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1 Introduction

Musical analogy has been responsible for lots of general math concepts, such as
the wave equation and spectral decomposition. In this bachelor thesis I focus
on how the theory of unbounded operators help understand the wave equation
on a circular membrane. Also vice versa, the modeling of sound from a drum
head is used as an introductory step into the theory of unbounded operators.
The vibrations of a string is something we all have studied. Calculus (including
differential equations) and concepts of eigenvalues and eigenvectors in finite
dimensional linear algebra is well understood.
Concepts in Lebesgue integration theory is introduced in the preliminaries but
a complete understanding requires a background outside of this thesis. Hilbert
space notation is also covered.

With the purpose of foreshadowing what is to come, this thesis starts off by
outlining the solution process of the wave equation with a single spatial variable.
Following this is four sections of material.

• Preliminaries and Notation
This section is mostly directed towards setting up the function spaces in
order to find a solution space. Some known definitions are stated later in
the text.

• Sobolev Space
Sobolev spaces are widely used in the theory of partial differential equa-
tions in particular when the wave equations is combined with Dirichlet
conditions. The section is also dedicated to the notion of weak deriva-
tives.

• Unbounded Operators
Whereas operator theory should be understood to a certain extent by the
reader, unbounded operators is likely a new area of study. While theory of
unbounded operators is quite vast this section only scratches the surface
of such theory.

• Solving the Wave Equation
The last section is allocated to solving the wave equation on a disk with
Dirichlet boundary conditions. This is done in a general sense as the
focus is not on a particular solution but to show a connection of theory
and application.

1.1 Simple Sketch

In this simple sketch one may imagine hearing a guitar string.

• The wave equation is derived from Newtonian mechanics. This derivation
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is outside the scope of this thesis. The wave equation is as follows.
∆u(x, t)− utt(x, t) = 0 Ω× [0,∞)

u|∂Ω = 0

u(x, 0) = f(x)

Where ∆ is the Laplacian, i.e. the second derivative. (Note that the one
dimensional Laplacian is used in examples before defining this operator
properly.) The domain Ω is a string (i.e. line segment) and u(x, t) is the
height of the string at each point in time.
The strings end points are fixed. This is denoted as u|∂Ω = 0 .
To find a particular solution one needs to know the initial displacement
f(x), though this does not affect the fundamental frequency (i.e. lowest
frequency).

• The solution process uses the separation of variables assumption (u(x, t) =
H(x)T (t)). This means we are in a separable hilbert space which you will
find stated in definition 3.8.
Two ordinary differential equations are obtained where the focus is on the
spacial equation ∆Hλn

(x) = −λ2nHλn
(x). This has the general solution

H(x) =
∑∞

n=1 anHλn
(x). We denote λ2n as the eigenvalues and λn as

the angular frequency we hear (up to a constant). Since we assumed
solutions on the separable form u(x, t) = H(x)T (t) it is to be expected
that the eigenfunctions form an orthonormal basis, as in theorem 3.9. It
is a1Hλ1

(x) the wave with the biggest length, which has the fundamental
frequency and tone. The angular frequency turns out to be inversely
proportional with string length. Halving the string increases pitch by
octave. The drum is not as well behaved as the string (because of Bessel
functions, 2.1) but the eigenvalues of a particular single variable system(
i.e. a fixed string being played) are spaced evenly as scalar multiples of
the fundamental frequency.

2 Preliminaries and Notation

2.1 Bessel Functions

The Bessel functions are a type of special functions often described using power
series. They appear in the Helmholtz equation in the radial part of the solution.
We will only work with Bessel functions of the first kind with integer order. The
periodicity of the wave equation will assert m (in the equation below) to be a
positive integer.

These Bessel functions are stated in [3, p. 189]. Bessel functions

Jn(x) = xn
∞∑

m=0

(−1)m(x)2m

22m+nm!(n−m)!

2



converge for all x and are solutions to the Bessel equation shown in [3, p. 187].

x2y′′ + xy′ + (x2 − n2)y = 0 for an integer n

where y is a function of a variable x, as shown in [3, p. 187].
Let x = λnmr , then the change of variables gives

(λnmr)
2y′′ + λnmry

′ + ((λnmr)
2 − n2)y = 0 for an integer n.

Which of course then have the solutions

Jn(λnmr) = (λnmr)
n

∞∑
m=0

(−1)m(λnmr)
2m

22m+nm!(n−m)!
.

2.2 Hilbert Space

Hilbert spaces provide a rigorous mathematical concept in which many of to-
day’s differential equations are modeled. Proving that all the spaces used are
in fact Hilbert spaces is out of the scope of this bachelor thesis. Nonetheless
Hilbert spaces are of vital importance and an introduction is in order.

2.2.1 Inner Product Space

A complex inner product space is a complex vector space V equipped with an
inner product, i.e. a linear functional < ·, · >: V × V → C which obeys the
following properties;

• The inner product is equal to its complex conjugate when the elements
are interchanged

< x, y >= < y, x > for all x, y ∈ V.

• It is positive definite

0 ≤ < x, x > for all x ∈ V and < x, x >= 0 only when x = 0.

• There must be linearity in the first argument;

< ax+ by, z >= a < x, z > +b < y, z > .

2.2.2 Complete Vector Spaces

The inner product space is called a Hilbert space if it is complete. Completeness
of an inner product space is defined as all Cauchy sequences converging (in norm)
within the space.Thus we firstly introduce the notions of norm and Cauchy
sequences.

3



Definition 2.1. Norm
A norm (of a vector) is a linear functional denoted as ||x|| and is defined on

a complex or real vector space X and has the real numbers as its range

∥x∥ : X → R.

The norm is defined by the following properties which hold for all a ∈ C or R
and x, y in a vector space over the field of complex or real numbers.

• satisfying the triangle inequality

||x+ y|| ≤ ||x||+ ||y||

• being positive definite

0 ≤ ||x|| and only if x = 0 we have ||x|| = 0

• having homogeneity
||ax|| = |a|||x||.

Definition 2.2. Cauchy
A Cauchy sequence {xi}∞i=0 is a sequence satisfying

lim sup
i,j

||xi − xj || = 0.

Alternatively one can define that a sequence is Cauchy if

∀ ϵ > 0, ∃ N ∈ N; ||xi − xj || < ϵ for all i, j > N.

The inner products admits a natural norm

||x|| =
√
< x, x >

by taking the square root the inner product.
A Hilbert space can now be defined in terms of the previous definitions.

Definition 2.3. Hilbert space
A Hilbert space X is an inner product space where all its Cauchy sequences
converge (i.e. has a limit contained in the space). For all Cauchy sequences
{xi} ∈ X there exists x ∈ X such that limi→∞{xi} = x. This means that

lim
i→∞

||xi − x|| = 0

Lets first see if n-tuples over Cn with the dot product is a Hilbert space.

Example 2.4. First lets pick two arbitrary vectors with elements from Cn

z = {zi}ni=1 and w = {wj}nj=1. Its know that these vectors indeed form a vector

space over Cn. We begin by checking if the complex dot, < z,w >=
∑n

k=1 ziwj

where j = i (i.e. component-wise multiplication), is in fact an inner product:

4



1. < z,w >=
∑n

k=1 ziwj =
∑n

k=1 ziwj =< w, z > (i.e. conjugate symme-
try).

2. When a complex number is multiplied with its own conjugate we indeed get
positive real number, hence < z, z >= {zizi} = {(a2i + b2i )i}for z = a+ bi
and < z, z >= 0 only when z = 0 (i.e. positive definite)

3. Let c = cr + ict be a complex number.
Then < cz,w > {cziwj} = c{ziwi} = c < z,w > thus the complex dot
product is linear in the first slot.
And of course a factor in the second slot of the dot product would be
factorized as the complex conjugate, i.e. < z, cw >= c < z,w >.

Now we will check if this inner product space is complete. For every Cauchy
sequence of n-tuples,

{zk}∞k=1 = {({zi}ni=1)k}∞k=1

we have that

∀ ϵ > 0, ∃ N ∈ N : ||zkn − zkm || < ϵ ∀n,m > N.

This is understood component-wise for every element in each zk, meaning that
for each zk we have n Cauchy sequences where

∀ ϵ > 0, ∃ N ∈ N; ||zin − zim || < ϵ ∀n,m > N

for each zi.
So we have that as k becomes increasingly large each component in zk become
arbitrarily close to one another in norm (

√
< zin − zim , zin − zim >). Lets think

about the limit limk→∞zk. Well, we have that ∥zkn
− zkm

∥ ≤ ϵl for all n,m >
N ∈ N for a fixed ϵl. This means that every Cauchy sequence is bounded since
each element in zk is in C , the ϵl ∈ R and

∥zkm
∥ = ∥zkm

+ zkN
− zkN

∥ ≤ ∥zkN
∥+ ∥zkm

− zkN
∥ ≤ ∥zkN

∥+ ϵl

for all m > N ∈ N.
The supremum of ∥zkm

∥ = ∥zkN
∥ + ϵl can only decrease as N → ∞ (and

m > N) as is the case for each component as well. We also have the infimum of
∥zkN

∥ = ∥zkm∥− ϵl can only increase as N → ∞. Since this is true for all ϵ > 0
( for example {ϵn}∞n=1 = { 1

n}
∞
n=1) we can conclude that

limN→∞{inf∥zkm
∥+ ϵl} = limN→∞{sup∥zkN

∥+ ϵl}

⇐⇒
limN→∞{inf∥zkN

∥} = limN→∞{sup∥zkm∥} := L.

So the limit limk→∞zk = L = {Li}ni=1 exists within our vector space Cn.
So then both component wise limi→∞ ∥zni

− Li∥ = 0 and as a whole vector
limn→∞ ∥zn − L∥ = 0. Thus the conclusion is that the vectors of n-tuples over
Cn with the complex dot product is a Hilbert space.
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The next example is more relevant to this thesis and will prove that the
L2(Ω) from definition 2.12 in the next subsection with p = 2 and some domain
Ω is complete.

Example 2.5. Assuming that we have some Ω where the inner product

< f, g >=

∫
Ω

fg

is valid. We move on to checking completeness. Again, we have that a sequence
of functions {fn(Ω)}∞n=1 is a Cauchy sequence if

∀ ϵ > 0, ∃ N ∈ N; ||fn − fm|| < ϵ ∀n,m > N .

This means that as N becomes increasingly large, each
fn(ω) in fn and fm(ω) in fm for ω ∈ Ω become arbitrarily close. The norm

is
√
< fn − fm, fn − fm > =

∫
Ω
fn − fmfn − fm

=

∫
Ω

|fn − fm|2 < ϵ for n,m > N ∈ N

.
Well, we have that ∥fn − fm∥ ≤ ϵf for all n,m > N ∈ N for a fixed ϵf . This
means that every Cauchy sequence is bounded since

∥fm∥ = ∥fm + fN − fN∥ ≤ ∥fN∥+ ∥fm − fN∥ ≤ ∥fN∥+ ϵf

for all m > N ∈ N. Boundedness means the limit limk→∞fk = Lf either within
our function space L2(Ω) or as a limit. The supremum of ∥fm∥ = ∥fN∥ + ϵf
can only decrease as N → ∞ (and m > N) analogous to the previous example.
The infimum of ∥fN∥ = ∥fm∥ − ϵf can only increase as N → ∞. Since this is
true for all ϵ > 0 we can conclude that

limN→∞{inf∥fm∥+ ϵf} = limN→∞{sup∥fN∥+ ϵf}
⇐⇒

limN→∞{inf∥fN∥} = limN→∞{sup∥fm∥} := Lf .

So the limit limk→∞fk = Lf (Ω) exists within our vector space L2(Ω). Thus
limn→∞ ∥fn − Lf∥ = 0. Thus the conclusion is that the function space (i.e.
vector space of functions) L2(Ω) with the L2(Ω) norm is a Hilbert space.

2.3 Lebesgue Space

The solution space for the wave equation on a drum head turns out to be a
subspace of a Lebesgue space. The introduction to Lebesgue space will be
quite brief and mostly for introducing notation and basic concepts. This space
revolves around Lebesgue integration, which is an alternative to Riemann inte-
gration. Lebesgue integration was introduced into mathematics for a number of
reasons, among others an expansion of what can be considered integrable.
Firstly, the notion of a measure space is introduced for the purpose of defining
Lebesgue space.

6



2.3.1 Measure Space

A measure space is defined in [1, p. 42] and is a triplet (X,A, µ) containing a set
X, a σ-algebra A of X, and a measure µ. This text will not define the notion
of a set X but the other elements of this triplet are as follows.
The σ in σ-algebra alludes to the property that the algebras are closed under
countable infinite unions. This means that if we have a countable sequence{Ai}∞i=1

where all Ai ∈ A then their union ∪∞
i=1 Ai ∈ as well.

Definition 2.6. σ-algebra, [1, p. 26]
Let A denote a σ-algebra, which is defined as a set of subsets. This set of subsets
must contain the empty set, complements of sets and infinite unions of sets in
the σ -algebra. Meaning A contains

•
∅ ∈ A

•
B ∈ A implies C ∈ A where C is the complement of B in A

•
∞⋃
i=1

Ai ∈ A

for a countable sequence {Ai}∞i=1 ⊂ A where all Ai is in A.

Example 2.7. An example of a σ-algebra A of the set X = {1, 2, 3} is

A = {{1, 2, 3}, {∅}, {1}, {2, 3}, {2}, {1, 3}, {3} {1, 2}}.

The last element in the triplet µ is defined as follows.

Definition 2.8. Measure, [1, p. 41]

A measure is a function
µ : A→ [0,∞]

which is countably additive, meaning that if we have a countable set of disjoint
subsets {Ai}ni=1 ⊂ A then we have that

µ(

n⋃
i=1

Ai) = Σn
i=1µ(Ai) where either n ∈ N or n = ∞.

A measure function has the following properties;

µ(∅) = 0

µ(B) ≤ µ(C)

µ(C/B) = µ(C)− µ(B) when µ(B) ̸= ∞.

These properties hold for B ⊆ C when B,C ∈ A.

7



Example 2.9. A measure on the measurable space (X,A) from example 2.7.
Define a measure ν : A→ [0,∞] such that
ν(Ai) =

∑
j(ej)

where ej is an element in Ai and the ≤ j ≤ J where J is the number of elements
in set Ai.
Thus the properties of measure hold. Note that we also have that

ν(

n⋃
i=1

Ai) = Σn
i=1ν(Ai) where either n ∈ N or n = ∞.

There are many possible choices of measure for which definition2.8 hold,
one of the most common is the Lebesgue measure. To describe the Lebesgue
measure one uses the notion of what is called an outer measure.

Definition 2.10. Lebesgue outer measure
A Lebesgue outer measure of a set is the infimum of a measure of an infinite
union of open countable sets covering that set. That is to say, the Lebesgue
outer measure of a set S ⊂ Rn is
m∗(S) = |S|= Σ∞

i=1|Bi| where ∪∞
i=1Bi is the infimum of sets {Bj} such that

S ⊆ Bj . Here |Bi| denotes the elementary measure of the cube Bi ⊂ Rn ( i.e.
for R ⊂ R3 this is the common volume or R).

Definition 2.11. Lebesgue measure, [1, p. 51]
Lebesgue measure on (Rn,Σ) is the Lebesgue outer measure of Lebesgue mea-
surable subsets or Rn.
The σ-algebra Σ is that of Lebesgue measurable subsets. This means that the
Lebesgue measure of S ⊂ Rn exists if there is an open set Z ⊂ Rn such that

m∗(Z \ S) ≤ ϵ

This should hold for every ϵ > 0.
In that case the Lebesgue measure is µ(S) = m∗(S).

In this text, if not stated explicitly, the measure being used will be the
Lebesgue measure. The Borel algebra ( the smallest σ-algebra containing all
open subsets) will be used as the σ−algebra in the measure spaces considered
forthwith and throughout this text.

With this notion of a measure space and with the Lebesgue integral (which
one can read about in [1] and [2] ) one can finally define the Lebesgue spaces.

Definition 2.12. LP norm and space
Denote a measure space by (X,A, µ) , then the Lp norm of a (µ-)measurable
function f : X → C is defined as

∥f∥p :=

(∫
X

|f |p dµ
) 1

p

for each p ∈ [1,∞).

8



The Lp spaces are defined as ;

Lp(X, dµ) := {f measurable X → C : ∥f∥p <∞} .

The definition of measurable functions is found in [1, p. 31]. Essentially these
are functions of which their inverse image of Borel subsets is in A. If f : X → Y
then f−1(Ci) ∈ A if Ci ⊂ C and A and C are the Borel algebra of their
respective sets x and Y .

In order to see how this Lebesgue theory can be exemplified, look at one of
the simplest functions.

Example 2.13. A function in L2

Claim: f(x) = |x| where x ∈ [−a, b] in L2[−a, b].

−a b

b

x

|x|

Figure 1: The graph of f(x) = |x|.

Let X = [a, b] represent a set (also let all letters to used be positive, arbi-
trary members of the real number line bounded above by b and below by −a).

Let the σ-algebra, A, be the collection of Borel subsets, Si.
Take the Lebesgue measure to be µ(j, k) = dist(j, k) = k− (j) , k > j where

(j, k) is an interval in X

This defines a measure space (X,A, µ).
Since the pre-image of each Borel set is in A, we have that f(x) = |x| is a
measurable function. For example (0, b) is indeed in A when looking at |x|
when x ∈ (−a, b). Then we have that f(x) = |x| is a measurable function with
respect to (X,A, µ).

9



Next we check that |x| is in L2[−a, b] by integrating with respect to a suitable
disjoint collection of subsets of A∫

(−a,b)

|x|2dµ =
b3 − a3

3
<∞

meaning that ||x||L2(a,b) <∞.
Thus we have found a measure space (X,A, µ), that f(x) is measurable here
and that ||x||L2(a,b) <∞. So f(x) = |x| ∈ L2(−a, b).

The (strong)derivative of f(x) is not well defined at x = 0. We see this in the cal-

culation |x|′ = limh→0
|x+h|−|x|

h = limh→0
(|x+h|−|x|)(|x+h|+|x|)

h(|x+h|+|x|) = limh→0
(x+h)2−x2

h(|x+h|+|x|) =

limh→0
2xh+h2

h(|x+h|+|x|) =
2x

(|x|+|x|) =
x
|x| = ±1, x ̸= 0.

While this derivative is completely valid (for x ̸= 0), there are many func-
tions in L2 with many such points where the directional derivatives don’t all
match up. To lessen the need to specify each non differentiable point in an
otherwise differentiable function, the L2 space is defined such that we take this
into account. Functions are seen as equivalent if they differ only on sets of mea-
sure zero. For example the set where the derivative of f ′(x) is not defined has
measure zero, hence the derivative exist almost everywhere(a.e.). Also f(x) is
differentiable a.e.

2.3.2 Locally Integrable Functions

Some functions, for example f(x) = 1
x , are ”locally integrable”.

Definition 2.14. Locally absolutely integrable functions
The space of locally absolutely integrable functions is denoted as L1

loc(Ω) where
Ω ⊂ Rn is open. This means that if u ∈ L1

loc(Ω) then |u| is integrable over
compact subsets of Ω [2, page 19].

Example 2.15. Take Ω = (−1, 0)∪(0, 1) then f(x) = 1
x ∈ L1

loc(Ω) but not in L
1(Ω)

because of the singularity at x = 0.

3 Sobolev Space

If we where to differentiate f(x) = |x| from example 2.13 twice, the result,
2δ0 would not be in L2(−a, b) (where δ is the Dirac delta function). Sobolev
spaces are subspaces of Lebesgue spaces. One such Sobolev space would contain
all functions in L2(−a, b) which also have first and second order derivatives in
L2(−a, b). Then f(x) = |x| ∈ L2([a, b]) would not be in this particular Sobolev
space.

10



3.1 Weak Derivatives

The notion of differentiabillity has previously been that a function must be
differentiable at every point in order to be deemed differentiable on the larger
set. For use in Lebesgue space a more general definition is called for (one
with expanded domain). Note that the weak derivative (also an operator) uses
differential operators within its definition. For the definition of an operator see
definition 4.1.

Definition 3.1. Weak derivative
The multi-index α ∈ (N0)

n yields a shorthand for the differential operator

Dα :=
∂|α|

∂xα1
1 · · · ∂xαn

n
= u(α),

of order |α| := α1 + · · ·+ αn. If both u and u(α) ∈ L1
loc(Ω) where Ω is an open

subset of Rn, that is to say, locally absolutely integrable. And if∫
Ω

u(α)ψ dnx = (−1)|α|
∫
Ω

uDαψ dnx

for all ψ ∈ C∞
0 (Ω), then we say that u admits a weak derivative Dαu := u(α).

(The subscript on C∞
0 indicates compact support inside the interior of Ω as

denoted in [2, p. 19].)
Lets use a couple of examples to familiarize ourselves with this new notion

of the derivative.

Example 3.2. Finding the weak derivative
Let α = (2, 2) and u(x, y) = x2y3 on Ω = (1, 2)2 then

Dαu = u(α) =
∂4u

∂x2∂y2
= 12y.

Since u and u(α) ∈ L1
loc(Ω) we can calculate the weak derivative. Lets pick

ψ ∈ C∞
0 ((1, 2)2) and use integration by parts four times, we get∫ 2

1

∫ 2

1

(12y)ψdxdy =

∫ 2

1

∫ 2

1

x2y3D(2,2)ψdxdy.

Example 3.3. Exemplifying the weak derivative

It is simple to check that if u(x) = 2x and ψ ∈ C∞
0 (−a, a) for a ∈ R then

the weak definition coincide with the strong definition∫ a

−a

ψ(x)2dx = [ψ(x)2]a−a −
∫ a

−a

2xDψ(x)dx = −
∫ a

−a

2xDψ(x)dx.

Thus we see that (2x)′ = 2 on Ω = (−a, a) and∫ a

−a

2ψ(x)dx = (−1)1
∫ a

−a

2xDψ(x)dx

.
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Example 3.4. When analyzing f(x) = |x| on (−1, 2) we need to split the
domain into Ω = (−1, 0) ∩ (0, 2), then both sgn(x) and f(x) are inL1

loc(Ω). We
pick a ϕ ∈ C∞

0 (Ω) and and check that
∫
Ω
sgn(x)ϕdx = −

∫
Ω
|x|ϕ′dx. The way

to do this is by integration by parts∫
Ω
sgn(x)ϕdx =

∫
(−1,0)

−1ϕ′dx+
∫
(0,1)

1ϕ′dx = −
∫
(−1,0)

−x′ϕdx−
∫
(0,1)

x′ϕdx =

−
∫
Ω
|x|ϕ′dx where the boundary terms implicitly vanished.

After one knows the definition of the weak derivative one may go on to
defining Sobolev space.

3.1.1 Defining Sobolev Spaces

The Sobolev spaces are encountered in [2, p. 21] and centered on L2 although
there are definitions for the more general Lp spaces.

Definition 3.5. Sobolev space
For an open set Ω ⊂ Rn the Sobolev spaces are defined for m ∈ N

Hm(Ω) :=
{
u ∈ L2(Ω) : Dαu ∈ L2(Ω) for |α| ≤ m

}
.

One can choose the Sobolev inner products

< u, v >Hm :=
∑

|α|≤m

< Dαu,Dαv >L2

and Sobolev norms

∥u∥Hm :=

 ∑
|α|≤m

∥Dαu∥2L2

1/2

to go with these spaces.

In order to clarify how this notation acts out the example below shows how
the norm of H2 is written as a combination of L2 norms. It is of course domain
dependent but there is no need to exemplify that.

Example 3.6. To clarify the notation of the norm defined above we write it
out for m=2

H2(Ω) :=
{
u(x, y) ∈ L2(Ω) : Dαu(x, y) ∈ L2(Ω) for |α| ≤ 2

}
.

∥u∥H2 =
√
< u, u > + < D(1,0)u,D(0,1)u > + < D(2,0)u,D(0,2)u > + < D(1,1)u,D(1,1)u >

Note that every possible way of obtaining |α| ≤ 2 is used.

Now is the time to distinguish Sobolev space and Lebesgue space with a
concrete example. We will show that f(x) =

√
|x|e−x2

is in L2(R) but not in
H1(R).

12



Example 3.7. Claim; f(x) =
√

|x|e−x2

is in L2(R) but not in H1(R).
Since the pre-image of f(K) where K is an arbitrary set in the Borel-σ-

algebra of R is itself in a σ-algebra of R chosen appropriately,it is measurable.
Since f(x) is measurable we can indeed compute the L2(R) norm

∫
|x| e−2x2

dx.
Let us simplify with a change of variable u(x) = 2x2 then du = 4xdx.
The norm is now simply

||f(x)|| = (

∫
|x| e−2x2

dx)
1
2

= (2

∫ ∞

0

|x|e−2x2

dx)
1
2 = (2

∫ ∞

0

1

4
e−udu)

1
2

(=
1

2
)

1
2 <∞.

Thus we conclude that f(x) ∈ L2(R)
The weak derivative of the function

g(x) =
xe−x2

|x|2
√

|x|)
− 2xe−x2√

|x|

still measurable.When we square this we get

g2(x) =
e−2x2

4|x|
− 2xe−2x2

+ 4x3e−2x2

.

Because of the linearity of integration operators we check the first term. This
would be ∫

R

e−2x2

4|x|
dx

which, close to zero, behaves like∫
R

1

4|x|
dx = 2

∫ ∞

0

| 1

4|x|
|dx.

Thus we have that g(x) /∈ L2(R) because when

ϵ→ 0 we have that 2

∫ ∞

ϵ

1

4x
dx→ ∞.

So we see that f(x) =
√

|x|e−x2

is in L2(R) but not in H1(R). We see this from
the function g(x) in figure 2 as well. Note that we would not want a function
that has similar shape as f(x) which is shown in figure 3 in our solution space
to the wave equation on a membrane.

13
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Figure 2: The graph of g(x).
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Figure 3: The graph of f(x).

3.2 Separable Hilbert Spaces

Separation of variables used in solving the wave equation relies on our solution
space being separable, i.e. having a countable orthonormal basis.
A Hilbert space is in [2, p. 27] called separable if the complete inner product
space admits a countable dense subset.
An alternative definition given in [1, p. 245] is as follows.

Definition 3.8. Separable
A separable normed vector space is one where the whole space can be expressed
as the closure of a countable subset.

14



Theorem 3.9. Basis of separable space
Every separable Hilbert space admits an orthonormal basis. The proof is in [2,
p. 28]

Example 3.10. Example of a separable Hilbert space

The Sobolev space H2(Ω) where Ω = (0, 2π) is a separable Hilbert space.

From example 2.32 in [2, p. 28] we have that {fk(θ)}k∈Z =
{

1√
2π
eikθ

}
k∈Z

is

a basis for L2(Ω). Each basis element fk has its first and second derivatives
in L2. Furthermore these derivatives can also be described by the same set
{fk(θ)}k∈Z. This Fourier basis which is know to be complete and orthonormal
in L2(Ω) needs an adjustment of normallity;

∥fk(θ)∥2H2(Ω) =

∫ 2π

0

|fk|2 + |f ′k|2 + |f ′′k |2dθ

1

2π

∫ 2π

0

|eikθ|2 + |ikeikθ|2 + | − k2eikθ|2dθ

1

2π

∫ 2π

0

|eikθ|2 + |ikeikθ|2 + | − k2eikθ|2dθ

1

2π

∫ 2π

0

12 + k2 + k4dθ

1 + k2 + k4 := c2

This means { fk(θ)
c }k∈Z is an orthonormal basis for H2(Ω). Lets check by calcu-

lating the H2(0, 2π) inner product;

<
fk(θ)

c
,
fk(θ)

c
>L2(0,2π) + <

f ′k(θ)

c
,
f ′k(θ)

c
>L2(0,2π) + <

f ′′k (θ)

c
,
f ′′k (θ)

c
>L2(0,2π)

1

c2
+
k2

c2
+
k4

c2

1

1 + k2 + k4
+

k2

1 + k2 + k4
+

k4

1 + k2 + k4

1 + k2 + k4

1 + k2 + k4
= 1.

This shows that H2(Ω) is a separable Hilbert space.

Until this point we have mostly been looking at spaces. Lets look at linear
maps that get us from X to Y .

15



4 Unbounded Operators

In definition 3.1 the weak derivatives was defined using differential operators.
The Laplacian is such an operator. Depending on the domain the Laplacian may
or may not be bounded. The notion of bounded versus unbounded operators is
useful when comparing norms of functions before and after applying an operator.
Furthermore one may draw conclusion about operators by combining several
point of view by considering different domains.

Definition 4.1. Operator, [2, p. 36]
A linear map T : D(T ) ⊂ X → Y where X and Y are a Hilbert space and D(T )
is dense in X is called an operator.

The succeeding example shows how the second derivative of one function
may be difficult to compare with respect to the function before differentiating.
We then go on to define operator norms.

Example 4.2. Single variable example

Lets look at the second derivative of f(x) = cos(nx) and see if it has a larger
norm in L2(a, b) than cos(nx) itself.
Let T : C2(a, b) ⊂ L2(a, b) → L2(a, b), where Tf = f ′′.
Then the question becomes is (Tf)(x) larger then f(x) in some sense. While
the choice of the domain (a, b) will be made after the calculation, it is clear
that this may affect the L2 norm and hence the boundedness of the differential
operator. This is a simple example preceding the definition of operator norm.

Firstly lets calculate the norm of f(x) = cos(nx)

∥cos(nx)∥L2(a,b) =

∫ b

a

|cos(nx)|2dx

∫ b

a

1 + cos(2nx)

2
dx = [

x

2
+
sin(2nx)

4n
]ba

∥ − n2cos(nx)∥L2(a,b) =

∫ b

a

| − n2cos(nx)|2dx

n2
∫ b

a

1 + cos(2nx)

2
dx = [

n2x

2
+
nsin(2nx)

4
]ba

When (a, b) = (0, 2π) we see that

∥f(x)∥L2(a,b) = π

and
∥f ′′(x)∥L2(a,b) = ∥ − n2cos(nx)∥L2(a,b) = n2π

For large n these norms become vastly different.
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In order to quantify this difference we use the notion of an operator norm.

Definition 4.3. Operator norm
An operator T : D(T ) ⊂ X → Y has operator norm defined by

||T || = sup
x∈D\{0}

||Tx||Y
||x||X

.

An operator is called bounded when ||T || <∞.
The operator norm, when bounded, satisfies the norm conditions in definition

2.1.

As we can imagine, after applying an operator, such as a differential operator,
the norm may have increased enough, leading to the operator not being bounded.
The possible unboundedness of differential operators on L2 comes into play with
the sinusoids in the wave equation. Since the wave equation has differential
operators on infinite dimensional space we will develop an understanding of
unbounded differential operators. Boundedness is often a desired property of
operators in physics and depends on the choice of norm. As we have seen,
the Sobolev norm in definition 3.5 is different (not smaller but more domain
restrictive) from the Lebesgue norm. To be more specific than alluding to
unboundedness meaning ” not bounded” we write the definition of an unbounded
operator.

Definition 4.4. Unbounded
For T : D(T ) ⊂ X −→ Y and any x ∈ D \ {0} and Tx ∈ Y , the operator,

T , is unbounded whilst

||T || = sup
x∈D\{0}

||Tx||Y
||x||X

= ∞

The next example shows the combination of a domain and norm where the
Laplacian is unbounded.

Example 4.5. An unbounded Laplacian
The Laplacian is an unbounded operator on D(∆) = C2[0, 1] ⊂ L2[0, 1]. In this

single variable case ∆u = d2u
dx2 . Since L

2[0, 1] consists of all functions where the
square has (Lebesgue) integral of finite value, and it’s know that xn has R as
its pre-image in the corresponding σ -algebra for all natural numbers n. The
function fn(x) = xn Thus fn(x) is a counter example to the boundedness of the
Laplacian in this case. Using the definiton above we get

∥∆fn∥
∥fn∥

=
(
∫ 1

0
(n(n− 1)xn−2)2dx)

1
2

(
∫ 1

0
(xn)2dx)

1
2

=
(
∫ 1

0
(n4 − n2)x2n−4)dx)

1
2

(
∫ 1

0
x2ndx)

1
2
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=
(n

4−n2

2n−3 (1)2n−3)
1
2

( 1
2n+1

2n+1 )
1
2

= (
2n+ 1

2n− 3
n2)

1
2

This fraction behaves like n for large n.

For a sequence {fn}n∈N there does not exist a constant c such that one
cannot find an fn = v (v as in the following) . Thus the following definition
does not hold.

Definition 4.6. Bonuded away from zero
An operator T : D(T ) ⊂ X → Y is bounded away from zero if c∥v∥ ≤ ∥Tv∥
where c is a positive constant and v is in D(T ) \ {0}.

Since C2[0, 1] ⊂ H2[0, 1] its interesting to see if the Sobolev norm makes
sense to use in the example 4.5 . Of course functions in C2[0, 1] need not remain
in C2[0, 1] after applying the Laplacian.

Example 4.7. Changing norm of domain

We have D(∆) = C2[0, 1] ⊂ H2[0, 1] and ∆u = d2u
dx2 . Recall that the Sobolev

norm from definition 3.5. The H2[0, 1] norm has the Lebesgue norm of the
second derivative as a term among other positive terms (inside a square root).
Thus the fraction can cover the whole square root and its easy to see that
∆ : C2[0, 1] ⊂ H2[0, 1] → L2[0, 1] is bounded.

Since we know, that in the finite case, symmetric operators have matrix
representation which in turn are diagonalizable. Lets turn our attention to
symmetric operators in the infinite dimensional case.

Definition 4.8. Symmetric operator
An operator O is symmetric when < Ox, y >A=< x,Oy >A for all x, y ∈ D(O)
if O : D(O) ⊂ A→ A.Where D(O) is dense in A.

The connecting of symmetric operators the notion of weak derivatives in
definition 3.1 is interesting.One can at least draw the conclusion that for an
operator to be symmetric it needs to account for the (−1)|α| in definition 3.1.
Note that for a symmetric operator T the following is a fact

< x, Ty >L2(Ω)=< Tx, y >L2(Ω) ⇐⇒
∫
Ω

xTydµ =

∫
Ω

Txydµ

In the next example one use partial integration to establish that T is symmetric
and also see that the factor (−1)|α| is accounted for.

Example 4.9. Example which combines symmetry and derivatives, see [.]Borthwick2020
The operator in this example is T = −i d

dx where T : D(T ) ⊂ L2[0, 1] → L2[0, 1]
and D(T ) = {f ∈ AC[0, 1] : f(0) = f(1), f ′ ∈ L2[0, 1]} where AC denotes the
set of absolutely continuous functions. Note that f, f ′ ∈ AC[0, 1] ⊂ L2(Ω) ⊂
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L1
loc(Ω). That means if one removes the complex conjugation in the calcula-

tions below (or the factor i), one would see yet another verification that the
weak derivative is a correct description. That T is a symmetric operator is
apparent ∫ 1

0

T (f(x))g(x)dµ =

∫ 1

0

−if(x)
dx

g(x)dµ

= −i
∫ 1

0

df(x)

dx
g(x)dµ = −i([f(x)g(x)]10 −

∫ 1

0

f(x)
dg(x)

dx
dµ

= i

∫ 1

0

f(x)
dg(x)

dx
dµ =

∫ 1

0

f(x)−idg(x)
dx

dµ

=

∫ 1

0

f(x)Tg(x)dµ.

We may conclude that T is symmetric in this case∫ 1

0

Tf(x)g(x)dµ =< Tf, g >=< f, Tg >=

∫ 1

0

f(x)Tg(x)dµ.

These symmetric operators have D(O) ⊂ D(O∗) (since D(O∗) = A in the
symmetric operator definition 4.8). We now go on to define adjoint operators
(O∗).

Definition 4.10. Adjoint and Self-adjoint, [2, p. 38]
The adjoint of an unbounded operator is pretty much the same as for

bounded operators except for domain considerations.
Let A : D(A) ⊆ B → B and < Au, v >B=< u,A∗v >B for u ∈ D(A) and v ∈
D(A∗).
WhereD(A∗) = {u ∈ B : v →< u,Av >B is a bounded linear functional in D(A) }.
Then A has an adjoint. Further more if A = A∗ its called self-adjoint.

We can continue the use of example 4.9 to show that its self-adjoint as well
as symmetric.

Example 4.11. Sequel of example 4.9
We check ifD(A∗) = {u ∈ B : v →< u,Av > is a bounded linear functional in D(A) },
where A = T and B = L2[0, 1] from example 4.9.
Take u ∈ L2[0, 1] then ∥ < u, Tv > ∥L2[0,1] ≤ c∥u∥L2[0,1] for some constant c.
Since ∥ < u, Tv > ∥L2[0,1] = ∥ < Tu, v > ∥L2[0,1] from example 4.9, we must
have that the inequality above holds. This means that u must be in D(T ), then
we also have that D(T ∗) = D(T ). Combined with the fact that T is symmetric,
we have found that T is self-adjoint.

We have now scratched the surface of unbounded operators and seen some
properties like what it for an operator to be self-adjoint. Before defining the
Laplacian operator we briefly will have a look at polar coordinates.
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4.0.1 Polar

Polar coordinates use one radial unit vector and one that is tangential to the
radial one. The gradient in polar coordinates is analogous to derivative in the
fundamental theorem of calculus(single variable), in the following way;∫

p

∇f(qq)dq = F (b)− F (a)

where f is differentiable on a curve p which has endpoint a and b. The measure
q falls in line with what we indeed know about measures. The specific property
to maintain in polar is translation invariance. The change in area coming from
a nudge (so to speak) in θ is proportional with the radius r (we don’t want that
in our measure). One could go use the Jacobian here but this setting is simple
enough to do without. So we fill inn the specifics∫

p

[
∂

∂r
,
∂

r∂θ
]T f(r, θ)rdθdr = F (b)− F (a).

Divergence is a differential operator, a functional is also relates to the fun-
damental theorem of calculus. But is is also defined as

∇F = ∆ =
1

r
(
∂rFr

∂r
+
∂Fθ

∂θ
).

Where Fr = ∂
∂r , Fθ = ∂

r∂θ are the components of some continuously differen-
tiable field.
Here is where the Laplacian surfaces

∆ = (∇)2 =
1

r
(
∂rFr

∂r
+
∂Fθ

∂θ
) =

1

r
(
∂r ∂

∂r

∂r
+
∂ ∂

r∂θ

∂θ
) =

1

r

∂

∂r

r∂

∂r
+

∂

r2∂θ2
.

This in fact is the Laplace operator ( in polar coordinates) can be defined
as the divergence of the gradient.

4.1 Laplacian on a drum head

The theory of unbounded operators will now be applied to the Laplacian with
domain suitable for the Helmholtz equation on a circular membrane.
The spacial factor of u(t, r, θ) (defined here as the height of the membrane
relative to the horizontal)
is initially written by Herman von helmholtz in the context of electrodynamics
and has been made a reference while analyzing waves it reads in [2, p. 125].

The Laplacian can be defined as

∆u = −div(∇u) = −
∑2

i=1 uxi,xi
= − 1

r
∂
∂r

r∂u
∂r − ∂2u

r2∂θ2 , where u ∈ D(∆) =
H1

0 (Ω) ∩H2(Ω). Then we have

∆ : H1
0 (Ω) ∩H2(Ω) ⊂ L2(Ω) → L2(Ω).
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Let the function domain Ω be the open disk of radius ρ and ∂Ω be the clamped
boundary. Then D(∆) = H1

0 (Ω) ∩ H2(Ω) are the functions which are zero on
the boundary and where derivatives up to order two exist in L2(Ω) i.e.

D(∆) = H1
0 (Ω)∩H2(Ω) =

{
u ∈ L2(Ω) : Dαu ∈ L2(Ω) for |α| ≤ m and u|∂Ω = 0

}
.

Then we have that by integration by parts;∫
Ω

∆u(r, θ)v(r, θ)dµ(r, θ) = ∇u∇v|∂Ω −
∫
Ω

∇u∇vdµ(r, θ)

= u∇v|∂Ω −
∫
Ω

u∆vdµ(r, θ) =

∫
Ω

u∆vdµ(r, θ).

Thus ∆ is symmetric in L2(Ω), < ∆u, v >L2(Ω)=< u,∆v >L2(Ω)

Furthermore, analoguos to what we found in example 4.7

∥∆∥ = sup
x∈H1

0∩H2(Ω)\{0}

∥∆u∥L2(Ω)

∥u∥H1
0∩H2(Ω)

<∞.

For bounded operators we have that

| < ∆u, v >L2 | ≤ ∥∆u∥L2(Ω)∥v∥L2(Ω) ≤ ∥∆u∥L2(Ω)∥v∥H1
0∩H2(Ω).

Recall thatD(A∗) = {u ∈ B : v →< u,Av > is a bounded linear functional in D(A) }.
Since < ∆u, v >L2(Ω)=< u,∆v >L2(Ω), we have that

D(∆∗) = {u ∈ B : v →< ∆u, v > is a bounded linear functional in D(∆)}.

Then D(∆∗) ⊂ D(∆) and hence D(∆∗) = D(∆).
Since we have D(∆∗) = D(∆) then ∆ is its self-adjoint if it is symmetric,

by definition. This is the case with when H1
0 ∩ H2 = D(T ∗) = D(T ) because

< u, Tv >L2<∞ because both Tv and u is in L2.

4.2 Spectral Theorem

So we know that for a finite dimensional Hilbert space the spectral theorem for
self adjoint operators, A, states that Axi = λixi, where the eigenvalues λi are
real. This implies that

Ax =
∑
j

APjx

for all x in the Hilbert space where Pj is the projection operator which projects
x onto the jth basis element. Thus

A =
∑
j

APj

For the infinite dimensional case, the spectrum is not necessarily only the
point spectrum (i.e. eigenvalues). Recall that eigenvalues can be defined as
elements in the spectrum.
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Definition 4.12. Spectrum, [2, page 68]
For an operator T , the spectrum σ(T ) is the set of points λ ∈ C for which
T − λ fails to have a bounded inverse. The complement of the spectrum is the
resolvent set, denoted by ρ(T ). The bounded operator (T − z)−1 is called the
resolvent of T at z ∈ ρ(T ).

For finite dimensions we do have ideas such as singular value decomposition
but only square matrices are invertible and self-adjoint. These finite dimensional
matrices A (which are bounded) have only one way for which M = (A−λ) fails
to have an inverse. If M is injective, its surjective and vice versa. Thus for self-
adjoint matrices the eigenbasis, which is the set of eigenvectors corresponding to
the eigenvalues, always span the whole space. In the infinite dimensional case an
operator O = (T −λ) may not be invertible even if the null space is trivial. For
an operator to be self-adjoint we need to consider domain specifications. Even
if an operator is self-adjoint and we do have eigenvectors, the domain might
be to restrictive for the eigenvectors to span the whole space. Recall that for
an operator from the Sobolev space to the corresponding Lebesgue space, the
operator is bounded.

Theorem 4.13. Bounded operator’s inverse, [2, p. 46]
A bounded operator has a bounded inverse if and only if it is bijective.

Using the L2 norm in the Sobolev space, as we do when ∆ : H1
0 (Ω)∩H2(Ω) ⊂

L2(Ω) does not however, imply boundedness.
We go onward to the study the spectrum of the Laplacian on an open disk

in L2.

Theorem 4.14. Theorem 6.8 in [2, p. 135]
For a bounded open set Ω on Rn,

the eigen functions ek of −∆ with domain,D = H1
0 (Ω) ∩H2(Ω) are real-valued

and form a basis on L2(Ω). Furthermore the real eigenvalues, λk, accumulate
at ∞ .

Remark; H1
0 (Ω) := C∞

0 ⊂ H1. H2 is defined in example 3.6

Note that this definition is as in the book [2] and has an explicit minus sign,
in comparison to the definition in subsection 4.1.

Take the basis from the preceding theorem to provide a countable dense
subset for our Hilbert space H1

0 ∩H2(Ω). When Ω is the open disk with radius
ρ we have a separable Hilbert space.

5 Solving the Wave Equation

The wave equation is derived by classical mechanics and certain simplifications.
Without loss of generality one may choose to regard the constant c to be one,
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but it really depends on the physicality of the material, for example the drum
head. The wave equation (with an implicit negative Laplacian) is

utt + c2∆u = 0

though we let c = 1 this simplifies to

utt +∆u = 0.

Assume u = T (t)H(r, θ), then since differential operators are linear we have

HT ′′ = T∆H

T ′′

T
=

∆H

H
.

Firstly, to model the drum head oscillating in time we choose
T (t) = Acos(λt) + Bsin(λt), with A,B ∈ R+ which corresponds to a negative
constant, say, K = −λ2 in ;

T ′′ = KT.

The shared (implicitly negative) constant K leads to the famous Helmholtz
equation ∆H = −KH . Furthermore, as we have seen, the solution space u
depends on the boundary conditions;{

u|∂D = 0

∆H(r, θ) = λ2H

Recalling that the negative Laplacian is a non-negative operator, and looking
for solutions on the form H(r, θ) = R(r)Θ(θ) with R(ρ) = 0 , ρ being radius of
the drum head. We now calculate the Helmholtz equation

∆R(r)Θ(θ) = λ2R(r)Θ(θ)

1

r

∂

∂r

(
r
∂RΘ

∂r

)
+

1

r2
∂2RΘ

∂θ2
= −λ2RΘ

∂2R

∂r2
Θ+

1

r

∂R

∂r
Θ+

1

r2
∂2Θ

∂θ2
R+ λ2RΘ = 0

−
(
r2

R

∂2R

∂r2
+
r

R

∂R

∂r
+ λ2r2

)
+

(
1

Θ

∂2Θ

∂θ2

)
= 0

−
(
r2

R

∂2R

∂r2
+
r

R

∂R

∂r
+ λ2r2

)
=

(
1

Θ

∂2Θ

∂θ2

)
= −n2.

This is a separable partial differential equation, thus;
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1. The function of θ Θ has the same form as the time-factor part of the wave
equation (also periodic in the simplified model)

1

Θ

∂2Θ

∂θ2
= −n2

Implying Θ(θ) = Cn cos(nθ) +Dn sin(nθ)
n must be an (non negative) integer to satisfy periodicity.

2. R has similarities to Bessel equation,

r2

R

∂2R

∂r2
+
r

R

∂R

∂r
+ λ2r2 = n2

r2
∂2R

∂r2
+ r

∂R

∂r
+ (λ2r2 − n2)R = 0.

This has the solution

H(r, θ) = Jn(λmnr)(A cos(nθ) +B sin(nθ))

which can be seen as the amplitude of the time function. Solutions u have the
following form

u(t, r, θ) = T (t)H(r, θ) = (sin(λnmt)+cos(λnmt))Jn(λmnr)(Acos(nθ)+Bsin(nθ)).

5.1 Checking Solutions

Is this type of solution actually sound?

• Firstly the utt term is calculated checked, indeed the double derivative of
these sinusoids is such that

∂2T (t)H(r, θ)

∂t2
= H(r, θ)

∂2T (t)

∂t2
= −λ2nmH(r, θ)T (t).

Next we want the Laplacian to be

∆(T (t)H(r, θ)) = T (t)∆H(r, θ) = λ2nmH(r, θ)T (t).

If this is the case we see from the right than side that these cancle each
other out

∂2T (t)H(r, θ)

∂t2
+∆(T (t)H(r, θ)) = 0.

• Furthermore the calculation of the Laplacian will be somewhat stream-
lined;
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∆H(r, θ) = ∆(Jn(λnmr)(Acos(nθ) +Bsin(nθ)))

= −1

r

∂

∂r

r∂(Jn(λnmr)(Acos(nθ) +Bsin(nθ)))

∂r
− ∂2(Jn(λnmr)(Acos(nθ) +Bsin(nθ)))

r2∂θ2

= − (Acos(nθ) +Bsin(nθ))

r

∂

∂r

r∂(Jn(λnmr))

∂r
− (Jn(λnmr)∂

2(Acos(nθ) +Bsin(nθ)))

r2∂θ2

= − (Acos(nθ) +Bsin(nθ))

r

∂

∂r

r∂(Jn(λnmr))

∂r
+
n2Jn(λnmr)(Acos(nθ) +Bsin(nθ))

r2

= − (Acos(nθ) +Bsin(nθ))

r

∂

∂r
(r(λnmJ

′
n(λnmr))) +

n2Jn(λnmr)(Acos(nθ) +Bsin(nθ))

r2

= − (Acos(nθ) +Bsin(nθ))

r
λnmJ

′
n(λnmr)− (Acos(nθ) +Bsin(nθ))(λ2nmJ

′′
n(λnmr)))

+
n2Jn(λnmr)(Acos(nθ) +Bsin(nθ))

r2
.

A pit stop is made in order to deal with the derivatives of the Bessel
functions. We solve the Bessel equation from subsection 2.1 with the
bessel functions and get

x2J ′′
n(x) + xJ ′

n(x) + (x2 − n2)Jn(x) = 0.

Let x = λnmr and exercise some algebra;

(λnmr)
2J ′′

n(λnmr) + λnmrJ
′
n(λnmr) + ((λnmr)

2 − n2)Jn(λnmr) = 0

λ2nmr
2J ′′

n(λnmr) + λnmrJ
′
n(λnmr) + ((λnmr)

2 − n2)Jn(λnmr) = 0

λ2nmr
2J ′′

n(λnmr) = −λnmrJ ′
n(λnmr)− ((λnmr)

2 − n2)Jn(λnmr)

λ2nmJ
′′
n(λnmr) = −λnm

J ′
n(λnmr)

r
− ((λnmr)

2 − n2)

r2
Jn(λnmr).

We slowly get going again after the pit stop by focusing then on the term
of J ′′

n

−(Acos(nθ) +Bsin(nθ))(λ2nmJ
′′
n(λnmr))

= −(Acos(nθ)+Bsin(nθ))(−λnm
J ′
n(λnmr)

r
− ((λnmr)

2 − n2)

r2
Jn(λnmr)))

= (Acos(nθ)+Bsin(nθ))(λnm
J ′
n(λnmr)

r
+(Acos(nθ)+Bsin(nθ))

(λnmr)
2 − n2

r2
Jn(λnmr)).
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Having now substituted the J′′n we finally get

∆H(r, θ) = ∆(Jn(λnmr)(Acos(nθ) +Bsin(nθ)))

= − (Acos(nθ) +Bsin(nθ))

r
λnmJ

′
n(λnmr) + (Acos(nθ) +Bsin(nθ))(λnm

J ′
n(λnmr)

r

+ (Acos(nθ) +Bsin(nθ))
((λnmr)

2 − n2)

r2
Jn(λnmr)))

+
n2Jn(λnmr)(Acos(nθ) +Bsin(nθ))

r2
.

= (Acos(nθ) +Bsin(nθ))
((λnmr)

2)

r2
Jn(λnmr)))

= λ2nm(Acos(nθ) +Bsin(nθ))Jn(λnmr) = λ2nmH(r, θ).

, which implies that;
utt +∆u = 0

−λ2nmH(r, θ)T (t) + T (t)λ2nmH(r, θ) = 0

Thus our solution was indeed sound.

Lets shortly consider the spectrum in our case as well as the Dirichlet con-
ditions. We have

∆H(r, θ)− λ2nmH(r, θ) = 0

(∆− λ2nm)H(r, θ) = 0.

The bijectivity (and more precisely, injectivity) of (∆ − λ2nm) fails exactly at
the nontrivial solutions, where λ2nmare the eigenvalues. Recall that we have the
following general solutions

T (t)H(r, θ) = (sin(λnmt) + cos(λnmt))Jn(λnmr)(Acos(nθ) +Bsin(nθ))

When the radius ρ = 1 we get from the boundary condition that H(1, θ) = 0.
Then λnm are the zeros of the Bessel functions.
From the table on in [3, p. 590] we have that the first zero for is 2.40483 meaning
J0(λ01) = J0(2.40483) = 0. Note that
T (t)H(r, θ) = (sin(2.40483t)+cos(2.40483t))J0(2.40483r)(Acos(0θ)+Bsin(0θ))
= AJ0(2.40483r)(sin(2.40483t)+cos(2.40483t)) is the corresponding eigenfunc-
tion. And that in general the set of eigenfunctions are when the Bessel functions
have zeros, which one can look up in tables.
So the first eigenvalue for a membrane of radius 1 with the constant from the
wave equation c = 1, would be 2.404832, which is the the lowest eigenvalue.
The angular frequency 2.40483 would be the fundamental pitch and is a normal
mode. We see that the Bessel function makes the amplitude decrease with in-
creasing r.
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5.2 Normal Modes

Some wave configurations do not depend on θ. Solving the Helmholtz equation
with that regard;

∆R(r) = λ2R(r)

1

r

∂

∂r

r∂R

∂r
= −λ2R

1

r
(
r∂2R

∂r2
+
∂R

∂r
) = −λ2R

∂2R

∂r2
+
∂R

r∂r
= −λ2R

r∂2R

∂r2
+
∂R

∂r
+ rλ2R = 0.

To get this in the form of the Bessel equation ( with n =0) multiply with r

r2
∂2R

∂r2
+ r

∂R

∂r
+ r2λ2R = 0.

Thus the wave equation in the axisymmetric case are similar, differing only with
n=0

T (t)H(r, θ) = (sin(λnmt) + cos(λnmt))J0(λnmr).

One of the first things my percussion teacher showed me was to not hit the
drum directly in the center, because it sounds dull. We can see that a initial
condition corresponding to striking the membrane dead center leads to only
exiting the normal modes. This initial condition u(0, r, θ) could in a simplified
case be the the first two normal modes, say T (0)(H1(r) +H2(r).

The fundamental frequency (having n = 0 andm = 1 to be clear) is such that
there are no nodes, or stationary points if you wish, disregarding the boundary.
To satisfy the boundary condition with ρ not necessarily equal to one, we let the
Bessel function, when r = ρ be J0(λ0mρ) = 0. This also implies that for m = 1
we have J0(λ01ρ) = 0. Let λ01 = c01

ρ such that J0(
c01
ρ ρ) = 0. Since the first

zero of J0(x) = 0 is always the same, 2.40483, We find that the fundamental
frequency is inversely proportional to the radius of the drum. Recall (c in
utt + c2∆u = 0 is set to 1). The larger the drum, the lower the frequency ( and
minimum eigenvalue), of course.
A nice representation of the vibrational modes on a circular membrane is found
at [4]. Animation courtesy of Dr. Dan Russell, Grad. Prog. Acoustics, Penn
State
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