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Abstract

A multiscale modelling approach has been employed to investigate the benchmark molecule in

post-combustion carbon dioxide capture (PCC), 2-aminoethanol (MEA), with the hope to increase

the insight in the conformer stability, interconnectivity and corresponding reactivity. All calculations

have been carried out within a Python-ecosystem, utilising the quantum chemistry software Python

Simulations of Chemistry Framework (PySCF) for Density Functional Theory (DFT) calculations

using the Unrestricted Kohn-Sham approach. 25 conformers of MEA have been identified at

COSMO/B3LYP/aug-cc-pVDZ level of theory, with five conformers exhibiting intramolecular

hydrogen bonding (HB), resulting in increased stability. However, two conformers that has not

been determined in resent work, could not be fully ascertained. Transition state searches has been

performed for 23 conformers, revealing interconversion barrier ranging from 0.66 to 5.15 kcal mol−1.

Notably, interconversions between states exhibiting HB, were found to have the lowest barrier,

while interconversion of the most stable state, were found to exhibit the highest barrier of 5.15 and

4.77 kcal mol−1. Rate constants have been calculated using transition state theory (TST), and

the result yielded rate constants ranging from 4.69 × 108 to 9.46 × 1014 s−1. These has further

been used in kinetic Monte Carlo (kMC) simulations, indicating that the states with HB were most

populated. However, not all state were possible to consider, so the results from the simulations

does not reflect the entire conformational diversity to its full extent. Lastly, three conformers have

been examined at COSMO/B3LYP/cc-pVDZ level of theory, to determine whether the reacting

conformer affects the kinetics of the reaction. While the results could point in a direction towards

this, computational issues prevent conclusive findings, and further exploration is required to fully

understand the impact of conformers on reaction kinetics.
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Sammendrag

En multiskala modelleringsmetode har blitt brukt for å studere referansemolekylet, 2-aminoetanol

(MEA), i etter-forbrenning fangst av karbondioksid (PCC), med håp om å øke innsikten i kon-

formasjonsstabilitet, konformasjonskonnektivitet og tilsvarende reaktivitet. Samtlige beregninger

har blitt utført innenfor et Python-økosystem, der kvantekjemi-programvaren Python Simulations

of Chemistry Framework (PySCF) har vært benyttet for å gjennomføre tetthetsfunksjonalteori

(DFT) beregninger ved hjelp av den ikke-restriktive Kohn-Sham (UKS) tilnærmingen. 25 konformas-

joner av MEA har blitt identifisert ved COSMO/B3LYP/aug-cc-pVDZ nivået av teori, hvor fem

konformasjoner innehar intramolekylære hydrogenbindinger (HB), hvilket resulterer i økt stabilitet.

To av konformasjonene, som imidlertid ikke har blitt påvist i nyere litteratur, kunne ikke fult ut

bekreftes. Overgangstilstand-søk (TS) har blitt utført for 23 konformasjoner, og avslørte at inter-

konverteringsbarrierer som spenner fra 0.66 til 5.15 kcal mol−1. Det fremtrer at interkonverteringer

mellom tilstander som innehar HB, hadde den laveste barrieren, mens interkonvertering av den mest

stabile tilstanden, hadde den høyeste barrieren på 5.15 og 4.77 kcal mol−1. Hastighetskonstanter har

blitt beregnet ved hjelp av overgangstilstandteori (TST), og resultatene ga hastighetskonstanter som

spenner fra 4.69× 108 til 9.46× 1014 s−1. Disse har videre blitt brukt i kinetisk Monte Carlo (kMC)

simuleringer, som indikerer at tilstandene med HB var preget av en høyere andel av den totale

populasjonen. Det var imidlertid ikke mulig å betrakte samtlige tilstander, dermed slik gjenspeiler

ikke resultatene fra simuleringene hele konformasjonsmangfoldet til det fulle. Til slutt har tre

konformasjoner blitt undersøkt for å avgjøre om hvorvidt den reagerende konformasjonen påvirker

reaksjonskinetikken ved COSMO/B3LYP/cc-pVDZ nivået av teori. Til tross for at resultatene peker

i retning av dette, forhindrer beregningsproblemer faktiske resultater, og ytterligere undersøkelse er

nødvendig for å fult ut forstå konformasjonens innvirkning på kinetikken.
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1 Introduction

Ever since 1930s has alkanolamines played a central role, serving as an absorbent in studies

concerning carbon dioxide (CO2) capturing[20]. 2-aminoethanol (MEA) is the most extensively

studied molecule in post-combustion carbon dioxide capture (PCC) by amine absorption and is

considered as a benchmark solvent owing to its lower costs, high absorption capability and fast

absorption rate. The molecule is bifunctional, containing a primary alcohol and a primary amine

and a pKa = 9.50 at 25℃[11]. Moreover, MEA is corrosive and may cause irritation when in direct

contact with the skin depending on the concentration and duration of exposure[1]. Furthermore, it

is not considered volatile[16, 67].

Another area in which MEA is seen is in phospholipids phosphatidylethanolamines (cephalin[28]),

known to be the second most abundant glycerophospholipid in eucaryotic cell membranes[21, 54].

Moreover, they are widely used as a complexing agents, where they act as mono- or bidentate

agents[52]. Due to its widespread application, understanding the conformational interconvertions of

MEA is of considerable interest. Apart form previous work, all conformers has been desirable to

map. Despite having isomers, its structural importance may have an important impact pertaining

Facilities that utilise PCC-technologies are typically power plants where CO2 is a flute gas. A

great advantage is that these technologies can be implemented in existing infrastructures, know as

retrofitting without requiring additional reconstructions[30, 89]. The mechanism of capture CO2

involves a reversible chemical reaction. A solvent serves as a medium to capture and release CO2,

which can then be collected. In the absorber at relative low temperature (∼ 50°C), a chemical

bond between CO2 and the amine is formed. By increasing the temperature (∼ 120°C) in the

desorber, the CO2 can be released[67]. However, a major limitation is that the need to increase the

temperature in order to regenerate the amines leads to an increased operational cost[2].

All amines undergo degradation to some extent, and some degrade more rapidly than others.

Primary amines tend to degrade faster than secondary and tertiary due to higher degree of free

rotation. Secondary and tertiary amines that has bulky groups adjacent to the amine group,

introduce steric effects. These have been shown to adversely affect the reaction kinetics of the

the amine-CO2 reaction[3, 63]. Furthermore, alkalinity has been shown to play a role in reaction

kinetics by increasing the affinity for CO2. Particularly for secondary amines[3, 63, 70].



2 Chapter 1. Introduction

Studies over the past years have further shown that MEA (among many other amines) degrade

into undesirable compounds, and can be further catalysed by dissolved metals[14, 25]. Subsequent

degradation products will further contribute to corrosion[61]. The chemical reaction are irreversible

chemical processes leading to amine loss. Solvent degradation is a serious issue, as it results in

economic losses and operating problems. Despite other solvent and solvent mixtures has taken

its place in research questions on finding the optimal solvent, MEA remains of interest, because

its degradation path resembles other of primary amines in terms of degradation products. Also,

conducting experiments with it is advantageous due to its relative fast kinetics. The transferability

makes MEA studies useful in general. However, kinetic studies seems to be scares pertaining to the

conformational point of view. Only one work has explicitly stated which conformation of MEA

that undergoes a reacction[83]. For that reason this thesis seeks to gain insight in conformational

stability of MEA.

Density Functional Theory (DFT) has been used to study the stability of MEA in the quantum

chemistry software, Python Simulations of Chemistry Framework, PySCF [72]. All conformers

reported are has been obtained using the Unrestricted Kohn-Sham (UKS) approach in PySCF.

Furthermore, the B3LYP functional with aug-cc-pVDZ basis set were used to determine the reference

structures in gas phase. Subsequently, solvent effects were accounted for by using the continuum

model COSMO, which for that matter is the is the only implemented solvent model in PySCF as to

this date. The solvent parameter for water that was used is the dielectric constant. All conformer

calculations are further reported at standard condition, i.e. 298.15K and 101 325 Pa.

Transition State Theory has been used to obtain the rate constants needed to carry out kinetic

Monte Carlo (kMC) simulations. Studying the conformer interconversion in a kinetic Monte Carlo

simulation has not been preformed so far. Based on the findings form the simulation, the formation

of HEGly will be tested with different conformers.

In this work, a significant amount of time that was not spent on the chemistry of MEA was dedicated

to developing efficient, versatile and user-friendly cods for newcomers to PySCF. Working within

the Python ecosystem offers numerous advantages, and among the greatest is how conveniently

other packages can very easily be integrated. By focusing on clarity and accessibility, the code can

hopefully become useful for those new to PySCF, or others that might be curios.

This thesis has been constructed as follows: Chapter 2 entails theory on DFT with related aspects,

transition state theory and how to derive the rate constants and lastly a short introduction to

kinetic Monte Carlo. Chapter 3, aims to describe the approach used to obtain the results, chapter

4 contains the results and discussion and chapter 5 concludes the work and gives some thought on

the outlook. In addition, the appendices can be found at the end.
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2 Theoretical background

The following chapter entails the appropriate theory needed to grasp the subject matter. An

introduction of electron structure theory that underlie DFT will be provided in the beginning,

followed by DFT theory and related aspects in molecular modelling. The next section presents

transition state theory (TST) and describes how it can be used to obtain the rate constants. Finally,

a briefly introduction on kMC will be given.

2.1 The Many-Body Schrödinger Equation

A fundamental equation in quantum mechanics is the Schrödinger equation. It provides means for

solving a wave function, which is a description of a system’s quantum state, and from that, molecular

properties of chemical systems can be calculated. The wave function itself is a probability amplitude,

however, its physical meaning is difficult to interpret. Nevertheless, there is a proportional relation

between the square modulus of the wave function, |ψ(r⃗)|2 = ψ(r⃗)
∗
ψ(r⃗) and the probability, of finding

a single particle at point r⃗ = (x, y, z) in an infinitesimal volume element dr⃗ = dxdydz according to

Born’s interpretation. From that it follows that the product of the wave function and its complex

conjugate |ψ(r⃗)|2 is a probability density. It is advantageous to consider a normalised function,

because then Born’s interpretation can be regarded as an equality rather than a proportionality[7].

The form of the Schrödinger equation depends on the physical system being described and how

it is described. In computational chemistry, it is typically the time-independent, non-relativistic,

electronic Schrödinger equation that is being solved. The emphasis on electronic implies that

the Born-Oppenheimer approximation (BOA)[17] has been adopted - one of quantum chemistry’s

cornerstones, allowing the wave function to be separated into an electronic part and a nuclear

part. A justification for adopting it lies in recognising the significant mass difference between

nuclei and electrons (MI ∼ 1800mi), which results in electrons responding almost instantaneously

to displacement of the nuclei[7, 40, 45]. Moreover, the electronic wave function is a function of

spatial position of electrons, whereby the nuclear spatial position only has parametric dependence,

hence the semicolon ψ(r⃗; R⃗)[7, 26]. In the context of the BOA, it follows a Hamiltonian operator,

where the kinetic energy term for the nuclei is omitted because it is considered fixed in space[8].

Additionally, since the potential energy operator for the nuclei-nuclei repulsion term is constant, and
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the wave function is invariant to constant terms, it is conventionally excluded in the Hamiltonian.

Instead, it gets included as a classical term at the end of the calculation[7, 26]. The resulting

electronic Schrödinger equation can then be written more descriptively as follows

Ĥψi(r⃗i; R⃗) =

− ℏ2

2m

n∑
i=1

∇2
i − j0

n∑
i=1

N∑
I=1

ZI

riI
+

1

2
j0

n∑
i = 1,

j = i + 1

1

rij

ψi(r⃗i; R⃗) = Eiψi(r⃗i; R⃗) (2.1)

where Ĥ is the Hamiltonian operator Ĥ, that operates on the eigenfunction ψi(r⃗; R⃗) and returns

the same eigenfunction ψi(r⃗; R⃗) scaled by its corresponding eigenvalue E, which is the electronic

energy[8]. j0 is introduced as a condensed expression j0 = e2

4πε0
, where e is the elementary charge

and ε0 is the vacuum permittivity[7]. In most computational programs, these are converted to

atomic units, leading to j0 = 1.

The first term in the Hamiltonian is the electronic kinetic energy operator, where ℏ is the reduced

Planck’s constant, m is the electron mass and ∇2 is the Laplacian operator. When Cartesian

coordinates are evaluated, it consists of the sum of three second partial derivatives with respect

to the three axis. The second term describes the electron-nucleus attraction and is a potential

energy contribution where ZI is the number of nuclei and riI is the distance between electron i and

nucleus I. The last term is also a potential energy operator, and it captures the electron-electron

repulsion between electron i and electron j, and rij denotes the distance between them[7].

Although, considering the Schrödinger equation within the BOA, only the hydrogen molecule ion

H2
+ can be solved exact. The electron-electron repulsion term with the rij dependence makes an

exact solution impossible to obtain for systems containing more than one electron. It is possible

to approximate the the true many-electron wave function as a product of n one-electron wave

functions ψ(r⃗; R⃗) =
∏n

i=1 ψi(r⃗; R⃗), according to the orbital approximation[7]. However, each of

these one-electron wave function are affected by the presence of all other electrons in the system.

Consequently, the wave function for one electron i cannot be determined without having considering

all other electrons simultaneously, which makes the Schrödinger equation a many-body problem[64].

2.2 Density Functional Theory

Being a problem of 3n variables, where n denotes the number of electrons in the system, the

Schrödinger equation quickly becomes computational expensive as the number of electrons increases

with the system size. This is especially problematic for larger molecules. Developing other methods

for solving the Schrödinger equation therefore becomes of great desire. One of these is density

functional theory (DFT), which started to emerge during the 1920s. In 1927 the Thomas-Fermi

model was presented[7, 75], which tackled the problem completely differently. The approach sought

to use the electron density as a mean to express the energy, as opposed to the electronic wave

function. Ultimately, reducing the dimensions of the problem from 3n to 3. The Thomas-Fermi

model can be viewed as the predecessor to DFT, but unfortunately, there was no theoretical hold
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in that the energy could directly related to the electron density[7].

2.2.1 The Hohenberg-Kohn Theorems

In 1964 two decisive theorems for the developemnt of DFT were presented, namely the Hohenberg-

Kohn (HK) theorems[38]. The first theorem is called the Hohenberg-Kohn existence theorem (proved

in appendix A.1), which states that The ground state energy and all other ground state electronic

properties are uniquely determined by the electron density [7]. The electron density function, ρ(r⃗), is

decisive for any ground state properties. Essentially, this means that any ground state property,

take the energy (E0) for instance, can be represented as a functional of the electron density function.

A functional can be thought of as a rule for transforming a function into a number, while a function

can be seen as a rule to transform a number into the same or a different number[45].

Pertaining to DFT-theory, the ground state energy can mathematically be represented as functional

of the ground state electron density function, denoted as1

E0 = E[ρ0(r⃗)] (2.2)

where the hard brackets, imply functional, embracing the electron density function ρ(r⃗)[45].

The implication of the existence theorem is that there exists an alternative method for obtaining

the energy, namely by deriving it from the basis of the ground state electron density

E[ρ] =

EHK [ρ]︷ ︸︸ ︷
T [ρ] + Vee[ρ] +

∫
ρ(r⃗)ν(r⃗)dr⃗ (2.3)

where T [ρ] is the electronic kinetic energy contribution of and Vee[ρ] is the electron-electron potential

energy contribution. The integral involves summation (integration) of the products of the electron

density ρ(r⃗) and the external potential ν(r⃗), over all points in the volume element dr⃗. The external

potential (eq. (2.4)) is a potential energy term and corresponds to the electrostatic interaction

between negatively charged electrons and the positively charged nuclei[40, 45, 87].

ν(r⃗) = −j0
N∑

I=1

ZI

|r⃗ − R⃗I |
(2.4)

Also, the external potential is analogous to the second term in eq. (2.1). In all, the existence

theorem forms the basis in which the the Hamiltonian can be obtained by deriving it from the

electron density[7, 26]

Ĥ = − ℏ2

2m

n∑
i=1

∇2
i +

n∑
i=1

ν(r⃗i) +
1

2
j0

n∑
i = 1,

j = i + 1

1

rij
(2.5)

Moving on to the second theorem, the Hohenberg-Kohn variational theorem, which is an analogue

1which further on will be referred to as the electron density unless explicitly stating anything else. Also the

subscript 0 will be omitted for simplicity
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to the variational theorem seen in the ad inito methods stating that the Rayleigh ratio2 is greater

or equal to the exact ground state energy, E ≥ E0. Similarly, DFT also make use of a trail function,

but rather using a trail wave function, a trail electron density function (ρt) is presented. The

theorem states that this trail function yields an energy greater or equal to the exact energy obtained

by the true electron density function (ref. appendix A.2)[7]. Mathematically it can be stated as

E[ρt] ≥ E0 (2.6)

For a method to be variational is an advantageous feature, as it assures that any calculated energy is

the upper bound to the true energy. By applying the variational principle to the energy functional,

the energy gets minimised with respect to the ground state electron density for a fixed number of

electrons
δ

δρ(r⃗)

{
E[ρ(r⃗)]− µ

∫
ρ(r⃗)dr⃗)

}
= 0 (2.7)

and is subjected to the constraint ∫
ρ(r⃗)dr⃗ − n = 0 (2.8)

where ρ(r⃗) ≥ 0 ∀ r⃗. The ground state electron density, must then satisfy

µ = ν(r⃗) +
δEHK [ρ]

δρ(r⃗)
(2.9)

where δ signifies the functional derivative The theorem also ensures that the number of electrons n

is conserved and always positive[26, 40, 45].

2.2.2 The Kohn-Sham Equations

Up until this point the Hohenberg and Kohn proved the energy could be determined from the

electron density - the premise of DFT. However, it was just that, a proof, and there was no guidelines

on how E[ρ] should be constructed. It was not until 1965 that a solution emerged. Kohn and Sham

developed an approach with a set of solvable equations, refereed to as the Kohn-Sham approach[43].

They formulated one-electron equations that offer a potential pathway to acquire the electron

density. The approach presents a fictitious reference system containing n non-interaction electrons

in an external potential νref (r⃗), where the electron density ρref (r⃗) is equivalent to the true electron

density ρ(r⃗)[7, 26, 45]. The reference Kohn-Sham hamiltonian is expressed as a sum of one-electron

equations

ĥref =

n∑
i=1

ĥKS
i (2.10)

ĥKS
i = − ℏ2

2m
∇2

i + νref (r⃗i) (2.11)

2The well known variational theorem, whereby ψt is the trail wave function

E =
⟨ψt|Ĥ|ψt⟩
⟨ψt|ψt⟩︸ ︷︷ ︸

Rayleigh ratio

≥ E0
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The one-electron Kohn-Sham orbitals φKS
m are eigenfunctions of the one-electron Kohn-Sham

hamiltonians ĥKS
i . A similar eigenvalue equation as given in equation (2.1), can also be expressed

in context of the Kohn-Sham approach

ĥKS
i φKS

m (i) = εKS
m φKS

m (i) (2.12)

where the eigenvalue εKS
m is the orbital energy corresponding to the Kohn-Sham orbital φKS

m (i).

Furthermore, in KS-DFT the ground state wave function can be expressed as a single Slater

determinant ΦKS
0 . The Slater determinant is comprised of Kohn-Sham spin orbitals ϕKS

n (x⃗n)

ΦKS
0 (x⃗n) =

1√
n!

∣∣∣∣∣∣∣∣∣∣∣∣

ϕKS
1 (x⃗1) ϕKS

2 (x⃗1) . . . ϕKS
n (x⃗1)

ϕKS
1 (x⃗2) ϕKS

2 (x⃗2) . . . ϕKS
n (x⃗2)

...
...

. . .
...

ϕKS
1 (x⃗n) ϕKS

2 (x⃗n) . . . ϕKS
n (x⃗n)

∣∣∣∣∣∣∣∣∣∣∣∣
= det |ϕKS

1 (x⃗1)ϕ
KS
2 (x⃗2) . . . ϕ

KS
n (x⃗n)|

(2.13)

where x⃗n in ϕKS
n (x⃗n) denotes that the Kohn-Sham spin orbitals is a product of the Kohn-Sham

spatial orbitals φKS
n and spin state (α or β), when only closed-shell systems are considered. The

motivation in using a Slater determinants with spin orbitals originate from the fundamental quantum

properties of electrons. Particularly them being fermions and therefore must obey the Pauli principle,

stating that the wave function must be anti-symmetric with respect to interchange of any pair of

electrons. A direct implication is the Pauli exclusion principle, ensuring that two electrons are

prohibited from occupying the same quantum state[7]. The first principle translates to interchanging

a pair of rows in the determinant, while the second principle corresponds to a situation where

the determinant has a pair of spin orbitals in common, i.e. two columns are identical, ultimately

collapsing the determinant.

The total ground state energy functional for a many electron system can be expressed in terms of

the reference system accompanied with a correction term

E[ρ] = T [ρ] + Vee[ρ] +

∫
ρ(r⃗)ν(r⃗)dr⃗

= Tref [ρref ] + Jref [ρref ] +

∫
ρ(r⃗)ν(r⃗)dr⃗ + T [ρ] + Vee[ρ]− (Tref [ρref ] + Jref [ρref ])

(2.14)

Since the reference system is a fictitious one presented by Kohn-Sham, it is by definition set to

have the same electron density as the real system as already mentioned

ρ(r⃗) = ρref (r⃗) (2.15)

By demanding this, the energy expression given in eq. (2.14) can be rewritten

E[ρ] = Tref [ρ] + J [ρ] +

∫
ρ(r⃗)ν(r⃗)dr⃗ + Exc[ρ] (2.16)

The Vee contribution has now been split into a classical component Jref [ρ] and a non-classical

component Exc. The first contribution accounts for the Coulomb electron-electron interaction3

J [ρ] =
1

2
j0

∫ ∫
ρ(r⃗1)ρ(r⃗2)

r12
dr⃗1dr⃗2 (2.17)

3which sometimes in literature is referred to as the Hartree energy EH [ρ]
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in terms of one-point electron density ρ(r⃗)

ρ(r⃗) =
∑
m

φKS∗
m (r⃗)φKS

m (r⃗) (2.18)

The last term in eq. (2.16), Exc is called the exchange-correlation energy. It accounts for the residual

part of the true kinetic energy. That being the difference between the true kinetic energy and the

fictitious kinetic energy(T [ρ]− Tref [ρ]) and the non-classical electrostatic interaction (Vee[ρ]− J [ρ])

Exc = T [ρ] + Vee[ρ]− (Tref [ρ] + J [ρ]) (2.19)

Now eq. (2.9) can be redefined as

µ = νeff (r⃗) +
δTref [ρ]

δρ(r⃗)
(2.20)

where the effective potential νeff (r⃗) is defined as

νeff (r⃗) = ν(r⃗) +
δJ [ρ]

δρ(r⃗)
+
δExc[ρ]

δ ρ(r⃗)
(2.21)

and must be equal to the reference potential in order to solve the Kohn-Sham equations. The

functional derivative of the Coulomb functional is

δJ [ρ]

δρ(r⃗)
= j0

∫
ρ(r⃗′)

|r⃗ − r⃗′|
dr⃗′ (2.22)

The exchange-correlation potential for the functional derivative of Exc is

νxc(r⃗) =
δExc[ρ]

δρ(r⃗)
(2.23)

Consequently, the effective potential (eq. (2.21)) can be rewritten into a function of position and

not in terms of functionals as before

νeff (r⃗) = ν(r⃗) + j0

∫
ρ(r⃗′)

|r⃗ − r⃗′|
dr⃗′ + νxc(r⃗) (2.24)

ν(r⃗) corresponds to the total external potential acting on all n electrons collectively. By subjecting

a reference system to a particular external potential and solving the Kohn-Sham equation ((2.25))

with the same external potential, but for a real system, the electron density which minimises the

energy functional can be found[7, 40, 87].{
ĥ1 + j0

∫
ρ(r⃗′)

|r⃗ − r⃗′|
dr⃗′ + νxc(r⃗)

}
φKS
m (i) = εKS

m φKS
m (i) (2.25)

where the one-electron hamiltonian presented in eq. (2.11) has been redefined since νref has been

substituted by νeff seen in eq. (2.21)[7]

ĥ1 = − ℏ2

2m
∇2

1 + ν(r⃗1) (2.26)

The KS equations are solved through a self-consistent method. This self-consistency arises because

the initial guess for the electron density serves as the input for the KS equations and is aimed

at converging towards the actual solutions. The procedure can be summarised in the following

points[64]
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1. Initial guess of the electron density ρ(r⃗) ref. eq. (2.18)

2. Solve the Kohn-Sham equations (2.25) using the initial guess to obtain φKS
m

3. A new electron density is calculated ρKS(r⃗) based on the findings in step 2

4. Compare ρKS(r⃗) with ρ(r⃗). If the current density ρKS(r⃗) is sufficiently close to ρ(r⃗), then

the calculation is considered converged towards a self consistent solution. If not, repeat the

steps 2-4 until convergence is achieved

The initial guess is based on the superposition of atomic densities. This essentially means that all

the electron densities of all the individual atoms in the system gets added together in a sense. The

resulting electron density is an initial approximation for how electrons are distributed in the entire

system[7].

What decides whether a calculation can be considered converged, is often pre-determined in the

program code as so called convergence parameters or convergence criteria. In general, the stricter

the convergence parameters, the more computationally expensive they become.

2.2.3 Exchange-Correlation Functional

The main shortcoming in DFT lies in the approximation of the unknown exchange-correlation

functional EXC [ρ]. The accuracy of the DFT-calculations relies on the chosen exchange-correlation

functional, often just referred to as the functional in the context of DFT. Numerous approximate

methods have been proposed and they can be organised in a hierarchical classification system known

as Perdew’s Jacob’s Ladder [55] - an analogy to the biblical story of a ladder leading to heaven.

In this context, heaven corresponds the realm of chemical heaven, where an universal functional

exists and its computational accuracy is divinely accurate. The base of the ladder symbolises to

the Hartree world, which neglects electron correlation effects beyond the mean-field level.

The exchange-correlation functional is often decomposed into exchange and correlation components

EXC [ρ] = EX [ρ] + EC [ρ] (2.27)

Most work on DFT in the recent years has been focused on development of a better functional. The

choice of what functional to use is often based on the problem at hand, experience, the availability

of functionals in the program and the computational cost and efficiency. Additionally, it is also

desirable for the functional to be free of self-interaction, that being for a one-electron system, the

exchange energy cancel both the Coulomb energy and the correlation energy. This appears to be

an obvious requirement for a functional, yet there are actually no functional that fulfils it. As a

consequence, the system seems more stable than it actually is. The error corresponding is called

self-interaction error (SIE)[40]. While some functionals perform well for very specific systems, there

is unfortunately no universal functional, like the one referred to in the analogy. This is probably

the main limitations in the accuracy of DFT predictions for some systems. There is a vast number

of different functional out there and choosing the best one.
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The most popular functional, owing to the great success is DFT, is the B3LYP - Becke three-

parameter Lee-Yang-Parr functional and is a favourite among many DFT practitioners[6]. It belongs

to the Hybrid Generalised Gradient Approximation (Hybrid GGA) family of functional and aims to

improve the exchange-correlation functional by introducing a density gradient in addition to the

local density. As the name states it is a hybrid functional of exact exchange (from Hartree-Fock

theory) and empirically determined parameters, fitted to improve the accuracy[7, 40].

EB3LY P
X = (1− α)ELSDA

X + aEHF
X + b∆EB

X + (1− c)ELSDA
c + cELY P

c (2.28)

where a = 0.20, b = 0.72 and c = 0.81 are parameters from experimental data. The first three

exchange-terms are the Local Spin Density Approximation (LSDA) ELSDA
X , Hartree-Fock exchange

EHF
X and Becke (B or B88) exchange EB

X . The remaining two are the LSDA correlation-term

ELSDA
c and the LYP correlation term ELY P

c [40]

2.2.4 Basis Set Selection

To give an exact representation of the molecular orbitals φKS , a complete set of basis functions

{χµ} have to be used[7]. The completeness implies an infinite basis set and plays a decisive role

in the accuracy of the computational results. However, using an infinite set of basis functions is

not computational feasible, thus a finite m basis set must be used {χµ}µ=1,...,n. The corresponding

error is called basis set truncation error, and translates to the difference between the HF limit4 and

the computed lowest energy in HF-SCF calculation[7].

Because the molecular orbitals are unknown, they are approximated5 through the Linear Com-

bination of Atomic Orbitals (LCAO), in which the molecular orbitals are comprised by linear

combination of atomic orbitals χ(r⃗)

φKS(r⃗) ≈
m∑
µ

Cµiχµ(r⃗) (2.29)

where Cµi are the unknown orbital coefficients[7].

The most common basis function in computational chemistry is the Gaussian-type orbitals (GTO).

A GTO, centred on the nucleus of the atom, is described by

gijk(r⃗) = Nxiyjzke−αr2 (2.30)

where N is a normalisation constant, α is a positive exponent and r is the distance between

the electron and the nucleus[7, 40]. i, j, k are all non-negative integers corresponding to all the

permitted quantum numbers n, l and ml. E.g. i = j = k = 0 correspond to s (one possibility,

(0, 0, 0)), i+ j + k = 1 correspond to p-type Gaussian (3 possibilities (1, 0, 0), (0, 1, 0), (0, 0, 1)) and

i+ j + k = 2 correspond to d-type Gaussian (6 possibilities) and so on.
4a theoretical concept that represents a point of convergence (regarding the energy limit) in the Hartree-Fock

framework. It represents the lowest electronic energy that can be obtained within the framework of the Hartree-Fock

method as various computational parameters are systematically improved
5only the case if the basis set is incomplete[40]
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Similar consideration as those for selecting the functional apply for the basis set. Just as for the

functional, there is also a vast number of basis set to chose from. Some additional ideal features for

the divine basis set could include: closeness to the basis set limit: ability to produce results

that approach the basis set limit, fast convergence: capable to achieve basis set convergence

fast, versatile in the sense that it should be applicable for various methods (HF, DFT, Coupled

Cluster) and available for the entire periodic table. Unfortunately, there exist no such heavenly

basis function either. Also, pertaining to point 3, most basis sets that are developed these days are

designed to improve specific features[40].

Among the most popular basis sets is the Dunning correlation consistent basis sets, and are

specifically designed for post-HF methods. Ideally, they tend to systematically increase accuracy

with increasing basis set size[45]. Thir acronyms are cc-pVXZ where cc stands for correlation

consistent, p denotes polarisation functions and V for valence, X ∈ {D = double, T = triple,Q =

quadruple, 5 = quintuple} and stand for the number of shells the valence functions are split into

and Z for zeta. E.g. cc-pVTZ then translates to correlation-consistent polarised valence triply split

zeta. These basis sets are typically used to describe as the name states, polarisation of the electron

density. Essentially this refers to forces describing the geometry and bonding such as covalent

bonds. When searching for ways to describe forces over a longer distance from the nuclei, like

molecular polarisability, diffuse functions are of great importance, and thus incorporated. These

are denoted with the prefix aug for augmented. Ultimately this provides more flexibility.

Since the purpose of basis set is to describe and represent the electrons in a system and are chosen

by the operator a priori, there are of course some errors related to the choice of a finite basis set.

One of these errors are referred to as the basis set superposition error (BSSE) and emerge when

using a finite basis set. It arises when a too small basis set is used, causing atoms and fragments

that are close in space to borrow basis functions from each other, resulting in a spurious attractive

energy contribution, artificially lowering the energy[19, 35].

Another basis set related error is the basis set incompleteness error (BSIE) and arises due to the

limited flexibility of the basis set to accurately to accurately capture the electron density within the

LCAO approximation. For atoms, BSIE is quantified as the difference between the results calculated

at a given basis set and the corresponding result obtained at a complete basis set. However, for a

molecule the corresponding difference contain both BSIE and BSSE, making it difficult to unravel

the exact contribution from each component[40].

2.2.5 Concepts and Applications of the Potential Energy Surface

A potential energy surface (PES) of a polyatomic specie provides a perception of the energy

landscape of the corresponding system. It describes the relationship between the potential energy

and the corresponding geometry. Both minima and first-order saddle points (corresponding to

transition states) are of interest. Conceptually, the PES can be visualised by plotting the energy
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against the spatial coordinates, by providing a set of solutions where the electronic Hamiltonian has

been solved, within the BOA, at various geometries. All while the system is at ground state[26].

Mapping out the entire PES is not only impossible but also impractical, as the most interesting

phenomena typically occurs along a specific path - the reaction coordinate. By considering only a

single reaction coordinate, the PES can be simplified to a one dimensional curve. When studying a

chemical reaction the energy profile changes. Stationary points correspond to locations where the

gradient is zero. These can be minima or maxima corresponding to an equilibrium geometry and a

transition state respectively. The equilibrium geometry represents the most favourable conformation

in terms of bond angles, bond lengths and energy. For increasing displacement from the equilibrium

geometry, the molecular potential energy increases. A transition state is an energy maximum in

one direction, and a minimum all other directions. Moreover, this transition state is associated

with one and only one negative eigenvalue. Subsequently, it gives origin to the single imaginary

frequency, which characterises a first order transition state[7, 40]

As previously mentioned, stationary points on the PES are characterised by a zero gradient, i.e.

zero first-order partial derivatives, ∂E
∂q = 0, where E is the energy and q is a geometric parameter.

However, there is no way telling whether this is a minima, maxima or a saddle point for that sake. In

order to do so, chemists turn to mathematicians for tools. They often utilise multi-variable calculus

to solve optimisation problems[7]. The Hessian matrix H can be used as a tool to distinguish the

stationary points[34].

HE =

∣∣∣∣∣∣∣∣∣∣∣∣

∂2E
∂q21

∂2E
∂q1∂q2

· · · ∂2E
∂q1∂qn

∂2E
∂q2∂q1

∂2E
∂q22

· · · ∂2E
∂q2∂qn

...
...

. . .
...

∂2E
∂qn∂q1

∂2E
∂qn∂q2

· · · ∂2E
∂q2n

∣∣∣∣∣∣∣∣∣∣∣∣
(2.31)

The matrix is comprised of second-order partial derivatives of the energy with respect to the spatial

coordinates6.

The distinction between global and local minima, pertaining to conformation analysis is interesting

as one seeks to find the most stable conformation, where there might be several equally stable

isomers. It can be illustrated with considering the potential energy versus the torsion/dihedral angle

in a butane molecule, i-j-k-l. The global minimum occurs when i and l are in an anti periplanar/trans

arrangement, while a local minimum occurs when the i and l are in syn-clinal/gauche arrangement.

The term anti refers to a dihedral angle exceeding ±90◦, while a dihedral angle < ±90◦ is designated

as syn. Periplanar describes when i and l are roughly in the same plane at a dihedral angle of ±30◦

or ±150◦. When the dihedral angle falls within +30◦ to +150◦ or −30◦ to −150◦, it is termed

clinal [6, 58]. Figure 2.1 illustrates the three most common staggered conformations, where none of

6There is also a related matrix, the Jacobian matrix that is comprised of first-order partial derivatives,

JE =

∣∣∣∣∣∣jx jy

jx jy

∣∣∣∣∣∣
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the atoms/substituents overlap. This way of visualising a molecule is called the Newman projection,

the perspective is looking along the j-k axis, which has fixed coordinates, while i and l vary in a

circular manner.

l

i

(a) gauche ∼ 60°

l

i

(b) trans ∼ 180°

l

i

(c) gauche ∼ −60°

Figure 2.1: Red means that the atoms/substituents are in front, while blue means the atoms/sub-

stituents are in the back. figure (a), (b) and (c) illustrates how the ± gauche and trans conformers

look in a Newman projection

2.3 Solvation Effects with COSMO

In genera, for condensed phase systems, a solvent model ought to be applied. Pertaining to DFT a

continuum solvation model, such as the COnductor-like Screeening MOdel (COSMO) is the most

common method to include solvent effects. The approach does not consider actual solvent molecules

in the calculation[19]. Instead, a molecular-shaped cavity is employed, where the molecule under

study get encapsulated. The cavity may be defined by the van der Waals radii of the atoms in the

corresponding molecule scaled by some empirical factor. Moreover, in continuum models, solvents

are considered as a uniform polarisable medium with a characteristic dielectric constant which is

specific to the solvent[40].

2.4 Transition State Theory

This section entails the theory on how quantum mechanics can be used to derive the rate constant

using TST, and also how it can be related to thermochemical data. However, the nuclei are assumed

to obey classical mechanics. Although, cases do occur when classical mechanics do not apply

such as quantum mechanical tunneling and rare events. However, these aspects are neglected in

TST[29]. Further, one of the most important approximations to note, is that all equations assume

non-interacting particles. Hence, the accuracy is optimal for ideal gas behaviour. This subsequently

introduces some errors, since most systems under study are not under such conditions.

The time perspective a chemical process has been allowed to proceed is decisive for the final product.

A shorter time period may often result in a kinetically stable product, which in that time range is

the most viable product. However, it might not be the most stable product overall. If the reaction

is allowed to run for a longer period of time the thermodynamically stable product may eventually
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be the product.

2.4.1 Principle of Detailed Balance and Equilibrium

First, some important concept in TST ought to be put out. In that context, it is best to begin with

a simple chemical reaction. Take an arbitrary reaction going from state A to state B, and reverse

A+B
kf−−⇀↽−−
kr

C (2.32)

where kf and kr are the forward and reverse rate constants respectively. The rate of formation of

the product C can be described by chemical kinetics using the equation

d[C]

dt
= k[A][B] (2.33)

where k is the observable and measurable rate constant and [A], [B] and [C] are the concentrations.

The principle of detailed balance states: "for an elementary reaction, the overall forward rate and

the overall reverse rate are identical at equilibrium"[27]. Mathematically, it can be expressed as:

kf [A]eq[B]eq = kr[C]eq (2.34)

where [A]eq, [B]eq and [C]eq are the concentrations of the species at equilibrium. To illustrate that

eq. (2.34) is a condition for equilibrium it could be useful to write out the rate expressions for the

reaction presented in eq. (2.32)[27].

d[A]

dt
=
d[B]

dt
= −kf [A][B] + kr[C] (2.35)

d[C]

dt
= kf [A][B]− kr[C] (2.36)

Applying the equilibrium condition in eq. (2.34) and substitute it into the equations (2.35) and

(2.36) gives
d[A]

dt
=
d[B]

dt
= 0 (2.37)

d[C]

dt
= 0 (2.38)

which implies that the rates forward and reverse are equal at equilibrium. Furthermore, the

equilibrium condition in eq. (2.34) can be shown to relate kf and kr to the equilibrium constant

K[27]. This is a very important relation.

K =
[C]eq

[A]eq[B]eq
=
kf
kr

(2.39)

2.4.2 Derivation of the Rate Constant from Transition State Theory

To calculate the rate constant k using transition state theory, the same equation as in eq. (2.32)

will be considered, but with a slightly different expression

A+B
K‡

−−⇀↽−− (AB)‡
k‡

−−→ C (2.40)
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TST assumes a quasi-equilibrium in which the first step is an pre-equilibrium between the reactants

and the activated complex denoted by the double dagger (‡)[6, 9, 27, 29]

K‡ =
[(AB)‡]

[A][B]
(2.41)

The overall reaction rate converting reactants to products, can be expressed with the number (or

concentration) of the respective reactants by rearranging and inserting eq. (2.41) into the rate

expression[27]
d[C]

dt
= k‡[(AB)‡] = k‡K‡[A][B] = k[A][B] (2.42)

Substituting eq. (2.33) and is comprised of [6, 27]

k = k‡K‡ (2.43)

At the transition state, there is no Boltzmann distribution of states, because the activated complex

is not persistent. For that reason, TST turns to statistical mechanics to solve for the rate constant

k‡ and the equilibrium constant K‡[6].

Statistical mechanics tries to connect the behaviour of individual particles to thermodynamic

observables, i.e. measurable quantities. A partition function q gives information on how particles

are partitioned throughout the states and relates the macroscopic thermodynamic properties and

microscopic models. It is a sum of Boltzmann factors e−βEj , where β = 1
kBT and kB is the

Boltzmann constant[27].

As already mentioned, K‡ is an equilibrium constant and can be constructed using molecular partition

functions [27]. These account for contributions from translation qt, rotational qr, vibrational qν and

electronic qe degrees of freedom[40].

The translational partition function can be expressed as

qt =

(
2πmkBT

h2

) 3
2

V (2.44)

where m is the mass (in kg) of the molecule, h is Planck’s constant and V is the volume[27]. Using

the volume is quite tricky in this case, since it is not known. However, because ideal gas is assumed,

pV = nRT =
(

N
NA

)
NAkBT , and V = NkBT

p , where N is the number of gas molecules[50]. Hence,

the implemented translational partition function becomes

qt =

(
2πmkBT

h2

) 3
2 NkBT

p
(2.45)

It should be mentioned that in some cases the, the software is accustomed to use molar scale. If that

is the case, V is the volume of 1 mol of ideal gas[40]. The rotational partition function depends on

the geometry of the molecule. For linear molecules with a single moment of inertia I, the partition

function is defined as

qr =
T

σθr
=

8π2IkBT

h2
(2.46)
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For the general case of non-linear polyatomic molecules, the rotational partition function includes

the three principal moment of inertial IA, IB and IC ,

qr =
(πIAIBIC)

1
2

σ

(
8π2kBT

h2

) 3
2

(2.47)

where σ is the symmetry factor, θr is the rotational temperature θr = h2

8π2IkB
, where high temperature

is assumed (T ≫ θr) and I is the moment of inertia[27, 29, 49, 50]. The symmetry factor or

symmetry number is the number of orientations that render indistinguishable molecules[8].

The moments of inertia can moreover be related to rotation constants as they are reciprocally

connected. When rotational constants are in in frequency units the relation is

IA =
h

8π2A
, IB =

h

8π2B
, IC =

h

8π2C
(2.48)

where A, B and C are rotation constants[29, 36, 49, 50]. Subsequently the rotational partition

function can be expressed in terms of rotational constants

qr, linear =
T

σθr
=
kBT

σhB
(2.49)

qr =

(
kBT

h

) 3
2 π

1
2

σ (ABC)
1
2

=

(
kBT

h

) 3
2 1

σ

√
π

ABC
(2.50)

The vibrational partition function only consider real vibrational modes[22, 41]. Meaning modes

with imaginary frequencies, corresponding to transition states are ignored. For that reason, the

partition function for a transition state, generally has one less vibration to consider[40]. The overall

vibrational partition function is expressed as

qv =

K∏
i=1

1

1− e
−hνi
kBT

(2.51)

where νi is vibration i, and K is the number of vibrational modes. For linear molecules K = 3N −5,

but for non-linear molecules K = 3N − 6 and N is the number of atoms in the molecule. Each of

the K modes, has their characteristic vibrational temperature[27, 29]

θvi =
hνi
kB

(2.52)

The equilibrium constant K‡ can be expressed in terms of the molecular partition functions.

K‡ =

(
q(AB)‡

qAqB

)
e

−∆E‡
kBT (2.53)

where q(AB)‡ is the partition function for the transition state and qA and qB are the partition

functions for the reactant A and B respectively. ∆E‡ denotes the activation energy, whereby ∆E‡

can be expressed as the transition state energy subtracted by the energy of the reactants[27]. At

the transition state the activated complex exhibit high energy due to its unfavourable geometry,

rendering it unstable. Whether the reaction progresses in reverse, breaking the bond, or forward,

towards bond formation, the energy is either way lowered. This is the outcome because the strained

geometry at the transition state gets alleviated, resulting in a more stable geometry. Presuming
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these behave like any other equilibrium systems, the partition function for the transition state can

be factorised[27]

q(AB)‡ = q‡qξ (2.54)

where q‡ denotes the partition function for the transition state with the ordinary qt, qr and qν , while

qξ is the partition function for the single non-equilibrium vibrational degree of freedom pertaining

to bond forming event. Since the reacting bond along ξ is only partially formed, its corresponding

vibrational frequency νξ is small[27].

νξ =
1

2π

(
kξ
µ

) 1
2

(2.55)

where kξ is the spring constant and µAB = mAmB

mA+mB
is the reduced mass, a measure of the effective

inertial mass. It allows a two-body system to be represented as a one-body system[27, 40].

Because the frequency νξ and the spring constant kξ of the reacting bond is small, the partition

function for vibration can be simplified, since e−x ≈ 1− x for small x[27].

qξ =
1

1− e
−hνξ
kBT

≈ 1

1− (1− hνξ

kBT )
=

1
hνξ

kBT

=
kBT

hνξ
(2.56)

Immediately after the system reaches transition state, TST expect the system to continue towards

the product state at frequency νξ. The rate constant for this declining step is

k‡ = νξ (2.57)

However, not every oscillation with a corresponding ν will lead to the activated complex proceeding

to product state. To account for deviation from theory, a transmission coefficient κ may be included,

which in most cases is close to unity. Consequently, the rate constant pertaining to the downhill

step becomes k‡ = κνξ[27]. Nevertheless, there are special cases where κ is larger than unity, such

as in quantum mechanical tunneling, as briefly touched upon in the introduction to the theory.

These scenarios occur when the reaction traverses through PES-barriers, causing κ to deviate from

unity[27, 29].
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2.4.3 The Eyring Equation and Connections to Arrhenius Equiation

The rate constant k can finally be obtained by substituting eq. (2.53), (2.54), (2.56) and (2.57)

into eq. (2.43). This is known as the Eyring equation

k = k‡K‡

= k‡
(
q(AB)‡

qAqB

)
e

−∆E‡
kBT

= k‡

(
q‡qξ
qAqB

)
e

−∆E‡
kBT

= k‡

q‡
(

kBT
hνξ

)
qAqB

 e
−∆E‡
kBT

=

(
kBT

hνξ

)
νξ

(
q‡

qAqB

)
e

−∆E‡
kBT

=

(
kBT

h

)(
q‡

qAqB

)
e

−∆E‡
kBT

=

(
kBT

h

)
K‡

(2.58)

where K‡ represents the equilibrium constant for the stable degrees of freedom, since the unstable

degrees of freedom (ξ) has been factored into kBT
h [27]. This enables another famous expression

where the equilibrium constant relates to activation parameters.

−kBT lnK‡ = ∆G‡ = ∆H‡ − T∆S‡ (2.59)

where ∆G‡ is the activation free energy, ∆H‡ is the activation enthalpy and ∆S‡ is the activation

entropy. Consequently, the rate constant can be expressed in terms of thermodynamic properties

k =

(
kBT

h

)
e

−∆G‡
kBT =

(
kBT

h

)
e

−∆H‡
kBT e

−∆S‡
kB (2.60)

Opinions seems to be divided whether a direct relation can be drawn between the Eyring equation

and the Arrheius equation (2.61)

k = Ae
−Ea
RT (2.61)

where A is a pre-exponential factor and Ea denotes the activation energy. According to collision

theory, these parameters translate to the rate constant, given that all collisions result in reaction, and

the lowest energy required for a collision to result in a reaction respectively[9]. Some claim the ∆H‡

term relates to the activation energy Ea seen in Arrhenius equitation (2.61) and (kBTh) exp∆S
‡kB

is the pre-exponential factor A[27]. Others disagree and argue that this connection is incorrect,

because Arrhenius equation originates from empirical observations and the corresponding rate

constant is the macroscopic rate constant. On the other hand, the rate constant in the Eyring

equation accounts for mechanistic considerations and yields a microscopic rate constant. However,

they do agree that some connections hold, particularly for single-step unimolecular or bimolecular

reactions[6].
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2.5 Kinetic Monte Carlo Simulations

The theoretical review has up until this point discussed reaction barriers at a microscopic level, where

events (e.g. adsorption/desorption, bond forming/breaking, diffusion) in general are governed by

electronic structure. When zooming out just a little, dynamics and thermodynamics comes into play

at a mesoscopic scale. The focus was tuned into chemical reactions and deriving their corresponding

rate constants with statistical mechanics. Lastly, at the macroscopic scale, where industrial reactors

operates, phenomena such as transport as well as mass- and temperature-gradients in a reactor

geometry needs to be taken into account[5].

kMC serves as a mesoscopic/macroscopic tool for simulating chemical kinetics within the field of

chemistry. The advantage of using kMC is to study the time evolution of coupled processes using a

stochastic approach, which arguably has a firmer physical basis from a kinetic theoretic point of

view. The total number of molecules is considered to be large and the system has a temperature.

Chemical reactions can be assessed by solving partial differential equations (PDE) in terms of

concentrations, but it may lead to exponential decay. kMC offers an advantage by expressing the

quantity of chemical species in terms of discrete integer numbers. Also, kMC handles oscillations

and fluctuating behaviours in concentrations over time, as opposed to PDE[31]

The problem to be solved can (for consistency) be described by considering the same bi-molecular

reaction discussed in TST, eq. (2.32). The rate equation is expressed a bit differently

r =
dNC

dt
= −dNA

dt
= −dNB

dt
= kfNANB − kbNB (2.62)

where NA, NB and NC denotes number instead of concentrations[39]. There are several algorithm

that can be used, each with its own characteristics and advantages, but the main traits of them can

more or less be summarised as follows[5]:

1. Make a directory of all possible paths and their corresponding rate constants, kp, and set

some initial conditions

2. Compute ktot =
∑

p kp

3. Generate two random numbers n1, n2 ∈ (0, 1]

4. Determine the reaction paths q, that satisfies the condition
∑q

p=1 kp ≥ n1ktot ≥
∑q−1

p=1 kp

5. Execute the randomly chosen process q

6. Update the simulation time: t+∆t, where ∆t = − ln (n2)
ktot

kMC continues until stop condition is fulfilled. The motivation in having randomness in the

algorithm, lies is why this is an stochastic approach and can be elaborated by considering the same

analogy as (Andersen et al., 2019)[5]. Imagine a stack of segments, where each segment represents

a process. The thickness of the segments are proportional to the rate constants. When drawing

a random number n1 ∈ (0, 1] and multiplying it by ktot, a new number is obtained q. This new
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number is then compared to a condition and if it is fulfilled, it can be executed. Processes with a

larger rate constant will consequently be chosen more often[5, 39].



21

3 Computational details

This chapter entails information about the computational method used to obtain the results. It

begins with a brief introduction outlining the software utilised, followed by the object behind the

chosen methods. Details on how the code functions will also be given in detail.

3.1 Overview

The choice of which program to work with will in many cases be predetermined by the work

environment. While prioritising familiarity with a particular software may be the natural choice, the

value of exploring alternative options should not be underestimated as this might lead to discovering

better suited tools for a specific task.

In this work, initial molecular geometries were generated using the molecular editor and visualiser

Avogadro[33] version 1.2.0. All programming tasks were carried out within the Python ecosystem

using the version 3.11.4. This was motivated by the growing popularity of Python in the field of

chemistry, as well as other scientific disciplines, owing to its versatility, simplicity and abundant

ecosystem of libraries and tools[62].

DFT-calculations were carried out using the Python Simulations of Chemistry Framework [72]

(PySCF ) version 2.3.0. PySCF offers a Python environment and is free and open-source[56]. One of

the greatest advantages is that there is no need to learn a new input language from scratch, unlike

almost every other software out there. Also, the PySCF packages is structured as any other python

module, making it easy to integrate with other modules and customise into personalised scripts.

The primary object behind every code line was to develop a script capable of executing as many of

the necessary tasks to obtain parameters for later use in determining the rate coefficient. The aim

was to create scripts that are as versatile as possible. Additionally, efforts were made to automate

the code for maximum efficiency. Next, the rate coefficients were derived from transition state

theory and with the results from the DFT-calculations, they could be calculated. Finally, the

rate coefficient were utilised in a kinetic Monte Carlo code, from which the reaction rates could

be obtained. The code used in this work is the same that was used in the work by Hestad et al.,

2016[37], where thermal decomposition of cyclohexane was investigated.
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The calculations were primarily performed on a MacBook Pro equipped with a 1.4 GHz Quad-Core

Intel Core i5 processor and 8 GB memory. This applies to the conformational analysis and kMC

simulations. While the remaining calculations were carried on a MacBook Pro featuring the M2

chip, 16 GB memory and 10 Cores. Additionally, GitHub was utilised to enhance file management

throughout this thesis.

3.2 DFT Calculations in PySCF

The unrestricted Kohn-Sham (UKS) approach was utilised in all calculations. The notation of the

MEA conformations has been adapted from previous work, originally by Radom et al., 1973[59] and

later carried on by Räsänen et al., 1983[60], Kelterer et al., 1994[42], Buemi et al., 1996[18], Silva et

al., 1999[65], Vorobyov et al., 2002[78], da Silva et al., 2006[66] and Wang et al., 2009[80]. A general

example of how a conformer is denoted is xYz, where x refers to the C–C–N– lp dihedral angle

and lp denotes the lone pair on the nitrogen. The middle dihedral angle O–C–C–N is denoted by

an upper-case letter, and z is the C–C–O–H dihedral angle. The one-letter abbreviations are: g

or G for positive gauche (or syn-clinal), g’ of G’ for negative gauche (or syn-clinal) and t or T for

trans (or anti-periplanar).

Initially, all conformers were calculated at a lower level of theory (B3LYP/cc-pVDZ) in gas phase

to obtain a reference geometry. Later the were re-optimised using the continuum solvent model

ddCOSMO, which is implemented inPySCF. Subsequently, they were re-optimised again, but at a

higher level of theory (B3LYP/aug-cc-pVDZ) first in gas phase and then with a solvent. All minima

were confirmed by the absence of imaginary frequencies, while all transition states were confirmed

by the presence of one, and only one imaginary frequency, which corresponds to a saddle point on

the PES. Vibration frequencies, rotation constants and symmetry numbers were calculated for the

optimised structures using the pyscf.hessian module. The geomeTRIC -interface[81] in PySCF

was employed to conduct the energy minimisation calculations. For the transition state searches,

the qsdopt [71] module was utilised, with the method for the numerical hessian calculation set

tonumhess_method = 'central' (default is ’forward’). The results from running the script were

written into various output files namely a result.out-file which contains all parameters required for

later calculations, a new.xyz -file containing the optimised coordinated and a error.log-file containing

the redirected terminal log.

3.3 Automatising Concurrent Calculations

All reference geometries was initiated manually, by executing the command:

nohup script.py >& error.log & in the terminal. A major drawback is that this approach

necessitates continuous presence and interrupts a stable workflow, as the operator must monitor the

each calculation from initiation to completion, before initiating the the next one to ensure the use

of the computers maximum capacity. Automatising the code alleviates this constraint by allowing



3.3. Automatising Concurrent Calculations 23

the individual to work concurrently on other tasks while the calculations proceed iteratively. The

entire scripts for geometry minimisation and transition state search can be found in the appendix

B.1 and B.2.

3.3.1 Function to Find xyz-files

Calling the function find_and_read_files in listing 3.1 will locate and store information about

the file name, file content (xyz-coordinates) and the file path of each molecule with the specified

file extension file_extension_to_find within the specified directory directory_to_search.

1 def find_and_read_files(directory , file_extension):

2 name_list = []

3 atoms_init_list = []

4 file_path_list = []

5

6 for root , dirs , files in os.walk(directory):

7 for file in files:

8 if file.endswith(file_extension):

9 file_path = os.path.join(root , file)

10 file_path_list.append(file_path)

11 with open(file_path , 'r') as f:

12 atoms_init = f.read()[2:]

13

14 atoms_init_list.append(atoms_init)

15 filename = os.path.basename(file)

16 modified_name = filename.replace(file_extension , '')

17 name_list.append(modified_name)

18

19 return file_path_list , atoms_init_list , name_list

Listing 3.1: Function to find, read and store file information and file paths

The function uses os.walk to traverse the entire directory_to_search. It iterates over all files,

searching for the file_extension. If the file matches the file_extension, the code first stores

the file_path and appends it to the file_path_list. Secondly, it opens the file and retrieves the

file content starting from line 3, because the two former lines contain information about the number

of atoms in the system and an empty line before the specific atoms with xyz-coordinates appear.

The coordinates are stores in the atoms_init variable and appended it to the atoms_init_list.

Third, the function then modifies the file name by isolating the basename and removing the

file_extension which is common for all files. The modified_name is appended to the name_list.

Finally, the function returns the three lists: name_list, atoms_init_list and file_path_list.

3.3.2 Function to Write and Read a xyz-file

To visualise the optimised geometry, a xyz-file is generated after the geometry optimisation.

1 def write_xyz(mol_opt , out_xyz):
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2 with open(out_xyz , 'w+') as f:

3 f.write(f'{mol_opt.natm}\n\n')

4 for i in range(mol_opt.natm):

5 b2a = mol_opt.atom_coord(i, unit = 'ANG')

6 symbol = mol_opt.atom_symbol(i)

7 f.write(f'{symbol} \t {b2a [0]} \t {b2a [1]} \t {b2a [2]}\n')

8 f.seek (3) # Move the pointer to the beginning

9 opt_coords = f.read()

10 return opt_coords

Listing 3.2: Function write and read file content

The write_xyz function takes the arguments mol_opt and out_xyz, which is the mol-object of

the optimised system and the file name to be generated, respectively. It opens the file in write

mode, denoted ’w+’. The plus sign indicates that the file is opened for both writing and reading

purposes. The function then writes the number of atoms in the system, followed by two new

lines. Furthermore, it iterates over all atoms and writes the atom symbol with the corresponding

coordinates on the same line, followed by a line break. This is the standard format for xyz-files.

The variable b2a ensures that the coordinates are written in angstrom instead of bohrs, which

is the default value. After the xyz-file has been written, the pointer is located at the bottom of

the fill. f.seek(2) moves it to line 3 where the information about the atoms and the coordinates

begin. Finally f.read() stores all information in the opt_coords variable, which will be used in

the result file for comparison purposes.

3.3.3 Function for Geometry Optimisation

The function in listing 3.3 is responsible for conducting the following tasks: Geometry optimisation:

it optimises the geometry to obtain the optimised energy and coordinates. Frequency analysis: It

obtains the vibration frequencies. Thermochemistry analysis: It calculates the necessary parameters

such as rotation constants and symmetry number, which will be utilised later to derive the rate

constants.

1 def geometry_opt(basis , charge , diel , functional , pressure , temperature , verbose ,

↪→atoms_init , result_out , out_xyz , error_log):

2 # Open the error log file to redirect the output

3 with open(error_log , 'w') as error_file:

4 # Redirect stdout and stderr to the error log file

5 sys.stdout = sys.stderr = error_file

6

7 mol = gto.M(atom = atoms_init , basis = basis , charge = charge , verbose =

↪→verbose)

8 mf = mol.UKS(xc = functional).ddCOSMO ()

9 mf.with_solvent.eps = diel

10 mf.run()

11 mol_opt = optimize(mf)

12
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13 mf_opt = mol_opt.UKS(xc=functional).ddCOSMO ()

14 mf_opt.with_solvent.eps = diel

15 mf_opt.run()

16 opt_energy = mf_opt.e_tot

17 energies = mf_opt.scf_summary

18

19 hess = mf_opt.Hessian ().kernel ()

20 freq_info = thermo.harmonic_analysis(mol_opt , hess)

21 thermo_info = thermo.thermo(mf_opt , freq_info['freq_au '], temperature ,

↪→pressure)

22 # thermo_info = thermo_info [0] # Neccessary for PySCF 2.4.0

23 vibration_frequencies = np.array(freq_info['freq_wavenumber '])

24 rotation_constants = thermo_info['rot_const '][0]

25 symmetry_number = thermo_info['sym_number '][0]

26

27 # Restore stdout and stderr to their original state

28 sys.stdout = sys.__stdout__

29 sys.stderr = sys.__stderr__

30

31 opt_coords = write_xyz(mol_opt , out_xyz)

32 write_result(result_out , atoms_init , opt_energy , energies , opt_coords ,

↪→freq_info , thermo_info , vibration_frequencies , rotation_constants ,

↪→symmetry_number)

33

34 return opt_energy , energies , opt_coords , freq_info , thermo_info ,

↪→vibration_frequencies , rotation_constants , symmetry_number

Listing 3.3: Function to do geometry optimisation, vibration analysis

The geometry_opt function is consequently responsible for the most expensive calculations. Further

more, to avoid the error log of all molecules ending up in one single log file the script redirects

standard output and standard error to a separate error log file for the corresponding calculation. It

is to ensure that any error message generated, ends up in the file corresponding to the associated

calculation. This is achieved by setting sys.stdout and sys.stderr equal to the corresponding

error_file. Since the optimisation method is called in the line mol_opt = optimize(mf), the

error log might as well be opened in the very beginning and the subsequent code related to the

calculation should then be placed within this code block.

Since the stdout and stderr were redirected from the terminal to an error log file, sys.stdout

= sys.__stdout__ and sys.stderr = sys.__stderr__ are implemented to restore the standard

error and the standard output to its original state as the comment states. Essentially, this means

that any subsequent output or error will be written to the terminal (unless >& is used of course).

Excluding these lines may cause an error, but regardless, the calculation will still proceed nonetheless,

and result files will be generated.
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3.3.4 Configuration and Concurrent Processing

The last section contains the initial set up configuration, but most importantly, the script uses the

ProcessPoolExecutor from the concurrent.futures module to achieve concurrent processing of

multiple molecules.

1 directory_to_search = f'/Users/kristine/pyscf/mea/minima/gasphase/augccpvdz '

2 file_extension_to_find = f'_minimum_b3lyp_augccpvdz.xyz'

3 result_path = f'/Users/kristine/pyscf/mea/water/minima '

4

5 name_list , atoms_init_list , file_path_list = find_and_read_files(

↪→directory_to_search , file_extension_to_find)

6

7 # Use ProcessPoolExecutor to run tasks concurrently

8 with ProcessPoolExecutor(max_workers = workers) as executor:

9 tasks = []

10 for name , atoms_init , file_path in zip(name_list , atoms_init_list ,

↪→file_path_list):

11 mol_dir = os.path.join(result_path , basis , name)

12 if not os.path.exists(mol_dir):

13 os.makedirs(mol_dir)

14

15 out_xyz = f'{mol_dir }/{ name}_{solvent}_{state}_{functional}_{basis

↪→}.xyz'

16 result_out = f'{mol_dir }/{ name}_{solvent}_{state}_{functional}_{

↪→basis }.out'

17 error_log = f'{mol_dir }/{ name}_{solvent}_error.log'

18

19 # Start a new task for each molecule

20 task = executor.submit(geometry_opt , basis , charge , diel ,

↪→functional , pressure , temperature , verbose , atoms_init ,

↪→result_out , out_xyz , error_log)

21 tasks.append(task)

22

23 else:

24 print(f'The {mol_dir} directory already exists ')

25

26 for task in tasks:

27 task.result ()

Listing 3.4: Parameter setting and function calling

The block if __name__ == '__main__': sets up several parameters of the calculation, including

the name of directory to search through and the file extension to look for. These last two parameters

help narrow down the search area and specify the desired files. It is also important to note that

these parameters can be modified to target other directories or file types based on what type of

calculation is desired and under which conditions.

The for loop iterates through the lists names, atoms_init_list, and file_paths simultaneously
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using zip() to group corresponding elements together. This is crucial to ensure that the files are

processed correctly.

Inside the loop, filenames for output files (out_xyz, result_out and error_log) are generated

based on the specified parameters and name variable. Before running the geometry_opt function,

the code checks if the result_path file already exists. If it does exist, the calculation is skipped

for that particular file, and a message will be printed to the error log file to indicate the skip.

The ProcessPoolExecutor class contains the argument max_workers, specifying the maximum

number of processes the pool can contain. Here the number of maximum tasks is determined

by the parameter workers. The function geometry_opt is the function that will be executed

asynchronously and gets submitted under the task variable to the process pool executor. task_list

is a list containing all the geometry_opt tasks submitted to process pool executor. Each iteration

of the loop involves processing a different molecule with its unique set of name, file containing input

coordinates and the corresponding file path. The tasks runs concurrently and enhance the efficiency

through parallelisation of the tasks.

3.4 Connecting Two Minima to a Maximum

In order to gain an overview of how to connect all conformations of MEA, the use of a common

measurement comes in handy. A natural choice has been to considered the change in dihedral

angles, as that is a common measurement that changes going from one conformation to another.

Since PySCF does not calculate it, it has in this work been derived. The derivation can be found in

appendix A.3 and the code can be found in appendix B.3.

The optimised geometries obtained from the DFT-calculations has been extracted from the generated

xyz-files. This involved pasting entire xyz-files as multi strings in a Jupyter Notebook (JN)

environment. Within the JN-environment, the code from the appendix could be employed to

calculate the dihedral angles for all conformations of MEA. Furthermore, the python package

py3Dmol version 2.0.4 has been utilised to visualise the conformers while calculating the dihedral

angles. This step was essential due to the disordering of atoms observed when the input xyz-files

were generated individually in Avogadro. As a second verification the dihedral angles (except those

involving lone pairs), they were checked in Avogadro using the Click to Measure tool.

3.5 Calculating the Rate Constants from TST

The rate constants were calculated based on the theoretical framework provided in the theory

section 2.4, which described the transition state theory approach for determining rate constants.

The code that has been used for these calculation can be found in the appendix B.6. Furthermore,

the functions used to calculate the rotational and translational partition functions, along with the

vibrational temperature, were based on PySCF’s thermo function. Some modifications were made
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due to discrepancies in the units between the theoretical framework and PySCF’s default values.

Finally, the rate constant could be implemented in the kMC-code to run simulations.
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4 Results and Discussion

This chapter will first present results obtained from the conformers at minima. These results will

also be seen in light of the gauche-gauche-interactions, which for this situation results in favourable

hydrogen bonding. Next the results pertaining to the transition state will be presented. Issues

related to calculations will be discussed and attempts to rationalise them. Additionally, some

reasoning concerning the choices made will be addressed. Following this, some more technical

aspects of this work will be explained. Finally, the results from the calculations of the rate and rate

constant will be presented. A few calculations concerning secondary degradation paths will also be

given at the end, and these will be based on results from the former calculations.

4.1 MEA Conformational Exploration in PySCF

25 conformations of MEA conformers has been calculated at both minima and transition state (TS),

connecting two minima to obtain the interconversion barrier of the conformers. Relative energy

minima and dihedral angles for all conformers determined in this work can be found in Table 4.1.

From these results, 1g’Gg’/15gG’g was found to have the lowest absolute energy, consequently all

other conformers are reported relative to it. The conformers with the lowest energies, all exhibit

intramolecular hydrogen bonding: 1g’Gg’, 2gGg’1, 3gGt, 4tGt, 5tGg, 6gGg. The first two are

stabilised by NH · · ·O hydrogen bonds (HB), while the remaining four are stabilised by OH · · ·N

HB. Overall, conformers where the central dihedral O–C–C–N is in the gauche form tend to

exhibit lower energies compared to trans from. This is in consonance with previous theoretical

studies[18, 24, 65, 78, 80]. Ideally, equivalent isomers should exhibit the same energy. However, they

do not. This can be explained by slight differences in their xyz-inputs. These small discrepancies

might have propagated through the optimisation processes and are reflected in variations of energy,

bond length and angles. This applies throughout the discussion of conformers.

The minima of the conformers 14g’Gg/27gG’g’ could not be determined in gas phase. However

they converged into structures with expected dihedral angles of the conformers. Unfortunately, the

minima could not be confirmed by the absence of imaginary frequencies.

1Not determined in this work
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Table 4.1: Conformers (including their isomers) with dihedral angles and

relative electronic energya of the minima, calculated at B3LYP/aug-cc-pVDZ

level of theory including effects using COSMO

Conformer C–C–N–lpb O–C–C–Nb C–C–O–Hb Energyc

1g’Gg’ −42.4 53.4 −38.3 0.00

15gG’g 42.8 −54.0 38.7 0.00

2gGg’
d

16g’G’g

3gGt 57.5 65.4 −174.6 1.36

17g’G’t −57.3 −65.0 174.9 1.36

4tGt −177.0 63.5 −175.0 1.30

18tG’t 175.9 −63.4 173.9 1.29

5tGg −175.6 60.4 67.3 1.25

19tG’g’ 175.6 −60.5 −67.2 1.19

6gGg 59.3 62.7 67.6 1.25

20g’G’g’ −59.3 −62.3 −67.6 1.24

7tGg’ 174.4 63.3 −71.5 1.38

21tG’g −174.8 −62.7 71.9 1.40

8tTg 179.2 179.1 66.2 1.67

22tTg’ 179.6 −179.0 −66.3 1.67

9tTt −180.0 −179.8 179.5 1.80

10gTt 49.5 178.1 178.6 2.11

23g’Tt −49.7 −178.4 −179.3 2.11

11gTg 49.8 177.7 67.3 2.04

24g’Tg’ −49.7 −177.9 −66.1 2.02

12g’Tg −50.0 179.2 65.3 2.00

25gTg’ 49.4 −179.6 −66.0 1.99

13g’Gt −51.8 68.7 −179.3 2.36

26gG’t 52.5 −67.9 178.0 2.32

14g’Gg −53.8 64.4 63.3 2.20e

27gG’g’ 53.4 −64.3 −63.4 2.17e

a Sum of electronic and zero-point energies at the B3LYP/aug-cc-pVDZ

level
b Ångstrom
c kcal mol−1

d No local minimum found
e Local minimum not confirmed
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The length of the HB are presented in Table 4.2. From these results, the shorter HB tend to

correlate with increased stabilising effect, giving insight into why the 1g’Gg’/15gG’g conformers

exhibits the lowest energy. Additionally, a natural bond orbital (NBO) analysis conducted by Wang

et al., 20009[80] suggested that this lowering is attributed by delocalisation interaction, which

results in lowering the energy levels of the occupied orbital. Results from other studies[65, 78, 80]

are also presented in Table 4.2. All of them in gas phase. Among these studies, the one by Wang et

al., 2009[80] is the one that resembles this work the most, using similar level of theory.

The five conformer (including their isomers) exhibiting HB are shown in Figure 4.1. The conformer

are displayed with atom label and number according to their ordering in the xyz-file. The very

mellow yellow dashed lines represent the hydrogen bonds ranging from the oxygen/nitrogen atom

to either of the hydrogen atoms.

Table 4.2: Intramolecular hydrogen bond (HB) lengtha of con-

formers (including their isomers) and relative electronic energy

(same as in table 4.1).

Conformer HBa HBc HBd HBe Energyb

1g’Gg’
OH · · ·N

2.210 2.293 2.289 2.32 0.00

15gG’g 2.218 0.00

2gGg’
OH · · ·N

2.580 2.587 2.55
c

16g’G’g

3gGt
NH · · ·O

2.589 2.533 2.538 2.49 1.36

17g’G’t 2.589 1.36

4tGt
NH · · ·O

2.621 2.600 2.599 2.55 1.30

18tG’t 2.607 1.29

5tGg
NH · · ·O

2.673 2.636 2.641 2.58 1.25

19tG’g’ 2.671 1.19

6gGg
NH · · ·O

2.637 2.568 2.575 2.53 1.25

20g’G’g’ 2.632 1.24

a Å, this work
b kcal mol−1, this work
c No local minimum found
d Å, B3LYP/6-311G(2d,2p) level from Vorobyov et al., 2002[78]
e Å, B3LYP/aug-cc-pVDZ level from Wang et al., 2009[80]
f Å, HF/6-31G∗ level from Silva et al., 1999[65]



32 Chapter 4. Results and Discussion

(a) 1g’Gg’ (b) 15gG’g

(c) 3gGt (d) 17g’G’t

(e) 4tGt’ (f) 18tG’t
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(g) 5tGt (h) 19tG’g’

(i) 6gGg (j) 20g’G’g’

Figure 4.1: The conformers with hydrogen bonds

Interconversion barriers, relative its corresponding minimum are presented in Table 4.3. The

TS energies typically span between 0.66-5.15 kcal mol−1, but for interconversion between two

states where both exhibit intramolecular hydrogen bonds, the barrier are even lower. This special

situation occurs between 17g’G’t and 16g’G’g and also between 4tGt and 5tGg. The values for both

2gGg’/16g’G’g and 14g’Gg/27gG’g’ are missing because their minima could not be determined or

confirmed. The angles at the TS are eclipsed, meaning the angels tend to take a value between the

two staggered conformations, as expected.
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Table 4.3: Conformers (including their isomers) with dihedral angles and

interconversion barriera, calculated at B3LYP/aug-cc-pVDZ level of theory

including effects using COSMO

Conformer C–C–N–lpb O–C–C–Nb C–C–O–Hb Energyc

1g’Gg’ −54.1 121.0 −64.5 5.15

15gG’g 51.9 −110.8 63.0 4.77

2gGg’
d

16g’G’g

3gGt 54.1 121.6 178.6 3.71

17g’G’t −58.1 −65.4 120.4 0.66

4tGt 177.0 59.1 124.7 0.96

18tG’t 178.9 −121.1 −178.7 3.64

5tGg −177.3 119.6 67.0 3.81

19tG’g’ 177.7 −119.0 −67.8 3.88

6gGg 53.7 119.9 68.2 3.84

20g’G’g’ −55.3 −105.8 −69.7 3.34

7tGg’ −172.2 −0.5 −68.4 5.12

21tG’g 173.5 −0.2 70.1 5.09

8tTg −177.7 118.5 68.7 3.41

22tTg’ −177.4 121.6 −64.7 3.34

9tTt 178.2 −121.1 −178.4 3.16

10gTt 49.5 178.1 178.6 3.05

23g’Tt −53.1 120.8 179.2 3.06

11gTg 53.8 120.3 67.8 3.06

24g’Tg’ −53.7 −179.6 −66.0 3.12

12g’Tg −55.6 118.9 68.7 3.40

25gTg’ 54.5 −118.3 −69.4 3.41

13g’Gt −53.5 116.3 178.6 2.76

26gG’t 109.7 −60.3 178.6 1.76

14g’Gg
d

27gG’g’

a TS energy with respect to the corresponding minima at the B3LYP/aug-

cc-pVDZ level
b Degrees
c kcal mol−1

d No local maximum found
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To provide an overview of the presented information, Figure 4.2, illustrates how the states connect.

The blue-coloured states signifies minima, while the red represent TSs. Additionally, states with

intramolecular hydrogen bonding, are highlighted with a blue background. Arrows with arrowhead

indicate that a calculation has been carried out where that state has been the input and resulted in

the state the arrowhead points to. The lines without arrowheads represent how a state is implicitly

accessed. By noting what dihedral angle is changed, the next minimum can be predicted. Lastly,

the dashed line with an arrowhead signifies that the connection was drawn based on a different

approach than the others. Unlike the latter, the arrowhead points away from a TS, representing

that a energy minimisation has been carried out to draw the connection.

Unfortunately, some of the states were missing due to the consequential failure to determine the

conformers at their respective minima and then conduct a TS search on those structures. What

is particularly problematic is that these three states are not accessible. One of them exhibits

intramolecular hydrogen bonding, which has been shown in another study by Silva et at., 1999[65]

to be substantially populated, constituting 6.9 % of the entire population. That being the third

most stable conformer in that work. In another study by Wang et al., 2009[80] that same conformer

were found to amount for 9.52 % of the population at 296 K.

Figure 4.2: Map of the conformer interconversions
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4.1.1 Conformer Stability

As previously stated, the equilibrium geometries of the conformers 2gGg’ and its isomer 16g’G’g

could not be determined either in gas phase or aqueous solution. When these were tried to be

determined, the optimisation process converged to the 1g’Gg’ and 15gG’g respectively. Despite

several attempts to perturb the geometry slightly, the optimisation process consistently converged

to the 1g’Gg’ and 15gG’g conformers. This suggests that they are not stable in either the gas phase

or solvent.

Furthermore, the 14g’Gg/27gG’g’ conformers were not possible to determine in gas phase as the

geometry optimisation of them resulted in the conformers 1g’Gg’/15gG’g. However, in aqueous

solution they were identified. This suggests that they are more stable in a solvent than in gas phase.

In a molecular dynamics study, by da Silva et al., 2007[66], MEA was studied both as a pure liquid

and aqueous solution at 298 K and 333 K. Although the 14g’Gg conformer was identified, with a

relative energy of 4.83 kcal mol−1 at B3LYP/6-311++G(2d,2p)-level it is worth noting that this

did not correspond to a local minimum as it was obtained from a restrained geometry optimisation.

More interestingly, a theoretical study of MEA carried out by Wang et al., 2009[80] manged to

identify the 2gGg’ conformer using the same functional and basis set as in this work, with a relative

energy of 1.59 kcal mol−1. Other studies have supported this findings using different theoretical

approaches. Buemi, 1996[18] identified the conformer at the MP2/6-31G∗∗ level, with a relative

energy 2.05 kcal mol−1. Additionally, Silva et al., 1998 identified it at the HF/6-31G∗ level with

a relative energy 1.57 kcal mol−1. Vorobyov et al., 2002[78] carried out a computational study

exploring various equilibrium structures of the MEA conformations at the B3LYP/6-311++G(2d,2p)

level in gas phase. The 2g’Gg conformer was identified in this study, with a relative energy of 1.31

kcal mol−1 at 298 K in gas phase.

The study by Wang et al., 2009[80] moreover suggested that increasing the temperature might

reveal less stable conformations in the temperature dependent PES of MEA. However, no specific

temperature increase was recommended. Attempts to increase the temperature to 393.15 K (desorber

condition), both in gas phase and aqueous solution, resulted in the conformer 2gGg’ reverting to

1g’Gg’, indicating its independence from temperature.

Kelterer et al., 1993[42] conducted an ab-initio RHF study, exploring the basis set dependence of

MEA’s conformations. They found that conformers, including 2gGg’ and 14g’Gg, where sensitive

to changes in basis set. Most of the basis set tried out was Pople basis set and the minimal basis

sets STO-nG. Notably, this sensitivity was observed for RHF and MP2 calculations. Although

efforts were made to change the basis set, the conformer reverted back to 1g’Gg’.

It should emphasised that none the above studies[18, 66, 78, 80] were not able to identify the

14g’Gg/27gG’g’ conformers, as in this work. However, they did manage to identify the 2gGg’

conformer which may have a grater importance due to its intramolecular hydrogen bonding.
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Additionally, only two previous studies has been able to determine the conformers 14g’Gg/27gG’g’,

namely Random et al., 1973[59] and Räsänen et al. 1983[60].

4.2 Conformer Rate Constants via TST

The value of having the gas phase structures became apparent at this point. As previously discussed,

the numerous emerging imaginary frequencies posed a significant obstacle for further progress

when COSMO was considered. Fortunately, the frequencies from the gas phase structures could be

utilised as a workaround, allowing for the calculation of the vibrational partition function, that

enters the pre-factor in the rate constant.

The calculated rate constants from TST theory are presented in Table 4.4. A new notation is

introduced, designating each equivalent conformer as a common state, ranging from A to N. Despite

the inability to determine state B and N, they are still included in the table for completeness.

Moreover, the magnitude of the calculates rate constants are inverse proportional to the relative

energies of the states. This can be rationalised by the fact that the rate constants characterises the

probability of a the system transitioning from one state to another[79].

For example, in the first interconversion, the system is in state A and jumps to state K, where state

A has exhibits the lowest energy. Here, the forward rate constant is less than the reverse, reflecting

the higher likelihood of the system transitioning from state K to A, rather than from A to K.

It is hard to miss the six marks in Table 4.4, denoting that the rate constant could not be determined.

This is becase the equilibrium geometry could not be determined, and consequently, the TS search

could not be conducted either. This applies to the states B and N. However for the states C and L,

some rate constants are calculated. Due to the fact that calculating the rate constant only consider

the minimum and the corresponding TS, these rate constants could be determined. Unfortunately,

the missing conformers propagates into the simulation. Since the states do not have a rate constant

for both forward and reverse reaction, they cannot be included in the kMC simulation as that

would violate the principle of detailed balance. Essentially, this means that for all pairs i and j,

the amount of escaping from i to j, must equal the amount of escaping from j to i. This ensures

that the system reaches equilibrium.
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Table 4.4: Rate constants derived from TS theory, utilising

the code in appendix B.6 with rates obtained from kMC

by[37]

State Interconversion kf
a kr

a

A
1g’Gg’

kf−−⇀↽−−
kr

24g’Tg’ 6.63e+08 1.23e+10

15gG’g
kf−−⇀↽−−
kr

11gTg 1.39e+09 2.67e+10

B
2gGg’

b b

16g’G’g

C
3gGt

kf−−⇀↽−−
kr

10gTt 6.16e+09 1.74e+10

17g’G’t
kf−−⇀↽−−
kr

16g’G’g 1.41e+12 b

D
4tGt

kf−−⇀↽−−
kr

5tGg 8.52e+11 7.74e+11

18tG’t
kf−−⇀↽−−
kr

9tTt 6.09e+09 1.29e+10

E
5tGg

kf−−⇀↽−−
kr

8tTg 4.78e+09 9.13e+09

19tG’g’
kf−−⇀↽−−
kr

22tTg- 4.45e+09 8.72e+09

F
6gGg

kf−−⇀↽−−
kr

11gTg 5.48e+09 1.48e+10

20g’G’g’
kf−−⇀↽−−
kr

24g’Tg’ 1.28e+10 3.48e+10

G
7tGg’

kf−−⇀↽−−
kr

19tG’g’ 6.13e+08 4.69e+08

21tG’g
kf−−⇀↽−−
kr

5tGg 6.22e+08 4.77e+08

H
8tTg

kf−−⇀↽−−
kr

5tGg 8.93e+09 4.68e+09

22tTg’
kf−−⇀↽−−
kr

7tGg’ 1.02e+10 6.78e+09

I 9tTt
kf−−⇀↽−−
kr

18tG’t 1.23e+10 5.83e+09

J

10gTt
kf−−⇀↽−−
kr

26gG’t 1.71e+10 1.86e+10

23g’Tt
kf−−⇀↽−−
kr

13g’Gt 1.57e+10 2.22e+10

10gTt
kf−−⇀↽−−
kr

15gG’g 1.71e+10 7.85e+08

K
11gTg

kf−−⇀↽−−
kr

6gGg 1.48e+10 5.45e+09

24g’Tg’
kf−−⇀↽−−
kr

1g’Gg’ 1.32e+10 7.07e+08

L
12g’Tg

kf−−⇀↽−−
kr

14g’Gg 9.46e+14
b

25gTg’
kf−−⇀↽−−
kr

27gG’g’ 9.70e+09

M
13g’Gt

kf−−⇀↽−−
kr

23g’Tt 2.07e+10 1.73e+10

26gG’t
kf−−⇀↽−−
kr

18tG’t 1.47e+11 3.92e+10

N
14g’Gg

b b

27gG’g’

a s−1

b not possible to determine
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4.2.1 Challenges and Assumptions in TST

In the theory section on TST, some assumption were made regarding the determination of the

rate constants. Initially, it was assumed that the reaction coordinate was separable, allowing the

chemical reaction to be described by a single reaction coordinate. Next, it was assumed that once

reached the TS, the structure must proceed to the product state. Lastly, it was assumed that the

energy of the particles follows a Boltzmann distribution. These assumptions will consequently have

an impact on the results.

TST assumes that the reaction can be described by a single reaction coordinate. While this may be

sufficient for some reactions at low temperatures, it can oversimplify more complex reactions at high

temperatures. TST also assumes that the reaction coordinate corresponds to the lowest barrier on

the PES. While this might apply for low temperatures, it is not necessary applicable for reactions

at higher temperatures, where the higher energy states are more populated and more complex

collisions give rise to TSs that are not necessarily the lowest[27]. Improved alternatives exist, such

as Variational TS Theory (VTST). Allison and Truhlar 1998[4] conducted a study where they

compared TST and VTST, discovering that VTST is more accurate than TST at high temperatures.

However, at lower temperatures TST seemed to be more accurate, artificially, because it usually

overestimates the rates and does not account for tunneling, which is more prominent at lower

temperatures[26].

This further leads to the assumption that every trajectory crosses the TS once, which translates to

the transmission coefficient κ being equivalent to unity. As already implied, TST treats the nuclei

according to classical mechanics, and does not take into account quantum mechanical effects, such

as tunnelling or rare events, causing κ to deviate from unity. Eyring[29] himself argue that these

aspects can be neglected, justifying it by the fact that the barriers are flat around the TS, which

makes tunneling less feasible. However, at low temperatures, tunneling contributions dominates

causing κ > 1, while at higher temperatures re-crossing is important resulting in a κ < 1[40].

These effect can be approximated by according to several available methods, such as the Bell

correction[13], the Wigner correction or the Wentzel–Kramer–Brillouin correction, which all aim to

include semi-classical contributions[40].

The last assumption, concerning that the energy of the particles follow a Boltzmann distribution,

implies that each reactive intermediate is persistent enough for a Boltzmann distribution to be

established. This is particularly problematic in multi-step reactions, where they might be short-lived

and follow a non-statistical distribution of intermediates[6, 23].

4.2.2 kMC Simulation on MEA Conformers

Six kMC simulation has been carried with six different initial conditions, each representing a slightly

different distribution of conformers among the states. In all simulations, the number of conformers

was 106, with each conformer either being distributed almost equally among the states or all starting
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in state A. The number was chosen to give a statistically representative sample of the population.

After 10 ps, 100 ps and 5 ns, the distribution of conformers can be assessed using Figures 4.3, 4.4

and 4.5. These intervals were the most interesting to consider in addition to being the most relevant

according to literature[52, 66]

Overall, results indicate that state A is the most populated, likely owing to its favourable in-

tramolecular hydrogen bonding, which stabilises it. Since it is in abundance, it will not be discussed

in detail in the following discussion.

The evolution after 10 ps is presented in Figure 4.3. In Subfigure 4.3a, the fraction of state K and J

increases rapidly within the first picosecond (ps). After about 6 ps, they seem to increase at a slower

rate. Additionally, their increase seem to stabilise. Additionally, they appeared to be more stable

than the other states. When considering the situation depicted in Subfigure 4.3b, both simulations

show that state F is among the more abundant conformers after 10 ps. More interestingly, it shows

that the state E has a greater fraction of conformers than A within the first 4.5 ps. However, the

difference becomes increasingly smaller as time approaches 4.5 ps. State D also seems to increase

quite stable. Overall, simulation where all conformers start equally seems to evolve most stable.

(a) The states K, F and J are the most dominant (b) The states E, D and F are most dominant

Figure 4.3: Conformer distribution within 10 ps

Moving on to Figure 4.4, which has ten times as long simulation time as the previous, the same

trends can be observed here. What is interesting is that state F bypasses the states J, around 10 ps,

as seen in Subfigure 4.4a. In Subfigure 4.4b, state E and D remains the most dominant. However,

after the first 25 and 30 ps, state C decreases below the states C and G, respectively. Although the

populations in C and G are about the same (10.21% and 10.25%) at 100 ps. More notably, there is

a noticeable decline in the population of state F at a higher rate than the remaining states. This

is perhaps coupled to the increase of state A, since state F is directly connected to state, which

further leads to state A.



4.2. Conformer Rate Constants via TST 41

(a) The states F, K and C are the most dominant (b) The states E, D and G are most dominant

Figure 4.4: Conformer distribution within 100 ps

Finally, the last simulation has gives insight in the distribution of states during 5 ns. The results is

depicted in Figure 4.5. Essentially, they give the same information, where the states E, F and D

are the most populated. Around 4 ns the systems appears to reach an equilibrium, as the further

simulation time does not lead to any additional changes. In Subfigure 4.5b, it can more easily be

seen that the states F, J and K are the main contributors to the increase of state A, when the initial

condition are started considering all molecules equally distributed. This can be seen in connection

with their rate constant for the forward (towards state A) reaction being larger than the reverse,

reflecting the likelihood of crossing that barrier.

(a) The states E, F and D are the most dominant (b) The states E, F and D are most dominant

Figure 4.5: Conformer distribution within 5 ns

The final conformer distribution can be found in Table 4.5. It is clear that, state A dominates,

which is expected, followed by states E, F, D and C. Common for all is they exhibit intramolecular

hydrogen bonds. State G seem to stand out from the the latter states as it is quite populated

compared to the remaining conformers. The forward and reverse rate constants are of similar

magnitude, suggesting that neither state, from which they originate or move to, appears to be

significantly preferred over the other. From literature, state G has furthermore been considered the

most populated state both in pure MEA and in infinite dilution in water[66, 83].
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Table 4.5: Conformer distribution at 5 ns

States A C D E F G H I J K M

Distributiona 50.74 6.57 7.15 7.84 7.29 6.15 4.10 3.38 2.31 2.65 1.9

a Percentage of total number of conformers (106), started equally distributed

It must be emphasised once again that these result does not reflect the complete picture if all

conformers were present. Perhaps, if all rate constant were possible to determine the results would

have been different. With that being said, results from other studies indicate that the missing

conformers in this work does not constitute a large population in pure solution or in infinite dilution

in water.

4.3 Conformer Selection in Reaction

Based on the findings regarding the population of conformers, selecting specific conformers can

now be reasoned with some basis. Although conformers 1g’Gg’/15g’Gg’ were the most populated

of the states due to their intramolecular hydrogen bonds of the character (OH · · ·N), it is not

inconceivable to believe that these are less reactive for some of the reactions considered, and perhaps

that another conformers are more appropriate. For instance, the conformers in state D (4tGt),

E(5tGg) or G(7tGg’) may perhaps be suitable candidates, because they are of higher population

and more importantly the reaction centre is more accessible for nucleophelic attacks.

In literature, the choice of conformers seem to be rather arbitrary, except from one study by Xie

et al., 2010[83] that explicitly selected a conformer (7tGg’) to react with CO2 based on highest

population, and discovered that all conformers have similar reactivity except for 1g’Gg’. It would be

interesting to gain some insights into whether this actually has an influence or not when considering

MEA reacting with larger structures, where factors such as steric hindrance comes into play. Based

on literature findings[65, 66] and kMC simulation results, the conformers 1g’Gg’, 4tGt and 7tGg’

conformers will be considered.

4.3.1 Formation of HEGly

In this section the TSs corresponding to the formation of HEGly has been under study. The

formation of HEGly is one of the biggest mysteries, as it seen in abundance in pilot plant[67].

The information of the conformer distribution from the kMC simulation will be considered in this

context, but also what seems to be the generally accepted opinion will be taken into account. It

must be emphasised, every calculation up to this point have considered temperature at 298.15 K.

Meaning that the conformer distribution from the kMC simulation might take a different turn, as

the energy corresponding to the higher energy states likely are more populated. For that reason,

literature findings on the conformation population in that specific situation is accounted for.
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There is one mechanism in literature for rationalising the formation of HEGly. The mechanism was

suggested by Vevelstad 2013[77] and is presented in Figure 4.6.

Figure 4.6: Mechanism for HEGly suggested by Vevelstad 2013[77]

A computational study of these exact mechanism was first carried out by Gupta et al. 2014[32],

and will be used as a comparison. They used the combination PCM(water)/B3LYP/6-31+G(d,p).

The mechanism involves a nucleophilic attack, where the amine functionality in MEA acts as the

nucleophile on the aldehyde functionality of glyoxalic acid. This step also involves a simultaneous

protonation (H6 to O14, separated by 1.378 Å), forming an intermediate which is a hemiamial

(hydroxyl and amine on the same carbon). The TS for this step was calculated using three different

conformation: g’Gg’ (state A), tGg’ (state G) and tTt (state I) and their corresponding barriers

are presented in Table 4.6. Subfigure 4.7a illustrates the lowest TS1(tTt) geometry and the same

structure is used further.

The subsequent step involves dehydration, with a barrier of 17 kcal mol−1, where one of the alcohol

gets protonated and leaves as water. The intermediate formed can either be a zwitterion or an

amine. Whether it is an imine or zwitterion depends on which of the alcohols gets protonated. If

the secondary alcohol gets protonated, then a zwitterion is formed. If the primary alcohol gets

protonated, then the imine is formed. However, since the zwitterion formation corresponded to a

lower reaction barrier, as opposed to the imine (55.23 kcal mol−1 from the work by Gupta et al.,

2014[32]), the zwitterion pathway is thought to be more feasible. The corresponding TS TS2, is

depicted in Subfigure 4.7b.

(a) Transition state 1 (b) Transition state 2

Figure 4.7: TS1 for the nucleophelic attack, and TS2 for the zwitterion formation

The next step is believed to be an acid-base reaction, which is considered to be instantaneous and
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therefore does not have a stable TS. The final step is a hydrogenation resulting in the formation of

HEGly and formic acid. The geometry of the corresponding TS is presented in Figure 4.8 with a

reaction barrier of 35.6 kcal mol−1. It involves four fragments: the zwitterion, the glyoxalic acid

from the previous step, formaldehyde and water. The reaction involves hydrogenation at C10,

where formaldehyde acts as the hydride donor aided by water, resulting in HEGly and formic acid.

Figure 4.8: Transition state 4

The results obtained in this work is also compared to the original work, as seen in Table 4.6, and

they seem to mostly align.

The study by Gupta et al., 2014[32], further concludes that the last step is the rate determining

step (rds). Based on the findings in this work, it seems also depend on the starting conformer. If

the most stable conformer constituting state A, which also is in abundance, is the starting reacting

conformer, the rds might be the first step. However, it must be emphasised that the basis set

used in this work is low and that will consequently affect the accuracy of the results. Particularly,

pertaining to comparing TS1(1g’Gg’) and TS4, which are very close in energy.

Additionally, there were some convergence issues pertaining to the TSs, which led to neither of them

converging. This can perhaps be explained by the fact that several structures exhibit resonance. A

weakness to DFT, CC, and other theories is that they aim for a single structure, but in situations

of resonance, the optimisation procedure might alternate between the two (or more), resulting in it

never converging. Another important issue, was that some of the TS also exhibited more than one

imaginary frequencies. This applied to both the gas phase structures and those considered with

solvent effects. However, these extra imaginary frequencies were small < i100cm−1 and it is not
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uncommon for larger and more flexible structures to yield several small imaginary frequencies as

the may resemble free rotation. This will be addressed more in detail later on.

Table 4.6: Activation energy (TS with respect

to isolated reactants) for TS1, TS2 and TS3 at

COSMO/B3LYP/cc-pVDZ level of theory at 120°C

with solvent effects considered with COSMO

Transition State Activation Energya Ea
b

TS1(1g’Gg’) 37.1

TS1(4tGt) 29.0 24.8c

TS1(7tGg’) 24.4

TS2 17.1 17.1

TS4 35.6 38.8

a kcal mol−1

b From Gupta et al. 2014[32] at PCM/B3LYP/6-

31+G(d,p) level of theory
c Conformer not specified

4.4 Computational challenges

Obtaining the underlying DFT-results proved to has far from smooth sailing. At every turn,

unexpected trouble arised, making the progress slow. Debugging have required a substantial amount

of effort, alongside attempts to make the process as efficient as possible with the available resources.

4.4.1 Challenges in Remote SSH-connection

Initially, test calculations were carried out on a remote Linux computer through a SSH-connection.

Each and all calculations was executed in the background, using the nohup command followed by

the script to run, redirection of the terminal output and an ampersand (&) at the end to ensure that

any terminal log would be redirected. Furthermore, a VPN-connection was required to maintain

the connection if not connected to the same network. However, as the calculations became more

expensive, this approach began to break down. The calculations would unexpectedly stop updating.

No message was printed either in the terminal window or redirected to the log file. From the log-file

it appeared to have just paused the calculation. However, checking the process status with the top

command, revealed that the task had indeed terminated despite no indication of any errors.

Exactly why this problem arose is difficult to ascertain. A possibility could be that the nohup

command did not work properly for this situation. As a solution some other commands were

attempted instead. One of the alternatives attempted was screen, which opens a screen within
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the same session. Here, the same command as given in the previous paragraph could be executed

in the background and the terminal can be used by detaching it using ’Ctrl + A’, followed by

a ’d’. However, this did not seem to work. The tmxu command was also tried, which also aims

to run Linux commands in background using similar commands as screen, but with different key

commands (’Ctrl + B’ followed by ’D’). Unfortunately, this attempt proved unsuccessful as well.

A possible explanation for these issues could be that using the operating system module os to

extract the information from the xyz-files might have required a continuous connection to the remote

SSH-connection. This is just a speculation, but it is possible that the the terminal window had to

be open to maintain a stable connection, or perhaps the VPN-connection played an important role.

Due to the relative large set of molecules and the computation time, it was decided to conduct

the calculations on the Mac Books. Interestingly, none of these issues arose, even after exiting the

terminal. Additionally, this decision also led to a decrees in the overall computation time.

4.4.2 Determining the Symmetry

One of the initial challenges encountered was determining the correct symmetry number σ. Although

the MEA molecule has a symmetry number of unity, it was of importance to model other molecules

with a symmetry number larger than one. The significance of this value can be seen in the context

of the partition function for rotation, which subsequently contributed to the prefactor for the rate

constant. Ensuring accuracy in this value thus becomes of great importance. One could argue

that it is not essential for the program to compute it, as it can be determined from group theory,

using the method in PySCF offers efficiency. Additionally, since it enters the partition function,

calculating it concurrently seemed logical.

Some test molecules H2O, CH4, CH3F and CH3CH3 were used to verify the accuracy if the symmetry

number. However, the obtained values were 2, 3, 1 and 1, respectively. In other words, the values

deviated significantly, whereas the values ought have been 2, 12, 3, and 6. In other words, the values

were far from the the real ones. Attempts were made to specify the symmetry when building the

molecule object, but this resulted in an error message. However, this did not seem to be accepted

as it printed an error message. Because the symmetry values were printed out, although inaccurate,

the problem was likely not related to the function itself, but perhaps the associated detection

tolerance. Studying the source code, it was discovered that the default tolerance was set to 1e− 5

in the geom.py file. This essentially translates to the maximum allowed deviation for identifying

symmetry. Adjusting this threshold to 1e− 3 resulted in more reliable symmetry determination.

4.4.3 Convergence Issues for Transition States

Conducting TS searches require that the input structure resembles the TS structure for it to converge.

This has been decisive in order to obtain a structure with one imaginary frequency, characterising

a TS. PySCF offers two approaches to conduct TS optimisations either using the geomeTRIC
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algorithm or the Quadratic Steepest Descent (QSD) method by Sun and Ruedenberg, 1994[71]. The

approach by geomeTRIC, converged much faster than the QSD. However, no imaginary frequencies

for any structures could be obtained. So the latter was selected.

During QSD optimisation, the calculation conducts numerical hessian calculations. The method

involves numerically approximating the second derivatives of the energy by perturbing the atomic

positions slightly, and observing the resulting changes in the energy gradient. PySCF offers two

methods for how the numerical hessian can be calculated using finite differences; forward and

central. The default value is forward. In this work, the numerical hessian was calculated using

the central finite difference method. As opposed to the forward method perturbing each atomic

positions in a single direction, the central method perturbs each atomic position in two opposite

directions around the equilibrium. An average is taken of the resulting changes in the gradient to

approximate the second derivative[45]. The forward difference in generally not as accurate as the

central difference[26]. On the other hand, utilising central difference is more expensive. As the

latter proved better, it was chosen.

4.4.4 Addressing Imaginary Frequencies

A major challenge encountered in this work has been both the absence of no imaginary frequencies

and presence of numerous imaginary frequencies during the optimisation of structures while

considering COSMO. Before employing QSD with central differences, the optimisations were

difficult to converge with imaginary frequencies, without perturbing the equilibrium geometries to

a great extent.

Given the importance of characterising these structures at stationary points, addressing this issue

was paramount, but they were also important for calculating the vibrational partition function.

Interestingly enough, the issue with several imaginary frequencies was not an issue at all when

considering the gas phase structures. However, upon introducing solvent effects, multiple imaginary

frequencies emerged. It is possible that introducing a solvent effects, have an impact on how the

hessian is being calculated, since the imaginary frequencies are the square root of the eigenvalues of

the hessian. Moreover, it is worth noting that it is not uncommon to observe imaginary frequencies

of low magnitude, especially for flexible molecules. Indeed, conducting regular hessian calculation

on non-equilibrium structures frequently yields up to several small imaginary frequencies[69].

Regarding the situation from a more technical point of view, encountering imaginary frequencies

during energy minimisation, may resemble that depicted in Figure 4.9. It illustrates a phenomenon

known as a textitdouble well potential, in which the optimisation process may oscillate between the

two the two basins and reach a maxima. Although the figure is a bit exaggerated, it explains the

conceptual idea.
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Figure 4.9: An illustration of how optimising a minimum may results in a imaginary frequency

Despite using pre-optimised structures before re-optimisation with solvent effects, the imaginary

frequencies still remained. They were not small either. They ranged from i50 cm−1 to i200 cm−1

for cc-pVDZ basis set. Moreover, when using a larger basis set, imaginary frequencies could readily

exceed i1000cm−1

Sure et Grimme, 2013[74], further argue that the small imaginary frequencies resemble free rotation.

Jensen 2015 reasons that flat PES are more susceptible for imaginary frequencies, and an approach

to circumvent them can be to make the convergence criteria more stringent, e.g. fine-tuning the grid

size. The same work also advises using the central difference method, if the hessian is calculated

using finite differences. However, it is worth noting that using central difference is a more expensive

approach. Another piece of advise has been to use the vibrational contributions for the gas phase

structures. This is also supported by Sure et al., 2014[73]. They further stated that analytical

frequencies cannot be calculated when COSMO has been utilised, and therefore advise using the

frequencies from he gas phase structures. Finally, this rationalise the choice of using the vibrations

frequencies of the gas phase structures when calculating the vibrational partition function.

4.4.5 Navigating PySCF - Challenges and Benefits

A general drawback of most computational software is to learn a new language. However, as many

students nowadays are familiar with type of programming language the transition is often smoother

to other. One could argue that since Python might be one of the most popular, PySCF is a good

choice.

The output from conducting calculations in PySCF can be adjusted by tuning the print level verbose,

ranging from 0 to 9. The printed output display information pertaining to the optimisation procedure

and coordinates of the optimised structure with corresponding energy. However, the format can be

a bit impractical as accessing and viewing the optimised structures is not an automatic accessed.

As a consequence, PySCF encourages the user to utilise Pythons tools to the fully.

Navigating the PySCF documentation can at times be challenging. While the existing documentation
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is comprehensive, there are sporadic typos and inconsistencies preventing a smooth execution of

the scrips. Moreover, updates to PySCF occasionally results in relocation of certain modules, and

these are not reflected in the example files. One notable inconsistencies pertains to conducting a

harmonic analysis, where the function takes two arguments, the molecule object and the hessian.

During geometry optimisations with geomeTRIC, both the optimised molecule object (mol_opt)

along with the hessian hess, which are parsed in the source code. Alternatively, the molecular

structure associated with the mean field object mf_opt.mol can be parsed. However, for transition

state optimisation, only one of these works, mf_ts.mol. Hence, the it is named optimizer, rather

than mol_ts, to avoid confusion since it does not contain the molecule object. Strangely enough,

mol also yields the same results, despite being created before the optimisation process was initiated

(but note that the same does not apply when using geomeTRIC). It appears to store the information

about the optimisation process, which also explains why that same mol-object must be used to

print out the new coordinates.

Accessing the data and figuring out how it may be computed are by no means straight forward

nor self-explanatory. Additionally, debugging errors and interpreting unexpected results can be

challenging and tedious, as the resources and community support available for PySCF-specific

issues are limited. Nevertheless, with dedication and perseverance, mastering PySCF can be

a rewarding, enabling users to perform advances calculation in a relative simple and accessible

software. Particularly, when other Python-modules are integrated. Despite these drawbacks, the

benefits of using PySCF outweigh the challenges.

4.4.6 Strategies for Deriving Molecular Metrics

Unfortunately, no open source code was found for calculating the bond lengths or dihedral angles

from xyz-files, and sadly PySCF print it in the log file either. As a result, the codes to obtain

this has been developed in this work. The metrics were derives using vector mathematics and

trigonometry. Then most challenging aspect of this, proved to be determining the correct sign

and magnitude for the dihedral angles. Natural choices such as np.arcsine() and np.arcsine(),

however, yielded the correct sign, but incorrect magnitude, and correct magnitude, but incorrect

sign respectively. np.arctan() was also tried out, but it deteriorated the situation. This can be

rationalised by looking into their domain and range, which is explained in detail in appendix A.3.

Using numpy’s sign function in combination with np.arcsine() was also attempted, as np.arcsine()

managed to yield the correct magnitude. The idea behind integrating the sign function was to

provide information on the sign of the angle. Although this approach could potentially work, it

would be very cumbersome to determine this for each of the three dihedrals in every single conformer

(2x25, for equilibrium and transition state optimisations) when there are so many. Efforts were

therefore made to discover even better solutions.

In the search for better solutions, the function np.arctan2() emerged. The idea of using the it was
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inspired by the same principle used to calculate the solar azimuth angle by Zhang et al., 2021[88]

according to the east-counterclockwise convention. Essentially, np.arctan2() is utilised to calculate

an angle in the range [−π, π] or equivalently [−180°, 180°], and more usefully, similar issues to those

encountered in this work arise when using np.arcsine() or np.arcsine() are used.

The calculation of the bonds and dihedrals was as previously mentioned in the method chapter,

performed in Jupyter Notebook. The main reason for using this approach was to ensure that the

correct atoms were considered when the metrics were calculated. It was discovered that, for some

of the structures, the ordering of the atoms within the xyz-file were mixed, rendering an all-around

function with predetermined atoms unreliable in a terminal environment. An explanation for the

disordering of the xyz-file may stem from how the structures were build in Avogadro. The order of

which atoms or fragments were added seems to play a decisive role on the outcome. While using

py3Dmol might appear redundant, it becomes clear that it was strictly necessary. Explicitly using

the xyz-format and visualising them enabled verification of correct atom selection for various sets

of bonds and dihedals to calculate.

Perhaps, a more sophisticated alternative could involve creating a function that determines the

relevant atoms for bonds and dihedrals based on their proximity and stores this information.

Subsequently, the functions in this work could calculate these metrics based on the stored atom

information. This approach would require creating dictionaries based on the connectives to facilitate

bonds and dihedral calculations. Additionally, enhancing the transferability of the functions by

calculating the metrics with no package dependencies, such as the numpy module would make

implementation in other programming languages easier.

It must be mentioned that efforts were still made to make a function that calculates all bonds and

dihedrals present in the structure, similar to modules in RDKit. However, this turned out to be

more demanding than rewarding at that point. Especially, since bonds and dihedrals very easily

can be calculated by clicking on atoms in Avogadro. However, it must be noted that it is easy to

miss the relevant atoms when just relying on clicking.

4.4.7 Optimising Task Execution

Both ProcessPoolExecutor and ThreadPoolExecutor are classes within the concurrent.futures

module. They can be imported to create a pool executor, allowing tasks to be run concurrently. The

choice between them depends on the nature of the task. In general, using thread pool is preferable

when the tasks are I/O-bound, i.e. tasks pertaining to reading and writing data. If however a task

is CPU -bound, involving demanding calculations (such as geometry optimisations), process pool

might be a more suitable choice[47].

Both methods were tried when adding solvent effects on the equilibrium geometries(on already

optimised geometries at cc-pVDZ basis set). When max_workers = 4, the ProcessPoolExecutor

spent 3 hours and 57 minutes and ThreadPoolExecutor spent 5 hours and 46 minutes on the same
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tasks. This suggests that the ProcessPoolExecutor was more efficient in this case, likely because

these are CPU-bound tasks and, the executor utilises the CPU more effectively.

4.5 Computational Accuracy

An optimal way for assessing the computational the results, involves comparing them to experimental

results. However, this might not always be feasible for instances where experimental findings are

scarce, incomparable or inaccessible directly. In such cases, an alternative approach is to verify

the computational accuracy by comparing them to more precise calculations, provided they are

available [85].

4.5.1 Advantages and Limitations to DFT

The primary limitation in DFT stems from the approximation of the exchange functional. DFT is

based on the two fundamental Hohenberg-Kohn theorems, namely the HK existence theorem and the

HK variational theorem. However, the latter theorem only holds if the exact exchange-correlation

functional is utilised[45, 68]. DFT can, in other words, yield energy lower than the true energy.

There are naturally other factors contributing to a certain degree of uncertainty. As a result,

choosing an optimal functional is important. When that is said, there is no all-around perfect

functional, as their performance tend to depend on the specific problem at hand. The same goes

for the basis set. Nevertheless, DFT tend to be more resilient to basis set size than correlated wave

function methods. However, despite using the best functional available, poor results may still arise

from using a small basis set[19].

Selecting a sufficiently large basis set is essential for to obtain accurate calculations. However,

achieving completed basis sets, although ideal, is not feasible. Despite this, limitation settling

with an incomplete basis set still provides usefully insights. Another important aspect is to ensure

that the basis set chooses converge. Essentially, it is crucial to have some insurance that that

the computed values converge towards greater accuracy as the size of the basis set increases.

Without convergence, the results may be inaccurate and unreliable, further affecting assumptions

and predictions of molecular properties. Therefore achieving basis set convergence is essential for

obtaining reliable and predictable results.

In the theory section it was mentioned that for basis set superposition error (BSSE) are especially

prone for systems described with a small basis set, as for the case with the HEGly-reaction which

did not consider augmented despite one of the products being an anion. Although not used in this

work, a method to assess BSSE is to apply the so called counterpoise-correction. The method is an

approximate way and consist of correcting the spurious energy contribution. The BSSE is inevitable

to eliminate as it is present, in various magnitude, in all calculations. However, it’s influence

depends on the system being described. For instance, it is greater for weakly bound systems such

as complexes held together by dispersion forces, and can become as great the interaction itself.
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Therefore higher level correlation treatment and basis set is required. For hydrogen bonds there is

not as stringent requirement, because they are electrostatic at the core. In general, the interactions

energies varies between 100-500 mEh for covalent bonds, 1-10 mEh for hydrogen bonds and 50-500

µEh for covalent bonds[35].

Another important aspect to consider is spin contamination, which in this context, refers to that

different KS-orbitals are used for α- and β-spins. Because the unrestricted Kohn-Sham (UKS)

approach was used, spin contamination is to a certain degree present. In Hartree-Fock (HF) this

mainly stems form the exchange-correlation term. This will also be influenced by the functional

utilised, as the once that incorporate HF-exchange to a greater degree (such as double hybrid

functional), consequently are more susceptible for spin contamination[51]. While the UKS is less

affected by spin contamination, as apposed to its HF counter part, it may still introduce errors[10],

especially when it is compared to more accurate methods provided by CCSD and CCSD(T)[51]. In

general, unrestricted and restricted procedures describe equilibrium geometries similarly for most

singlet systems. However, when bonds are stretched, such as for transition state structures, the

amount of spin contamination becomes more pronounced. In some cases, unrestricted approaches

might overestimate biradical character, leading to a TS becoming a minimum on the PES[40].

4.5.2 Addressing the Choice of Functional and Basis set

The choice of the B3LYP was among several reasons due to its wide application, which further

allows for comparison with previous work so the accuracy of the results could be assessed. Another

important argument is that B3LYP is known for its performance in thermochemistry [46, 48] and

harmonic frequency calculation[48], which has been essential for the results obtained. Despite the

even more popular combination using B3LYP with Pople basis set, owing to it affordability, this

combination seems to also yield poor results pertaining to thermochemistry[44]. Particularly the

B3LYP/6-31G∗ combination, which is susceptible to basis set superposition error (which will be

discussed in a bit) and lacks London dispersion effects[19]. On the other hand, while B3LYP is

poor with metals[53, 90]. This could be an argument for choosing a different functional since amine

degradation tends to be catalysed by metals such as iron and chromium. However, since none of

the calculations in this work considered metals, this was not taken into account.

Although B3LYP does not describe dispersion sufficiently, which moreover is not the main contributor

to intramolecular forces in the system as this was hydrogen bonds, they could have had a greater

influence on the solvent model, which was a continuum model. Perhaps a functional such as

CAM-B3LYP, could have been more appropriate, which aims to correct long range forces such as

dispersion[84]. Nevertheless, the B3LYP functional was used throughout this work for consistency.

As already mentioned, the Pople basis sets are considered as relatively computationally affordable,

but a major drawback is the unstable basis set convergence, which can affect the accuracy and

the precision of the results. This is, among several aspects, Dunning correlation consistent basis,



4.5. Computational Accuracy 53

offer improved basis set convergence[26, 76]. This is essential to obtain reliable results with both

accuracy and precision.

The combination with B3LYP and augmented correlation consistent basis set has yielded results

comparable to molecular orbital methods[48], and does overall seem to perform better than the

Pople basis sets[48, 51]. However, opinions seems to be dividend whether which basis set is the

most optimal. A study conducted by Wiberg 2004[82] showed that in addition to 6-311++G∗∗,

being more efficient, it yields more satisfactory geometries. Nevertheless, it should be noted that

these comparisons were carried out on MP2 and CCSD, and the correlation consistent basis sets

are constructed to yield more accurate results for post-Hartree Fock methods.

A relevant assumption based on the conclusion by Kelterer et al., 1994[42] that the basis set

might have an influence, perhaps using a different basis set would enable the determination of the

remaining conformers. On the other side a study using the same leveel theory did successfully

manege to identify all conformers. Furthermore, previous studies that successfully determined these

conformers used the Pople basis set. However, as discussed, because it unsuccessfully converged

towards the basis set limit, it is out of the question. Bursch et al., 2022[19] have carried out a

thorough study to give a comprehensive guide on the Best Practice DFT Protocols, based on 25

years of experience in the field. Interestingly, they rule out both the the Pople basis sets 6-31G∗

and 6-311G∗∗ as well as the Dunning-type cc-pVXZ (X = D, T, Q, ...), arguing that the basis

set by Ahlrichs are superior to them both pertaining to efficiency and availability acreoss a wider

range of the periodic table. Additionally, they highlight PySCF as one of the noteworthy quantum

chemistry packages.

As the field of DFT continuously evolves, it becomes more and more challenging to make a choice.

The selection of functional and basis set to use often depends on the problem at hand, and what

is available. Various aspect ought to be carefully considered and it is important to be aware that

different functional may perform differently, when they are applied to different systems. Addressing

potential drawbacks and assessment regarding the choice from previous works can be valuable when

choosing. Overall, selecting the suitable functional and basis set requires careful consideration.



54 Chapter 4. Results and Discussion



55

5 Conclusions and Outlook

The primary objective of this master thesis has been study the conformer stability of the MEA

molecule, considered a benchmark solvent in PCC. MEA is furthermore a central component in

eucaryotic cell membranes and can function as a complexing agent either as a monodentate or

a bidentate. However, a significant drawback with using amine-based solvents, however, is that

they all degrade to a certain extent, resulting in increased operational costs due to material wear

and solvent replacement. Due to its versatile application and challenges related to degradation,

it is of considerable interest to gain insight in its stability. In order to address this, studying the

interconversion barriers and map spectrum of conformers and how they connect has been of interest.

Another object has been to make a codes that increase efficiency and versatility, while utilising the

software PySCF.

5.1 Concluding remarks

In this work, 251 conformers out of the theoretical 27 were determined. The most stable conformer

found, aligns with other studies conducted at similar level of theory and higher. Furthermore,

results from DFT calculations on the conformers indicate the presence of two conformers that has

not been determined in more recent literature. However, because the stationary point could not be

affirmed, it is possible that these calculations are in fact erroneous. This might indicate that its

presence is less relevant after all.

The transition states of all minima were also determined. In general, the interconversion barriers

range from 0.66-5.15 kcal mol−1. The barrier heights are overall very low, and they tend to be

even lower for interconversion between two conformers exhibiting HB. With such small barriers and

consequently flat PES, which led to convergence issues, the results must be carefully assessed.

Furthermore, rate constants were required to run kMC simulations. These were calculated based on

TST, which relies on statistical mechanics to capture the contributions from rotational, vibrational

and translational degrees of freedom. The results from the DFT calculations has been used in this

1if the uncertain conformers 14g’Gg and 27gG’g’ counts
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context.

During this work, a great effort was dedicated to make an efficient and user-friendly code within

the Python ecosystem, particularly for newcomers to PySC. The aim was to create versatile scripts

capable of executing the relevant tasks to eventually be able to calculate the rate constants. Clarity

and automation for efficiency has been the main thoughts behind every code line. This has overall

contributed to maintain a stable workflow throughout this work.

During the kMC simulations, various time intervals were explored to study the conformational

interconversions of MEA. Naturally, the states exhibiting the lowest energy were more populated.

The results of the kMC simulation are overall in agreement with a similar work that suggests

that MEA tends to exist predominantly, where the O–C–C–N dihedral angle takes the gauche

conformation. This can further be explained by the fact that all conformers exhibiting HB, which

also are the lowest lying conformers, also take gauche conformation.

Finally, the results from kMC were further used to study a specific secondary reaction pathway,

namely the formation of HEGly, with the desire to gain insight in whether the reacting conformer

influences the reaction kinetics. In that context three different conformers of MEA were tested.

While the results might indicate that the conformer selection possibly have some influence, it

is important to note the inherent limitations of the chosen level of theory impose substantial

uncertainties. Moreover, the convergence issues and several imaginary frequencies complicates

drawing any conclusions.

5.2 Outlook

Further work on this topic may include studying the reaction mechanism for other secondary

degradation pathways, using a carefully selected MEA conformer, as computational studies sup-

porting these are few compared to primary degradation paths. Any findings increasing the insight

of secondary amine degradation would be valuable. Naturally, the system size and subsequently

computational costs, are deceive factors as there is a trade-off between computational accuracy

and computational costs for most situations. Combining results from both primary and secondary

degradation would be interesting to study in a kMC simulation. On the other hand, secondary

pathways consider large systems constituted by very complex multi-steps reaction, which are not

very compatible with kMC simulations. In addition, the choice of basis set and functional might

also need to be reevaluated since some of the secondary degradation pathways involve mechanisms

of radical character, rapid proton transfer and heavy metal complexes, which further catalyse the

entire degradation, just to mention some.



Bibliography 57

Bibliography

[1] In The MAK-Collection for Occupational Health and Safety, John Wiley & Sons, Ltd, 2012,

pp. 16–35, DOI 10.1002/3527600418.mb14143e0012.

[2] N. D. Afify, M. B. Sweatman, ‘Solvent-mediated modification of thermodynamics and kinetics

of monoethanolamine regeneration reaction in amine-stripping carbon capture: Computational

chemistry study’, The Journal of Chemical Physics 2024, 160, DOI 10.1063/5.0169382.

[3] S. H. Ali, ‘Kinetics of the reaction of carbon dioxide with blends of amines in aqueous media

using the stopped-flow technique’, International Journal of Chemical Kinetics 2005, 37,

391–405, DOI 10.1002/kin.20059.

[4] T. C. Allison, D. G. Truhlar in Modern Methods for Multidimensional Dynamics Computations

in Chemistry, WORLD SCIENTIFIC, 1998, pp. 618–712, DOI 10.1142/9789812812162_0016.

[5] M. Andersen, C. Panosetti, K. Reuter, ‘A Practical Guide to Surface Kinetic Monte Carlo

Simulations’, Frontiers in Chemistry 2019, 7, DOI 10.3389/fchem.2019.00202.

[6] E. V. Anslyn, D. A. Dougherty, Modern Physical Organic Chemistry, 2nd ed., University

Science Books, 2006, pp. 365–372.

[7] P. Atkins, R. Friedman, Molecular Quantum Mechanics, 5th ed., Oxford University Press,

2010, pp. 239–243, 317–326.

[8] P. Atkins, J. de Paula, J. Keeler, Atkins’ Physical Chemistry, 11th ed., Oxford University

Press, 2018, pp. 251–252, 343, 544.

[9] P. W. Atkins, Elements of physical chemistry, 7th edition, (Eds.: J. de Paula, D. Smith),

Oxford University Press, Oxford, 2017, pp. 269–288.

[10] J. Baker, A. Scheiner, J. Andzelm, ‘Spin contamination in density functional theory’, Chemical

Physics Letters 1993, 216, 380–388, DOI 10.1016/0009-2614(93)90113-f.

[11] R. Bates, G. Pinching, ‘Acidic dissociation constant and related thermodynamic quantities

for monoethanolammonium ion in water from 0°C to °C’, Journal of Research of the National

Bureau of Standards 1951, 46, 349, DOI 10.6028/jres.046.039.

[12] N. H. F. Beebe, The Mathematical-Function Computation Handbook, 2nd ed., Springer

International Publishing AG, 2017, p. 336, DOI 10.1007/978-3-319-64110-2.

https://doi.org/10.1002/3527600418.mb14143e0012
https://doi.org/10.1063/5.0169382
https://doi.org/10.1002/kin.20059
https://doi.org/10.1142/9789812812162_0016
https://doi.org/10.3389/fchem.2019.00202
https://doi.org/10.1016/0009-2614(93)90113-f
https://doi.org/10.6028/jres.046.039
https://doi.org/10.1007/978-3-319-64110-2


58 Bibliography

[13] R. P. Bell, ‘The tunnel effect correction for parabolic potential barriers’, Transactions of the

Faraday Society 1959, 55, 1, DOI 10.1039/tf9595500001.

[14] A. Bello, R. O. Idem, ‘Comprehensive Study of the Kinetics of the Oxidative Degradation

of CO2 Loaded and Concentrated Aqueous Monoethanolamine (MEA) with and without

Sodium Metavanadate during CO2 Absorption from Flue Gases’, Industrial &; Engineering

Chemistry Research 2005, 45, 2569–2579, DOI 10.1021/ie050562x.

[15] A. Blondel, M. Karplus, ‘New formulation for derivatives of torsion angles and improper

torsion angles in molecular mechanics: Elimination of singularities’, Journal of Computational

Chemistry 1996, 17, 1132–1141, DOI 10.1002/(SICI)1096-987X(19960715)17:9<1132::AID-

JCC5>3.0.CO;2-T.

[16] N. Borduas, J. P. D. Abbatt, J. G. Murphy, ‘Gas Phase Oxidation of Monoethanolamine

(MEA) with OH Radical and Ozone: Kinetics, Products, and Particles’, Environmental Science

& Technology 2013, 47, 6377–6383, DOI 10.1021/es401282j.

[17] M. Born, R. Oppenheimer, ‘Zur Quantentheorie der Molekeln’, Annalen der Physik 1927,

389, 457–484, DOI 10.1002/andp.19273892002.

[18] G. Buemi, ‘Conformational analysis and rotation barriers of 2-aminoethanethiol and 2-

aminoethanol: An ab initio study’, International Journal of Quantum Chemistry 1996, 59,

227–237, https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-461X%281996%

2959%3A3%3C227%3A%3AAID-QUA6%3E3.0.CO%3B2-%23.

[19] M. Bursch, J.-M. Mewes, A. Hansen, S. Grimme, ‘Best-Practice DFT Protocols for Basic

Molecular Computational Chemistry**’, Angewandte Chemie International Edition 2022, 61,

DOI 10.1002/anie.202205735.

[20] V. Buvik, ‘Stability of amines for CO2 capture’, Ph.D. Thesis, Department of Chemical

Engineering, Norwegian University of Science and Technology, Trondheim, 2021, https :

//ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2777358/Vanja%20Buvik_PhD.pdf?

sequence=1&isAllowed=y.

[21] E. Calzada, O. Onguka, S. M. Claypool in International Review of Cell and Molecular Biology,

Elsevier, 2016, pp. 29–88, DOI 10.1016/bs.ircmb.2015.10.001.

[22] S. Canneaux, F. Bohr, E. Henon, ‘KiSThelP: A program to predict thermodynamic properties

and rate constants from quantum chemistry results†’, Journal of Computational Chemistry

2013, 35, 82–93, DOI 10.1002/jcc.23470.

[23] B. K. Carpenter, ‘Dynamic Behavior of Organic Reactive Intermediates’, Angewandte Chemie

International Edition 1998, 37, 3340–3350, DOI 10.1002/(sici)1521- 3773(19981231)37:

24<3340::aid-anie3340>3.0.co;2-1.

https://doi.org/10.1039/tf9595500001
https://doi.org/10.1021/ie050562x
https://doi.org/10.1002/(SICI)1096-987X(19960715)17:9<1132::AID-JCC5>3.0.CO;2-T
https://doi.org/10.1002/(SICI)1096-987X(19960715)17:9<1132::AID-JCC5>3.0.CO;2-T
https://doi.org/10.1021/es401282j
https://doi.org/10.1002/andp.19273892002
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-461X%281996%2959%3A3%3C227%3A%3AAID-QUA6%3E3.0.CO%3B2-%23
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-461X%281996%2959%3A3%3C227%3A%3AAID-QUA6%3E3.0.CO%3B2-%23
https://doi.org/10.1002/anie.202205735
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2777358/Vanja%20Buvik_PhD.pdf?sequence=1&isAllowed=y
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2777358/Vanja%20Buvik_PhD.pdf?sequence=1&isAllowed=y
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2777358/Vanja%20Buvik_PhD.pdf?sequence=1&isAllowed=y
https://doi.org/10.1016/bs.ircmb.2015.10.001
https://doi.org/10.1002/jcc.23470
https://doi.org/10.1002/(sici)1521-3773(19981231)37:24<3340::aid-anie3340>3.0.co;2-1
https://doi.org/10.1002/(sici)1521-3773(19981231)37:24<3340::aid-anie3340>3.0.co;2-1


Bibliography 59

[24] Y.-P. Chang, T.-M. Su, T.-W. Li, I. Chao, ‘Intramolecular Hydrogen Bonding, Gauche

Interactions, and Thermodynamic Functions of 1,2-Ethanediamine, 1,2-Ethanediol, and 2-

Aminoethanol: A Global Conformational Analysis’, The Journal of Physical Chemistry A

1997, 101, 6107–6117, DOI 10.1021/jp971022j.

[25] S. Chi, G. T. Rochelle, ‘Oxidative Degradation of Monoethanolamine’, Industrial &; Engin-

eering Chemistry Research 2002, 41, 4178–4186, DOI 10.1021/ie010697c.

[26] C. J. Cramer, Essentials of Computational Chemistry, 2nd ed., John Wiley & Sons, Ltd,

2004, pp. 6–10, 94, 249–294.

[27] K. A. Dill, S. Bromberg, Molecular Driving Forces, 2nd ed., Garland Science, 2011, pp. 173,

176, 198–207, 235–243, 364–368.

[28] M. Ernst, J.-P. Melder, F. I. Berger, C. Koch, Ethanolamines and Propanolamines, 2022,

DOI 10.1002/14356007.a10_001.pub2.

[29] H. Eyring, ‘The Activated Complex in Chemical Reactions’, The Journal of Chemical Physics

1935, 3, 107–115, DOI 10.1063/1.1749604.

[30] J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R. D. Srivastava, ‘Advances in CO2 capture

technology—The U.S. Department of Energy’s Carbon Sequestration Program’, International

Journal of Greenhouse Gas Control 2008, 2, 9–20, DOI 10.1016/s1750-5836(07)00094-1.

[31] D. T. Gillespie, ‘Exact stochastic simulation of coupled chemical reactions’, The Journal of

Physical Chemistry 1977, 81, 2340–2361, DOI 10.1021/j100540a008.

[32] M. Gupta, S. J. Vevelstad, H. F. Svendsen, ‘Mechanisms and Reaction Pathways in MEA

Degradation; A Computational Study’, Energy Procedia 2014, 63, 1115–1121, DOI 10.1016/j.

egypro.2014.11.120.

[33] M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, G. R. Hutchison,

‘Avogadro: an advanced semantic chemical editor, visualization, and analysis platform’, Journal

of Cheminformatics 2012, 4, DOI 10.1186/1758-2946-4-17.

[34] J. Hass, C. Heil, M. D. Weir, Thomas’ Calculus in SI Units, 14th ed., Pearson Education

Limited, 2020, pp. 435–438, 681–686, 689–694, 816–820.

[35] T. Helgaker, P. Jørgensen, J. Olsen, Molecular Electronic-Structure Theory, Wiley, 2000,

pp. 315–335.

[36] G. Herzberg, L. Herzberg, ‘Rotation-Vibration Spectra of Diatomic and Simple Polyatomic

Molecules with Long Absorbing PathsXI. The Spectrum of Carbon Dioxide (Co2) below

1.25µ∗’, J. Opt. Soc. Am. 1953, 43, 1037–1044, DOI 10 .1364/JOSA.43 .001037, https :

//opg.optica.org/abstract.cfm?URI=josa-43-11-1037.

[37] O. L. Hestad, A.-D. Vuong, I. Madshaven, P.-O. Åstrand, ‘Thermal decomposition of cyclo-

hexane by Kinetic Monte Carlo simulations and its relevance to streamer formation’, 2016,

DOI 10.1109/ceidp.2016.7785518.

https://doi.org/10.1021/jp971022j
https://doi.org/10.1021/ie010697c
https://doi.org/10.1002/14356007.a10_001.pub2
https://doi.org/10.1063/1.1749604
https://doi.org/10.1016/s1750-5836(07)00094-1
https://doi.org/10.1021/j100540a008
https://doi.org/10.1016/j.egypro.2014.11.120
https://doi.org/10.1016/j.egypro.2014.11.120
https://doi.org/10.1186/1758-2946-4-17
https://doi.org/10.1364/JOSA.43.001037
https://opg.optica.org/abstract.cfm?URI=josa-43-11-1037
https://opg.optica.org/abstract.cfm?URI=josa-43-11-1037
https://doi.org/10.1109/ceidp.2016.7785518


60 Bibliography

[38] P. Hohenberg, W. Kohn, ‘Inhomogeneous Electron Gas’, Physical Review 1964, 136, B864–

B871, DOI 10.1103/physrev.136.b864.

[39] A. Jansen, An Introduction to Kinetic Monte Carlo Simulations of Surface Reactions, Springer

Berlin Heidelberg, 2012, pp. 1–4, 37–55, DOI 10.1007/978-3-642-29488-4.

[40] F. Jensen, Introduction to Computational Chemistry, 3rd ed., John Wiley & Sons Inc, 2017,

pp. 141, 233–269, 455–458, 499, 614–616.

[41] J. H. Jensen, ‘Predicting accurate absolute binding energies in aqueous solution: thermody-

namic considerations for electronic structure methods’, Physical Chemistry Chemical Physics

2015, 17, 12441–12451, DOI 10.1039/c5cp00628g.

[42] A.-M. Kelterer, M. Ramek, R. F. Frey, M. Cao, L. Schäfer, ‘Basis set influence in ab initio

calculations: The case of 2-aminoethanol and N-formylproline amide’, Journal of Molecular

Structure 1994, 310, 45–53, DOI 10.1016/s0022-2860(10)80055-9.

[43] W. Kohn, L. J. Sham, ‘Self-Consistent Equations Including Exchange and Correlation Effects’,

Phys. Rev. 1965, 140, A1133–A1138, DOI 10.1103/PhysRev.140.A1133.

[44] H. Kruse, L. Goerigk, S. Grimme, ‘Why the Standard B3LYP/6-31G* Model Chemistry

Should Not Be Used in DFT Calculations of Molecular Thermochemistry: Understanding and

Correcting the Problem’, The Journal of Organic Chemistry 2012, 77, 10824–10834, DOI

10.1021/jo302156p.

[45] E. G. Lewards, Computational Chenistry - Introduction to the Theory and Applications of

Molecular Quantun Mechanics, 3rd ed., Springer Cham, 2016, pp. 483–557, DOI 10.1007/978-

3-319-30916-3.

[46] L. Lu, H. Hu, H. Hou, B. Wang, ‘An improved B3LYP method in the calculation of organic

thermochemistry and reactivity’, Computational and Theoretical Chemistry 2013, 1015,

64–71, DOI 10.1016/j.comptc.2013.04.009.

[47] A. Martelli, A. M. Ravenscroft, S. Holden, P. McGuire, Python in a Nutshell: A Desktop

Quick Reference, 4th ed., O’Reilly Media, 2023, pp. 323–327, 443, 445, 467–470.

[48] J. M. Martin, J. El-Yazal, J.-P. François, ‘Basis set convergence and performance of dens-

ity functional theory including exact exchange contributions for geometries and harmonic

frequencies’, Molecular Physics 1995, 86, 1437–1450, DOI 10.1080/00268979500102841.

[49] D. A. McQuarrie, Statistical mechanics, University Science Books, 2000, pp. 94–110, 129–136.

[50] D. A. McQuarrie, J. D. Simon, Molecular Thermodynamics, University Science Books, 1999,

pp. 10, 20, 105, 148–159.

[51] A. M. Mebel, V. V. Kislov, ‘The C2H3 + O2 Reaction Revisited: Is Multireference Treatment

of the Wave Function Really Critical?’, The Journal of Physical Chemistry A 2005, 109,

6993–6997, DOI 10.1021/jp052772t.

https://doi.org/10.1103/physrev.136.b864
https://doi.org/10.1007/978-3-642-29488-4
https://doi.org/10.1039/c5cp00628g
https://doi.org/10.1016/s0022-2860(10)80055-9
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1021/jo302156p
https://doi.org/10.1007/978-3-319-30916-3
https://doi.org/10.1007/978-3-319-30916-3
https://doi.org/10.1016/j.comptc.2013.04.009
https://doi.org/10.1080/00268979500102841
https://doi.org/10.1021/jp052772t


Bibliography 61

[52] Y. V. Novakovskaya, M. N. Rodnikova, ‘Ethanolamine: conformational diversity’, Structural

Chemistry 2014, 26, 177–187, DOI 10.1007/s11224-014-0530-3.

[53] J. Paier, M. Marsman, G. Kresse, ‘Why does the B3LYP hybrid functional fail for metals?’,

The Journal of Chemical Physics 2007, 127, DOI 10.1063/1.2747249.

[54] D. Patel, S. N. Witt, ‘Ethanolamine and Phosphatidylethanolamine: Partners in Health and

Disease’, Oxidative Medicine and Cellular Longevity 2017, 2017, 1–18, DOI 10.1155/2017/

4829180.

[55] J. P. Perdew, K. Schmidt in AIP Conference Proceedings, AIP, 2001, DOI 10.1063/1.1390175.

[56] S. Pirhadi, J. Sunseri, D. R. Koes, ‘Open source molecular modeling’, Journal of Molecular

Graphics and Modelling 2016, 69, 127–143, DOI 10.1016/j.jmgm.2016.07.008.

[57] P. Prinz, T. Crawford, C in a Nutshell, 2nd ed., O’Reilly Media, 2015, pp. 352–360.

[58] L. Radom, W. A. Lathan, W. J. Hehre, J. A. Pople, ‘Molecular orbital theory of the electronic

structure of organic compounds. XVII. Internal rotation in 1,2-disubstituted ethanes’, Journal

of the American Chemical Society 1973, 95, 693–698, DOI 10.1021/ja00784a008.

[59] L. Radom, W. A. Lathan, W. J. Hehre, J. A. Pople, ‘Molecular orbital theory of the electronic

structure of organic compounds. XVII. Internal rotation in 1,2-disubstituted ethanes’, Journal

of the American Chemical Society 1973, 95, 693–698, DOI 10.1021/ja00784a008.

[60] M. Räsänen, A. Aspiala, L. Homanen, J. Murto, ‘IR-induced photorotamerization of 2-

aminoethanol in low-temperature matrices. AB initio optimized geometries of conformers’,

Journal of Molecular Structure 1983, 96, 81–100, DOI https ://doi .org/10 .1016/0022-

2860(82)90060-6.

[61] G. Rochelle, S. Bishnoi, S. Chi, H. Dang, J. Santos, ‘Research needs for CO2 capture from flue

gas by aqueous absorption/stripping’, Research Report for P.O.: No. DE-AF26-99FT01029

of U.S. Department of Energy 2001.

[62] F. V. Ryzhkov, Y. E. Ryzhkova, M. N. Elinson, ‘Python in Chemistry: Physicochemical Tools’,

Processes 2023, 11, 2897, DOI 10.3390/pr11102897.

[63] G. Sartori, D. W. Savage, ‘Sterically hindered amines for carbon dioxide removal from

gases’, Industrial & Engineering Chemistry Fundamentals 1983, 22, 239–249, DOI 10.1021/

i100010a016.

[64] D. S. Sholl, J. A. Steckel, Density Functional Theory - A Practical Introduction, 2nd ed.,

John Wiley & Sons, Ltd, 2009, pp. 7–30.

[65] C. F. Silva, M. L. T. Duarte, R. Fausto, ‘A concerted SCF-MO ab initio and vibrational

spectroscopic study of the conformational isomerism in 2-aminoethanol’, Journal of Molecular

Structure 1999, 482–483, 591–599, DOI 10.1016/s0022-2860(98)00794-7.

https://doi.org/10.1007/s11224-014-0530-3
https://doi.org/10.1063/1.2747249
https://doi.org/10.1155/2017/4829180
https://doi.org/10.1155/2017/4829180
https://doi.org/10.1063/1.1390175
https://doi.org/10.1016/j.jmgm.2016.07.008
https://doi.org/10.1021/ja00784a008
https://doi.org/10.1021/ja00784a008
https://doi.org/https://doi.org/10.1016/0022-2860(82)90060-6
https://doi.org/https://doi.org/10.1016/0022-2860(82)90060-6
https://doi.org/10.3390/pr11102897
https://doi.org/10.1021/i100010a016
https://doi.org/10.1021/i100010a016
https://doi.org/10.1016/s0022-2860(98)00794-7


62 Bibliography

[66] E. F. da Silva, T. Kuznetsova, B. Kvamme, K. M. Merz, ‘Molecular Dynamics Study of

Ethanolamine as a Pure Liquid and in Aqueous Solution’, The Journal of Physical Chemistry

B 2007, 111, 3695–3703, DOI 10.1021/jp068227p.

[67] E. F. da Silva, H. Lepaumier, A. Grimstvedt, S. J. Vevelstad, A. Einbu, K. Vernstad,

H. F. Svendsen, K. Zahlsen, ‘Understanding 2-Ethanolamine Degradation in Postcombustion

CO2 Capture’, Industrial & Engineering Chemistry Research 2012, 51, 13329–13338, DOI

10.1021/ie300718a.

[68] S. F. Sousa, P. A. Fernandes, M. J. Ramos, ‘General Performance of Density Functionals’,

The Journal of Physical Chemistry A 2007, 111, 10439–10452, DOI 10.1021/jp0734474.

[69] S. Spicher, S. Grimme, ‘Single-Point Hessian Calculations for Improved Vibrational Frequencies

and Rigid-Rotor-Harmonic-Oscillator Thermodynamics’, Journal of Chemical Theory and

Computation 2021, 17, 1701–1714, DOI 10.1021/acs.jctc.0c01306.

[70] K. Z. Sumon, C. H. Bains, D. J. Markewich, A. Henni, A. L. L. East, ‘Semicontinuum Solvation

Modeling Improves Predictions of Carbamate Stability in the CO2 + Aqueous Amine Reaction’,

The Journal of Physical Chemistry B 2015, 119, 12256–12264, DOI 10.1021/acs.jpcb.5b06076.

[71] J.-Q. Sun, K. Ruedenberg, ‘Locating transition states by quadratic image gradient descent

on potential energy surfaces’, The Journal of Chemical Physics 1994, 101, 2157–2167, DOI

10.1063/1.467721.

[72] Q. Sun, S. Berkelbach, N. S. Blunt, G. H. Booth, S. Guo, Z. Li, J. Liu, J. D. McClain, E. R.

Sayfutyarova, S. Sharma, S. Wouters, G. K.-L. Chan, ‘PySCF: the Python-based simulations

of chemistry framework’, WIREs Computational Molecular Science 2018, 8, e1340, DOI

10.1002/wcms.1340.

[73] R. Sure, J. Antony, S. Grimme, ‘Blind Prediction of Binding Affinities for Charged Supra-

molecular Host–Guest Systems: Achievements and Shortcomings of DFT-D3’, The Journal of

Physical Chemistry B 2014, 118, 3431–3440, DOI 10.1021/jp411616b.

[74] R. Sure, S. Grimme, ‘Corrected small basis set Hartree-Fock method for large systems’,

Journal of Computational Chemistry 2013, 34, 1672–1685, DOI 10.1002/jcc.23317.

[75] L. H. Thomas, ‘The calculation of atomic fields’, Mathematical Proceedings of the Cambridge

Philosophical Society 1927, 23, 542–548, DOI 10.1017/s0305004100011683.

[76] A. J. C. Varandas, ‘CBS extrapolation of Hartree–Fock energy: Pople and Dunning basis sets

hand-to-hand on the endeavour’, Physical Chemistry Chemical Physics 2019, 21, 8022–8034,

DOI 10.1039/c8cp07847e.

[77] S. J. Vevelstad, ‘CO2 Absorbent Degradation’, Ph.D. Thesis, Department of Chemical

Engineering, Norwegian University of Science and Technology, Trondheim, 2013.

[78] I. Vorobyov, M. C. Yappert, D. B. DuPré, ‘Hydrogen Bonding in Monomers and Dimers of

2-Aminoethanol’, The Journal of Physical Chemistry A 2002, 106, 668–679, DOI 10.1021/

jp013211e.

https://doi.org/10.1021/jp068227p
https://doi.org/10.1021/ie300718a
https://doi.org/10.1021/jp0734474
https://doi.org/10.1021/acs.jctc.0c01306
https://doi.org/10.1021/acs.jpcb.5b06076
https://doi.org/10.1063/1.467721
https://doi.org/10.1002/wcms.1340
https://doi.org/10.1021/jp411616b
https://doi.org/10.1002/jcc.23317
https://doi.org/10.1017/s0305004100011683
https://doi.org/10.1039/c8cp07847e
https://doi.org/10.1021/jp013211e
https://doi.org/10.1021/jp013211e


Bibliography 63

[79] A. F. Voter in NATO Science Series, Springer Netherlands, 2007, pp. 1–23, DOI 10.1007/978-

1-4020-5295-8_1.

[80] K. Wang, X. Shan, X. Chen, ‘Electron propagator theory study of 2-aminoethanol conformers’,

Journal of Molecular Structure: THEOCHEM 2009, 909, 91–95, DOI 10.1016/j.theochem.

2009.05.030.

[81] L.-P. Wang, C. Song, ‘Geometry optimization made simple with translation and rotation

coordinates’, The Journal of Chemical Physics 2016, 144, DOI 10.1063/1.4952956.

[82] K. B. Wiberg, ‘Basis set effects on calculated geometries: 6-311++G** vs. aug-cc-pVDZ’,

Journal of Computational Chemistry 2004, 25, 1342–1346, DOI 10.1002/jcc.20058.

[83] H.-B. Xie, Y. Zhou, Y. Zhang, J. K. Johnson, ‘Reaction Mechanism of Monoethanolamine

with CO2 in Aqueous Solution from Molecular Modeling’, The Journal of Physical Chemistry

A 2010, 114, 11844–11852, DOI 10.1021/jp107516k.

[84] T. Yanai, D. P. Tew, N. C. Handy, ‘A new hybrid exchange–correlation functional using the

Coulomb-attenuating method (CAM-B3LYP)’, Chemical Physics Letters 2004, 393, 51–57,

DOI 10.1016/j.cplett.2004.06.011.

[85] X. Yang, R. J. Rees, W. Conway, G. Puxty, Q. Yang, D. A. Winkler, ‘Computational Modeling

and Simulation of CO2 Capture by Aqueous Amines’, Chemical Reviews 2017, 117, 9524–9593,

DOI 10.1021/acs.chemrev.6b00662.

[86] T. Yoshikawa, Foundations of Robotics, 14th ed., The MIT Press, 1990, p. 20.

[87] I. Y. Zhang, X. Xu, A New-Generation Density Functional: Towards Chemical Accuracy

for Chemistry of Main Group Elements, Springer Berlin Heidelberg, 2014, pp. 1–20, DOI

10.1007/978-3-642-40421-4.

[88] T. Zhang, P. W. Stackhouse, B. Macpherson, J. C. Mikovitz, ‘A solar azimuth formula that

renders circumstantial treatment unnecessary without compromising mathematical rigor:

Mathematical setup, application and extension of a formula based on the subsolar point and

atan2 function’, Renewable Energy 2021, 172, 1333–1340, DOI 10.1016/j.renene.2021.03.047.

[89] M. Zhao, A. I. Minett, A. T. Harris, ‘A review of techno-economic models for the retrofitting

of conventional pulverised-coal power plants for post-combustion capture (PCC) of CO2’,

Energy Environ. Sci. 2013, 6, 25–40, DOI 10.1039/c2ee22890d.

[90] Y. Zhao, D. G. Truhlar, ‘Density Functionals with Broad Applicability in Chemistry’, Accounts

of Chemical Research 2008, 41, 157–167, DOI 10.1021/ar700111a.

https://doi.org/10.1007/978-1-4020-5295-8_1
https://doi.org/10.1007/978-1-4020-5295-8_1
https://doi.org/10.1016/j.theochem.2009.05.030
https://doi.org/10.1016/j.theochem.2009.05.030
https://doi.org/10.1063/1.4952956
https://doi.org/10.1002/jcc.20058
https://doi.org/10.1021/jp107516k
https://doi.org/10.1016/j.cplett.2004.06.011
https://doi.org/10.1021/acs.chemrev.6b00662
https://doi.org/10.1007/978-3-642-40421-4
https://doi.org/10.1016/j.renene.2021.03.047
https://doi.org/10.1039/c2ee22890d
https://doi.org/10.1021/ar700111a


64 Bibliography



65

A Proof and Derivation

A.1 Proof of the Hohenberg-Kohn Existence theorem

If the ground state electron density determines the external potential, then all properties of the

molecule could in principle be determined by the ground state electron density as well. To prove

this, the opposite is presented as a supposition[7].

The Hamiltonian for a many-electron molecule

Ĥ = − ℏ2

2m

n∑
i=1

∇2
i +

n∑
i=1

ν(r⃗i) +
1

2
j0

n∑
i = 1,

j = i + 1

1

|rij |
(A.1)

Need to use the Slater-Condon rule for one-electron operators

⟨Ψ|Ω̂1|Ψ⟩ =
n∑

i=1

⟨ϕi(1)|Ω̂(r⃗1)|ϕi(1)⟩ (A.2)

The overall external potential is a sum of one-electron terms, and can thus be expressed as

⟨Ψ|
n∑

i=1

ν(r⃗i)|Ψ⟩ =
n∑

i=1

⟨ϕi(1)|ν(r⃗1)|ϕi(1)⟩

=

∫ ∑
i

ϕ∗i (r⃗1)ϕi(r⃗1)ν(r⃗1)dr⃗1

=

∫
ρ(r⃗)ν(r⃗)dr⃗

(A.3)

Here the electron density is expressed in terms of spin orbitals ϕi. The integration in the last line

replaces r⃗1 by r⃗.

Next, suppose the two Hamiltonians Ĥ and Ĥ ′ correspond to the same ground state electron

density, but their external potential ν(r⃗) differ. Consequently, there are two different normalised

wave functions Ψ and Ψ′. Using the result from above in eq. (A.3) and that Ψ′ is a trail function

for Ĥ the ground state energy can from the variational theorem (2) be written as

E0 < ⟨Ψ′|Ĥ|Ψ′⟩ = ⟨Ψ′|Ĥ ′|Ψ′⟩+ ⟨Ψ|Ĥ − Ĥ ′|Ψ⟩

< E′
0 +

∫
ρ(r⃗) {ν(r⃗)− ν′(r⃗)} dr⃗

(A.4)
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Alternatively can Ψ be used as a trail function for Ĥ ′

E′
0 < ⟨Ψ|Ĥ ′|Ψ⟩ = ⟨Ψ|Ĥ|Ψ⟩+ ⟨Ψ|Ĥ ′ − Ĥ|Ψ⟩

< E0 +

∫
ρ(r⃗) {ν(r⃗)− ν′(r⃗)} dr⃗

(A.5)

The sum of the equations (A.4) and (A.5) is

E0 + E′
0 < E′

0 + E0 (A.6)

which enables a conclusion to be made that the initial presumption leads to a contradiction.

Hence, the ground state electron density does in fact corresponds to a unique external potential.

Consequently, all properties of the molecule can in principle be determined by the ground state

electron density.

A.2 Proof of the Hohenberg-Kohn Variational Theorem

The ground state electron density determines the external potential of a system as already established

in A.1. From that it follows, that a trail density function ρ′(r⃗) that integrates to n electrons and is

positive everywhere. It founds a basis for the corresponding external potential ν′(r⃗) and consequently

the Hamiltonian Ĥ ′ and the normalised wave function Ψ′. In the following, the wave function acts

as a trail function for the real system with the Hamiltonian Ĥ. Together with the result from the

variational theorem, i.e. ⟨Ψ′|Ĥ|Ψ′⟩ ≥ E0, it follows

⟨Ψ′|Ĥ|Ψ′⟩ = T̂ [ρ′] + V̂ee[ρ
′] +

∫
ρ′(r⃗)ν(r⃗)dr⃗ = E[ρ′] (A.7)

It follows that E[ρ′] ≥ E0 because of the variational theorem ⟨Ψ′|Ĥ|Ψ′⟩ ≥ E0

A.3 Derivation of the dihedral angle

When calculating the dihedral angle θ, a set of four consecutive atoms i, j, k, l are considered. The

dihedral angle corresponds to angle between the two planes constituted by the atoms i, j, k and

j, k, l within the range (−π, π) or equivalently (−180°, 180°). The xyz-coordinates of these four

consecutive atoms are relevant for the calculation of the following three vectors:

v⃗ij = j − i

v⃗jk = k − j

v⃗kl = l − k

(A.8)

Taking the cross product of two non-zero vectors corresponds to a plane formed by the three

corresponding atoms. In this plane, the normal vector is perpendicular to the two non-zero vectors

n⃗ijk = v⃗ij × v⃗jk

n⃗jkl = v⃗jk × v⃗kl

(A.9)
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The smallest angle between the normal vectors n⃗ijk and n⃗jkl corresponding to the dihedral angle

can be expressed in two ways; in terms of the dot product or the cross product of the two normal

vectors[15]

cos θ =
n⃗ijk · n⃗jkl
|n⃗ijk||n⃗jkl|

=
(v⃗ij × v⃗jk) · (v⃗jk × v⃗kl)

|v⃗ij × v⃗jk||v⃗jk × v⃗kl|
(A.10)

sin θ =
v⃗jk
|v⃗jk|

· n⃗ijk × n⃗jkl
|n⃗ijk||n⃗jkl|

=
v⃗jk
|v⃗jk|

·

vector quadruple product︷ ︸︸ ︷
(v⃗ij × v⃗jk)× (v⃗jk × v⃗kl)

|v⃗ij × v⃗jk||v⃗jk × v⃗kl|
(A.11)

where v⃗jk
|v⃗jk| is a unit vector corresponding to the cross product of the the normal vectors n⃗ijk and

n⃗jkl, i.e. the normalised v⃗jk. Further on, the vector quadruple product can be simplified to a scalar

triple product making it easier to implement

n⃗ijk × n⃗jkl = (v⃗ij × v⃗jk)× (v⃗jk × v⃗kl)

= −(v⃗jk × v⃗ij)× (v⃗jk × v⃗kl)

= −[v⃗jk · (v⃗ij × v⃗kl)] · v⃗jk

= [v⃗jk · (v⃗kl × v⃗ij)] · v⃗jk

= [v⃗ij · (v⃗jk × v⃗kl)] · v⃗jk

(A.12)

The second line leverages the anti-commutative property of the cross product (i.e. a⃗× b⃗ = −b⃗× a⃗).

This is necessary in order to rewrite the quadruple product into a scalar triple product ([⃗a· (⃗b× c⃗)]⃗a =

(⃗a× b⃗)× (⃗a× c⃗)), as demonstrated in line 3. Next the anti-commutative relation of cross product

is employed as evident in line 4 as for line 1. Line 5 makes use of that circular shift of the three

vectors, wherein changing the order yields the same outcome (⃗a · (⃗b× c⃗) = c⃗ · (⃗a× b⃗) = b⃗ · (c⃗× a⃗)).

Consequently, this gives an even simpler sin expression than the one presented in eq. (A.11)

sin θ =
v⃗jk
|v⃗jk|

· [v⃗ij · (v⃗jk × v⃗kl)]v⃗jk
|v⃗ij × v⃗jk||v⃗jk × v⃗kl|

=
v⃗jk
|v⃗jk|

· v⃗jk
v⃗ij · (v⃗jk × v⃗kl)

|v⃗ij × v⃗jk||v⃗jk × v⃗kl|

=
|v⃗jk|v⃗ij · (v⃗jk × v⃗kl)]

|v⃗ij × v⃗jk||v⃗jk × v⃗kl|

(A.13)

Nonetheless, when employing either the arccos or arcsin functions, challenges arise with respect

to determining the sign and magnitude of the dihedral angle, where both aspects are decisive.

These challenges stem from the intrinsic properties of the trigonometric functions, specifically their

domain (all valid input values) and range (all valid output values)[34]

Table A.1: The domain and range for some trigonometric functions[12, 34,

57]

sin cos arcsin arccos arctan arctan2

domain (−∞,∞) (−∞,∞) [−1, 1] [−1, 1] (−∞,∞) (−∞,∞)

range [−1, 1] [−1, 1] [−π
2 ,

π
2 ] [0, π] (−π

2 ,
π
2 ) (−π, π)
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The arccos function can yield an angle, albeit with an inherent ambiguity in sign. This arises from

the fact that arccos operates within the positive range between 0 and π, as illustrated in Table A.1.

Conversely, the arcsin function is valid in the negative range but is confined to [−π
2 ,

π
2 ]. To address

this, both functions can be consider and the dihedral angle θ, can thus be calculated using the

arctan function. However, dividing sin θ by cos θ results in sign cancellation, which is a major issue.

The solution to this sign preservation is to employ the arctan 2 function. It takes two arguments,

arctan 2(y, x), and conserves the sign information, which is decisive for the resulting quadrant[12,

57].

The first set of equations in (A.14) deals with typical cases when arctan2 is well-defined based on

the signs of x and y. The function returns an angle in the specified range[57]:

arctan2(y, x) =



[0, π2 ] if x > 0 and y > 0

[π2 , π] if x < 0 and y > 0

[−π,−π
2 ] if x < 0 and y < 0

undefined if x = 0 and/or y = 0 or if x = ∞ and/or y = ∞

(A.14)

Although arctan2 is undefined for several special cases (A.14), they are taken care of according to

the cases below in (A.15)[12]

arctan2(y, x) =



±π if arctan2(±0,−0)

±0 if arctan2(±0,+0)

±π if arctan2(±0,+0) for x < 0

±0 if arctan2(±0,+0) for x > 0

−π
2 if arctan2(y,±0) for y < 0

π
2 if arctan2(y,±0) for y > 0

±π if arctan2(±y,−∞) for finite y > 0

±π if arctan2(±y,−∞) for finite y > 0

±π
2 if arctan2(±∞, x) for finite x

± 3π
4 if arctan2(±∞,−∞)

±π
4 if arctan2(±∞,+∞)

(A.15)

Moreover, the arctan2 function satisfies [86]

θ = arctan2(sin θ, cos θ) (A.16)

Consequently, the dihedral angle ought to be calculated using the arctan2 function by inserting eq.

(A.13) and (A.10) into eq. (A.16)

θ = arctan2 (sin θ, cos θ)

= arctan2( |v⃗jk|v⃗ij · (v⃗jk × v⃗kl), (v⃗ij × v⃗jk) · (v⃗jk × v⃗kl))

= arctan2(|v⃗jk|v⃗ij · n⃗jkl, n⃗ijk · n⃗jkl)

(A.17)
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providing an elegant implementation.

A.3.1 Calculating the C-C-N-lp Dihedral Angle

When considering a dihedral angle involving a lone pair, the method just given must be modified.

Naturally, there is no explicit coordinates for a lone pair of electrons, but its direction can be

estimated by considering the position of the adjacent hydrogens on the nitrogen. When looking

through the N–C-bond and rotating the amine group so that the lone pair is on top, the hydrogens

on the right and left side can be designated as l and m respectively. From this, two new vectors

can be defined as
v⃗kl = l − k

v⃗km = m− k
(A.18)

By adding these two vectors together, a new vector is obtained

v⃗kl + v⃗km = v⃗mid (A.19)

which will extended between the two addends vectors. Furthermore, changing the sign of a vector

the direction gets inverted

v⃗lp = −v⃗mid (A.20)

and gives a vector pointing somewhat in the direction of the lone pair. Next step is to define the

normal vector perpendicular to the plane defined by C–N– lp

n⃗klm = v⃗jk × v⃗lp (A.21)

where the normal vector n⃗klm is supposed to corresponds to the n⃗jkl from the original calculation.

The dihedral angle with respect to the special case C–C–N– lp can be calculated as accordingly

θ = arctan2(|v⃗jk|v⃗ij · n⃗klm, n⃗ijk · n⃗klm) (A.22)
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71

B Code

B.1 Process pool - Minimisation

1 from pyscf import gto

2 from pyscf.geomopt.geometric_solver import optimize

3 from pyscf.hessian import thermo

4 import numpy as np

5 import os

6 import sys

7 # from pyscf.solvent import ddcosmo # Neccessary for PySCF 2.4.0

8 from concurrent.futures import ThreadPoolExecutor , ProcessPoolExecutor

9

10 # Function to find and read files

11 def find_and_read_files(directory , file_extension):

12 name_list = []

13 atoms_init_list = []

14 file_path_list = []

15

16 for root , dirs , files in os.walk(directory):

17 for file in files:

18 if file.endswith(file_extension):

19 file_path = os.path.join(root , file)

20 file_path_list.append(file_path)

21 with open(file_path , 'r') as f:

22 atoms_init = f.read()[2:]

23

24 atoms_init_list.append(atoms_init)

25 filename = os.path.basename(file)

26 modified_name = filename.replace(file_extension , '')

27 name_list.append(modified_name)

28

29 return name_list , atoms_init_list , file_path_list

30

31 # Function to write xyz -file

32 def write_xyz(mol_opt , out_xyz):

33 with open(out_xyz , 'w+') as f:

34 f.write(f'{mol_opt.natm}\n\n')
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35 for i in range(mol_opt.natm):

36 b2a = mol_opt.atom_coord(i, unit = 'ANG')

37 symbol = mol_opt.atom_symbol(i)

38 f.write(f'{symbol} \t {b2a [0]} \t {b2a [1]} \t {b2a [2]}\n')

39 f.seek (3) # Move the pointer to the beginning

40 opt_coords = f.read()

41 return opt_coords

42

43 # Function to write the result -file

44 def write_result(result_out , atoms_init , opt_energy , energies , opt_coords ,

↪→freq_info , thermo_info , vibration_frequencies , rotation_constants ,

↪→symmetry_number):

45

46 with open(result_out , 'w') as f:

47 f.write(f'Input Geometry [Angstrom ]:{ atoms_init }\n\n')

48

49 f.write(f'Optimised Geometry [Angstrom ]:\n{opt_coords }\n\n')

50

51 f.write(f'Optimised Energy [hartree ]:\n{opt_energy }\n\n')

52

53 f.write(f'The various energy contributions [hartree ]:\n')

54 for name , value in energies.items ():

55 f.write(f'{name }:\t{value}\n')

56

57 f.write('\nVibrational Frequencies [cm^-1]:\n' +

58 ', '.join([f'{vf.imag}j' if isinstance(vf, complex) and vf.imag !=

↪→0 else f'{vf.real}'

59 for vf in vibration_frequencies ]))

60

61 f.write(f'\n\nRotation Constants [GHz]:\n{", ".join(map(str ,

↪→rotation_constants))}\n')

62

63 f.write(f'\nSymmetry number :\n{symmetry_number }\n')

64

65 f.write(f'\n\nThermo info:\n')

66 for name , value in thermo_info.items ():

67 f.write(f'{name }:\t\t{value}\n')

68

69 f.write(f'\nFrequency info:\n\n')

70 for name , value in freq_info.items():

71 f.write(f'{name }:\t\t{value}\n')

72

73 # Function to perform geometry optimisation

74 def geometry_opt(basis , charge , diel , functional , pressure , temperature , verbose ,

↪→atoms_init , result_out , out_xyz , error_log):

75 # Open the error log file to redirect the output

76 with open(error_log , 'w') as error_file:

77 # Redirect stdout and stderr to the error log file

78 sys.stdout = sys.stderr = error_file



B.1. Process pool - Minimisation 73

79

80 mol = gto.M(atom = atoms_init , basis = basis , charge = charge , verbose =

↪→verbose)

81 mf = mol.UKS(xc = functional).ddCOSMO ()

82 mf.with_solvent.eps = diel

83 mf.run()

84 mol_opt = optimize(mf)

85

86 mf_opt = mol_opt.UKS(xc=functional).ddCOSMO ()

87 mf_opt.with_solvent.eps = diel

88 mf_opt.run()

89 opt_energy = mf_opt.e_tot

90 energies = mf_opt.scf_summary

91

92 hess = mf_opt.Hessian ().kernel ()

93 freq_info = thermo.harmonic_analysis(mol_opt , hess)

94 thermo_info = thermo.thermo(mf_opt , freq_info['freq_au '], temperature ,

↪→pressure)

95 # thermo_info = thermo_info [0] # Neccessary for PySCF 2.4.0

96 vibration_frequencies = np.array(freq_info['freq_wavenumber '])

97 rotation_constants = thermo_info['rot_const '][0]

98 symmetry_number = thermo_info['sym_number '][0]

99

100 # Restore stdout and stderr to their original state

101 sys.stdout = sys.__stdout__

102 sys.stderr = sys.__stderr__

103

104 opt_coords = write_xyz(mol_opt , out_xyz)

105 write_result(result_out , atoms_init , opt_energy , energies , opt_coords ,

↪→freq_info , thermo_info , vibration_frequencies , rotation_constants ,

↪→symmetry_number)

106

107 return opt_energy , energies , opt_coords , freq_info , thermo_info ,

↪→vibration_frequencies , rotation_constants , symmetry_number

108

109 if __name__ == '__main__ ':

110 basis = 'augccpvdz '

111 charge = 0

112 diel = 78.3553

113 functional = 'b3lyp '

114 pressure = 101325

115 solvent = 'water '

116 temperature = (273.15 + 25)

117 state = 'minimum '

118 verbose = 4

119 workers = 4

120

121 directory_to_search = f'/Users/kristine/pyscf/mea/minima/gasphase/augccpvdz '

122 file_extension_to_find = f'_minimum_b3lyp_augccpvdz.xyz'
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123 result_path = f'/Users/kristine/pyscf/mea/water/minima '

124

125 name_list , atoms_init_list , file_path_list = find_and_read_files(

↪→directory_to_search , file_extension_to_find)

126

127 # Use ProcessPoolExecutor to run tasks concurrently

128 with ProcessPoolExecutor(max_workers = workers) as executor:

129 task_list = []

130 for name , atoms_init , file_path in zip(name_list , atoms_init_list ,

↪→file_path_list):

131 mol_dir = os.path.join(result_path , basis , name)

132 if not os.path.exists(mol_dir):

133 os.makedirs(mol_dir)

134

135 out_xyz = f'{mol_dir }/{ name}_{solvent}_{state}_{functional}_{basis

↪→}.xyz'

136 result_out = f'{mol_dir }/{ name}_{solvent}_{state}_{functional}_{

↪→basis }.out'

137 error_log = f'{mol_dir }/{ name}_{solvent}_error.log'

138

139 # Start a new task for each molecule

140 task = executor.submit(geometry_opt , basis , charge , diel ,

↪→functional , pressure , temperature , verbose , atoms_init ,

↪→result_out , out_xyz , error_log)

141 task_list.append(task)

142

143 else:

144 print(f'The {mol_dir} directory already exists ')

145

146 for task in tasks:

147 task.result ()

Listing B.1: Code to perform geometry optimisation in a given directory with ProcessPoolExecutor

B.2 Process pool - Transition state

1 from pyscf import gto

2 from pyscf.qsdopt.qsd_optimizer import QSD

3 from pyscf.hessian import thermo

4 import numpy as np

5 import os

6 import sys

7 # from pyscf.solvent import ddcosmo # Neccessary for PySCF 2.4.0

8 from concurrent.futures import ProcessPoolExecutor

9

10 # Function to find and read files

11 def find_and_read_files(directory , file_extension):

12 names = []
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13 atoms_init_list = []

14 file_paths = []

15

16 pattern_to_remove = file_extension.replace('.xyz', '')

17

18 for root , dirs , files in os.walk(directory):

19 for file in files:

20 if file.endswith(file_extension):

21 file_path = os.path.join(root , file)

22 with open(file_path , 'r') as f:

23 atoms_init = ''.join(f.readlines ()[2:]) # Read file content

↪→starting from line 3

24

25 # Modify the name and store it in names

26 filename = os.path.basename(file)

27 modified_name = filename.replace(pattern_to_remove , '')[:-4] #

↪→Remove pattern and .xyz extension

28 names.append(modified_name)

29 atoms_init_list.append(atoms_init)

30 file_paths.append(file_path)

31

32 return names , atoms_init_list , file_paths

33

34 # Function to write xyz -file

35 def write_xyz(mol , out_xyz):

36 with open(out_xyz , 'w+') as f:

37 f.write(f'{mol.natm}\n\n')

38 for i in range(mol.natm):

39 b2a = mol.atom_coord(i, unit = 'ANG')

40 symbol = mol.atom_symbol(i)

41 f.write(f'{symbol} \t {b2a [0]} \t {b2a [1]} \t {b2a [2]}\n')

42 f.seek (3) # Move the pointer to the beginning

43 ts_coords = f.read()

44 return ts_coords

45

46 def write_result(result_out , conv , atoms_init , ts_energy , energies , ts_coords ,

↪→thermo_info , freq_info , vibration_frequencies , rotation_constants ,

↪→symmetry_number):

47 with open(result_out , 'w') as f:

48 f.write(f'The calculation has converged :\n{conv}\n\n')

49

50 f.write(f'Input geometry [Angstrom ]:\n{atoms_init }\n\n')

51

52 f.write(f'Transition State Coordinates [Angstrom ]:\n{ts_coords }\n\n')

53

54 f.write(f'\nTransition State Energy [hartree ]:\n{ts_energy }\n\n')

55

56 f.write(f'Energy contributions [hartree ]:\n')

57 for name , value in energies.items ():
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58 f.write(f'{name }:\t{value}\n')

59

60 f.write('\nVibrational Frequencies [cm^-1]:\n' +

61 ', '.join([f'{vf.imag}j' if isinstance(vf, complex) and vf.imag !=

↪→0 else f'{vf.real}'

62 for vf in vibration_frequencies ]))

63

64 f.write(f'\n\nRotation Constants [GHz]:\n{", ".join(map(str ,

↪→rotation_constants))}\n')

65

66 f.write(f'\nSymmetry number :\n{symmetry_number }\n')

67

68 f.write(f'\n\nThermo info:\n')

69 for name , value in thermo_info.items ():

70 f.write(f'{name }:\t\t{value}\n')

71

72 f.write(f'\nFrequency info:\n\n')

73 for name , value in freq_info.items():

74 f.write(f'{name }:\t\t{value}\n')

75

76 # Function to perform geometry optimization and return optimized energy and

↪→coordinates

77 def ts_search(basis , charge , diel , functional , pressure , temperature , verbose ,

↪→atoms_init , result_out , out_xyz , error_log):

78 # Open the error log file to redirect the output

79 with open(error_log , 'w') as error_file:

80 # Redirect both stdout and stderr to the error log file

81 sys.stdout = sys.stderr = error_file

82

83 mol = gto.M(atom = atoms_init , basis = basis , charge = charge , verbose =

↪→verbose)

84 mf = mol.UKS(xc = functional).ddCOSMO ()

85 mf.with_solvent.eps = diel

86 mf.run()

87 optimizer = QSD(mf, stationary_point = 'TS')

88 optimizer.kernel(numhess_method = 'central ')

89 mf_ts = mol.UKS(xc = functional).ddCOSMO ()

90 mf_ts.with_solvent.eps = diel

91 mf_ts.run()

92

93 conv = optimizer.converged

94 ts_energy = mf_ts.e_tot

95 energies = mf_ts.scf_summary

96 hess = mf_ts.Hessian ().kernel ()

97 freq_info = thermo.harmonic_analysis(mf_ts.mol , hess)

98 thermo_info = thermo.thermo(mf_ts , freq_info['freq_au '], temperature ,

↪→pressure)

99 # thermo_info = thermo_info [0] # Neccessary for PySCF 2.4.0

100 vibration_frequencies = np.array(freq_info['freq_wavenumber '])
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101 rotation_constants = thermo_info['rot_const '][0]

102 symmetry_number = thermo_info['sym_number '][0]

103

104 ts_coords = write_xyz(mol , out_xyz)

105 write_result(result_out , conv , atoms_init , ts_energy , energies , ts_coords ,

↪→freq_info , thermo_info , vibration_frequencies , rotation_constants ,

↪→symmetry_number)

106

107 return ts_energy , energies , ts_coords , freq_info , thermo_info ,

↪→vibration_frequencies , rotation_constants , symmetry_number

108

109 if __name__ == '__main__ ':

110 basis = 'augccpvdz '

111 charge = 0

112 diel = 78.3553

113 functional = 'b3lyp '

114 pressure = 101325

115 solvent = 'water '

116 state = 'ts'

117 temperature = (273.15 + 25)

118 verbose = 4

119 workers = 2

120

121 directory_to_search = f'/Users/kristine/pyscf/mea/maxima/gasphase/augccpvdz '

122 file_extension_to_find = f'_ts_b3lyp_augccpvdz.xyz'

123 result_path = f'/Users/kristine/pyscf/mea/maxima/water'

124

125 names , atoms_init_list , file_paths = find_and_read_files(directory_to_search ,

↪→file_extension_to_find)

126

127 # Use ProcessPoolExecutor to run tasks concurrently

128 with ProcessPoolExecutor(max_workers = workers) as executor:

129 task_list = []

130 for name , atoms_init , file_path in zip(names , atoms_init_list , file_paths):

131 mol_dir = os.path.join(result_path , basis , name)

132 if not os.path.exists(mol_dir):

133 os.makedirs(mol_dir)

134

135 out_xyz = f'{mol_dir }/{ name}_{solvent}_{state}_{functional}_{basis

↪→}.xyz'

136 result_out = f'{mol_dir }/{ name}_{solvent}_{state}_{functional}_{

↪→basis }.out'

137 error_log = f'{mol_dir }/{ name}_{solvent}_error.log'

138

139 # Start a new task for each molecule

140 task = executor.submit(ts_search , basis , charge , diel , functional ,

↪→pressure , temperature , verbose , atoms_init , result_out ,

↪→out_xyz , error_log)

141 task_list.append(task)
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142

143 else:

144 print(f'The {mol_dir} directory already exists ')

145

146 # Wait for all tasks to complete

147 for task in tasks:

148 task.result ()

149

150 print('All tasks completed.')

Listing B.2: Code to perform concurrent transition state searches with ProcessPoolExecutor

B.3 Calculating the Dihedral Angles

1 import numpy as np

2

3 def calculate_dihedral(atom1 , atom2 , atom3 , atom4 , atom5 = None):

4 i, j, k, l = (np.array(atom1 [1:], dtype = float),

5 np.array(atom2 [1:], dtype = float),

6 np.array(atom3 [1:], dtype = float),

7 np.array(atom4 [1:], dtype = float))

8 v_ij = j - i

9 v_jk = k - j

10 v_kl = l - k

11 n_ijk = np.cross(v_ij , v_jk)

12 n_jkl = np.cross(v_jk , v_kl)

13 angle = np.arctan2(np.dot(np.linalg.norm(v_jk) * v_ij , n_jkl), np.dot(n_ijk ,

↪→n_jkl))

14

15 if atom5 is not None:

16 m = (np.array(atom5 [1:], dtype = float))

17 v_kl = l - k # v_NHa

18 v_km = m - k # v_NHb

19 v_mid = v_kl + v_km

20 v_lp = -v_mid

21 n_klm = np.cross(v_jk , v_lp)

22 lp_angle = np.arctan2(np.dot(np.linalg.norm(v_jk) * v_ij , n_klm), np.dot(

↪→n_ijk , n_klm))

23 return np.degrees(lp_angle)

24 return np.degrees(angle)

25

26 mol_xyz = '''11

27

28 O -2.0707883056580845 -2.0772383162067536 1.9641095613190434

29 H -1.2840171177008821 -2.0633719862569664 1.392170998536323

30 H -3.0906921702079555 -0.8596263437115265 -0.23965149420804374

31 C -2.9775430360837425 -1.9512873356915454 -0.29065195007958095

32 N -1.6204350806090628 -2.2415361077155866 -0.7852831216668819
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33 C -3.124486992553661 -2.5372190156779526 1.110589983559218

34 H -1.3893167524636094 -1.6491535185050932 -1.578212928907465

35 H -4.0755120065002 -2.225545040004764 1.561865209276729

36 H -3.7808887141288854 -2.345632145696079 -0.9364173468472151

37 H -1.5575232562408994 -3.2031698499543726 -1.1148001967755625

38 H -3.1136614068480255 -3.6408232737091035 1.0601567058153487

39 '''

40 xyzs = [line.split () for line in mol_xyz.strip().split('\n')[2:] if line.strip ()]

41 dihedral_set_list = [(5, 3, 4, 6, 9), # Dihedral C-C-N-Ha -Hb: [5, 3, 4, 6, 9]

42 (0, 5, 3, 4), # Dihedral O-C-C-N: [0, 5, 3, 4]

43 (3, 5, 0, 1), # Dihedral C-C-O-H: [3, 5, 0, 1]

44 ]

45 dihedral_list = []

46 for dihedral_set in dihedral_set_list:

47 dihedral = calculate_dihedral (*[ xyzs[i] for i in dihedral_set ])

48 dihedral_list.append(dihedral)

49 for i, dihedral in enumerate(dihedral_list , start = 1):

50 symbol_dihedral = [xyzs[j][0] for j in dihedral_set_list[i - 1]]

51 print(f'Dihedral angle {"-". join(symbol_dihedral)}: {dihedral :.1f} degrees ')

Listing B.3: This script calculates the dihedral angles (in degrees), where a set of predefined

dihedrals are provided

B.4 Calculating Bond Lengths

1 import numpy as np

2

3 def calculate_bond_length(xyzs):

4 bond_list = []

5 for i in range(len(xyzs)):

6 for j in range(i + 1, len(xyzs)):

7 atom_i = xyzs[i]

8 atom_j = xyzs[j]

9 if atom_i [0] == 'H' and atom_j [0] == 'H': continue

10 coord_i , coord_j = (np.array(atom_i [1:], dtype=float),

11 np.array(atom_j [1:], dtype=float))

12 bond = np.linalg.norm(coord_i - coord_j)

13 if bond < 2:

14 bond_list.append ((i, j, bond))

15 return bond_list

16

17 mol_xyz = '''11

18

19 O -2.0707883056580845 -2.0772383162067536 1.9641095613190434

20 H -1.2840171177008821 -2.0633719862569664 1.392170998536323

21 H -3.0906921702079555 -0.8596263437115265 -0.23965149420804374

22 C -2.9775430360837425 -1.9512873356915454 -0.29065195007958095

23 N -1.6204350806090628 -2.2415361077155866 -0.7852831216668819
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24 C -3.124486992553661 -2.5372190156779526 1.110589983559218

25 H -1.3893167524636094 -1.6491535185050932 -1.578212928907465

26 H -4.0755120065002 -2.225545040004764 1.561865209276729

27 H -3.7808887141288854 -2.345632145696079 -0.9364173468472151

28 H -1.5575232562408994 -3.2031698499543726 -1.1148001967755625

29 H -3.1136614068480255 -3.6408232737091035 1.0601567058153487

30 '''

31

32 xyzs = [line.split () for line in mol_xyz.strip().split('\n')[2:] if line.strip ()]

33

34 bonds = calculate_bond_length(xyzs)

35

36 print('Bond lengths:')

37 for count , (idx_i , idx_j , length) in enumerate(bonds , start =1):

38 atom_i = xyzs[idx_i ][0]

39 atom_j = xyzs[idx_j ][0]

40 print(f'{count}: {atom_i }({ idx_i }) -{atom_j }({ idx_j}):\t{length :.1f} angstroms ')

Listing B.4: This script calculates all bond lengths (< 2 angstrom) in a xyz-multistring obtained

from a .xyz-file

B.5 Visualise Molecules with py3Dmol

1 import py3Dmol

2

3 def view_mol(mol_xyz):

4 view = py3Dmol.view(width = 400, height = 400)

5 view.addModel(mol_xyz , 'xyz')

6 view.setStyle ({'stick ': {}, 'sphere ': {'scale ': 0.3}})

7 view.zoomTo ()

8 return view.show()

Listing B.5: This code displays the molecule using the py3Dmol package, where mol_xyz is the

file content of a xyz-file

B.6 Calculating Rate Constants

1 import numpy as np

2 from pyscf import gto

3

4 def read_xyz(input_xyz):

5 with open(input_xyz , 'r') as f:

6 opt_coords = f.read()[2:] # Except the first two lines

7 return opt_coords

8

9 # --- From thermo.py --- START
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10 def _get_rotor_type(rot_const):

11 if np.all(rot_const > 1e8):

12 rotor_type = 'ATOM'

13 elif rot_const [0] > 1e8 and (rot_const [1] - rot_const [2] < 1e-3):

14 rotor_type = 'LINEAR '

15 else:

16 rotor_type = 'REGULAR '

17 return rotor_type

18

19 def calculate_q_rot(rot_const , sym_number):

20 rotor_type = _get_rotor_type(rot_const)

21 if rotor_type == 'LINEAR ':

22 B = rot_const [1] * 1e9

23 q_rot = kB * temperature / (sym_number * h * B)

24 else:

25 ABC = rot_const * 1e9

26 q_rot = (kB*temperature/h)**1.5 * np.pi**0.5 / (sym_number * np.prod(ABC)

↪→**0.5)

27 return q_rot

28

29 def calculate_q_trans(mol):

30 mass = mol.atom_mass_list(isotope_avg = True)

31 mass_tot = mass.sum() * atomic_mass

32 q_trans = (2 * np.pi * mass_tot * kB * temperature / h**2) **1.5 * kB *

↪→temperature / pressure

33 return q_trans

34

35 def calculate_q_vib(freq):

36 freq = freq * c * 1e2

37 vib_temp_list = freq * h / kB

38

39 q_vib_list = 1/(1 - np.exp(- vib_temp_list / temperature))

40 q_vib = np.prod(q_vib_list)

41 return q_vib

42 # --- From thermo.py --- END

43

44 def calculate_k(mol_min , mol_ts , rot_const_min , rot_const_ts , freq_min , freq_ts ,

↪→energy_min , energy_ts):

45 q_rot_min = calculate_q_rot(rot_const_min , sym_number_min)

46 q_trans_min = calculate_q_trans(mol_min)

47 q_vib_min = calculate_q_vib(freq_min)

48

49 q_rot_ts = calculate_q_rot(rot_const_ts , sym_number_ts)

50 q_trans_ts = calculate_q_trans(mol_ts)

51 q_vib_ts = calculate_q_vib(freq_ts)

52

53 K_r = q_rot_ts/q_rot_min

54 K_t = q_trans_ts/q_trans_min

55 K_v = q_vib_ts/q_vib_min
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56

57 k = (kB * temperature/h) * K_t * K_r * K_v * np.exp(-deltaE /(kB * temperature))

58 return k

59

60

61 if __name__ == "__main__":

62 avogadro = 6.022140857 e23

63 atomic_mass = 1e-3/ avogadro

64 bohr = 0.52917721092

65 bohr_si = bohr * 1e-10

66 c = 299792458

67 e_mass = 9.10938356e-31

68 h = 6.626070040e-34

69 hbar = h/(2 * np.pi)

70 hartree2J = hbar **2 / (e_mass * bohr_si **2)

71 au2hz = (hartree2J / (atomic_mass * bohr_si **2))**0.5 / (2 * np.pi)

72 kB = 1.38064852e-23

73 pressure = 101325

74 temperature = (273.15 + 25)

75

76 sym_number_min = 1

77 sym_number_ts = 1

78 sym_number_min2 = 1

79

80 energy_min = -210.43341086557925

81 energy_ts = -210.42520525626108

82 energy_min2 = -210.43018776401314

83

84 deltaE_f = (energy_ts - energy_min) * hartree2J

85 deltaE_r = (energy_ts - energy_min2) * hartree2J

86

87 min = ts = '1g-Gg-'

88 min2 = '24g-Tg -'

89

90 input_xyz_min = f'{min}_water_minimum_b3lyp_augccpvdz.xyz'

91 input_xyz_ts = f'{ts}_water_ts_b3lyp_augccpvdz.xyz'

92 input_xyz_min2 = f'{min2}_water_minimum_b3lyp_augccpvdz.xyz'

93

94 xyz_min = read_xyz(input_xyz_min)

95 xyz_ts = read_xyz(input_xyz_ts)

96 xyz_min2 = read_xyz(input_xyz_min2)

97

98 rot_const_min = np.array ([14.22 , 5.61, 4.56])

99 rot_const_ts = np.array ([21.59 , 3.92, 3.89])

100 rot_const_min2 = np.array ([28.18 , 3.82, 3.58])

101

102 freq_min = np.array ([164.82 , 257.67 , 320.09 , 512.00 , 540.64 , 804.91 , 875.91 ,

↪→913.39 , 998.06 , 1057.27 , 1104.15 , 1174.52 , 1241.62 , 1310.09 , 1350.61 ,

↪→1388.92 , 1426.23 , 1476.93 , 1487.48 , 1639.82 , 2962.39 , 2984.94 , 3077.91 ,
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↪→3087.33 , 3495.07 , 3582.88 , 3724.43])

103 freq_ts = np.array ([259.78 , 324.21 , 412.41 , 444.57 , 815.09 , 852.34 , 965.72 ,

↪→999.68 , 1056.18 , 1095.77 , 1177.27 , 1214.33 , 1309.76 , 1361.69 , 1388.53 ,

↪→1418.13 , 1474.29 , 1491.19 , 1643.94 , 2966.02 , 3012.11 , 3069.87 , 3106.52 ,

↪→3473.78 , 3552.53 , 3814.25])

104 freq_min2 = np.array ([128.71 , 229.89 , 269.37 , 301.84 , 473.09 , 788.25 , 830.39 ,

↪→960.30 , 1056.50 , 1072.05 , 1096.94 , 1123.87 , 1267.55 , 1302.89 , 1338.65 ,

↪→1387.34 , 1417.95 , 1482.31 , 1495.05 , 1642.63 , 2982.60 , 3024.22 , 3045.08 ,

↪→3084.38 , 3490.93 , 3574.47 , 3813.87])

105

106 mol_min = gto.M(atom = xyz_min)

107 mol_ts = gto.M(atom = xyz_ts)

108 mol_min2 = gto.M(atom = xyz_min2)

109

110 kf = calculate_k(mol_min , mol_ts , rot_const_min , rot_const_ts , freq_min ,

↪→freq_ts , deltaE_f)

111 kr = calculate_k(mol_min2 , mol_ts , rot_const_min2 , rot_const_ts , freq_min2 ,

↪→freq_ts , deltaE_r)

112

113 print(f'The forward rate constant :\t{kf:e} s-1')

114 print(f'The backward rate constant :\t{kr:e} s-1')

Listing B.6: This is the code for calculating the rate constants derived from transition state theory
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