠ C ′

C(ℎ), for C = C ′
(2)

where ℎ = | |B8 − B 9 | | is the Euclidean distance between sites 8 and 9 . A com-

mon specification for the purely spatial covariance function C(ℎ) is the Matérn

function:

C(ℎ) = f2
l

1

Γ(a)2a−1 (: ℎ)
a a (: ℎ)

where f2
l is the marginal variance of the process and  a (·) denotes the Bessel238

function of second kind and order a > 0. The parameter a measures the degree239

of spatial smoothness of the process. This parameter is hard to estimate and is240

usually fixed to a given value rather than estimated, with a = 1 a common choice241

(Blangiardo & Cameletti, 2015). The term : > 0 is a scaling parameter related242

to the range d, i.e. the distance at which the spatial correlation becomes small.243

Following Lindgren et al. (2011), we used the empirically derived definition244

d =
√
8a
:

, with d corresponding to the distance where the spatial correlation is245

close to 0.1, for each a. To represent the continuous field D(C, B8) as a GMRF,246

we used the SPDE approach (Lindgren et al., 2011), which is based on the finite247

element method (fem). The triangulation used for fem in our case is shown in248

Figure 1. In order to obtain accurate approximations of the underlying GRF,249

the triangular mesh must be dense enough to capture the spatial variability of250

daily PM10. It is noteworthy to observe that we constructed a mesh which is251

rather dense over areas with observations and sparser in the outer region, where252

no data are observed and where we are not interested in prediction. The purpose253

of the outer mesh is to avoid boundary effects and its sparse triangulation allows254

to reduce computational costs.255
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Finally, the last term in Equation (1) is defined as I(B8) ∼ # (0, f2
I ) and is a256

spatially uncorrelated Gaussian random effect which captures some of the small257

scale spatial variability.258

2.5. Priors definition259

In a Bayesian context, in order to finalize the model we need to define prior

distributions for the vector #, the standard deviations fn , fI , fl, the autocor-

relation parameter 0 in Equation (2) and the range d of the Matérn function.

We used vague Gaussian priors for the elements of # and Penalized Complexity

(PC) priors (Simpson et al., 2017) for the other parameters. The latter are

designed to penalize model complexity and avoid overfitting. PC priors for the

standard deviation parameters can be defined through Prob(f > Df) = Uf

where Df > 0 is a quantile of the prior and 0 ≤ Uf ≤ 1 is a probability value.

In our study we set Df = 1 and Uf = 0.01 for both fn , fI . The choice was

motivated by the fact that the total standard deviation of the observed log

PM10 values varies between 0.4 and 0.8 depending on the month, therefore it

is very likely for the variance of each component to be less than 1. For d and

fl we used the joint PC prior suggested in Fuglstad et al. (2019) which can be

specified through

Prob(d < Dd) = Ud; Prob(fl > Dfl
) = Ufl

,

where we set Dd = 150, Ud = 0.8, Dfl
= 1, Ufl

= 0.01. Since the large scale260

spatial dependence is explained by the covariates, it is reasonable to assume the261

range of the innovation process to be smaller than 150 Km. Finally, for the262

autocorrelation parameter 0 we used the PC prior proposed in Sørbye & Rue263

(2017). This can be specified through Prob(0 > D0) = U0, where we set D0 = 0.8264

and U0 = 0.4. The choice was guided by previous findings (e.g. Cameletti et al.,265

2013) and restrictions to the possible values of D0 and U0.266

2.6. Implementation267

All data processing was performed through the combined use of the Climate268

Data Operator (CDO) software (https://code.mpimet.mpg.de/projects/cdo),269
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the R statistical language (R Core Team, 2018) and PostGIS (Strobl, 2008).270

Data analysis and modeling have been performed using the r-inla package.271

Input data and excerpts of the R code for the definition of the PC priors and272

the model fit are available at https://github.com/guidofioravanti/spde_273

spatio_temporal_pm10_modelling_italy.274

3. Results and discussion275

In this section we first discuss parameter estimates and residual analysis276

for the 12 monthly models. We then show a cross-validation study aimed at277

assessing the model performance. Finally, we present some additional outcomes278

based on the PM10 spatial predictors available for the 1Km × 1Km grid covering279

the whole Italian territory.280

3.1. Parameter estimates281

Figure 3 illustrates the posterior distribution for the model intercept ` and282

the 11 covariate coefficients # for each of the 12 monthly models.283

As expected, many of the parameters show a clear seasonal behaviour. The284

posterior mean of ` varies from a minimum of 2.42 in July to a maximum of285

3.4 in December on the log scale. This corresponds to an average pollution level286

that varies between 11.2 and 40.0 μg/m3, after adjustment for covariates.287

The predictors with the most pronounced seasonal effect are: temperature288

(t2m), Planet Boundary Layer at 00:00 (pbl00), altitude (q dem) and imper-289

vious surface (i surface). Temperature tends to have a positive effect during290

the summer months and a negative or null effect during the winter months;291

pbl00 and altitude have negative effects on the log PM10 concentrations, with292

a stronger magnitude in the winter season. Conversely, the impervious surface293

has a positive effect, which also tends to be larger in winter.294

In general, all the covariates, including AOD, have a stronger effect in winter295

time, when the PM10 levels are higher and more variable both in space and time.296

Interestingly, we point out that a seasonal effect of the AOD has been reported297
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Figure 3: Tmax: posterior distribution of the intercept ` and covariate coefficients #. The

shaded color indicates a statistically significant effect.
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also in Al-Hamdan et al. (2009), but of opposite sign (weaker during the cool298

season and relatively strong during the warm season).299

The seasonal-varying effects shown in Figure 3 support our initial hypoth-300

esis that a monthly regression analysis could improve the accuracy of the final301

estimates (Weber et al., 2010).302

The posterior standard deviation (sd) of the # parameters (which can be303

inferred from the shape of the posterior distributions in Figure 3) is rather304

stable from month to month. Exceptions are the sd for the distribution of the305

dust indicator and the total precipitation (same and previous day) in December.306

These standard deviations are much larger that those in the other months, as307

a result of no-occurrence of dust events and localized and scarce precipitation308

events in December 2015.309

Estimates of the other model parameters (posterior means and standard310

deviations) are reported in Table 2. We observe that the spatial component311

shows higher variability than both the measurement error and the spatial un-312

structured effect. All the three standard deviations have a seasonal variation,313

being higher in winter than in summer. The spatial range parameter d also314

presents a variation across months. The posterior mean goes from a minimum315

of ca 106 Km in January to a maximum of ca 239 Km in August. There is a316

clear tendency for the spatial range of the Gaussian process D(C, B) to be larger317

in summer, corresponding to a spatially smoother particulate matter field; the318

same behaviour holds for the posterior standard deviation of the same model319

component. This result reflects the fact that, in summer time, the PM10 con-320

centrations are characterized by low spatial variability mostly explained by the321

model predictors.322

Finally, the posterior mean of the AR(1) autocorrelation coefficient 0 os-323

cillates from 0.62 to 0.82 but there is no clear seasonal pattern. The rather324

high value of the autocorrelation coefficient confirms the presence of short-term325

persistence of the PM10.326

In order to assess whether the model manages to capture the spatio-temporal327

variability of the PM10 observations, we show in Figure 4 the spatio-temporal328
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January 0.629 (0.018) 106.23 (4.186) 0.247 (0.012) 0.197 (0.002) 0.434 (0.011)

February 0.656 (0.017) 135.213 (5.341) 0.207 (0.01) 0.201 (0.002) 0.513 (0.014)

March 0.656 (0.018) 192.579 (8.498) 0.162 (0.008) 0.18 (0.002) 0.432 (0.014)

April 0.742 (0.019) 153.914 (8.29) 0.151 (0.007) 0.178 (0.002) 0.361 (0.014)

May 0.624 (0.02) 167.292 (9.017) 0.163 (0.007) 0.177 (0.002) 0.289 (0.008)

June 0.743 (0.023) 237.997 (15.118) 0.157 (0.006) 0.167 (0.001) 0.282 (0.013)

July 0.823 (0.018) 177.433 (10.544) 0.163 (0.007) 0.155 (0.001) 0.263 (0.014)

August 0.704 (0.022) 238.714 (15.483) 0.159 (0.006) 0.177 (0.001) 0.256 (0.011)

September 0.697 (0.019) 181.108 (9.8) 0.161 (0.007) 0.177 (0.002) 0.319 (0.011)

October 0.727 (0.017) 164.188 (7.097) 0.171 (0.007) 0.176 (0.002) 0.382 (0.013)

November 0.78 (0.014) 105.514 (3.908) 0.167 (0.009) 0.153 (0.002) 0.443 (0.014)

December 0.825 (0.014) 83.96 (2.968) 0.209 (0.012) 0.148 (0.002) 0.41 (0.015)

Table 2: Posterior means (standard deviations) of the parameters in all 12 models.

variograms (Cressie & Wikle, 2011) for the log PM10 concentrations (solid lines)329

and for the model residuals (dotted lines).330

For the log PM10 concentrations the semi-variance increases with distance (x-331

axis), suggesting spatial dependence among observations. A similar behaviour332

is apparent when we look at the semi-variance along the y-axis (time), having333

fixed a distance on the x-axis: in this case, the semi-variance increases with the334

time-lag, reflecting temporal dependence in the data. None of these patterns can335

be seen in the corresponding residuals variograms, indicating that the models336

capture the spatio-temporal signal and return uncorrelated residuals.337

3.2. Validation338

To evaluate the predictive performance of the model we did a cross-validation339

study similar to the one presented in Pirani et al. (2014). Specifically, we strati-340

fied the 410 input monitoring sites into three groups according to their area type341

category (urban, suburban and rural). A validation dataset was identified by342

sampling 10% of the monitoring sites in each group (24 urban sites, 11 suburban343

and 6 rural), with the rest of the stations labelled as training dataset. We used344

the training dataset to fit the model and predict PM10 concentrations on the345
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Figure 4: Monthly spatio-temporal variograms for the observed (log) PM10 concentrations

(solid lines) and the corresponding model residuals (dashed lines).
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validation dataset. Finally, we compared the predicted values to the observed346

ones and summarised the results using a series of performance measures. The347

sampling process was repeated three times (trials), resulting in three validation348

and training datasets.349

As performance measures we chose the following indices: 1) the empirical350

coverage of 95% credible intervals (95% CI); 2) the correlation coefficient; 3)351

the root mean square error (RMSE); 4) the bias. The last three indexes are352

computed by comparing the observed concentrations and the posterior predicted353

means of each monitoring site. For each training/validation dataset, the average354

of each performance score over all stations was computed. Table 3 reports the355

global model performance in terms of average scores over the three different356

trials. All indices are on the original scale for ease of communication to the357

practitioners and the end users.358

Generally speaking, it appears that the models perform well both in the359

training and in the validation phase. RMSE values are higher in the winter360

months for both phases. This is not surprising since in winter we observe higher361

particulate concentrations.362

The high values of the correlation coefficients (above 0.9 for all months in363

the training phase and and above 0.7 in the validation phase) show that the364

predicted and the observed values are well in accordance. This can be also365

seen from Figure 5 where we have plotted the predicted versus the observed366

values. To avoid having too many scatterplots, in Figure 5 we adopted a seasonal367

representation.368

The plots highlight that the points are distributed uniformly along the diag-369

onal line. However, a general underestimation of high concentrations values is370

apparent in all seasons both in the training and validation stage. In particular,371

we see that the model fails to reproduce very high concentrations above 150372

μg/m3.373

Back to Table 3, a negligible bias can be observed, with absolute values less374

than 1.1 μg/m3 in all months. Finally, the empirical coverage is very close to375

its nominal value of 95%.376
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(a) Training Stage

(b) Validation Stage

Figure 5: Agreement between modelled and measured PM10 concentrations. Lighter colors

indicate areas with higher points concentrations. The solid line is the 1:1 line as a reference.
22



(a) Urban station - January (b) July

(c) Suburban station - January (d) July

(e) Rural station - January (f) July

Figure 6: PM10 daily concentrations for three illustrative monitoring sites, one for each type

area category: urban (Santa Maria station), suburban (Santo Chiodo station) and rural (San

Leo station). Observed (solid lines) versus fitted values (dashed lines).

Figure 6 shows a comparison between observed and predicted time series for377

3 illustrative stations chosen from the validation set. For sake of brevity, we378

present the results for two months alone: January and July. The time series379

plots suggest that the model is able to reproduce the temporal variability of the380

monitoring sites in the validation dataset, although some very high values (for381

example in the upper right panel of Figure 6) are not properly captured.382

3.3. Spatial Prediction383

In this section, we focus on spatial predictions. In particular, we provide384

examples of daily and monthly maps, using a 1km × 1km grid over the whole385

Italian territory. This results in a spatial grid of 310622 cells which, across the386
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entire year 2015, corresponds to a spatio-temporal grid of over 11 millions cells.387

We have simulated 1000 samples from the posterior distribution of all model388

components for two months. We chose January and July 2015 in order to389

show some of the seasonal characteristics of the fitted model. Having a sample390

distribution of 1000 gridded maps for each day of January and July 2015, we were391

able to calculate summary statistics of central tendency (mean) and variability392

(sd).393

As an example, Figure 7 a) and b) show the posterior mean of the daily394

PM10 concentrations on January 26th and July 21st 2015. These two dates were395

chosen randomly and have no special meaning. Note that the two figures have396

different color scales. A visual inspection of Figure 7 a) and b) highlights that397

the interpolation procedure is able to reproduce the large-scale data features398

without unrealistic artifacts in the generated surfaces. Specifically, both daily399

maps exhibit a reasonable spatial pattern of high PM10 mean concentrations400

in urbanized environments, which decrease in rural areas and with altitude.401

This is especially apparent in the January map, when the model estimates high402

PM10 levels in the Po Valley with a peak above 50 μg/m3 in the Turin city403

area (North-Western Italy). In July, the model generates a smoother surface404

with less spatial variability. The orography here, for example, is visible but405

less pronounced than in January. This result is not unanticipated: it reflects406

the results seen in Table 2, the greater range and lower variability of the latent407

spatial field in summer with respect to the winter time. These results, in turn,408

depend on the seasonality of the PM10 concentrations illustrated through the409

boxplots of Figure 2.410

A video, describing the entire temporal evolution of the daily PM10 con-411

centrations for both months of January and July 2015 is available at https://412

github.com/guidofioravanti/spde_spatio_temporal_pm10_modelling_italy.413

We use the relative width of the posterior interquartile range (RWPIR) as

a measure for the relative uncertainty of the predicted concentrations surface

(Yuan et al., 2017):

',%�' = (&3 −&1)/&2,

24

https://github.com/guidofioravanti/spde_spatio_temporal_pm10_modelling_italy
https://github.com/guidofioravanti/spde_spatio_temporal_pm10_modelling_italy
https://github.com/guidofioravanti/spde_spatio_temporal_pm10_modelling_italy


(a) January 26th (b) July 21st

(c) January 26th (d) July 21st

Figure 7: Posterior daily mean PM10 concentrations maps (a-b) and relative width of the

posterior interquartile range (c-d) for January 26th and July 21st, 2015.
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where &1, &2 and &3 are the first quartile, the median and the third quartile.414

The RWPIR for the two selected days is shown in Figure 7 c) and d) for415

January 26th and June 21st, respectively. As expected, the relative uncertainty416

is higher in January than in July but the spatial pattern in Figure 7 c) and d)417

is quite similar: uncertainty is lower where there are more monitoring sites and418

higher otherwise.419

Analogous considerations apply when we examine the monthly average con-420

centrations maps. Figure 8 a) and b) show the posterior monthly PM10 average421

concentrations while Figure 8 c) and d) shows the RWPIR. In this case, the422

simulated daily prediction surfaces were aggregated in order to create a corre-423

sponding sample of 1000 average monthly concentrations maps.424

3.4. Model applications425

This section shows two potential applications of our model estimates for the426

assessment of air quality in Italy: population exposure to PM10 and exceedance427

probability maps.428

Population exposure to PM10. The goal of many air pollution epidemiology429

studies is to estimate the effect of air pollution on health (Sheppard et al.,430

2005). In this sense, comparing a limit value with the modeled concentrations431

is not sufficient for public health purposes, as it does no make any assumption432

about human exposition (the event of contact with a pollutant over a certain433

period of time) to air pollution (Zou et al., 2009).434

Here, we combine the population density data and the model output con-435

centrations to estimate the population exposure to PM10 pollution in Italy at436

the municipality level.437

For the targeted municipality m, the population-weighted PM10 concentra-438

tion level 4< is given by:439

4< =

∑
8∈�< ?8 28∑
8∈�< ?8

(3)
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(a) January (b) July

(c) January (d) July

Figure 8: Monthly average PM10 concentrations maps (a-b) and relative width of the posterior

interquartile range (c-d) for January and July 2015.
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where �< is the set of of grid cells within the administrative unit m; ?8 and 28440

denote the population density and PM10 concentration level in the 8Cℎ grid cell441

of m, respectively.442

For the considered case study, the PM10 concentration levels 28 are (a) the443

PM10 annual mean concentrations, (b) the annual 90.4 percentile and (c) the444

annual 99.2 percentile, calculated using the 365 daily interpolated surfaces dis-445

cussed in Section 3.3. For the population density data, we used the national446

grid (1km × 1km) of the population density for 2011 of the Italian National447

Institute of Statistics (ISTAT, https://www.istat.it/it/archivio/155162).448

The final maps are displayed in Figure 9.449

The maps highlight the particular vulnerability to exposure to particulate450

pollution of the Po Basin, as well as the existence of other areas (the Sacco451

Valley and the Terni Basin in Central Italy, the agglomeration of Naples and452

Caserta in the south) where people are exposed to average levels above the WHO453

guidelines (20 μg/m3 for the annual average) and the annual limit value settled454

by the European legislation (40 μg/m3). The percentile maps (Figure 9 b and455

c) indicate respectively the areas where the EU air quality limit value for PM10456

daily concentrations is exceeded (i.e., areas where the 90.4 percentile is higher457

than 50 μg/m3), and the areas where the more severe WHO air quality guideline458

for short-term exposure (24-hours) is exceeded (99.2 annual percentile higher459

than 50 μg/m3). The widespread exceedances of the air quality guidelines over460

the Italian territory arise the need to adopt more stringent policies to further461

reduce the anthropogenic emissions of PM and those of their precursors.462

Exceedence. To assess the risk of a pollutant, monitoring stations can be clas-463

sified in terms of probabilities of exceeding (POE) a certain limit value (Denby464

et al., 2011). For example, Yang et al. (2016) show maps of probabilities of465

PM2.5 concentrations exceeding 25 μg/m3 for the Shandong Province (China).466

Similarly, in Blangiardo et al. (2013) and Blangiardo & Cameletti (2015) the467

map of the posterior probability of exceeding the PM10 threshold of 50 μg/m3
468

is computed on a daily basis for Piemonte region (Italy).469
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(a) Annual mean concentrations (b) Annual 90.4 percentile concentrations

(c) Annual 99.2 percentile concentrations

Figure 9: Population exposure to PM10 concentrations. EU air quality limit value for PM10

daily concentrations is exceeded when 90.4 percentile is higher than 50 μg/m3, while the more

severe WHO air quality guideline is exceeded when 99.2 percentile is higher than 50 μg/m3.

The EU PM10 annual average limit value is 40 μg/m3, while the WHO air quality guideline

is 20 μg/m3.
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(a) January 26th (b) July 21st

Figure 10: PM10 exceedance probabilities (probabilities of PM10 concentrations exceeding

the threshold of 50 μg/m3) for January 26th and July 21st, 2015.

POE maps represent a valid tool for those involved in managing the impacts470

of atmospheric pollution. The probability of exceeding a critical level in an area471

can be relevant both to increase public awareness in relation to air pollution,472

and to develop or improve mitigation actions on a local scale.473

Based on the simulation results discussed in Section 3.3, we calculated, for474

each cell of the reference grid, the probabilities of exceeding the daily limit475

value of 50 μg/m3 for PM10. Specifically, the exceedance probability of each476

cell was calculated as the number of exceedances divided by the total number477

of simulations (1000).478

The final maps are shown in Figure 10. For the selected winter day (January479

26th), the Po Valley exhibits several areas with high probabilities of exceedence,480

whose spatial distribution (around the large urban agglomerations) resembles,481

not surprisingly, the spatial pattern of the high pollutant concentrations seen482

in Figure 7 a). Conversely, the POE map for July 21st is characterized by low483

probability values (below 0.4), in accordance with the fact that PM10 is not a484

critical pollutant in summer.485

30



4. Conclusions486

In this paper we proposed a Bayesian hierarchical spatio-temporal model for487

PM10 daily concentrations. The model was applied, separately for each month,488

to the PM10 concentrations measured during 2015 by the Italian monitoring489

network. This month-by-month approach represents an effective modeling solu-490

tion for taking into account the seasonal variability of the phenomenon avoiding491

the use of a more complex year-based model which would require extremely492

higher computational costs. Moreover, with our modeling strategy it is possible493

to evaluate how the relationship between the considered predictors and PM10494

concentrations change across months. To the best of our knowledge no studies495

have assessed the predictors effect on the monthly timescale. From our results,496

we obtained that the covariates with the most pronounced seasonal effect are497

temperature, Planet Boundary Layer at 00:00, altitude and impervious surface.498

A clear but less marked impact of AOD on the PM10 was also found. It is499

worthwhile to point out that originally our analysis considered a larger set of500

potential predictors, including those commonly used in PM modeling, such as501

the “weekend effect” or the Corine Land Cover land-use classification. However,502

most of them did not enter the final model because not statistically significant.503

Our final selection of predictors, including 11 variables, is supported by the504

analysis of the residuals of the models which appear to be uncorrelated both in505

space and time.506

The main outcome of our model is the continuous (1km × 1km) PM10 map507

that we can estimate on a daily basis and is equipped with an uncertainty508

measure like the relative width of the posterior interquartile range. These high-509

resolution maps represent a fundamental tool for air quality management (at510

the national, regional and local level) with the aim of developing and monitoring511

programs and actions taken to improve air quality. As far as we know, there512

are very few other proposals in the statistical literature for this problem of513

mapping PM10 concentrations on a large domain like Italy with a fine grid. In514

this regard, it is worth mentioning Stafoggia et al. (2017) and Stafoggia et al.515
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(2019), which adopted LMM and a land-use random-forest model, respectively.516

Our opinion is that both the approaches are methodologically sound but they517

are implemented by adopting a very complex modeling pipeline starting from518

missing data imputation and ending with predictions improvement by using519

small-scale predictors connected with very local sources. This gives rise to a520

computationally expensive modeling solution and to a difficulty in quantifying521

properly the uncertainty of the final predictions by taking into account all the522

variability sources. We believe that our modeling strategy, which is simple in523

its formulation and implementation, could represent a valid solution for this524

challenging problem which has an important connection with environment and525

human health protection. We would like to point out that, starting from the526

daily PM10 maps, our modeling approach is also able to produce probability of527

exceedance and population-weighted exposure maps, that can be defined both at528

the grid or area level. While the former can be used to assess the compliance with529

air quality guidelines set for human health protection, the latter are necessary to530

link exposure to the health outcomes in epidemiological studies that investigate531

the long-term effect of air pollution exposure.532

The computational complexity of our analysis, given by the fact that we533

work with a large dataset (ca. 400 monitoring stations) and a fine spatio-534

temporal grid of about 11 millions cells, is managed by using the INLA-SPDE535

approach for model estimation and prediction. The cross-validation results sug-536

gest a good predictive performance of the model at almost all concentration537

levels, with the correlation between observed and predicted values ranging from538

0.71 (in July) and 0.91 (in February), and the bias in the range 0.22 (August)539

- 1.07 μg/m3 (January). Despite these encouraging results, large deviations540

between modeled and high extreme PM10 observations remain an issue. This541

could be partly addressed in future work, for example, by improving the spatial542

resolution of the predictors (AOD and meteorological variables), including a543

quantitative description of the Saharan dust, or considering further sources of544

air pollution (fires, proximity to power plants, industrial facilities and so on). In545

this respect, the results of Schneider et al. (2020) suggest that future research546
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developments should investigate how the use of gridded PM emissions products547

from reanalysis or chemical transport models can further improve the predictive548

model performance.549
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