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Abstract

In this thesis, we are looking at the theoretical treatment of superconductor - ferromagnet
(SF) and superconductor - ferromagnet - superconductor (SFS) proximity systems within
a curved geometry. The systems considered are diffusive and treated in the quasiclassi-
cal approximation. We demonstrate the generation of long-range triplets (LRTs) in SF
systems with a Rashba-Dresselhaus spin-orbit field in the xy-plane and in systems with
a spin-orbit field in the z-direction. We then introduce the curvilinear formalism and
discuss the potential for generating LRTs with geometric curvature. The system of an SF
curved nanowire is solved numerically and demonstrated to generate LRTs. A curvature
induced 0-π transition for an SFS nanowire is demonstrated numerically as well. We then
give an introduction to the differential geometry of two dimensional (2D) surfaces, where
an expression for the Christoffel symbols of a surface embedded in 3D space is derived.
Several 2D surfaces are treated analytically within this formalism, including a tunnel sur-
face, a boomerang surface and a Gaussian bump. The analytical results for these surfaces
predict the generation of LRTs in these systems. The formalism for 2D curved surfaces
is shown to work well for the numerical treatment of SF- and SFS- proximity systems.
We plot the density of states of an SF tunnel system and show that this system is quali-
tatively equivalent to the 1D nanowire. For the SFS boomerang, we see indications that
the charge current tends to be denser along the inner curvature of the system. We also
demonstrate the possibility of having a vortex in the charge current for a boomerang SFS
system, which could be indicative of a superconducting vortex.
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Sammendrag

I denne avhandlingen tar vi for oss en teoretisk behandling av superleder-ferromagnet
(SF) og superleder-ferromagnet-superleder (SFS) proksimitetssystemer for en krummet
geometri. Systemene som undersøkes er diffusive og behandles med en kvasiklassisk
tilnærming. Vi demonstrerer genereringen av tripletter med lang rekkevidde (LRTer)
i SF-systemer med et Rashba-Dresselhaus spinn-bane-felt i xy-planet og i systemer med
spinn-bane-felt i z-retningen. Vi introduserer deretter den kurvilineære formalismen og
diskuterer muligheten for å generere LRTer med geometrisk krumning. Systemet for
en krummet SF nanoledning løses numerisk, og det vises at systemet kan gi opphav til
LRTer. En krumningsindusert 0-π-overgang for en SFS nanoledning demonstreres ogs̊a
numerisk. Deretter introduseres differensialgeometrien for todimensjonale (2D) overflater,
hvor vi utleder Christoffel-symbolene for en overflate plassert i tre dimensjoner. Flere
2D overflater behandles analytisk. Overflatene som behandles er en tunnel -overflate, en
boomerang-overflate og en Gaussisk hump, og vi utleder analytiske grunnlag for at disse
overflatene kan generere LRTer. Formalismen for 2D krummede overflater vises å fungere
bra for numeriske utregninger for SF- og SFS- systemer. Vi plotter tilstandstettheten
for et SF tunnel-system og viser at dette systemet er kvalitativt ekvivalent til en 1D
nanoledning. For SFS boomerang-systemet ser vi indikasjoner p̊a at ladningstrømmen er
tettere langs den indre krumningen. Vi demonstrerer ogs̊a muligheten for å ha virvling
i ladningsstrømmen for et boomerang SFS-system, noe som kan indikere muligheten for
superledende virvlinger.
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Notation and units

This thesis follows the usual convention of mathematical notation for the most part.
Vectors are denoted by bold notation, v, and unit vectors are denoted by a hat and bold
notation, v̂, in order to not confuse unit vectors with operators and matrices. Partial
derivatives are often simplified as ∂v

∂x
= ∂xv, and the gradient is denoted by ∇ = x̂1∂1 +

x̂2∂2 + x̂3∂3. The Einstein summation convention is thoroughly used throughout this
thesis, meaning that repeated indices should be summed over, i.e. ∇ =

∑3
i=1 x̂i∂i = x̂i∂i.

Matrices are denoted by their size. 2 × 2 matrices are underlined, A, 4 × 4 matrices
are hatted, Â, and 8 × 8 matrices are checked, Ǎ. Sums or products between matrices
of different sizes should be interpreted as taking the Kronecker product between the
matrix with the lowest dimensionality and the fitting identity matrix, I, before doing the
operation. For example, Ǎ+ B̂ = Ǎ+ I ⊗ B̂ and ǍB = Ǎ(Î ⊗B). The the matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (1)

denote the three Cartesian Pauli matrices in spin space, and the matrices

τx =

(
0 1
1 0

)
, τ y =

(
0 −i
i 0

)
, τ z =

(
1 0
0 −1

)
, (2)

denote the Cartesian Pauli matrices in Nambu space. The Pauli matrices in spin space
can be written compactly by using the Pauli spin-vector σ = x̂iσi. The Pauli matrices in
Nambu space are sometimes written in their 4× 4 extension, defined by τ̂i = I ⊗ τ i. We
define the commutator between two quantities A and B as [A,B] = AB − BA, and the
anticommutator as {A,B} = AB +BA.

In this thesis, we use the second quantization formalism of quantum mechanics. In this
formalism, we define ci and c

†
i as the annihilation and creation operators for electrons with

quantum numbers i, respectively. † denotes the adjoint operator. From these operators,
we define the annihilation field operator as ψσ(r, t) =

∑
i ϕi(r)ci(t) and the creation field

operator as ψ†
σ(r, t) =

∑
i ϕ

∗
i (r)c

†
i (t). Here, ϕi(r) denotes the single particle wavefunction,

and ∗ denotes complex conjugation. The average of an operator A is denoted by ⟨A⟩.
We use natural units in this thesis. This means that the following fundamental physical

constants reduce to unity [1]

ℏ = c = ϵ0 = µ0 = kB = 1. (3)

Here, c denotes the speed of light in vacuum, ℏ denotes the reduced Planck’s constant,
kB denotes Boltzmann’s constant, and µ0 and ϵ0 denote the vacuum permeability and
permittivity, respectively. This system of natural units simplifies most of the expressions
in this thesis, and makes interpretation of results more intuitive.
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1 Introduction

Superconductor - ferromagnet (SF) proximity systems have the potential to change the
way we process and manipulate information in electronic systems. The ferromagnet’s
ability to transport spin has already changed the way we process information [2]. In
contact with a superconductor, the ferromagnet’s ability to transfer information through
spin is altered, and can be enhanced significantly. The reason for this is the so-called
proximity effect, an effect through which the particles, and thus some of the properties,
of the superconductor may leak through the SF interface and into the ferromagnet. Over
the last decade, research has been conducted on these systems in various configurations
and contexts, in order to enhance the transport properties or draw new mechanisms from
the systems. In this context, this thesis is the first theoretical study of the effects of
curvature on SF proximity systems in two dimensions (2D). Our expectations are that 2D
curvature has the potential to bring forth new and exciting mechanics from SF systems.
The main goal of this thesis is therefore to develop a formalism that allows us to describe
diffusive transport of superconductive correlations in 2D curved ferromagnets. In order
to do this, we first have to understand several underlying concepts. This thesis assumes
a basic knowledge of quantum mechanics, especially the second-quantization formalism,
and the microscopic theories of ferromagnets and superconductivity. In this chapter,
we briefly explain the key mechanics behind ferromagnets, superconductivity and the
proximity effect, and mention some technologies developed from these concepts. We then
go on to introduce the effect of curvature on these systems, and motivate why we want
to look at curvature in two dimensions.

This thesis is structured to give a progressive introduction to the world of supercon-
ductive transport in ferromagnets. The main tool used in this analysis is the Usadel
equation, a diffusion-like equation for the quasiclassical Green’s function in diffusive sys-
tems. Because of this, an introduction to the Keldysh formalism for Green’s functions
is given in chapter 2, ending in the derivation of the Usadel equation. In chapter 3, we
introduce the concept of long-range triplets, the components of the Green’s function with
the ability to traverse ferromagnets over longer distances. Long-range triplets are funda-
mental for superconductive transport in ferromagnets, in SF proximity systems. These
triplets can be generated through various means, for example through spin-orbit coupling
or geometric curvature. In this thesis, we make our way through these methods of gener-
ating long-range triplets, starting out with spin-orbit coupling in chapter 3, 1D curvature
in chapter 4 and 2D curvature in chapter 6. For each new way of generating long-range
triplets, we introduce the relevant formalisms and tools needed for the discussion, such
as curvilinear coordinates for 1D curvature and differential geometry for 2D surfaces. We
discuss the strengths and weaknesses of each method, demonstrate analytically how they
generate long-range triplets, and present numerical results to support our discussions.

1.1 Ferromagnets

Ferromagnets are materials in which localized electrons spontaneously align their spins in
a specific direction. This spontaneous symmetry-breaking is referred to as a second-order
phase transition, and occurs when lowering its temperature below a specific, material
dependent temperature, called the Curie temperature. Ferromagnetism is a quantum
mechanical effect, where neighbouring electrons interact with each other through spin-
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1.2 SUPERCONDUCTORS

alignment. This interaction is known as the exchange interaction. Thus, in the ferro-
magnetic phase, the spin-directions of electrons in these materials will align according to
anisotropies specified by material parameters. This collective alignment of electrons will
then induce an overall magnetic field in the material in the direction of alignment. This
magnetic field is referred to as the exchange field, h, and generally represents the order
parameter of the phase transition [3].

Due to the exchange interaction between electrons in ferromagnets, propagation of a
certain type of quasiparticle, called magnons or spin waves [4], is allowed to take place. In
order to understand spin waves, consider an electron who’s spin alignment is disturbed in
some way. This electron will then disturb its neighbouring electrons, and thus the distur-
bance will propagate through the material as a wave. Spin waves occur when the collective
alignment of the electrons is disturbed by a whole number of spin flips. In this way, spin
waves may carry information through ferromagnetic materials. The field of study that
considers the transport of spin waves is known as magnonics, which is a subfield of the
broader category spintronics [2]. Spintronics as a field considers the transport of spin
through whichever means possible. For example, in this thesis we study the transport of
spin through superconducting correlations carried by itinerant electrons. Spintronics as
a technology dates back to 1857, with the discovery of anisotropic magnetoresistance by
Lord Kelvin [5]. Since then, spintronics has given rise to technologies such as tunneling-
and giant- magnetoresistance [6], spin valves, quantum spin-hall effect [7], topological in-
sulators [8] and racetrack memories [9]. These technologies are mainly used in storage and
memory devices, such as hard drives, with the exception of the quantum spin-Hall effect,
which has applications within quantum computation devices. It was discovered that su-
perconductors in contact with ferromagnets have the potential to introduce spin-carrying
particles with superconductive properties to the ferromagnet. These new particles have
spin excitation lifetimes of several magnitudes higher than those of normal metals, and
thus alters and enhances the spin transport properties of the ferromagnet significantly
[10]. Because of this, there has been a lot of effort in optimizing the proximity effect
and the transport of superconducting correlations in ferromagnets [11], [12], [13]. These
systems are referred to as superconductor - ferromagnet (SF) proximity systems, and the
main focus in this thesis is on how we can use geometric curvature in SF systems to
optimize spin-transport.

1.2 Superconductors

Superconductivity is a phenomenon that traditionally occurs when certain metals and
alloys, such as aluminium, mercury or niobium-tin, undergo a second-order phase transi-
tion at very low temperatures (the critical temperature is TC ≈ 4.2K for mercury) [14].
In the superconducting phase the electrical resistivity of the metal vanishes such that no
energy is lost to heat dissipation during transport of electrons. In addition, the metal
will fully expel all external magnetic fields through the Meissner effect. This happens
because the superconductor will set up an internal magnetic field that fully cancels the
external field, thus acting as a perfect diamagnet. We distinguish between two types of
superconductivity based on their response to external magnetic fields. What we call type
I superconductors ceases to be superconducting after the external magnetic field exceeds
a certain critical strength. Type II superconductors, on the other hand, have two critical
magnetic field strengths. After exceeding the first critical value, type II superconductors
enter a phase in which some of the magnetic field is allowed to penetrate. This phase
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1.2 SUPERCONDUCTORS

also features superconducting vortices, whirls of supercurrents typically centered around
impurities in the metal. Beyond the second critical value for the magnetic field strength,
the superconducting phase is destroyed in the same fashion as for type I superconductors.

These properties make superconductors unique in terms of their potential to facilitate
new and improved technologies. Technologies that involve superconductors include su-
perconducting magnets, used in magnetic resonance imaging (MRI) machines, nuclear
magnetic resonance (NMR) spectrometers and particle accelerators [15], and Joseph-
son junctions, used in superconducting quantum interference devices (SQUIDs) and as
qubits in quantum computing [16]. Another branch of superconducting technologies in-
volves high-temperature (high-TC) superconductors. These are superconductors with a
critical temperature significantly higher than conventional superconductors (for example
TC ≈ 130K in the Hg-Ba-Ca-Cu-O system [17]). High-TC superconductors typically see
use in electrical power systems [18].

It took years for scientists to develop a physical theory for superconductivity, since its
discovery by Heike Kamerlingh Onnes in 1911. It was first in 1950 when Ginzburg and
Landau presented a macroscopic, phenomenological model for superconductivity [19], and
in 1957, when Bardeen, Cooper and Schreiffer (BCS) composed their microscopic theory
[20], that real progress was made. To this date the BCS theory for superconductivity is
the main theory used for microscopic descriptions of conventional superconductors, and
the theory that will be used in this thesis. Notably, the BCS theory fails to describe un-
conventional superconductors, for which there are several theories still developing today.
For example, Anderson gave a theoretical description for high-temperature superconduc-
tors in 1987 [21], although this area of research is still far from being solved. In the BCS
theory, superconductivity arises when electrons in a metal are attracted to each other
through some attractive potential. Usually in metals, itinerant electrons are repelled by
each other through the Coulomb potential, which is what makes superconductivity such a
rare and special phenomenon. However, in conventional superconductors these electrons
can be attracted to each other through lattice vibrations, also known as phonons. In this
electron-phonon interaction, an electron will pull the heavy positive ions in the metal in
its direction as it traverses the metal, leaving a trail with positive charge density. Another
electron will then be attracted to this trail. Thus, the two electrons will form a bound
state, known as a Cooper pair. In this model, it turns out that the most effective way
for Cooper pairs to form is with oppositely pointing momenta, k and −k, and in the
singlet spin-state, |S⟩ = 1√

2
(|↑↓⟩ − |↓↑⟩). This implies that a Cooper pair has net zero

momentum. It should be noted that the picture of Cooper pairs forming in superconduc-
tors is really a simplification of the actual physical processes behind superconductivity.
In reality, Cooper pairs continuously break and re-form. Furthermore, excitations in the
condensate causes so-called Bogoliubov quasiparticles to form [22]. These quasiparticles
are energy-dependent superpositions of holes and electrons. Nevertheless, the Cooper pair
picture makes it more convenient for us to describe superconducting phenomena, and is
widely used as a symbol of the more complicated processes in superconductors.

Cooper pairs have bosonic properties. While a single electron has to obey the Pauli ex-
clusion principle, Cooper pairs can all occupy the same state. This means that they obey
Bose-Einstein statistics, indicating the possibility for a Bose-Einstein condensation to take
place. A Bose-Einstein condensation occurs when all the bosons in a system occupy the
ground state, but as mentioned, in superconductors there are still excitations from the
ground state. Although a crossover between superconductivity and Bose-Einstein conden-
sation has been verified experimentally [23], these two phenomena typically do not occur
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1.3 PROXIMITY SYSTEMS

together. Despite this, the superconducting condensate still gains interesting properties,
namely that all the Cooper pairs gain the same phase over macroscopic distances. The
distance of this phase coherence is called the coherence length, ξ. Furthermore, electrical
resistance vanishes in superconductors because Cooper pairs are protected from scatter-
ing by the superconducting gap, ∆(r, t) = λ⟨ψ̂↑(r, t)ψ̂↓(r, t)⟩. The superconducting gap is
related to the binding energy λ of the attractive potential, relative to the Fermi surface.
The idea that the gap protects the Cooper pairs from scattering stems from the fact that
the Cooper pairs reside within the Fermi sea. Thus, in order to scatter a bound electron,
the superconducting gap must be overcome. But since there are no available states to
scatter into, this is not possible, and hence scattering of Cooper pairs does not occur in
superconductors. Since the superconducting gap vanishes in the normal metal phase, ∆
is used as an order parameter for the phase transition from normal metal to superconduc-
tor. The superconducting gap parameter ∆ is a complex quantity and is therefore often
written in terms of its magnitude and phase, as ∆ = |∆|eiϕ. The superconducting phase
can generally be removed by a U(1) gauge transformation. Therefore, one can assume
that ∆ is real in systems involving a single superconductor with a constant phase, with-
out the loss of relevant physical information. In systems with multiple superconductors,
such as Josephson junctions [16], the phase difference, φ, between the superconductors
is a physically relevant quantity. In such systems, the phase difference is responsible for
driving currents across the junction. An example of this is the 0-π transition in supercon-
ductor - normal metal - superconductor (SNS) Josephson junctions. This is a transition
in which the current through the junction has a sin(φ) dependence, such that the current
will change direction upon tuning the phase difference from 0 to π [24].

1.3 Proximity systems

When a superconductor is placed in contact with another metal, some of the Cooper
pairs from the superconductor will leak into the other metal, and itinerant electrons will
leak from the other metal to the superconductor. This effect, called the proximity effect,
was first studied by Meissner and Holm in 1932, when they noticed the disappearance of
resistivity in SNS systems [25]. This implies that we can transfer Cooper pairs into non-
superconducting metals. The transport of Cooper pairs across the SN interface occurs
via a mechanic called Andreev reflection [26]. In order to understand Andreev reflection,
consider an electron attempting to leak from the normal metal to the superconductor,
with energy less than |∆|. Since there are no available states at this energy in the super-
conductor, the electron has to pair up with an electron of opposite spin in order to leak
through the interface. The other electron will thus reflect a hole back into the normal
metal. Furthermore, this pair of electrons has to acquire the same phase, eiϕ, as the
condensate in the superconductor. The reflected hole therefore gains the conjugate phase
e−iϕ. This mechanic works reversely, through the transmittance of Cooper pairs into
the normal metal. The result of these processes is the transmittance of phase-coherent
electrons and holes into the normal metal [27], giving us particles with superconductive
properties in the normal metal. Hence, transferring Cooper pairs to the normal metal
will deplete the superconductor, affecting the pairing potential, which affects the critical
temperature and the superconducting gap [11]. If the superconductor is large enough,
this depletion is negligible. In this thesis, we will therefore assume the superconducting
contacts to act as reservoirs, describing the superconductors by their bulk state.

In this thesis, we mainly consider SF and SFS systems [28]. These are systems in which
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1.4 CURVATURE

superconductors are placed in contact with ferromagnets, as described above. These types
of systems have gained attention for their remarkable ability to transport and measure
spin. This is surprising considering that superconductivity and ferromagnetism are in-
herently competing effects. For example, we recall that Cooper pairs form in the singlet
spin-state |S⟩ = 1√

2
(|↑↓⟩ − |↓↑⟩. The exchange field will transform a portion of these

pairs into the triplet state |T1⟩ = 1√
2
(|↑↓⟩+ |↓↑⟩), which also has zero net spin [29]. Since

the singlet state and the zero-spin triplet consist of two electrons with oppositely aligned
spin, the exchange field in the ferromagnet will break this pair due to a combination of the
Zeeman effect and the Lorentzian force. The penetration depth of these states into the
ferromagnet is typically of the order ξF =

√
DF/|h|, where ξF denotes the superconduct-

ing coherence length in the ferromagnet, DF the diffusion constant and h the exchange
field. This distance is generally not far into the ferromagnet, compared to the mesoscopic
sizes of our systems. In order for the superconducting correlations to penetrate further we
therefore need a way to convert the singlet states into triplet states with a finite net spin
projection. Triplet states with a finite net spin projection consist of two electrons with
the same spin alignment, and are thus not broken by the Zeeman effect or the Lorentzian
force. Hence, these triplets decay over a distance of order ξF =

√
DF/T , where T is the

temperature of the material. Since the temperature in these systems is considered to be
very low, the coherence length for these triplets is much longer than

√
DF/|h|. These

types of triplet states are therefore referred to as long-range triplets (LRTs), for their abil-
ity to penetrate deeper into the ferromagnet [30]. Triplets with a net zero spin projection
are referred to as short-range triplets (SRTs). Interestingly, because we are considering
metals with a high impurity density the s-wave components (the components with spatial
symmetry) of the triplets are dominating. Because of this the triplets are even in both
spin and space, and hence have to be odd in time in order for the electrons to obey the
Pauli principle. The result of this is triplets that are odd-in-time, a phenomenon that is
known as odd-frequency pairing [31]. The first way to generate LRTs was to make the
ferromagnetic region feature an exchange field with a spatially varying axis [32]. Later,
it was found that spin-orbit (SO) coupling could generate LRTs [33]. Recently, curvature
has been studied as a third way to achieve this effect [34].

1.4 Curvature

By curvature in the material, we mean a material that is physically curved in space in
some way. Such curved materials can be manufactured with or without strain. The recent
progress in the fabrication of nanomaterials with these qualities has led to research study-
ing curvature more in-depth. There have been several studies on curved superconductors
[35] [36], curved ferromagnets [37] and antiferromagnets [38] [39] [40]. In superconductors,
curvature can be used to generate and control spin triplet Cooper pairs [41], which can,
for example, be used to control 0-π transitions in Josephson junctions [42]. In magnetic
systems, curvature is mainly used to manipulate the exchange field. The main way the
exchange field is manipulated is through an effective, curvature-induced Dzyaloshinskii-
Moriya interaction (DMI) and a magnetic anisotropy in the magnetic exchange energy.
These interactions can be used for domain wall dynamics [43] [44], asymmetric spin-wave
dispersions [45] and to allow skyrmions to exist in the ground state [46] [47], to name
some applications. Curved magnetic systems are experimentally realizable using, for ex-
ample, two-photon lithography [48], or electron beam lithography, where materials have
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1.5 DIFFUSION IN 2 DIMENSIONS

been manufactured at a size of 10 nm in thickness, 75− 135 nm in width and a length of
2 µm, with a curvature of 0.005− 0.07 nm−1 [49].

Recently, curvature has been studied in proximity systems such as SF, SFS and su-
perconductor - antiferromagnet systems [50]. Here, curvature has been studied in fer-
romagnetic and antiferromagnetic helical wires in contact with a superconductor, where
it was shown that generation of LRTs is possible in such systems [51] [52]. In the an-
tiferromagnetic helical wire, curvature facilitates the measurement of the compensation
of the interface. Furthermore, curvature has been shown to induce a chirality-dependent
spin polarization of the superconducting correlations. In non-constant curvature in SFS
nanowires we can, for example, obtain mixed chirality junctions, with possible applica-
tions in spin-triplet SQUIDs [53]. In this thesis we are generally interested in curvature
as a means to create LRTs and control spin-transport in SF/SFS systems. Geometrically
curving a ferromagnet in space, we can induce both a curvature dependent SO field and
a spatially varying exchange field in the metal. Hence, we can achieve many of the same
effects as inherent SO coupling or an inhomogeneous exchange field, through curvature.
The advantages of curvature over the two other methods come from the increased flexibil-
ity we gain from being able to tune the curvature as we like. For example, through varying
the curvature in a Josephson junction we can reverse the current, effectively inducing a
0-π transition, without changing the phase difference [54].

1.5 Diffusion in 2 dimensions

In this thesis, we will consider diffusive systems within a quasiclassical framework. For
such systems, the Usadel equation describes the diffusion of superconductive correlations
well. The Usadel equation is a diffusion-like equation in the form of a system of nonlinear
differential equations [55]. For 1-dimensional SF- and SFS-systems, this equation has
been studied extensively in various experimental and theoretical setups. However, in 2D
far less work has been done on this topic. By 2D materials we refer to a thin film material,
in which the thickness of the material in one direction is considered to be much smaller
than in the other two directions, and not a monolayer material, such as graphene. 1D
systems have been favored over higher dimensional systems since the Usadel equation
takes the form of an ordinary differential equation (ODE) in 1D, while it turns into a
partial differential equation (PDE) in higher dimensions. This makes the Usadel equation
generally more difficult to solve in 2D than in 1D. Previous works on the 2D Usadel
equation have mainly been numerical, due to its complexity [56], with the exception of
some analytical results in quasi-1D limits [57]. In this thesis we will solve the general
Usadel equation numerically, using the finite-element method. The reason we choose the
finite element method over other PDE algorithms is because this method allows us to solve
for a wider array of different geometries, than compared to the finite difference method,
for example.

The novelty of this thesis lies in the description and calculation of the 2D Usadel
equation under curvature. Previous works have studied the 2D Usadel equation in flat
geometries, and the 1D Usadel equation under curvature, but never both in the same
system. The main point of this thesis is therefore to develop a framework to facilitate for
further studies on spin-transport in 2D curved SF systems, and consider basic examples
of these systems numerically. Our expectation is that there are novel mechanics to be
found and new possibilities to study in these systems. 2D curved systems could for
example be used to stabilize racetrack memories. In racetrack memories skyrmions are
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1.5 DIFFUSION IN 2 DIMENSIONS

being created in thin films by an external magnetic field, then transported by an applied
voltage. These skyrmions have an unfortunate drift velocity, meaning that they drift
away from their tracks over longer distances [58]. Curving these racetracks could stabilize
these skyrmions, since traversing steeper curvature costs energy. It has, for example, been
shown by Kravchuk et al. (2018) [46] that there can be stable skyrmions in the ground
state of curved systems. 2D curved SF systems could also be used to study dynamics in
general relativity, through the anti-de-Sitter/conformal field theory correspondence [59].
In general, 2D curvature lets us study phenomena exclusive to higher dimensions such as
magnetic flux, skyrmions, vortices and geodesics on surfaces, under curvature [60].
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2 Green’s functions

The dynamics of the systems we aim to describe in this thesis are physically quite com-
plicated, and not necessarily intuitive to explain or dissect. Therefore, there have been
created several formalisms that each allow us to more effectively approach these systems.
Each formalism has its strengths, and carries its own set of assumptions about the system.
For diffusive metals in the quasiclassical theory the Usadel equation, which builds on the
Keldysh-formalism for Green’s functions, is the main formalism used. The derivation of
the Usadel equation, from basic principles, involves a series of approximations that are
based on a set of assumptions and restrictions we enforce on our systems. In this section,
the goal is therefore to carefully outline and motivate the assumptions and approxima-
tions that are made in the derivation of this equation. In order to do this we first have
to introduce the Keldysh formalism for Green’s functions [61].

2.1 Keldysh formalism in Nambu-Spin space

In quantum mechanics and condensed matter physics a mathematical concept known as
the Green’s function is of special importance. In general mathematics a Green’s function,
G, can be described as the impulse response of a given differential operator, L̂, such
that the Green’s function is related to its corresponding differential operator through
L̂G(r, r′) = δ(r, r′), where δ(r, r′) is the Dirac’s delta function. In other words, the
Green’s function can be viewed as the inverse function to its differential operator. One
can already see how Green’s functions could be relevant in solving physical systems and
equations, but it turns out that their role in quantum mechanics, especially within the
second quantization formalism, is more central than at first glance.

In the second quantization formalism, Green’s functions take the form of averages of
time-ordered sets of field operators [62]. We can define a general Green’s function as

Gσσ′(r, t, r′, t′) = −i⟨T{ψσ(r, t)ψ
†
σ′(r

′, t′)}⟩, (2.1)

where the time-ordering operator T ensures that the operators are applied consecutively
in time, as follows

T{ψσ(r, t)ψ
†
σ′(r

′, t′)} =

{
ψσ(r, t)ψ

†
σ′(r′, t′) if t < t′,

−ψ†
σ′(r′, t′)ψσ(r, t) if t > t′.

(2.2)

On this form, the Green’s functions in quantum mechanics are seen to be related to the
probability amplitude of a particle propagating from (r, t) with spin σ to (r′, t′) with
spin σ′. This means that we can describe most of the physical quantities that relate to
the motion and interaction of particles in materials, from these Green’s functions alone.
In this thesis, we will use Green’s functions to calculate the density of states (DoS),
electrical charge current, and more. For these reasons, the main objective of this thesis
centers around finding the Green’s functions to the systems of our interest.

The Green’s function of a differential operator is not necessarily unique, and any linear
combination of solutions to the homogeneous equation is also a solution. It is therefore
useful to define multiple Green’s functions on the same form as (2.1) that correspond to
different physical phenomena. There are multiple ways to do this, and in this thesis we
will follow the Keldysh real-time formalism. We define the following Green’s functions
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2.1 KELDYSH FORMALISM IN NAMBU-SPIN SPACE

GR
σσ′(r, t, r′, t′) = −i⟨{ψσ(r, t), ψ

†
σ′(r

′, t′)}⟩H(t− t′), (2.3)

GA
σσ′(r, t, r′, t′) = +i⟨{ψσ(r, t), ψ

†
σ′(r

′, t′)}⟩H(t′ − t), (2.4)

GK
σσ′(r, t, r′, t′) = −i⟨[ψσ(r, t), ψ

†
σ′(r

′, t′)]⟩, (2.5)

where GR and GA are referred to as the retarded and advanced Green’s function, re-
spectively, and H(x − x′) is the Heaviside function. As can be interpreted from these
expressions, the retarded Green’s function describes propagation of particles forward in
time, and thus depends on past events, while the advanced Green’s function represents
the time-reversed version of GR, and is thus linked to anticipation of future events. GK is
referred to as the Keldysh Green’s function, and describes the non-equilibrium properties
of the system.

Since the BCS theory expresses superconductivity as averages over pairs of annihilation
or creation operators, we need to extend the definition of the field operator ψ to account
for the qualitatively different Green’s functions that we want to describe. We therefore
express our operators in Nambu-space, where the field operator is defined as

Ψ1 =

(
ψ1

ψ†
1

)
and Ψ†

1 =
(
ψ†
1 ψ1

)
. (2.6)

In addition to this, we would like to be able to describe the mechanics of the field operators
with respect to their spin. Therefore, we express Ψ in the conjoined Nambu⊗Spin-space,
as

Ψ1 =


ψ1↑
ψ1↓

ψ†
1↑

ψ†
1↓

 and Ψ†
1 =

(
ψ†
1↑ ψ†

1↓ ψ1↑ ψ1↓

)
, (2.7)

where we have condensed the arguments of the field operators into subscripts, i.e. Ψ1

should be read to mean Ψ(r1, t1). In this extended formalism, the retarded, advanced
and Keldysh Green’s functions now become 4× 4 matrices, defined as

ĜR =

(
GR FR

FR∗ GR∗

)
, (2.8)

ĜA =

(
GA FA

FA∗ GA∗

)
, (2.9)

ĜK =

(
GK FK

−FK∗ −GK∗

)
, (2.10)

where the 2× 2 matrices in (2.8)-(2.10) describe the Green’s functions in spin-space, and
they all take the form

G =

(
G↑↑ G↑↓
G↓↑ G↓↓

)
. (2.11)

Here, we have defined a new type of Green’s function, Fσσ′(r, t, r′, t′) as
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2.2 THE QUASICLASSICAL APPROXIMATION

FR
σσ′(r, t, r′, t′) = −i⟨{ψσ(r, t), ψσ′(r′, t′)}⟩H(t− t′), (2.12)

FA
σσ′(r, t, r′, t′) = +i⟨{ψσ(r, t), ψσ′(r′, t′)}⟩H(t′ − t), (2.13)

FK
σσ′(r, t, r′, t′) = −i⟨[ψσ(r, t), ψσ′(r′, t′)]⟩. (2.14)

F is known as the anomalous Green’s function. The anomalous Green’s function in-
volves averages over pairs of annihilation or creation operators, and is thus related to the
superconducting gap. Hence, F describes the presence of Cooper pairs.

ĜR, ĜA and ĜK are ordered in a single 8 × 8 matrix Ǧ in Keldysh-space, which we
will refer to as the Green’s function matrix or just the Green’s function. It is given by

Ǧ =

(
ĜR ĜK

0 ĜA

)
. (2.15)

The three Green’s functions ĜR, ĜA and ĜK are not all independent, and can be shown
to be related by

ĜA = −τ̂z(ĜR)†τ̂z, (2.16)

ĜK = (ĜR − ĜA)tanh

(
E

2T

)
, (2.17)

where equilibrium is required for (2.17) to hold [63]. Thus it is in general sufficient to
only calculate one of the three Green’s function matrices, when considering systems in
equilibrium. In this thesis we will therefore focus on calculating ĜR.

2.2 The quasiclassical approximation

When describing Green’s functions, it can be more useful to use center of mass coordinates,
denoted by

R =
1

2
(r1 + r2), r = r1 − r2, T =

1

2
(t1 + t2), t = t1 − t2. (2.18)

The reason for this is that Ǧ acts as a modulated wave packet, with R describing the
coordinates of the envelope and r describing the coordinates of the internal oscillations.
The scale of the internal oscillations is of the same order as the inverse Fermi wave vector,
k−1
F . This is very small compared to the envelope, since the superconducting coherence

length is generally much larger than k−1
F . Because of this, we can remove degrees of

freedom from our equations, since we are mainly interested in the transport of particles
over distances at the scale of the superconducting coherence length. We do this by taking
an average over the relative coordinate r. In practice, this is done by first conducting
the coordinate transformations outlined in (2.18), then Fourier transforming the relative
coordinates. The Green’s function matrix then takes the form Ǧ(R, T,p, E), where p and
E thus refer to the momentum and energy of the internal oscillations, respectively [63].

The last step in simplifying the Green’s function is to assume that the electron scat-
tering processes in the metal are close to the Fermi surface. This assumption is justified
through the fact that we are mainly studying materials at very low temperatures. At
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2.2 THE QUASICLASSICAL APPROXIMATION

low temperatures, most of the Fermi sphere is filled, and so scattering processes have to
involve electrons close to the Fermi surface. Because of this, we can average over the
relative coordinates by setting the value of the energy to the Fermi energy. Doing this
gives us an expression for the so-called quasiclassical Green’s function ǧ, given by

ǧ(R, T,pF , E) =
i

π

∫
dϵpǦ(R, T,p, E), (2.19)

where ϵp = p2

2m
− µ is the kinetic energy relative to the Fermi level. The integral in this

definition behaves poorly at higher energies. A cut-off frequency is therefore introduced
in the integral to correct this issue. This is equivalent to confining Ǧ to the Fermi surface,
as can be seen from the relation

Ǧ(R, T,p, E) = −iπδ(ϵp)ǧ(R, T,pF , E). (2.20)

This sequence of transformations and approximations of the Green’s function matrix is
known as the quasiclassical approximation. The term quasiclassical comes presumably
from the fact that we have removed the wave mechanics from half of the coordinates of
the Green’s function. Thus we are treating one part of the system classically and the
other part quantum mechanically.

We perform the quasiclassical approximation on all the elements in Ǧ. Doing this, we
should be careful in taking the complex conjugate of Ǧ(R, T, r, t). In defining ǧ(R, T,pF , E)
in terms of Ǧ(R, T, r, t) we have performed a Fourier transform and added a complex pref-
actor. Taking the complex conjugate of Ǧ(R, T, r, t), we should therefore reverse the sign
of E in ǧ, and reverse the sign of ǧ itself. This gives us the following definition of ǧ

ǧ =

(
ĝR ĝK

0 ĝA

)
, (2.21)

where the 4× 4 matrices take the form

ĝR =

(
gR fR

−f̃R −g̃R

)
, (2.22)

ĝA =

(
gA fA

−f̃A −g̃A

)
, (2.23)

ĝK =

(
gK fK

f̃
K

g̃K

)
. (2.24)

Here, we have used the tilde-conjugate, defined by

g̃(E) = g∗(−E). (2.25)

Since ǧ should satisfy the normalization condition [61]

ǧǧ = Ǐ (2.26)

in equilibrium, the components of ǧ should obey three normalization conditions

ĝRĝR = Î , ĝAĝA = Î and ĝK ĝA + ĝRĝK = 0. (2.27)
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2.3 The dirty limit

The materials to be considered in this thesis will all be assumed to have a high impurity
density. Such materials are referred to as dirty metals. Dirty metals are characterized
by having a scattering rate τ−1

imp which is much greater than other energy scales in the
system [64]. As a result from the frequent scattering, the direction of the momentum of
the Green’s function is randomized at any point in space. This means that ǧ becomes
almost isotropic in momentum. We therefore expand the Green’s function to first order
in spherical harmonics, allowing us to split ǧ in one isotropic part and one anisotropic
part,

ǧ = ǧs + p̂F · ǧp. (2.28)

Here, the s-wave component, ǧs, denotes the isotropic part of ǧ, while the p-wave com-
ponent, ǧp, denotes the anisotropic part. Due to the implications of the dirty limit, the
isotropic part dominates, and we have ǧp ≪ ǧs. This limit therefore allows us to simplify
the equations describing the dynamics of our systems significantly.

The reason for considering systems in the dirty limit in this thesis, as opposed to
consider so-called ballistic transport which entails clean metals, is twofold. The first
reason is that taking the dirty limit allows for helpful approximations. For example,
one does not need to calculate the anisotropic parts of the Green’s function matrix in
this limit. The other reason is that dirty metals are more practical to manufacture and
conduct experiments on than clean metals.

2.3.1 The Usadel equation

With the quasiclassical formalism for Green’s functions in Keldysh-space, we can now
derive an effective equation of motion for ǧ, in the dirty limit. The details of this derivation
are very well documented, especially by previous theses written on this very subject [65]
[66] [63] [67]. Furthermore, the details of this derivation are not necessary in order to follow
the rest of the discussion in this thesis. Because of this, we only mention briefly the main
steps and assumptions made in this derivation, for completeness of the discussion.

The derivation of the Usadel equation starts by operating with the free electron oper-
ator on the Dyson equation from both the left and right, giving us an equation of motion
for the Green’s function on commutation form. This equation involves both the Green’s
function matrix and the self-energy. The equation is then treated in the quasiclassical
approximation, where the equation of motion is written in the mixed representation out-
lined in (2.18), then subjugated to a series of Fourier transforms. Along these steps, the
assumptions made in section 2.2 are liberally applied in order to simplify the equation.
This results in the so-called Eilenberger equation [68], given by

[Eτ̂z − Σ̌, ǧ] + ivF · ∇Rǧ = 0. (2.29)

Here, Σ̌ denotes the total self-energy of the Green’s function matrix. The choice of
what self-energies to include in Σ̌ depends on which material we are considering and
what assumptions we have made. In this thesis we are dealing with superconductor-
ferromagnet proximity systems in the dirty limit. As such, it is natural to include both
the superconducting self-energy, given by
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2.3 THE DIRTY LIMIT

Σ̌SC = ∆̂ = antidiag(∆,∆∗), ∆ = antidiag(∆,−∆), ∆ = λ⟨ψ↑ψ↓⟩, (2.30)

and the ferromagnetic self-energy for weak ferromagnets, given by

Σ̌FM = h · σ̂, σ̂ = diag(σ,σ∗). (2.31)

Since we are in the dirty limit we also need to include the self-energy for impurity scat-
tering, given by

Σ̌imp = − i

2τimp

ǧ (2.32)

in the Born-approximation for weak scattering [65]. As mentioned above, the scattering
rate τ−1

imp is considered to be much greater than the other energy scales in dirty metals.
This fact is used, along with the approximation in (2.28), to simplify (2.29). The result
is the Usadel equation, given by

iDF∇R · (ǧs∇Rǧs) = [Eτ̂z + ∆̂ + h · σ̂, ǧs]. (2.33)

Here DF =
v2f τimp

3
denotes the diffusion constant, h denotes the magnetic exchange field

and σ̂ denotes the Pauli matrix vector. This equation only includes the s-wave component
of the Green’s function matrix. Because of this, the Usadel equation is not capable of
describing transport of anisotropic Green’s function, such as p-wave Green’s functions. In
order to describe such transport, other methods such as the Eilenberger equation or the
Bogoliubov-de Gennes (BdG) method [69] must be used.

We mention here that the Usadel equation takes the form of a diffusion-like nonlinear
differential equation. This equation is thus interpreted to describe the diffusion of elec-
trons, holes and superconducting correlations in the material. We also note that (2.33)
in reality describes 48 separate equations, due to the form of the 8 × 8 Green’s function
matrix. However, since we are only interested in systems in equilibrium, considering only
the equation for ĝRs is sufficient, reducing the amount of equations to 16. The Usadel
equation for ĝRs looks the same as for ǧs,

iDF∇ · (ĝR∇ĝR) = [Eτ̂z + ∆̂ + h · σ̂, ĝR]. (2.34)

Here, we have dropped the s-subscript, as all the Green’s functions to be considered in
this thesis will be s-wave. Furthermore, due to normalization conditions and symmetries,
we can reduce this number down to 8 by introducing an appropriate parametrization,
as we show in section 6.2.1. Tackling a system of 8 nonlinear differential equations is
still a daunting task, and generally only solvable analytically under certain approxima-
tions. Therefore, numerical methods are generally preferred when dealing with the Usadel
equation.

Finally, we note that the dimensionality of the system affects the Usadel equation in an
important way. In 1D, (2.33) takes the form of an ordinary differential equation. In higher
dimensions, however, it takes the form of a partial differential equation, which significantly
complicates the equation. Therefore, the majority of the work on this equation so far has
been done in 1 dimensional systems. This is one of the reasons why the 2-dimensional
approach in this thesis is considered interesting, as it may illuminate novel properties and
mechanics in SF proximity systems.
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2.3.2 Boundary conditions

We need appropriate boundary conditions to accompany the Usadel equation. In this
thesis we will use the Kupriyanov-Lukichev boundary conditions [70], given by

n̂ · ĝRj ∇ĝRj =
1

2Ljζj
[ĝR1 , ĝ

R
2 ], (2.35)

where Lj is the length of material j, n̂ is the normal vector to the interface, and ζj =
RB

Rj
describes the ratio between the boundary resistance, RB, and the bulk resistance

in material j, Rj. The vacuum boundary condition is found by letting the boundary
resistance go to infinity, which corresponds to setting the right-hand side of (2.35) to 0.
The Kurpiyanov-Lukichev boundary conditions are a simplification to the more general
Nazarov boundary conditions [71]. The simplification is made by taking the tunneling
limit, Tn ≪ 1, where the transmission probabilities at the interface, Tn, are assumed to
be very small. The reasons for restricting us to this limit, and not using the more general
Nazarov boundary conditions, are similar to the reasons for considering dirty metals.
The Kupriyanov-Lukichev boundary conditions are simpler to work with, and represent
physical systems that are easier to manufacture in experimental setups.
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3 Generation of long range triplets

In section 1.3 we introduced the proximity effect in superconductor-ferromagnet (SF)
systems. In this chapter, we will look further into how we can optimize the transportation
of superconducting correlations into the ferromagnet. To begin this discussion, recall that
Cooper pairs generally form in the singlet state, |S⟩ = 1√

2
(|↑↓⟩ − |↓↑⟩), in spin-space.

When the Cooper pairs leak into the ferromagnet, the exchange field will cause several
things to happen to these correlations. First off, the Zeeman interaction between the
exchange field and the oppositely aligned spin states will shift the momenta of the two
electrons in the Cooper pair, giving the Cooper pair a finite momentum q. This spin
splitting will thus alter the singlet state according to [29]

eiq·r |↑↓⟩ − e−iq·r |↓↑⟩ = cos(q · r) |S⟩+ isin(q · r) |T1⟩ , (3.1)

where we have defined the triplet state with zero spin projection as |T1⟩ = 1√
2
(|↑↓⟩+ |↓↑⟩).

We thus end up with a mixture of singlet states and triplet states in the ferromagnet. This
mixed state of singlet and triplets is referred to as an FFLO state, after Fulde, Ferrell,
Larkin and Ovchinnikov [72] [73], and the process of creating FFLO states is referred to
as spin-mixing. We note that although this is a triplet state, its total spin projection
is still zero due to the two electrons being aligned oppositely in spin-space. The second
effect of the exchange field on the Cooper pairs is to pull oppositely aligned electrons
apart from each other, effectively destroying the Cooper pairs. This effect occurs due to a
combination of the Lorentzian force and the Zeeman interaction. As a result, the singlet
state and |T1⟩ correlations will only penetrate a short distance into the ferromagnet.
Because of this, we call the |T1⟩ state correlations short-range triplets (SRTs). Thus,
in order for the superconductive correlations to penetrate deep into the ferromagnet, we
require these pairs to be aligned in the same spin-direction. Spin-states with this quality
are triplet states in the form |T2⟩ = |↑↑⟩ or |T3⟩ = |↓↓⟩, and are referred to as long-range
triplets (LRTs) due to their ability to penetrate further into the ferromagnetic region.
The process of generating LRTs from singlets is outlined in figure 3.1.

LRTs are generated from SRTs through a process known as spin-rotation. This pro-
cess occurs in the ferromagnetic region and can be achieved through three main mechanics:

(i) a spatially varying magnetic field;

(ii) spin-orbit coupling;

(ii) geometric curvature.

By a spatially varying magnetic field, we mean a field that changes its orientation spatially.
A spatially varying magnetic structure will rotate the SRTs in spin space as it ventures
through the ferromagnet, producing LRTs. This way of producing LRTs was the first
method found for SF proximity systems [74] [30]. This method entails either producing
ferromagnets with a spatially varying magnetic texture, such as a material with domain
walls, applying an external magnetic field that varies in space or using materials with
an inherently inhomogeneous magnetic field, such as holmium [75]. Magnetic domain
walls can be unpredictable and difficult to control, an external magnetic field will affect
the system in its own way and put restrictions on the types of systems one can study,
and holmium is a rare material. Because of this, there was a desire to develop alternate
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3.1 SPIN-ORBIT COUPLING
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Figure 3.1: (a) Spin-mixing visualized as the generation of SRTs from singlets, and spin-
rotation as the generation of LRTs from SRTs. (b) Plot of the penetration of singlet
states, LRTs and SRTs into the ferromagnetic region. This figure has been reconstructed
from Linder & Robinson (2015) [10].

methods of generating LRTs. Another such method can be realized through inherent
spin-orbit (SO) coupling in the material [33]. SO coupling can be induced in materials
through various means, but is typically generated in materials with a broken inversion
symmetry. The reason SO coupling works as a method for spin rotation is due to the
fact that an electron will experience an effective magnetic field. This way, the electrons
interact with a rotating magnetic field without there having to be a rotating exchange
field in the material.

Recently, there has been discovered a third way of generating LRTs, namely through
geometric curvature. Geometric curvature can induce both a spatially varying exchange
field and SO coupling in the material, and can therefore be viewed as a combination of the
first two mechanics. Thus, in order to understand how curvature generates LRTs, we must
first understand how we can generate LRTs through the two aforementioned mechanics.
In the introduction to chapter 4 we discuss how curvature can induce a spatially varying
magnetic field. The rest of this chapter will be dedicated to understanding the effects of
SO coupling on SF proximity systems.

3.1 Spin-orbit coupling

To begin the discussion on SO coupling,let us first consider an electron moving in an
electric field, with zero external magnetic field. Although the external magnetic field is
zero, the effective magnetic field is Beff = Bext − v ×E due to the Lorentz transforma-
tion of the magnetic field, where E denotes the electric field [76]. Here, the velocity is
assumed to be small compared to the speed of light, such that the Lorentz factor can be
approximated to 1. Thus, due to relativistic effects, the moving electron experiences an
effective magnetic field in the presence of an electric field. This magnetic field will now
couple with the spin of the electron through the Zeeman interaction
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3.1 SPIN-ORBIT COUPLING

HSO = −µ
e
·Beff =

egE

4m2
σ · (p× n̂). (3.2)

Here, µ
e
= eg

2m
S denotes the magnetic moment, g ≈ 2 the g-factor, and S = σ

2
the

spin-vector of the electron. We have also defined the electric field E = En̂ in terms of
its magnitude and direction. We can rewrite the cross product in (3.2) using the vector
identity A · (B ×C) = C · (A×B) twice, to get

HSO =
egE

4m2
p · (n̂× σ) = − 1

m
p ·A. (3.3)

Here we have defined the SO field A = α(n̂×σ), and the SO coupling constant α = − egE
4m

.
In conjunction with the kinetic term, the Hamiltonian can now be written

H =
p2

2m
− 1

m
p ·A ≈ 1

2m
(p−A)2, (3.4)

where we have ignored the A2-term under the assumption that the SO field is weak.
Equation (3.4) now corresponds to a charged particle moving in an SU(2) gauge field A.
That is, we have effectively induced an SU(2) field in our system, via the SO coupling.
Because of this SU(2) field, we require all physical quantities to be invariant under an
SU(2) transformation. This is achieved by replacing the usual derivative with the gauge
covariant derivative ∇̃, such that [33]

∇v → ∇̃v = ∇v − i[A, v] (3.5)

becomes the new derivative.
The form of the SO field A depends on the nature of origin of the electric field E.

In the context of SO coupling, such an electric field usually appears due to the breaking
of inversion symmetry in the crystal structure of the material. An inversion asymmetry
will induce an electric field in the crystal, and can give rise to two types of SO coupling.
The first type of SO coupling comes from an inversion asymmetry near the interfaces
of the material. If the material is sufficiently thin, this asymmetry may permeate the
whole material. Such an asymmetry gives rise to so-called Rashba spin-splitting [77]. If
we choose the z-axis as the layering direction, the SO field due to Rashba spin-splitting
is given by

AR = αR(−σy, σx, 0). (3.6)

The second type of SO coupling arises due to bulk inversion asymmetry, i.e. inversion
asymmetry in the bulk of the material. This gives rise to Dresselhaus spin splitting, which
gives the SO field the form [78]

AD = αD(σx,−σy, 0). (3.7)

Here, αR and αD are referred to as the Rashba and Dresselhaus coupling strength, respec-
tively. These coupling strengths are difficult to calculate in practise, and are therefore
usually determined experimentally. In this chapter, we will consider both Rashba and
Dresselhaus SO coupling in our systems. Defining the normal direction of a thin film
surface as the z-direction, we get a general expression for the SO field

A = (αDσx − αRσy, αRσx − αDσy, 0). (3.8)
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3.2 WEAK PROXIMITY LIMIT

We can also express αR and αD in polar notation, as

αR = αsin(θSO) and αD = αcos(θSO), (3.9)

where α ≡ α2
R + α2

D and θSO denotes the angle between the two SO fields. Inserting this
into (3.8), we get

A = α2(cos(θSO)σx − sin(θSO)σy, sin(θSO)σx − cos(θSO)σy, 0). (3.10)

Writing out the x- and y- components of A, we see that

Ax = α2

(
0 eiθSO

e−iθSO 0

)
and Ay = α2

(
0 ie−iθSO

−ieiθSO 0

)
. (3.11)

This form of the Rashba-Dresselhaus SO field is often more useful to work with, as it
allows us to interpret our results in terms of the geometric properties of the SO field. In
Nambu-spin space, the SO field takes the form

Â =

(
A 0
0 −A∗

)
. (3.12)

Here, we take care to note that although this form of the SO field is both hatted and
bold, Â is to be considered as a 4 × 4 matrix with a vector structure, and not as a unit
vector. Adding SO-coupling to the Usadel equation in (2.34), and writing out the full
gauge covariant derivative, we now get

iDF (∇(ĝR∇ĝR)−i[Â, ĝR∇ĝR]−i∇(ĝRÂĝR)−[Â, ĝRÂĝR]) = [Eτ̂3+∆̂+h·σ̂, ĝR]. (3.13)

Here, we have applied the normalization conditions in (2.27) and assumed that the SO
field is constant in space.

There is also another way to induce SO coupling in our materials. As we will discuss
more in-depth in section 4.3, materials may be curved in a way that enforces a strain
on the system. This strain gives rise to an electric field in the normal direction of the
curvature, which in turn results in an SO coupling that is proportional to the curvature
of the material. This is why we first discuss general SO coupling in flat systems.

3.2 Weak proximity limit

At the end of section 2.3.1 we mentioned that the Usadel equation is challenging to solve
in the general case, due to its nonlinear nature. However, under certain assumptions we
may simplify the equation, allowing us to interpret the equation analytically under these
restrictions. Through understanding how the Usadel equation behaves in the restricted
cases, we may extrapolate and gain some intuition for how we expect it to behave in the
general case as well. In this section, we therefore aim to simplify the Usadel equation
by restricting ourselves to systems where the proximity effect is weak. In such systems
a lower portion of the Cooper pairs are able to penetrate the SF interface. We therefore
expect the superconductive correlations to have a weak presence in the metal. For normal
metals we have g = 1 and f = 0. The presence of superconductive correlations is denoted
by the anomalous Green’s function, f . In weak proximity systems, the retarded Green’s
function therefore simplifies as
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3.2 WEAK PROXIMITY LIMIT

ĝR =

(
1 f

−f̃ −1

)
, (3.14)

where the anomalous Green’s function is considered to be small, such that f ≪ 1. Insert-
ing this into the Usadel equation in (2.33), along with adding SO coupling through gauge
covariant derivatives, we get

iDF

(
0 ∇̂2f

∇̂2f̃ 0

)
=

(
0 2Ef + h · σf − fh · σ∗

2Ef̃ − f̃h · σ + h · σ∗f̃ 0

)
, (3.15)

where we have ignored terms of O(f 2). Because of the matrix multiplications we have
performed, and the form of the SO field in Nambu-spin space, given in (3.12), the gauge
covariant derivatives have changed form, ∇̃ → ∇̂, where we have defined

∇̂v ≡ ∇v − i (Av + vA∗) . (3.16)

Equation (3.15) describes the dynamics in the ferromagnetic region, since we have included
the exchange field, h, and set the superconducting gap to zero, ∆̂ = 0. Taking the limit
where g = 1 and f is small is referred to as the weak proximity limit. From (3.15) we
see that we have removed the nonlinear terms, effectively linearizing the Usadel equation.
We also see that the equations for f and f̃ have decoupled. It is therefore sufficient to

only consider the equation for f from here on, since the equation for f̃ can be found by
taking the tilde-conjugate of the equation for f . Inserting the derivative in (3.16) into
(3.15), we get [63]

DF∇2f − 2iDF (A · ∇f +∇f ·A∗)−DF (2A · (fA∗) +A ·Af + fA∗ ·A∗)

= −2iEf − ih · (σf − fσ∗),
(3.17)

where we have assumed that A is constant in space. This assumption holds for Rashba-
Dresselhaus spin-splitting in Euclidean geometries, but is generally not correct for curved
geometries. This equation describes the linearized Usadel equation.

In the absence of an SO field, equation (3.17) takes the form

DF∇2f = −2iEf − ih · (σf − fσ∗). (3.18)

Since the strength of the exchange field in general is much stronger than the energy E
(which is of the order of the temperature T ), the superconductive correlations will thus
decay over a distance

√
DF/|h|. This gives rise to short-ranged correlations. If, on the

other hand, terms involving the exchange field would vanish, the correlations would decay
over a much longer distance

√
DF/T , giving rise to long-ranged correlations [33]. In order

for the exchange field-terms to vanish, the correlations f must be perpendicular to h. This
motivates us to parameterize f accordingly, in terms of short-ranged- and long-ranged-
components, in order to investigate the dynamics of spin mixing and rotation closer.

3.2.1 Spin parameterization

We would like to be able to study the development of LRTs and SRTs from the linearized
Usadel equation. In order to do this, we express f in the spin-parameterization, given by
[79]
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3.2 WEAK PROXIMITY LIMIT

f = (f0 + d · σ)iσy. (3.19)

This parameterization expresses f in terms of its singlet component, f0, and its triplet
components, d. Here, the part of the d-vector that is parallel to the exchange field h,
d∥ = d · ĥ, refers to the SRT component of f , while the perpendicular part, d⊥ = |d× ĥ|,
refers to the LRT component. This parameterization of f is therefore useful for our
purpose as it allows us to directly study the dynamics of the different spin-components.
Inserting (3.19) and (3.10) into (3.15), and explicitly doing the matrix multiplications, we
get a set of four equations

∇2dx−4α2(cos(θSO)∂y−sin(θSO)∂x)dz+4α4sin(2θSO)dy−4α4dx=− 2i

DF

(Edx+f0hx),

(3.20)

∇2dy−4α2(cos(θSO)∂x+sin(θSO)∂y)dz+4α4sin(2θSO)dx−4α4dy=− 2i

DF

(Edy+f0hy),

(3.21)

∇2dz − 4α2cos(θSO)(∂xdy + ∂ydx)− 8α4dz− = − 2i

DF

(Edz + f0hz), (3.22)

∇2f0 = − 2i

DF

(Ef0 + h · d). (3.23)

This is the general expression for the linearized Usadel equations in 3D ferromagnets. In
one dimension, the gradient reduces to a derivative in the z-direction, since the layering
direction was defined to point in the z-direction in section 3.1. Because of this, the
derivatives in the x- and y-directions vanish, and the equations (3.20)-(3.23) simplify
even further, as [63]

∂2zd− 4α4Ω(θSO)d = − 2i

DF

(Ed+ f0h), (3.24)

∂2zf0 = − 2i

DF

(Ef0 + h · d). (3.25)

Here, we have defined the SO interaction matrix, Ω(θSO), as

Ω(θSO) =

 1 −sin(2θSO) 0
−sin(2θSO) 1 0

0 0 2

 (3.26)

We can now begin to interpret some results from the equations in (3.24) and (3.25).
First of all, there has not been made a choice for the direction of the exchange field in
these equations, but we recall that dsrt ≡ d∥ = d · ĥ and dlrt ≡ d⊥ = |d× ĥ| denotes SRTs
and LRTs, respectively. Because of this, we see that (3.25) describes the generation of
SRTs from the singlet state, due to the exchange field. We see that this process of spin-
mixing is independent of the SO-field, as predicted in the introduction to this chapter.
Furthermore, equation (3.24) describes the generation of LRTs from SRTs, due to the SO
interaction matrix. We called this process spin-rotation. We see that spin rotation is not
possible for θSO = nπ/2, for n = 1, 2, 3..., since Ω(θSO) diagonalizes for these values.
This tells us that we need both Rashba and Dresselhaus SO fields, as well as a finite angle
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3.3 PHYSICAL OBSERVABLES

between these two fields, in order to generate LRTs with SO coupling in the xy-plane.
The form of Ω(θSO) also indicates that we need a finite exchange field in the xy-plane in
order to generate LRTs.

Generally, the condition for spin rotation is that the SO field Â does not commute
with the ferromagnetic self energy, h · σ̂ [80]. Hence, it should be noted that spin rotation
is possible for pure Rashba SO coupling, if the orientation or structure of the SO field
is different from that in (3.8). We will, for example, show that generation of LRTs is
possible for a system with both an exchange field and SO field pointing in the z-direction
[81].

If we look at the 3D equations in (3.20)-(3.23), the terms we removed in the transition
from 3D to 1D systems all include first order derivatives of the d-vector components. These
terms also describe generation of LRTs, but are damping like in nature. Following the
discussion in Bergeret & Tokatly (2014) [33], we call this kind of spin rotation precession.
This form of spin-rotation will therefore still be present in higher-dimensional materials
with only one type of SO coupling.

3.3 Physical observables

The physical observables of interest in this thesis is mainly the density of states (DoS)
and the charge current. Both can be expressed in terms of the retarded Green’s function
matrix, ĝR.

3.3.1 Density of states

The density of states N(R, E) is found from the spectral function, and is given by [61]

Nσ(R, E) = lim
r→0

− 1

π
Im{GR

σσ(R, r, E)}. (3.27)

Expressing this in terms of the quasiclassical Green’s function using (2.20), we get

Dσ(R, E) = Re{gR
σσ
(R, E)}. (3.28)

Here, we have defined the normalized density of states as D(R, E) = N(R, E)/N0, where
N0 denotes the density of states at the Fermi surface. In this thesis we are generally not
interested in the density of states of separate spin components. We may thus take the
average in spin space

D(R, E) =
1

2
Re{Tr[gR(R, E)]}. (3.29)

We note that the traces in these expressions are all taken with respect to the first quadrant
in ĝR. Thus, these expressions for the density of states are for the electron-part of the
quasiparticles. In order to find the density of states for the holes we should take the trace
of the 4th quadrant, given by −g̃R.

We may also express the density of states at zero energy in terms of the singlet com-
ponent and the triplet vector from the spin parameterization in (3.19). Using the nor-

malization condition ĝRĝR = τ̂0, we see that gRgR = 1 + fRf̃
R
. At zero energy, the

tilde-conjugate reduces to a regular conjugate, giving gRgR = (1 − |f0|2 + |d|2)I, after
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3.4 THE BULK SUPERCONDUCTOR

writing fR in the spin-parameterization. Thus, the density of states at zero energy is
given by

D(R, E = 0) =
√

1− |f0|2 + |d|2. (3.30)

In the weak proximity limit, where f ≪ 1, this can be written as [11]

D(R, E = 0)wpl = 1− 1

2
|f0(R, 0)|2 +

1

2
|d(R, 0)|2. (3.31)

Here, we see how the presence of triplet- and singlet-state components affect the density
of states at zero energy, allowing us to more easily interpret the results we get. For
example, a pronounced peak in the density of states at E = 0 often indicates the presence
of triplets, and LRTs in particular, while a gap around E = 0 indicates the presence of
singlets. It should be noted that the singlets and triplets can cancel each other out in
the density of states. Furthermore, this approach does not let us separate between LRTs
and SRTs. Therefore, it is useful to plot the absolute values of the singlet and d-vector
components in order to properly analyze the extent of the spin mixing and rotation.

3.3.2 Charge current

The charge current density must obey the continuity equation given by

∂tρq(r) = −∇ · Jq(r), (3.32)

where ρq(r) denotes the charge density, and Jq(r) denotes the charge current density.
Wanting to express this equation in the Green’s function formalism, we write the charge
density in terms of field operators

ρq(r) = eΣσ⟨ψ†
σ(r)ψσ(r)⟩. (3.33)

This expression can now be inserted into the continuity equation, which can be manipu-
lated in order to give us the following expression for the normalized charge current density
[66]

jq(R) =
eDF

4

∫
dETr[τ̂z(ĝ

K∇̃ĝK)], (3.34)

where the normalized charge current density is related to the charge current density by
jq(R) = Jq(r)/N0. We recall that ĝK can be expressed in terms of ĝR using (2.17), giving
us an expression for the charge current density in terms of the retarded Green’s function
matrix

jq(R) =
eDF

4

∫
dEtanh

(
E

2T

)
Tr[τ̂z(ĝ

R∇̃ĝR + (τ̂zĝ
R∇̃ĝRτ̂z)†)]. (3.35)

3.4 The bulk superconductor

In order to better understand SF proximity systems, it is instructional to first consider
an isolated superconductor. We therefore look at a bulk superconductor, and its solution
to the Usadel equation. By a bulk superconductor, we mean a superconductor with an
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3.4 THE BULK SUPERCONDUCTOR

infinite extension in each direction of propagation. In a superconductor, the Green’s
function is constant in space, and we consider the SO effects to be localized within the
ferromagnet. The Usadel equation in (2.34) thus reduces to a simple commutator equation

[Eτ̂3 − ∆̂, ĝR] = 0. (3.36)

We notice that this equation is independent of dimensionality, such that the solutions for
1D, 2D and 3D are all the same. The solution can be shown to be [61]

ĝSC =

 E√
E2−|∆|2

∆√
E2−|∆|2

iσy

∆∗√
E2−|∆|2

iσy − E√
E2−|∆|2

 . (3.37)

By defining the angle θSC = atanh(|∆|/E), and writing the superconducting gap in terms
of its magnitude and phase, ∆ = |∆|eiϕ, we can rewrite the solution to

ĝSC =

(
cosh(θSC) sinh(θSC)iσye

iϕ

sinh(θSC)iσye
−iϕ −cosh(θSC)

)
. (3.38)

Here, we have written the solution in terms of hyperbolic functions, where cosh(θSC) =
E√

E2−|∆|2
and sinh(θSC) =

∆√
E2−|∆|2

. Inserting this solution into the density of states in

(3.29) gives

DSC(E) =
|E|√

E2 − |∆|2
H(E2 − |∆|2), (3.39)

whereH(x) denotes the heaviside function, indicating that there is a gap whereDSC(E) =
0 for E < ∆. Furthermore, DSC(E) features so-called coherence peaks at E = ∆. The
density of states for the bulk of a superconductor is plotted in figure 3.2, together with
the density of states for a normal metal, for comparison.

Figure 3.2: The normalized density of states for a bulk superconductor (SC) and a normal
metal.
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3.5 SO COUPLING IN SF SYSTEMS

3.5 SO coupling in SF systems

Figure 3.3: Visualization of our proximity system. The blue region represents a super-
conducting reservoir, while the red region represents the ferromagnet/normal metal, with
length L.

In order to verify our findings in section 3.1 we have solved the general Usadel equation
in 2.34 numerically. The main tools used to solve this equation numerically are covered in
section 6.2. In this section, we consider 1D systems in the form shown in figure 3.3. That
is, we are dealing with nanowire-like metals in contact with a superconducting reservoir
to the left. The length of the metal is set to be equal to the superconducting coherence
length, L = ξ, where we use the relation ξ =

√
DF/|∆| for the coherence length [82].

Figure 3.4(a) shows the density of states for an SN system, compared to an SF system.
The SN system features a gap in the density of states around E = 0, while the SF system
is identical to the normal metal in figure 3.2 close to E = 0. We can understand these
results by looking at the expression for the density of states in (3.31). This tells us that
the gap in the SN system is due to the presence of singlet states in the normal metal,
due to the proximity effect. This is expected, as the normal metal features no exchange
field, and therefore will not destroy the singlet state correlations. The SF system, on the
other hand, can be seen to have no singlet states. We thus see that the exchange field
has destroyed the singlet states, and most of the proximity effect, making the density of
states look like a normal metal around E = 0.

Figure 3.5(a) shows the density of states for SF systems with θSO = π/4 and θSO = 0,
respectively. This plot thus demonstrates the effect of the SO angle on the density of
states. In section 3.1 we predicted that a finite SO angle is necessary in order to produce
LRTs for SO fields in the form in 3.12. This is shown to be correct, as θSO = π/4 gives
a clear peak at E = 0 in the density of states, indicating the presence of LRTs, while
θSO = 0 gives a gap in the density of states. The plot in figure 3.5(b) verifies that this
peak is due to LRTs in the ferromagnet. In this figure, we have plotted the absolute value
of the LRT (dLRT ), SRT (dSRT ) and singlet (f0) components for a system with length
L = 5ξ, at E = 0. This figure hence demonstrates the long range effect of LRTs, along
with demonstrating how singlet and SRT components are destroyed in the case where
there is no spin-rotation. We note that the singlet component in the θSO = π/4 case
seems to have a long range penetration, which seems odd at first glance. This can be
explained by noting that spin-rotation and spin-mixing go both ways, according to the
weak proximity equation in (3.24). By this, we mean that we can also generate singlet
components from SRTs, which in turn can be generated from LRTs. This means that we
may have generation of singlet components far into the ferromagnet, since the LRTs will
be present at these depths.
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Figure 3.4: (a) The normalized density of states for a superconductor - normal metal
(SN) proximity system and a superconductor - ferromagnet (SF) proximity system. The
length and relative resistance is L = ξ and ζ = 3 in both systems. The exchange field
is h = |∆|[cos(π/6),−sin(π/6), 0] in the ferromagnet. (b) Density of states for an SF
proximity system with SO field in the z-direction, for various coupling strengths. The
exchange field is h = |∆|ẑ and the length is L = 2ξ.

Finally, we show that spin rotation is possible for a pure Rashba coupling in the z-
direction in figure 3.4(b). Here, we have plotted the density of states for an SF system
with exchange field h = |∆|ẑ and SO field A = α(σx − σy)ẑ, with L = 2ξ, for various
coupling constants. We see that the peaks around zero energy indicate LRTs, and that
the peak is more prominent for stronger coupling constants.
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Figure 3.5: (a) The normalized density of states for a superconductor-ferromagnet prox-
imity system with SO coupling. One system with SO angle θSO = π/4 and one with
θSO = 0. L = ξ, ζ = 3, h = |∆|[cos(π/6),−sin(π/6), 0] and α = 4|∆|. (b) The absolute
value of the LRT, SRT and singlet components plotted along the ferromagnet at E = 0,
for the two systems considered in (a).
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4 Curvature in 1D

We will now add geometric curvature to our systems. The geometric curvature will not
only be shown to have similar effects on our systems as SO-coupling, but also introduce
new possible mechanics. The idea that curving a material in space can change its ability
to transport particles so drastically seems odd at first glance. One of the most lucid ways
to explain why this works is to consider a 1D ferromagnetic wire, with its exchange field
pointing along the direction of propagation. The Cooper pairs entering this wire from a
superconductor attached to either side will decay rapidly as singlets or short-range triplets.
If we now curve this wire, the exchange field orients itself along the tangential direction
of the curve for a large class of materials [83]. This curved wire can now be mapped to
a straight wire, with an exchange field that rotates according to the curvature, as shown
in figure 4.1. The Cooper pairs entering the wire from the superconductor now see a
spatially rotating exchange field as they move along the wire. As discussed in Bergeret &
Tokatly (2014) [33], a spatially varying exchange field can be shown to be equivalent to a
general SO-field when it comes to producing long-range triplets. Furthermore, geometric
curvature can also induce SO-coupling in the material through symmetry breaking and
strain.

In order to understand how curvatures affect transportation of superconductive corre-
lations in 2D materials, it is useful to first gain some intuition for how curvatures influence
1D materials. Having some results established for 1D systems will also make it easier to
interpret and understand results from 2D systems.

Figure 4.1: A curved nanowire with an exchange field pointing along the tangential di-
rection mapped to a straight nanowire with a rotating exchange field.

4.1 An introduction to tensor notation

In order to describe the geometries of curved surfaces it is natural to employ a coordinate
system that follows the surface implicitly. Such choices of coordinate systems generally
distinguish themselves from the usual choice of Cartesian coordinates in that the basis
vectors may vary in space. That is, a basis vector in some point a on the surface might
not point in the same direction at another point b. Furthermore, it is important for our
equations to express the same physical properties, regardless of what coordinate system
we are employing. It is for these reasons that we utilize the tensor formalism in our
treatment of geometric curvature. Tensors are quantities that transform in specific ways
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under coordinate transformations. Expressing equations in terms of tensors thus gives
us control over how these equations transform with respect to a change in coordinates.
This allows us to compose equations in ways that look the same, regardless of frame of
reference, giving our equations the quality we are looking for in order to describe dynamics
on surfaces.

To begin this discussion, let us consider a general 3D coordinate vector, R(x1, x2, x3),
that traces out the whole 3D space. This vector takes on different forms depending on
our choice of coordinates, and our choice of coordinates depends on the geometries we
would like to describe. For example, we have R(x, y, z) = xx̂ + yŷ + zẑ in Cartesian
coordinates and R(r, θ, z) = rcos(θ)x̂ + rsin(θ)ŷ + zẑ in cylindrical coordinates. From
this vector we would like to define a set of basis vectors, {ei}. We do this by defining the
ith basis vector as [84]

ei = ∂iR(x1, x2, x3), (4.1)

where ∂i denotes the partial derivative with respect to the ith coordinate. This definition
has an intuitive explanation. As we change only the ith variable in R, we would like to
move in the direction of the ith basis vector. This is exactly what the definition in (4.1)
ensures. This definition raises several possible problems. First of all this set of basis
vectors is not necessarily normalized, nor orthogonal. Furthermore, the inner product
between two arbitrary vectors, A = aiei and B = biei, seemingly depends on our choice
of coordinates. To see this, consider the same basis vector as in (4.1), but in another
coordinate system, defined by a set of coordinates x′i. The relation between ei and e′

i is
thus

e′
i =

∂R

∂x′i
=
∂R

∂xi

∂xi
∂x′i

=
∂xi
∂x′i

ei. (4.2)

This issue can be resolved if we compare the inner products between A and B in two
different coordinate systems. We see that

A ·B = aibjei · ej, (4.3)

whereas the inner product in the primed coordinate system is

A′ ·B′ = a′ib′je′
i · e′

j = a′ib′j
∂xi
∂x′i

∂xj
∂x′j

ei · ej. (4.4)

We see that in order for the inner product to be independent of our choice of coordinates,
the coefficients with raised indices, ai and bi, must transform as

a′i =
∂x′i
∂xi

ai (4.5)

under a change of coordinates.
We define vectors that follow the transformation rule outlined in (4.5) as contravari-

ant vectors, while vectors that follow the transformation rule in (4.2) are called covariant
vectors. Contravariant vectors are denoted by having raised indices, while covariant vec-
tors have lowered indices. This explains the positioning of the indices so far. Following
our argumentation so far, a general vector can be written as a product of covariant and
contravariant vectors
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A = Aiei = Aie
i. (4.6)

We now suddenly have two sets of basis vectors, a set of covariant basis vectors {ei},
and a set of contravariant basis vectors {ei}. Both are valid choices of basis vectors for
a general coordinate vector R, and as shown this far, both are needed in order for our
inner products to be physically meaningful. Both sets are therefore utilized, and we call
this doubled set of basis vectors a dual set of basis vectors, where {ei} and {ei} are dual
basis vectors. Dual basis vectors are related by

eie
i = δji , (4.7)

where δji denotes the Kronecker delta. Thus, this dual set of contravariant and covariant
basis vectors form an orthonormal set of basis vectors, which resolves the problems previ-
ously discussed, related to orthonormality. From (4.7) and (4.6) we see that we can write
general vectors on covariant and contravariant form as

Ai = A · ei and Ai = A · ei. (4.8)

In order to utilize this set of basis vectors we need to be able to convert between
covariant and contravariant vectors. To do this, we return to the inner product, and see
that we can write this in two different ways. Using the two different expressions in (4.6)
we get

A ·B = (Aiei) · (Bjej) = (Aie
i) · (Bjej) = AjB

j. (4.9)

This suggests that

Ai = ei · ejA
j = gijA

j, (4.10)

where we have defined the important metric tensor, defined by

gij = ei · ej. (4.11)

Similarly, we can show that

Ai = ei · ejAj = gijAj. (4.12)

Combining (4.10) and (4.12), we see that Ai = gijAj = gijgjkA
k, which implies that

gijgjk = δik. (4.13)

Thus, gij is shown to be the inverse of the metric tensor. The operations outlined in (4.10)
and (4.12) are referred to lowering and raising of indices, respectively, and are frequently
encountered in calculations involving covariant and contravariant vectors.

The metric tensor is thus central to our formalism, as it allows us to convert between
covariant and contravariant vectors and evaluate inner products. This indicates that
the metric tensor is linked to the measurement of physical distances, hence its name.
From its definition, we see that gij is symmetrical, such that gij = gji. Furthermore, the
metric tensor becomes diagonal for orthogonal coordinate systems. This indicates that
orthogonal coordinate systems are preferred to use if possible, as they simplify the inner
product and the covariant-contravariant vector relation.
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For orthogonal systems we can also introduce a new type of vector, the physical vector.
The ith component of the physical vector A is given by A(i). Its definition can be found
by considering the inner product between two general vectors

A ·B = giiAiBi = A(i)B(i). (4.14)

Here, we have used that the metric tensor is diagonal for orthogonal systems. From this
definition, we can see that

A(i) =
Ai√
gii

= Ai/hi, (4.15)

where hi =
√
gii = |ei| is referred to as a scale factor. hi has the role of ensuring that the

physical vector component A(i) has the right dimension. For example, in polar coordinates

er = cos(θ)x̂+ sin(θ)ŷ and eθ = −rsin(θ)x̂+ rcos(θ)ŷ (4.16)

have different dimensions due to the factor r. Thus, eθ is divided by hθ = r in order to
get the correct physical dimensions, hence the name physical vectors. This definition is
useful when wanting to describe vectors as they actually appear in physical systems.

4.1.1 The coordinate covariant derivative

We now need a way to define differentiation in this formalism. In the dual basis there are
two ways of taking the derivative. The first is with respect to the component of a covariant
vector xi. This derivative can be shown to transform contravariantly under a coordinate
transformation. Conversely, taking the derivative with respect to the component of a
contravariant vector xi transforms covariantly. This motivates us to define covariant
derivatives, denoted by ∂i, and contravariant derivatives, denoted by ∂i, as

∂iA =
∂A

∂xi
and ∂iA =

∂A

∂xi
. (4.17)

These derivatives obey the rules that we have already established for general covariant
and contravariant vectors.

If we now try to take, for example, the covariant derivative with respect to a general
vector A in the dual basis, we get

∂iA = (∂iAj)e
j + Aj(∂ie

j). (4.18)

Due to the fact that the coordinate system has the potential to change as we move around
in space, we get additional terms in our derivatives. In order to keep the tensorial form of
the derivative, we would like to absorb this new term into our definition of the derivative
of a vector. Continuing from (4.18), we see that

∂iA = (∂iAj)e
j + Ak(∂ie

k)

= (∂iAj − Γk
ijAk)e

j

= (DiAj)e
j

(4.19)

Here we have defined a new quantity, Γk
ij, known as the Christoffel symbol, or the affine

connection, as
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∂ie
j = −Γj

ike
k or ∂iej = Γk

ijek. (4.20)

We have also absorbed the additional terms in (4.18) into a new derivative, known as the
coordinate covariant derivative, Di [85]. This derivative takes different forms depending on
whether we are differentiating a covariant or contravariant vector. We get two definitions

DiAj = ∂iAj − Γk
ijAk, (4.21)

DiA
j = ∂iA

j + Γj
ikAk. (4.22)

The Christoffel symbols completely encapsulate the effect of a changing coordinate
system on the derivative, and are therefore central quantities when dealing with dynamics
in changing coordinate systems. Most of the effects of curvature on our systems can
therefore be written in terms of Christoffel symbols. We therefore offer another, equivalent
way, to calculate these symbols

Γk
ij =

1

2
gkl (∂jgli + ∂iglj − ∂lgij) . (4.23)

As can be seen from these definitions, the Christoffel symbols are symmetrical in their
lower indices, i.e. Γk

ij = Γk
ji. The number of Christoffel symbols also scale with the

dimensionality of the system D, as DD. Thus we have 1 Christoffel symbol in 1D, 8
symbols in 2D and 27 symbols in 3D.

Using the vector definition in (4.6), the gradient vector can now be found to be

∇ = ei ∂

∂qi
= ei∂i = ei∂

i. (4.24)

The divergence is given by

∇ ·A = (ei∂i) ·A = gijDiAj, (4.25)

where we used (4.19) and (4.24). Inserting these expressions into the Usadel equation in
(2.34), and applying tensor notation, we get

iDFg
ij
(
∂i(ĝ

R∂j ĝ
R)− Γk

ij ĝ
R∂kĝ

R
)
= [Eτ̂z + ∆̂ + gijhiσ̂j, ĝ

R]. (4.26)

Equation (4.26) is thus the general expression for the Usadel equation in tensor notation.
The cross product in general notation is given by A × B = ϵijkx̂iAjBk, where x̂i

denotes the ith orthonormalized basis vector. To write this on tensor form, we have to write
the Levi-Civita symbol as a tensor. The Levi-Civita tensor is given by Eijk = ϵijk

√
|g|,

and its contravariant form is E ijk = ϵijk/
√

|g| [86]. The cross product on tensor form is
now found to be

A×B = EijkeiAjBk = E ijkeiAjBk. (4.27)

From this, the curl can be shown to be

∇×A = E ijkeiDjAk

= E ijkei(∂jAk − Γl
jkAl)

= E ijkei∂jAk,

(4.28)
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where we have used that the Christoffel symbol is symmetric under permutation of the two
lower indices j and k, while the Levi-Civita symbol is anti-symmetric under permutation
of the same symbols. The terms including the Christoffel symbol thus vanish from the curl.
Here, we take precaution to note that the curl, as defined in (4.28), involves derivatives
of covariant vectors. The expressions for the curl that one will see in most textbooks are
written in normal form, such as the expression for the curl in spherical coordinates, given
by [76]

∇×A =
1

sin(θ)r
(∂θ(sin(θ)Aϕ)− ∂ϕAθ) r̂+

1

r
(

1

sin(θ)
∂ϕAr−∂r(rAϕ))θ̂+

1

r
(∂r(rAθ)− ∂θAr) ϕ̂.

(4.29)
In order to retrieve these expressions from the definition in (4.28), one simply has to write
the equation in terms of the physical vectors

∇×A = ϵijk
1√
|g|

x̂ihi∂j(hkA(k)). (4.30)

4.2 Curvilinear coordinates

Figure 4.2: A curved surface, represented in curvilinear coordinates. This figure demon-
strates how curvature stretches the material where n > 0 and compresses the material
where n < 0, giving rise to strain.

The standard coordinate system used to describe curvatures in the 1D limit is curvilin-
ear coordinates. In one dimension, curvature can be described by a general curvature γ(s).
This curvature is said to be one dimensional, as it only depends on a single parameter s.
The curvilinear coordinate system is defined by the set of basis vectors [67]

T̂ (s) = ∂sγ(s), (4.31)

N̂ (s) = ∂sT̂ (s)/|∂sT̂ (s)|, (4.32)

B̂(s) = T̂ (s)× N̂ (s), (4.33)

where T̂ (s) is the tangential vector to the curve γ(s), N̂ (s) is the normal vector, pointing
normally to the tangential vector, and B̂(s) is the binormal vector, as shown in figure 4.2.
From the definition in (4.31), T̂ (s) is not necessarily a unit vector. In order to ensure that
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it is, we need to choose the right parameterization for γ. To find the parameterization
of γ that makes T̂ (s) a unit vector for all s, consider first a general parameterization,
γ(t). We want to find a parameterization s, such that |∂sγ| = | ∂t

∂s
∂tγ| = 1. It follows that

∂s
∂t

= |∂tγ|. By integrating this equation, we see that the parameterization s is indeed the
arc-length of the curve γ, given by

s =

∫ t′

0

|∂tγ|dt. (4.34)

Thus, in order for the curvilinear basis vectors to be unit vectors, the curve γ needs to be
parameterized by its arc-length, s. We call curves that are parameterized in this manner
unit-speed curves, as their derivative is equal to unity at all points [87].

T̂ (s), N̂ (s), and B̂(s) are all related by the Frenet-Serret formulas. The Frenet-Serret
formulas are given by the set of equations∂sT̂∂sN̂

∂sB̂

 =

 0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0

T̂
N̂
B̂

 . (4.35)

Here, we have defined the curvature of the system as κ(s) = |∂sT̂ (s)|. Thus, κ(s) = 0
for a straight line, while κ(s) increases as T̂ (s) varies more rapidly along the curve.
This justifies our definition of the curvature. τ(s) = |∂sB̂(s)| refers to the torsion of the
curve. Torsion in a curve arises, for example, when twisting the endpoints of the curve
in opposite directions, around its own axis. Conjoined with the regular curvature κ(s),
this gives rise to helical structures. Torsion complicates the computation of the metric
tensor and the Christoffel symbols substantially. These computations are covered by for
example Salamone (2023) [50]. Furthermore, there is no clear equivalence to torsion in
2D curvature, for the geometries that we are interested in. Because of this, we are not
interested in systems with torsion in this thesis, and will therefore let τ(s) = 0 in the
following sections. The Frenet-Serret equations thus reduce to

∂sT̂ = κ(s)N̂ , (4.36)

∂sN̂ = −κ(s)T̂ , (4.37)

∂sB̂ = 0. (4.38)

We are now ready to construct the the 3D coordinate vector, as

R(s, b, n) = γ(s) + bB̂(s) + nN̂ (s). (4.39)

Using the Frenet-Serret equations, the three covariant basis vectors in our coordinate
system are thus

es = η(s, n)T̂ (s), eb = B̂, en = N̂ . (4.40)

Here, we have defined η(s, n) = 1 − nκ(s). We note that the basis vectors in (4.40) are
orthogonal, but not normalized. The metric tensor is thus

gij =

η(s, n)2 0 0
0 1 0
0 0 1

 , (4.41)
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using the definition from (4.11). We now recognise the choice of basis vectors in (4.31)-
(4.33) as the physical vectors, defined in (4.15), thus illuminating how physical vectors
can be more intuitive to work with in certain systems.

We now need to determine the Christoffel symbols for this metric. The contravariant
basis vectors are found to be

es = η(s, n)−1T̂ (s), eb = B̂, en = N̂ . (4.42)

Using the definition in (4.20), we see that Γk
ij = ∂iej · ek. Taking the derivative of

the covariant basis vectors with respect to s, n and b, and applying the Frenet-Serret
equations, we find the Christoffel symbols to be [67]

Γs
ss = −η(s, n)−1n∂sκ(s), (4.43)

Γn
ss = η(s, n)κ(s), (4.44)

Γs
sn = Γs

ns = −η(s, n)−1κ(s). (4.45)

The rest of the Christoffel symbols are zero.

4.2.1 Dimensionality in Christoffel symbols

This far, we have not yet made any assumptions about the dimensionality of the system.
We have only made assumptions about the dimensionality of the curvature, as well as
removing torsion. That is, this coordinate system may very well describe the bulk of
some 3D material that is curved along some 1D curvature. This description implies that
the coordinate system has a finite extension in the normal and binormal direction. We
may thus restrict the dimensionality of our system by fixing the value of b or n, along
with removing the corresponding derivatives. For example, letting n → 0 corresponds
to a thin film material, curved in one direction. If we also let b → 0, we are left with a
wire-like structure.

At the end of section 4.1.1 we mentioned that the number of Christoffel symbols depend
on the dimensionality of the system. This point is subtler than it seems at first glance.
Since Christoffel symbols typically appear in equations as implicit sums over indices, one
has to be careful not to sum over the wrong number of indices. For example, let us say
we want to find the derivative of a 3D vector that is confined to a 2D surface. A way
to visualize this could be to consider a 3D exchange field vector, on a thin film surface.
The exchange field cannot move off the surface of course, but it is allowed to point out
of the plane. The coordinate covariant derivative in the ith direction of the jth covariant
component of the vector is thus

Dihj = ∂ihj − Γk
ijAk. (4.46)

Here, the values of k and j should be taken over all 3 directions, while i should only
take on values corresponding to the 2 directions determined by the 2D surface. Thus,
we may potentially have 2 × 3 × 3 = 18 Christoffel symbols in the coordinate covariant
derivative although our system is technically 2 dimensional. This is because we have a
vector on the surface that is allowed to point in all 3 spatial directions. When summing
over multiple indices it is therefore easy to lose track of what coordinates each index
should take on. Because of this, we will make sure to explicitly state what coordinates to
sum over, whenever deemed necessary.
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4.3 Curvature induced strain

At the end of section 3.1 we mentioned that geometric curvature can give rise to SO
coupling due to strain. To describe this mechanic more in-depth, we have to first find a
way to define strain. There are multiple ways of defining strain, and in this thesis we will
use the definition of engineering strain, also known as Cauchy strain, for 1D. This strain
is given by [67]

ϵ =
∆L

L0

=
L(n)− L0

L0

, (4.47)

that is, the difference between the strained length L(n) and the original length L0, divided
by the original length. The strained length thus depends on the distance n from the
center of the wire. From this definition we see that the strain is positive where the wire
is elongated, and negative when it is compressed. Let us now assume that we are dealing
with a constant curvature. A constant curvature means that the wire is forming a circle
with radius r0, such that the curvature is given by κ = 1

r0
. Here r0 denotes the radius

from the center of the circle, to the center of the wire, as shown in figure 4.3. The strain
is thus given by

ϵ =
(r0 + n)θ − r0θ

r0θ
= nκ(s), (4.48)

where we argue that the s-dependence in κ(s) comes from the fact that we can approximate
any arbitrary curve by piecewise circles. Thus the expression for strain in (4.48) should
also hold for an arbitrary curve, with an s-dependence. This result shows that the strain
is proportional to the curvature, as expected. This strain induces an electric potential,
due to a shift in band energies [88], which is given by

V = λnκ (4.49)

for small strains [89]. Here, λ is a constant, denoting the energy scale. We then find the
resulting electric field by taking the gradient of V

eE = −∇V = −ei∂iV =
λn

η(s, n)
∂sκ(s)T̂ + λκ(s)N̂ . (4.50)

This expression can be averaged over the normal direction component, n, to give us

e⟨E⟩n = −λκ(s)N̂ . (4.51)

Thus, the curvature has given rise to an electric field pointing in the normal direction,
that is proportional to the curvature. This electric field should, following the discussion
in section 3.1, give rise to an SO field of the following form [67]

An = αn(N̂ × σ), (4.52)

where αn = −gλκ(s)
4m

denotes the curvature-induced SO coupling constant. It is important
to note that this SO field varies in space, due to both the s-dependent curvature and the
Christoffel symbols that appear when taking its derivative. The fact that the SO field
is proportional to the geometric curvature is interesting, as this facilitates the possibility
of creating materials with a tunable SO coupling. That is, through curvature we may
dynamically tune the SO coupling strength, allowing us to dynamically convert between
systems with qualitatively different behaviours.
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4.4 Curved nanowire

We now consider a specific system in order to investigate how curvature affects the trans-
port of superconductive correlations in 1D. We will consider a ferromagnetic nanowire
under constant curvature, in contact with a superconducting reservoir in both ends. This
type of curvature corresponds to a section of a circle, with radius r0. The system is
sketched in figure 4.3. For such a system we apply curvilinear coordinates, where the cur-
vature can be shown to be κ = 1

r0
. In order to simulate the dimensionality of the nanowire,

we let n → 0 and b → 0. Thus the derivatives in the normal- and binormal- direction
both vanish, and the number of Christoffel symbols produced by the Laplacian reduce to
1, according to the discussion in section 4.2.1. Since we are interested in studying solely
the effects of curvature on the system, we will ignore the effects of any SO coupling, also
from strain, by setting Â = 0.

Figure 4.3: A curved ferromagnetic nanowire with superconductors in both ends.

First, let us find an appropriate expression for T̂ (s), N̂ (s), and B̂(s). To do this, let
us define our 3D coordinate vector R in a cylindrical coordinate system, since this is the
best choice to describe circles in 3D. The coordinate vector is thus given by

R(θ, r, z) = rcos(θ)x̂+ rsin(θ)ŷ + zẑ. (4.53)

Since we are interested in describing a curve along a circle with radius r0, let us define
the normal component n such that we are confined to the circle when n → 0. This gives
us r = r0−n, which means that the normal vector will point inwards, to the center of the
circle. Furthermore, we recall that R should be parameterized in terms of the arc-length
s. For a circle with radius r0, s = θr0. Finally, we realize that the binormal component
is simply given by b = z. Inserting these reparameterizations into (4.53), we get

R(s, n, b) = (r0 − n)cos(s/r0)x̂+ (r0 − n)sin(s/r0)ŷ + bẑ. (4.54)

The covariant basis vectors are thus
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es = η(s, n)(−sin(sκ)x̂+ cos(sκ)ŷ), (4.55)

en = −cos(sκ)x̂− sin(sκ)ŷ, (4.56)

eb = ẑ, (4.57)

where we have identified the curvature as κ = r−1
0 . Using (4.40) and taking the limit

n→ 0, now gives us

T̂ = −sin(sκ)x̂+ cos(sκ)ŷ, (4.58)

N̂ = −cos(sκ)x̂− sin(sκ)ŷ, (4.59)

B̂ = ẑ. (4.60)

The Usadel equation for a 1D system, with T̂ as the direction of propagation can be
found from (4.26) by restricting the indices involved in partial derivatives to s. We get

iDFg
ss
(
∂s(ĝ

R∂sĝ
R)− Γs

ssĝ
R∂sĝ

R
)
= [Eτ̂z + ∆̂ + gijhiσ̂j, ĝ

R]. (4.61)

In the limit n → 0, we have gss = η(s, n)−2 = 1 and Γs
ss = 0. Equation (4.61) thus

simplifies to

iDF∂s(ĝ
R∂sĝ

R) = [Eτ̂z + ∆̂ + hiσ̂i, ĝ
R], (4.62)

where the Pauli matrices are given by σ̂i = diag(σi, σ
∗
i ) = diag(σ · ei,σ

∗ · ei) in our
coordinate system. This gives us

σs =

(
0 −ie−isκ

ieisκ 0

)
, σn =

(
0 −e−isκ

−eisκ 0

)
, σb =

(
1 0
0 −1

)
. (4.63)

Therefore, the only way in which curvature affects (4.62) is through the ferromagnetic
self-energy. As we will see, this effect alone is enough to influence the transport of
superconductive correlations in our system substantially. The Pauli matrices in (4.63)
correspond to a rotating exchange field along the T̂ - and N̂ - direction. We therefore
expect spin-rotation to occur whenever there is a finite exchange field in the tangential or
normal direction. To see this, we once again turn to spin-parameterization in the weak
proximity limit. Starting now from (3.24) and (3.25), we let α = 0, take our direction of
propagation to be T̂ and write the equations in tensor form. For equation (3.24), this
gives us

DFg
ssDsDs(e

idi) = −2i(Ed+ f0h). (4.64)

The left-hand side of (4.64) can be evaluated by applying the product rule for differenti-
ation several times. We get

DFDsDs(die
i) = DF∂s(∂s(die

i))

= DF ((∂
2
sdi)e

i + 2(∂sdi)(∂se
i) + di∂s(∂se

i))

= DF ((∂
2
sdi)e

i − 2(∂sdi)Γ
i
ske

k − di((∂sΓ
i
sk)e

k − Γi
skΓ

k
sle

l))

= DF (∂
2
sdi − 2(∂sdk)Γ

k
si − dk(∂sΓ

k
si − Γk

slΓ
l
si))e

i.

(4.65)
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In the first step, we used the fact that Γs
ss = 0, such that the coordinate covariant

derivatives reduce to normal derivatives. In the last step, we used the fact that we can
relabel summed indices as we like, in order to pull ei outside the parentheses. Taking the
inner product with eα on both sides in (4.64) gives

DF (∂
2
sdα − 2(∂sdk)Γ

k
sα − dk(∂sΓ

k
sα − Γk

slΓ
l
sα)) = −2i(Edα + f0hα). (4.66)

Letting α = s, n, b now gives us 3 different equations, each for one component of the
d-vector. Writing each of these equations out, and inserting the Christoffel symbols in
(4.43)-(4.45) gives us [34]

DF (∂
2
sds − 2κ∂sdn − κ2ds) = −2i(Eds + f0hs), (4.67)

DF (∂
2
sdn + 2κ∂sds − κ2dn) = −2i(Edn + f0hn), (4.68)

DF∂
2
sdb = −2i(Edb + f0hb), (4.69)

DF∂
2
sf0 = −2i(Ef0 + h · d), (4.70)

where we have added the equation for the singlet component as well, in (4.70). We see
that these equations describe the possibility for spin-rotation through spin-precession, as
discussed in section 3.2.1. In order to analyze these equations further, we need to choose
a direction for the exchange field. As discussed by Sheka (2015) [83], the exchange field
will naturally follow the tangential direction for a large class of materials. We thus have
h = hT̂ , which means that dsrt = ds. Equation (4.67) then tells us that we will generate
dn components through precession. We have thus shown that the rotating exchange
field, introduced through (4.63), will cause spin-rotation in the 1D nanowire, in the weak
proximity limit.

4.4.1 Numerical results

In this section, we investigate the curved nanowire further, through numerical calcu-
lations. Assuming that the exchange field will follow the tangential direction, we let
h = |∆|[−sin(sκ), cos(sκ), 0]. In figure 4.4(a) we have plotted the density of states for
an SF nanowire system, under constant curvature, for curvatures κL = π/4 and κL = 0,
with length L = 2ξ. This plot shows a small raise at zero energy, indicating the presence
of triplets. To confirm this, we plot the evolution of the absolute value of the LRT-, SRT-
and singlet- component into the ferromagnet, in figure 4.4(b). This plot shows that the
curvature induces a d-vector component in the normal direction, corresponding to the
LRT component. Furthermore, we see that the absolute value of dn initially increases
from s = 0, indicating that the spin-rotation happens spatially as we move along the
curvature.

In figure 4.6 we have plotted |dN |, |dT | and |f0| as a function of both curvature and
the arc length, in order to study what curvatures yield the most triplet components.
Here, we have set L = 5ξ in order to study the long-range effect of the LRTs. In figure
4.6(a) we see that a larger curvature yields more LRTs near the interface, but that this
value decreases rapidly, in an oscillatory manner. Looking at figure 4.6(b), the LRTs
seem to oscillate with a phase difference of approximately π with respect to the SRTs,
and the frequency of these oscillations increases with higher curvature. This makes sense
looking at equations (4.67)-(4.68), as we expect the spin rotation effect to get stronger
with higher curvature. Interestingly, only a small curvature is needed to generate LRTs.
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Figure 4.4: (a) Density of states as a function of the energy E/|∆| in an SF proximity
system, with the superconductor at L = 0, to the left of the ferromagnet, for κ = π/4
and κ = 0 with L = 2ξ, h = |∆|T̂ and ζ = 3. Zoom in on zero energy to see a raise in
the density of states for κ = π/4. (b) The absolute value of dN , dT and f0 as a function
of the arc length s/L for the same systems as (a).

Furthermore, the LRTs generated at this curvature seem to have a stronger long-range
effect than those at higher curvatures. This demonstrates the friction-like behaviour of
curvature, as we see in (4.67)-(4.68). That is, curvature acts as friction in these systems,
costing the superconducting correlations more energy the higher the curvature is. Hence,
we see that although the LRT generation is stronger for higher curvature, so is the energy
dissipation. Thus, a finite, but smaller curvature is favoured for generating LRTs over
longer distances.

Another interesting system to consider under constant curvature is a Josephson junction-
like SFS system. In figure 4.5 we have plotted the absolute value of the charge current
density as a function of the dimensionless curvature κL, for L = 2ξ and L = 4ξ. This
plot demonstrates a curvature induced 0-π transition, indicating that we can reverse the
current direction in an SFS junction by varying curvature alone. For further discussion
on this phenomena, see Salamone et al. (2021) [54].
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Figure 4.5: Curvature induced 0-π transition in an SFS system for lengths L = 2ξ and
L = 4ξ. The exchange field is h = |∆|T̂ and the phase difference is ϕ = π/2.
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Figure 4.6: The absolute value of (a) dN , (b) dT and (c) f0 as a function of curvature κL
and arc length s/L at energy E = 0, for L = 5ξ, h = |∆|T̂ and ζ = 3.
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5 Differential geometry of surfaces

From this section on, we turn our attention to 2D systems. We will develop a formalism
that is able to describe the transport of superconducting correlations on two dimensional
curved surfaces. In 1D we used the curvilinear coordinate system. However, this is
insufficient in higher dimensions. The main reason for this is that curvilinear coordinates
are only able to describe curvature along a single dimension. If we want to describe two
dimensional curvatures, such as spherical surfaces, we therefore need a different formalism.
This chapter is inspired by the book Elemental Differential Geometry by Andrew Pressley
[87].

5.1 The fundamental forms

The properties of 2D surfaces can be described effectively by the two fundamental forms.
The first fundamental form describes the geometry of the surface, capturing the notions of
distances, angles and areas on the surface. The second fundamental form is related to how
the normal vector changes along the surface, and thus captures the effects of curvature
on the surface.

We begin by parametrizing the 3-dimensional space as

R(u, v, n) = S(u, v) + nN̂ (u, v), (5.1)

where S(u, v) corresponds to the parametrization of the surface and N̂ is defined as the
normalized normal vector to the tangential plane. To define the tangential plane we define
a tangent vector to a curve on the surface, through some point p. A general curve on the
surface S(u, v) is found by parameterizing the variables u, v accordingly. Hence, for a
curve γ(t) = S(u(t), v(t)) we find that the tangent vector to this curve at some point p
on the surface is given by

∂tγ(t)|p = ∂tuSu|p + ∂tvSv|p, (5.2)

where we have denoted partial differentiation with a subscript, ∂f
∂x

= ∂xf = fx and chosen
t as our variable for the parameterization. Since γ(t) is an arbitrary curve through p in
S(u(t), v(t)) we can choose infinitely many unique curves through p with infinitely many
unique tangential vectors. By inspection we see that all these tangential vectors form a
plane spanned by the basis vectors Su and Sv, and we define this plane as the tangential
plane at the point p of the surface S(u(t), v(t)). It is therefore natural to use Su and Sv

as basis vectors for the tangential plane.
We are, however, in general interested in basis vectors that describe the entire 3-

dimensional space surrounding the 2-dimensional surface. We therefore define the basis
vectors as usual by ei = ∂iR(u, v, n). This gives us

eu = ∂uR(u, v, n) = Su(u, v) + nN̂ u(u, v),

ev = ∂vR(u, v, n) = Sv(u, v) + nN̂ v(u, v),

en = ∂nR(u, v, n) = N̂ (u, v).

(5.3)

Here, the subscript on the basis vectors ei is used to denote covariant vectors, as per
usual, and not as a partial derivative. In most literature on differential geometry of 2D
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surfaces, all motion is assumed to be confined to the surface. This means that the basis
vectors are defined in the limit n→ 0, and the metric and Christoffel symbols are derived
in this limit. This simplifies the calculations significantly. However, in this thesis we wish
to develop a formalism that can also describe motion perpendicularly to the surface, such
as the motion across stacked thin films. We therefore consider n to be a finite variable in
our calculations.

5.1.1 The first fundamental form

One of the first things one might be interested in calculating when considering a 2D
surface is the arc lengths of the curves on this surface. While this may seem like an
arbitrary place to start analyzing surfaces, we shall see that in our attempt to formulate
an expression for the arc length s, we will discover and define quantities that will be
essential to the rest of our theory. We thus begin by considering the expression for the
arc length s, of an arbitrary curve γ(t) given by

s =

∫
||∂tγ(t)||dt. (5.4)

From this expression we see that we require the inner product of γ̇ with itself to find s.
Using equation (5.2) we see that

(∂tγ(t)) · (∂tγ(t)) = (∂tu)
2||Su||2 + 2(∂tu)(∂tv)Su · Sv + (∂tv)

2||Sv||2, (5.5)

which is often written in the form

dγ(t) · dγ(t) = Edu2 + 2Fdudv +Gdv2 (5.6)

in the literature, after defining the following parameters

E = ||Su||2, F = Su · Sv, G = ||Sv||2. (5.7)

Equations (5.6) and (5.7) are referred to as the first fundamental form and describes the
length of paths on the surface. From this definition, we see that E, F and G together
form the two dimensional metric,

G =

(
E F
F G

)
. (5.8)

By two dimensional metric, we mean a metric in which the third dimension has been
removed.

5.1.2 The second fundamental form

The second fundamental form arises from defining the curvature of the surface. One way
to define curvature is to investigate how much the normal vector changes when moving
an infinitesimal length ds along the surface. For a surface without any curvature, such
as the xy-plane, we see that the normal vector along the z-direction is constant. For a
very curved surface however, one will observe that the normal vector changes very rapidly
while moving along this surface. This tells us that the more the normal vector N̂ changes
along some path on the surface, the more the surface is curving along that path. We
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see that this way of defining curvature is in conjunction with the curvilinear formalism,
looking at the second Frenet-Serret equation in (4.35),

∂sN̂ = −κ(s)T̂ + τ(s)B̂. (5.9)

Looking at equation (5.9) we see that in order to extract information about the curvature,
we should project ∂sN̂ along the basis vectors for the tangential plane. This leads us to
defining the following parameters

N̂ u · Su = −L, N̂ u · Sv = N̂ v · Su = −M, N̂ v · Sv = −N. (5.10)

The parameters L, M and N describe the second fundamental form. The negative signs
in equation (5.10) are due to convention, and the fact that the second fundamental form
is more often expressed in the form

N̂ · Suu = L, N̂ · Suv = N̂ · Svu =M, N̂ · Svv = N. (5.11)

The connection between equations (5.10) and (5.11) can be seen by differentiating both
of the equations N̂ ·Su = 0 and N̂ ·Sv = 0 with respect to u and v. Doing this, we also
establish the equality N̂ u ·Sv = N̂ v ·Su used in equation (5.10). The second fundamental
form is often expressed in the form

N̂ · d2S = Ldu2 + 2Mdudv +Ndv2 (5.12)

similarly to the first fundamental form.

5.2 The metric

We are now equipped to start our derivation of the metric tensor for our coordinate system.
To start our calculations we recall that we can obtain the components of the metric tensor
gij by considering the norm of the differential coordinate displacement, given by

(dR)2 = gijdx
idxj. (5.13)

Using equation (5.3) gives

dR = (Su + nN̂ u)du+ (Sv + nN̂ v)dv + N̂dn. (5.14)

Squaring equation (5.14) we find the following expression for the metric gij,E − 2nL+ n2N̂ u · N̂ u F − 2nM + n2N̂ v · N̂ u nN̂ u · N̂
F − 2nM + n2N̂ v · N̂ u G− 2nN + n2N̂ v · N̂ v nN̂ v · N̂

nN̂ u · N̂ nN̂ v · N̂ 1

 (5.15)

where we have used both the first and second fundamental forms. In order to evaluate the
inner products involving N̂ and its derivatives we first note that any change in N̂ under
an infinitesimal movement ds along the surface must be confined to the tangential plane
at that point. This means that we can write the quantities N̂ u,v as a linear combination
of the basis vectors Su,v. We thus write

N̂ u = aSu + bSv,

N̂ v = cSu + dSv,
(5.16)
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where a, b, c and d are coefficients to be decided. Taking the inner product of each
equation with respect to both Su and Sv we get the following set of equations

L = −aE − bF, M = −aF − bG,

M = −cE − dF, N = −cF − dG.
(5.17)

We now define the matrices

F =

(
L M
M N

)
, W = −

(
a b
c d

)
, (5.18)

to make our notation tidier. We now see that we can write F = WG giving us

W = G−1F =
1

|G|

(
LG− FM MG− FN
ME − FL NE − FM

)
, (5.19)

where |G| = EG−F 2 and we have used that W is self-adjoint. We call W the Weintgarten
matrix or the shape operator [37], describing differentiation of the normal vector. We recall
from section 5.1.2 that the derivative of the normal vector at any point is closely related
to the curvature in that point. As we shall see later, the Weintgarten matrix is directly
related to how we define curvatures within this formalism.

The metric in (5.15) can now be written as

g =

η11 η12 0
η21 η22 0
0 0 1

 , (5.20)

where we have defined

η11 = E − 2nL+ n2(W11L+W12M), (5.21)

η12 = η21 = F − 2nM + n2(W11M +W12N), (5.22)

η22 = G− 2nN + n2(W21M +W22N). (5.23)

We note that we can write η = G − 2nF + n2WF using the definitions in (5.18). In the
limit n→ 0 ηij reduces to Gij, as expected.

5.3 Curvatures in the 2D plane

The curvature of the system along some path is, as previously discussed, related to how
the normal vector N̂ changes along that path. This tells us that information about
the curvature should be embedded in the Weintgarten matrix, W . We define the mean
curvature of the system, H, from the trace of W and the Gaussian curvature of the
system, K, as the determinant of W . We thus get

H =
GL+ EN − 2FM

2|g|
, (5.24)

K =
LN −M2

|g|
. (5.25)
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By diagonalizing W we may define another set of curvatures to describe the surface. We
define the principal curvatures, κ1 and κ2, of the surface as the solutions to the eigenvalue
equations

Ww1 = κ1w1, Ww2 = κ2w2, (5.26)

where the eigenvectors w1,2 are referred to as the principal vectors of the surface. We
thus see that we can express H and K in terms of the principal curvatures as follows

H =
1

2
(κ1 + κ2), K = κ1κ2. (5.27)

Since the principal vectors are orthogonal and span the tangential plane, along with
marking the direction of the curves on the surface, they make good candidates for basis
vectors. Therefore, coordinate systems that diagonalize W are generally preferred. As
can be seen from its definition, the Gaussian curvature gives information about the di-
mensionality of the curvature of the surface. For example, a cylinder, which is effectively
a 1-dimensional curve spanned in the binormal direction, has a Gaussian curvature of
0, while the unit sphere, which cannot be described by a single curve, has a Gaussian
curvature of 1.

5.4 The Christoffel symbols

As we have done previously, we define the Christoffel symbols as Γγ
αβe

γ = ∂βeα, i.e. the
Christoffel symbols measure how our coordinate system changes as we move along the
surface. Writing out this definition, we get the following set of equations

∂ueu = Γ1
11eu + Γ2

11ev + Γ3
11N̂ , (5.28)

∂veu = Γ1
12eu + Γ2

12ev + Γ3
12N̂ , (5.29)

∂vev = Γ1
22eu + Γ2

22ev + Γ3
22N̂ , (5.30)

N̂ u = Γ1
13eu + Γ2

13ev + Γ3
13N̂ , (5.31)

N̂ v = Γ1
23eu + Γ2

23ev + Γ3
23N̂ , (5.32)

N̂ n = Γ1
33eu + Γ2

33ev + Γ3
33N̂ . (5.33)

The equations (5.28)-(5.30) are commonly referred to as the Gauss equations in the limit
where n → 0. Since the normal vector should not change when moving in the normal
direction, equation (5.33) is thus 0 and we get

Γi
33 = 0 for i = 1, 2, 3. (5.34)

The rest of the Christoffel symbols can be determined by taking the inner product of
equations (5.28)-(5.32) with respect to both Su, Sv and N̂ . This will give us a system of
equations per equation in (5.28)-(5.32) that can be solved to find the Christoffel symbols.
To demonstrate how this is done we will calculate the Christoffel symbols in (5.31) using
this method.

Using the definitions in (5.3), we write out (5.31) to

N̂ u = Γ1
13(Su + nN̂ u) + Γ2

13(Sv + nN̂ v) + Γ3
13N̂ . (5.35)
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Taking the inner product between (5.35) and N̂ we immediately see that Γ3
13 = 0 since

N̂ u,v lies in the tangential plane. Taking the inner product with respect to Su and Sv

gives us the following system of equations

−L = Γ1
13(E − nL) + Γ2

13(F − nM),

−M = Γ1
13(F − nM) + Γ2

13(G− nN).
(5.36)

The equations in (5.36) can be written more compactly in matrix notation, using the
matrix definitions in (5.18), as(

−L
−M

)
= (G − nF)

(
Γ1
13

Γ2
13

)
. (5.37)

We then find the Christoffel symbols by multiplying with the inverse of (G − nF), giving
us (

Γ1
13

Γ2
13

)
=

1

|G|ω(n, κ1, κ2)

(
G− nM nM − F
nM − F E − nL

)(
−L
−M

)
, (5.38)

where we have defined ω(n, κ1, κ2) such that

|G − nF| = |G|ω(n, κ1, κ2) = |G|(1− nκ1)(1− nκ2). (5.39)

Here κ1 and κ2 denote the two principal curvatures. We briefly note that ω quite resembles
the prefactor η(n, κ) = 1 − nκ(s) that frequently appears in the metric and Christoffel
symbols of 1D curvilinear coordinates. We also note that the determinant of the metric
can be calculated to be

|g| = |G|
(
Kn2 − 2Hn+ 1

)2
= |G|ω(n, κ1, κ2)2, (5.40)

which is assuring to find, as we expect the inverse of the determinant of the metric to
appear in front of all the Christoffel symbols. Multiplying out equation (5.38) gives us

Γ1
13 =

−W11 + nK

ω(n, κ1, κ2)
and Γ2

13 =
−W21

ω(n, κ1, κ2)
, (5.41)

which concludes the derivation of these 3 Christoffel symbols. The rest of the symbols in
equations (5.28) -(5.30) and (5.32) can be found with the same technique, from which we
find the following results

Γi
j3 =

−Wij + δijnK

ω(n, κ1, κ2)
, Γ3

i3 = 0 for i, j = 1, 2, (5.42)

Γ1
αβ =

1

|g|ω
((G− nN)(Sαβ + nN̂ αβ) · Su − (F − nM)(Sαβ + nN̂ αβ) · Sv), (5.43)

Γ2
αβ =

1

|g|ω
((E − nL)(Sαβ + nN̂ αβ) · Sv − (F − nM)(Sαβ + nN̂ αβ) · Su), (5.44)

Γ3
αβ = fαβ − nWαγfγβ for α, β, γ = 1, 2. (5.45)

We can express the inner products in (5.43) and (5.44) in terms of the fundamental forms
as follows. Consider the inner product Su · Su = F . Differentiating this with respect to
u gives
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∂u(Su · Su) = 2Suu · Su = Eu. (5.46)

Repeating this procedure for the rest of the inner products, we get

Suu · Su =
1

2
Eu, Suu · Sv = Fu −

1

2
Ev, (5.47)

Suv · Su =
1

2
Ev, Suv · Sv =

1

2
Gu, (5.48)

Svv · Sv =
1

2
Gv, Svv · Su = Fv −

1

2
Gu, (5.49)

N̂ uu · Su = −Lu +
1

2
W11Eu +W12(Fu −

1

2
Ev), (5.50)

N̂ uu · Sv = −Mu +
1

2
W11Ev +

1

2
W12Gu, (5.51)

N̂ uv · Sv = −Mv +W11(Fv −
1

2
Gu) +

1

2
W12Gv, (5.52)

N̂ vu · Su = −Mu +
1

2
W21Eu +W22(Fu −

1

2
Ev), (5.53)

N̂ vv · Su = −Mv +
1

2
W21Ev +

1

2
W22Gu, (5.54)

N̂ vv · Sv = −Nv +W21(Fv −
1

2
Gu) +

1

2
W22Gv. (5.55)

In the limit where n → 0 the Christoffel symbols simplify substantially. This limit
corresponds to the case where the vector is confined to the surfaces, meaning it cannot
move along the normal vector, and is therefore very interesting to consider. The Christoffel
symbols simplify as follows

Γ1
11 =

1

2|g|
(GEu − 2FFu + FEv), Γ1

12 =
1

2|g|
(GEv − FGu), (5.56)

Γ2
11 =

1

2|g|
(2EFu − EEv − FEu), Γ2

12 =
1

2|g|
(EGu − FEv), (5.57)

Γ1
22 =

1

2|g|
(2GFv −GGu − FGv), Γ2

22 =
1

2|g|
(EGv − 2FFv + FGu), (5.58)

Γ1
13 = −W11, Γ1

23 = −W12, Γ2
13 = −W21, Γ2

23 = −W22, (5.59)

and the rest of the Christoffel symbols vanish. In this thesis, we will only consider trans-
port confined to a 2D surface, and will therefore use these expressions for the Christoffel
symbols.

5.5 Examples of surfaces

To gain some intuition for how this formalism is used we will consider some examples of
simple types of surfaces. For each surface, we will calculate the fundamental forms, then
use these to investigate the curvatures of the surface and verify that we get the expected
metric.
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5.5.1 Flat surface

First we will consider a flat surface. There are multiple ways of parameterizing a flat
surface. One can for example use either Cartesian coordinates or polar coordinates. In
this section we will use Cartesian coordinates. We thus write our coordinate vector as
R(x, y, z) = xx̂+ yŷ + zẑ. Choosing the xy-plane as our surface we see that

S(u, v) = ux̂+ vŷ and zẑ = nN̂ (5.60)

in our formalism. The basis vectors are thus found to be Sx = x̂, Sy = ŷ and N̂ = ẑ.
Calculating the first and second fundamental form is thus trivial, and gives us

E = G = 1 and F = L =M = N = 0. (5.61)

By inserting this into the metric g we get the identity matrix as expected. We also find
that both the Gaussian and the mean curvature reduce to 0, giving us no curvature on
the surface, which is also expected.

5.5.2 Spherical surface

Next we will consider a spherical surface of radius R. We parameterize the surface as

S(u, v) = R(sin(u)cos(v)x̂+ sin(u)sin(v)ŷ + cos(u)ẑ). (5.62)

We then find the tangential basis vectors and the normal vector to be

Su = R(cos(u)cos(v)x̂+ cos(u)sin(v)ŷ − sin(u)ẑ), (5.63)

Sv = R(−sin(u)sin(v)x̂+ sin(u)cos(v)ŷ), (5.64)

N̂ = sin(u)cos(v)x̂+ sin(u)sin(v)ŷ + cos(u)ẑ, (5.65)

where we found the expression for N̂ by normalizing the cross product between Su and
Sv. As usual we write the coordinate vector as R(u, v, r) = S(u, v) + rN̂ (u, v). We now
find the first fundamental form by taking the appropriate inner products, giving us

E = R2, F = 0 and G = sin2(u)R2. (5.66)

In order to find the second fundamental form we first calculate the second derivatives of
S,

Suu = −sin(u)cos(v)x̂− sin(u)sin(v)ŷ − cos(u)ẑ, (5.67)

Svv = −sin(u)cos(v)x̂− sin(u)sin(v)ŷ, (5.68)

Suv = −cos(u)sin(u)x̂+ cos(u)cos(v)ŷ, (5.69)

then take the inner product with N̂ to find

L = −R, M = 0 and N = −sin2(u)R. (5.70)

Inserting this into the Weintgarten matrix we get
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W =

(
− 1

R
0

0 − 1
R

)
(5.71)

from which we can easily identify the principal curvatures as κ1 = κ2 = − 1
R

and the
Gaussian and mean curvatures as K = 1

R2 and H = − 1
R
. These results seem reasonable

in comparison with a 1D curve with no torsion, for which the curvature is 1
R
1. I.e. the

curvature of a spherical surface can be said to be the composition of two separate, circular
curves with the same radius. This seems like a reasonable result.

Inserting the fundamental forms into the metric we get

gsphere =

(R + r)2 0 0
0 sin2(u)(R + r)2 0
0 0 1

 , (5.72)

which is the expected result for a spherical coordinate system.

5.5.3 Tunnel

Figure 5.1: A tunnel surface, consisting of a 1D curve, with curvature κ = r−1
0 , stretched

in the binormal direction.

We will now consider a system that hopefully makes the comparison with the curvilin-
ear formalism that describes 1D curves, more lucid. Here we define a tunnel as a geometric
figure which consists of a single curve stretched out in the binormal direction, as displayed
in figure 5.1. We define the coordinate vector similarly to how we did in the 1D case,

R(s, b, n) = r(s) + bB̂ + nN̂ . (5.73)

1the sign difference here is due to a difference in conventions in how we define the curvature
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We have thus defined our surface as S(s, b) = r(s) + bB̂. We find the basis vectors to be
Ss = T̂ (s) and Sb = B̂, where we assume that the parameterization of the curve r(s) is
chosen such that T̂ (s) is normalized. Doing this, the first fundamental form gives

E = 1, F = 0 and G = 1. (5.74)

To find the coefficients of the second fundamental form we use ∂sT̂ (s) = κ(s)N̂ (s) 2 to
find that L = κ(s). Here κ(s) is the definition of curvature in the curvilinear coordinate
system. N = 0 and M = 0 follows from orthogonality.

Inserting these values, we see that the Gaussian curvature is 0. This is as expected
when considering a surface with curvature in only one dimension. The mean curvature,
which is thus equal to the principal curvature, is equal to κ(s). This verifies that our defi-
nition of curvature is consistent with the definition of curvature in torsion-less curvilinear
coordinates. The metric is now found to be

gtunnel =

(1− nκ(s))2 0 0
0 1 0
0 0 1

 (5.75)

which is exactly the same as the metric in the torsion-less curvilinear system.

5.5.4 Isotropic bump

Here, we consider a 2D surface, with a bump in the z-direction. The bump is modelled
by some general isotropic function f(r). By isotropic, we here mean that it is invariant
under rotation around the z-axis. We parameterize the surface as

S = rcos(θ)x̂+ rsin(θ)ŷ + f(r)ẑ. (5.76)

In this example we will consider the 2D limit n→ 0 for simplicity. The basis vectors are
thus given by

Sr = cos(θ)x̂+ sin(θ)ŷ + f ′(r)ẑ, (5.77)

Sθ = −rsin(θ)x̂+ rcos(θ)ŷ, (5.78)

N̂ = (Sr × Sθ)/|Sr × Sθ| = E− 1
2 (−cos(θ)f ′(r)x̂− sin(θ)f ′(r)ŷ + ẑ), (5.79)

where the primed function denotes differentiation with respect to r. From this, we get

E = 1 + (f ′(r))2, F = 0, G = r2, (5.80)

L = f ′′(r)E− 1
2 , M = 0, N = rf ′(r)E− 1

2 . (5.81)

We see here that this coordinate system is orthogonal, which means that our choice of
coordinates is decent. From this, the Weintgarten matrix is given by

W =

(
f ′′(r)

E
3
2

0

0 f ′(r)

rE
1
2

)
, (5.82)

2we justify the use of the Frenet-Serret equations here by noting that our parametrization of the
surface is identical to the torsion-less curvilinear coordinates
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from which we see that the basis vectors in (5.77)-(5.79) coincide with the principal vectors
of the surface. Hence, the principal curvatures are given by the diagonal entries of W .
The Gaussian and mean curvature are found to be

H =
1

2r
√
E

(
f ′(r) +

rf ′′(r)

E

)
and K =

f ′′(r)f ′(r)

rE2
. (5.83)

Since we let n→ 0, the metric is seen to be

g =

1 + (f ′(r))2 0 0
0 r2 0
0 0 1

 . (5.84)

For the purpose of solving the Usadel equation for this geometry, we also calculate the
Christoffel symbols of this system. We get

Γr
αβ =

1

E

 f ′(r)f ′′(r) 0 −f ′′(r)/(
√
E)

0 −r 0

−f ′′(r)/(
√
E) 0 0

 , (5.85)

Γθ
αβ =

1

r

0 1 0

1 0 −f ′(r)/E
3
2

0 −f ′(r)/E
3
2 0

 , (5.86)

Γn
αβ =

1√
E

f ′′(r) 0 0
0 rf ′(r) 0
0 0 0

 . (5.87)

Writing this in terms of the first and second principal curvatures, we get

Γr
αβ =

κ1κ2rE 0 −κ1
0 −r/E 0

−κ1 0 0

 , (5.88)

Γθ
αβ =

 0 r−1 0
r−1 0 −κ2
0 −κ2 0

 , (5.89)

Γn
αβ =

κ1E 0 0
0 κ2r

2 0
0 0 0

 . (5.90)
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6 Usadel in 2D curved space

In this chapter, we turn our interest to the 2D Usadel equation for a curved surface. Most
work done on the Usadel equation in two dimensions has either been numerical in the
general case [90] [56], or analytical in simplifying limits [91] [57]. In this chapter, we will
consider the Usadel equation on curved surfaces. Since we are predominantly interested
in the effects of curvature on the system, we will ignore all kinds of SO coupling in our
derivations and numerical solutions, setting Â = 0. Starting from the Usadel equation in
(2.34), we write this equation in tensor form

iDFg
ijDi(ĝ

RDj ĝ
R) = [Eτ̂z + ∆̂ + gijhiσ̂j, ĝ

R], (6.1)

where gij is the inverse of the metric tensor, and should not be confused with the Green’s
function matrix ĝR. Writing out the coordinate covariant derivatives gives us

iDFg
ij(∂i(ĝ

R∂j ĝ
R)− Γk

ij ĝ
R∂kĝ

R) = [Eτ̂z + ∆̂ + gijhiσ̂j, ĝ
R], (6.2)

where we note that the indices i, j, k are summed over the two directions of propagation in
our system. This equation will be expressed in the the spin-parameterized weak proximity
limit, for different forms of surfaces, and solved numerically using the finite element
method for PDEs.

6.1 Weak proximity limit

It is difficult to interpret analytical results from (6.2) as it is written. We therefore want
to write this equation in the spin-parameterization in (3.19), under the weak proximity
limit, in order to get a better understanding for the system. Starting from the equations

DF∇2d = −2i(Ed+ f0h), (6.3)

DF∇2f0 = −2i(Ef0 + h · d), (6.4)

derived in section 3.2.1, we write these equations on tensor form, as

DFg
ijDiDj(e

αdα) = −2i(Ed+ f0h), (6.5)

DFg
ijDiDjf0 = −2i(Ef0 + gαβhαdβ). (6.6)

In accordance with the discussion in 4.2.1, it is important to note that the indices that
originate from the gradients should only be summed over 2 directions, while the indices
that originate from the d- and h-vector should be summed over 3 directions. In order
to clearly separate these two types of indices, we denote indices that should be summed
over twice by the Latin letters i, j and k, while the Greek indices α, β and γ should be
summed over three times. Writing out the coordinate covariant derivatives in (6.5), we
get

DFg
ijDiDj(e

αdα) = DFg
ij(∂i∂j(e

αdα)− Γk
ij∂k(e

αdα))

= DFg
ij(∂i∂j(e

αdα)− (Γk
ij(∂kdα)− Γk

ijΓ
β
kαdβ)e

α).
(6.7)
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Following the same steps as in (4.65) for the term ∂i∂j(e
αdα), we finally get

DFg
ij(∂i∂jdα−2Γβ

jα∂idβ−Γk
ij∂kdα−dβ(∂iΓ

β
jα−Γβ

iγΓ
γ
jα−Γk

ijΓ
β
kα)) = −2i(Edα+f0hα), (6.8)

which gives us one equation of motion for each of the three d-vector components if we let
α = u, v, n. For the singlet component, we get

DFg
ij(∂i∂jf0 − Γk

ij∂kf0) = −2i(Ef0 + gαβhαdβ). (6.9)

The form of these equations is qualitatively very similar to their 1D versions in (4.66) and
(4.70). The differences from the 1D system therefore lie in the possible new geometries
one can explore in 2D, along with being able to consider phenomena that are inaccessible
in 1D, such as magnetic flux, skyrmions and geodesics on surfaces. In order to obtain any
concrete information from (6.8) and (6.9), we need to consider specific geometries, such
that we can calculate the Christoffel symbols explicitly.

6.2 Numerical tools

In order to solve the 2D Usadel equation we require numerical computations. The Riccati
parameterization is the most commonly used tool to simplify the implementation of the
Usadel equation. In this thesis we will use this parameterization throughout all numerical
computations. Furthermore, there are multiple methods for numerically solving PDEs,
such as the finite difference method [92], finite element method [93] and the finite volume
method [94]. In this thesis the finite element method is chosen, as this method allows
for flexibility in the choice of geometry, which is a necessary advantage for our systems.
We therefore use the PDE toolbox provided by MATLAB, which implicitly uses the
finite element method. The numerical simulations have been run on the supercomputer
Saga provided by UNINETT Sigma2 - the National Infrastructure for High Performance
Computing and Data Storage in Norway. The MATLAB code for the systems considered
in section 6.3 and 6.4 can be provided upon request.

6.2.1 Riccati parameterization

When implementing the Usadel equation for the retarded Green’s function matrix, it is
useful to parameterize ĝR in specific ways. The Usadel equation in (2.34) is a set of 16
equations, due to the size of ĝR. However, due to the normalization conditions in (2.27)
and the symmetries of ĝR, constraints are put on the number of degrees of freedom in the
Green’s function matrix. If we parameterize ĝR in a way that preserves these properties,
we can thus reduce the number of equations in (2.34). The most used parameterization
for computational purposes is the Riccati parameterization, where ĝR is written in terms
of a 2 × 2 matrix, γ, and its tilde-conjugate γ̃. In the Riccati parameterization, ĝR is
given by

ĝR =

(
N 0

0 −Ñ

)(
1 + γγ̃ 2γ
2γ̃ 1 + γ̃γ

)
, (6.10)

where N = (1 − γγ̃). Inserting this expression for ĝR into the Usadel equation, we get
[11]
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iDF (∇2γ + 2(∇γ) · (Ñ γ̃∇γ)) = ∆− γ∆∗γ + h · (σγ − γσ∗) + 2Eγ, (6.11)

iDF (∇2γ̃ + 2(∇γ̃) · (Nγ∇γ̃)) = −∆∗ + γ̃∆γ̃ − h · (σ∗γ̃ − γ̃σ) + 2Eγ̃. (6.12)

Here, equation (6.12) is the tilde-conjugated version of (6.11). Since these equations are
coupled we have to solve both simultaneously. Thus, equations (6.11)-(6.12) describe a set
of 8 coupled nonlinear PDEs. We should also write the Kupriyanov-Lukichev boundary
conditions in (2.35) in terms of the gamma-matrices as well. We get [56]

n̂ · ∇γ
i
= ∓ 1

Liζi
(1− γ

i
γ̃
j
)N j(γi − γ

j
), (6.13)

n̂ · ∇γ̃
i
= ∓ 1

Liζi
(1− γ̃

i
γ
j
)Ñ j(γ̃i − γ̃

j
), (6.14)

where the positive sign should be used for when material j is to the left of material i,
and the negative sign should be used when material j is to the right. n̂ here refers to the
normal vector of the interface.

6.2.2 The finite element method

In this thesis, the numerical calculations of 2D systems are done using MATLAB’s PDE
toolbox. This toolbox applies the finite element method when solving PDEs. In this
section, we therefore give a brief introduction to the finite element method, along with
some details concerning the implementation of PDEs in MATLAB. This introduction to
the finite element method is inspired by Amundsen’s master thesis (2016) [66].

To start our discussion of the finite element method, let us consider the Poisson equa-
tion, in the form

∇2u+ f(r) = 0, for u ∈ Ω, (6.15)

where f(r) is some general function, defined on some domain Ω. In order for this PDE
to be well defined we need to establish some boundary conditions (BCs) on the boundary
of the domain, ∂Ω. Finite element theory distinguishes between two general types of
boundary conditions, Dirichlet boundary conditions and Neumann boundary conditions.
Dirichlet BCs are given by the general form u = q(r), and Neumann BCs are given by
n̂ · ∇u = q(r), where the vector n̂ is normal to the boundary surface. From these forms,
we see that the Kupriyanov-Lukichev BCs are on the Neumann form. We will therefore
consider Neumann BCs for the rest of this section.

By multiplying equation (6.15) with an arbitrary test function v, and integrating over
the domain Ω, we get [93]∫

Ω

dr∇u · ∇v =

∫
Ω

drf(r)v +

∫
∂Ω

dSq(r)v, (6.16)

where we have used the divergence theorem and inserted the Neumann BCs. This expres-
sion describes the weak formulation for Neumann BCs. This formulation of the PDE in
(6.15) is the starting point for the finite element method. The solution u is assumed to
exist in a Hilbert space H. Since the Hilbert space is spanned by a set of basis functions
li(r), we may expand u and v in terms of linear combinations of these functions. In order
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for this expansion to be useful, the Hilbert space H must be finite in dimension. Since H
is generally infinite in dimension, we therefore approximate this space by truncating it.
This approximation is known as the Galerkin approximation. The resulting space is the
truncated Hilbert space H∗, with dimension N , where the functions u and v can now be
expanded as

u∗(r) =
N∑
i=1

u∗i li(r), v(r) =
N∑
i=1

vili(r). (6.17)

Here, u∗ is the approximate solution to the PDE under the Galerkin approximation.
Inserting these expressions into the weak formulation in (6.16), we get

N∑
i=1

u∗i

∫
Ω

dr∇li(r) · ∇lj(r) =
∫
Ω

drf(r)lj(r) +

∫
∂Ω

dSq(r)lj(r). (6.18)

This can be written on matrix form. By defining the matrix

Kji =

∫
Ω

dr∇li(r) · ∇lj(r), (6.19)

and the vector

Fj =

∫
Ω

drf(r)lj(r) +

∫
∂Ω

dSq(r)lj(r), (6.20)

we get

Ku∗ − F = 0. (6.21)

Here, K is referred to as the stiffness matrix and F the force vector, from their usage in
structural mechanics.

Let us now recall that our starting point for this derivation was the linear PDE in
(6.15). This equation can be made nonlinear by letting the function f depend on the
solution u and its gradient ∇u, such that the equation now takes the form

∇2u+ f(r, u,∇u) = 0, u ∈ Ω. (6.22)

Following the steps we just outlined to arrive at (6.21), we see that the force vector now
depends on u∗. This dependency on u∗ means that we must solve the equation

Ku∗ − F (u∗) = 0 (6.23)

to find the solution u∗. This equation is generally nonlinear, and because of this the
Newton-Raphson method [95] is used to find an approximation to u∗. Given the vector
equation f(x) = 0, the Newton-Raphson method approximates the solution u∗ by the
iteration scheme given by

xn+1 = xn − J−1(xn)f(xn), (6.24)

where J(x) is the Jacobian matrix to f(x). For (6.21), this iteration scheme takes the
form
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u
∗(α)
n+1 = u∗(α)

n − (K−1
T )(αβ)(Ku∗ − F )(β), (6.25)

where the matrix KT is called the tangent stiffness matrix, and is given by

K
(αβ)
T = δαβK − ∂F (α)

∂u∗(β) . (6.26)

The matrix equation in (6.21) can now be solved to find the coefficients u∗. In order
to do this K and F must be determined, which can only be done once we have cho-
sen a suitable basis for H∗. The Stone-Weierstrass theorem [96] states that we can use
polynomials to approximate any continuous function on a closed domain as accurately as
we like. The usual choice for this basis is therefore polynomials. The domain Ω is then
divided into a set of subdomains Ωe, referred to as elements. Each domain is assigned a
set of points where the solution to the PDE is computed. These points are referred to as
nodes. The basis functions in a subdomain are determined by interpolation through the
nodes of the subdomain. In order for the solution to be continuous across the subdomain
boundaries there has to be nodes on the edges and vertices of bordering subdomains, as
can be seen in figure 6.1. The partition of the domain Ω into subdomains is referred to
as a mesh. The quality of the approximation u∗ to u is inherently dependent upon the
quality of the mesh.

In MATLAB, a mesh can be generated from the function generateMesh(), given an
arbitrary geometry. This function generates triangular (in 2D) or tetrahedral (in 3D)
elements. An example of a mesh generated by MATLAB for a quadratic geometry is
given in figure 6.1. Unfortunately, there is no flexibility in choosing the shape of the
elements. Therefore, one has to choose appropriate sizes for the elements in order to
get approximations of sufficient quality. The process of placing nodes and interpolating
between them to get basis functions is fully automated by MATLAB. Because of this we
will not cover the details of how this is done, in this thesis. Instead, we refer to the work
of Amundsen [66] [90] for discussions on this topic.

Figure 6.1: An example of a mesh with triangular elements generated using MATLAB.
The zoomed in plot displays the placement and labelling of the nodes in the elements.
The nodes are labelled by ’n#’, where # denotes the number of the node.

The PDE toolbox in MATLAB addresses equations in the form

m∂2t u+ d∂tu−∇ · (c∇u) + au = f, (6.27)

with Neumann boundary conditions in the form
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n̂ · (c∇u) + qu = g. (6.28)

For a system of M equations in 2D, u, f and g are vectors with M components, where u
describes the solution, a and q are M ×M matrices and c is an M ×M × 2 × 2 tensor.
m and d are set to 0 in this thesis since the Usadel equation is independent of time.
Notably, f , a and c are allowed to depend on both u and ∇u, meaning that we can write
any version of the Usadel equation in this form. Furthermore, equation (6.27) is written
on divergence form, given the term ∇· (c∇u). For a system whereM = 1, this term takes
the form

∇ · (c∇u) = c1∂
2
x + (c2 + c3)∂x∂yu+ c4∂

2
yu+ (∂xc1 + ∂yc2)∂xu+ (∂xc3 + ∂yc4)∂yu, (6.29)

where c =

(
c1 c3
c2 c4

)
. In order to put an equation in divergence form, the components

of c should be matched with the equation of interest according to (6.29). For example,
in coordinate representations where the metric tensor is the identity matrix we get c1 =
c4 = DF and c2 = c3 = 0 for the Usadel equation. It should be noted that the c in (6.27)
and (6.28) is the same one. Hence, once the c is determined in the PDE care should be
taken to make sure that the boundary conditions take the correct form for the given c.

The Usadel equation in the Riccati parameterization can now be written in the form
of (6.29). Let us define the solution vector

Γ = [γ1, γ2, γ3, γ4, γ̃1, γ̃2, γ̃3, γ̃4]
T , (6.30)

where γ =

(
γ1 γ3
γ2 γ4

)
. The Usadel equation in a general geometry then takes the form

gij∂i∂jΓ
α = Qα(γ, γ̃,∇γ,∇γ̃), (6.31)

with boundary conditions

n̂ · ∇Γα = Bα(γ, γ̃). (6.32)

Here, the functions Qα and Bα should be interpreted as conducting the matrix multi-
plications dictated by the given Usadel equation, and extracting the αth element. The
function Q thus determines a and f , while B determines q and g, and the inverse metric
gij determines c. When simulating the curved surfaces numerically, we map the geome-
tries to a corresponding flat geometry. We justify this by observing that the metric and
Christoffel symbols in the Usadel equation compensate for this mapping.

6.3 2D tunnel

The 2D tunnel surface, visualized in figure 5.1, consists of a constant 1D curvature ex-
tended in the binormal direction. This surface can be described by letting b be a finite
parameter in the curved nanowire system introduced in section 4.4. In the torsion-less
curvilinear framework, all the Christoffel symbols involving the parameter b are zero. We
can therefore find all the relevant Usadel equations for this system simply by replacing
the second order derivatives in section 4.4 with Laplacians in 2D, ∂2s → ∇2 = ∂2s + ∂2b .
This gives us
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Figure 6.2: Density of states for a 2D SF tunnel, with curvature κ = π/4, length L =
2ξ and width W = ξ. The superconductor is placed at L = 2ξ, to the right of the
ferromagnet. (a) Density of states as a function of the energy E/|∆| for various exchange
fields h. (b) Spatial dependency of the density of states at 0 energy for h = 0.5|∆|T̂ .

iDF∂i(ĝ
R∂iĝ

R) = [Eτ̂z + ∆̂ + hασ̂α, ĝ
R], (6.33)

where we once again see that the effects of curvature enter through the curving of the
exchange field, seen in the terms hασ̂α.

In the spin-parameterized weak proximity limit, we get

DF (∂
2
sds + ∂2bds − 2κ∂sdn − κ2ds) = −2i(Eds + f0hs), (6.34)

DF (∂
2
sdn + ∂2bdn + 2κ∂sds − κ2dn) = −2i(Edn + f0hn), (6.35)

DF (∂
2
sdb + ∂2bdb) = −2i(Edb + f0hb), (6.36)

DF (∂
2
sf0 + ∂2b f0) = −2i(Ef0 + h · d). (6.37)

Thus, the 2D tunnel system should look qualitatively the same as the 1D nanowire system,
with respect to spin-rotation, and we expect the transport properties to be similar to the
1D system. Furthermore, this system serves as a benchmark for comparing 2D to 1D
systems. That is, when we are solving the Usadel equation numerically, we need ways to
make sure our results make sense. Since the tunnel system should yield similar results as
the 1D curved nanowire, we can use this system as a benchmark for evaluating the results
we see in 2D.

When solving this system numerically, the Riccati parameterization gives us

iDF (∂i∂iγ + 2(∂iγ)Ñ γ̃(∂iγ)) = hα(σαγ − γσ∗
α) + 2Eγ, (6.38)

This equation has been solved using the PDE toolbox in MATLAB. The system we have
considered is an SF tunnel with constant curvature κ = π/4, length L = 2ξ and width
W = ξ, where the superconductor is placed at L = 2ξ, to the right of the ferromagnet.
The density of states for this system has been plotted for various exchange field strengths
in figure 6.2(a). Here, we see that the density of states for h = |∆|T̂ is almost identical to
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the density of states in the 1D nanowire, with the same material parameters, as plotted
in figure 4.4. This confirms that the 2D tunnel system behaves the same way as the 1D
nanowire system. Furthermore, figure 6.2 also displays peaks at zero energy, indicating
the presence of triplets. Following the analysis of spin rotation in the 1D nanowire system,
it is natural to assume that these peaks are due to a mixture of dN and dT components.
This confirms that we also see spin rotation the tunnel system, as we would expect.
Figure 6.2 also shows us how an increase in the exchange field strength destroys the
features in the density of states around E = 0, as mentioned in section 3.5. In figure
6.2(b) we have plotted the spatial dependency of the density of states throughout the
ferromagnet, at E = 0, for h = 0.5|∆|T̂ . Here, we see that the density of states is
invariant under translation in the binormal direction, as expected. Furthermore, the
peak increases initially from the interface, before it decays again longer away from the
interface. We may understand this in light of the discussion in 4.4.1, where we saw that
the generation of LRTs happens gradually with curvature, before the triplets start to
decay.

6.4 2D boomerang

The 2D boomerang system, visualized in figure 6.3, is based on a constant 1D curve that
has extension in its normal direction. Thus, we can describe this system with curvilinear
coordinates, while allowing the normal component n to be a finite parameter. Although
this system is effectively described by a 1D curvature, the extension in the normal direction
introduces some new mechanisms to the transport of quasiparticles in the system that we
didn’t see in the 2D tunnel system. The reason for this is that the curvature κ = r−1

0 will
vary as we vary the normal component n. This means that the Christoffel symbols Γs

ns,
Γs
sn and Γn

ss now contribute to the Laplacian in the Usadel equation.

Figure 6.3: A curved superconductor (S) - ferromagnet (F) - superconductor boomerang
setup with width W , parameterized after the inner arc length s and radius r0.

Another way to understand why one might expect this system to behave qualitatively
differently from the 1D nanowire system is to notice that the path of the quasiparticles
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through the ferromagnet is expected to be the path that minimizes energy loss. Nor-
mally in flat systems, this is the shortest path between the two superconductors. But
since curvature acts as a friction force, we expect the quasiparticles to take the path of
least curvature. In this boomerang system, the shortest path is the path with the most
curvature, and the path with the least curvature is the longest path. This system there-
fore allows us to study which path the quasiparticles will take under these constraints,
allowing us to study effective geodesics in our systems. One point we have ignored in this
reasoning is that the curvature also creates LRTs, which tends to yield a higher current
density in the ferromagnet. This mechanic therefore favours transport along steeper cur-
vature, despite the friction effect of the curvature. On the other hand, results from the 1D
nanowire indicate that the spin-rotation effect due to curvature is not necessarily linear in
curvature. That is, beyond a certain curvature, the LRT generation does not increase as
we increase the curvature. Hence, the competition between path distance and steepness
of curvature is expected to be relevant only beyond some critical curvature. Furthermore,
we have demonstrated that varying curvature may induce a 0-π transition in the junction.
Since the boomerang shape has a naturally varying curvature along the normal vector, we
expect the current density to change sign along this direction, at some specific curvature.

We consider a system similar to the nanowire system in section 4.4, but with a finite
n. By parameterizing the 3D coordinate vector the same way, we get

R(s, n, b) = (r0 − n)cos(s/r0)x̂+ (r0 − n)sin(s/r0)ŷ + bẑ, (6.39)

where r0 is now defined as the radius from the center of the circle to the inner curve of
the thin film. Since we are using curvilinear coordinates, the metric is given in (4.41).
The Christoffel symbols are given by (4.43)-(4.45), and come out to be

Γs
ss = 0, (6.40)

Γn
ss = η(n)κ, (6.41)

Γs
sn = Γs

ns = −η(n)−1κ, (6.42)

where we have defined η = 1−nκ. We note here that the curvature κ = r−1
0 now denotes

the curvature of the inner edge of the thin film, and is not a general expression for the
curvature in this system. The reason that the curvature of the inner edge enters our
equations in particular is because we have now parameterized our coordinate system from
the 1D formalism, where n = 0 confines us to the inner curve, and the parameter s refers
to the arc length of the inner curve. This should not worry us, however, as this approach
still gives us the correct results. Entering the Christoffel symbols into the Usadel equation,
we get

DF (η
−2∂s(ĝ

R∂sĝ
R) + ∂n(ĝ

R∂nĝ
R)− κn(n)(ĝ

R∂nĝ
R)) = [Eτ̂z + h(α)σ̂(α), ĝ

R]. (6.43)

Here, we have defined κn(n) = η−1κ = (r0 − n)−1 as the actual curvature at any distance
n from the κ curve. Furthermore, the exchange field terms have been written in terms
of the physical vectors, as this the most natural expression for these quantities. The
reason for this is that the exchange field will naturally follow the tangential vector, which
is equivalent to the physical vector in the s direction in curvilinear coordinates. The
physical vector components of the Pauli matrices are equivalent to the covariant vector
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components in the 1D limit, since the metric tensor becomes the identity matrix, as
discussed in section 4.4. The expressions for σ(α) are therefore given by 4.63.

In the spin-parameterized weak proximity limit, we get

DF

[
η−2∂2sds + ∂2nds + κn(∂nds)− 2κn(∂sdn) + 2κ2nds

]
= −2i(Eds + f0hs), (6.44)

DF

[
η−2∂2sdn + ∂2ndn + 2η−2κn(∂sds)− κn(∂ndn)− κ2ndn

]
= −2i(Edn + f0hn), (6.45)

DF

[
η−2∂2sdb + ∂2ndb − κn(∂ndb)

]
= −2i(Edb + f0hb), (6.46)

DF

[
η−2∂2sf0 + ∂2nf0 − κn(∂nf0)

]
= −2i(Ef0 + h · d). (6.47)

In comparing these equations with the tunnel system in (6.34)-(6.37), we clearly see that
the difference between these two systems lies in the transport along non-tangential di-
rection. While the transport in the tunnel system is invariant under translation along
the binormal direction, the boomerang system is not invariant under translation along
the normal direction. Hence, these equations confirm our expectations, in that the trans-
port should vary along the normal direction. Furthermore, we notice that (6.44) can be
rewritten as

DF

[
η−2∂2sds + ∂2nds − κ(∇× d) · B̂ − κn(∂sdn) + 2κ2nds

]
= −2i(Eds + f0hs), (6.48)

using (4.28). Here, the term κ(∇ × d) · B̂ indicates the possibility of having current
vortices on the surface.

Solving this system numerically, we first have to find the corresponding Riccati pa-
rameterized Usadel equation. Assuming that the exchange field will follow the tangential
direction, we get

iDF (η
−2∂2sγ + ∂2nγ + 2η−2(∂sγ)Ñ γ̃(∂sγ) + 2(∂nγ)Ñ γ̃(∂nγ)− κη−1∂nγ)

= hT (σ(s)γ − γσ∗
(s)) + 2Eγ.

(6.49)

This equation has been solved numerically using the PDE toolbox provided by MAT-
LAB. The system considered is visualized in figure 6.3. This SFS boomerang system is
considered for various inner curvatures κ = r−1

0 . It should be noted that the goal with
these computations is not to explore the parameter space, but to demonstrate that this
framework for solving 2D surfaces works. In figure 6.4, we have plotted the charge cur-
rent density vector on the boomerang surface with width W = ξ, length L = 2ξ, phase
difference ϕ = π/2 and exchange field |∆|T̂ , for κL = 3.56. With this inner curvature,
the outer curvature of this surface is approximately κouterL = 1.28. Hence, according to
figure 4.5 we expect there to be a reversal of the charge current around κnL = 1.88. What
we observe in figure 6.4 is naturally more complex than this, but a curvature-dependent
direction of the current can still be traced out. More interestingly, this system features a
vortex-like whirl of the current, as predicted from (6.48). A superconducting vortex is a
topological feature, in which the superconducting phase shifts by n2π around the vortex
center, where n is some integer. In order to demonstrate the presence of vortices on a sur-
face, the pair correlation function must be investigated [56]. Hence the whirl of currents
in figure 6.4 can not be said to equate to the presence of superconducting vortices, but
could be indicative. Because of this, investigating the correlation function for this system
to prove the potential presence of vortices would be a natural continuation of this study.
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Figure 6.4: The charge current density vector plotted on a boomerang surface with inner
curvature κ = 1.78L for an SFS system. The length is L = 2ξ, width is W = ξ, exchange
field is h = |∆|T̂ and the phase difference is φ = π/2.

(a) (b)

Figure 6.5: The charge current density vector plotted on two different SFS boomerang
systems with exchange field h = |∆|T̂ and the phase difference φ = π/2. (a) The length
is L = 4ξ, the width is W = 2ξ and the inner curvature is κL = π/6. (b) The length is
L = 2ξ, the width is W = ξ and the inner curvature is κL = π.

In figure 6.5, we have plotted the charge current density vector for an SFS boomerang
surface with phase difference ϕ = π/2 and exchange field |∆|T̂ . In figure 6.5(a) the length
is L = 4ξ, the width is W = 2ξ and the inner curvature is κL = π/6, and in figure 6.5(b)
the length is L = 2ξ, the width is W = ξ and the inner curvature is κL = π. Here,
the charge current seems to favor the path along the inner curvature in both cases. The
current in the bulk moves in the opposite direction in the two systems, according to the
plot in 4.5. Interestingly, the current seems to switch direction close to the interface. This
is unphysical, since the total current through any cross section along the normal direction
should be constant along the tangential direction. Because of this, there is reason to
believe that there is an error in the code used for these plots. This error is likely in the
implementation of the boundary conditions for the systems in figure 6.4 and 6.5, as it looks
like the currents are physically sound throughout most of the bulk of the ferromagnets,
until the boundaries are met. Furthermore, the accuracy of these numerical simulations
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should be verified more thoroughly. For example, one should simulate the same system
without mapping the geometry to a rectangle in order to verify that this yields the same
result. One should also compute this system for various element sizes in order to verify that
the Galerkin approximation in the finite element method is sufficiently accurate. Because
of this, these plots should not be interpreted as true representations of the physics in these
systems, but as indications of the possible dynamics that may arise. The plots should also
be interpreted as indications that the formalism and methods developed in this thesis are
successful in describing 2D curved systems.

6.5 Isotropic bump

Next we consider an isotropic bump, as described in section 5.5.4. Here, material de-
formation is described by a bump in the xy-plane modeled by a function f(r) that is
invariant under rotation around the z-axis. An example of how this surface might look
for a Gaussian function is given in figure 6.6. In section 5.5.4, we found that the metric
for this surface is given by

g = diag(µ, r2, 1), (6.50)

where µ = 1 + (f ′(r))2, and the prime denotes differentiation with respect to r. The
Christoffel symbols were found to be

Γr
αβ =

κ1κ2rµ 0 −κ1
0 −r/µ 0

−κ1 0 0

 , (6.51)

Γθ
αβ =

 0 r−1 0
r−1 0 −κ2
0 −κ2 0

 , (6.52)

Γn
αβ =

κ1µ 0 0
0 κ2r

2 0
0 0 0

 , (6.53)

where κ1 =
f ′′(r)

µ
3
2

and κ2 =
f ′(r)

rµ
1
2

denotes the first and second principal curvature, respec-

tively. Inserting this into the Usadel equation we get

iDF (µ
−1∂r(ĝ

R∂rĝ
R) + r−2∂θ(ĝ

R∂θĝ
R) + ((rµ)−1 − κ1κ2r)ĝ

R∂rĝ
R) = [Eτ̂z + giihiσ̂i, ĝ

R].
(6.54)

Writing this in the spin-parameterized weak proximity limit form, we take care to write
an extra step in the derivation of the three d-vector equations. For the dr component we
get

grr∂2rdr + gθθ∂2θdr − 3grrΓr
rr∂rdr − 2gθθΓθ

θr∂θdθ − 2grrΓn
rr∂rdn − gθθΓr

θθ∂rdr

− dr(g
rr∂rΓ

r
rr − grrΓr

rrΓ
r
rr − gθθΓr

θθΓ
θ
θr − grrΓr

rnΓ
n
rr − Γr

rr(g
rrΓr

rr + gθθΓr
θθ))

− dn(g
rr∂rΓ

n
rr − grrΓn

rrΓ
r
rr − gθθΓn

θθΓ
θ
θr − Γn

rr(g
rrΓr

rr + gθθΓr
θθ))

= −2i(Edr + f0hr),

(6.55)
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for the dθ component we get

grr∂2rdθ + gθθ∂2θdθ − 2gθθΓr
θθ∂θdr − 2grrΓθ

rθ∂rdθ − 2gθθΓn
θθ∂θdθ − (grrΓr

rr + gθθΓr
θθ)∂rdθ

− dθ(g
rr∂rΓ

θ
rθ − gθθΓθ

θrΓ
r
θθ − grrΓθ

rθΓ
θ
rθ − gθθΓθ

θnΓ
n
θθ − Γθ

rθ(g
rrΓr

rr + Γr
θθ))

= −2i(Edθ + f0hθ),

(6.56)

and for the dn component we get

grr∂2rdn + gθθ∂2θdn − 2grrΓr
rn∂rdr − 2gθθΓθ

θn∂θdθ − (grrΓr
rr + gθθΓr

θθ)∂rdn

− dr(g
rr∂rΓ

r
rn − grrΓr

rrΓ
r
rn − Γr

rn(g
rrΓr

rr + Γr
θθ))− dn(−grrΓn

rrΓ
r
rn − gθθΓn

θθΓ
θ
θn)

= −2i(Edθ + f0hθ).

(6.57)

Inserting the Christoffel symbols into these expressions, we get

µ−1∂2rdr + r−2∂2θdr + ((rµ)−1 − 3κ1κ2r)∂rdr − 2r−3∂θdθ − 2κ1∂rdn

− dr(f
′′′κ2rµ

− 1
2 − 4µr2(κ1κ2)

2 + κ21(µ+ 1) + (µr2)−1 + κ1κ2)

− dn(f
′′′µ− 3

2 − 3µr(κ1κ2)
2 + r−1(κ1 − κ2)) = −2i(Edr + f0hr)

(6.58)

for the dr component,

µ−1∂2rdθ + r−2∂2θdθ − 2µ− 1
2 (∇× d) · N̂ + ((rµ)−1 − κ1κ2r)∂rdθ − 2κ2∂θdθ + dθ(κ1κ2 − κ22)

= −2i(Edθ + f0hθ)

(6.59)

for the dθ component, and

µ−1∂2rdn + r−2∂2θdn + 2µ−1κ1∂rdr − 2r−2κ2∂θdθ + ((rµ)−1 − κ1κ2r)∂rdn

− dr(5rκ
2
1κ2 − f ′′′µ− 5

2 − κ1(rµ)
−1)− dn(κ

2
1 + κ22) = −2i(Edn + f0hn)

(6.60)

for the dn component. As we see from these expressions, the transport in this system
depends mainly on the principal curvatures, as expected. We have plotted the principal
curvatures on a surface with a Gaussian bump in figure 6.6 to display what these curva-
tures might look like on a surface. Furthermore, the Gaussian bump surface is a popular
choice for 2D curvatures [97] [37] [46]. This type of surface is therefore an interesting
candidate for further studies.
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(a) (b)

Figure 6.6: The value of the principal curvatures (a) κ1 and (b) κ2 on a surface featuring
a Gaussian bump.
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7 Summary and outlook

We have demonstrated that curvature has the potential to alter the transport of super-
conducting correlations in superconductor-ferromagnet systems through spin mixing and
spin rotation. The effects of curvature on the systems were shown to be comparable to
spin-orbit coupling and a spatially rotating exchange field. We saw that curvature acts
as a friction force in the system. Hence, in a wire with constant curvature, increasing the
curvature beyond a certain critical value was shown to decrease the coherence length of
the long-range triplets, in the ferromagnet. We also demonstrated a curvature driven 0-π
transition in a constantly curved SFS Josephson junction.

In order to further the theoretical studies of curved SF proximity systems, we de-
veloped a formalism for diffusive transport on 2D curved SF systems using differential
geometry. This formalism proved to be different, but analogous to the curvilinear formal-
ism. The main difference from the curvilinear formalism was seen to be the introduction
of a second, independent curvature-direction. Hence, we saw that 2D surfaces described
by a single, non-varying curvature yielded no new qualitative behaviour with respect to
transport of superconducting correlations. We analyzed the SFS boomerang system an-
alytically and numerically. The analytical analysis indicated the possibility of having a
0-π transition along the normal direction of the curvature. This was supported by our
numerical simulations, in which we saw that the current changed sign along the normal
direction along the curvature. In the same plot, a vortex in the current was observed,
indicating the possibility of having curvature induced superconducting vortices. In the
boomerang system, the current was seen to be strongest along the inner curvature of
the surface. The numerical results for the boomerang system were seen to be unphysical
along the superconductor/ferromagnet interfaces, indicating a coding-error in the bound-
ary conditions. Because of this, care should be taken when interpreting the numerical
results for this system.

There are many possibilities for future studies of 2D curved SF proximity systems.
Many of these possibilities include considering new types of 2D surfaces. For example,
a natural continuation of our analytical treatment of the isotropic bump surface would
be to solve this system numerically. This could be done for a single Gaussian or cosine
bump, or an array of such bumps. Examining the charge current density and direction
in such a system could give us more insight into the superconducting correlations’ choice
of geodesics. This system could also give rise to superconducting vortices. Another nat-
ural continuation of this thesis is to write a better code for the boomerang system. The
boomerang surface should be studied under a wider array of parameters, and for more
physical observables, than considered in this thesis. This would give a better understand-
ing of the dynamics in this system, and possibly shed light on new mechanisms. The
systems mentioned could also be studied under an external magnetic field, which could
give rise to superconducting vortices and skyrmions, per instance.

In this thesis, the numerical computation of the different geometries was done by
mapping these geometries to a rectangular surface and encapsulating the effects of the
geometry in the metric and Christoffel symbols. Because of this, we do not lose or alter
any information about the system, and our simulations are equivalent to the physical
geometries in question. This should be verified by computing the same geometries without
mapping them to simplifying geometries, and checking that this yields the same results.
Simulating the systems this way, in their true geometry, is made possible by using the
finite element method to solve the PDEs.
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This thesis has served as an introduction to curved SF proximity systems in 2D. We
have seen evidence that curvature is an interesting property in 1D systems, with several
theoretical applications, and demonstrated that 2D curvature has the same potential. The
unexplored possibilities are therefore manifold for these systems, and hopefully this area
of research will receive further attention in the future to come.
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