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ABSTRACT

Determining the properties of ground states can be highly nontrivial. In this
thesis, we investigate the ground states of the antiferromagnetic spin-1

2
chain (J-

J ′) model numerically, and the Toric Code (TC) model and Doubled Semion
(DS) model analytically. We employ group and representation theory to create
a "fingerprint" of the behavior of these different systems. For the J-J ′ model,
representation theory is used to visualize the behavior of the ground states, and
group theoretical methods are applied to solve the system more efficiently. In
the case of the TC and DS models, the method provides a group theoretical
explanation for the degeneracies of the ground states, showing that they both
transform like a four-dimensional irreducible representation of a set of symmetry
operators isomorphic to "The inner holomorph of D8" and "The unitriangular
matrix group: UT (3,Z4)," respectively. Additionally, we analyze the 1D versions
of these models, explaining the twofold degeneracy of their ground states in a
similar group theoretical manner.

Utledning av egenskapene til grunntilstander kan være svært vanskelig. I denne
oppgaven undersøker vi grunntilstandene til den antiferromagnetiske spin-1

2
mod-

ellen (J-J ′) numerisk, og Toric Code (TC) modellen og Doubled Semion (DS)
modellen analytisk. Vi benytter gruppe- og representasjonsteori for å skape et
"fingeravtrykk" av oppførselen til disse forskjellige systemene. For J-J ′ modellen
brukes representasjonsteori til å visualisere grunntilstandene, og gruppeteoriske
metoder anvendes for å løse systemet mer effektivt. For TC- og DS-modellene gir
metoden en gruppeteoretisk forklaring på degenerasjonene av grunntilstandene,
som viser at de begge transformeres som en firedimensjonal irredusibel represen-
tasjon av et sett med symmetrioperatorer isomorfe med "The inner holomorph of
D8" og "The unitriangular matrix group: UT (3,Z4)," henholdsvis. I tillegg analy-
serer vi 1D-versjoner av disse modellene, og forklarer den tofoldige degenerasjonen
av grunntilstandene på en lignende gruppeteoretisk måte.
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CHAPTER

ONE

INTRODUCTION

Group theoretical methods are powerful tools for better understanding quantum
systems. They can assist in obtaining exact solutions and, in computational
physics, can drastically speed up calculations. In this project, we will investigate,
in particular, a way of identifying certain quantum phases at low temperatures.
This fingerprinting method can identify what type of order a system has based on
how the lowest energy eigenstates, namely the ground state manifold, transform
under the symmetry group of the Hamiltonian. The thesis will focus on both nu-
merical and analytical applications of this method, and the sections in the thesis
are divided accordingly.

In recent years, the field-theoretical study of generalized symmetries has emerged.
Although we will not employ this formalism in detail in this paper, it bears
mentioning as two of the systems we investigate exhibit generalized symmetries.
Specifically, the string operators in the Toric Code and Doubled Semion models
are examples of 1-form symmetries. These differ from traditional 0-form symme-
tries, such as total spin, translation, and magnetization, which act on point-like
objects or are proportional to system size. In contrast, 1-form symmetries act on
line-like objects, providing a richer structure of symmetry that can influence the
topological order of a system [1].

1.1 Motivation
One of the strongest motivations for applying this method to numerical calcula-
tions is that it will let us interpret the complicated data one gets from numerical
analysis and visualize the properties of the system. For example, the following
arrays show the numerical data for the two ground states of the Majumdar-Gosh
model. The entries in the arrays correspond to the coefficients needed to express
the state as a linear combination of a certain set of states in the z-basis.

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.25,
-0.25, -0.25, 0.25, 0, 0, -0.25, 0.25, 0.25, -0.25, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, -0.25, 0.25, 0.25, -0.25, 0, 0, 0.25, -0.25, -0.25,
0.25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

[ 0, 0, 0, 0, 0, 0, -0.25198, 0.25198, 0, 0.25198, -0.25198, 0, 0,

1
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0, 0, 0, 0.25198, -0.25198, 0, -0.25198, 0.22048, 0.0315, 0.0315,
-0.0315, 0, 0, 0.0315, -0.0315, -0.0315, 0.0315, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0.0315, -0.0315, -0.0315, 0.0315, 0, 0, -0.0315, 0.0315,
0.0315, 0.22048, -0.25198, 0, -0.25198, 0.25198, 0, 0, 0, 0, 0,
-0.25198, 0.25198, 0, 0.25198, -0.25198, 0, 0, 0, 0, 0, 0]

At first glance, it is immensely difficult to deduce that the ground states of the
Majumdar-Gosh model break translation symmetry by only looking at the data.
With the fingerprinting method, however, we may use the numerical data for the
ground states to determine that and how they break translation symmetry. For
this particular model, there exist analytic solutions to the ground states which can
be visualized nicely. This is not generally possible; however, with the fingerprinting
method, one can associate the exact ground state with simpler pictures that will
have the same fingerprint.

This fingerprinting method works by constructing a representation of the sym-
metry group of the system Hamiltonian using the ground states, or the states that
will become degenerate ground states in the thermodynamic limit. This repre-
sentation may be decomposed into so-called irreducible representations (irreps)
of the symmetry group, where the types of irreps that appear tell us about the
properties of the system. The fingerprinting method may also be used to explain
the degeneracy of a ground state. When representation theory is applied to quan-
tum mechanics, we say that a ground state n-fold degeneracy may be explained if
we find an irreducible representation of the symmetry group of the system which
acts on the set of ground states like that irreducible representation. So when the
fingerprinting method tells us only a single irrep appears in the decomposition, we
may conclude this irrep explains the degeneracy of the ground states in a group
theoretical manner. We will apply this to the Toric Code model, the Doubled
Semion model, and 1D versions of both of them in order to explain their ground
state degeneracy from a group theoretical standpoint. Due to all these systems
having ground states which may be derived analytically, we are able to derive the
fingerprint analytically as well.

1.2 Project Description
The project is essentially split into two parts. The first part is the application of
the fingerprinting method on numerically derived ground states, specifically from
the 1D second nearest neighbour Heisenberg model (also called the J-J’ model).
This section also involves the numerical derivation of the space group and its
irreducible representations, although some of this work is done analytically as
well. The second part is a purely analytical symmetry analysis of four Toric-
code-like models, as they have known exact eigenstates and symmetry operators.
We will construct the representation for the group of symmetry operators in the
ground state vector space, and it will produce an irreducible representation of the
group which explains the degeneracy.

The methods chapter is split into two sections, one describing the method used
for the numerical simulations and one for the analytic approach. The results are
also presented in separate sections. As a visual aid, Fig. 1.2.1 shows how the
different sections are connected, and the chapters are visualized with colors.
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CHAPTER

TWO

THEORY

2.1 General Quantum Theory

In this section, we will go through some of the general quantum mechanics needed
for the thesis.

2.1.1 States and Hilbert Space

In the general formulation of quantum mechanics, we describe the state of a system
|ψ⟩ as a vector in a complex linear vector space H called the Hilbert space. The
dimension of the Hilbert space depends on the system we are considering. For
instance, a spin-1

2
system with 1 spin will have a 2D Hilbert space.

In order to describe any state |ϕ⟩ in H, we need a complete basis {|ψi⟩}. It is
very useful if, though it is not a requirement, if this basis is orthogonal. That is
to say, that the inner product between any two basis elements is

⟨ψi⟩ψj = δij, (2.1)

where ⟨·⟩ · is the inner product. As a side note, we require all states in H to have
a norm of 1. A basis being complete implies that the operator∑

k

|ψk⟩ ⟨ψk| = 1, (2.2)

satisfies this relation, which is called the completeness relation. Using it, we may
now write any state |ϕ⟩ in terms of the basis {|ψi⟩}.

|ϕ⟩ =
∑
k

|ψk⟩ ⟨ψk|ϕ⟩

=
∑
k

ck |ψk⟩ ,
(2.3)

where ck = ⟨ψk|ϕ⟩ are the coefficients in the linear combination. Note that for
continuous systems, the sums would be replaced by integrals. In this thesis, how-
ever, we are only dealing with discrete systems, so these equations will hold as
given [2].

5
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2.1.2 Spin - 1
2 Systems

Spin-1
2

systems are central to the study of quantum mechanics due to their el-
ementary role in the quantum description of angular momentum and magnetic
properties. Although there can be several Hamiltonians for a spin-1

2
system, the

simplest basis is often one that exhibits rotational invariance or is subject to a
magnetic field in a specific direction. In both these cases, the z-basis (eigenstates
of σz) will be eigenstates of the system. In this thesis, natural units are used,
where ℏ = 1.

The Hamiltonian for a single spin-1
2

particle in a magnetic field, which arises
from the interaction of the magnetic moment with the field, can be expressed as:

Ĥ = −γB⃗ · S⃗

Here, B⃗ denotes the external magnetic field, and S⃗ represents the spin operators
associated with the Pauli matrices:

Sx =
1

2
σx, Sy =

1

2
σy, Sz =

1

2
σz

Expanding to systems comprising multiple spin-1
2

particles, the Hilbert space is
described as the tensor product of individual particle spaces, H = HA ⊗HB. The
basis for the combined space consists of tensor products of the individual spin
states, leading to a composite basis:

{|+⟩A ⊗ |+⟩B, |+⟩A ⊗ |−⟩B, |−⟩A ⊗ |+⟩B, |−⟩A ⊗ |−⟩B}

From this expression, we see that the dimension of the composite system is the
product of the dimensions of HA and HB. This is a general property when com-
bining two Hilbert spaces. Therefore, each additional spin-1

2
added to the system

doubles the dimension of the Hilbert space, implying that the size of the Hilbert
space is exponential in the number of spins [3].

2.2 Quantum Models

2.2.1 J-J ′ Model

The J-J ′ model is a Heisenberg model with a second nearest neighbour term.
We will investigate this model on a spin-1

2
chain. One of the earliest and semi-

nal works discussing the spontaneous dimerization in such systems is by Haldane
[Haldane1982]. This model has applications in quantum information process-
ing, specifically in transporting a single q-bit down a spin chain using a quantum
adiabatic process, which could potentially be used for sending data in a quantum
computer made of artificial spins [4]. The main source for this section will be [3],
which elaborates on the model in great detail. The Hamiltonian of the model may
be written as

Ĥ = J
∑
i

S⃗i · S⃗i+1 + J ′
∑
j

S⃗j · S⃗j+2, (2.4)

where S⃗i =
1
2
(σx

i , σ
y
i , σ

z
i ), and σα

i is a Pauli spin matrix acting on the i-th spin.
The interactions in the model and the lattice are visualized in Fig. 2.2.1.
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J

J ′

Figure 2.2.1: J-J ′ model interactions

We may rewrite this Hamiltonian as operators acting on the z-basis by replacing
the σx and σy operators with the ladder operators

S±
i = Sx

i ± iSy
i (2.5)

Expanding equation 2.4 we get

Ĥ = J
∑
i

Sz
i S

z
i+1 + J

∑
i

(Sx
i S

y
i+1 + Sy

i S
y
i+1)

+ J ′
∑
j

Sz
jS

z
j+2 + J ′

∑
j

(Sx
j S

x
j+2 + Sy

j S
y
j+2)

(2.6)

Inserting Sx
i = 1

2
(S+

i + S−
i ), S

y
i = 1

2i
(S+

i − S−
i ) and collecting the terms, we get

Ĥ = J
∑
i

Sz
i S

z
i+1 +

J

2

∑
i

(S+
i S

−
i+1 + S−

i S
+
i+1)

+ J ′
∑
j

Sz
jS

z
j+2 +

J ′

2

∑
j

(S+
j S

−
j+2 + S−

j S
+
j+2)

(2.7)

This expression for Ĥ might look more complicated than Eq. 2.4; however, the
effect of this operator on a state in the z-basis is much simpler to measure. The
z-basis elements are eigenstates of the terms in the first and third sums, so the
effect of that operator is simple to calculate. The terms in the second sum have
the effect of switching the i-th and (i + 1)-th spin in a z-basis state if the spins
are different, and give no contribution if the spins are the same.

The model has several symmetries. For one it has a space group generated
by the translation by 1 and inversion x → −x. Secondly the total magnetization
operator ŜZ

tot =
∑

i S
z
i and total spin operator Ŝ2

tot =
∑

i S
2
i commute with the

Hamiltonian and yield good quantum numbers.
The J-J ′ model exhibits different properties depending on the ratio J ′/J . For

J ′/J < Jc, the model is known to be in a quantum critical phase, while for
J ′/J > Jc, it transitions into a dimer phase (also called a Valence Bond Solid
or VBS). The model has been investigated extensively using various methods.
For instance, [5] used Lanczos and exact diagonalization techniques to get the
numerical estimate for the phase transition, determining Jc = 0.241167±0.000005,
while [6] employed field theory approaches. In this thesis, we will investigate the
dimer phase in particular.

The point J ′/J = 1/2 in phase space is called the Majumdar-Ghosh point.
Majumdar and Ghosh first discovered this model [7], and here the ground states
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may be derived analytically. The result is a pair of dimerized eigenstates which
may be visualized nicely as [3]:

(a) |ϕ1⟩

(b) |ϕ2⟩

Figure 2.2.2: Visual representation of the states |ϕ1⟩ and |ϕ2⟩. The blue ovals
represent a singlet between the two spins.

2.2.2 Toric Code Model

The Toric Code (TC) model is interesting in many aspects, particularly as a pro-
posed error-correcting memory for quantum computation. It faces many challenges
and remains an area of active research. There exist a number of candidates that
could, in principle, be used; however, none so far are sufficiently good [8]. The
TC model was originally proposed by Alexei Kitaev as an analytically solvable
model demonstrating topological order and robustness to local perturbations [9].
We might be led to think that the analytical solutions implies the system is very
simple, however it turns out the TC Hamiltonian possesses several interesting
properties. In particular, we will investigate its topological properties. The main
source for this section will be [3].

Figure 2.2.3: TC-system, AS and Bp operators shown as a blue cross and a
red square respectively. As may alternatively be visualized as a loop in the dual-
lattice, shown in the figure with a dashed line around its center. The action of
Bp may be thought of as creating or destroying a loop on the lattice, whilst As

creates or destroys a loop on the dual lattice.

In this system the individual spins have spin 1
2
. Unlike most lattice models, they

are not located on the lattice and are instead located in the middle of the edges.
The Hamiltonian of this system written as
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Htc = −
∑
s

As −
∑
p

Bp, (2.8)

where the operators As are called star operators, while the operators Bp are called
plaquette operators. The spins they affect are shown in Fig. 2.2.3, and they are
defined as

As =
∏
i∈s

σz
i , Bp =

∏
i∈p

σx
i (2.9)

The operators σx
i and σz

j have the property that they commute if i ̸= j and they
anticommute if i = j. However, since a given As and Bp always share either zero
or two spins, they will always commute. Thus, the simultaneous eigenstates of
the set of all As and Bp are also eigenstates of the Hamiltonian. Note that the
eigenvalues of As and Bp are +1 and −1 as they square to the identity operator.
Furthermore, we may conclude that the ground states will satisfy the relation:

As |ψ⟩ = |ψ⟩ , Bp |ψ⟩ = |ψ⟩
∀As, ∀Bp, ∀ground state |ψ⟩ ,

(2.10)

as this minimizes the ground state energy. To derive the ground states, we can first
start with the z-basis. Since the As operators are only comprised of σz operators,
the z-basis will also be an eigenbasis for all the As operators. These states may
be visualized by drawing the system as a grid, and representing vertices with spin
up with a thin line and vertices with spin down as a thick line, a few examples of
which are shown in Fig. 2.2.4. It turns out that if a state only has closed loops
of spin down, it will always be a As = 1 ∀s eigenstate. This is true as any closed
loop will either not pass through a given lattice site, pass through once, or pass
through it twice, which implies the loop will share either zero, two, or four spins
with a given As operator. For example, if the loop in a loop state |loop⟩ passes
through a site s once, then

As |loop⟩ = −1 · −1 · 1 · 1 |loop⟩ . (2.11)

Thus, |loop⟩ is a +1 eigenstate of this As operator. The same will be true
for loops passing through a point twice. If we start with a given |loop⟩, then we
can project this state onto the Bp = 1 subspace by using a projection operator,
yielding a ground state of the system |ψ0⟩. This is shown in the following equation

|ψ0⟩ =
∏
p

Pp |loop⟩

Pp =
1

2
(Bp + 1)

(2.12)

Any choice of a valid loop state will yield a ground state of the system. However,
an interesting question is how they can be distinguished and how many there are.
It turns out that the Bp operators can be used to create or destroy loops and
to transform one loop into another. This is shown in Fig. 2.2.4, where one loop
operator around the x-axis is deformed into another loop.



10 CHAPTER 2. THEORY

a) UL1 =
∏

i∈L1
σx
i

b) U∂V =
∏

p∈V Bp

c) UL2 = UL1U∂V

Figure 2.2.4: A product of Bp operators change the shape of UL1 into UL2

Certain loops can be entirely removed, by which we mean turned into the loop-
less state, by use of Bp operators. However, interestingly, there exist loops that
cannot be removed by use of Bp operators. These we will call non-contractible
loops. For example, we can wind a loop around the x-axis once as shown in
Fig. 2.2.4. This loop cannot be removed by use of Bp operators. If, however,
we add another one of those loops, thereby winding it twice around the x-axis,
the loop becomes contractible. The same is true for the y-axis. We therefore
have two parity numbers which are 1 if there are no non-contractible loops in a
given direction (which implies an even number of windings) or -1 if there is a
non-contractible loop (which implies an odd number of windings). This yields
four topologically distinct loops. The important part is that since these parity
numbers are conserved by Bp, two loop states |loop1⟩ and |loop2⟩ with different
parity numbers will be projected onto different ground states. This implies that
we get four distinct ground states, which we can label by their parity numbers
{|1, 1⟩ , |−1, 1⟩ , |1,−1⟩ , |−1,−1⟩}. Furthermore, there cannot be any more ground
states. This is true because only the loop states are legal starting states (as these
are the As = 1 states), and any two loop states with the same loop-parity numbers
will be projected onto the same ground state.

The non-contractible loops may be encapsulated as symmetry operators. These
operators are given in [10]. We will use a slightly different notation which will be
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easier to use for group theory analysis.

UL =
∏
i∈L

σx
i (2.13)

For any L, the corresponding UL operator will be a symmetry operator of the
TC Hamiltonian. This is true as UL will commute with any Bp due to them only
being comprised of σx

i operators, and it will commute with every As operator as
∀s, As and UL will share an even number of spins. Only four choices of L will
turn out to be relevant. I will later prove this, but for now, we define the four
distinct choices as L being no loop, denoted by E, it being a single loop around
the x-axis, denoted by Ux, it being a single loop around the y-axis, denoted by Uy,
and it being a loop around both the x- and y-axes, denoted by UxUy. This yields
the following set of symmetry operators, forming a group, which we will name the
U-group: {E,Ux, Uy, UxUy}. The U-operators as chosen are shown in Fig. 2.2.5
as the bold lines.

Figure 2.2.5: Visualization of the chosen Ux, Uy, Vx, Vy operators. U operators
shown as bold, V operators shown as dashed. The shared spins are marked by a
dot.

In addition to the U-group, we can also define a set of loops on the dual lattice,
which are composed of σz

i operators instead. These are also given in [10], however,
we will use the notation VL instead, as shown in the following equation:

VL =
∏
i∈L

σz
i (2.14)

These operators are symmetry operators for a similar reason that UL are symmetry
operators, that being they commute trivially with As and share an even number
of spins with Bp. We can also form a group with these operators by choosing the
loops "x" and "y" to be dual-lattice loops around the x and y axes, respectively.
The chosen loops are also shown in Fig. 2.2.5 as dashed lines. We then get the
group {E, Vx, Vy, VxVy} which we will call the V-group. Both the U-group and V-
group should be part of the symmetry group of the Hamiltonian; Sym(Ĥ) (which
we will formally define in 2.4), however, we cannot just trivially combine the two
groups due to Ux and Vy sharing only a single spin. We can see this in Fig. 2.2.5,
where the shared spin between the U and V operators is highlighted. This will
result in anticommutation between certain group elements.
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2.2.3 Toric Code Ladder Model

Suppose we removed the periodicity of the TC model in the y-axis and only kept
the x-axis periodicity, transforming the model into a sort of ladder of either finite
or infinite length. We will call this system the TCL model.

Figure 2.2.6: TCL-model, As operator shown as blue dot and dashed lines, Bp

operator shown as red dot and full lines

The system would then look like Fig. 2.2.6, and it would affect the definition
of the As operators. In this case, there would only be three spins per star (as seen
in the figure), while the Bp operators would remain unchanged. The expression
for the Hamiltonian will also remain unchanged. How the reduction of the peri-
odicity affects the properties of the system will be investigated in later sections.
Furthermore, we will investigate which U- and V-operators remain as symmetry
operators.

2.2.4 Doubled Semion Model

The doubled semion model (DS model) is similar to the TC-model. It is defined on
the honeycomb lattice and shares many similarities with the TC-model; however,
the definition of Bp includes an additional phase factor (shown in equation 2.16),
and the sign in front of the Bp term in the Hamiltonian is positive instead of
negative. The equations are gathered from [10], although the notation has been
adjusted to match the notation for the TC-model in [3].

The DS model was initially investigated by Levin and Wen, who introduced
the concept in their work on string-net condensation as a physical mechanism
for topological phases [11]. Their foundational study laid the groundwork for
understanding the topological properties and phase transitions within such models.

Additionally, the experimental realization of topologically ordered states has
been achieved in recent years. For instance, the ground state of the toric code
Hamiltonian was prepared using an efficient quantum circuit on a superconducting
quantum processor, demonstrating key aspects of topological quantum matter and
quantum error correction [12].

Hds = −
∑
s

As +
∑
p

Bp (2.15)

As =
∏
i∈s

σz
i

Bp = (
∏
i∈p

σx
i )(

∏
j∈v(p)

i(1−σz
j )/2)

(2.16)

The stars s, the plaquettes p and the edges coming out of the plaquettes p, denoted
as v(p) are shown in figure 2.2.7. Note that the periodicity of the model is defined
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such that the left and right boundary are connected, as are the top and bottom
boundaries.

Figure 2.2.7: Operators in the DS-model. AS shown in blue, with the part of
the sub-lattice it affects shown with ".-" line. Bp is shown in red. The spins in
the first factor in Bp are highlighted with a bold line, whilst the spins in the phase
factor are highlighted with a dashed line

Importantly these operators do not commute amongst each other in the entire
Hilbert space. However it can be shown that the following commutator properties
hold: [Bp, Bp′ ] |loop⟩ = 0 and [As, Bp] |loop⟩ = 0. Where |loop⟩ is any state which
satisfies As |loop⟩ = |loop⟩ , ∀s. This implies that we can minimize the As and
Bp terms simultaneously, as constructing states with As |ψ⟩ = |ψ⟩, will imply that
the Bp operators commute in the As = 1 vector space. Thus we may construct
ground states satisfying As |ψ⟩ = |ψ⟩ and Bp |ψ0⟩ = − |ψ0⟩ [3].

Like the TC model the GSM of the DS model has fourfold degeneracy [10]. We
can derive them by following the same procedure as for the TC model from [3],
where we will have to change the projection operator due to the sign difference in
the Bp term in the Hamiltonian. The projection operator will therefore instead
be given by:

|ψ0⟩ =
∏
p

Pp |loop⟩

Pp = (−Bp + 1)/2

(2.17)

As with the TC model there will exist loops of even or odd parity in x and y
direction. We will later more formally define the different ground states exploiting
this fact.

The loop operators of the DC-model is given in [10]. The dual-lattice V-
operators will be the same as with the TC-model, however the U-operators will
differ due to the phase in the Bp operators. For these we will need to chose a
direction along the loop such that we can meaningfully define the right and left
side of the loop. Furthermore the U-operators come in two types (+ or −). Two
examples of U and V operators are drawn in fig 2.2.8 and 2.2.9 respectively, and
their expressions are:
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VL =
∏
i∈L

σz
i

U±
L =

∏
i∈L

σx
i

∏
k∈L

(−1)
1
4
(1−σz

i )(1+σz
j )
∏
l∈R

(±i)(1−σz
l )/2,

(2.18)

where L is the set of spins connecting to the loop from the left side, whilst R is
the set of spins connecting to the loop from the right side. For the L factor i is
the spin on the loop before the intersection with the spin k, whilst j is the spin
after the intersection.

Figure 2.2.8: Drawing of a U+
L operator. The L factor is shown as a thick black

line, and its orientation is shown with arrows. The L factor in U+
L is to the left

of the loop, and is shown in blue. The R factor is to the right of the loop and is
shown in red

Figure 2.2.9: Drawing of a VL operator. The involved spins are all the vertexes
of the honeycomb which VL passes through

The extra phase terms are needed in order for the U±
L operators to commute

with the Hamiltonian. As with the TC-model we may choose one loop in the x
direction and one in the y direction on the lattice, examples for which are shown
in fig 2.2.10.
We may do the same for the V operators. We do however get twice as many U
operators in the DS model as in the TC model due to ± in the R-term. This results
in a complicated set of operators which do not easily form a group. First of all, the
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(a) The U±
x operator. Direction is from left to right marked with arrows

(b) The U±
y operator. Direction is from the bottom to the top marked with

arrows

Figure 2.2.10: Visualization of the U±
x and U±

y operators. The spins belonging
to the loop factors (Lx,Ly) are shown in black. the L terms are to the left of the
loops and are shown in blue. The R terms are to the right of the loops and are
shown in red

U-operators are not self-inverses as they are in the TC-model. Furthermore the
U±
x and U±

y operators do not commute. We will later construct a group containing
all these operators, which we will use to derive properties of the DS-model.

2.2.5 Doubled semion ladder model

If we remove the periodicity in the y-direction for the DS-model, as we did for the
TC model to get the TCL model, we get the doubled semion ladder (DSL) model.
The Hamiltonian is then the same as for the DS model, however the operators
change slightly due to there only being two layers and no y-periodicity. The
resulting operators are shown in fig 2.2.11. We note that these operators should
still commute in the |loop⟩ state vector space, as the overlap of these operators
are the exact same as if we would extend them to the DS model. We will therefore
get ground states which are +1 eigenstates of the As operators and −1 eigenstates
of the Bp operators.
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Bp

As

As′

Figure 2.2.11: Operators in the TCL model. The Bp operator is shown in red,
where the loop factor is shown as a bold line and the phase factor is shown as
dashed. The AS operators are shown in blue.

2.3 Matrix formalism and diagonalization

Quantum systems where the dimension of the Hamiltonian is not too large may
be solved using exact diagonalization. To use exact diagonalization we need to use
the matrix formalism of quantum mechanics, as outlined in [2]. To start out we
need a a Hamiltonian operator, Ĥ and a complete, orthonormal set of quantum
states {|ψi⟩} which we use as a basis. Then any state |ϕ⟩ ∈ H, can be represented
as a column vector ϕ⃗, where the i-th element of this vector is given by ϕ⃗i = ⟨ϕ|ψi⟩.
This is effectively equivalent to representing the state ϕ as a linear combination
of basis states. Now we define the Hamiltonian matrix according to equation 2.19

Hi,j = ⟨ψi| Ĥ |ψj⟩ (2.19)

If this matrix is finite, and sufficiently small, we can now diagonalize this matrix.
Sufficiently small depends on the computer power one has available (Ellaborate).
The algorithm used for diagonalization scales as O(n3) [13], where n is the order
of the matrix. Thus breaking up the problem into smaller matrices may signifi-
cantly accelerate the process. Suppose the derived Hamiltonian matrix were block
diagonal. In that case we would not need to diagonalize the entire matrix at once,
instead we could diagonalize every block separately, and in parallel.
To get a block diagonal matrix we can exploit the symmetries of the Hamiltonian
operator. If there exists a set of hermitian operators {Âi}, which commutes with
the Hamiltonian and mutually commute, i.e. [Ĥ, Âi] = 0 ∀i and [Âi, Âj] = 0 ∀i, j
then we can create a set of simultaneous eigenstates of the operator s. When we
construct the matrix using these states as our basis we will then be guaranteed to
get a block diagonal matrix, Which we will now prove.

Assume we have constructed a set of eigenstates of the symmetry operators {Âi}.
We label these states by the quantum numbers {ai} corresponding to each of
the operators, and a second number i which differentiates states with the same
quantum number.

Âk |a1, a2, ..., an; i⟩ = ak |a1, a2, ..., an; i⟩ ∀i, k (2.20)

We will now operate on this state with the Hamiltonian and any one of the Âi

operators.
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ÂkĤ |a1, a2, ..., an; i⟩ = ĤÂk |a1, a2, ..., an; i⟩ = akĤ |a1, a2, ..., an; i⟩ ∀i, k
(2.21)

This equation shows that the state |ϕ⟩ = Ĥ |a1, a2, ..., an; i⟩ is also an eigenstate
of all the Âi operators. We will make use of the spectral theorem for hermitian
operators. One of the statements in that theorem is that eigenvectors of hermitian
operators corresponding to different eigenvalues are orthogonal. Since the state
|ϕ⟩ is an eigenstate of all the Âk operators, with the same quantum numbers as
|a1, a2, ..., an; i⟩, we may conclude that

⟨a′1, a′2, ..., a′n; i| Ĥ |a1, a2, ..., an; j⟩ = ⟨a′1, a′2, ..., a′n; i|ϕ⟩
= δai,a′i ⟨a

′
1, a

′
2, ..., a

′
n; i|ϕ⟩

(2.22)

We can therefore now treat each set of basis vectors with the same eigenvalues
as a separate Hilbert space, as each of these subspaces are invariant under the
Hamiltonian. Each subspace will therefore have their own Hamiltonian matrix.
We define each matrix according as:

Ha1,a2,...,an

i,j = ⟨a1, a2, ..., an; i| Ĥ |a1, a2, ..., an; j⟩ , (2.23)

with the subscript indicating the elements in the matrix and the superscript indi-
cating the quantum numbers of the states in this block. These matrices can now
be numerically diagonalized independently.

2.4 Group theory
In this section we will give a brief overview of the group theory used in the thesis.
The main source for this section is [14]. A group is formally defined as a set of
distinct elements G = g1, g2... and an associated binary operator ◦ which follows
the following four axioms:

(1) The group is closed under the binary operator:
g ◦ h ∈ G, ∀g, h ∈ G.

(2) The binary operator is associative on G.
a ◦ (b ◦ c) = (a ◦ b) ◦ c, ∀a, b, c ∈ G .

(3) There exists an identity element, usually denoted E.
∃E ∈ G such that E ◦ g = g ◦ E = g, ∀g ∈ G.

(4) Every element has an inverse.
∀g ∈ G, ∃g−1 ∈ G such that g ◦ g−1 = g−1 ◦ g = E

One of the simplest examples of a group is the real numbers with + as their
binary operator. The real numbers are closed under addition, so the first axiom is
satisfied. + is associative, so the second axiom is satisfied. 0 will act as an identity
element, satisfying the third axiom and finally every real number x has −x as its
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inverse, as x+(−x) = 0, so the fourth axiom is satisfied. We note that the size of
a group may vary greatly. A finite groups have a distinct number of elements, and
we can have continuous infinite groups like R with + as binary operator, and we
can have discrete infinite groups, like Z with + as its binary operator [14, p. 3].
In this case all the elements commute, however for some group G the products of
the elements g, h ∈ G given by g ◦ h and h ◦ g, will not in general be equal.

In the context of physics we are often the most interested in what is called
symmetry groups. The elements of symmetry groups are symmetry operators,
which leaves some system invariant when they act upon it. An example of this is
the rotation group C4v which is the set of all reflections and rotations which leaves
a 2D square invariant. An example of one of these elements is c1 which is a π/4
rotation. In the context of quantum mechanics the symmetry group of a system
may be defined as:

Sym(Ĥ) = {Â|[Ĥ, Â] = 0} (2.24)

Hence the symmetry group of the Hamiltonian Sym(Ĥ) is the set of all operators
which commute with the Hamiltonian. This set is always a group. The binary
operator is successive application of operators, which is associative. The set is
closed, as for two operators Â, B̂ ∈ sym(Ĥ), [Ĥ, ÂB̂] = 0. The identity exists,
as the "do nothing" operator: I or 1 will commute with Ĥ. Finally symmetry
transformations are reversible, so the inverse element for any symmetry operator
must exist.

Now suppose a subset S ⊂ G with the same binary operator as G also follows
all the group axioms. If this is the case then S is called a subgroup of G. As
an example we may let G be previously mentioned group Z with binary operator
+. If we let S be the even numbers (positive and negative), then S is obviously
a subset of G. This set also follows all the group axioms, so it is itself a group.
On the other hand the set of odd numbers is not a group, as it does not have the
identity, and it is not closed as the sum of two odd numbers is even.

Lastly we will consider the direct product of two groups G and H, which is
given by the equation:

K = G×H = {g ◦ h|g ∈ G, h ∈ H} (2.25)

We are essentially combining every element of H with the elements of G. For
this to be a valid direct product every element of G must commute with every
element of H. Furthermore the only overlap between the two groups must be the
the identity operator [14, p. 17].

2.4.1 Isomorphisms and Homomorphisms

An isomorphism is a mapping, denoted as ϕ between two groups. It has the
property that it preserves group structure. The group structure of a group G
may be visualized in a character table. Suppose we numerate each element in
G as g1, g2.... We can then produce a multiplication table of G, in which the
element in the i − th row and the j − th column represents the product gi ∗ gj.
The multiplication table contains all the information about the group and it itself
characterizes a group completely. An isomorphism is any mapping between groups
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which preserves the multiplication table. Two isomorphic groups will have the
same properties. For instance they will have the same irreducible representations,
which we will define in the subsequent section.

A homomorphism is a generalization of an isomorphism. An isomorphism
is bijective, whilst a homomorphism in general is not. A homomorphism ϕ is
a mapping from a group G1 to a group G2 which satisfies the homomorphism
condition

g, h ∈ G1

ϕ(g)ϕ(h) = ϕ(g ◦ h)
(2.26)

The mapping will result in several elements in G1 being sent to the same element
in G2, unless they have the same size, as the homomorphism would then be an
isomorphism [14, pp. 18–19].

2.4.2 Representation theory for finite groups

Representation theory is an area of group theory which is very important for
Quantum mechanics. It is the basis for the fingerprinting method, and it gives a
way of explaining degeneracies in the spectrum of some quantum systems. We will
in this section explain why this is the case. As all the groups we will investigate
in this thesis are finite, we will only consider finite representation theory.

Firstly we need to define another group property. We let G be some group,
and we let a, b ∈ G. These two group elements called conjugate if and only if:

∃c ∈ G such that a = c−1bc (2.27)

This property is reflexive. If a is conjugate with b the above equation holds. By
inference we may conclude that likewise b is conjugate with a, as we may just
replace c with c−1 and get:

such that b = cac−1 (2.28)

Using the definition for conjugate elements we may now define the concept of a
conjugacy class. Suppose we start out all the group elements in G. We then
partition the set of all the group elements into subsets where each element in a
given subset is conjugate to each other. These subsets are called the conjugacy
classes of the group G [14, pp. 11–12]. We may label each conjugacy class by any
one of the elements it contains, as given one element we may construct the whole
conjugacy class by the following definition:

Conj(g) = {g′ ∈ G|∃h ∈ G such that g′ = hgh−1} (2.29)

We will denote the number of conjugacy classes of a group G as nc. An important
clarification about the conjugacy classes is that they are not groups, with only
one exception. The identity element commutes with every other element, which
results in there being no other element conjugate to it. This implies that none
of the other conjugacy classes will contain the identity element, so they are not
groups.

We may now define the representation of a finite group. We let G be some
finite group with elements gi. We may then define a representation of this group



20 CHAPTER 2. THEORY

as a set of matrices T , where we have one matrix associated with each group
element. We write the matrix corresponding to the group element gi as T (gi).
These matrices need to be of the same size and they must be invertible. Finally
we let the matrices have the property

Γ(gi)Γ(gj) = Γ(gigj) ∀gi, gj ∈ G (2.30)

If this property is satisfied then this set of matrices Γ is called a representation of G
[14, pp. 58–59]. We call the order of the matrices the dimension the representation.
Note that a representation need not capture all the multiplication properties of a
group. The trivial representation Γ(gi) = 1 ∀gi will be a valid representation for
any group G [14, p. 60].

We may construct a representation of a set of operators by acting with the
operators on some vector space which is invariant under the group operations. We
denote a vector space with this property as Ln, where n is the dimension of the
vector space. We let {|ϕi⟩}ni=1 be an orthonormal basis of Ln. We may write the
action of an operator ĝ ∈ G acting on a basis state ⟨ϕi| as:

ĝ |ϕj⟩ =
n∑

i=0

Γ(ĝ)ij |ϕi⟩ (2.31)

left-multiplying both sides of the equation with ⟨ϕi| and switching the LHS and
RHS yields:

Γ(ĝ)ij = ⟨ϕi| ĝ |ϕj⟩ (2.32)

The choice of an orthonormal basis makes it so that the resulting matrices are
unitary as well. We could have chosen to start with a non-unitary basis, and
used a transformation to turn the resulting non-unitary matrix into a unitary one,
however for simplicity we will skip that step. As mentioned earlier the subspace
Ln is closed under the group operations. Now we consider the case where the case
where a proper subspace of Ln, which we call Lm, is also closed under the group
operations. If that is the case then the representation is said to be reducible. If
we chose another orthonormal basis Ln, which we call {|ψi⟩}, where the first m
states lie in Lm, and the rest lie outside, then the resulting representation will be
block-diagonal.

Γ(A) =

[
S(1) 0
0 S(2)

]
, (2.33)

where S(1), S(2) are matrices of order m and n −m respectively. If the subspace
these matrices correspond to may be split into invariant subspace themselves,
we repeat the procedure. If the subspace cannot be split into smaller invariant
subspaces then the corresponding representation is said to be irreducible. We
may transform any unitary representation Γ into a block diagonal form by unitary
transformation, where the blocks correspond to the irreducible representations of
the symmetry group. We may therefore write the reducible representation Γ as a
direct sum of the irreduible representations of G

Γ = ⊕αnαΓ
(α), (2.34)
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where Γ(α) is the α-th irrep of G, and nα is the number of times this irrep
appears in Γ. The number of irreps a certain finite group has is equal to the
number of conjugacy classes.

Irreducible representations are not unique, as we can transform the basis by
unitary transformation and it would yield a different, but equivalent representa-
tion. One property that will be the same for any irreducible representation of a
group however is the trace of the irreps, as the trace of a matrix is conserved un-
der unitary transform. We call the trace of a representation the characters of the
representation, and are denoted χ(g). The characters of the irreducible represen-
tations of a given group G are very important, and may be used to decompose any
representation into irreducible representations, as we will show in the next section.
Lastly the characters of a representation are class functions. This signifies that
two conjugate elements will have the same characters.

Knowing the irreducible representations of the symmetry group Sym(Ĥ) gives
us a tool for explaining the energy degeneracy in quantum systems. Suppose we
start out with an eigenstate |ϕ⟩ of the Hamiltonian Ĥ with energy E. Then by
operating on |ϕ1⟩ with all the operators in Sym(Ĥ) we would create a set of n
independent eigenstates |ϕn⟩. Using these states as a basis for a representation,
the resulting representation would necessarily be irreducible. The problem with
this procedure is that it is exceedingly difficult to know whether or not we have
actually included all the symmetry operations in Sym(Ĥ). It is also possible,
though unlikely that eigenstates belonging to two different representations share
the same energy eigenvalue. This is called an accidental degeneracy.

Finally we will discuss a generalization of representations called projective rep-
resentations. A projective representation does not satisfy the relation in equation
2.30. Instead it satisfies the following relation:

Γ(gi)Γ(gj) = ω(gi, gj)Γ(gigj) ∀gi, gj ∈ G (2.35)

Where ω(gi, gj) is some complex phase. When this is the case we may need to
create a covering of the group G. We say that when we get this behaviour then we
say that we have a projective representation. Furthermore our group G is called
a projectile linear group, which we will denote PGL(V ), where V is the vector
space the group acts on. We then have a general linear group GL(V ) and the two
are related by a homomorphism. We may write the relation as:

GL(V )

F
= PGL(GSM) (2.36)

Where F is the normal subgroup of GL(V ). In general the elements will be scalar
multiples of the identity operator [15].

2.4.3 The fingerprinting method

The fingerprinting method is essentially just doing irreducible representation de-
composition, where the vector space we are using to construct the representation
is the ground state manifold (GSM). The procedure is outlined in [16]. Here they
define the GSM as the set of ground states which become degenerate in the ther-
modynamic limit. For a finite size system, however the states may be degenerate.
The GSM is defined as:
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GSM = span(|ψi
GS⟩) (2.37)

Where |ψi
GS⟩ are the the lowest energy states of some Hamiltonian Ĥ, which

become degenerate in the thermodynamic limit. We may then use this basis to
create a representation of Sym(Ĥ). Let g ∈ Sym(Ĥ) and let Ug be the operator
acting on the GSM which corresponds to the group element g. Then we may then
write the resulting representation as:

ΓGSM
ij (g) = ⟨ϕi

GS|Ug |ϕj
GS⟩ (2.38)

We may decompose this representation into a direct sum of irreps of Sym(Ĥ) as
shown in equation Sym(Ĥ). The integers nα may be written as an array, where
the α-th element corresponds to how many times the α-th element appeared in
the decomposition of ΓGSM. We will call this array the fingerprint of the GSM, as
it essentially classifies how the GSM transforms under the group operations. In
order to calculate nα we may use the character formula:

nα =
1

|G|
∑
g∈G

χ(g)Tr(Γ(g)) (2.39)

If ΓGSM turns out to be an irrep, then nα = δiα, where i corresponds to the
i-th irrep of G. In general G should equal Sym(Ĥ). In reality, however, the
size of Sym(Ĥ) may be so large that analyzing the system and determining the
irreps become prohibitively difficult. A trick which we may use to simplify the
problem is splitting the symmetry group into a direct product of two commuting
subgroups. For instance for a model which conserves total spin and magnetization,
like the Heisenberg model, the operators Ŝ2

tot, Ŝz
tot and the space group (SG) all

mutually commute, which lets us define the symmetry group as the direct product
{E, Ŝ2

tot} × E, Ŝz
tot × SG. Since the irreps of a direct sum may be written simply

in terms of the irreps of the component groups, we may focus on the smaller
subgroups instead of the whole Sym(Ĥ) at the same time.

2.4.4 Intrinsic Group Properties

Every group has certain properties that can be determined either by direct calcu-
lation or by finding an isomorphism from the group to a known, tabulated group
and looking up the properties of that group.

The number of isomorphically different groups of any given finite order is finite.
Therefore, if we have a group with defined group elements and a binary operator,
we can identify which of the tabulated groups of the same order it is isomorphic to
by filtering out every candidate that has intrinsic group properties different from
the group we are investigating.

There are several tools for doing this. For instance, the GAP programming
language [17] has tabulated all groups of finite order up to about 2000 (with the
exception of 1024, which is exceptionally large). In GAP, several properties of
the listed groups can be found by a simple function call, while others need to
be derived through a script. To derive the groups that are isomorphic to the
symmetry groups of the TC and DS models, the following group properties will be
measured. We can then filter for these properties to find the tabulated groups they
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are isomorphic to. As the properties are only used to filter for possible groups,
the explanations will be quite brief, and the source for the section is [18].

The exponent of a group G is defined as the smallest integer n such that
∀g ∈ G, gn = E. In essence, this measures the largest order of an element in the
group.

The order of an element is defined similarly to the exponent, but it is the
minimal n such that for a given g ∈ G, gn = E. Therefore, different elements may
have different orders. It can be shown that elements of different orders cannot be
in the same conjugacy class.

The center of a group is defined as CG = {g ∈ G | ∀g′ ∈ G, gg′ = g′g}. Simply
put, it is the subgroup of G comprised of all the elements in G that commute
with every element in G. The size of this group can be used to eliminate several
candidate groups, and if it has a specific group structure (cyclic, for instance),
that can further limit the number of candidates.

The derived subgroup, or commutator subgroup, is defined as DG = {g ∈ G |
g = x−1y−1xy for some x, y ∈ G}. It essentially encapsulates the commutativity
of the group. For two commuting elements, the group commutator defined as
[x, y] = x−1y−1xy will be E. On the other hand, if there is some non-commutation
between the elements, the result will be another group element.

The number of conjugacy classes and their sizes can also be used to filter out
group candidates. The conjugacy classes of small groups can be derived compu-
tationally by brute force.

The minimum number of generators for a group can also be used. A generator
of a group G is an element from which every element of the group can be obtained
by repeated application of the group operation. If a group can be generated by
a single element, it is called a cyclic group. More generally, a set of generators
S ⊆ G is a subset such that every element of G can be expressed as a combination
of elements from S and their inverses. For example, in the cyclic group Z5 under
addition modulo 5, the element 1 is a generator because {0, 1, 2, 3, 4} can be ob-
tained by repeatedly adding 1. In contrast, the dihedral group D4 (symmetries of
a square) is generated by the set {r, s}, where r is a 90-degree rotation and s is a
reflection. Thus, every element of D4 can be expressed as a combination of r and
s.

The Frattini subgroup is the group of nongenerators and is defined as FG =
{g ∈ G | ∀S ⊆ G, if S ∪ {g} generates G =⇒ S generates G}. This means that
no elements in the Frattini subgroup can help generate the entire group G if they
are added to any generating set. Any proper generator of G will generate the
elements in the Frattini subgroup. For instance, the identity element E is always
part of the Frattini subgroup as it can be created by exponentiating any element
to its highest order. Another example is in the cyclic group Z4, where the element
2 cannot generate the entire group and is thus in the Frattini subgroup.
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CHAPTER

THREE

METHODS

3.1 Numerical derivation of fingerprints

We will investigate the fingerprint of the second nearest neighbour Hamiltonian
by numerically deriving the eigenstates of the system. We will do so by exact
diagonalization. For the purpose of investigating the GSM we will note that full,
exact diagonalization is not the most efficient approach. The best numerical tool
would likely be the Lanczos algorithm [13], which can derive the ground state and
lowest lying eigenstates of an operator very efficiently. However for the purpose of
spectrum analysis we will use exact diagonalization instead. Should the method
be generalized in code for other models however, the Lanczos algorithm would
probably be the best general method for deriving the GSM.

3.1.1 Generation of |S, Sz; i⟩ spin basis

The J-J ′ Hamiltonian has several exploitable symmetries, as mentioned in 2.2.1.
There is however a trade off in efficiency when block diagonalizing the Hamiltonian.
If the construction of the given spin basis and the more complicated Hamiltonian
matrix takes more compute time than we save by diagonalizing smaller blocks, then
we are better off including less symmetries in our block diagonal basis. For spin-1

2

models one generally chooses to start out with an eigenbasis of the translational
group and total magnetization operator (Ŝz

tot), or an eigenbasis of the total spin
operator (S2

tot) and the total magnetization operator. For this project we will
construct the latter as it will make spectrum analysis later slightly simpler. It is
possible to do all three, although it is very difficult, and is done in [19]. In this
thesis however, focuses on the properties of the ground states first, and derives the
ground states as a means to an end, we will only generate a |S, Sz; i⟩ spin basis.
Lastly one should note that there exists libraries for diagonalization on arbitrary
spin systems. In python there is QuSpin [20], and for C++ there was previously the
ALPS [21], however that is no longer supported due to lack of funding (although
the legacy source code is still available). Both of these use translational symmetry
and Ŝz

tot symmetry to do the block diagonalization. We will not use these libraries
in order to investigate the |S, Sz; i⟩ spin basis and to get a better understanding
of the system.

25
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We start by constructing a slightly simpler basis. The z-basis, which is the
basis of all Ŝz

i operators, commonly written as |↑↓ ... ↑⟩ is also an eigenbasis of
Ŝz
tot. We may exploit this numerically by writing the states in the z-basis as binary

numbers. We let spin-↓ be represented as binary 0, and spin-↑ be represented as
binary 1. For the purpose of generating an eigenbasis of |S, Sz; i⟩ the ordering
of the spins does not matter, so we may choose whichever will be the simplest
for the computation. For our case for example, we may chose the zeroth (we use
zero-indexing henceforth) bit to be the zeroth spin in a spin chain, the first to be
the first, and so on.

In the code implementation we will implement the basis states as a vector of
boolean arrays of length N , however one could also implement the basis elements
as integers directly. In any case we can associate each element with an integer
either directly or by converting the boolean array to an integer. We construct the
basis set then to be the integers from 0 to 2N − 1 in ascending order. We can now
calculate the Ŝz

tot eigenvalue for each of the basis elements. We can then do what
is called a stable sort of the elements with respect to the Ŝz

tot eigenvalue, which we
will denote as Sz. A stable sorting algorithm is one that preserves the ordering
of elements in the original list given that the parameter the sorting is based on
is equivalent [22]. The algorithm we will choose is merge-sort as it is built into
np.argsort. As an example we will consider the 4-spin basis, construct it first as
the integers from 0 to 15, then determine the Sz eigenvalue for every state, then
finally we perform merge-sort on the original list with respect to the Sz eigenvalue
for each state.

Original Basis
Index Basis Sz Eigenvalue

0 |0⟩ -2
1 |1⟩ -1
2 |2⟩ -1
3 |3⟩ 0
4 |4⟩ -1
5 |5⟩ 0
6 |6⟩ 0
7 |7⟩ 1
8 |8⟩ -1
9 |9⟩ 0

10 |10⟩ 0
11 |11⟩ 1
12 |12⟩ 0
13 |13⟩ 1
14 |14⟩ 1
15 |15⟩ 2

Sorted Basis
Index Basis Sz Eigenvalue Index in Block

0 |0⟩ -2 0
1 |1⟩ -1 0
2 |2⟩ -1 1
3 |4⟩ -1 2
4 |8⟩ -1 3
5 |3⟩ 0 0
6 |5⟩ 0 1
7 |6⟩ 0 2
8 |9⟩ 0 3
9 |10⟩ 0 4

10 |12⟩ 0 5
11 |7⟩ 1 0
12 |11⟩ 1 1
13 |13⟩ 1 2
14 |14⟩ 1 3
15 |15⟩ 2 0

We may use the results from the table to define the |Sz; i⟩ basis, where Sz is a
conserved quantum number for the model in consideration, whilst i is simply a
degeneracy index. As a note "degenerate" in this context does not mean that they
will have the same energy, rather that there are several states with the same Sz

quantum number. For the duration of this section we will take "degeneracy" of a
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basis state to mean that there are multiple states with the same set of quantum
numbers. We define the counting index i as the the "index in block" shown in the
table, which is simply the index the element appears in the list minus the block
start, which is the index where the first state with a given Sz quantum number
appears.

There are two reasons for why we construct the Sz basis this way. Firstly it
lets us use binary search to find a given state in the sorted basis. This algorithm is
very fast, specifically it is of order O(ln2(N)), where N is the number of elements
in the given block we search [22]. So if we implement our base operators (such as
S+
i ) as operators transforming elements in the z-basis into other elements in the

z-basis, we can find the element it was transformed into very quickly.
Secondly it lets us use less memory for the |S, Sz; i⟩ basis. We note that a

general quantum state may be written as a linear combination of the |Sz; i⟩ basis
due to it being complete. It would then be a linear combination of every Sz and
every i:

|ψ⟩ =
∑
Sz ,i

CSz ,i |Sz; i⟩ (3.1)

A general state would therefore require one coefficient for every state in the basis,
which for a N -spin-1

2
system is 2N states. So the memory required to store the N

elements in a general basis in terms of the z-basis would be a matrix of coefficients
of size 2N × 2N , where each column represents a basis state. However if the basis
we use is also an eigenbasis of Ŝz

tot then we may instead sum over only the elements
in the same Sz block, and not over every state. This massively reduces the memory
requirements of our basis, and will make our basis more efficient. So for instance
the elements of the (S, Sz) basis may be written as:

|S, Sz; i⟩ =
∑
j

Cj |Sz; j⟩ (3.2)

We note that deriving the coefficients Cj is quite difficult. We will calculate them
recursively using the Clebsch-Gordan (CG) coefficients [14], which are used to
couple two separate (S, Sz) basses, by which we mean we have a Hilbert space HA

with a |S, Sz; i⟩A basis, and a Hilbert space HB with a |S, Sz; i⟩B basis which we
want to combine into a single |S, Sz; i⟩ basis for the Hilbert space HA ⊗ HB. In
general the CG they look like

CG(J,M |j1, j2,m1,m2) = ⟨JM |j1m1j2m2⟩ , (3.3)

where J signifies the quantum number for Ŝ2
tot, and M signifies the quantum

number for Ŝz
tot. The same is true for j1, J2, m1 and m2. |JM⟩ is the coupled

state, whilst |j1m1j2m2⟩ = |j1m1⟩ ⊗ |j2m2⟩ is the uncoupled states. The CG
coefficients are tabulated in several numerical programs like for instance sympy for
python. The CG coefficients possess certain selection rules. For instance the inner
product is only nonzero when M = m1 + m2. It is also only nonzero whenever
|j1 − j2| < J < |j1 + j2|.

Suppose for instance we have derived a (S, Sz) basis for a system with N spins,
which lies in HA. we then add another spin which lies in HB. The one spin system
can be written trivially as a (S, Sz) eigenstate:
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Ŝ2 |↑⟩ = 1

2
|↑⟩ , Ŝz |↑⟩ =

1

2
|↑⟩ =⇒ |1

2
,
1

2
⟩ = |↑⟩

Ŝ2 |↑⟩ = 1

2
|↑⟩ , Ŝz |↑⟩ =

1

2
|↑⟩ =⇒ |1

2
,−1

2
⟩ = |↓⟩

(3.4)

We therefore have two uncoupled total angular momentum eigenstates, which we
can use CG-coefficients to couple. Every state in the n − 1 spin basis can be
combined with either |↑⟩ or |↓⟩, which in turn can be used to construct the n spin
basis, denoted as |S̃, S̃z; j⟩. Due to the selection rules for the CG coefficients each
one of those combinations |S, Sz; i⟩⊗|↑⟩ and |S, Sz; i⟩⊗|↓⟩ will only give a nonzero
CG coefficient when S̃z = Sz ± 1

2
, where sign depends on if the added spin is |↑⟩

or |↓⟩, and S̃ = S ± 1
2

and S̃ ≥ 0. Therefore we get two nonzero CG coefficients
for each combination of a n − 1 spin 1

2
state |S, Sz; i⟩ and a single spin 1

2
state,

with the exception of if S̃ = 0 where we only get 1. This is because for S̃ = 0
This does not tell us which of the degenerate states a given spin n − 1 state

should contribute to. In order to determine this we need to exploit Catalans
triangle [23]. This gives us a theoretical formula for the degeneracy of the states.
Furthermore we may determine the degeneracy index i from the Catalans triangle.
The degeneracy for a given total spin S at a given number of spins S is equivalent
to the number of paths there are in 3.1.1.

x

y

0 1 2 3 4 5 6
0

0.5

1

1.5

2
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3

Figure 3.1.1: Paths to a total spin S, with a given N

We can create a binary number for each path by starting at spin 1
2
. We then

define a path number by the following criterion. If the path goes from a node with
spin S to a path with spin S − 1

2
, then we label this binary 0. If instead it goes

up to S + 1
2

then we denote the state with binary 1. We can therefore calculate
the spin associated with a given path B with the equation:

S =
n−1∑
i

(−1)bi+11

2
, (3.5)
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where B0 is the zeroth bit of the binary number B, B1 is the first, and so on,
and n is the number of spins. By this construction there are an equal number of
path-numbers to a given spin S and number of spins n, which lets us associate
each state with the same S and Sz with a unique path. A valid path cannot end
with spin less than 0 nor can the path dip bellow zero at any point of the path.
Therefore our criterion for filtering out the potential paths is the following: If for
any binary number representing a path B, then the following inequality must be
satisfied:

∀m ∈ N, m < n− 1 :
m∑
i

(−1)Bi+11

2
≥ 0, (3.6)

To associate each path with some number we can do either of the following.
Either iteratively create every binary number which represents a valid path, or we
can create every binary number up to n− 1, and then filter out the invalid paths.
Note first that we can calculate the spin associated with a given path by summing
over the bits, adding 1

2
if the bit is 1, and subtracting 1

2
otherwise.

Having filtered out the invalid paths we now have a list of binary numbers rep-
resenting valid paths in acceding order by interpreting the list of binary numbers
as integers. Now we exploit a similar approach as we did when we created the Sz

basis with the states |Sz; i⟩ earlier. We sort the path numbers based on their cor-
responding spin according to equation 3.5. We can now determine the degeneracy
index i in the state |S, Sz; i⟩ by which path we needed to take in order to create it.
We can binary search for the path in the sorted set of all paths (limiting ourselves
to the block with the same S, as we did for the |Sz; i⟩ state). Now, suppose we
have a n − 1 spin 1

2
basis, and we add another spin which can either be |↑⟩ or

|↓⟩. We know the paths for the n − 1 spin basis, and furthermore we know for
example when adding the extra spin |↑⟩ to the n−1 spin state |S, Sz; i⟩ it will give
nonzero contribution to |S + 1

2
, Sz +

1
2
; k⟩ and |S − 1

2
, Sz +

1
2
; l⟩ (the latter only

getting a contribution if S is nonzero). To determine the degeneracy indices k
and l from the degeneracy index for the n − 1 spin state, i, let B be the binary
number associated with the path for |S, Sz; i⟩, which is determined by i. For the
first state we are increasing S by 1

2
which implies the binary number associated

with its path is B, with a single extra 1 appended to the end. The same is true for
the other state except we append a 0 instead. Now we can binary search for these
new binary numbers to get the degeneracy indices k and l. This is all numerically
implemented with the add_spin_to_system function in Diagonalizer.py. A sig-
nificant strength is that we only need to compute the spinbasis once for a specific
number of spins, as we have implemented a function to save the data to a file, and
another function to reimport the data. This lets us effectively precompute the
spinbasis and reuse it. A further note is that the spinbasis is represented in code
as a linear combination of |Sz; i⟩ states as shown in equation 3.2. Numerically it
is represented using the matrix formalism for basis states

ϕ⃗S,Sz ,i =


⟨Sz, 0 |S, Sz, i⟩
⟨Sz, 1 |S, Sz, i⟩

...
⟨Sz,M − 1 |S, Sz, i⟩

 =


C0

C1
...

CM−1

 , (3.7)
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where M is the number of degenerate states in the Sz basis for a given Sz.

3.1.2 Diagonalization of the H-matrix

Assuming we have created the |S, Sz; i⟩ basis, we can use it to derive the Hamilto-
nian matrix, or rather the Hamiltonian matrices, as each block will be independent.
We start out by filling in the equation for a Hamiltonian matrix in a given block
given in equation 2.23.

HS,Sz

i,j = ⟨S, Sz; i| Ĥ |S, Sz; j⟩ (3.8)

Due to the way that the operators in Ĥ are defined, we cannot easily evaluate
this inner product. We can get rid of this problem by exploiting the completeness
relation for the Sz basis: 1 =

∑
i |Sz; i⟩ ⟨Sz; i|.

HS,Sz

i,j =
∑
k,l

⟨S, Sz; i|Sz; k⟩ ⟨Sz; k| Ĥ |Sz; l⟩ ⟨Sz; l |S, Sz; j⟩ (3.9)

The matrix element HSz
kl = ⟨Sz; k| Ĥ |Sz; l⟩ is significantly simpler to calculate, as

constituent operators of the Hamiltonian matrix have these states as eigenstates
or they are ladder operators of the states. A final trick we may use is to replace
⟨S, Sz; i| and |S, Sz; j⟩ with a column vector and row vector respectively. This
gives us an expression for the entire matrix and not just one element.

HS,Sz =
∑
k,l


⟨S, Sz; 0|Sz; k⟩
⟨S, Sz; 1|Sz; k⟩

...
⟨S, Sz;L− 1|Sz; k⟩

 ⟨Sz; k| Ĥ |Sz; l⟩


⟨Sz; l |S, Sz; 0⟩
⟨Sz; l |S, Sz; 1⟩

...
⟨Sz; l |S, Sz;L− 1⟩


T

(3.10)

This expression can be written as a matrix product. We define the matrices ΦS,Sz

and HSz as:

ΦS,Sz

i ≡ ϕ⃗S,Sz ,i

HSz
ij ≡ ⟨Sz; i| Ĥ |Sz; j⟩ .

(3.11)

We will call ΦS,Sz the coefficient data matrix, which is defined such that the i’th
row of ΦS,Sz is the vector ϕ⃗S,Sz ,i, which is defined in equation 3.7. With this we
can rewrite equation 3.10 as:

HS,Sz = ΦS,SzHSzΦS,Sz
T
, (3.12)

where ΦS,Sz
T is the matrix transpose of ΦS,Sz . Note that the coefficient data

matrix is exactly how the basis data for a given S, Sz block is stored within the
code. It is a L ×M matrix, where M is the degeneracy of the |Sz; i⟩ states, and
L is the degeneracy of the |S, Sz; i⟩ states. We note that M is a function of only
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Sz whilst L is a function of only S. The Φ data matrices are generated when the
spin basis is initialized, and since the spin basis may be saved and reused we really
only need to calculate them once if the number of spins we are working with is
fixed. The HSz matrices needs to be calculated only once for each Sz. So for a N
spin 1

2
system we only need to calculate N + 1 HSz matrices. All the HS,Sz can

then be calculated by simple matrix products. We further note that the fact that
this approach uses matrix multiplication for most of the numerical calculations
will make it so that we can calculate it very quickly, even in python, as matrix
multiplication in numpy is very efficient due to it being based on BLAS/LAPACK
[24].

An additional exploit for the J-J ′ model is that the operator may be split into
Ĥ0 and Ĥ1, where Ĥ0 is only the nearest neighbour terms, whilst Ĥ1 is only the
second nearest neighbour terms. We write the total Hamiltonian as:

Ĥ = JĤ0 + J ′Ĥ1 (3.13)

Inserting this into the definition of HSz we get the following expression:

HSz
kl = J ⟨Sz; k| Ĥ0 |Sz; l⟩+ J ′ ⟨Sz; k| Ĥ1 |Sz; l⟩

HSz = JHSz
0 + J ′HSz

1

(3.14)

Inserting this into equation 3.12 yields the following matrix:

HS,Sz = JΦS,SzHSz
0 ΦS,Sz

T
+ J ′ΦS,SzHSz

1 ΦS,Sz
T

= JHS,Sz

0 + J ′HS,Sz

1

(3.15)

Since HS,Sz

0 and HS,Sz

1 are the same for second nearest neighbour model of a given
size, we only need to generate the matrices once. Then for any given J and J ′ we
can calculate the corresponding HS,Sz matrix by using equation 3.15. Note that
this does not speed up the diagonalization step. If we want the eigenbasis for a
given J-J ′ model with constants J and J ′, we cannot use the result from a J-J ′

model with different J̃ and J̃ ′ unless J̃
J
= J̃ ′

J ′ . However if we want to investigate
the properties of several different J-J ′ models with the same number of spins, the
block-diagonalization step may be made much more efficient using this approach.

Having generated the set of independent matrices through block diagonaliza-
tion the last step of the process is the actual diagonalization. Since the project
is implemented in python a natural choice is using np.scipy.eigh, as it is de-
signed to work with numpy arrays. It diagonalizes a given hermitian matrix, and
by default it returns the eigenbasis, which we need to calculate the fingerprint.

3.1.3 Derivation of space-group irreps

Most space groups (SG) of a quantum system S can be written as a semi-direct
product of the translation group T and the point group P :

S = T ⋊ P (3.16)
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Calculating the semi-direct product is much more complicated than calculating a
direct product. In order to calculate the SG-irreps we will follow a method from
[14], and implement it numerically. The procedure is quite involved, however the
general thing to recognize is that we may construct the irreps of the SG from the
irreps of the point group and the translation group. There are a few shortcuts
we may take along the way, mainly exploiting that the point group P is simply
{E,Π}, where the operator Π is the parity operator, which flips the x-axis, and
the fact that the resulting space group will be symmorphic, as there are no scew
axis or glide planes in 1D. The code implementation was written more general
such that with some additional work it would be applicable to symmorphic 2D
and 3D lattices as well, however we will focus on the 1D case.

In general we may write a space group element as {A|τ⃗}. Where τ⃗ is a trans-
lation vector and A ∈ P . The operator acts on a point in space r⃗ as such:

{A|⃗t}r⃗ = Ar⃗ + t⃗ (3.17)

Using this definition we may find the inverse of the space group element to be:

{A|⃗t}−1 = {A−1|A−1t⃗} (3.18)

In code these space group elements are implemented as objects, with member
functions for multiplication, inverse and exponentiation defined in code. Note
that in general τ⃗ need not be a translation element, however the pure translations
must be a subgroup of the space group. However, if the group is symmorphic then
τ⃗ ∈ T .

Since the 1D lattice is symmorphic, this property makes it simple for us to
construct the set of all space group elements as we can iterate over the point group
and the translation group elements. These operators are implemented in the code
such that when they are applied to a z-basis state |↑↓ ... ↑⟩, they transform the
state accordingly. The behaviour of the simple translation by the lattice constant,
a (which we will from now set equal to 1), is shown in 3.1.4. The translation shifts
a z-state into another z-state. This will be useful later in order to determine the
fingerprint when the SG-operators act on the GSM.

Figure 3.1.2: |ϕ⟩

Figure 3.1.3: T̂ |ϕ⟩

Figure 3.1.4: Drawing showing how the translation operator by one (T̂ ) trans-
forms a z-basis state. Note that the index of the spin is the order in which they
appear from left to right, starting at 0
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The SG class is called SpaceGroup. The object has a member function generate_irreps
which returns the irrep-data in a data class called IrrepData. The first step of the
process is generating the conjugacy classes for the space group. This is done by
the generate_conjugacy_classes member-function and it essentially partitions
the space group into a list of conjugacy classes by determining which elements
are conjugate to each other, according to the definition in 2.4.2. As an example
throughout the process we will use the the space group for the 8-site chain lattice
as an example.

The next step of the process involves determining how the k-vectors (wave
vectors) transform under the point group. We will denote the set of k-vectors
as K. The reciprocal lattice and the lattice always share the point group. The
k-vectors in 1d can be written simply as

ki =
i2π

N
, (3.19)

where N is the number of lattice sites. In general we would also divide by a
lattice constant a, however we set that equal to 1. This definition makes the ki
range from 0 to 2π. This makes numerics much simpler, however the conventional
choice for the first Brillouin zone is k ∈ [−π, π). We will use the more numerically
favourable interval in this section. We may convert our value to the conventional
broulin zone by subtracting by 2π for all k > π. Now we partition the set of k
vectors by how they transform under the point group. This is done by the member
function partition_k_space. We do this by calculating the "stars" of the wave
vectors. The star of a wave vector k is defined as such:

star(k) = {k′ ∈ K|∃A ∈ P, s.t : Ak = k′}, (3.20)

where equality is defined up to a reciprocal lattice vector G. For the 1D chain lat-
tice the stars will either have one or two k vectors. Furthermore we are interested
in systems with an even number of spins, as the odd will be frustrated systems,
and may therefore not be dimerized until N gets very large. If we furthermore
assume there are an even number of spins then we will get 2 + (N − 2)/2 stars.
We prove this by acting with Π on a general k vector:

k′ = Πk = −k (3.21)

−k is outside the range [0, 2π] so we enforce periodicity by adding 2π. So the star
will contain k (as it is equal to the identity operator acting on k) and k′. Generally
these are not equal, so the star has two elements, however when k = 0 or k = π,
we get k′ = k. For an even number of sites k = π will be a valid wave vector as
k(N/2) = π, and N/2 is a valid index when N is even. So we get one star for k = 0
and one for k = π. The other stars will have two elements star(k) = {k,−k}.
This results in the reciprocal lattice being partitioned into 2 + (N − 2)/2 stars.
In parallel with this we also calculate a set of unique point group elements which
were needed in order to generate the star, which in code is called unique_array.
For k /∈ {0, π} the we need both Π and E in order to generate the star, so the set
of unique arrays will be {E,Π}, however for k ∈ {0, π} we may choose the set to
be {E} or {Π}. So the array itself is not what is unique. It is rather the elements
that each of the elements produces a unique k′-vector when acting on the k-vector
used to generate the star.
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The next step in calculating the irreps is iterating over the stars and its cor-
responding unique array. For each star we need to find the so called K-group of
the star. This is the set of operators in the point group which leaves the elements
of the star invariant up to addition of a reciprocal lattice vector G. We then need
to find the irreducible representations associated with this star. This is one of the
most tricky parts of the procedure, and would be difficult to generalize to space
groups in 2D and 3D. The rest of the code is implemented such that if someone
would like to continue working on our project, they would only need to implement
this functionality. In 1D however, determining the little group and its irreps is
trivial. The stars with 2 elements are only invariant under the identity. The iden-
tity has only one irrep, and it is simply 1. The stars with one element on the other
hand are invariant under E,Π. This group has only two elements and is therefore
isomorphic to Z2. Z2 has two irreps: Γ1 and Γ2, where:

Γ1(E) = 1, Γ1(Π) = 1

Γ2(E) = 1, Γ2(Π) = −1
(3.22)

So as of now our function for getting the K-group and its irreps simply measures the
number of elements in the star and returns either the data for Z1 or Z2 depending
on if the number was two or one respectively.

The next step is constructing the irrep matrices. Suppose we partitioned the
1st Brillouin zone into m stars, where we cal the i-th star Stari. We call its
associated group Ki. There will be a number of irreps equal to the sum∑

i

len(Stari)× len(Irr(Ki)), (3.23)

where len(Stari) counts the number of elements in the star and len(Irr(Ki)) counts
the number of irreps in Ki. This results in:

len(Irr(S)) = 4 + (N − 2)/2 (3.24)

So to get every irrep we iterate over every star and every irrep of the associated
K-group. Suppose we pick a star denoted Star(k) and a particular irrep of K
denoted Γ. Then the resulting irrep of the space group D({A|t}) may be written
in terms of blocks:

D({A|t}) =

M11({A|t}) · · · M1q({A|t})
... . . . ...

Mq1({A|t}) · · · Mqq({A|t})

 (3.25)

Where q is the number of elements in star(k). The dimension of the matrix blocks
is the same as the irrep of Ki we chose. A property of the matrices Mij({A|t}) is
that they will have an orthogonality relation. In Star(k) we label each element kl.
Suppose we chose the i-th row of M . Then the following is true:

Mij({A|t}) =Mim({A|t})δjm
Aki = km

(3.26)

So the column index in the non-vanishing block in the i-th row is determined by
which vector in Star(k) the point group element A sends ki to. Finally the nonzero
matrices Mij are given by the following expression:
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Mij({A|t}) = D(B, σ)

D(B, σ) = exp(ik · σ)Γ(B),
(3.27)

where {B|σ} is another SG-element, k is the first element of the star(k) (and the
vector we used to generate it) and Γ is the irrep of K we chose earlier, and is thus
also a matrix. Finally we need a way of relating the space group elements {A|t}
and {B|σ}. For symmorphic space groups, {B|σ} is given by

{B, σ} = {Ai|0}−1{A|t}{Aj|0}, (3.28)

where Ai and Aj are the i-th and j-th element in unique_array. Note that i and
j are the same indices as in Mij. {B, σ} is therefore different for each block.
As mentioned, the the full justification for this method is given in [14]. With
this we are now able derive the space group for the 1D lattice of any length.
Furthermore, given a method in the code for deriving the irreps of a little group
K given only K, the code should be able to handle general symmorphic space
groups.

3.1.4 Calculating characters for J-J ′ model

Assuming we have numerically calculated the eigenstates of a J-J ′ Hamiltonian,
and deduced which states belong to the GSM. Furthermore we assume we have
managed to calculate the irreps of the space group. The irreducible represen-
tation decomposition is outlined in 3.1.3. This is implemented numerically in
Irrep_decomposition_method.py. The function get_fingerprint takes in the
GSM as a list and the irrep-data as the IrrepData class, which contains the ir-
reps, characters and conjugacy classes of the space group. The function returns
a np.ndarray of length equal to the number of irreps, where the i-th element of
this array corresponds to the number of times the i-th irrep occurs in the GSM
representation.

3.2 Analytical derivation of fingerprints
For the TC and DS models we are able to derive the ground states analytically.
However deriving their symmetry groups (or specifically the subgroup of the sym-
metry group which will have broken symmetries) is less straight forward than for
the space groups. As a note the space group is less relevant for the TC and DC
model. This is because we can remove translational symmetry for both these sys-
tems without it affecting the ground states. For the TC system we can do this by
redefining the Hamiltonian as:

HTC,no translation = −
∑
p

JpBp −
∑
s

JsAs, (3.29)

where Js and Jp are positive real numbers. This results in an a system without
translational symmetry, but with the same ground states. The groups generated
by Bp or As operators will not have broken symmetries either, as all the ground
states are +1 eigenstates of these operators. This leads us to investigating the U
and V loop operators instead. For the TC, TCL, DS and DSL system the following
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method will be used to identify precisely what group will be generated by their
respective U and V operators.

3.2.1 Determine a set of operators which should be in the
symmetry group

This is generaly a highly nontrivial task, however for both the TC and DS system
these relevant operators are known. For the TC model we need to form a group
with the Ux, Uy, Vx and Vy operators. For the DC model we need a group which
contains U+

x , U+
y , U−

x , U−
y , Vx and Vy. For the 1D ladder versions of these systems

we will need to investigate which of the operators survive when we remove the
periodicity in the y-direction. It will turn out that for all these systems we will
be able to analytically derive the fingerprints.

3.2.2 Generate a closed set with these elements

From 2.4 we know products must be closed under the group operations in order to
be a group. We can force this to be true if we start with elements which generate
the group. We can always have more than the minimum number of generators for
a group, so a nice starting point would be to use the operators we know should be
in the group and then exponentiate them and multiply them amongst each other
as shown in the following equation algorithm:

Let G = {g1, , g2, g3, ...gn} Be as set of generators for group G. Let ni be the order
of the generator gi. Then G = {g|g = glig

m
j , 0 < m < nm, 0 < m < nm gi, gj ∈

G}

Note that a single element of G might be written several ways in this approach.
The equations may be slightly simplified if it turns out that every one of the
generators are independent in the sense that they cannot be generated from any
of the other generators.

We can now prove analytically if what we derived is a group. We know the
group will be closed due to the last step, identity E will exist as any generator
to the power of its order will be E, and associativity follows from the fact that
subsequent application of operators is associative. Lastly the inverse must exist
as exponentiating any group element to its order results in the element becoming
E.

3.2.3 Derive multiplication rules for the group

In order to derive properties of the group it is helpful to require all group elements
to be in some standard form/order and then determining how the product of two
elements behave if we enforce that ordering on it.
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3.2.4 Determine which tabulated group the derived group
is isomorphic to

We will derive which tabulated group the group we derived is isomorphic to. The
TC and DS groups are of finite order, and it is the case that for any finite order
there exists only a finite number of non-isomorphic groups. In order to derive
which specific one our group corresponds to we can start out with a list of every
group that has the same order. Then we may calculate certain properties of our
group which is conserved under an isomorphism. This may for instance be the
number of conjugacy classes, the number of elements of every order, if the group
is abelian or not, and so on. The larger the order the more of these properties
we will need in order to single out a specific group. We may then filter out all
the tabulated groups which do not have the same properties as our derived group.
When we are left with only one we will have found the correct tabulated group.

3.2.5 Investigate properties of the tabulated group

We will want to find the irreducible representations or characters of the tabulated
group. In the software we will use for the filtering, GAP, it is possible to see the
character of any of the groups it has listed.

Furthermore, when the GAP group id is known, which we will find from the
filtering, we can use it to determine additional properties of the group, either
through GAP directly, or by searching databases listing the properties of groups.

3.2.6 Derive the GSM fingerprint

The method for deriving the fingerprint is the same that we use numerically, but
with two significant differences. In order to calculate the fingerprint we need to
know how the operators in the groups operate on the ground states. When this
is determined we may continue as usual. For these systems it will turn out that
we need not use the character formula given in Eq. 2.39 in order to determine
which irreps are present in the GSM representation. If we can show that the GSM
itself is an irrep, where a sufficient condition is that the characters for the GSM
matches exactly the characters of one of the irreps of the tabulated group which
the GSM is isomorphic to, then the fingerprint will simply be the integer array N ,
where the elements are written as Ni = δiα where Γα is the irrep with identical
characters as the GSM representation.
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4.1 Numerical results

4.1.1 Testing the numerical |S, Sz; i⟩ basis generation

Before using the |S, Sz; i⟩ basis, we should first validate that it has a few of the
properties we expect. We should also verify that it reproduces some of the bases
which we are able to calculate by hand. A simple first test is to verify that all the
basis states in a few spin bases with different numbers of N all have a norm of 1.
We are not manually setting the norm of the basis states equal to one, so all the
states having a norm of 1 would be a massive coincidence if it turned out that the
procedure was faulty. The function normtest() was implemented to test this and
the result was within tolerance. A even a basis of 14 spins had a norm that was
approximately equal to 1.

Next we may test if get_spin_system(2) produces the |S, Sz⟩ states (i-index
supressed as the states are unique). These states may be written in terms of the
z-basis as:

|S = 1, Sz = 1⟩ = |↑↑⟩

|S = 1, Sz = 0⟩ = 1√
2
(|↑↓⟩+ |↓↑⟩)

|S = 1, Sz = −1⟩ = |↓↓⟩

|S = 0, Sz = 0⟩ = 1√
2
(|↑↓⟩ − |↓↑⟩)

(4.1)

Running the function get_spin_system(2), and printing the result with
print_spin_system(), we get the following result:

|S=0.0, Sz=-0.0; i=0> [-0.70710678 0.70710678]
|S=1.0, Sz=-1.0; i=0> [1.]
|S=1.0, Sz=0.0; i=0> [0.70710678 0.70710678]
|S=1.0, Sz=1.0; i=0> [1.]

This result is as expected, as 0.70710678 ≈ 1√
2
. Note that the right-hand side is

ϕ⃗S,Sz ,i, as defined in equation 3.7. In this case the function did not need to deal

39
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with multiple states with the same quantum numbers. We may verify that the
function system correctly handles this by deriving the degenerate states of the
3-spin basis. The numerical result for the 3-spin basis is the following:

|S=0.5, Sz=-0.5; i=0> [ 0. -0.70710678 0.70710678]
|S=0.5, Sz=-0.5; i=1> [-0.81649658 0.40824829 0.40824829]
|S=0.5, Sz=0.5; i=0> [-0.70710678 0.70710678 0. ]
|S=0.5, Sz=0.5; i=1> [-0.40824829 -0.40824829 0.81649658]
|S=1.5, Sz=-1.5; i=0> [1.]
|S=1.5, Sz=-0.5; i=0> [0.57735027 0.57735027 0.57735027]
|S=1.5, Sz=0.5; i=0> [0.57735027 0.57735027 0.57735027]
|S=1.5, Sz=1.5; i=0> [1.]

The S = 3
2

states are unique, so we may focus on the S = 1
2

states instead. i = 0
corresponds to the path from S = 1

2
to S = 0 to S = 1

2
, and has the associated

boolean number B0 = 01. i = 1 corresponds to the path from S = 1
2

to S = 1 to
S = 1

2
, and has the associated boolean number B1 = 10. As expected B0 < B1.

There is only one 2-spin state with S = 0. This implies that the i = 1 states may
be written as:

|S =
1

2
, Sz =

1

2
; 0⟩

3
= CG(

1

2
,
1

2
, 0, 0,

1

2
,
1

2
) |S = 0, Sz = 0⟩2 × |↑⟩

= 1
1√
2
(|↑↓↑⟩ − |↓↑↑⟩)

|S =
1

2
, Sz = −1

2
; 0⟩

3
= CG(

1

2
,−1

2
, 0, 0,

1

2
,−1

2
) |S = 0, Sz = 0⟩2 × |↓⟩

= 1
1√
2
(|↑↓↓⟩ − |↓↑↓⟩),

(4.2)

where CG(J,M, j,m, j′,m′) is the Clebsch-Gordan coefficient. Note that to dif-
ferentiate spin bases with a different number of spins we include a subscript N to
the states indicating the number of spins. Comparing this to the numeric results
we find that the coeffients match. Now we may tackle the i = 1 states. In this
case, due to the selection rules for the CG-coefficents we find that each state has
two contributions:

|S =
1

2
, Sz =

1

2
; 1⟩

3
= CG(

1

2
,
1

2
, 1, 0,

1

2
,
1

2
) |S = 1, Sz = 0⟩2 × |↑⟩

+ CG(
1

2
,
1

2
, 1, 1,

1

2
,
1

2
) |S = 1, Sz = 1⟩2 × |↓⟩

≈ −0.408(|↑↓↑⟩+ |↓↑↑⟩) + 0.816 |↑↑↓⟩

|S =
1

2
, Sz = −1

2
; 1⟩

3
= CG(

1

2
,−1

2
, 1, 0,

1

2
,−1

2
) |S = 0, Sz = 0⟩2 × |↓⟩

+ CG(
1

2
,
1

2
, 1,−1,

1

2
,
1

2
) |S = 1, Sz = −1⟩2 × |↑⟩

≈ 0.408(|↑↓↓⟩+ |↓↑↓⟩)− 0.816 |↓↓↑⟩

(4.3)

This result corresponds to the numerical data, thus there is strong evidence that
the function handles the multiple states with the same quantum numbers correctly.
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We will get more evidence that the function creates the correct basis later when
we use it to create a block diagonal matrix for the Majumdar-Gosh model, and
correctly get an exact degeneracy in the ground state, as theoretically predicted.

Finally we should test the performance of the get_spin_system function, as it
will give us an upper bound to which systems are feasible to work with. The exact
times will vary depending on the computer, however the general growth should be
similar. As the size of the Hilbert space is exponential in the number of spins, we
would expect this function to be the same. The result when run on our computer
was the following:
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e 
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]

Runtime

Figure 4.1.1: Runtime for get_spin_system with respect to the number of spins

As expected the runtime is exponential in N . Doing a regression of the logarithm
of the data (excluding the first few data points to capture the large N behaviour)
lets us predict the runtime of get_spin_system given N . For the computer used
in this project the prediction function is

Runtime(N) ≈ exp(1.37N − 12.61) seconds, (4.4)

which correspond to a straight line when plotted on logarithmic y-axis, as the plot
in 4.1.1. This predicted the runtime for generating a 16 spin basis to be about 2.85
hours, which was fairly accurate. The theoretical times for a 18 and 20 spin basis
would then be about two days and a month respectively. However, as implemented
the computer would run out of memory long before that. This function is by far
the least efficient part of the project, and is probably the part which would benefit
the most by being converted to a compiled language, like C++. However due to the
fact that we can save the data from the |S, Sz; i⟩ basis this problem was not too
detrimental. As a side-note the 16 spin system was the largest basis we generated
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as part of the project, and due to the computer consistently crashing in the middle
of generating matrices for the this basis (most likely a memory issue), it was never
actually used in the end.

4.1.2 Matrix generation and diagonalization

As a test of the block diagonalization and diagonalization we check if the nu-
merical diagonalization of the MG-model gives an exactly degenerate eigenstate
as discussed in 2.2.1. We may either recalculate the |S, Sz; i⟩ basis, or import
one of the precalculated bases in the project file. Using this basis we can cal-
culate the matrices for the nearest- and second nearest neighbour term with the
generate_hamiltonian_matrix function, which takes in the number of spins, the
spin basis and a Hamiltonian operator. The Hamiltonian operator is implemented
such that it takes in a Sz quantum number and returns the HSz matrix, as defined
in equation 3.11. To get the HS,Sz

0 matrices we input H_heisenberg_chain and to
get HS,Sz

1 matrices we input H_second_nearest. generate_hammiltonian_matrix
returns the matrix blocks in a nested dict, where output[S][Sz] = HS,Sz . To scale
the dictionary of the HS,Sz

1 matrices by 1
2

we use scalar_mul_H_matrices, and to
add the two dictionaries use add_H_matrices. We finally use fulldiag to diago-
nalize the individual matrices, which runs scipy.eigh on all the individual blocks
in parallel. The data from the diagonalization is stored in a new dictionary. To
get get the full spectrum in a list we can use get_fullspectrum_sorted.
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Figure 4.1.2: Spectrum of the MG-model with 14 spins

The result for the MG-model with 14 spins is that the two lowest energy eigenstates
are exactly degenerate, with an energy eigenvalue of −5.25. Furthermore there is
a gap ∆ = 0.29925 between the ground states and the first exited state. Using a
scatter-plot we can show the spectrum for the MG model. In order to visualize
the data more clearly we can plot the energy of each state against the S quantum
number. We expect the lowest energy eigenstates to have S = 0 as the ground
states of the MG model are dimerized. Looking at figure 4.1.2 we can see that
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the ground state is indeed a S = 0 state, and from inspecting the spectrum data
earlier we know there should be two states at that single point. Looking closely
one can also see that the first exited state is a S = 1 state.

4.1.3 Spectrum analysis

We want to determine the fingerprint for the J-J ′-model when it is in a dimer
quantum phase. As mentioned in 2.2.1, the the J-J ′ model has two phases for
J ′/J ∈ [0, 1], those being the quantum critical phase, when J ′/J < Jc, and the
dimer phase when J ′ > Jc/J [3].

Determining which states in a finite model should be a part of the GSM or
not is generally a nontrivial task. They are generally not degenerate, and we only
say they are a part of the GSM in the sense that in the thermodynamic limit, the
states become degenerate. So in order to determine when the system is in the dimer
phase we will make the use of spectrum analysis similar to [25], and our knowledge
about the system. We start with our knowledge about the system. When J ′ = 0
we simply have the Heisenberg chain model. This is known to be quantum critical,
where the lowest energy eigenstate is a S = 0, Sz = 0 state, however the spectrum
is continuous, and the first exited states are not S = 0, Sz = 0 eigenstates. We
can reproduce this result numerically. When we diagonalize the Heisenberg chain
model with 12 spins (J = 1,J ′ = 0), we find that the lowest energy eigenstate
indeed is a S = 0, Sz = 0 eigenstate, whilst the next energy eigenstate is not.

At J ′ = 0.5J we have the Majumdar-Gosh model. As mentioned in 2.2.1,
the ground states of this model can be analytically derived, and are known to be
exactly degenerate (for an even number of spins). The ground states are both
S = 0, Sz = 0 eigenstates, and is in a dimer phase. So we know the phase at
two points in the phase space. For some value for J ′/J we must therefore have
a phase transition. In order to find it we will investigate the three lowest energy
eigenstates in the spectrum. In Fig. 4.1.3 we show the energy difference between
the ground state and the second lowest energy state, and the difference between
the second lowest energy and the third both with respect to J ′/J . This was done
for both 12 and 14 spins. The critical value Jc/J is marked in the figure by a
red vertical line. We can see that the behaviour before and after this point is
very different. Before the critical value there is no splitting between the second
and third lowest energy state. From closer spectrum analysis this shows that the
first exited states are highly degenerate, so the second lowest energy eigenstate
has the same energy as the third. After the critical value however, it is instead
another S = 0, Sz = 0 eigenstate which is the second lowest energy eigenstate.
This lets us define a criterion for when the system is in a dimer state. Whenever
the two lowest energy eigenstates are S = 0, Sz = 0 states in a finite size system,
we assume them to become degenerate in the thermodynamic limit, and form a
dimer phase.

Using this criterion lets us determine the critical value of a J-J ′-model for a
given N to high precision. To do this we use a bisection algorithm. We have
an interval for J ′: [0, 0.5J ], where we know the system is in a dimer phase for
J ′ = 0.5J , and we know it is not for J ′ = 0. Generally we want to have an interval
[a, b] where J ′ = a is not a dimer phase, but J ′ = b is. We then bisect the interval
[a, b] and diagonalize the system associated with with J ′ = c = a+b

2
. If the point
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Figure 4.1.3: Comparison of low energy splitting for J-J ′ model with respect to
J ′/J ratio
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c is a dimer phase, then the phase transition is in the interval [a, c]. If it is not
a dimer phase, then the phase transition is in the interval [c, b]. This procedure
may be repeated as many times as one wishes (until the interval is as short as the
numerical precision of the computer). Each iteration we halve the interval, so the
algorithm rapidly converges to the critical value. Note that this assumes phase
transition between two phases. Using this approach we can determine the phase
transition with respect to the number of spins. The results of these calculations
are shown in Fig. 4.1.4.
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Figure 4.1.4: Estimation of critical value from diagonalization with respect to
the number of spins

Our calculation approaches the high precision numerical estimate and is off by
only 0.02J . Considering we only used 14 spins this result is quite satisfying. With
this result we will from now on assume that for the systems with J ′/J > Jc will
have its two lowest energy eigenstates as its GSM.

4.1.4 Space group of the J-J ′ model

Using the method in section 3.1.3, we calculate the irreps of the space groups.
Before we use these characters we may apply the method and compare the result to
a known group. In general the finite 1D space group with reflection symmetry and
n lattice sites will be isomorphic to the dihedral group D2n [18]. We may therefore
test the functions for deriving the space group irreps by comparing the character
table of a small space group, for example a 4-spin chain, against the character
table for D8 in the GAP software. The numerical results for this derivation is
shown in section 4.1.1. Comparing the results with the listed character table for
D8 we find that they are identical. Having verified that the function is working
as intended, we may now use it to derive the characters for the J-J ′-model in the
dimer phase.
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Irrep {E|0} {E|1}, {E|3} {E|2} {Π|0}, {Π|2} {Π|1}, {Π|3}
Irrep 1 1 1 1 1 1
Irrep 2 1 1 1 −1 −1
Irrep 3 1 −1 1 1 −1
Irrep 4 1 −1 1 −1 1
Irrep 5 2 0 −2 0 0

Table 4.1.1: Numerically calculated character table for the group D8

4.1.5 Numerical fingerprint and analytical fingerprint for
the MG model

We will now investigate the fingerprint of the J-J ′ model with 8 spins for a few
different values of J ′ We may start with the MG-point, where J ′ = 0.5. Running
the program Irrep_decomposition_method.py with J = 0.5 and N = 8 yields
the fingerprint:

nα = [1, 0, 0, 1, 0, 0, 0] (4.5)

So the first irrep, which is the trivial irrep, and the fourth, which is another 1D
irrep, appears in the decomposition. Running the same program for N = 12 yields
a similar fingerprint:

nα = [1, 0, 0, 1, 0, 0, 0, 0, 0] (4.6)

Here too we get two 1D irreps, where one belongs to the trivial irrep and the other
belongs to the fourth. We also see a pattern in the number of irreps of 1D and
2D. There will always be four 1D irreps. We found an equation for the number
of irreps which is given in 3.23. The star of the k = 0 and k = π vector has
corresponding K-groups which are isomorphic to Z2, whilst the rest of the stars
have K groups isomorphic to Z1. In both cases these groups have only 1D irreps.
The dimension of the irreps depended on the dimension of the K group used to
construct it and the number of elements in the star of k. The stars of k = 0 and
k = π have only one element each and produces therefore 1D irreps. The stars
of the other k vectors on the other hand have two elements, which implies that
the corresponding irreps will be two-dimensional. So the irreps that appear in the
fingerprint of the N = 8 and N = 12 J-J ′ models at the Majumdar-Ghosh point
is the trivial irrep and the irrep corresponding to the irrep of the space group
constructed with k = π and the second irrep of the K-group (equal to the point
group), which transforms the point group as such:

Γ2(E) = 1, Γ2(Π) = −1 (4.7)

Before we relate this result to the fingerprint of the analytically derived ground
states of the MG-point we will investigate the fingerprint of the N = 12 J-J ′ model
for a few different values of J ′. Firstly we measure at J ′ = 0.45J . This could be
interpreted as a small perturbation away from the MG-point. We then do the
same for J ′ = 0.35J , and for J ′ = 0.25 where the system has just transitioned to
the dimer phase. As a final test we attempt to measure the fingerprint at J ′ = 0.
We do this by extracting the two lowest energy S = 0, Sz = 0 states. From the
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spectrum analysis we know the system is not in the dimer phase at that point,
however the exercise will turn out to be insightful. The resulting fingerprint for
all these cases is:

nα = [1, 0, 0, 1, 0, 0, 0, 0, 0] (4.8)

At first glance this result might seem strange, as the fingerprint seems to be the
same for both phases, however the reason for this behaviour will turn out to be
quite simple. It does however illustrate the importance of doing the spectrum
analysis. If we simply picked the two lowest energy S = 0 Sz = 0 without doing
so, one would come to the wrong conclusion that the fingerprint is the same for
the quantum-critical phase and the dimer phase. For the J ′ = 0 model we picked
a state to be in the GSM which should not be there. In order to investigate
why we get this result we may attempt to calculate the characters for the two
states separately. We are effectively making an ansatz that the ground states
will be eigenstates of the space-group operators. This is generally a good guess,
as the states have slightly different energy eigenvalues for most values of J ′ and
are therefore non-degenerate. In those cases if an operator commutes with the
operators we used to construct the basis (in this case that would be Ŝ2 and Ŝz)
then the resulting state will also be an eigenstate of that operator. This is generally
not true when we have degeneracy, as we may simply create new eigenstates from
the span of the old eigenstates which will not have this property.

Using this ansatz to calculate the fingerprint of the two lowest energy S =
0, Sz = 0 eigenstate we determine that with the exception of at the MG-point,
the lowest energy eigenstate was automatically an eigenstate of the space group
and belonged to the trivial irrep, whilst the second lowest energy S = 0, Sz = 0
eigenstate transformed under the SG like the fourth irrep. We may further test
other values of J ′ by diagonalizing a set of systems with J ′/J in the range [0, 1]. We
pick out the lowest energy S = 0, Sz = 0 eigenstate in the spectrum and determine
whether it transforms like the first or fourth irrep of the SG. We do the same for
the second lowest energy S = 0, Sz = 0 state. The result of which is shown in Fig.
4.1.5. As predicted the two lowest energy S = 0, Sz = 0 eigenstates are indeed
automatically eigenstates of the space group, the only exception for which is the
MG-model. We could also construct those states for the MG-model, however it
would not automatically be the case. We see that right around the MG-point the
eigenstate of the fourth irrep briefly becomes the lowest energy eigenstate.

Lastly we will visualize how the ground states of the J-J ′-model in the dimer
phase transform under the SG transformations. We have already shown that
the GSM has the same fingerprint in a general point in the dimer phase as in
the GSM, however the real strength of the fingerprinting method is that we may
relate the results of the numerical diagonalization to simpler pictures which do not
exactly resemble the ground state, however the simplified picture will transform
under the SG like the numerically calculated ground states. In order to do so we
start with the ground states of the MG-model which are analytically derivable.
These are visualized in figure 2.2.2. Using the figure we may apply the translation
operator {E|a}, which shifts the lattice by one times the lattice constant. This
transformation is visualized in fig 4.1.6.
Looking at the figure it is clear that the states break translational symmetry, as
translating the lattice by r = 1 transforms the first state into the second and vice
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Figure 4.1.6: Applying a shift by the lattice constant a to the state |ϕ1⟩.

versa. This may be extended to

{E, r} |ϕ1⟩ = |ϕ2⟩ ,
{E, r} |ϕ2⟩ = |ϕ1⟩ ,

(4.9)

where r = N , and N is odd. Operating on one ground state with the point group
element Π will also transform the state into the other. In general a space group
element {A|Na} will switch between the two states if N is odd and A = E, or N is
even and A = Π. Otherwise it will act as the identity operator. With this we could
derive the GSM representation for the space group. One potential complication
however is that these states are in general not orthogonal for a finite system. In
the thermodynamic limit the overlap between the states goes to zero, however for
a finite number of sites there is some overlap between the states. We want an
orthonormal basis for the representation, and furthermore converting the states
|ϕ1⟩ and |ϕ2⟩ into eigenstates of the space group would be desirable.
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|ψ1⟩ =
1√
2
(|ϕ1⟩+ |ϕ2⟩)

|ψ2⟩ =
1√
2
(|ϕ1⟩ − |ϕ2⟩)

(4.10)

Let Â be one of the SG-elements which we determined would not switch between
the |ϕ1⟩ and the |ϕ2⟩ state and let B̂ be one of the SG-elements that do. We
operate with these operators on |ψ1⟩ and |ψ2⟩:

Â |ψ1⟩ =
1√
2
(Â |ϕ1⟩+ |Âϕ2⟩)

=
1√
2
(|ϕ1⟩+ |ϕ2⟩) = +1 |ψ1⟩

B̂ |ψ1⟩ =
1√
2
(B̂ |ϕ1⟩+ B̂ |ϕ2⟩)

=
1√
2
(|ϕ2⟩+ |ϕ1⟩) = +1 |ψ1⟩

Â |ψ2⟩ =
1√
2
(Â |ϕ1⟩ − |Âϕ2⟩)

=
1√
2
(|ϕ1⟩ − |ϕ2⟩) = +1 |ψ2⟩

B̂ |ψ1⟩ =
1√
2
(B̂ |ϕ1⟩ − B̂ |ϕ2⟩)

=
1√
2
(|ϕ1⟩ − |ϕ2⟩) = −1 |ψ2⟩ .

(4.11)

From this we may conclude that the first ground state |ϕ1⟩ transforms under the
SG-transformations like the trivial irrep. Proving that the second ground states
belongs to the fourth 1D irrep is more tricky. Recall that the fourth 1D irrep of
a 1D space group with an even number of lattice sites was constructed from the
star of k = π, and the second irrep of the associated little group K = {E,Π}. We
may therefore write this irrep as:

M({A|t}) = D(B, σ) = D(A, t)

= exp(iπ · t)Γ(A),
(4.12)

This equation is a simplification of 3.27, where we exploit that the irrep will
only contain one block, as the star of k = π only has one element, and that
{A|t} = {B|σ} as Ai and Aj in equation 3.28 are both the identity.

exp(iπ · t) =

{
−1 when t is odd,
1 when t is even.

(4.13)

Γ(A) =

{
1 when A = E,

−1 when A = Π
(4.14)

Combining the two equations we get:
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M({A|t}) =


−1 when A = E and t is odd
−1 when A = Π and t is even
1 Otherwise

(4.15)

This implies that the |ϕ2⟩ state belongs to the irrep of the space group constructed
by the star of k = π, and the second irrep of its associated little groupK = {E,Π}.
This fingerprint matches the numerical data for the J-J ′ model in dimer phase (for
12 and 8 spins), as we found that the representation of those GSM’s contained one
instance of the trivial irrep and one instance of the irrep generated by k = π, and
the second irrep of its associated little group K = {E,Π} just like the analytical
results for the MG GSM. Thus the MG-ground states may be used to picture the
behaviour of a the ground states of all the GSM’s for the J-J ′ model in the dimer
phase, even though they are exact eigenstates of only the MG point.

4.2 Analytical results

4.2.1 TC model

4.2.1.1 The UV-group

The equations for the U-operators and V-operators are given in equations 2.13
and 2.14 respectively. These operators have the property that when Ux and Vy, or
Uy and Vx are moved past each other, they pick up a −1 phase shift. Therefore,
in addition to all our other elements, we will need to include a −1 phase shift as
a group operator. We use this to define a group element as follows

GUV = {g = (b0, b1, b2, b3, b4) | ∀i, bi are booleans}
Ug = (−1)b0U b1

x U
b2
y V

b3
x V b4

y

(4.16)

We write an abstract group element as an array of five booleans and associate
this abstract group element with its operator in the GSM vector space, which is
given by Ug. In this notation, exponentiating the group elements to the zeroth
order yields the identity element, which is 1. Note that a standard ordering of the
operators must be chosen. This order can be arbitrary, but it must be consistent
to differentiate the anticommuting elements. We now need to define the binary
group operator. We do so by setting up two group elements in the Ug form and
moving the operators that are in the wrong order to the standard form. This is
shown in equation 4.17. Note that ⊕ signifies the binary XOR operator, and &
signifies the binary AND operator.

Ug ∗ Ug′ = (−1)b0U b1
x U

b2
y V

b3
x V b4

y (−1)β0Uβ1
x Uβ2

y V β3
x V β4

y

= (−1)b0⊕β0⊕(b3&β2)⊕(b4&β1)U b1⊕β1
x U b2⊕β2

y V b3⊕β3
x V b4⊕β4

y

(4.17)

We can see from the equation that the multiplication rules for Ux, Uy, Vx, and
Vy are quite simple, involving only the XOR operator due to its equivalence to
addition mod 2. However, the −1 term is slightly more complex. It is essentially
a sum of four sources of −1 phase shift. This phase shift can come from b0 or
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β0, or it can result from moving either a Ux operator past a Uy operator or vice
versa. The "And" terms in the exponents handle the latter case. For example, if
there is both a Vx operator in Ug and a Uy operator in Ug′ , then b2&β3 = True.
Using the multiplication rules for the operators, we can define the abstract group
multiplication as follows:

g ∗ g′ = (b0 ⊕ β0 ⊕ [b3&β2]⊕ [b4&β1], b1 ⊕ β1, b2 ⊕ β2, b3 ⊕ β3, b4 ⊕ β4) (4.18)

With the group element and group order defined, we can now prove that this is
indeed a group. For it to be a group, the four group axioms must be satisfied:
closure, associativity, the existence of an identity element, and the existence of an
inverse for every element.

The group is closed because every combination of five binary numbers forms
a valid group element, and the multiplication defined in 4.18 uses only boolean
operators, which cannot produce anything other than another boolean value. The
group is associative because it is based on the successive application of operators,
which is inherently associative. The identity element of the group is (0, 0, 0, 0, 0).
Lastly, the inverse of every element exists. This can be verified by examining the
multiplication table in figure 4.2.1 or by noting that every element is either its own
inverse or results in (−1, 0, 0, 0, 0) when squared. If an element g squared equals
(−1, 0, 0, 0, 0), then g3 must be the inverse of g. Therefore, every element has an
inverse, thus satisfying the last group axiom.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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1 0 3 2 5 4 7 6 9 8 111013121514 1 0 3 2 5 4 7 6 9 8 111013121514
2 3 0 1 6 7 4 5 1011 8 9 14151213 2 3 0 1 6 7 4 5 1011 8 9 14151213
3 2 1 0 7 6 5 4 1110 9 8 15141312 3 2 1 0 7 6 5 4 1110 9 8 15141312
4 5 6 7 0 1 2 3 12131415 8 9 1011 4 5 6 7 0 1 2 3 12131415 8 9 1011
5 4 7 6 1 0 3 2 13121514 9 8 1110 5 4 7 6 1 0 3 2 13121514 9 8 1110
6 7 4 5 2 3 0 1 141512131011 8 9 6 7 4 5 2 3 0 1 141512131011 8 9
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Multiplication Table

Figure 4.2.1: Multiplication table for the UV-group
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The multiplication table for the group was calculated in Python as described in
2.4. For easier visualization, each group element is assigned a number using the
formula n =

∑4
i=1 2

i−1, and a color representing its phase (white for +1, gray for
−1). This allows for easier distinction between the phase and the operators, and
it will later enable us to define a homomorphism to an underlying group.
To learn more about the UV-group, including its irreducible representations, we
may search a database of groups. We know the UV-group is of order 32, as the
group elements consist of 5 booleans that can each take two values, yielding a
group size of 25. The challenge is that for groups of order 2n, there are many
isomorphically different groups. Specifically, there are 51 groups of order 32, and
the UV-group will be isomorphic to one of them. To determine which one, we
will derive certain properties of the UV-group to filter out groups it cannot be
isomorphic to. This process is conducted using the programming language GAP
[17].

To derive the tabulated group to which the TC is isomorphic, we will start with
every group of order 51 and filter for properties that are easy to derive and verify
in GAP. First, the UV-group is non-abelian, reducing the number of candidates to
44. The UV-group has a minimum number of generators equal to 4. This can be
easily seen from the Ug form of the group elements, as the operators Ux, Uy, Vx,
and Vy can be exponentiated to generate every other group element. The −1 phase
shift does not need to be a generator, as it can be generated from the others. For
instance, (UxVy)

2 = −1. Moreover, we cannot have fewer than four generators, as
removing any of the generators Ux, Uy, Vx, or Vy makes it impossible to generate
the whole group. Filtering for groups with a minimum of four generators leaves
us with only four possible candidates.

To further refine the search, we derive the conjugacy classes of the UV-group.
Conjugacy classes help in limiting the candidates by comparing the total number
of conjugacy classes in the UV-group to those in the candidates. The result of sep-
arating the group elements into conjugacy classes yields 17 classes, which narrows
down the candidates to two. Finally, we examine the number of self-inverse ele-
ments of the UV-group. This can be determined by looking at the multiplication
table and counting how many times the identity element occurs on the diagonal.
It turns out that 20 of the 32 elements are self-inverse, leaving us with a single
group. In GAP, this group is Smallgroup(32,49), also known as “The + type
extraspecial group of order 25”.

Extraspecial groups have the property that the center, derived subgroup, and
Frattini subgroup all coincide [26]. This is evident from the multiplication table
for the UV-group. The only two elements that commute with every element are
1 and -1, making them the elements of the center. Furthermore, it can be seen
from the multiplication table that 1 and -1 are the only results of the operation
x−1y−1xy for all x, y ∈ G. Therefore, they are the only elements in the derived
subgroup. The same holds for the Frattini subgroup, as 1 and -1 can both be
generated by the other four generators, but any other element can also be used as
a generator. These are not formal proofs, but we know them to be true since the
UV-group is isomorphic to the extraspecial + group of order 32.

Knowing the group allows us to use the tabulated character table for the group
in GAP to derive the fingerprint of the UV-group. In general, every property listed
for the Smallgroup(32,49) group in GAP now applies to the UV-group.
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Before moving on, we will note that any choice of loops in the Ux, Uy, Vx, and
Vy operators (if they have the same parity) is equally valid. The UL operators are
composed of σx

i operators with loops on the lattice. We demonstrated this in Fig.
2.2.4, where we deformed loop A into loop B. This implies that the group of all
loop operators in the lattice can be written as a direct product of the U-group and
all the {E,Bp} operators. The analogous statement is true for the dual-lattice
loops Vx and Vy and the star operator groups {E,As}. These relations are shown
in the following equations:

GAll lattice loops = GU ×p∈P\{p̃} {E,Bp}
GAll dual-lattice loops = GV ×s∈S\{s̃} {E,As}

GAll loops = GUV ×p∈P\{p̃} {E,Bp} ×s∈S\{s̃} {E,As}
(4.19)

The group of all loops on the lattice and dual-lattice combined can be written
as a direct product (×) of the UV-group and the groups of As and Bp operators.
Note that in the notation for the direct product, we are taking the direct product
over every star s in the set of stars S, and every plaquette p in the set of plaquettes
P , with the exception of a single plaquette and a single star. This is because the
stars and plaquettes are not completely independent. If they were, we would only
have a single ground state. We can remove any one single Bp operator, as it can be
written as a product of all the other Bp operators:

∏
p∈P\p̃Bp = Bp̃. The same is

true for the stars, so in conclusion, we remove any one of the stars and plaquettes,
and the direct product becomes correct.

Irreducible representations of direct product groups are simple to derive; how-
ever, in this case, we need not do that. We know that the ground state will belong
to the trivial irrep of all the {E,As} and {E,Bp} groups, as the ground states
are the +1 eigenstates of all these operators. Therefore, we can choose just four
Ux, Uy, Vx, and Vy operators and ignore the rest. Furthermore, we can choose
these operators to be particularly simple, such as a straight loop in the x-direction
for Ux and Vx, and similarly in the y-direction for Uy and Vy. This will slightly
simplify the coming analysis.

Lastly, we can investigate an alternative way of looking at the UV-group.
We have elected to include the −1 element in the group; however, this is not
strictly necessary. Let’s call this underlying group HUV . This is now considered
an abstract group whose elements are defined as

HUV = {(b1, b2, b3, b4)|bi are booleans ∀i}. (4.20)

The group is essentially counting how many operators there are of each type
in a general UV-group element, ignoring the −1 sign. With this simplification,
the group multiplication becomes much simpler, as we no longer need to account
for the −1 phase shift that can occur when certain group elements are exchanged.
The group should then have the same multiplication rules as the UV-group but
with the b0 bit removed. This implies

g, h ∈ HUV , g ∗ h ≡ g ⊕ h (4.21)

where ⊕ is the element-wise XOR. First of all, this is a group for the same reason
that the UV-group is a group. Secondly, this group is Abelian. This is because
the four booleans are completely independent, and because the XOR operator is
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commutative. Furthermore, every element is self-inverse. This can be derived
analytically or can simply be seen from the multiplication table of the UV-group,
which I calculated in python. The multiplication is shown in Figure 4.2.2.
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 (h

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14

2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13

3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12

4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11

5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10

6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9

7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8

8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6

10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5

11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4

12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3

13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2

14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Multiplication Table

Figure 4.2.2: Multiplication table for HUV

This is sufficient information to conclude that HUV
∼= (Z2)

4, i.e., the HUV group is
isomorphic to the direct product of four Z2 groups. The reason this all still makes
sense is because we can incorporate the −1 anticommutation by treating the HUV

group as the projective linear group (PGL) of the UV-group, which would then be
called a general linear group. This concept is defined in Section 2.4.2. Therefore,
there must exist a homomorphism between GUV and HUV . How these groups are
related is given in Equation 2.35, which, when we insert GUV for the general linear
group, HUV for the PGL, and F = {E,−E}, we get

GUV (GSM)

{E,−E}
= HUV (GSM), (4.22)

which is indeed satisfied if we define the homomorphism to be the removal of the
first bit from a group element g ∈ GUV . This is shown by the following equation

∀g ∈ G : h[g] = h[(b0, b1, b2, b3, b4)] = (b1, b2, b3, b4). (4.23)

We can now treat the U and V operators as a projective representation of the
PGL. This represents a significant change from before. Previously, we could treat
the U and V operators as themselves being group elements (although formally
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they would also be representations of the group in this case). Now, however, we
need to treat the operators Ug not as group elements themselves, but instead as
representations of group elements Γ(g) for g ∈ G. These representations will not
satisfy the usual representation criterion as given in equation 2.30. Instead, they
will satisfy the relation 2.35. In this case, ω is either +1 or −1. We can derive a
formula for ω by considering when we get a −1 phase shift in the UV-group (for the
elements without a −1 phase). This can be taken directly from the multiplication
formula for the UV-group in equation 4.17. Thus, we get that:

ω(g, h) = (−1)(h1&g4)⊕(h2&g3) (4.24)

Using this formula, we can calculate ω for any two elements in the group. I im-
plemented this in Python, and the result is shown in Figure 4.2.3.
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1
1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1
1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1
1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1
1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1
1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1
1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1
1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1
1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1

Omega Matrix

Figure 4.2.3: Omega matrix showing phase change when commuting elements

An interesting detail arises when comparing the multiplication table of the UV-
group, the multiplication table of the PGL, and the ω-phase. We find that the
pattern of the ω-phase can be seen in the multiplication table of the UV-group.
If we simply remove the −1 phase in the multiplication table of the UV-group,
we obtain the multiplication table of the PGL. This formally proves that this is
a homomorphism, as removing the phase maps the elements to elements in the
projective group in a way that preserves the group multiplication.
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4.2.1.2 Characters of UV group

Now let’s derive the effect of the UV-operators on the GSM. We will start by
defining the state with loop parity numbers (+1,+1). Since the parity can only
be +1 or −1, we will from now on denote the two simply as + or −, respectively.
We define the |+,+⟩ ground state first.

|+,+⟩ =

(∏
i

Pi

)
|↑↑↑ . . . ↑⟩ (4.25)

where Pi are the projection operators onto Bp = 1. Since Pi are composed of
only Bp operators, the operator (

∏
i Pi) will commute with all the operators in the

UV-group. Thus, we define the |+,+⟩ state as the projection of the no-loop (all
spin-up) state onto the Bp = 1 ∀p subspace. Now, we operate on this state with
Ux.

Ux |+,+⟩ = Ux(
∏
i

Pi) |↑↑↑ ... ↑⟩

= (
∏
i

Pi)Ux |↑↑↑ ... ↑⟩

= |−,+⟩

(4.26)

Since Ux |↑↑↑ . . . ↑⟩ is a loop state with parity (−,+), we arrive at the fact that
Ux |+,+⟩ = |−,+⟩. The same proof holds for Uy |+,+⟩ = |+,−⟩. Furthermore,
since the Ux and Uy operators are self-inverse, we find that Ux |−,+⟩ = |+,+⟩ and
Uy |+,−⟩ = |+,+⟩. Thus, the Ux operators toggle the parity of the ground states.
Now we are left with deriving Vx |+,+⟩. This turns out to be quite simple, as a
similar method of proof can be used.

Vx |+,+⟩ = Vx(
∏
i

Pi) |↑↑↑ ... ↑⟩

= (
∏
i

Pi)Vx |↑↑↑ ... ↑⟩

= (
∏
i

Pi) |↑↑↑ ... ↑⟩

= |+,+⟩

(4.27)

The crucial detail to notice here is that |↑↑↑ . . . ↑⟩ is an eigenstate of Vx and
Vy with eigenvalue 1. This is because |↑↑↑ . . . ↑⟩ is composed entirely of spin-up
particles, so when the σz

i operators comprising Vx and Vy act on it, they do not
transform the state or impart any −1 phase shifts.

This is enough information to derive the expectation value of any group element
in the GSM. However, to simplify derivations, I will also derive the behavior of Vx
and Vy on the other states.
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Vx |−,+⟩ = VxUx(
∏
i

Pi) |↑↑↑ ... ↑⟩

= (
∏
i

Pi)UxVx |↑↑↑ ... ↑⟩

= (
∏
i

Pi) |↑↑↑ ... ↑⟩

= |−,+⟩

(4.28)

Vx |+,−⟩ = VxUy(
∏
i

Pi) |↑↑↑ ... ↑⟩

= (
∏
i

Pi)− UyVx |↑↑↑ ... ↑⟩

= −(
∏
i

Pi) |↑↑↑ ... ↑⟩

= − |+,−⟩

(4.29)

From these two equations, we see that the ground states are eigenstates of the
V-operators. Furthermore, the eigenvalues are the same as the parity number of
the state in the opposite axis.
Now that the effect of the operators on the ground states has been determined,
we can derive the characters of the GSM. The character of a group element can
be written as

χ(g) = Tr(Γ(g))

= ⟨+,+|Ug |+,+⟩+ ⟨−,+|Ug |−,+⟩
+ ⟨+,−|Ug |+,−⟩+ ⟨−,−|Ug |−,−⟩
= ⟨Ug⟩+,+ + ⟨UxUgUx⟩+,+⟨UyUgUy⟩+,+ + ⟨UyUxUgUxUy⟩+,+,

(4.30)

where ⟨Ug⟩(+,+) = ⟨+,+|Ug |+,+⟩. As a small note, the operators are unitary (by
definition), therefore U †

x = U−1
x = Ux since Ux is self-inverse. On the other hand,

(UxUy)
−1 = UyUx. To derive the characters, we first note that the characters of

any group are class functions, which means that any two group elements in the
same class have the same character. Secondly, we can simplify the derivation of
the characters by noting that the expectation value of any group operator Ug that
contains either Ux or Uy is zero. Furthermore, for any other group element Ug′ ,
the expectation value ⟨U−1

g′ UgUg′⟩ = 0. I will now prove this fact.
Assume g ∈ G, where g = (b0, b1, b2, b3, b4), and either b1 = 1 or b2 = 1 (or both).
Then:

⟨+,+|Ug |+,+⟩ = c ⟨+,+| |(−1)b1 , (−1)b2⟩⟩ = 0 (4.31)

where c is either +1 or -1. This evaluates to zero because |+,+⟩ ≠ |(−1)b1 , (−1)b2⟩
(we assumed either b1, b2 are not both zero by assumption), so orthogonality
implies the inner product is 0. Now let g′ ∈ G. Then

⟨U−1
g′ UgUg′⟩ = ⟨cUgU

−1
g′ Ug′⟩

= c⟨Ug⟩ = 0.
(4.32)
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These proofs both rely on the fact that commuting two Ug operators will only
result in a possible sign change. This can be seen by looking at the multiplication
rules for the UV-group shown in 4.17. Knowing this, we can go back to deriving
the characters of the UV-group. The only five conjugacy classes that are not zero
by this fact alone are {1}1, {−1}, {±Vx}, {±Vy}, and {±VxVy}. Inserting either
1 or −1 into the character equation 4.30 we get χ(1) = 4 and χ(−1) = −4. Next,
we derive the characters for the last three classes. To make the equations more
readable, I have suppressed the (+,+) notation in ⟨Ug⟩(+,+). However, it is still
implied.

χ(Vx) = ⟨Vx⟩+ ⟨UxVxUx⟩+ ⟨UyVxUy⟩+ ⟨UyUxVxUxUy⟩
= ⟨Vx⟩+ ⟨Vx���UxUx⟩ − ⟨Vx���UyUy⟩ − ⟨Vx������UyUxUxUy⟩
= ⟨Vx⟩ − ⟨Vx⟩ − ⟨Vx⟩+ ⟨Vx⟩ = 0 (4.33)

χ(Vy) = ⟨Vy⟩+ ⟨UxVyUx⟩+ ⟨UyVyUy⟩+ ⟨UyUxVyUxUy⟩
= ⟨Vy⟩ − ⟨Vy���UxUx⟩+ ⟨Vy���UyUy⟩ − ⟨Vy������UyUxUxUy⟩
= ⟨Vy⟩ − ⟨Vy⟩ − ⟨Vy⟩+ ⟨Vy⟩ = 0 (4.34)

χ(VxVy) = ⟨VxVy⟩+ ⟨UxVxVyUx⟩+ ⟨UyVxVyUy⟩
+ ⟨UyUxVxVyUxUy⟩

= ⟨VxVy⟩ − ⟨VxVy���UxUx⟩ − ⟨VxVy���UyUy⟩
+ ⟨VxVy������UyUxUxUy⟩

= ⟨VxVy⟩ − ⟨VxVy⟩ − ⟨VxVy⟩+ ⟨VxVy⟩ = 0 (4.35)

In conclusion, we find that the character χ(c) for any class c, with the exception
of {1} and {−1}, is 0. We can now compare this result with the tabulated group
in GAP. It turns out that the four-dimensional irreducible representation of the
tabulated group has characters that are exactly the same as the representation we
derived for the UV-group. This result is particularly noteworthy for two reasons.

Firstly, it means that the fingerprint is trivial to derive. The 4D irrep of the
tabulated group occurs once in the irrep decomposition of the UV-group represen-
tation on the GSM. Since the GSM is four-dimensional, there are no other irreps
that also contribute.

Secondly, this explains the degeneracy of the GSM from a group-theoretical
perspective. The GSM transforms under the group transformations like the four-
dimensional irreducible representation of the UV-group. This also implies that the
GSM spontaneously breaks the symmetries of the UV-group; otherwise, we would
expect the character decomposition to result in the group transforming under the
group transformations like a direct sum of four of the trivial irreps. As a final
note, the ground states transforming like an irrep of some group was mentioned
already in the founding paper by Kitaev [9]. So we have reproduced that result
and found a specific group that gives rise to this irrep.

1E = 1
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4.2.2 TCL model

The TCL model is very similar to the TC model; however, the removal of the
periodicity in the x-axis will naturally change the behavior of the system. Firstly,
let’s investigate the ground states of the TCL model.

4.2.2.1 Ground States and the UV-Group

The argument for the number of ground states for the TC-model relied on how
many topologically distinct loops there were on the lattice. That is, how many
types of loops there are that cannot be deformed into each other by successive
application of Bp operators. It turned out that for each direction, we had a loop-
parity number (+1 or −1), which indicated if a loop state wound an even or odd
number of times around a given axis.

The ladder model is not periodic in the y-direction. The Uy operator from
before no longer commutes with the star operators due to them only sharing a
single spin (which results in anticommutation). This, in turn, means that we have
to remove Uy as one of the generators of the group. It also means that we only
have one parity number, which counts if the loop winds an even or odd number of
times around the x-axis. This also removes one of the loop parity numbers, which
in turn results in there only being two loops that cannot be deformed into each
other by the use of Bp operators. This implies there are only two ground states,
one for each loop. We call these ground states |+⟩ and |−⟩.

We will now consider the Vy operator. It turns out that this operator will
remain as a symmetry operator for the group. This is because it consists of σz

i

operators, so it commutes trivially with the As operators. For any Bp, it shares
either two or no spins, so it will also commute with Bp.

So our current working group should be generated by Ux, Vx, and Vy. However,
this is actually more complicated than necessary. Recall for the UV-group that
the reason we could discard all Ux and Uy loops that were different from the ones
we chose was because the UV-group is really a subgroup of a group of all loops
which contains all the non-commutative behavior. It turns out that we can, by
the same argument, remove the Vx operator and instead include it in an analogous
direct product at the end. This is because Vx commutes with both Vy and Ux.
Therefore, we can write the group generated by Ux, Vx, and Vy, which we will call
G′

UV,reduced, as a direct product of the group generated by Ux and Vy (which we
will call GUV,reduced) and the group {E, Vx}.

We will now derive what group GUV,reduced should be. We start by defining
a general unitary operator of GUV,reduced as given in equation 4.36. As for the
UV-group, the ordering here is strict.

Ug = (−1)b0U b1
x V

b2
y

where g = (b0, b1, b2)

and b1, b2, b3 are booleans
(4.36)

As with the UV-group, the source of the anticommutation in the reduced UV-
group is whenever we move a Ux operator past a Vy operator. Ignoring the induced
phase, all elements commute. An interesting note is that all the operators in the
reduced UV-group are operators in the UV-group. The Ux operator is identical,
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1 0 3 2 1 0 3 2

2 3 0 1 2 3 0 1

3 2 1 0 3 2 1 0

0 1 2 3 0 1 2 3

1 0 3 2 1 0 3 2

2 3 0 1 2 3 0 1

3 2 1 0 3 2 1 0

Multiplication Table

Figure 4.2.4: GUV,reduced multiplication table

and the Vy operator is identical to the one for the 2D model, only shrunk down to
1D. Because of this, we can infer that the reduced UV-group will be a subgroup
of the UV-group, specifically the subgroup:

GUV,reduced = {g ∈ GUV | g2, g3 = 0}. (4.37)

Equation 4.36 now lets us define the group multiplication rules, which are given
by:

Let b, β ∈ GUV,reduced :

UbUβ = (−1)b0⊕β0⊕(b2&β1)U b1⊕β1
x V b2⊕β2

y

b ∗ β = (b0 ⊕ β0 ⊕ (b2&β1), b1 ⊕ β1, b2 ⊕ β2)

(4.38)

This formula and the definition was programmed in python in order to derive a
multiplication table. This is shown in Fig. 4.2.4. As with the UV group we assign
each group element a number based on the bits b1 and b2 according to equation
4.39, and either the color white or black depending on its phase being 1 or −1
respectively.

ng =
2∏

i=1

2gi (4.39)
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With the group elements and multiplication defined we can now find out which
tabulated group the reduced UV-group is isomorphic to. However i will first
define the symmetry group of all the loops as i did for the TC-model. This will
be slightly different for the TCL-model as we have taken out Vx from the group
due to it commuting with every other element of the reduced UV-group.

GAll lattice loops,TCL = Ux ×p∈P {E,Bp}
GAll dual-lattice loops,TCL = {E, Vx} × {E, Vy} ×s∈S\{s̃} {E,As}

GAll loops,TCL = GUV,reduced × {E, Vx} ×p∈P {E,Bp} ×s∈S\{s̃} {E,As}
(4.40)

These equations differ from the ones for the UV-group given in equation 4.19.
The stars are not completely independent, as before; however, in the ladder case,
the plaquette operators are completely independent. Thus, we need to remove
one of the stars for the equations to be correct, but we keep all the plaquettes.
The second difference is that {E, Vx} is not included in GUV,reduced and is instead
included in GAll loops, TCL by taking a direct product.

We can now derive the tabulated group the reduced UV-group corresponds to.
The group is of order 8, which gives us 5 candidate groups. We know the group is
non-abelian, which reduces the possible candidates to only 2. These two groups
are quite similar and are the quaternion group Q8 and the dihedral group D8.
Both these groups have the same exponent (4) and the same number of conjugacy
classes (5). What will separate the two is investigating the orders of the elements.
If we consider only the number of self-inverse elements in each group, we find that
6 of the 8 elements of the reduced UV-group are self-inverse. This implies that
there should be one element of order 1 (this is always true), and seven of order
2. This criterion implies that the reduced UV-group is isomorphic to the dihedral
group D8 [17].

It is interesting that the group we end up with is the dihedral group because
it is strongly related to the tabulated group to which the UV-group is isomorphic.
The dihedral group can alternatively be called the + type extraspecial group of
order 23. The extraspecial groups of prime order 2 (order mod 2 = 0) will, in
general, be of order 22r+1 where r is some positive integer (nonzero). The smallest
extraspecial groups of prime order 2 are therefore of order 8, and they are D8

(+ type) and the quaternion group Q8 (- type). All other extraspecial groups of
prime order 2 can be written as a central product of D8 and Q8 groups. For the
case of the + type extraspecial group of order 32, it can be written either as a
central product of two D8 groups or two Q8 groups. Generally, the + or − type
refers to whether one needs an odd or even number of Q8 groups in the central
product to construct it.

So the UV-group and the reduced UV-group are heavily related. They also
have very similar PGLs. If we repeat the same procedure as we did for the UV-
group with the reduced UV-group, we can define HUV,reduced as follows:

HUV,reduced = {(b1, b2) | b1, b2 are booleans} (4.41)

The multiplication rules for the two groups will be identical:

g, h ∈ HUV,reduced, g ∗ h ≡ g ⊕ h (4.42)
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Omega Matrix

Figure 4.2.5: Omega matrix for the reduced UV-group

Due to the fact that the booleans are completely independent, as is also the case
for HUV , we can conclude that the group is isomorphic to the direct product of two
Z2 groups (HUV,reduced = (Z2)

2). The homomorphism condition is also identical:

GUV,reduced(GSM)

{E,−E}
= HUV,reduced(GSM) (4.43)

We define the homomorphism function in a similar way, by simply removing the
sign bit of the reduced UV-group.

∀g ∈ GUV,reduced : h[g] = h[(b0, b1, b2)] = (b1, b2) (4.44)

We can now write the operators which will operate on the GSM Ug as Γ(g̃) where
g̃ = h(g) for g ∈ GUV,reduced. These representations should also satisfy a similar
equation as for the UV-group (Eq. 4.23), with its own ω phase function defined
as:

ω(g, h) = (−1)(h1∧g2) (4.45)

This function was also defined in Python and plotted to show the pattern, which,
as with the UV-group, can be recognized in the multiplication table for the reduced
UV-group.
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4.2.2.2 Characters of the reduced UV group

The derivation of the characters for the reduced UV-group is also very similar
to the derivation for the characters for the UV-group. We start by defining the
ground state with even parity (|+⟩) as follows:

|+⟩ =

(∏
i

Pi

)
|↑↑↑ . . . ↑⟩ (4.46)

The method is the same as for 4.25, exploiting the fact that (
∏

i Pi) commutes
with the group operations. We can operate on this state with the Ux operator:

Ux |+⟩ = Ux

(∏
i

Pi

)
|↑↑↑ . . . ↑⟩

=

(∏
i

Pi

)
Ux |↑↑↑ . . . ↑⟩ = |−⟩

(4.47)

So, as in the TC-model, the Ux operator switches the loop parity in the x-axis.
We will now derive Vy |+⟩ and Vy |−⟩.

Vy |+⟩ = Vy(
∏
i

Pi) |↑↑↑ ... ↑⟩

= (
∏
i

Pi)Vy |↑↑↑ ... ↑⟩ = |+⟩

Vy |−⟩ = Vy(
∏
i

Pi)Ux |↑↑↑ ... ↑⟩

= (
∏
i

Pi)− UxVx |↑↑↑ ... ↑⟩ = − |−⟩

(4.48)

So, as in the TC-model, the loop parity in the x-axis is equivalent to the quantum
number for Vy, and the states |+⟩ and |−⟩ are eigenstates of Vy. Now we are
equipped to derive the characters of the reduced UV-group in the GSM vector
space. We can write the general character of some group element g as follows:

χ(g) = Tr(Γ(g))
= ⟨+|Ug |+⟩+ ⟨−|Ug |−⟩
= ⟨+|Ug |+⟩+ ⟨+|UxUgUx |+⟩

(4.49)

From the multiplication table of the reduced UV-group, we can see, as for the
UV-group, that when we exchange any two elements, the number of Ux and Vx
operators does not change. Only the sign may change under such an operation.
Therefore, we can conclude, as for the UV-group, that any group element g ∈
GUV,reduced where g1 is nonzero will result in χ(g) = 0. This leaves us with three
classes which may have nonzero characters: {1}, {−1}, and {±Vy}. The first two
are simple. Since these are simply scalars, their characters are:

χ(1) = ⟨+|+⟩+ ⟨−|−⟩ = 2

χ(−1) = −⟨+|+⟩ − ⟨−|−⟩ = −2
(4.50)

This leaves us finally with the character for Vy. This character will also be zero:
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χ(Vy) = ⟨+|Vy |+⟩+ ⟨+|UxVyUx |+⟩
= 1 + ⟨+|UxVyUx |+⟩
= 1 + ⟨+|Vy |+⟩
= 1− 1

= 0

(4.51)

We can now compare the characters for the reduced UV-group in the GSM vector
space with the tabulated characters for the D8 group. We find that the characters
correspond exactly to the two-dimensional irrep of D8, which thus explains the
degeneracy of the TCL-model from a group theoretical standpoint, as the GSM
transforms under the group operations of the reduced UV-group like the 2D irrep
of D8.

4.2.3 DS-Model

In this section, we will derive the group structure for the DS-model and derive the
characters of the group elements in the GSM vector space.

4.2.3.1 The UU-Group

To derive the structure of the UU-group, a name for which the reasoning will
become apparent later, we first start by investigating the group element U+

x . We
define this as the shortest loop we can make around the x-axis. We will later argue
why the other odd parity loops in the x-direction can be neglected.

We treat this element as a generator, so we will start by determining what will
result if we exponentiate it. The U operators are defined in equation 2.18. We use
this definition to find (U±

x )
2:

(U±
x )

2 =
∏
i∈Lx

σx
i

∏
k∈L

(−1)
1
4
(1−σz

i )(1+σz
j )
∏
l∈R

(±i)(1−σz
l )/2

×
∏
i′∈Lx

σx
i

∏
k′∈L

(−1)
1
4
(1−σ′z

i )(1+σ′z
j )
∏
l′∈R

(±i)(1−σz
l′ )/2

(4.52)

To determine this product, we have to be careful about anti-commuting elements.
The simplest term to deal with is the R term. The spins in the R term are shared
by none of the spins in the loop term, so they will commute with everything and
can be combined. The first and second terms share all their spins, so they will
anticommute.

(U±
x )

2 =
∏
k∈L

(−1)
1
4
(1+σz

i )(1−σz
j )

���
���

��∏
i∈Lx

σx
i

∏
i′∈Lx

σx
i

×
∏
k′∈L

(−1)
1
4
(1−σ′z

i )(1+σ′z
j )
∏
l′∈R

(±i)(1−σz
l )

=
∏
k∈L

(−1)
1
4
(1+σz

i )(1−σz
j )+

1
4
(1−σ′z

i )(1+σ′z
j )
∏
l′∈R

σz
l

=
∏
k∈L

(−1)
∏
l′∈R

σz
l

= (−1)NxVx

(4.53)
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The result of the exponentiation is that we produce a Vx with a sign depending on
whether the number of spins in the x-direction is even. The shape of Vx is shown
in Figure 4.2.6.

Figure 4.2.6: Drawing of the U+
x operator and its corresponding and Vx operator

(shown as dot-dashed line).

It turns out that for the system to be periodic, Nx has to be even. We can see
from Figure 4.2.6 that the spins in the zig-zag line can be joined in pairs, which
implies that Nx has to be even. This also holds true for Ny. One of the steps
needs additional justification: (±i)(1−σz

l ) =
∏

l′∈R σ
z
l . The fact that this is true

can be seen by how (±i)(1−σz) operates on the spin states |↑⟩ and |↓⟩.

(±i)(1−σz) |↑⟩ = (±i)(1−1) |↑⟩ = |↑⟩
(±i)(1−σz) |↓⟩ = (±i)(1+1) |↓⟩ = − |↓⟩

(4.54)

Replacing x with y in equation 4.53 yields the exact same result for U±
y . So we

have determined that (U±
x )

2 = Vx and (U±
y )

2 = Vy. However, we know that Vx
and Vy are self-inverses. This leads to the following result:

(Vx)
2 = 1, and (Vy)

2 = 1

=⇒ (U±
x )

4 = E

=⇒ (U±
y )

4 = E

=⇒ (U±
x )

3 = (U±
x )

−1

=⇒ (U±
y )

3 = (U±
x )

−1

(4.55)

Now we will derive the operator U+
x Vx. We will utilize the relation σz = i(1−σz) in

order to calculate this. Note that U+
x and Vx commute, as Vx only shares spins

with the R-term of U+
x .

U+
x Vx =

∏
i∈Lx

σx
i

∏
k∈L

(−1)
1
4
(1−σz

i )(1+σz
j )
∏
l∈R

i(1−σz
l )/2

∏
l′∈R

i(1−σz
l )

=
∏
i∈Lx

σx
i

∏
k∈L

(−1)
1
4
(1−σz

i )(1+σz
j )
∏
l∈R

(i3)(1−σz
l )/2

= U−
x

(4.56)

The derivation in equation 4.56 implies that U+
x and U−

x can be turned into each
other by exponentiating the other to the third power, as Vx = (U±

x )
2. It also
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implies that they are each other’s inverses. This fact can also be derived from the
fact that they are unitary operations, and therefore U+†

x = (U+
x )

−1. Only the R
term in Ux has a complex part. If we flip the sign of the i’s in the R term for U±

x ,
we get U∓

x , so we find that (U±
x )

† = (U±
x )

−1 = U∓
x .

The U±
y operators are virtually identical to the U±

x operators, hence they will
have the same properties when exponentiated. It seems now by exponentiating
U+
x and U−

y we get all the group elements which we assumed to be a part of the
group. We will therefore, for now, assume that the UU-group, as I will call it, is
the group generated by U+

x and U−
y . We will later argue why this assumption is

valid by deriving the group of all the loop operators later.
To derive the group structure, we need to derive one final property of the

operators. We need to determine the multiplicative commutator of U+
x and U−

y .
Before we do that, we will start off with a simpler example, which is to derive the
multiplicative commutator of U+

x and (U−
y )

2. It turns out here that the answer is
the same as for the TC-model. Looking at Figure 4.2.7, we can see that the two
operators share a single spin.

Figure 4.2.7: Visualization of the U+
x operator and Vy operator (shown as dot-

dashed line). They share a single spin, marked with a red dot, which will lead to
a −1 sign change when they are exchanged

The spin which is shared is part of the loop term in U+
x , which implies there will be

a factor of −1 from this term when the operators commute. Thus, we find that, as
with the toric code, −1 should be a group element. Now, this suggests something
interesting. If switching the places of two U+

x operators and a U+
y operator yields

a phase shift of −1, then doing the same with only a single U+
x operator and a

U+
y operator could yield a phase shift of i or −i. If we assume exchanging Ux and

Uy yields either ±i or a phase operator that behaves like ±i and commutes with
every operator in the group, then that would satisfy the following equation:

U+
x (U

−
y )

2 = (U−
y )

2U+
x

=⇒ U+
x (U

−
y )

2 = ϕU−
y U

+
x U

−
y = ϕ2(U−

y )
2U+

x

(4.57)

It turns out the operators will have this behaviour [10], so thus we will assume
the operators U+

x and U−
x generates a ±i phase when exchanged. In order to not

decide which, we will use ϕ instead to represent either +i or −i. We can now write
a general group operator (strict ordering) and its corresponding group element as
follows:
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Ug = ϕg0U g1
x U

g2
y

g = (g0, g1, g2)

G = (g ∈ N3|g = g mod 4)

(4.58)

To find a multiplication formula, we use the same strategy as for the UV-group.
We start with the operators for the group elements and apply the rule that UxUy =
iUyUx.

UgUh = ϕg0U g1
x U

g2
y ϕ

h0Uh1
x Uh2

y (4.59)

In order to write equation 4.59 in the standard form given in equation 4.58, we need
to exchange a certain number of Ux operators with Uy operators. Each exchange
produces a ϕg2h1 phase shift. Once the operators are in the correct order, we can
simply add their exponents. This leads to the following multiplication rules:

UgUh = ϕ(g0+h0+g2h1) mod 4U (g1+h1) mod 4
x U (g2+h2) mod 4

y

g ∗ h = (g0 + h0 + g2h1, g1 + h1, g2 + h2) mod 4
(4.60)

Note that the modulo 4 in the operator form is not strictly necessary, as Uk+4
x =

Uk
x . However, restricting the exponents to natural numbers smaller than 4 makes

it easier to see if two group elements are identical.
To derive several properties of the group, we implemented the multiplication func-
tion in Python. Since the group is much larger than the UV-group, visualizing the
entire multiplication table becomes too difficult. Instead, we will only show the
multiplication table for the elements without a phase. We associate each group
element with a number and a color. The number is given by the equation:

ng = g1 + 4g2 (4.61)

The color is determined by the phase, where 1 is white, −1 is dark gray, ϕ is light
gray, and −ϕ is black. This yields the multiplication table shown in Fig. 4.2.8.
By closely examining the first upper quadrant of Fig. 4.2.1, we observe that if
we were to remove the complex factor—thereby sending i to 1 and −i to −1—the
tables would be identical. Therefore, we may conclude that there exists a homo-
morphism from the UU group to the UV group.
Now we can start filtering for the group to which the UU-group is isomorphic.
There are 267 groups of order 64 up to isomorphism, making the task of finding
the tabulated group which the UU-group is isomorphic to more challenging. We
will use the same filtering strategy as for the UV-group and the reduced UV-group;
however, we will need to derive more information about the UU-group manually
than we did earlier.

The UU-group is non-abelian. Filtering for this reduces the number of candi-
dates to 256 groups. The UU-group has a minimum number of generators equal
to 2. This can be seen from the definition of Ug in equation 4.58, as Ux and Uy

generate the group. Filtering for this reduces the number of candidates to 50.
The conjugacy classes are needed later to derive the characters. They were

derived in Python using a similar script as for the UV-group. We end up with
22 conjugacy classes, which reduces the number of candidates to 15. Examining
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Group Elements (g)

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

Gr
ou

p 
El

em
en

ts
 (h

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 0 5 6 7 4 9 10 11 8 13 14 15 12

2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13

3 0 1 2 7 4 5 6 11 8 9 10 15 12 13 14

4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3

5 6 7 4 9 10 11 8 13 14 15 12 1 2 3 0

6 7 4 5 10 11 8 9 14 15 12 13 2 3 0 1

7 4 5 6 11 8 9 10 15 12 13 14 3 0 1 2

8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

9 10 11 8 13 14 15 12 1 2 3 0 5 6 7 4

10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5

11 8 9 10 15 12 13 14 3 0 1 2 7 4 5 6

12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11

13 14 15 12 1 2 3 0 5 6 7 4 9 10 11 8

14 15 12 13 2 3 0 1 6 7 4 5 10 11 8 9

15 12 13 14 3 0 1 2 7 4 5 6 11 8 9 10

Multiplication Table
0 (i^0)
1 (i^1)
2 (i^2)
3 (i^3)

Figure 4.2.8: Multiplication table for the UU-group

the multiplication table, we find that the highest order of the elements is 8. One
example is the element UxUy, which has order 8:

(UxUy)
2 = UxUyUxUy

= ϕVxVy

=⇒ (UxUy)
4 = −1

=⇒ (UxUy)
8 = 1

(4.62)

Filtering for groups with exponent 8 leaves us with 6 candidates. An interesting
property to investigate would be the center, derived subgroup, and Frattini sub-
group of the UU-group. For the UV-group, these all coincided, allowing us to call
it extra special. The UU-group, however, cannot be extra special, as every extra
special group of prime order 2 has order given by p1+2n, which the UU-group is
not. It would still be interesting to see which of these subgroups will coincide and
which will not.

The center is the simplest to determine. The only elements that commute
with every other element are the pure phases C = {1,−1, i,−i}. This can be seen
either from the multiplication table or from the fact that these elements are alone
in their conjugacy classes (they have only one element), which is an equivalent
property. Furthermore, we can see that the center group is isomorphic to the
cyclic group C4, as it is abelian and exponentiating i generates the entire group.
Filtering for groups where the center group is C4 leaves us with 3 candidates.
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The derived subgroup is also quite simple to generate. I implemented it in code,
and the result shows that the derived subgroup is identical to the center. This
can be explained by noting that the elements of the derived subgroup are all
the elements in the group which can be written as a multiplicative commutator
g = [x, y] = x−1y−1xy. However, we find that switching any two group elements
will only have the effect of picking up a phase change. So the derived subgroup
is only the phase elements D = {1,−1, ϕ,−ϕ} = C. Filtering for groups with a
derived subgroup isomorphic to C4 leaves us with only two candidates.

The fact that the derived subgroup and center coincide also implies that the
Frattini subgroup cannot be the same subgroup. I will not derive the full Frattini
subgroup, but an argument for the fact that it is not equal to the other two is that
the Vx and Vy operators also have to be a part of the Frattini subgroup as they
too are non-generators. The two remaining candidates are very similar; however,
we can separate them by determining the number of elements of each order in the
group. This was calculated in Python, with the resulting terminal output:

1 element of order 1
7 elements of order 2
40 elements of order 4
16 elements of order 16

This distribution is matched by only one of the tabulated groups, which is the
unitriangular matrix group UT (3,Z4) [17]. This group has two 4-dimensional
irreps and can therefore potentially explain the degeneracy of the GSM.

We can create a PGL for the UU group, analogous to how we did it for the
TC and TCL models. In the UU -group, we have four phase elements due to the
presence of ϕ in the group. Thus, the PGL will contain only 16 elements. We can
define the homomorphism relation between the UU-group (GUU) and the PGL
(HUU) as follows:

GUU(GSM)

{E,−E, ϕ,−ϕ}
= HUU(GSM) (4.63)

where the homomorphism h(g) is defined as:

∀g ∈ GUU : h[g] = h[(g0, g1, g2] = (g1, g2) (4.64)

This results in the underlying subgroupHUU being isomorphic to the group Z4×Z4.
Lastly, before calculating the characters of the UU-group, we will investigate

the full loop operator group for the DS-model, similar to what we did for the
TC model. One caveat here is that the Bp operators do not actually commute.
However, we are only interested in the behavior of the operators on the GSM.
Since the commutator [Bp, Bp′ ] has the property that [Bp, Bp′ ] |loop⟩ = 0, where
|loop⟩ is any state satisfying As |loop⟩ = |loop⟩ , ∀s, we can conclude that we can
treat the Bp operators as commuting as long as we are operating on the GSM.
This allows us to split up the full loop group as a direct product of Bp operators
and As operators as we did for the TC model. It will not be exactly a direct
product, as the operators do not generally commute, but we can approximate
them as commuting. Before giving the expression for the full loop operator group,
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we will consider two operators which we could have included in the UU-group, but
we will not due to their behavior already being captured by the UU-group.

The Bp operators themselves are slightly different than the As operators in
the TC model. In the TC model, the ground state is the +1 eigenstate of the Bp

operators, which implies that they act as the identity on the GSM. However, for
the DS model, the ground states are instead −1 eigenstates of the Bp operators.
This implies that Bp operators will act as the negative identity operator on the
GSM. However, we have shown that there is already such an operator which is part
of the GSM, namely −1. So the behavior of the Bp operator is already captured
by the UU-group, so we need not include them in the UU-group.

When we selected our operators to represent either positive or negative chirality
loops around the x and y axes, we needed to specify a direction to define the left-
hand side and right-hand side of the loop. For the U±

x loops, we chose right to
left, and for the U±

y loops, we chose top to bottom. We will now investigate if
loops traveling in the opposite directions need to be included in the UU-group.
We have already created a closed group; however, if these operators bring some
interesting behavior to the UU-group, we would need to include them. It turns
out it is not necessary, due to the fact that a loop traveling around the x-axis in
the opposite direction with positive chirality acts on the GSM like either U−

x or
−U−

x . We illustrate this by considering the following figure:

Figure 4.2.9

Investigating the figure, we see that the region enclosed by the two loops is com-
prised of N hexagons. We know that the Bp operators can deform loops, and
furthermore, we can write this loop as a product of Bp operators:

U+
x UL ≃

∏
p∈C

Bp (4.65)

where UL is the right-to-left loop operator, C is the enclosed region and ≃ denotes
equal in the GSM. We note that we cannot say they are exactly equal, as this
behavior is only exactly true in the GSM. From before, we know that the Bp

operators act on the GSM like −1. So this operator will be equivalent to (−1)N

where N is the number of enclosed hexagons. If U+
x UL ≃ 1, then UL behaves like

the inverse of Ux, and if U+
x UL ≃ −1, then UL behaves like −1(U+

x )
−1. In both

cases, there are already operators in the UU-group that capture this behavior, so
we need not directly include them in the UU-group. They will, however, be a part
of the larger group of all loop operators, defined as:
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GAll loops = GUU ×p∈P\{p̃} {E,Bp} ×s∈S\{s̃} {E,As} (4.66)

We note again that the use of the direct product is really only valid whenever the
operators are applied to |loop⟩ states. As with the TC-model, we need to remove
any single one of the Bp and As operators as they are not completely independent.

4.2.3.2 Characters of the UU-group

To derive the characters, we will first redefine the GSM more carefully. We can
define the (++) ground state as we did for the TC model:

|+,+⟩ =

(∏
i

Pi

)
|↑↑↑ . . . ↑⟩ (4.67)

We note that the projection operators in this case are not the same as for the
TC model. We will treat the other ground states slightly differently. For the TC
model, we argued that applying the U -operators should flip the loop parities. We
then proved that not only would the states be flipped into each other, but we
would also not get any phase shift when doing so. In this case, we will not argue
in the same way. Instead, we will avoid the issue of a potential phase change by
defining the other states in terms of applying Ux and Uy operators to the |+,+⟩
state. This is a subtle change, but it is done to carefully account for when the ϕ
operator will produce a given phase change. Thus, we define all the ground states
as follows:

|+,+⟩ =

[∏
p

Pp

]
|↑↑↑ . . . ↑⟩ ,

|−,+⟩ = Ux |+,+⟩ ,
|+,−⟩ = Uy |+,+⟩ ,
|−,−⟩ = UxUy |+,+⟩ .

(4.68)

Note that the ordering for |−,−⟩ is strict, as exchanging these would result in
picking up a ϕ operator. Similar to before, we can determine that the ground
states are eigenstates of the Vx and Vy operators. This is most easily seen by
applying the operators to |+,+⟩.

Vx |+,+⟩ = Vx[
∏
p

Pp] |↑↑↑ ... ↑⟩

= [
∏
p

Pp]Vx |↑↑↑ ... ↑⟩ = |+,+⟩
(4.69)

The same applies to Vy, and we can reason in the same way as we did for the
TC model to conclude that the GSM are eigenstates of the V operators. We now
start to derive the characters for the UU group. The character of any given group
element in the GSM is as follows:
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χ(g) = Tr(Γ(g))

= ⟨+,+|Ug |+,+⟩+ ⟨−,+|Ug |−,+⟩
+ ⟨+,−|Ug |+,−⟩+ ⟨−,−|Ug |−,−⟩

= ⟨Ug⟩+,+ + ⟨U−1
x UgUx⟩+,+

+ ⟨U−1
y UgUy⟩+,+ + ⟨U−1

y U−1
x UgUxUy⟩+,+

(4.70)

The inverse elements appear because the U-operators are unitary, so U †
x = U−1

x .
Furthermore, U−1

x = U3
x . From now on, we will drop the (+,+) subscript in the

expectation values. As with the TC model, we can eliminate most of the characters
by exploiting the fact that Ux or Uy to an odd power will change one ground state
into another. We can generalize this by calculating the expectation value:

⟨Ug⟩ = ⟨+,+|ϕg0U g1
x U

g2
y |+,+⟩ = 0. (4.71)

We assume that either g1 or g2 (or both) are odd. This will transform the ket
into a different state than the bra, resulting in the expectation value being 0.
Secondly, we can investigate the product h−1gh. If h = (h0, h1, h2), then we
automatically know the second and third numbers in h−1. This is because these
are simply additive mod 4. So in order for hh−1 = (0, 0, 0), we must have that
h−1 = (x, (4 − h1) mod 4, (4 − h2) mod 4). In general, when two UU-group
elements are exchanged, their second and third numbers are conserved, but there
may be a ϕ phase as a result. We therefore find that h−1gh = ϕng. This implies
that if g is comprised of either an odd number of Ux operators or an odd number of
Uy operators, its character is 0. As with the TC model, this significantly reduces
the number of conjugacy classes that may have a nonzero character. The ones
we are left with are: {1}, {−1}, {ϕ}, {−ϕ}, {±Vx}, {±Vy}, {±VxVy}, {±ϕVx},
{±ϕVy}, and {±ϕVxVy}.

We can first see that ϕVx will have the same character as Vx due to ⟨ϕVx⟩ =
⟨ϕ⟩χ(Vx). So we only need to consider the first 7 conjugacy classes. We can
furthermore argue that the V-operators will have character 0 for the same reason as
the TC-model had character 0 for these. So we are left with 4 nonzero characters:

χ(1) = 4χ(−1) = −4χ(ϕ) = 4⟨ϕ⟩χ(−ϕ) = −4⟨ϕ⟩. (4.72)

We can first see that ϕVx will have the same character as Vx due to ⟨ϕVx⟩ =
⟨ϕ⟩χ(Vx). So we only need to consider the first 7 conjugacy classes. Furthermore,
we can argue that the V-operators will have character 0 for the same reason
that the TC model had character 0 for these. Thus, we are left with 4 nonzero
characters:

χ(1) = 4,

χ(−1) = −4,

χ(ϕ) = 4⟨ϕ⟩,
χ(−ϕ) = −4⟨ϕ⟩.

(4.73)

where ϕ = ±i. The characters could thus correspond to either of the two 4D
irreps of the UU-group. These two irreps are practically identical, as the only
difference in the characters is a sign change for the characters of ϕ and −ϕ. The
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important part is that we have determined the symmetry group of the GSM, and
we have found that the GSM transforms under group operations in the UU-group
like one of its four-dimensional irreps, which implies that we have explained the
degeneracy.

4.2.4 DSL - Model

The DS-model, like the TC-model, can be transformed into a 1D system by re-
moving the periodicity in the y-direction and arranging the system into a series
of honeycombs in a line. We will start with the full UU-group and consider which
of the operators will remain as symmetry operators and which will not.

4.2.4.1 Ground States and Reduced UU-group

We first note that the U+
x operator remains as a symmetry operator. This can be

seen by the fact that it shares two spins with every As operator, and it commutes
with Bp as the overlap between the two operators is the same as in the DS model.
This is shown in the following figure, where the phase terms have been suppressed,
as they only involve σz and thus trivially commute with the As operators.

As′′

As

As′

U+
x

Figure 4.2.10: The overlap between U+
x and a few representative As. The As

operators all share either zero or two spins with U+
x

In conclusion, the parity number in the x-direction remains a conserved quan-
tum number, giving us at least twofold degeneracy. On the other hand, U−

y will
not remain as a symmetry operator. This is evident from the following figure:
the marked As operators share only a single spin with U−

y , and therefore, will not
commute with it.

As′′

As

As′

U+
y

Figure 4.2.11: The overlap between U+
y and a few representative As. As′′ com-

mutes, due to not sharing spins, however As′ and As share only one spin with U+
y

and will thus not commute with it

This implies that there will not be a conserved loop parity number in the y-
direction, which in turn will imply there is only a twofold degeneracy in the GSM.
On the other hand, (U+

y )
2 = Vy will remain a symmetry operator, as it commutes
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trivially with every As operator and shares either zero or two spins with every Bp

operator. The implications of this are the following: we will not get the ϕ operator
as a member of the symmetry group. Furthermore, the generators of the group
will be U+

x and Vy. In that sense, this looks more like the reduced UV -group for
the TCL model. The important difference between the two is that the Vx element
cannot be removed from the group, as it is generated by (U±

x )
2. As with the UU-

group, U±
x Vy = −VyU±

x , which implies that the −1 phase element will remain a
part of the group. All this together lets us define a general group element as:

GUU,Reduced ≡ {g = (g0, g1, g2) | g0, g2 ∈ {0, 1}, g1 ∈ {0, 1, 2, 3}},
Ug ≡ (−1)g0(U+

x )
g1(Vy)

g2 .
(4.74)

This is a 16-element subgroup of the UU-group for the TC model. The commu-
tation relations for the operators are known, so we can derive the multiplication
rules for two general operators:

∀g, g′ ∈ GUU,Reduced,

UgUg′ = (−1)g0(U+
x )

g1(Vy)
g2(−1)g

′
0(U+

x )
g′1(Vy)

g′2

= (−1)(g0+g′0+g′1g2) mod 2(U+
x )

(g1+g′1) mod 4V (g2+g′2) mod 2
y

=⇒ g ∗ g′ = ([g0 + g′0 + g′1g2] mod 2, [g1 + g′1] mod 4, [g2 + g′2] mod 2) .
(4.75)

As before, we can prove this is a group by recognizing it is closed due to the modulo
operators in the multiplication rules. Since it is closed, and the identity element
exists (E = (0, 0, 0)), we can prove the last axiom by simply creating a multipli-
cation table and verifying that every element has an inverse. The multiplication
table is given in Fig. 4.2.12.
Inspecting the multiplication table, we can deduce that the multiplication rules
we defined for the reduced UU-group yield a valid group. With this information,
we can identify which of the tabulated groups of order 16 is isomorphic to the
reduced UU-group.

The number of groups of order 16 is 14. The reduced UU-group is non-abelian,
and when we filter for the non-abelian groups of order 16, we are left with 9
candidates. The UU-group has a minimum number of generators equal to 2; in
our case, we use U+

x and Vy as those generators. Filtering for this, we are left
with 6 candidate groups. As with the other groups we have investigated, we can
derive the conjugacy classes of a group given we know the elements and the binary
operator. The reduced UU-group has 10 conjugacy classes, which leaves us with
3 candidate groups. Finally, we can inspect how many elements there are of each
order to identify the group. The reduced UU-group has 1 element of order 1,
7 elements of order 2, and 8 elements of order 8. This leaves us with a single
possible group, which in GAP is called SmallGroup(16,3) [17]. Alternatively, the
group may be defined as the semidirect product (Z2 × Z2)⋊ Z4.

This group is different from the other groups we have derived in several ways.
Examining the group in GAP, we find that the derived subgroup and the Frattini
subgroup are both isomorphic to the same group. We can start by investigating
the center. We know the phase elements E and −E should be part of the center;
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 (h

)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

1 0 3 2 5 4 7 6 1 0 3 2 5 4 7 6

2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1

3 2 5 4 7 6 1 0 3 2 5 4 7 6 1 0

4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3

5 4 7 6 1 0 3 2 5 4 7 6 1 0 3 2

6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5

7 6 1 0 3 2 5 4 7 6 1 0 3 2 5 4

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

1 0 3 2 5 4 7 6 1 0 3 2 5 4 7 6

2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1

3 2 5 4 7 6 1 0 3 2 5 4 7 6 1 0

4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3

5 4 7 6 1 0 3 2 5 4 7 6 1 0 3 2

6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5

7 6 1 0 3 2 5 4 7 6 1 0 3 2 5 4

Multiplication Table

Figure 4.2.12: Multiplication table for the reduced UU group. The numbers are
calculated as n = 2g1 + g2, and the color signifies the phase, where white is +1
and gray is −1.

however, in this case, it turns out there is one more member. Vx commutes with
every element of the group and is therefore also part of the center. This means
that the center becomes C = {E,−E}×{E, Vx}, which is isomorphic to the Klein
four-group. The derived subgroup, as with all the other groups, is just the phase
elements {E,−E}, which is isomorphic to the cyclic group Z2. Finally, the Frattini
subgroup will have the phase elements as members of the group, and it will have
Vx, as it is generated by Ux (and Ux in turn cannot be generated by Vx). So it will
be equal to the center. This is different from the full UU-group, as in that case,
the center coincided with the derived subgroup, not the Frattini subgroup.

4.2.4.2 Characters of the Reduced UU-Group

As mentioned before, there are two ground states of the DSL model. We define
the two as:

|+⟩ =
∏

Pi |↑↑ . . . ↑⟩ ,

|−⟩ = U+
x |+⟩ .

(4.76)

As for the TCL model, |+⟩ is the +1 eigenstate of Vy while |−⟩ is the −1 eigenstate
of Vy. U±

x can be used to toggle between the two eigenstates. Finally, Vx acts on
the two ground states as the identity operator. This can be understood by the
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fact that the loop states comprising the ground states are essentially the same as
for the 2D model, except the −1 parity loops in the y-direction are not legal loop
states in the 1D case. This implies Vx will share an even number of spins with all
of them, which in turn implies Vx will act as the identity operator. Finally, we can
exploit a similar property for the UU-group to simplify calculations. If we start
with the group element h, and perform the transformation: g−1hg = h′, then h′

retains the same h1 and h2. This implies if h1 is odd, the operator U−1
g UhUg will

transform one ground state into the other, yielding a zero matrix element.
This implies there are six conjugacy classes that might have nonzero characters.

In operator form, those conjugacy classes are: {1}, {−1}, {Vx}, {−Vx}, {±Vy},
{±VxVy}. The first four are the simplest. χ(1) = 2 and χ(−1) = −2. Vx acts on
the GSM as the identity, which implies χ(Vx) = 2 and χ(−Vx) = −2. Finally, we
calculate the characters for the last two conjugacy classes:

χ(Vy) = ⟨+|Vy |+⟩+ ⟨−|Vy |−⟩
= 1− 1 = 0,

χ(VxVy) = ⟨+|��VxVy |+⟩+ ⟨−|��VxVy |−⟩
= ⟨+|Vy |+⟩+ ⟨−|Vy |−⟩ = 0.

(4.77)

In conclusion, the character for every element except for 1, −1, Vx, and −Vx is
zero. When compared to the listed characters for the tabulated group which is
isomorphic to the reduced UU-group, we find that these characters correspond
exactly to one of the two-dimensional irreducible representations of the tabulated
group.
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FIVE

CONCLUSIONS

5.1 Conclusions

In this thesis, we applied group theoretical methods to both analytical and nu-
merical models, significantly enhancing our understanding and efficiency in these
areas. These methods were particularly useful in identifying symmetries and de-
generacies in complex quantum systems.

The application of group theoretical methods significantly aided both analyti-
cal and numerical approaches. In the numerical case, it helped speed up the calcu-
lations and allowed us to analyze larger systems, which facilitated easier spectrum
analysis. We used the fingerprinting method to find the irreducible representations
of the ground state manifold (GSM), allowing us to associate the GSM symmetries
with the exactly solvable Majumdar-Ghosh eigenstates for all points in the dimer
phase.

For the analytical models, group theoretical methods successfully explained
the degeneracies of both systems. For the Toric Code (TC) model, the four-
fold degeneracy stems from the 4-dimensional irreducible representation (irrep)
of the UV-group, which is isomorphic to "the inner holomorph of D8". For the
Doubled Semion (DS) model, the degeneracy is explained by the UU-group, which
is isomorphic to "The unitriangular matrix group: UT (3,Z4)". Although the
systems are similar, they have quite different symmetry groups. However, we
discovered a holomorph from the UU-group to the UV-group. In both cases, the
groups could be explained as projective representations of the UV- and UU-groups
respectively. Additionally, we were able to express the group of all loop operators
for the TC model as a direct product of the groups {E,As}, {E,Bp}, and GUV ,
and for the DS model as a direct product of {E,As}, {E,Bp}, and GUU . Since this
was a direct product, investigating only the smaller "core" groups proved fruitful.

The TCL and DSL models inherited many properties from their parent sys-
tems, but not all. Both models had half the degeneracy due to losing the U -loop
operator in the y-direction. However, the reduced groups still had 2-dimensional
irreps due to the Vy operator, which led to anti-commutation. The reduced UV-
group inherited the "extraspecial" property from the UV-group, as it was isomor-
phic to D8. Initially, this property was also considered for the DS model, but it
turned out that the DS models retained only a few "extraspecial" properties. The
DS model had the center and derived subgroup coincide, while the DSL model

77



78 CHAPTER 5. CONCLUSIONS

had its Frattini subgroup and center coincide.
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A - GITHUB REPOSITORY

The codebase used for the project together with figures and some experimental
scripts are available publicly on Github. The main files used for the project is
diagonalizer.py for diagonalization, irrep_generator.py for numericaly cre-
ating irreps, Irrep_decompositon_method.py for preforming the fingerprinting
method and finally UV_group.py and UU_DS_group.py for analysis. The ".g" files
are GAP scripts used for group filtering.
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