
INSTITUTT FOR IKT OG REALFAG

AIS2900 - BACHELOROPPGAVE INGENIØRFAG

Next Generation Training Environment

Name:
Torstein Skare, 10006

Robert Alan Moltu, 10023

Dato: May 20, 2024

Preface

This is a project report made by two automation students from the Norwegian University of Science and Technology
for Kongsberg Maritime located in Ålesund. The aim of this project is to enhance the existing training environment by
developing a new system that utilizes visualizations to intuitively display data from control systems. This new system
builds upon the foundations established in a previous communications program developed during a pre-project, aiming
to further improve the communication and visualization capabilities that the prototype project had.

Acknowledgements

First and foremost, we would like to extend our gratitude to our project supervisors, Håkon Lunheim from Kongsberg
Maritime (KM), Robin T. Bye, and Ottar Osen from Norwegian University of Science and Technology (NTNU).
Giving us their guidance and support during our meetings throughout this semester. Their expertise, insights, and
feedback have been important in the progress and development of our project.

We would also like to express our heartfelt thanks to our friends and families for their support, encouragement and
motivation throughout this project.

A special thank you goes to Kongsberg Maritime for providing us with this thesis opportunity. We are grateful to
Geir Olav Otterlei for initiating this project and to Per Magne Dalseth, whose inspiration and innovative ideas have
been crucial. Their enthusiasm and support have allowed us to develop and explore our own ideas, making this project
exceptionally rewarding and enjoyable. We are also grateful to Arnstein Erdal for his assistance with helping with
parts of the filming and for loaning us the necessary camera equipment needed for the video that was made.

Finally, we appreciate the openness and willingness of Kongsberg Maritime Ålesund to give us the chance to build
on our own ideas and visions. This opportunity has made the project especially unique and fun to undertake.

Thank you all for your contributions and support.

i

Abstract

The purpose of this project is to enhance the learning environment of Kongsberg Maritime (KM) systems. We propose
achieving this goal through the integration of a SCADA-like interface and a visualization to view 3D models in
augmented reality (AR). Building upon the ideas and prototypes developed during the summer and fall of 2023, our
project group aims to create an innovative and practical product suitable for training, service, and sales purposes.
This report documents the development of a new communication script and the visualization techniques used. The
report details the problem-solving approaches adopted by the group and the challenges that the team encountered.
Our project seeks to enrich the product environment and provide users with a more immersive experience, ultimately
aiming to create a solution that can enhance the training, sales and effectiveness for the company.

Sammendrag

Formålet med dette prosjektet er å forbedre læringsmiljøet for Kongsberg Maritime (KM) systemer. Vi foreslår å
oppnå dette målet gjennom integrering av et SCADA-lignende grensesnitt og en visualisering for å se 3D-modeller i
”augmented reality” (AR). Med utgangspunkt i ideene og prototypene utviklet i løpet av sommeren og høsten 2023,
har vår prosjektgruppe som mål å skape et innovativt og praktisk produkt som egner seg for opplæring, service og
salgsformål. Denne rapporten dokumenterer utviklingen av et nytt kommunikasjons skript og visualiseringsteknikkene
som ble brukt. Rapporten beskriver problemløsningsmetodene gruppen har tatt i bruk og utfordringene gruppen møtte.
Prosjektet vårt søker å berike produktmiljøet og gi brukerne en mer helhetlig opplevelse, og tar sikte på å skape en
løsning som kan forbedre opplæringen, salget og effektiviteten for selskapet.

ii

Table of Contents

Preface i

Acknowledgements i

Abstract ii

Sammendrag ii

Terminology iii

1 Introduction 1
1.1 Background . 1
1.2 Current Training Environment . 1
1.3 Project Baseline . 2
1.4 Project Objectives and Innovation . 4
1.5 Structure of the Report . 4

2 Theory 5
2.1 Visualisation . 5

2.1.1 Blender . 5
2.1.2 Unreal Engine . 5
2.1.3 Unity . 6
2.1.4 Threepp . 6
2.1.5 Autodesk 3DS Max . 6
2.1.6 Meta Quest 3 VR/AR Headset . 7

2.2 CAF . 7
2.3 OPC-UA . 7
2.4 Software Version Table . 7
2.5 Package Table . 7
2.6 OpenBridge Design System . 8
2.7 Simple WebSocket Client . 8
2.8 Pitch on Propeller . 9
2.9 Interpolation . 9
2.10 Unity Asset Store . 9
2.11 Tunnel Thruster . 10
2.12 TCNS - Swing-up Azimuth Thruster . 10
2.13 Azipull Thrusters . 11
2.14 MQTT . 12
2.15 UDP . 12
2.16 Courotines . 12

iii

2.17 Parsing . 12

3 Methodology 13
3.1 Design and structure of the program . 13
3.2 Collecting data from CAF . 15

3.2.1 Testing the collection methods . 15
3.3 Distributing Data . 17
3.4 Making The Communication App . 18

3.4.1 OPC-UA Server . 18
3.4.2 Websocket To OPC-UA . 19
3.4.3 Rest To OPC-UA . 20
3.4.4 OPC-UA To Unity . 23
3.4.5 Integration of System Components via the Main Application Module 23
3.4.6 Simulating Thrust Load . 25
3.4.7 Challenges With Two-way Communication . 27
3.4.8 Making the App more accessible . 28
3.4.9 Customizing OPC-UA Topics to Reuse Old GUI . 30

3.5 Testing the Ignition Program with the App . 31
3.6 Visualization in VR/AR . 33

3.6.1 Tools and considerations . 33
3.6.1.1 Selection of Visualization Tools . 33
3.6.1.2 Hardware and Software Considerations . 34

3.6.2 Acquiring and Preparing 3D Models . 34
3.6.3 Integrating 3D Models into Unity . 37
3.6.4 Data Integration and Movement Simulation . 37

3.6.4.1 Data Communication Setup . 37
3.6.4.2 Movement Mechanics Implementation . 40

3.6.5 Augmented and Virtual Reality Setup . 41
3.6.5.1 Setup of Meta Quest Features . 41

3.6.6 Learning about Water Physics . 42
3.6.7 Transitioning to Augmented Reality . 45
3.6.8 Developing the UT-7128 Ship Design Scene . 45

3.6.8.1 Adding Multiple Thrusters . 46
3.6.8.2 Azimuth Movement . 46

3.6.9 Unity Version Control Problem . 47
3.6.10 Making the Unity Visualization More Accessible . 47
3.6.11 HUD-Panels Integration . 48

4 Results 49
4.1 Communication Program . 49
4.2 Using Ignition to Visualize Live Diagrams . 50
4.3 Augmented Reality in Maritime Training . 55

iv

4.4 Qualitative Findings . 56

5 Discussion 58
5.1 Communication Issues Caused by Unity Version Control . 58
5.2 Stand-alone AR Visualization on Headset . 58
5.3 Interpolating . 58
5.4 Data Gathering Issues . 59

5.4.1 Why two-way communication was not implemented . 59
5.5 Visualization . 59

5.5.1 Water Physics . 59
5.5.2 Enhancing User-Friendliness in AR . 60
5.5.3 Positive Feedback and Future Potential . 60
5.5.4 Autogenerated Software Block Diagrams in Ignition . 60

5.6 Different Use-cases for the Solution . 61
5.6.1 Future Possibilities . 61

5.7 Evaluating the Qualitative Research Methods . 62

6 Conclusion 64

7 Recommendations 65

8 Appendices 66
8.1 Python communication program . 66

8.1.1 Main application . 66
8.1.2 ws to opc module . 67
8.1.3 rest to opc module . 70
8.1.4 opc to unity module . 73
8.1.5 start opc server . 75
8.1.6 Simulate thrust load module . 77
8.1.7 UDP client . 79
8.1.8 Websocket client . 80
8.1.9 functions . 83

8.2 Python Test Codes . 85
8.2.1 REST API Single session . 85
8.2.2 REST API Test Multiple Sessions . 86
8.2.3 Websocket Test Multiple Clients . 88

8.3 Unity codes in C# . 90
8.3.1 UDP Client script . 90
8.3.2 Movement script . 92
8.3.3 Propeller Particle System Controller script . 94

8.4 Pre-project planning report . 95
8.5 Gantt Chart using MS Planner . 109
8.6 Timesheet in Excel . 110

v

8.7 Minutes of the meeting with Morlid Interactive . 114
8.8 Meeting minutes with Supervisors . 114
8.9 Periodic reports . 120

9 Bibliography 139

Terminology

PLC Programmable Logic Controller

KM Kongsberg Maritime

CAF Common Application Firmware: A KM-developed application to monitor and tune parameters on a Marine
Controller

Marine Controller A KM-developed controller that manages and controls different aspects of a vessel’s operation

SWBD Software Block Diagram

GUI Graphical User Interface

SCADA Supervisory Control and Data Acquisition

WS Websocket

I/O Input/Output

API Application Programming Interface

UML Unified Modeling Language

RPM Rotations Per Minute

TT Tunnel-Thruster

TCNS Swing-up Azimuthing Thruster [9]

SDK Software Development Kit

vii

1 Introduction

1.1 Background

Having a proper training environment is important for the company’s reputation, economy, and environmental im-
pact. Properly trained employees not only enhance operational efficiency but also play a crucial role in minimizing
environmental impact through optimized fuel consumption and ensuring company reputation. Investing in proper and
improved training for service engineers can yield numerous short-term benefits such as immediate skill enhancement
and improved customer satisfaction, while also paving the way for long-term advantages like sustainable competitive
advantage, higher retention rates, and enhanced reputation and customer loyalty. Additionally, aligning with Kongs-
berg Maritime’s statement of ’Technologies for Sustainable Oceans’[10] ensures that the company’s solutions not only
drive profitability but also will contribute positively to Kongsberg Maritime’s vision and values.

1.2 Current Training Environment

The current training environment relies on PowerPoint presentations and several lengthy paper documents, detailing
the configuration of a fully equipped system. These paper documents include software block diagrams illustrating the
signal flow between different software functions.

Moreover, the training setup comprises pelicases that houses a comprehensive thruster control system, excluding
bulky hardware such as valves and an actual thruster, look at figure 1. Instead, the thruster is simulated using a stepper
motor and an encoder, mimicking its behavior in response to the current setpoint. Currently, both in training and
actual commissioning, CAF is used to access and change values and parameters in the control system. While this
method works reasonably well, finding the right values in CAF can be a lengthy and complicated process, which may
be challenging for course participants to navigate.

1

Figure 1: Thruster control system in a pelicase

1.3 Project Baseline

During the summer and autumn of 2023, the project group developed a prototype that gathered data from the pelicase
and displayed it on the Ignition platform, look at figure 2. To achieve this, a Python script was written to send requests
to the server on the marine controller, which in turn responded with messages. This script was asynchronous and
unfortunately unstable and prone to crashing frequently. Moreover, the time delay in response varied significantly,
ranging from 2 seconds to 30-40 seconds when the program was initiated. Often, it was necessary to start the program
multiple times to ensure it ran without crashing.

On the Ignition GUI designer, various topics and logics were seamlessly integrated with their corresponding soft-
ware blocks. Interactive pop-ups were implemented to provide detailed software information upon double-clicking,
while strategically placed displays provided real-time visualization of input and output values and other critical pa-
rameters.

2

(a) Homepage of First Prototype using Ignition.

(b) Load Control Page Live Interactive Software Block Diagram, Blurred due to confidentiality.

Figure 2: Prototype screenshots from summer and autumn 2023, showcasing the Ignition platform.

3

1.4 Project Objectives and Innovation

The project group aims to improve the training environment for new employees at Kongsberg Maritime. Our strategy
focuses on streamlining the number of information sources and enhancing visualization. By integrating traditional
systems with new technology, we aim to create an interactive and immersive learning experience.

Currently, it is challenging to effectively demonstrate how thrusters operate in unison. The project group and Per
Magne Dalseth, one of the training instructors in Ålesund, believed that a 3D visualization of a vessel, along with the
orientation and thrust direction of its thrusters, could provide trainees with a clearer overview of the system before
delving into specific details about the software and hardware. Considering the growing interest in augmented reality
(AR), we decided to explore the implementation of visualizing in AR.

The objectives for this project are:

• Improve stability and reliability of the communication program: Ensuring that the training system is dependable
and reduces downtime caused by software crashes.

• Adapt the program to accommodate various CAF versions: Providing flexibility and compatibility with different
versions of the software used in training.

• Collect and display data from multiple thrusters simultaneously: Enhancing the training by providing real-time
data from multiple sources, giving a more comprehensive understanding of the system.

• Write data back to CAF using the Ignition GUI: Allowing trainees to interact with the system more effectively,
simulating real-world scenarios.

• Visualize thruster movements in AR: Providing an innovative and engaging way to understand the operation of
thrusters, improving retention and understanding.

1.5 Structure of the Report

This report follows a standard template for clarity. The methods are divided into two main chronological parts:
Making the Communication App and Visualization in VR/AR, along with several smaller sections placed where they
fit best. The methodology section details our decision-making process and the development of solutions. The results
section presents and analyzes our findings, demonstrating the effectiveness of our approaches. The discussion section
examines our methods and results, addressing strengths, weaknesses, challenges encountered, and future possibilities.
Additionally, the recommendations section provides practical advice for anyone looking to replicate or continue this
project. Since the project is written for Kongsberg Maritime, some of the Software Block Diagram images are blurred
due to confidentiality.

4

2 Theory

2.1 Visualisation

2.1.1 Blender

”Blender is the free and open source 3D creation suite. It supports the entirety of the 3D pipeline—modeling, rigging,
animation, simulation, rendering, compositing and motion tracking, even video editing and game creation. Advanced
users employ Blender’s API for Python scripting to customize the application and write specialized tools; often these
are included in Blender’s future releases. Blender is well suited to individuals and small studios who benefit from its
unified pipeline and responsive development process.”[3]

Figure 3: Blender Logo

2.1.2 Unreal Engine

”Unreal Engine (UE) is a series of 3D computer graphics game engines developed by Epic Games, first showcased
in the 1998 first-person shooter video game Unreal. Initially developed for PC first-person shooters, it has since been
used in a variety of genres of games and has been adopted by other industries, most notably the film and television
industry. Unreal Engine is written in C++ and features a high degree of portability, supporting a wide range of desktop,
mobile, console, and virtual reality platforms.”[22]

Figure 4: Unreal Engine Logo

5

2.1.3 Unity

Unity is described as ”a cross-platform game engine developed by Unity Technologies first developed as a Mac OS
X game engine, but has now gradually extended to support a variety of desktop, mobile, console and virtual reality
platforms. Particularly popular for iOS and Android mobile game development for making ”indie games”. The game
engine is considered as an engine that is easy for beginner developers to use.

The engine can be used to create three-dimensional (3D) and two-dimensional (2D) games, as well as interactive
simulations and other experiences. The engine has been adopted by industries outside video gaming, such as film,
automotive, architecture, engineering, construction, and the United States Armed Forces.”[21]

Figure 5: Unity logo

2.1.4 Threepp

Open-source C++ library for 3D visualization [16], developed by NTNU Ph.D. Lecturer Lars Ivar Hatledal. Built upon
the Three.js [20]JavaScript 3D Library.

Figure 6: Threepp example of our 3D-Thruster made in the Pre Project

2.1.5 Autodesk 3DS Max

”3ds Max is used to model, animate and render detailed 3D characters, photorealistic designs and complex scenes for
film and TV, games and design visualisation projects. 3ds Max is used by 3D modellers, animators and lighting artists
for game development, film and TV productions, and design visualisation projects” [2]

6

Figure 7: Autodesk 3DS MAX Logo

2.1.6 Meta Quest 3 VR/AR Headset

The newest headset Meta provides today and is a cost efficient VR/AR headset that can provide mixed reality. It is
used in this project to visualize the thruster movements in augmented reality (AR). This headset brand was formerly
known as Oculus but was bought up by Meta in 2014 changing the headsets name from the Oculus to Meta.[12]

Figure 8: Meta Quest 3 Mixed Reality Headset [12]

2.2 CAF

The Common Application Framework (CAF) is a software framework developed by Rolls-Royce to interact with their
control systems.

2.3 OPC-UA

OPC-UA (Open Platform Communications Unified Architecture) is a versatile and platform-independent protocol
designed for industrial automation, developed by the OPC Foundation. It supports important features like security,
organizing data in a complex structure, and two types of communication: publisher/subscriber and server/client. OPC-
UA uses TCP/IP for communication, making it widely compatible and straightforward to implement across different
systems.

2.4 Software Version Table

2.5 Package Table

7

Software Version
Python 3.9
Unity 2022.3.20f1

Unreal Engine 5.3
Blender 4.0

Autodesk 3DS Max 2024
Pycharm IDE 2023.3.1.

CAF 1.17.5.7

Table 1: Software Version Table

Software Package Version Description
Python aiohttp 3.8.4 A popular asynchronous HTTP client/server framework for

Python [1]
Python pyinstaller 5.12.0 Converts Python applications into stand-alone executables, under

Windows, Linux, and Mac
Python colorama 0.4.6 Makes ANSI escape character sequences work under Windows
Python aiohttp 3.8.4 Supports asynchronous request/response handling
Python asyncua 1.0.2 An asynchronous client/server implementation of the OPC UA

protocol
Unity Meta All In One SDK 64 Asset used to incorporate VR/AR functions with Meta Quest gog-

gles
Unity Json.NET Converters 1.1.2 Library in Unity for JSON parsing

Table 2: Package Table

2.6 OpenBridge Design System

”OpenBridge Design System offers a collection of tools and approaches to improve implementation, design and ap-
proval of maritime workplaces and equipment. OpenBridge Design Guideline is a prominent part of OpenBridge
Design System that explains how to design OpenBridge user interfaces.

It is a free resource built on modern principles of user interface and workplace design, adapted to maritime context
and regulations.”[15]

2.7 Simple WebSocket Client

Simple WebSocket Client is a Google Chrome add-on that allows users to easily open a WebSocket connection and
send requests. The response is displayed and continuously updated with new lines as data is received.

8

Figure 9: Example of Simple Web Socket Client

2.8 Pitch on Propeller

In this report, ”pitch” usually refers to the angle of the thruster blades.

2.9 Interpolation

Interpolation is a mathematical method used to estimate unknown values within a known range of data points. For
example, it can increase the number of points between two data samples to make a simulation appear smoother.

2.10 Unity Asset Store

”The Unity Asset Store contains a library of free and commercial assets that Unity Technologies and members of
the community create. A wide variety of assets are available, including textures, models, animations, entire project
examples, tutorials, and extensions for the Unity Editor.”[17]

9

Figure 10: The Asset Store website, picture taken from the Unity Manual [17]

2.11 Tunnel Thruster

”Tunnel thrusters provide side force to the ship to improve manoeuvring capability in port or to provide additional
station keeping power when dynamic positioning. Well proven, robust and reliable design.”[8]

Figure 11: KM’s Tunnel Thruster, courtesy of Kongsberg Maritime [8].

2.12 TCNS - Swing-up Azimuth Thruster

”The TCNS type azimuth thruster offers all the advantages of a retractable thruster within an exceptionally compact
design. When operational, the thruster provides high bollard pull, ensuring efficient positioning and manoeuvring of
the vessel. For transit and operations in shallow waters, the thruster can be swung up above the baseline and retracted
into its housing.” [9]

10

Figure 12: KM’s TCNS Swing-Up Azimuth Thruster, courtesy of Kongsberg Maritime [9].

2.13 Azipull Thrusters

”The Azipull thruster is an azimuthing and pulling thruster with the propeller in front of the gear housing, providing
the following advantages:

• The propeller’s location ensures uniform water flow, which is ideal for a propeller designed for high efficiency,
low pressure excitations on the hull and low underwater noise.

• A slender shape is possible using high precision gear wheels, this minimises hydrodynamic drag.

• A tail fin increases the rudder effect and reduces course correction losses while in transit.”[7]

Figure 13: Azipull thruster

11

2.14 MQTT

”MQTT is an OASIS standard messaging protocol for the Internet of Things (IoT). It is designed as an extremely
lightweight publish/subscribe messaging transport that is ideal for connecting remote devices with a small code foot-
print and minimal network bandwidth. MQTT today is used in a wide variety of industries, such as automotive,
manufacturing, telecommunications, oil and gas, etc.”[14]

2.15 UDP

”User Datagram Protocol (UDP) is a Transport Layer protocol. UDP is a part of the Internet Protocol suite, referred
to as UDP/IP suite. Unlike TCP, it is an unreliable and connectionless protocol. So, there is no need to establish
a connection before data transfer. The UDP helps to establish low-latency and loss-tolerating connections over the
network. The UDP enables process-to-process communication.”[6]

2.16 Courotines

”Couroutines are multitasking methods where functions can pause execution and yield control back to Unity’s runtime
which then resumes them later in the game”[17]

2.17 Parsing

”To examine computer data and change it into a form that can be easily read or understood.”[4]

12

3 Methodology

The initial step in enhancing the training environment was to identify key areas that needed attention. As discussed in
section 1.2, the current training setup contains an excess of non-essential information, which complicates the learning
process for trainees. This issue was addressed in the preliminary project outlined in section 1.3, where software block
diagrams were presented in a SCADA-like format using a program called Ignition. However, the communication
component of this solution was unstable, often crashing and failing to start reliably. It also struggled with connecting
to multiple thrusters simultaneously.

The lead training instructor at Kongsberg Maritime Ålesund noted that some courses are designed specifically for
the configurations of particular vessels, providing training directly relevant to the vessels that the attendees operate.
This customization, however, introduces several challenges. Different vessels may not share the same functionalities,
leading to variations in the software block diagrams. In addition, not all vessels use the latest versions of CAF, resulting
in different communication standards. Ideally, the GUI should be tailored to each specific vessel, which would involve
auto-generating software block diagrams. Although this is beyond the scope of this project, adapting the program to
accommodate various CAF versions is feasible by developing a flexible communication program.

To make the program more interactive, the team wished to implement duplex communication in order to change the
parameters and see the response from the control system, without having to change between CAF and the visualization.
This approach not only streamlines the workflow but also significantly reduces the time and effort required for training.
By allowing seamless parameter modifications and instant observation of the outcomes, the training process becomes
more intuitive and effective. Users can experiment with different settings in a controlled and interactive environment,
quickly understanding the effects of their adjustments, thereby accelerating the learning curve and improving the
overall experience with the system.

3.1 Design and structure of the program

To facilitate the objectives outlined above, we adopted a modular approach based on a client-server relationship.
This structure maintains a stable connection between the GUI and our program, while permitting client modules to
dynamically select and connect with the appropriate server system. This flexibility allows the communication program
to act as a versatile intermediary between the thruster control system and various GUI platforms. In addition, this
program can be tailored for other use cases beyond the initial scope of this project. Such adaptability not only supports
multiple clients, ensuring both backward and forward compatibility, but also facilitates easy integration with systems
beyond the CAF.

The planned structure of the new training environment is shown in figure 14. The blocks on the left represents the
controllers for each thruster on a vessel, ranging from one to multiple thrusters depending on the vessel type. These
controllers contains a software called CAF which is interfaced with using the communication methods Rest API and
Websocket. In this figure the data gathering app communicates via the websocket client module, this(grey box) is
where other clients would be implemented to make the program work with other CAF versions. Which then retrieves
the messages from the modules in to a OPC UA server (Red block). Thereafter distributing the topics and values
coming from the control system to the visualizations (pink block). But in order to visualize in Unity the program
needs a method to send the values from the OPC UA server through UDP messages (the dark blue blocks).

13

Figure 14: UML Deployment Diagram programs structure

14

3.2 Collecting data from CAF

While exploring viable solutions for data collection, the project team had a meeting with developers from Kongsberg
Maritime, discussing three potential available methods: Websocket, MQTT, and REST API. Each approach was con-
sidered viable, but the REST API was ultimately favored. The preference for REST API stemmed from its flexibility
in request frequency, as it is not limited by software constraints. Furthermore, the REST API supports both GET and
POST operations, offering more comprehensive data interaction capabilities. It is also noteworthy that REST API and
Websocket operate at different levels. REST API allows for requests of entire components, whereas Websocket is
limited to individual data variables.

The option of using MQTT was discarded after careful consideration. The primary drawback of MQTT for this
project was the need for an additional microcontroller to facilitate connections, complicating the system architecture.
The team prioritized maintaining system simplicity and accessibility, leading to the decision against not incorporating
MQTT.

Furthermore, the documentation provided was limited to accessing the REST API through the following endpoint:
http://’ip-address’/api/spec. This documentation outlines how to use the CAF REST API.

3.2.1 Testing the collection methods

According to the REST API specifications, only sub-objects can be requested to obtain the data values we are interested
in. This means that instead of requesting the entire ”PitchControl” object, which includes both ”PitchControlInputs”
and ”PitchControlOutputs” along with several other sub-objects, we had to request each sub-object separately. To
confirm that the methods work, some tests were performed to confirm the number of variables and the update frequency
that can be retrieved from the server. Starting with REST API, the test(image 15) revealed that one network session
needs approximately 0.4 seconds to return data on one of the components.

Figure 15: Test of REST API with one session using ”restapi single session.py”

Since the server contains multiple components and sub components, REST API seemed too slow. In an attempt to

15

reduce the time, multiple network sessions were introduced, each of which took a third of the topics, but according to
the test(image 16) it is not supported by the server because it takes roughly the same amount of time to gather the data.

Figure 16: Test of REST API with multiple sessions. Using ”restapi test multiple sessions.py”

From our discussion with KM developers, we gained insights into establishing a WebSocket connection with their
server. Firstly, the connection had to be initiated via the WebSocket address ws://192.168.252.3/ws/Trend. Secondly,
to subscribe to topics, a request has to begin with ”+1:” followed by the CAF path to the desired topic, such as
+1:PitchControl.PitchControlOutputs.Pitch Feedback Adapted. We also learned that each data transmission included
ten timestamp-value pairs, which introduced a one-second delay into our system. Given the slow operational nature
of the system we were monitoring, this additional delay was considered acceptable. Verification through the Google
Chrome extension ”Simple WebSocket Client” confirmed our understanding, although we noted that the number of
pairs per response varied, sometimes more than doubling the expected amount.

Figure 17: Test Using the Google Chrome Extension ”Simple WebSocket Client”

To find the limit of subscribable topics a test script was written in Python 8.2.3. This script runs 2 tasks re-
ceive message(producer) and do stuff(consumer) to get and print data. Currently do stuff prints a line of hashtags to
separate batches of data and receive message attempts to open 200 connections. This test showed clearly (image 18)
that 100 simultaneous connections is the maximum number of topics to be sent from the marine controller. Because
of the round number of ”active connections”, the team believed that this had to do with server limitations.

16

Figure 18: Testing max websocket connections. Using code: ”WS test multiple clients.py”

Comparing the two methods. From these tests we found that REST API can gather approximately 1
0.4 ≡ 2.5 ≈ 2

objects per second, while websockets could collect 100 topics per second. Meaning that if the average 2 objects
contained less than 100 topics, websockets were better suited to use for this project. From 2 random samples (image
19 and 20), the objects contained less than 50 topics. ChatGPT was utilized as a effective way to count the topics faster
instead of counting all the topics by hand. This realisation of the objects containing less than 50 topics strengthened
the teams initial beliefs, that websockets would be the most suitable option for this specific use-case.

Figure 19: Component 1 containing 23 topics. Counted with ChatGPT

Figure 20: Component 2 also containing 23 topics. Counted with ChatGPT

3.3 Distributing Data

After collecting the data to the OPC-UA server the data had to be distributed to the GUI and visualization platforms.
It was decided to continue using OPC-UA like the pre-project based on its scalability, security features and seamless
integration with Ignition, which was displayed in the live software blockdiagrams made in the pre-project.

17

To learn more about visualization and attempt to cooperate with a professional firm, the team conducted a meeting
with Morild Interactive, a local simulation firm. Project Engineer Per Magne Dalseth and Vice President(VP) for
Services & Technical Support Geir Olav Otterlei attended the meeting with us. During this session, it was decided
that Morild would integrate a UDP component and a visualization into their offering, with the specific UDP message
format to be confirmed via email. Morild also promised to send a formal proposal detailing the costs involved.

Subsequently, our project group began developing the UDP client. However, upon receiving Morild’s proposal, we
found the costs too high, leading us to discontinue the collaboration. Despite this, the discussions had highlighted the
potential of using Unity and UDP, which inspired our team to independently pursue this technology. We proceeded by
configuring the UDP client to subscribe to our OPC-UA server and relay data to Unity via UDP.

3.4 Making The Communication App

The application for this project was created in multiple steps to minimize the room for errors. The team began by
coding the program in C++, but realized quickly that this was too slow. Although creating the program in C++ would
be beneficial in regards to efficiency and speed, we decided a switch to code in Python in order to rapidly test, develop
and adapt our code. After switching to Python, we started by recreating the functionality that already existed in
the pre-project, but developing the new program with an object oriented approach. This was done by creating the
start opc ua and websocket to opc scripts as separate programs and launching them one by one. The same
method was used to create the rest of the components listed in table 3 as well as several client classes which will be
explained in detail later in the report. Additionally, it was decided to make the program asynchronous to increase the
communication efficiency.

Script name Function
App Main entry point to the program.
start opc server Contains everything to do with the OPC-UA server.
ws to opc Utilizes the websocket and OPC clients to retrieve data from CAF and

store it on OPC-UA
rest to opc Demonstrates the possibility of having additional clients. Utilizes the

CAF restApi and OPC clients to retrieve data from CAF and store it on
OPC-UA

opc to unity Utilizes the OPC and UDP clients to send data from OPC-UA to the IP
address and port described in the connection data.json file.

functions Contains various helper functions used throughout the other scripts for
data handling and processing.

Simulate thrust load rest A program to simulate load and upload it to CAF
opc client A client to upload or download data from the server.
restapi client A class to use CAF restApi
ws client A class to retrieve data from CAF using websocket

Table 3: Overview of Code Components in the System

3.4.1 OPC-UA Server

The server leverages the Asyncio library for asynchronous functionality and the Asyncua library for OPC-UA func-
tions. This approach allowed for the division of the program into separate parts, enhancing modularity and maintain-

18

ability. While the server setup drew inspiration from an example in the Asyncio documentation([5], modifications
were made to accommodate new functionalities, such as a method to add variables to the server from the client side.
This dynamic variable addition ensures that only existing variables on the CAF servers are incorporated, rather than
relying on a predetermined list.

Notably, all security options were intentionally excluded by the line server.set security policy([ua.

SecurityPolicyType.NoSecurity]) to minimize potential communication errors and streamline the setup
processes. Given that communication primarily occurs within local networks, the absence of security measures is
deemed acceptable, considering the lower risk of unauthorized access.

The OPC-UA Client Class was created to interface with the OPC-UA server in a simple way. During its creation,
it was noted that using the client module of the asyncua library was easier, therefore the opc-ua client was excluded in
all parts of the code except some sample code used for learning and testing.

3.4.2 Websocket To OPC-UA

Websocket to OPC-UA interaface with CAF using websockets. The program takes two inputs, connectionData
and a path to the topics text file. The main function extracts the data from connectionData and creates clients equal
to the amount of topics in the text file. The program then starts several tasks asynchronously. It starts receive message2

once per topic and process queue once to parse and upload the data to the server.
Websocket Client Class The websocket client class was created to simplify and objectify the usage of websocket.

A websocket client object takes an ”uri” as a parameter and the class contains many functions used for testing and
learning, but mainly 3 functions that are used in the final product: connect, receive message2 and close.

receive message and receive message2 differs in that receive message2 sends a new request after
every response, in an attempt to get more topics than clients. This seemed to work, but was unreliable and some of the
responses were mixed between topics. Therefore receive message was implemented as a simplification which is
limited to 100 topics. To see logic for receive message look at the flowchart in figure 21.

Figure 21: Simplified flowchart of receive message function

19

3.4.3 Rest To OPC-UA

The program that leverages CAF’s REST API to collect data was called rest to opc. This program uses a producer
consumer pattern with 2 tasks where the function receive message(producer) retrieves data using the aiohttp
context manager, while upload to opc uploads the data to the OPC-UA server using the OPC client class of the
asyncua library. The rest to opc’s main entry point takes two parameters. The first is a tuple with three values
where the first is thruster connection data, second is OPC-UA connection data, and the last is the thruster name. The
second parameter is the path to the text file with topics. The main loop of this program starts by storing the parameters
as variables with understandable names before creating the queues, connecting to the OPC-UA server and starting the
tasks.

Receive message, the producer in this code runs a continuous loop while the client is connected and connect
ion retries is less than the retry limit. To achieve this, the ”aiohttp” context manager is wrapped in a ”try-except”
block to track connection failures. If the connection succeeds, connection retries is set to 0 and a get request
is sent to the server. After this, the response status is checked. If the response status is 200(GET request successful),
the data is processed and put on a queue to be shared with other tasks. If the connection fails, an exponential back-off
strategy is used to reconnect the server. This strategy is used to give the system time to cool down in the case of
overheating.

20

Figure 22: Simplified flowchart of recieve message function

upload to opc, the consumer in this code also runs a continuous loop and takes an opc-ua client, a queue, and
the object node ID as parameters. If the queue is empty the loop simply waits one second and checks again. If the queue
contains data, the data is extracted. If the extracted data contains a value, a function called determine opcua datatype

checks which datatype the value is before a test is done to check if the variable already exists on the server. If it does
not exist, the variable is added. If it does exist then the value is simply updated.

21

Figure 23: Simplified flowchart of upload to opc function

22

3.4.4 OPC-UA To Unity

The opc to unity.py script is structured to perform continuous data retrieval from the OPC-UA server and data
transmission via UDP. This is facilitated by an asynchronous loop within the ‘main‘ function, utilizing asyncio for
non-blocking operations. Data is fetched, processed into a JSON format with specific key-value pair structuring,
and sent through the ‘UDPClient‘ instance. The ‘UDPClient‘ class in ‘udp client.py‘ manages a UDP socket,
ensuring reliable data delivery to the specified IP address and port. The opc to unity.py script facilitates UDP
communication. It retrieves data from the OPC-UA server and sends it, formatted as JSON, to the specified IP address.
Data is then organized as pair of name values, with the thruster name followed by an underscore and then the variable
name. For example:

{

’thruster1_Pitch_Feedback_Adapted’: -82.1145,

’thruster1_Propeller_Rpm_Feedback_In_Rpm’: 152.081

}

UDP Client Class The UDP client class contains of 2 functions: send data and receive data. Using this
class, a UDP client object can be made by simply giving the IP-address and port of the server or client to communicate
with parameters. The class consists of important functions such as send data and receive data. The latter
function has not been used, but was created preemptively for duplex communication with the GUI or visualizations.

3.4.5 Integration of System Components via the Main Application Module

The main application module, app.py shown in figure 24, serves as the the primary entry point of the program, effec-
tively coordinating the interaction between different modules. Upon initiation, the application parses the ConnectionData.json
file, which contains essential configuration settings and parameters. Based on the client to use variable, the ap-
plication dynamically selects and initiates specific communication modules that interface with the OPC-UA server.
These modules, forexample ws to opc are responsible for retrieving data from the CAF system and uploading it to
the server.

23

Figure 24: Simplified flowchart of the main application

The initialization of these modules is determined by data specified in the ConnectionData.json file, partic-
ularly the details provided for each thruster. A loop constructs and task for each thruster, leveraging modules such as
ws to opc for handling WebSocket communications and uploading the data to the OPC-UA server.

In scenarios where the client to use is set to ”REST API”, the system modifies the topic to simplify integra-
tion. For instance, a detailed topic path such as +1:PitchControl.PitchControlTestpoints.Pitch Se

tpoint Deviation is condensed to a format that incorporates the thruster name followed by a the description of
the topic, like ThrusterName Pitch Setpoint Deviation.

Following the configuration and initialization of the necessary modules, the opc to unity module is added to
tasks to facilitate the data synchronization with Unity-based visualizations. The collective tasks, encompassing data
retrieval and upload routines, are concurrently executed using the asyncio.gather(*tasks) function, driven
by asyncio.run() to manage asynchronous operations efficiently.

This structured approach ensures that all system components are integrated smoothly and function cohesively to
maintain the reliability and responsiveness of the data flow between the CAF system, the OPC-UA server, and the
Unity visualizations.

24

3.4.6 Simulating Thrust Load

To make the training environment more realistic, the group decided that a simulation of the load on the thrusters could
be beneficial. Thrusters in the real world would be affected by variables such as, wind, cargo, waves, and currents. The
current thruster control simulator on the ”pelicase” has a direct connection between the setpoint and thruster feedback.
A more sophisticated approach would involve breaking this direct link and routing the setpoint through a mathematical
model that simulates environmental effects before updating the feedback signal, like shown in figure 25.

Before developing the mathematical model, the team believed it would be more prudent to implement the two-way
communication system first. In the list below are several methods to implement the communication for the simulator:

• Connecting an external PLC to the I/O modules.

• Incorporating the simulation directly within the existing PLC.

• Utilizing REST API.

• Employing WebSocket communication.

25

Figure 25: UML diagram with load simulator on one client

26

Given the group’s prior experience with REST API and WebSocket communication, and considering no data had
yet been sent back to the Control Application Framework (CAF), these methods were prioritized. Initial discus-
sions with Kongsberg Maritime (KM) developers revealed limitations in the WebSocket server’s support for two-way
communication. Therefore, the team considered it wise to ensure the communication system’s functionality before
investing time in a mathematical model whose eventual use was dependant on the two way communication.

3.4.7 Challenges With Two-way Communication

Attempting to implement data feedback to CAF using REST API introduced several challenges. According to the
API specifications, there were two viable methods for updating the data: ”PUT” and ”PATCH”. The PUT method
would overwrite all existing protobuff data and required sending the complete proto as a nested JSON. In contrast,
the PATCH method only updated fields that were included in the request, with omitted fields retaining their previous
values. Our first objective was to alter a single value which meant that PATCH was more suitable. However, testing
revealed complications:

• Sending the complete message retrieved from a GET request back to the server via a PATCH request resulted in
a 202 response code and caused CAF to crash(image 26).

• Similarly, attempts to modify and send back only the intended value using PATCH also triggered a 202 response
and led to a subsequent crash.

• Also, testing with the PUT method yielded the exact same response as PATCH, indicating no difference in the
outcome between these methods(image 27).

Figure 26: Attempt using the PATCH method. Code Simulate thrust load rest.py was used in this test.

Figure 27: Attempt using the PUT method. Code Simulate thrust load rest.py was used, but PATCH in
line 53 was replaced with PUT.

The 202 response status meant, according to the specifications, that the server had successfully received the data
and it was sent to the back end for computation. Given that we received a successful response but CAF crashed, we
assumed that the message was wrongly formatted. Unfortunately there was not enough time available to explore this
further as other parts of the project was prioritized.

27

3.4.8 Making the App more accessible

To make the program more accessible and more likely to be used, it was decided to convert the file into a distributable
program that can be used without installing Python or any packages. To accomplish this, we utilized the PyInstaller
library. The process began by creating a app.spec file, which specifies configuration details such as the executable
name, included files/folders, and other advanced options(image 28). We chose to create this file using ChatGPT,
instead of searching the web for a template. After creating the file the team added the readme file and Data folder
manually.

Once the ”spec” file was prepared, the following commands were executed from the command prompt (CMD)
within the project folder:

cd path\to\projectfolder

pyinstaller app.spec

This process resulted in the creation of a distributable folder containing the executable. However, initial attempts to
run the executable revealed incorrect file paths. To resolve this, we modified the system directory path at the beginning
of the Python script to ensure correct path references using the OS module from the Python standard library(image
29). Specifically, the script checks if the application is running as a bundled executable (using sys.frozen) and sets
the current working directory to the folder where bundled assets are unpacked (sys. MEIPASS). If not running as a
bundled executable, it is set to the directory where the script file is located. This ensures that file paths are correct even
if the project is distributed and the project path is changed.

28

Figure 28: App.spec file.

29

Figure 29: using OS module to change directory.

3.4.9 Customizing OPC-UA Topics to Reuse Old GUI

Since parts of the Ignition GUI were developed prior to this project (as explained in 1.3), it was essential that the topics
conform to a specific format. This was necessary to avoid the cumbersome task of rebinding all displays.

The format for the Ignition tags was specified as follows:

[default]PitchCommand/_1:PitchCommand_PitchCommandTestpoints_Pitch_Order

In this format:

• ’PitchCommand’ represents the folder where the tag is listed in the ”Tag Browser” in Ignition(figure 30).

• ’ 1:’ denotes the thruster name set in connectionData.json.

• ’PitchCommand PitchCommandTestpoints Pitch Order’ indicates the topic path on CAF, mean-
ing that the format should be: folder/thrusterName+topicPath.

Figure 30: Ignition ”Tag Browser” from pre project.

The thruster name must be ’ 1’ for the current Ignition GUI to function as intended, see figure 30.

30

Initially, the program was uploading data in the format "thrusterName topicName". We believed the name
could be changed to " 1:", with the digit referring to which thruster it was, and the data could be manually placed into
the correct folders. However, after our attempts, it became apparent that including a colon (’:’) in the thrusterName
caused issues during data upload to the OPC-UA server. We encountered an error message stating:

’Error parsing string _1:PitchCommand.PitchCommandTestpoints.Pitch_Setpoint_Protected’,

accompanied by a ValueError:

"invalid literal for int() with base 10: ’_1’"

This suggests that the server’s parsing mechanism misinterprets the colon within the identifier, leading to upload
failures. Attempts to cast the thrusterName into a string format were unsuccessful.

To resolve this problem, the team first imported all the topics into Ignition using the built in OPC-Browser. This
renewed the OPC-UA item paths to use the string node identifiers. Then we exported the topics as a JSON file and
edited all the topics names from starting with ” 1” to start with ” 1:”, before re importing the file in to Ignition again.

3.5 Testing the Ignition Program with the App

After successfully reusing the Ignition GUI, tests were conducted to find the limitations and functionality of the
program. Testing involved using two thruster simulation ”pelicases” along with a test rig at NMK(figure 1 and 31,
resulting in connections with two azimuth thrusters and two tunnel thrusters. This setup introduced a variety of test
conditions. The main aspects of testing are outlined below:

1. IP Address Configuration:

• Each thruster controller was assigned a unique IP address.

• The connectionData.json file was updated with these new IP addresses.

• Upon starting the script, all operations proceeded smoothly with all expected topics successfully uploaded
to OPC-UA and displayed on the Ignition GUI.

2. Disconnection and Reconnection Tests:

• Tests were conducted by manually disconnecting the ethernet cable from one of the thrusters.

• It was observed that if the disconnection period was shorter than the preset timeout duration in the web-
socket client, reconnection occurred automatically.

• This revealed that the try/except block in the script did not trigger as expected, indicating that the
timeout mechanism alone adequately handled the reconnections.

• If the disconnection lasted longer than the timeout duration, an error message was generated, suggesting
problems with adding topics. This issue likely stemmed from the program’s attempts to re-add topics to
the server, which is unintended and generates an error.

These findings suggest that while the websocket client efficiently manages short-term disconnections via its time-
out feature, longer disconnections pose challenges that should be investigated.

31

Figure 31: Ferry installation test rig.

After adding the OPC-UA server connection to Ignition’s connection settings, it automatically subscribes to all the
data available and makes them available to use in the Ignition Designer editor.

To test that the communication with multiple thrusters was actually working. A test-page in Ignition was created.
This page displays both thrust and azimuth angle for the 4 thrusters we used for testing. As shown in figure 32 the
two azimuth thrusters located at the bottom has an angle, while the tunnelthrusters provide sideways force. The edge
between blue and white signifies the thrust direction and power, meaning that if the edge is in the middle, there is no
thrust. This might not be the most intuitive solution but it worked to test the communication.

32

Figure 32: New test-page in Ignition showing multiple thruster functionality.

3.6 Visualization in VR/AR

This section outlines the methodology and tools employed to visualize thruster movements in augmented reality. We
will detail the various methods, software packages, and equipment chosen for this project and discuss the reasons
behind selecting these specific resources.

3.6.1 Tools and considerations

In order to find out what programs and equipment to incorporate in the project, the group had to figure out what the
intended goals and objectives for the project were. The main goal of the project was to create an innovative and
immersive real-time training experience, enhancing the learning outcome for the users. The decision was made to use
augmented reality (AR) to visualize thruster movements to improve the training experience. Several factors were taken
into consideration before deciding which software and equipment to use. In order to find the most suitable option for
the intended scope of the project, extensive research was conducted. This research provided us with information about
various software and hardware options available for AR.

3.6.1.1 Selection of Visualization Tools

There were several options of hardware and visualization programs available to use, towards our decision making
about selecting the most suitable programs. The options discovered were game engines or programs such as Unity,
Unreal Engine, Godot, Construct 3 and Blender game engine. Although Godot and Construct 3 are popular game
engines, they did not align with the specific requirements and goals for the project. Our objectives necessitated the use
of advanced 3D models from Kongsberg Maritime (KM) to create a visualization in augmented reality. Consequently,
Unity, Unreal Engine and Blender seemed to be the best programs to use for visualizing the thrusters movements in
real time, aligning with our projects requirements and goals.

33

3.6.1.2 Hardware and Software Considerations

Implementing augmented reality to the visualization in the project depended on selecting the appropriate hardware
capable of providing such an environment. A consequence of this, was that the focus shifted towards headsets sup-
porting mixed reality. Given that augmented reality is a relatively new technology, there were limited alternatives
available. For this project, the feasible choices for headsets that fit the intended scope included the HTC VIVE XR
Elite VR Headset, Meta Quest 3 (formerly known as Oculus), and Apple Vision Pro. Each of these options features
pass-through functionality, essential for creating the augmented reality environment wanted for this project. The deci-
sion to select Meta Quest 3 was mainly influenced by cost-effectiveness. At the time this project was conducted, the
HTC VIVE XR Elite VR was priced at NOK 16,690, the Meta Quest 3 at NOK 6,890, and the Apple Vision Pro at
NOK 38,463, for a more structured comparison look at table 4. Given the significant price disparity, the Meta Quest 3
offered a practical balance between functionality and affordability. Not only did Quest 3 provide cost effectiveness, but
it also scored very well in various tests, making it a promising headset to use in the project. Additionally, the biggest
reason for not choosing the Apple Vision Pro over the Quest 3 was solely the fact that it was not possible to buy in
Norway. Another important factor for deciding to use Quest 3 was the simplicity of developing on the headset in order
to integrate with the Unity game editor. Therefore, choosing a well known headset brand with a lot of documentation
and tutorials could prove as beneficial to complete the visualization.

Headsett Price in NOK Price in USD
Meta Quest 3 6890kr 626.78$

HTC VIVE XR Elite VR 16 690kr 1518.29$
Apple Vision Pro 38 463kr 3499$

Table 4: Headsett Pricing 2024

After evaluating various game engines, the choices were narrowed down to two, each with its own advantages and
disadvantages. In order to make an informed decision, extensive research and some testing on the two engines was
conducted. Ultimately, the decision to utilize Unity for the visualization was significantly influenced by its versatility
and widespread adoption. This was evidenced by its extensive use within the community, used by companies like
Morild Interaktiv AS—a marine shipping simulator company. As mentioned previously in chapter 3.3, prior to making
our decision on which game engine to use, we visited Morild Interaktiv AS to discuss various aspects of visualization
and simulation. Their valuable insights greatly influenced our choice to use Unity. Additionally, another important
aspect worth to mention was the documentation and tutorials available for Unity compared to Unreal Engine, which
strengthened our decision to proceed the visualization using Unity.

3.6.2 Acquiring and Preparing 3D Models

The visualization of the thrusters movements depended on acquiring and preparing the thrusters and UT-Boat 3D
models in a software program that is capable of editing a variety of different file formats. For this project, the decision
to utilize Blender as the 3D model editor was made due to the project group’s previous experience with the application.
The preparation of the 3D models regarded editing the colors, hierarchy and names of the objects which were essential
for applying the models into Unity.

Since the goal of this project was to improve the training environment for Kongsberg Maritime and the overall
system understanding for employers and customers, making our own 3D models was not the priority of this thesis. For

34

this reason, the group engaged in collaborative efforts with various departments within Kongsberg Maritime (KM) as
well as with NTNU to acquire some models that were suitable to use for the visualization. Specifically, we obtained
the BB-Octopus, see figure 33b from NTNU and the UT-7138 ship from KM’s ship design department, see figure 39.
The tunnel thruster used for this project was acquired during our preliminary project from last semester, which the
team already had acquired from Kongsberg Maritime’s department in Ulsteinvik, see figure 33a.

These models made it possible to add the thrustermovements directly on to the thruster design, which was a concept
we already had proved in the first prototype visualization using Threepp, look at figure 6. The provided models were
given to us as a ”3DSMax” file. Since Unity does not support ”3DSMax”, we had to change the file. The conversion
was accomplished by opening the models in Autodesk 3DSMax and exporting the models in a format called ”FBX”,
that Blender and Unity supports. Adjustments to the models regarded such as editing the centerpoint, the naming and
hierarchy of the child objects within the object and deleting unused and unwanted objects that were not essential for
our visualization. This included objects like cranes, wires, camera animations and lights that had no relation to our
visualization. The thruster objects structure and hierarchy was named logically with names suitable for each object
instead of having part numbers to be each objects name in order to make the object easier to understand and use. Look
at figure 33a with the hierarchy and naming to the right in the editor. In the provided figure one can see the structure
of the thruster object which is the parent object to all the child objects within the thruster. Under the thruster one can
see the pod which is the parent to the ”hub” object which then is the parent to the propeller blades.

35

(a) Tunnel thruster in Blender editor with object hierarchy to the right

(b) Olympic Octopus Boat Model in Blender editor received from NTNU

Figure 33: Detailed Blender Models for the Visualization

36

3.6.3 Integrating 3D Models into Unity

As mentioned in section 3.6.2, the hierarchy in the ”GameObject” plays an important role in how the movement
logic is implemented. In order for the blades to rotate with the correct pitch angle on the tunnel-thruster, some minor
changes were necessary to edit the objects so that the centerpoint of each blade was correctly placed. The solution for
this was to create an empty GameObject and define the centerpoint to be at the desired rotation point of each blade.
Thereafter, structuring the new GameObject called blade point as a parent to the blade objects, look at figure 34a
to see the hierarchy and structure of the thruster object in Unity and figure 34b to see the location of the centerpoint for
the blade point and how it was positioned. In this picture the green arrow represents the Y-axis, the red represents
the X-axis and the blue represents the Z-axis. Therefore, in order to rotate each blade’s pitch angle one would need to
rotate the blade point object around the Y-axis.

3.6.4 Data Integration and Movement Simulation

For the thruster to be able to move in accordance with the data coming from the marine controller, the development
mentioned in 3.4 and the creation of a script that acts as a client to receive the data values was necessary. Additionally,
the next step was creating a movement script that listened to the communication script in order to visualize the rotations
and thruster movements.

3.6.4.1 Data Communication Setup

Implementing the communication script involved several considerations. The first step was to determine what commu-
nication protocol to use. The initial idea was to utilize OPC UA as the main communication protocol. OPC UA is also
the communication used for the data gatherer program, which additionally communicates directly with the Software
Block Diagram (SWBD) visualization on Ignition, as shown in figure 14. Therefore, a similar approach was looked
upon as highly beneficial, but unfortunately Unity did not have built in support for OPC UA communications. For this
reason, integrating OPC UA communication into Unity would require downloading a third-party library from the asset
store or creating a custom solution that interfaced with OPC UA servers. Since the team had little to no experience
using Unity and the price of using a third-party library from the asset store, the team figured out another solution that
would be suitable for the project’s needs. As mentioned in section 3.4.4, UDP was chosen as the communication pro-
tocol due to its built-in support and comprehensive documentation. Hence, making a client script in our data gatherer
program which is described in section 3.4.4, that sends the data variables from our OPC UA server to the client in
Unity. See figure 14 for a visual representation for the structure of the programs and figure 35 to see the flowchart of
the UDPClient.

37

(a) Tunnel Thruster in Unity Editor Showing Hierarchy

(b) Blade Point to Correctly Rotate Pitch Angle of the Blade.

Figure 34: Visual Representations in Unity and Blade Mechanics

38

Figure 35: Flowchart diagram for Movement and UDPClient scripts in Unity

39

The inbuilt library used for implementing UDP was the .NET library, see the top of the code in listing 8.3.1. These
packages are used to implement and receive the variables through UDP communication. In order to attach the class to a
game object in Unity the class needs to inherit Monobehaviour[17]. Allowing the script to use Unity-specific function-
ality such as ”coroutines” to respond to game events by implementing specific methods like ”Start()” and ”Update()”.
In this class, the serverSocket is defined using the .NET library to handle UDP networking communications.
The port number (in this case, 5000) specifies the port the client listens on for incoming messages. Additionally, a
thread-safe queue called messageQueue, which stores incoming messages until they can be processed, is created
as a private member variable. Furthermore, the UDPClient class has the functions void Start() and void

Update(). The Start function is called before the Update function, initializing the UDPClient to listen on
the specified port and begin receiving data, thus starting the communication. Thereafter, the Update function is
called every frame and processes all the messages that have been received and stored in messageQueue using the
ProcessMessage function.

Additionally, the client has a callback method to receive and store the messages. The function ReceiveCallback
is a callback method for BeginReceive, which reads data from the network and converts the byte array into a string
using UTF-8 encoding putting the string into the queue and looping it back again by calling BeginReceive. In
order to apply the messages and use data coming from the data gatherer program on the GameObjects, the program
depends on a method to process and parse the messages. The function ProcessMessage processes each dequeued
message from messageQueue and parses the JSON formatted string into a ”JObject”. The function parses the JSON
object to extract the thruster ID, enabling the use of multiple thrusters within the same visualization. Additionally, it
processes incoming messages to update pitch, RPM, or azimuth angle values based on the topic from the data gatherer
program’s UDPClient. These values are then applied to the correct GameObject using the thruster ID to define which
GameObject to move the JSON data received by UDP.(see Figure 36).

3.6.4.2 Movement Mechanics Implementation

The visualization depends on a Movement class, see code in section 8.3.2 and 35. This class manages the rotations
of the propeller on the thruster. Rotations such as, RPM, pitch angle and azimuth angle according to the values
received from the UDPClient. The script is designed to smoothly interpolate the values to remove ”choppy” thruster
movements. As mentioned in the section above the Movement class has the MonoBehaviour which enables the
class to be a component that can be attached to a GameObject, see right side of figure 36 where the Movement
component is attached to ”Thruster3”. Within this class, public variables as shown in the figure above were created in
order to apply the GameObjects to the component.

The Propeller variable has the Propell object attached to it, and similarly, each blade has its own blade point

object attached to the Movement component. The movement script uses the functions Start() and Update(),
and initializes both the initial blade and azimuth rotations for each individual thruster. The Update function performs
the interpolation of RPM, pitch, and azimuth values using Math.Lerp, linearly interpolating between the current
and target values based on the interpolationSpeed variable. Furthermore, each value has its own UpdatePitch(),
UpdateRPM(), and UpdateAzi() functions to update the variables to their latest values. Additionally, the pitch
and azimuth angles have RotateBlade() and RotateAzi() functions, respectively, which rotate the GameOb-

jects along their correct axes, as mentioned in Chapter 3.6.2. These functions are then used in the Update() function
in the movement class.

40

To add the Movement script to the thruster, a simple drag-and-drop of the Movement script component from the
project’s asset folder was performed. Then, the respective GameObjects were dragged and dropped from the scene
hierarchy onto the movement component to apply the thruster movement to a thruster object. Figure 36 in the inspector
to the right shows how the Movement component was implemented with the thruster.

Figure 36: Tunnel thruster running in editor with thrust direction receiving values

3.6.5 Augmented and Virtual Reality Setup

The integration of Augmented Reality (AR) and Virtual Reality (VR) necessitates the implementation and installation
of essential software components. According to the Unity Asset Store, the OVR All-in-One package emerges as the
most up to date and comprehensive solution for this purpose.

3.6.5.1 Setup of Meta Quest Features

In the early stages of the project the team acquired a virtual reality (VR) headset from NTNU, to develop and test and
implement the visualization of the thruster objects in VR. The reason for starting with the Quest 2 headset was that the
team had not acquired the more modern Quest 3, but wanted to prove that it was possible to get the values from the
data gatherer program in to Unity and to a virtual environment. Shortly after proving that it was possible to visualize
the thruster movements in VR using Quest 2, Kongsberg Maritime agreed to acquired a quest 3 headset so that we
could develop the AR portion of the project.

To demonstrate the feasibility of utilizing the Quest 2 headset for visualizing thruster movement, the team followed
a YouTube tutorial from the ”ValemTutorials” channel [19]. This tutorial served as an introduction to developing the

41

VR environment in Unity. To implement the VR functionality in to the game scene the ”Meta All In One SDK”,
had to be installed from the ”Asset Store”, from Unity’s web-page. Thereafter, importing the asset and applying it
on the GameObjects in the scene. At first the team used the tutorials on YouTube as a guide to manually integrate
the Meta All-In-One SDK into Unity. These tutorials provided a detailed walkthrough for setting up a mixed reality
scene, introducing features like hand and controller tracking and other VR/AR functionalities like for example ”pass-
through”. While this method was informative, some of the videos were deprecated. Therefore, it became apparent
after developing in Unity that relying on tutorials to utilize the SDK lacked efficiency and scalability. This led the team
to explore alternative approaches. Upon discovering Unity’s pre-built tools and building blocks designed specifically
for the SDK, the team decided to start using these resources instead of the YouTube tutorials. This change made
development easier and more efficient, and minimized the risk of errors in the visualization.

Within the scene hierarchy, see figure 37a, the VR and AR functionality requires a OVRCameraRigInteraction
block that contains all the logic for the VR and AR functionalities, features like pass-through, hand tracking, and con-
troller tracking the Meta Quest headsets provide. Within this block there is the OVRCameraRig, this block sets up
the camera rig and manager which is important in order to apply the Meta Quest features within the visualization, see
figure 37b. Within the OVRCameraRig block there is a block that provides the interaction logic with GameObjects,
like the thruster within the game scene named OVRInteractionComprehensive. This block is the parent to the
blocks that contains the Meta controllers and hand tracking features. In order to enable the both hands and controllers
tracking features the team enabled them in the OVRManager seen in 37b, making the users controllers and hands to be
intractable with other GameObjets. To grab an object, the object must have a ’grabbable’ and ’rigidbody’ component.
In this instance, a grabbable component was applied to the Pod object because the team wanted to enable grabbing
only on the pod, as the propeller was going to be rotating.

3.6.6 Learning about Water Physics

The teams first visualization prototype using Unity was creating an environment using the Quest 2 with a black test
environment background and a simple plane to illustrate the ”ground” in the VR environment. After proving that
visualizing the thruster movement was possible, the team shifted its focus towards enhancing the visualization by
illustrating the ”wash” of the propeller blades to observe the thrust direction on the thruster. Consequently, attention
was directed towards incorporating water physics into the visualization. The initial plan was therefore to create a
”pool” of water in the visualization prototype and make the water interact with the propeller blades of the thruster.

42

(a) OVR Hierarchy (b) OVRCameraRig Inspector

Figure 37: Meta Quest Features Implementation 43

Upon the implementation of water physics within the game, it became clear that managing water dynamics was
more complex than initially anticipated. Resulting in a time consuming research and test period to figure out the
different methods of implementing water dynamics to the visualization. The first methods the team found for imple-
menting water dynamics was either to create a ”water shader” ourselves, or download and import a water ”asset” from
the ”asset store”. After considering these options, the decision was made to use a water asset from the asset store,
recognizing its benefits. However, the cost associated with these assets redirected our focus towards seeking other
alternatives. The team found another free alternative called ”HDRP Water Sample Scenes” from Unity-Technologies,
available on their GitHub page [18]. By following the readme instructions, downloading, and importing the sample
scenes into our visualization project, water dynamics could be implemented. Consequently, placing the thruster under
water to test if the water would interact with the propeller blades, the outcome was unexpected. The water did not
move, splash or respond in accordance with the propeller movement and thrust direction at all. This discovery led the
team to realize that particles were needed to effectively illustrate the movement, as shown in figure 38.

Figure 38: Thruster Under Water VR Using Quest 2

Unity features a robust Particle System where you can simulate moving liquids, smoke, clouds, flames, magic
spells, and other effects [11]. In the visualization, the particle system uses the cone shape to emulate the thrust from
the propeller, but in order to get the thrust direction shape both negative and positive direction, the angle on the
cone shape was modified into a ”cylinder”. Directing particles outwards or inwards in the appropriate direction, as
illustrated in Figure 36.

To ensure the particles accurately represent the propeller’s thrust direction, a script was developed to adjust the
particle system’s orientation based on the thruster’s pitch angle. This script dynamically aligned the particle emission
with the thruster’s movement changing the rotation and speed of the particles, look at the code in Section 8.3.3.

44

The PropellerParticleSystemController class uses the movement script, mentioned in Section 8.3.2
and 3.6.4.2, as a public variable and refers to the modules in the particle system as private variables in order to move
the particle system according to the thruster’s movement. The Start() method is called on the frame before any of the
Update methods are called for the first time.

The particle controller script moves the propellerParticles by acquiring the ParticleSystem component
attached to the same GameObject. Additionally, it then checks if the propellerParticles component and
movementScript are properly assigned within the Unity scene, and if not, it logs an error and disables the script
to prevent further execution errors. The most important method to make the particles follow the propeller blades’
movement is retrieving the modules velocityOverLifetime and shape from the propellerParticles in
order to adjust these modules to move simultaneously in accordance with the pitch value coming from the movement
script.

3.6.7 Transitioning to Augmented Reality

Transitioning to augmented reality from the established virtual reality setup proved to be straightforward, thanks to
the preliminary work done with Meta Quest features, mentioned in Section 3.6.5.1. By enabling the pass-through
functionality, the team was able to shift from a black background to a transparent one, effectively removing the need
for the ”HDRP water sample” scenes and visualizing an environment for AR. This process involved adjustments to the
existing VR elements to accommodate AR-specific requirements, enhancing the immersive experience by integrating
real-world elements seamlessly with the virtual thrusters. Mentioned in section 3.6.5.1, the OVR tool within Unity
was helpful to easily convert the existing VR visualization in to a augmented reality environment.

3.6.8 Developing the UT-7128 Ship Design Scene

Similar to the import process for the tunnel-thruster object, additional editing was required within the game scene
during the import of ship objects in the game environment. Given that both models of ships were acquired concurrently,
the team opted to prioritize the UT-7138 design (figure 39), which was the latest of the two designs. The BB-Octopus
model was retained as a supplementary option or backup, providing flexibility for potential future use or requirements.
As mentioned in chapter 3.6.2, it was also necessary to edit the game object within the Unity editor. Unwanted objects
that did not have any relevancy for the ship were removed and the two orange ”Davit” lifeboats positions were moved
from the bridge to their respective position on the side of the ship’s hull. Subsequently, the team incorporated the
tunnel thruster model obtained from Ulsteinvik, substituting it for the boat’s existing thrusters. This replacement was
necessary because the initial thrusters of the UT-Design lacked segmented blades, resulting in all attached thrusters
being fixed pitch. Additionally, the team also replaced the original azimuth propeller with the already made tunnel
thruster propeller blades, opting for simplicity, despite it not being entirely accurate, since creating a new 3D-object
would not align with our team’s intended scope of the project.

45

Figure 39: UT-Boat in Unity Editor

3.6.8.1 Adding Multiple Thrusters

In order to add more thrusters to the scene in Unity the team simply copied and pasted the tunnel thruster and applied it
to the UT-Design as mentioned in the previous chapter. In chapter 3.4.4, one can see how the parsed message coming
from the OPC server looks. It sends the thruster ID first in the message, this way when multiple thrusters are sending
values that have the same topic name to be able to differentiate between the values. Thereafter changing the name of
each ThrusterObject to their respective ID number. So for example, a thruster with id 3̄ the name of the object needs
to be named ”Thruster3” to be able to move the object, look at figure 36.

3.6.8.2 Azimuth Movement

When implementing the multiple thrusters, the azimuth rotation also had to be implemented. As mentioned in 3.6.4.2
the Movement class moves the azimuth thrusters according to messages coming from the data gatherer server. But to
get the azimuths to rotate the correct way some changes to the scene hierarchy had to be made. These changes were
applied to the azipulls on the UT-Ship design, but could also be applied to the TCNS located towards the bow of the
UT-Ship.

Changes such as creating a new GameObject and positioning the centerpoint to the correct position aligning with
the azimuths centerpoint. Thereafter, changing the GameObject name to ”Thruster” + ”ID” was necessary to apply
the movement to the object. Next adding the newly created GameObject to correctly placing it in the hierarchy to be
a child object of the UT-Design. Thereafter, removing the original blades as mentioned in 3.6.8 and adding the tunnel
thruster propeller to the azimuth object, look at Figure 40. In addition to placing the azimuth object as a child within
the new created ThrusterObject to ensure a correct hierarchical structure.

46

Figure 40: Azimuth Thrusters on UT Ship Design

3.6.9 Unity Version Control Problem

To more easily share the visualization project between computers, Unity’s cloud based version control was utilized.
This addition to the project had the unfortunate effect that the communication stopped working. At first, the group
believed this was because we lacked an understanding of the tool. We therefore embarked on the lengthy process
of double checking every setting, code component and the 3D models. Due to some misunderstandings with the
version control tool, many of these seemed to have changed. The group changed these back to the functioning versions
manually, but the communication was still not working. Because of this, the group started to suspect the IT-department
at ”KM”(whos offices we use). The team tested with personal computers and a direct ethernet connection. When this
did not work, we experimented using different ports which was the solution.

3.6.10 Making the Unity Visualization More Accessible

The team wanted to make the concept more user friendly, and a factor to making it more user friendly is to make the
program easy to launch and use. Therefore, making a executable instead of having to use the Unity editor to start
the program seemed to be beneficial. In order to make a runnable program, the team had to go to the ”build” and
”run” settings within Unity and switch the platform to Windows. Thereafter, building the program and placing it in a
desirable folder or creating a ”Runs” folder on the computer. This made program one that was possible to run directly

47

from the desktop on the Quest Headset when connected via ”Quest Link” on the computer.

3.6.11 HUD-Panels Integration

A plan to implement Head-Up Display (HUD) panels was initiated by utilizing pre-existing assets from an example
scene within the Meta All In One SDK toolkit. The team proceeded to integrate these panels into the scene, ensuring
they were interactive and capable of being grabbable. This served as an illustrative demonstration of the potential
appearance of the panels. However, due to time constraints, the team was unable to implement additional features
such as the ability to spawn/delete objects or display values directly on the panels.

48

4 Results

The final product enhances the communication program by providing adaptability and improved robustness. Data from
the Common Application Framework (CAF) is visualized by overlaying data on both software block diagrams and
hardware drawings, through the Ignition platform. Furthermore, the thruster movements are visualized in augmented
reality (AR) to provide a realistic illustration of the system’s scale and operational mechanics. This implementation
establishes a foundation for future innovations and improvements, including the integration of exploded views, AR
flowcharts, and other advanced visual aids.

4.1 Communication Program

The current communication program is designed for dynamic operation, supporting multiple thrusters and Graphical
User Interface (GUI) connections concurrently. It has been successfully tested with up to four thrusters and works with
both the REST API client and the websocket client, integrating with both Ignition and Unity visualization platforms.
After checking that both cliens work, most of the testing and demonstrating has been done using the websocket client.

When using the websocket client, the amount of topics gathered per thruster is limited to 100 because of server
limitations, as explained in chapter 3.4.2. Configuration is facilitated through several files: connectionData,
topics and endpoints restapi. The connectionData file, structured in JSON format, is used to list essential
elements such as connection information, including URLs and IP addresses. This format simplifies and enhances the
efficiency of reading, parsing, and editing data. Meanwhile, the topics file is straightforward, with one topic per
line. These files specify the topics to extract from the thruster and the ones to send to the Unity visualization program.
The endpoints restapi file lists the endpoints to use when gathering data with the REST client.

When using the REST API client, there is no limit to the number of topics that can be requested. However, it
takes approximately 0.4 seconds (see Figure 15) to retrieve data from a single sub-object, which contains a limited
number of topics. Unfortunately, our testing and the API specifications indicate that there is no way to receive batches
of multiple objects simultaneously. Additionally, when requesting larger objects, only metadata about the object is
received, rather than the full data set.

An additional configuration file has also been implemented to a limited degree. This file contains parameters such
as ”max retry attempts” and ”retry delay”, to allow some configurations to be made by the user without editing the
code directly. How to use these configurations and which parameters are currently in use, are further explained in the
programs readme file.

Robustness features have been incorporated to enhance system reliability. If a thruster specified in communi

cationData is not detected, the program logs this issue to the console and continues to connect to the available
thrusters while maintaining operational stability. Similarly, if a topic from the topics list is missing, this discrepancy
is noted on the console, but the program remains functional, ensuring uninterrupted performance. However, despite
these measures, the robustness occasionally fails, causing the system to get stuck in a repeating loop and sometimes
crashing the control system and CAF.

Given that the program is built using an object-oriented approach, it offers flexibility and compatibility across
different versions and systems, if the necessary components are created. This architecture allows for both backward
and forward compatibility and can be easily adapted to interface with various systems through the addition of new
client modules designed to communicate with the appropriate data servers. This method streamlines maintenance and
simplifies the process of adapting the program to accommodate new technological environments. However, better

49

encapsulation of the various components and functionalities could further enhance the maintainability and scalability
of the program, making it easier to manage and extend.

The current websocket module implemented in the program assumes that topics in the topics list are formatted as
follows: +1:GuiInterface 1.GuiFeatheringMode.Feathering Status, where ”GuiInterface 1” is the object, ”GuiFeath-
eringMode” is the subobject, and ”Feathering Status” is the variable to be retrieved.

Similarly, the REST API module utilizes a text file akin to that used in the websocket module to determine which
objects to retrieve. However, the endpoints are formatted as: PitchControl/protos/PitchControlOutputs/fields, where
”PitchControl” is the object and ”PitchControlOutputs” are the subobject. The system then parses and uploads all data
within the subobject to the OPC-UA server.

4.2 Using Ignition to Visualize Live Diagrams

The GUI created in Ignition displays a system with max configured software block diagrams with data from CAF as an
overlay and is mostly the same as the project baseline, shown in Figure 44, 45 and explained in section 1.3. In addition
we have now implemented live system drawings that show the current states of connections such as IO modules and
CAN connections. The initial goal was to introduce two-way communication to enable the Ignition GUI to change
parameters on CAF, but this was never successfully implemented.

To enhance the live software block diagram visualization using Ignition, the team concentrated on leveraging the
new OPC-UA server object structure. This integration allows for improved interaction with Ignition. Refer to Figure
41 to view the thrusters within the system’s tag browser. This works, but appears to be a bit slower in real life when
updating the topic values than the first prototype because interpolation has not been made in the new server. Despite
having slower updated topic values using the new data-gatherer for Ignition. The new prototype is much more stable
and supports multiple thruster integration which is beneficial for training purposes. The result of using Ignition gives
a training program that serves scalability and ease of use for developers to expand the program if wanted.

50

Figure 41: New OPC-UA server shown in Ignition OPC browser

51

Figure 42: Indicators in the Ignition GUI

52

Figure 43: Real-Time Technical Drawings with live indicators and switches on IO-Modules

53

Figure 44: Pitch Control Page Ignition, Blurred due to confidentiality.

Figure 45: New Pitch live SWBD GUI, Blurred due to confidentiality.

54

4.3 Augmented Reality in Maritime Training

As a part of our project’s aim to enhance the training environment for Kongsberg Maritime systems, Unity was utilized
to create an immersive and interactive 3D visualization in augmented reality. Utilizing Unity allowed the team to have
access to the comprehensive visualization tools within the program, such as its advanced rendering capabilities and
support for mixed reality allowing the development of a detailed and responsive thruster visualization. This section
will discuss the substantial results achieved through the implementation of Unity, reflecting on if the visualization
improved overall system understanding and interaction with Kongsberg Maritime’s control systems.

The use of the Unity game engine enabled the project team to visualize complex system data into a visually intu-
itive format, facilitating a more effective and immersive learning experience for users. Applying real-time movement
from a marine controller to a 3D Thruster has primarily benefited overall system understanding and learning, particu-
larly for new employees and those lacking in-depth system knowledge. For example, individuals who are unfamiliar
with the pitch on the propeller blades, the correlation between RPM and pitch, and the scale and size of a real thruster
can greatly benefit. The finished visualization is shown in Figures 46, 47, and the video provided in the appendix. The
visualization in Unity also allows the users to directly see the movement of the thrusters enabling the possibility to
study the movements in case of deviations or faults within the hardware/software. Additionally, the visualization gives
the instructor the opportunity to more effectively explain details and movements the control system might have when
operating in a certain way to their participants. This integration serves as an invaluable tool for enhancing comprehen-
sion, providing practical insights into system dynamics. It allows employees to visually understand adjustments that
directly the affect thruster behavior, bridging comprehension gaps and accelerate the learning process.

Figure 46: Result of AR visualization

55

Figure 47: AR Visualization of Thrusters in Action: Real-time displaying active thrusters controlled by a system,
complete with dynamic thrust direction indicators.

4.4 Qualitative Findings

This section presents results derived from qualitative analysis of interviews and observations conducted during the
thesis. Through thematic analysis, key themes were identified, highlighting current challenges and opportunities
within the existing training environment.

1. Need for Interactive Learning Tools
Questioning around 50 employees at Kongsberg Maritime Ålesund revealed a consensus on the benefits of the
new interactive training concept. They emphasized its intuitive access to information and data, crucial for system
comprehension. Geir Olav Otterlei, VP Services & Technical Support, and Per Magne Dalseth, Technical Engi-
neer and Instructor, underscored the potential benefits for the company, suggesting that an interactive program
could enhance employees’ system understanding, thereby boosting efficiency and overall operations.

2. Testing Concept During Training Course
Per Magne Dalseth incorporated the new training concept, featuring real-time software block diagrams (SWBD),
during a course. This adjustment resulted in notably positive outcomes, particularly in re-engaging participants
who had previously struggled with traditional methods.

56

3. Feedback and Utility of the Product
Feedback from service engineers, training instructors, and participants indicated strong potential for the product
in training. Of the eight individuals interviewed, five were mainly positive, highlighting improved engagement
and understanding due to the features in the visualization. One participant was highly enthusiastic about the
current features and the future possibilities the concept could offer. However, one participant expressed a nega-
tive view, not towards the product itself but regarding the typically lengthy setup time required for solutions like
these. Despite the communication program occasionally crashing the control system, two service engineers ex-
pressed interest in utilizing the solution during service missions, suggesting substantial promise with continued
development.

4. Augmented Reality (AR) in Training
While AR visualization has been showcased in courses, participants sometimes prioritize the experience itself
over detailed thruster movements. Experimentation with scaling adjustments has shown some improvement, but
enhancing functionality and user-friendliness could further enhance effectiveness. More than five sales repre-
sentatives have also shown interest, indicating potential utility for sales, with one expressing explicit interest in
using it for an exhibition scheduled for September in Iceland.

Overall, the findings in this analysis signify that the product has potential in multiple departments at Kongsberg
Maritime (KM). However, it is important that the solution is easy to set up to ensure its successful implementation and
widespread adoption.

57

5 Discussion

Completing this task has been quite demanding, requiring us to determine the best approach to achieve our objectives.
This challenge led the project group to delve into a significant amount of new subject matter, resulting in a steep
learning curve, particularly regarding Kongsberg Maritime systems. The process of acquiring the necessary experience
and knowledge was both frustrating and rewarding. Reflecting on the project execution, the team recognized that the
knowledge gained benefited us from the start. This section discusses several issues and possibilities encountered
during the project.

5.1 Communication Issues Caused by Unity Version Control

After resolving the communication issue caused by the Unity version control, mentioned in Chapter 3.6.9, the group
developed several theories about why the problem occurred. Since changing the port number from 5000 to 5002
seemed to fix the issue, the group believed it was highly likely that the version control system uses port 5000 for
its cloud communication. Upon further investigation, the group discovered that port 5000 is often a default port,
suggesting that port numbers should be chosen with more consideration. Furthermore, the group concluded that using
port 5000 initially was not ideal and that selecting a different port from the start could have prevented such issues.

5.2 Stand-alone AR Visualization on Headset

The team considered building the AR visualization as a stand-alone app to be used on the headset without requiring a
connection to a PC. However, this idea was abandoned for several reasons:

• Strict Wi-Fi connection in the development area.

• Difficulty assigning a static IP address to the headset.

• Wi-Fi was not fast enough when using hotspot on Phone.

• A wired connection with the quest link was preferred during development due to limited battery life.

5.3 Interpolating

Since the communication program only receives data once per second from CAF, the group considered interpolating
the data before adding it to the server to avoid choppy animations on the visualization platforms. However, this
approach was not implemented for two main reasons:

1. Simple interpolation would introduce additional time delay, making the system less real-time.

2. Significantly more data would have to be transferred to clients.

This means that the visualizations using data from our server would have to interpolate data locally if necessary.

58

5.4 Data Gathering Issues

As explained in chapter 3.4.2, we are currently limited to managing 100 topics concurrently. Potential improvements
were considered but have not yet been successfully implemented. These include using a combination of Websocket
and REST API, asynchronously retrieving multiple topics per Websocket connection, or utilizing an MQTT server,
which would require an additional micro marine controller.

During our attempts to circumvent the limitation of 100 concurrent Websocket connections, there were instances
where the system appeared to function correctly, only to later reveal significant issues like data being assigned to
the wrong topic. These partly successful attempts suggested that it might be possible to request multiple topics per
connection, despite the server’s response rate of once per second. Although promising, we have yet to pinpoint the
issues and have decided to maintain the 100-topic limit for this prototype.

Additionally, we explored various methods for making batch requests. These methods included requesting a list
of topics, using comma-separated topics, formatting topics in JSON, and modifying the identifier from ”+1:” to ”+2:”,
with commas separating the two topics. Most of these attempts yielded no results. However, changing the identifier
initially seemed promising as it appeared to support two simultaneous requests, potentially allowing us to double the
number of topics received. Subsequent attempts to implement this functionality consistently resulted in only the first
topic being received. This inconsistency raises concerns about either the reliability of our initial testing or possible
changes in the versions of our libraries or the CAF system. Regrettably, the code from these tests was discarded, and
further tests using the Simple Web Socket Client (a Google Chrome extension) were unsuccessful in replicating the
earlier results regarding batch requests.

5.4.1 Why two-way communication was not implemented

Two-way communication was initially deprioritized because we focused on retrieving all data from the server first.
Unfortunately, this approach was time-consuming and ultimately unsuccessful. After abandoning the websocket and
REST API methods for data retrieval, we attempted to implement load simulation as described in section 3.4.6, but
since a load simulator was dependant on two-way communication the implementation of the load simulator was un-
fortunately not created.

5.5 Visualization

5.5.1 Water Physics

Focusing on implementing water in Unity proved to be a time-consuming task, which slowed the progress of the
project. Through this focus, we realized that water implementation in games is often simplified and does not encom-
pass all the physics and dynamics of real-life water. Features like buoyancy, ripples, and effects are often implemented
as component scripts applied to game objects, making them behave like water rather than actually interacting with
game objects. Implementing real water physics and dynamics, where water interacts with other objects, would intro-
duce a heavy load on the GPU processing power because the water would consist of millions of tiny particles acting
as fluid. This challenge is present in Unity, but some game engines, like Unreal Engine, have implemented more
advanced interactive water systems.

Although we considered transitioning to Unreal Engine to utilize its water system, we decided to stick with Unity
due to the time required to learn a new game engine. However, if our focus had been on enabling the thruster to be

59

dipped in a pool and interact with water, Unreal Engine might have been a better choice due to its more optimized
water interaction capabilities. Consequently, we decided to focus on other aspects of the project. As a result of this
decision, the project’s particle system was introduced, implemented as explained in section 3.6.6. Refer to Figure 36
to see the thruster running with particles flowing in the thrust direction.

5.5.2 Enhancing User-Friendliness in AR

A challenge the team encountered while visualizing in AR was making the visualization user-friendly, especially con-
sidering that the users of the solution will often be individuals who have never tried VR or AR before. Making the
visualization intuitive for everyone to use was harder than expected. Some users were naturally adept and under-
stood how to use the AR solution, while others needed some practice before getting accustomed to the technology.
Although some users needed practice, all individuals testing it achieved a basic understanding. Taking this into con-
sideration, the AR visualization could have been further optimized by improving user-friendliness, but it works nicely
as a demonstration of the potential.

5.5.3 Positive Feedback and Future Potential

Despite the challenges, the team received enthusiastic feedback from KM employees and training participants. This
validation highlighted the system’s ability to make complex data accessible and engaging, reinforcing its value in
training environments. KM’s interest in using the solution for training and exhibitions, including an upcoming event in
Iceland, underscores its practical utility. Additionally, the feature allowing interaction with multiple thrusters enhanced
the system’s functionality and provided a more comprehensive training tool. The positive reception and demonstrated
potential suggest that continued development, focusing on user-friendliness and expanded functionality, could further
increase the system’s impact and utility across various departments at Kongsberg Maritime.

5.5.4 Autogenerated Software Block Diagrams in Ignition

An enhancement to the Ignition visualization would involve developing a method to automatically configure the
SWBDs and technical drawings by utilizing the configuration file for a vessel. This would enable the program to
be utilized in the field on a vessel. Presently, the program is only configured with the software block diagrams of
a maximally configured vessel, where many of the blocks are not utilized for specific vessels, particularly for the
pelicase.

To make the product useful in field applications such as fault-seeking or commissioning, in addition to training,
implementing auto-generated software block diagrams (SWBDs) is essential. This feature would significantly improve
the application’s usability and adaptability, allowing it to meet the specific needs of different vessels and scenarios,
thereby enhancing its practical utility and effectiveness.

However, auto-generated SWBDs were not implemented due to the project’s time constraints and the complexity
of developing such a feature. Creating auto-generated diagrams requires sophisticated algorithms and extensive data
integration, which were beyond the project’s current scope. Future development could prioritize this feature to fully
realize the potential of the application in diverse operational contexts.

60

5.6 Different Use-cases for the Solution

For complete newcomers we believe that the AR visualization is the most helpful in comprehending terms like ”pitch,”
”rpm,” and other technical terminologies. It provides a visual representation that aids in understanding the size and
appearance of various components, particularly the thrusters, offering a tangible sense of their size.

On the other hand, the SCADA visualization serves as a valuable tool for teaching the system as a whole. It
facilitates a deeper understanding of signal flow, system parameters, and overall system functionality. By visually
illustrating the utilization of blocks within the system and their respective functions, the program developed in Ignition
proves to be a superior choice for comprehensive learning. But using both programs in combination provides a greater
view of the system.

5.6.1 Future Possibilities

As discussed in the report, this project showcases several exciting opportunities. Throughout the development of the
program, we have envisioned numerous enhancements that could significantly elevate our product. These potential
improvements include, but are not limited to:

• An exploded view of complete equipment in motion using augmented reality (AR), such as a thruster with its
components like gears and pinions dynamically illustrated, look at Figure 48.

• A fully interactive bridge in AR, equipped with operational handles and levers, enhancing user interaction and
realism.

• With further development in robustness and comprehensive testing, the live software block diagrams could be
effectively utilized during commissioning and service missions.

• Auto generated SWBD’s and topics by using vessel specific configuration files.

• Creating more client modules to support more CAF versions and potentially other systems.

• Make it possible to switch between communication modules using the configuration files or a GUI.

• Create a HUD-display for users to more easily interact with the AR visualization.

• Make a ”how to” guide that prompts new users in the AR visualization. Can be integrated within HUD-menu.

• Create a pool for the users to ”dip” the thruster in the water and make splash effects for seeing the thrust
direction.

• Improve Grabbing logic.

61

(a) Thruster before exploded view. (b) Exploded thruster view showing components.

Figure 48: Thruster example in AutoCAD demonstrating how the exploded view would look. Courtesy of Kongsberg
Maritime.

These enhancements could significantly broaden the utility of the program across various divisions within Kongs-
berg Maritime, including sales and commissioning. In sales, the ability to demonstrate the product using an AR headset
or a PC could revolutionize client presentations by displaying objects like thrusters, ship designs, and bridge consoles
in an immersive and interactive manner. For commissioning, the detailed overview provided by the program can en-
able technicians to more efficiently verify system data and diagnose faults, thereby improving operational efficiency
and reducing downtime.

To effectively implement these advanced features, there are critical considerations regarding the development
capabilities required. The project team currently lacks expertise in complex game development engines like Unity,
which are essential for creating sophisticated AR experiences. There are two primary paths to address this gap:

• Training the Existing Team: Invest in comprehensive training for the current project group to learn Unity or
another suitable game engine.

• Hiring Specialist Developers: Alternatively, the company could hire experienced game developers who already
possess the necessary skills in these technologies, such as those from Morild Interactive AS.

Additionally, the company could consider passing the project on to the next group of students. These students
could build upon our current findings to potentially enhance and expand the project’s capabilities further.

5.7 Evaluating the Qualitative Research Methods

In our research on effective methods, a qualitative study was conducted to explore potential improvements in the
learning experience. One key finding was that the team should have conducted a study in the early stages of the project

62

to measure the overall learning outcomes when using the product. To enhance the training experience, a proposed
approach could involve implementing a two-part methodology:

• Initial Baseline Study: Conduct a study at the beginning of the project to establish a baseline of participants’
knowledge and skills. This would involve pre-training assessments and interviews to understand their current
level of understanding and identify specific areas for improvement.

• Post-Training Evaluation: After implementing the training program, conduct follow-up assessments and in-
terviews to measure changes in knowledge, skills, and overall learning outcomes. Comparing these results with
the initial baseline data would provide valuable insights into the effectiveness of the training and highlight areas
that need further enhancement.

By adopting this two-part methodology, the project team could have more effectively measured the impact of the
training program and made data-driven decisions to optimize the learning experience. This approach would also allow
for continuous improvement, ensuring that the training remains relevant and effective for participants.

63

6 Conclusion

This thesis has provided valuable insights that will benefit the project group in future projects. Despite our best efforts,
some decisions and methods used during this project may not have been optimal.

Our communication solution is notably more stable than the initial prototype. It supports multiple thrusters with
up to 100 topics per thruster and a one-second delay. While we are satisfied with this improvement, further expansion
to handle more topics is necessary for a comprehensive system visualization. Additionally, our communication pro-
gram demonstrates stability by managing short disconnections and minor configuration file issues, thereby enhancing
reliability.

In terms of robustness, the communication program is dependable when configuration files and connections are
correct. However, issues can arise if a connection is faulty during the program’s initialization.

Regarding visualization, we are pleased with the outcome, especially given our limited prior experience in game
development. The visualization accurately depicts thruster movements, thrust directions, and a UT-Ship design in aug-
mented reality. It effectively communicates with the marine controller through the communication program, allowing
thruster movement in response to lever adjustments.

The SCADA visualization using Ignition successfully retrieves data from the OPC server in the communication
program and displays the values. Although it functions similarly to the previous project, we have improved the GUI
and added functionality to display multiple thrusters simultaneously.

In conclusion, our solution significantly enhances the training environment, particularly with the software block
diagrams proving to be the most beneficial. We believe that further development by someone with game development
expertise could make the 3D visualization an invaluable tool, especially if complete models of the system, including
internal components like tubes and gears, are integrated. For future development, expanding the scope to include
other systems beyond thruster controls—such as steering, sails, automation, and more—could enable a comprehensive
visualization of the entire vessel and its subsystems.

64

7 Recommendations

For those interested in advancing the development of our training environment, we offer the following recommenda-
tions to facilitate further improvements and ease future enhancements. First, it is advisable to thoroughly read this
report and reassess our design choices to ensure that previous limitations are not perpetuated. Additionally, gaining a
strong understanding of our communication program is essential, and to that end, we recommend the following steps:

1. Begin by deepening your understanding of the existing code, focusing on its object-oriented aspects. This initial
step is crucial as it not only helps you grasp the overall architecture and operational logic but also allows you to
identify potential areas for refinement.

2. Work on refining the object-oriented elements of the code. Improving these aspects will not only clarify and
streamline the codebase but also enhance its modularity. This is essential for simplifying both the integration
of new features and the ongoing maintenance of the system. For instance, consider implementing new func-
tions or classes specifically designed for retry mechanisms, which can improve the robustness and reliability of
operations.

Secondly, for those looking to enhance the visualization capabilities of our system, consider the following approaches
could be considered:

• Look into the possibilities regarding auto configured drawings

• Evaluate the potential integration of Open Bridge Design System’s 2D or AR components to enhance user
interaction and realism.

• Is Unity and Ignition the best software to complete the task?

• Consider developing a new Unity module that subscribes to the OPC-UA server to streamline data flow and
visualization.

65

8 Appendices

8.1 Python communication program

8.1.1 Main application

1 from modules import ws_to_opc, start_opc_server, opc_to_unity, rest_to_opc

2 from misc.functions import makeListFromTextfile

3

4 import asyncio

5 import json

6 import os

7 import sys

8 from colorama import Fore

9

10 path_to_topics = ’Data/topics.txt’

11 path_to_endpoints_restapi = ’Data/endpoints_restapi.txt’

12 path_to_connection_data = ’Data/Connection data.json’

13 client_to_use = (’websocket’)

14

15

16 async def main():

17 if getattr(sys, ’frozen’, False) and hasattr(sys, ’_MEIPASS’):

18 os.chdir(sys._MEIPASS)

19 else:

20 os.chdir(os.path.dirname(os.path.abspath(__file__)))

21

22 thrusters_connectionData = []

23 tasks = []

24 with open(path_to_connection_data, ’r’) as file:

25 connectionData = json.load(file)

26 opc_connection_data = connectionData[’opc_ua’]

27 tasks.append(start_opc_server.main(connectionData))

28

29 if client_to_use == ’websocket’:

30 print("Using Websocket client")

31 # start udp messages to unity visualization

32 tasks.append(opc_to_unity.main(connectionData, path_to_topics))

33

34 # start ws communication once per thruster

35 try:

36 for thruster_name, thruster_data in connectionData[’thrusters’].items():

37 print("thruster_name: ", thruster_name)

38 print("thruster_data: ", thruster_data)

39 connection_detail = (thruster_data, opc_connection_data, thruster_name)

40 thrusters_connectionData.append(connection_detail)

41

42 print("Started ws communication for: ", thruster_name)

43 tasks.append(ws_to_opc.main(connection_detail, path_to_topics))

44

45 print("Length of thrusters_connectionData: ", len(thrusters_connectionData))

66

46

47

48 except Exception as e:

49 print(f"Error in main: {e}")

50 await asyncio.sleep(5)

51

52

53 elif client_to_use == ’restapi’:

54 print("Using Rest API client")

55 try:

56 list_of_topic_lists = []

57 topics = makeListFromTextfile(path_to_topics)

58 for thruster_name, thruster_data in connectionData[’thrusters’].items():

59 print("thruster_name: ", thruster_name)

60 print("thruster_data: ", thruster_data)

61 thrusters_connectionData.append((thruster_data, opc_connection_data,

thruster_name))

62 modified_topics = []

63

64 # changing topic to become thrusterName + topic name. Removes everything before

the second ’.’

65 for topic in topics:

66 parts = topic.strip().split(’.’)

67 new_topic = thruster_name + ’_’ + ’.’.join(parts[2:])

68 print("new_topic: ", new_topic)

69 modified_topics.append(new_topic)

70 list_of_topic_lists.append(modified_topics)

71 tasks.append(opc_to_unity.main(connectionData, path_to_endpoints_restapi,

list_of_topic_lists))

72

73 except Exception as e:

74 print(f"Error in main restapi: {e}")

75 await asyncio.sleep(5)

76 for connectionData in thrusters_connectionData:

77 print("Started rest communication")

78 tasks.append(rest_to_opc.main(connectionData, path_to_endpoints_restapi))

79

80 try:

81 await asyncio.gather(*tasks)

82 except Exception as e:

83 print(f"{Fore.YELLOW}app: Error in main: {e}")

84

85

86 if __name__ == "__main__":

87 asyncio.run(main())

8.1.2 ws to opc module

1 import asyncio

2 from asyncua import ua, Client

3 from colorama import Fore, init

4 import json

67

5

6 init(autoreset=True)

7 from clients.ws_client import WebsocketClient

8 from misc.functions import replace_topic_prefix, determine_opcua_data_type_stringonly,

makeListFromTextfile

9

10 variables_on_server = []

11 lock_variables_on_server = asyncio.Lock()

12

13

14

15 async def upload_to_opc(opcClient, object_node, variables_on_server, updated_topic_name,

data_type_string, value):

16 method_node_id = "ns=2;s=AddVariableMethod"

17 method_node = opcClient.get_node(method_node_id)

18

19 variable_node_id = f"ns=2;s={updated_topic_name}"

20 if updated_topic_name not in variables_on_server:

21

22 print(f"Adding variable {updated_topic_name} with type {data_type_string} and value {

value} to server")

23 result = await object_node.call_method(method_node, updated_topic_name, data_type_string,

value)

24 if result:

25 variables_on_server.append(updated_topic_name)

26 #print(f"Exisiting variables: {variables_on_server}")

27

28 else:

29 var = opcClient.get_node(variable_node_id)

30 try:

31 #print(f"Updating variable {updated_topic_name} with value {value}")

32 await var.write_value(ua.Variant(value, getattr(ua, data_type_string)))

33 except Exception as e:

34 print(f"Error updating variable {updated_topic_name}: {e}")

35

36

37

38

39 async def process_data_queue(opcClient, dataQueue, object_node_id, thruster_name):

40 object_node = opcClient.get_node(object_node_id)

41 variables_on_server = []

42 topic = ""

43 while True:

44 try:

45 while dataQueue.qsize() > 0 :

46 topic, topicData = await dataQueue.get()

47 dataQueue.task_done()

48

49 result = determine_opcua_data_type_stringonly(topicData)

50 #print(f"result from topic {topic} is {result}")

51 if None in result:

52 print(f"{Fore.YELLOW}Unsupported data type for topic {topic}")

68

53 continue

54

55 _, _, data_type_string, value = result

56

57 #print(f"Topic: {topic} became {topicName}")

58 updated_topic_name = await replace_topic_prefix(topic, thruster_name, ":") #

changing topic to avoid confusion with other thrusters

59

60 await upload_to_opc(opcClient, object_node, variables_on_server,

updated_topic_name, data_type_string, value)

61

62 await asyncio.sleep(1)

63

64 except Exception as e:

65 print(f"process_data_queue error: {e} topic is {topic}")

66

67 async def variable_exists(client, node_id):

68 try:

69 var = client.get_node(node_id)

70 await var.get_value()

71 return True

72 except Exception as e:

73 return False

74

75

76 async def check_opc_connection(client):

77 while True:

78 try:

79 await client.connect()

80 print("Connected to OPC server.")

81 return True

82 except Exception as e:

83 print(f"{Fore.YELLOW}Error connecting to OPC server: {e}")

84 await asyncio.sleep(1)

85

86

87 async def main(connectionData, path_to_topics):

88 try:

89 thruster_connection_data = connectionData[0]

90 opc_connection_data = connectionData[1]

91 thruster_name = connectionData[2]

92 topics = makeListFromTextfile(path_to_topics)

93

94 ws_uri = thruster_connection_data[’websocket’][’ws_url’]

95 opc_url = opc_connection_data[’opc_url’]

96 object_node_id = str(thruster_connection_data[’object_node_id’])

97

98 with open(’Data/config.json’, ’r’) as file:

99 config = json.load(file)

100 #receiver_function_name = config[’ws_to_opc’][’receiver_function_name’]

101

102 print(f"opc_url: {opc_url}", f"ws_uri: {ws_uri}", f"topics length: {len(topics)}",

69

103 f"object_node_id: {object_node_id}")

104

105 PRODUCERS = min(len(topics), 100)

106

107 parsed_response_queue = asyncio.Queue()

108 topics_queue = asyncio.Queue()

109 [await topics_queue.put(topic) for topic in topics]

110 print(f"topics_queue size: {topics_queue.qsize()}")

111

112 ws_clients = [WebsocketClient(ws_uri) for _ in range(PRODUCERS)]

113 await asyncio.gather(*(client.connect() for client in ws_clients))

114

115 opc_client = Client(url=opc_url)

116 while True:

117 try:

118 await opc_client.connect()

119 print("Connected to OPC server.")

120 break

121 except Exception as e:

122 print(f"{Fore.YELLOW}Error connecting to OPC server: {e}")

123 await asyncio.sleep(1)

124

125 tasks = []

126 tasks.extend([check_opc_connection(opc_client)])

127

128

129 for i in range(PRODUCERS):

130 client_index = i % len(ws_clients) # Cycle through ws_clients

131 #Change from receive_message2 to receive_message for the original version which only

use the first 100 topics

132 tasks.append(

133 ws_clients[client_index].receive_message(topics_queue, parsed_response_queue))

134

135 tasks.append(process_data_queue(opc_client, parsed_response_queue, object_node_id,

thruster_name))

136

137 await asyncio.gather(*tasks)

138

139 except Exception as e:

140 print(f"{Fore.YELLOW}ws_to_opc: Error in main: {e}")

141 print("Shutting down...")

8.1.3 rest to opc module

1 import asyncio

2 from asyncua import ua, Client

3 from colorama import Fore, init

4 import json

5

6 init(autoreset=True)

7 from clients.ws_client import WebsocketClient

8 from misc.functions import replace_topic_prefix, determine_opcua_data_type_stringonly,

70

makeListFromTextfile

9

10 variables_on_server = []

11 lock_variables_on_server = asyncio.Lock()

12

13

14

15 async def upload_to_opc(opcClient, object_node, variables_on_server, updated_topic_name,

data_type_string, value):

16 method_node_id = "ns=2;s=AddVariableMethod"

17 method_node = opcClient.get_node(method_node_id)

18

19 variable_node_id = f"ns=2;s={updated_topic_name}"

20 if updated_topic_name not in variables_on_server:

21

22 print(f"Adding variable {updated_topic_name} with type {data_type_string} and value {

value} to server")

23 result = await object_node.call_method(method_node, updated_topic_name, data_type_string,

value)

24 if result:

25 variables_on_server.append(updated_topic_name)

26 #print(f"Exisiting variables: {variables_on_server}")

27

28 else:

29 var = opcClient.get_node(variable_node_id)

30 try:

31 #print(f"Updating variable {updated_topic_name} with value {value}")

32 await var.write_value(ua.Variant(value, getattr(ua, data_type_string)))

33 except Exception as e:

34 print(f"Error updating variable {updated_topic_name}: {e}")

35

36

37

38

39 async def process_data_queue(opcClient, dataQueue, object_node_id, thruster_name):

40 object_node = opcClient.get_node(object_node_id)

41 variables_on_server = []

42 topic = ""

43 while True:

44 try:

45 while dataQueue.qsize() > 0 :

46 topic, topicData = await dataQueue.get()

47 dataQueue.task_done()

48

49 result = determine_opcua_data_type_stringonly(topicData)

50 #print(f"result from topic {topic} is {result}")

51 if None in result:

52 print(f"{Fore.YELLOW}Unsupported data type for topic {topic}")

53 continue

54

55 _, _, data_type_string, value = result

56

71

57 #print(f"Topic: {topic} became {topicName}")

58 updated_topic_name = await replace_topic_prefix(topic, thruster_name, ":") #

changing topic to avoid confusion with other thrusters

59

60 await upload_to_opc(opcClient, object_node, variables_on_server,

updated_topic_name, data_type_string, value)

61

62 await asyncio.sleep(1)

63

64 except Exception as e:

65 print(f"process_data_queue error: {e} topic is {topic}")

66

67 async def variable_exists(client, node_id):

68 try:

69 var = client.get_node(node_id)

70 await var.get_value()

71 return True

72 except Exception as e:

73 return False

74

75

76 async def check_opc_connection(client):

77 while True:

78 try:

79 await client.connect()

80 print("Connected to OPC server.")

81 return True

82 except Exception as e:

83 print(f"{Fore.YELLOW}Error connecting to OPC server: {e}")

84 await asyncio.sleep(1)

85

86

87 async def main(connectionData, path_to_topics):

88 try:

89 thruster_connection_data = connectionData[0]

90 opc_connection_data = connectionData[1]

91 thruster_name = connectionData[2]

92 topics = makeListFromTextfile(path_to_topics)

93

94 ws_uri = thruster_connection_data[’websocket’][’ws_url’]

95 opc_url = opc_connection_data[’opc_url’]

96 object_node_id = str(thruster_connection_data[’object_node_id’])

97

98 with open(’Data/config.json’, ’r’) as file:

99 config = json.load(file)

100 #receiver_function_name = config[’ws_to_opc’][’receiver_function_name’]

101

102 print(f"opc_url: {opc_url}", f"ws_uri: {ws_uri}", f"topics length: {len(topics)}",

103 f"object_node_id: {object_node_id}")

104

105 PRODUCERS = min(len(topics), 100)

106

72

107 parsed_response_queue = asyncio.Queue()

108 topics_queue = asyncio.Queue()

109 [await topics_queue.put(topic) for topic in topics]

110 print(f"topics_queue size: {topics_queue.qsize()}")

111

112 ws_clients = [WebsocketClient(ws_uri) for _ in range(PRODUCERS)]

113 await asyncio.gather(*(client.connect() for client in ws_clients))

114

115 opc_client = Client(url=opc_url)

116 while True:

117 try:

118 await opc_client.connect()

119 print("Connected to OPC server.")

120 break

121 except Exception as e:

122 print(f"{Fore.YELLOW}Error connecting to OPC server: {e}")

123 await asyncio.sleep(1)

124

125 tasks = []

126 tasks.extend([check_opc_connection(opc_client)])

127

128

129 for i in range(PRODUCERS):

130 client_index = i % len(ws_clients) # Cycle through ws_clients

131 #Change from receive_message2 to receive_message for the original version which only

use the first 100 topics

132 tasks.append(

133 ws_clients[client_index].receive_message(topics_queue, parsed_response_queue))

134

135 tasks.append(process_data_queue(opc_client, parsed_response_queue, object_node_id,

thruster_name))

136

137 await asyncio.gather(*tasks)

138

139 except Exception as e:

140 print(f"{Fore.YELLOW}ws_to_opc: Error in main: {e}")

141 print("Shutting down...")

8.1.4 opc to unity module

1 import asyncio

2 from asyncua import Client

3 from clients.udp_client import UDPClient

4 from misc.functions import makeListFromTextfile, replace_topic_prefix

5 import json

6 from colorama import Fore, init

7

8 init(autoreset=True)

9 opc_url = "opc.tcp://localhost:4840/freeopcua/server/"

10 opc_namespace = "http://NGTEC.io"

11

12

73

13 async def main(connectionData, path_to_topics, list_of_topic_lists=[]):

14 with open(’Data/config.json’, ’r’) as file:

15 config = json.load(file)

16 startup_delay = config[’opc_to_unity’][’startup_delay’]

17

18 await asyncio.sleep(startup_delay) #to give time for the other tasks to add all topics to the

server.

19 num_thrusters = len(connectionData[’thrusters’])

20 print(f"ConnectionData: {connectionData}")

21 print(f"{num_thrusters} thrusters found in connection data.")

22

23 if list_of_topic_lists == []:

24 topics = makeListFromTextfile(path_to_topics)

25 for thruster_name in connectionData[’thrusters’].keys():

26 modified_topics = [await replace_topic_prefix(topic, f"{thruster_name}", ’:’) for

topic in topics]

27 list_of_topic_lists.append(modified_topics.copy())

28 for topic in modified_topics:

29 print(f"Modified topic: {topic}")

30

31 udp_ip = connectionData[’udp_data_target’][’ip_address’]

32 udp_port = connectionData[’udp_data_target’][’port’]

33 udp_client = UDPClient(udp_ip, udp_port)

34

35 max_retries = 1 # Maximum number of retries

36 retry_delay = 1/len(topics) # Delay between retries in seconds. #limiting it to 1 second per

retry

37 attempt = 0

38

39 #Check which topics are available. Stop checking unavailable topics

40 while attempt < max_retries:

41 data_to_send = {}

42 try:

43 async with Client(url=opc_url) as opcClient:

44 attempt = 0 # Resetting connection attempts on successful connection

45 while True:

46 await asyncio.sleep(1)

47 nsidx = await opcClient.get_namespace_index(opc_namespace)

48 for i, thruster_name in enumerate(connectionData[’thrusters’]):

49 topics_to_remove = []

50 for topic in list_of_topic_lists[i]:

51 retries = 0

52 while retries < max_retries:

53 try:

54 var = opcClient.get_node(f"ns=2;s={topic}")

55 value = await var.read_value()

56 data_to_send[topic] = str(value)

57 #print("success reading value for ", topic)

58 break

59 except Exception as e:

60 print(f"{Fore.YELLOW}opc_to_unity: Error reading value for {

topic}: {e}")

74

61 retries += 1

62 await asyncio.sleep(retry_delay)

63 if retries >= max_retries:

64 print(f"{Fore.RED}Failed to read value for {topic} after {

max_retries} retries. Removing topic.")

65 topics_to_remove.append(topic)

66 for topic in topics_to_remove:

67 list_of_topic_lists[i].remove(topic)

68 #print("Data to send: ", data_to_send)

69 json_data = json.dumps(data_to_send)

70 udp_client.send_data(json_data)

71 except Exception as e:

72 print(f"Attempt {attempt + 1} failed with error: {e}")

73 attempt += 1

74 await asyncio.sleep(retry_delay)

75

76 if attempt == max_retries:

77 print("Failed to connect after maximum retries.")

8.1.5 start opc server

1 import asyncio

2 import logging

3 import json

4 from colorama import Fore

5

6

7 from asyncua import Server, ua

8 from asyncua.common.methods import uamethod

9 from misc.functions import determine_opcua_data_type

10

11

12 @uamethod

13 def func(parent, value):

14 return value * 2

15

16

17 @uamethod

18 async def add_variable_method(parentNodeId, name, data_type, initial_value):

19 #myobj = server.get_node(parent)

20 try:

21 parentNode = server.get_node(parentNodeId)

22 print("object used in add_variable_method: ", parentNode)

23 except Exception as e:

24 print(f"{Fore.LIGHTYELLOW_EX}opc server: Error getting parent node: {e}")

25 return False

26

27 if data_type == "Int32":

28 ua_data_type = ua.VariantType.Int32

29 elif data_type == "Double":

30 ua_data_type = ua.VariantType.Double

31 elif data_type == "String":

75

32 ua_data_type = ua.VariantType.String

33 elif data_type == "Boolean":

34 ua_data_type = ua.VariantType.Boolean

35 else:

36 raise ValueError(f"Unsupported data type: {data_type}")

37

38 try:

39 data_type_node_id = ua.NodeId(ua_data_type.value)

40 except Exception as e:

41 print(f"{Fore.LIGHTYELLOW_EX}opc server: Error getting data type node id: {e}")

42 return False

43

44 try:

45 node_id = ua.NodeId(name, parentNode.nodeid.NamespaceIndex)

46 variable_node = await parentNode.add_variable(

47 node_id,

48 name,

49 str(initial_value),

50 datatype=data_type_node_id)

51 await variable_node.set_writable()

52 return True

53 except Exception as e:

54 print(f"opc server: Error adding variable: {e}")

55 return False

56

57

58 async def process_topic(client, topic, timeout=10): # Timeout in seconds

59 try:

60 # Enforcing a timeout

61 data = await asyncio.wait_for(client.process_message_and_return_value(topic), timeout)

62 if data:

63 message = data[-1]

64 _, data_type, value = determine_opcua_data_type(message)

65 return topic, data_type, message

66 except asyncio.TimeoutError:

67 print(f"Timeout reached for topic {topic}")

68 except Exception as e:

69 print(f"Error processing message for topic {topic}: {e}")

70 return None

71

72

73 async def main(connectionData):

74 _logger = logging.getLogger(__name__)

75 print("main")

76

77 opc_endpoint = connectionData[’opc_ua’][’opc_endpoint’]

78 uri = connectionData[’opc_ua’][’opc_namespace’]

79 # setup our server

80 global server

81 server = Server()

82 await server.init()

83 server.set_security_policy([ua.SecurityPolicyType.NoSecurity])

76

84 server.set_endpoint(opc_endpoint)

85

86 idx = await server.register_namespace(uri)

87

88 with open(’Data/connection data.json’, ’r’) as file:

89 data = json.load(file)

90 for thruster_name, thruster_data in data[’thrusters’].items():

91 # Extract thruster name from the tuple

92 thruster_name_str = thruster_name

93 print("Added ", thruster_name_str, " to the server. node idx is ", idx)

94 await server.nodes.objects.add_object(idx, thruster_name_str)

95 await asyncio.sleep(0.5)

96

97 await server.nodes.objects.add_method(ua.NodeId("AddVariableMethod", idx), "AddVariable",

add_variable_method,

98 [ua.VariantType.String, ua.VariantType.String, ua.

VariantType.String],

99 [ua.VariantType.Boolean])

100

101 await asyncio.sleep(1)

102

103 await server.nodes.objects.add_method(

104 ua.NodeId("ServerMethod", idx),

105 ua.QualifiedName("ServerMethod", idx),

106 func,

107 [ua.VariantType.Int64],

108 [ua.VariantType.Int64],

109)

110

111 _logger.info("Starting server!")

112 async with server:

113 while True:

114 await asyncio.sleep(1)

115

116

117 if __name__ == "__main__":

118 print("start")

119 logging.basicConfig(level=logging.DEBUG)

120 asyncio.run(main(), debug=True)

8.1.6 Simulate thrust load module

1 import asyncio

2

3 import aiohttp

4

5

6 async def gather_data(endpoint, queue):

7 while True:

8 async with aiohttp.ClientSession() as session:

9 async with session.get(endpoint) as response:

10 if response.status == 200:

77

11 data = await response.json()

12 print(f"Received data from {endpoint}: {data}")

13 await queue.put(data)

14 else:

15 print(f"Failed to receive data, status: {response.status}")

16

17

18 async def modify_data(raw_data_queue, modified_data_queue): # simulate load in this func

19 modify = True

20 while True:

21 modified_data = {}

22 try:

23 data = await raw_data_queue.get()

24 if modify:

25 if "Pitch_Order_Setpoint" in data:

26 value = data["Pitch_Order_Setpoint"]

27 dir = 1 if value < -90 else -1 if value > 90 else 1

28 value += float(dir * 1)

29 modified_data = {

30 "Pitch_Order_Setpoint": {

31 ’isOK’: True,

32 ’valueType’: ’FLOAT’,

33 ’floatValue’: value

34 }

35 }

36 else:

37 modified_data = data # Passing data unchanged

38 await modified_data_queue.put(modified_data)

39 except Exception as e:

40 print(f"Error modifying data: {e}")

41

42

43 async def upload_data(queue, target_url):

44 while True:

45 async with aiohttp.ClientSession() as session:

46 while not queue.empty():

47 data = await queue.get()

48 queue.task_done()

49 print(f"Uploading modified data {data} to {target_url}")

50 async with session.patch(target_url, json=data) as response:

51 if response.status == 202:

52 print(f"status: {response.status}Protobuf overwrite initialized, data

accepted for processing.")

53 else:

54 print(f"Failed to overwrite data, status: {response.status}")

55 await asyncio.sleep(1)

56

57

58 async def main():

59 raw_data_queue = asyncio.Queue()

60 modified_data_queue = asyncio.Queue()

61 endpoint = "http://192.168.252.3/api/components/PitchControl/protos/PitchControlInputs/fields

78

"

62 tasks = [gather_data(endpoint, raw_data_queue), upload_data(modified_data_queue, endpoint),

63 modify_data(raw_data_queue, modified_data_queue)]

64 await asyncio.gather(*tasks)

65

66

67 if __name__ == "__main__":

68 asyncio.run(main())

8.1.7 UDP client

1 import socket

2

3 def make_message(topic, value):

4 return f"{topic}:{value}"

5

6 class UDPClient:

7 def __init__(self, server_address, server_port):

8 """Initialize the UDP client with server address and port."""

9 self.server_address = server_address

10 self.server_port = server_port

11 self.socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

12 # Set the timeout for the socket

13 self.timeouttime = 1

14 self.socket.settimeout(self.timeouttime)

15

16 def send_data(self, topic: str, data=None):

17 try:

18 if data is None:

19 message = topic

20 else:

21 message = make_message(topic, data)

22 sent = self.socket.sendto(message.encode(), (self.server_address, self.server_port))

23 print(f"Sent {sent} bytes to {self.server_address}:{self.server_port}.")

24 except Exception as e:

25 print(f"Error sending data: {e}")

26

27 def receive_data(self, buffer_size=1024):

28 self.socket.bind((self.server_address, self.server_port))

29 while True:

30 try:

31 # Attempt to receive response within the timeout period

32

33 data, server = self.socket.recvfrom(buffer_size)

34 print(f"Received: {data} from {server}")

35

36 except socket.timeout:

37 print(f"No response received within {self.timeouttime} sec.")

38 except Exception as e:

39 print(f"Error receiving data: {e}")

40

41 def close(self):

79

42 """Close the socket."""

43 self.socket.close()

8.1.8 Websocket client

1 import asyncio

2 import aiohttp

3 import json

4 from colorama import Fore, Style, init

5

6 init(autoreset=True)

7 import time

8

9

10 class WebsocketClient:

11 def __init__(self, uri, keepalive_interval=30):

12 self.uri = uri

13 self.keepalive_interval = keepalive_interval

14 self.session = None

15 self.websocket = None

16 self.topics = []

17 self.topics_data_received = {}

18 self.connection_established = False

19

20 async def connect(self):

21 self.session = aiohttp.ClientSession()

22 max_retry = 5

23 retry_count = 0

24 while not self.connection_established and retry_count < max_retry:

25 try:

26 self.websocket = await self.session.ws_connect(self.uri)

27 self.connection_established = True

28 print(f"Connected to WebSocket at {self.uri}")

29 except Exception as e:

30 print(f"Error connecting to WebSocket: {e}")

31 self.connection_established = False

32 retry_count += 1

33 await asyncio.sleep(1) # delay before retrying

34 if retry_count >= max_retry:

35 print(f"Maximum retries reached. Connection could not be established.")

36 break

37 if not self.connection_established:

38 print("Failed to establish connection after maximum retries.")

39

40 async def parse_ws_message(self, response):

41

42 try:

43 data = None

44 data = json.loads(response.data)

45 if data:

46 trends = data.get(’trends’, [])

47 if trends:

80

48 time_value_tuples = trends[0].get(’timeValueTuples’, [])

49 _, value = time_value_tuples[-1] # -1 is the latest pair (timestamp, value)

50 return value

51 else:

52 print(f"{Fore.YELLOW}parse_ws_message: No data in response")

53

54 except Exception as e:

55 print(f"{Fore.YELLOW}parse_ws_message error processing data: {data}\n{e}")

56

57 async def receive_message2(self, topics_queue, queue):#Attempt to request new topic every

iteration

58 while True:

59 topic = await self.getTopic(topics_queue)

60 await self.sendRequest(topic)

61 noneCounter = 0

62 max_none_response_retries = 3

63 try:

64 while True:

65 response = await asyncio.wait_for(self.websocket.receive(), timeout=5)

66 try:

67 response_value = await self.parse_ws_message(response)

68 if response_value is None:

69 noneCounter += 1

70 if noneCounter >= max_none_response_retries:

71 print(

72 f"{Fore.YELLOW}Received None response {

max_none_response_retries} times consecutively for topic ’{topic}’. Trying next topic.")

73 topic = await self.try_next_topic(

74 topics_queue) # retry without adding topic back to queue.

Removing it from the process.

75 break

76 else:

77 response_value = await self.parse_ws_message(response)

78 await queue.put((topic, response_value))

79 # (f" put topic ’{topic}’ to queue")

80 topic = await self.getTopic(topics_queue)

81 await self.sendRequest(topic)

82 break

83

84 except asyncio.TimeoutError:

85 print(f"{Fore.YELLOW}Timeout waiting for message for topic ’{topic}’.

Retrying...")

86 continue

87 except asyncio.TimeoutError:

88 print(f"{Fore.YELLOW}Timeout waiting for message for topic ’{topic}’. Retrying

...")

89 continue

90

91

92

93 async def getTopic(self, topics_queue):

94 try:

81

95 topic = await topics_queue.get()

96 topics_queue.task_done()

97 return topic

98 except Exception as e:

99 print(f"Error getting topic from topics_queue {e}")

100 print(f" Topics_queue size: {topics_queue.qsize()}")

101 return None

102

103 async def sendRequest(self, topic):

104 while True:

105 try:

106 await self.websocket.send_str(topic)

107 print(f"Sent topic ’{topic}’ to WebSocket.")

108 break

109 except Exception as e:

110 print(f"{Fore.YELLOW}ws_client: Error sending message for topic ’{topic}’: {e}")

111 continue

112

113 async def try_next_topic(self, topics_queue):

114 topic = await self.getTopic(topics_queue)

115 await self.sendRequest(topic)

116 return topic

117 async def receive_message(self, topics_queue, queue):

118

119 topic = await self.try_next_topic(topics_queue)

120 while True:

121 noneCounter = 0

122 timeout_retries = 0

123 max_timeout_retries = 999

124 max_none_response_retries = 5

125 try:

126 response = await asyncio.wait_for(self.websocket.receive(), timeout=99)

127 if response.type in (aiohttp.WSMsgType.CLOSED, aiohttp.WSMsgType.ERROR):

128 print(f"Connection closed or errored for topic ’{topic}’. Reconnecting...")

129 self.connection_established = False

130 await self.connect()

131 continue # Attempt to reconnect within the outer loop

132

133 response_value = await self.parse_ws_message(response)

134 if response_value is None:

135 noneCounter += 1

136 if noneCounter >= max_none_response_retries:

137 print(

138 f"{Fore.YELLOW}Received None response {max_none_response_retries}

times consecutively for topic ’{topic}’. Trying next topic.")#retry without adding topic back

to queue. Removing it from the process.

139

140 topic = await self.try_next_topic(topics_queue)

141 continue

142 else:

143 await queue.put((topic, response_value))

144

82

145 except asyncio.TimeoutError:

146 print(f"{Fore.YELLOW}Timeout waiting for message for topic ’{topic}’. Retrying

...")

147 timeout_retries += 1

148 if timeout_retries >= max_timeout_retries:

149 break

150 else:

151 topic = await self.try_next_topic(topics_queue)

152 await asyncio.sleep(1)

153 continue # Continue to retry receiving on the same topic

154 except Exception as e:

155 print(f"{Fore.YELLOW}Error processing message for topic ’{topic}’: {e}")

156 continue

157

158 async def close(self):

159 if self.websocket:

160 await self.websocket.close()

161 if self.session:

162 await self.session.close()

163 self.connection_established = False

164

165 async def close(self):

166 if self.websocket:

167 await self.websocket.close()

168 if self.session:

169 await self.session.close()

170 self.connection_established = False

8.1.9 functions

1 import json

2 from asyncua import ua

3

4

5 def makeListFromTextfile(filepath: str):

6 with open(filepath) as f:

7 content = f.readlines()

8 content = [x.strip() for x in content]

9 return content

10

11

12 def makeListFromTextfile_limit(filepath: str, limit: int):

13 topics = []

14 with open(filepath, ’r’) as file:

15 for i, line in enumerate(file):

16 topics.append(line.strip())

17 if i + 1 >= limit:

18 break

19 return topics

20

21

22 def makeListFromTextfile_restapi(baseurl: str, filepath: str):

83

23 topics = []

24 try:

25 with open(filepath, ’r’) as file:

26 for line in file:

27 cleaned_line = line.strip()

28 if cleaned_line:

29 full_url = baseurl + cleaned_line

30 topics.append(full_url)

31 print(f"Added URL: {full_url}")

32 except FileNotFoundError:

33 print(f"Error: The file ’{filepath}’ does not exist.")

34 except Exception as e:

35 print(f"An error occurred: {e}")

36 return topics

37

38

39 async def clear_queue(dataQueue):

40 while not dataQueue.empty():

41 await dataQueue.get()

42 dataQueue.task_done()

43

44

45 def determine_opcua_data_type(value):

46 try:

47 if value:

48

49 if isinstance(value, str):

50 return ua.VariantType.String, ua.ObjectIds.String, "String", value

51 elif isinstance(value, float):

52 return ua.VariantType.Double, ua.ObjectIds.Double, "Double", value

53 elif isinstance(value, (dict, list)):

54 value = json.dumps(value) # Convert complex types to JSON string

55 return ua.VariantType.String, ua.ObjectIds.String, "String", value

56 elif isinstance(value, int):

57 return ua.VariantType.Double, ua.ObjectIds.Double, "Double", float(value)

58

59 else:

60 raise ValueError(f"Unsupported data type for value: {type(value)}")

61 else:

62 return None, None, None, None

63 except Exception as e:

64 print(f"Error determining data type: {e}")

65 return None, None, None, None

66

67 def determine_opcua_data_type_stringonly(value):

68 from opcua import ua

69 import json

70

71 try:

72 # Convert value to string if not already

73 if isinstance(value, str):

74 str_value = value

84

75 elif isinstance(value, (dict, list)):

76 str_value = json.dumps(value)

77 else:

78 str_value = str(value)

79

80

81 return ua.VariantType.String, ua.ObjectIds.String, "String", str_value

82

83 except Exception as e:

84 print(f"Error determining data type: {e}")

85 return None, None, None, None

86

87 async def replace_topic_prefix(topic, new_prefix, divider):

88 try:

89 # Split the topic at the first divider and replace everything before it with the

new_prefix

90 return new_prefix + topic.split(divider, 1)[1] if divider in topic else new_prefix +

topic

91 except Exception as e:

92 print(f"replace_topic_prefix error: {e}")

93 return topic

8.2 Python Test Codes

8.2.1 REST API Single session

1 import asyncio

2 import aiohttp

3 import time

4

5 async def fetch_data(url, session):

6 try:

7 start_time = time.time() # Record start time

8 async with session.get(url) as response:

9 if response.status == 200:

10 await asyncio.sleep(0.1)

11 #print(response.status)

12 duration = time.time() - start_time # Calculate time taken

13 print(f"GET request to {url} took {duration} seconds")

14 return url, await response.json(), duration # Return URL, data, and time taken

15 elif response.status == 404:

16 print(f"Specified component not found at url: {url}")

17 else:

18 print(f"Unexpected status {response.status} received from {url}")

19 except aiohttp.ClientError as e:

20 print(f"Client error occurred when fetching data from {url}: {e}")

21 return None, None, 0 # Return None, None, and 0 time if request fails

22

23 async def main():

24 urls = [

25 "http://192.168.252.3/api/components/SignalPool/protos/PitchControlInputs/fields",

26 "http://192.168.252.3/api/components/PitchControl/protos/PitchControlInputs/fields",

85

27 "http://192.168.252.3/api/components/PitchControl/protos/PitchControlTestpoints/fields",

28 "http://192.168.252.3/api/components/PitchControl/protos/PitchControlOutputs/fields",

29 "http://192.168.252.3/api/components/PitchControl/protos/PitchControlParams/fields",

30 "http://192.168.252.3/api/components/LoadControl/protos/LoadControlInputs/fields",

31 "http://192.168.252.3/api/components/LoadControl/protos/LoadControlOutputs/fields",

32 "http://192.168.252.3/api/components/LoadControl/protos/LoadControlTestpoints/fields",

33 "http://192.168.252.3/api/components/LoadControl/protos/LoadControlParams/fields",

34 "http://192.168.252.3/api/components/LoadControl/protos/LoadController1Testpoints/fields"

,

35 "http://192.168.252.3/api/components/PitchCommand/protos/PitchCommandInputs/fields",

36 "http://192.168.252.3/api/components/PitchCommand/protos/PitchCommandOutputs/fields",

37 "http://192.168.252.3/api/components/PitchCommand/protos/PitchCommandTestpoints/fields",

38 "http://192.168.252.3/api/components/PitchCommand/protos/PitchCommandParams/fields",

39 "http://192.168.252.3/api/components/RpmCommand/protos/RpmCommandInputs/fields",

40 "http://192.168.252.3/api/components/RpmCommand/protos/RpmCommandOutputs/fields",

41 "http://192.168.252.3/api/components/RpmCommand/protos/RpmCommandTestpoints/fields",

42 "http://192.168.252.3/api/components/RpmCommand/protos/RpmCommandEng1Testpoints/fields",

43 "http://192.168.252.3/api/components/RpmCommand/protos/RpmCommandEng1Outputs/fields",

44 "http://192.168.252.3/api/components/RpmCommand/protos/RpmCommandEng1Testpoints/fields",

45 "http://192.168.252.3/api/components/RpmCommand/protos/RpmCommandParams/fields",

46 "http://192.168.252.3/api/components/AlarmInterface/protos/LoadControlAlarms/fields"

47]

48

49 delay = 1 # seconds between each iteration of the loop

50

51 async with aiohttp.ClientSession(connector=aiohttp.TCPConnector(ssl=False), trust_env=True)

as session:

52 while True: # This will loop forever, use a condition to break loop if necessary

53 time_start = time.time()

54 tasks = [fetch_data(url, session) for url in urls]

55 results = await asyncio.gather(*tasks)

56 duration = time.time() - time_start

57 print(f"Gathering data took: {duration} seconds")

58

59 await asyncio.sleep(delay) # Wait for ‘delay‘ seconds before next iteration

60

61 if __name__ == "__main__":

62 asyncio.run(main())

8.2.2 REST API Test Multiple Sessions

1 import aiohttp

2 import asyncio

3 import time

4

5

6 async def fetch_data(url, session):

7 try:

8 async with session.get(url) as response:

9 if response.status == 200:

10 data = await response.json()

11 return url, data

86

12 else:

13 return url, None

14 except aiohttp.ClientError as e:

15 return url, None

16

17

18 async def handle_urls(urls, session):

19 start_time = time.perf_counter()

20 tasks = [fetch_data(url, session) for url in urls]

21 results = await asyncio.gather(*tasks)

22 end_time = time.perf_counter()

23 duration = end_time - start_time

24 return results, duration

25

26

27 async def main():

28 urls = [

29 "http://192.168.252.3/api/components/SignalPool/protos/PitchControlInputs/fields",

30 "http://192.168.252.3/api/components/PitchControl/protos/PitchControlInputs/fields",

31 "http://192.168.252.3/api/components/PitchControl/protos/PitchControlTestpoints/fields",

32 "http://192.168.252.3/api/components/PitchControl/protos/PitchControlOutputs/fields",

33 "http://192.168.252.3/api/components/PitchControl/protos/PitchControlParams/fields",

34 "http://192.168.252.3/api/components/LoadControl/protos/LoadControlInputs/fields",

35 "http://192.168.252.3/api/components/LoadControl/protos/LoadControlOutputs/fields",

36 "http://192.168.252.3/api/components/LoadControl/protos/LoadControlTestpoints/fields",

37 "http://192.168.252.3/api/components/LoadControl/protos/LoadControlParams/fields",

38 "http://192.168.252.3/api/components/LoadControl/protos/LoadController1Testpoints/fields"

,

39 "http://192.168.252.3/api/components/PitchCommand/protos/PitchCommandInputs/fields",

40 "http://192.168.252.3/api/components/PitchCommand/protos/PitchCommandOutputs/fields",

41 "http://192.168.252.3/api/components/PitchCommand/protos/PitchCommandTestpoints/fields",

42 "http://192.168.252.3/api/components/PitchCommand/protos/PitchCommandParams/fields",

43 "http://192.168.252.3/api/components/RpmCommand/protos/RpmCommandInputs/fields",

44 "http://192.168.252.3/api/components/RpmCommand/protos/RpmCommandOutputs/fields",

45 "http://192.168.252.3/api/components/RpmCommand/protos/RpmCommandTestpoints/fields",

46 "http://192.168.252.3/api/components/RpmCommand/protos/RpmCommandEng1Testpoints/fields",

47 "http://192.168.252.3/api/components/RpmCommand/protos/RpmCommandEng1Outputs/fields",

48 "http://192.168.252.3/api/components/RpmCommand/protos/RpmCommandEng1Testpoints/fields",

49 "http://192.168.252.3/api/components/RpmCommand/protos/RpmCommandParams/fields",

50 "http://192.168.252.3/api/components/AlarmInterface/protos/LoadControlAlarms/fields"

51]

52 # Split URLs into 3 chunks

53 chunks = [urls[i::3] for i in range(3)]

54

55 total_start_time = time.perf_counter() # Start total timer

56

57 # Create and manage sessions

58 async with aiohttp.ClientSession() as session1, aiohttp.ClientSession() as session2, aiohttp.

ClientSession() as session3:

59 sessions = [session1, session2, session3]

60 tasks = [handle_urls(chunks[i], sessions[i]) for i in range(3)]

61 all_results = await asyncio.gather(*tasks)

87

62 combined_results = [item for sublist in all_results for item in sublist[0]] # Access

results

63 for i, session_results in enumerate(all_results):

64 print(f"Session {i + 1} took {session_results[1]:.2f} seconds.")

65

66 total_end_time = time.perf_counter()

67 total_duration = total_end_time - total_start_time

68 print(f"Total time to gather all data: {total_duration:.2f} seconds")

69 print(combined_results)

70

71 asyncio.run(main())

8.2.3 Websocket Test Multiple Clients

1 import asyncio

2 import aiohttp

3 import json

4 from colorama import Fore, Style, init

5 from misc.functions import makeListFromTextfile_limit

6 import time

7

8 class WebsocketClient:

9 def __init__(self, uri, keepalive_interval=30):

10 self.uri = uri

11 self.keepalive_interval = keepalive_interval

12 self.session = aiohttp.ClientSession()

13 self.topics = []

14

15 async def keepalive_ping(self, websocket):

16 while True:

17 await asyncio.sleep(self.keepalive_interval)

18 await websocket.ping()

19

20 async def receive_message(self, topics, queue, number_active_connections):

21 try:

22 async with self.session.ws_connect(self.uri) as websocket:

23 number_active_connections.put_nowait(1)

24 print("Connected to websocket server")

25 print(f"{Fore.GREEN} CONNECT: number active connections: ",

number_active_connections.qsize())

26

27 if not topics.empty():

28 topic = await topics.get()

29 topics.task_done()

30 await websocket.send_str(topic)

31 while True:

32 response = await websocket.receive()

33 print(f"{Fore.RESET}Received message from topic ", topic)

34 try:

35 if response.data:

36 value = await self.process_message(response)

37 await queue.put((topic, value))

88

38 except Exception as e:

39 print(f"Error processing message: {e}")

40 except Exception as e:

41 con = number_active_connections.get()

42 number_active_connections.task_done()

43 print(f"{Fore.RED} DISCONNECT: number active connections: ",

number_active_connections.qsize())

44 await asyncio.sleep(5)

45

46

47 async def process_message(self, data):

48 try:

49 data = json.loads(data.data)

50 trends = data.get(’trends’, [])

51 if trends:

52 time_value_tuples = trends[0].get(’timeValueTuples’, [])

53 return(time_value_tuples[-1])

54 except Exception as e:

55 print("Error processing data:", data)

56 print(e)

57

58

59 async def do_stuff(queue):

60 try:

61 while True:

62 while not queue.empty():

63 stuff = await queue.get()

64 queue.task_done()

65

66 print(f"{Fore.LIGHTMAGENTA_EX} #####################NEXT BATCH OF DATA

#########################")

67 await asyncio.sleep(1)

68 except Exception as e:

69 print("Error doing stuff:", e)

70

71

72 async def main():

73 uri = ’ws://192.168.252.3/ws/Trend’

74

75 topics_Q = asyncio.Queue()

76 active_ws_connections = asyncio.Queue()

77 ws_clients = []

78 NUM_CLIENTS = 200

79

80 for i in range(NUM_CLIENTS):

81 ws_clients.append(WebsocketClient(uri))

82

83 max_topics = NUM_CLIENTS

84 topics = makeListFromTextfile_limit(’../Data/topics.txt’, max_topics)

85 for topic in topics:

86 topics_Q.put_nowait(topic)

87

89

88 client = WebsocketClient(uri)

89

90 dataQueue= asyncio.Queue()

91 tasks = []

92 tasks.extend([client.receive_message(topics_Q, dataQueue, active_ws_connections) for _ in

ws_clients])

93 tasks.extend([do_stuff(dataQueue) for _ in range(1)])

94

95 await asyncio.gather(*tasks)

96

97

98 asyncio.run(main())

8.3 Unity codes in C#

8.3.1 UDP Client script

1 using System;

2 using System.Collections.Generic;

3 using UnityEngine;

4 using System.Net;

5 using System.Net.Sockets;

6 using System.Text;

7 using Newtonsoft.Json.Linq;

8 using Newtonsoft.Json;

9

10 public class UDPClient : MonoBehaviour

11 {

12 private UdpClient serverSocket;

13 private int port = 5002;

14 private Queue<string> messageQueue = new Queue<string>();

15

16 void Start()

17 {

18 serverSocket = new UdpClient(port);

19 Debug.Log("UDP server listening on port " + port);

20 serverSocket.BeginReceive(new AsyncCallback(ReceiveCallback), null);

21 }

22

23 void Update()

24 {

25 while (messageQueue.Count > 0)

26 {

27 string message;

28 lock (messageQueue)

29 {

30 message = messageQueue.Dequeue();

31 }

32 ProcessMessage(message);

33 Debug.Log($"ReceivedMessage: {message}");

34 }

35

90

36 }

37

38 private void ReceiveCallback(IAsyncResult ar)

39 {

40 IPEndPoint sender = new IPEndPoint(IPAddress.Any, 0);

41 byte[] receivedBytes = serverSocket.EndReceive(ar, ref sender);

42 string receivedMessage = Encoding.UTF8.GetString(receivedBytes);

43 Debug.Log($"ReceivedMessage: {receivedMessage}");

44 lock (messageQueue)

45 {

46 messageQueue.Enqueue(receivedMessage);

47 }

48 serverSocket.BeginReceive(new AsyncCallback(ReceiveCallback), null);

49 }

50

51 private void ProcessMessage(string message)

52 {

53 try

54 {

55 var jsonData = JObject.Parse(message);

56 foreach (var property in jsonData)

57 {

58 string name = property.Key;

59 var value = property.Value;

60 char thrusterID = name[1];

61 name = name.Substring(2); // Removes the first two characters from the string ’

name’ to fit the JSON-message

62 Debug.Log(name + ": " + value + " thrusterID: " + thrusterID);

63 GameObject thrusterGameObject = GameObject.Find("Thruster" + thrusterID);

64 if (thrusterGameObject != null)

65 {

66 Movement movement = thrusterGameObject.GetComponent<Movement>();

67 if (movement != null)

68 {

69 if (name.Contains("Pitch_Feedback_Adapted"))

70 {

71 movement.UpdatePitch((float)value);

72

73 }

74 else if (name.Contains("Propeller_Rpm_Feedback_In_Rpm"))

75 {

76 movement.UpdateRPM((float)value * 0.25f);

77 }

78 else if (name.Contains("Direction_Feedback_Adapted"))

79 {

80 movement.UpdateAziDirection((float)value);

81 }

82 }

83 }

84 }

85 }

86 catch (JsonReaderException e)

91

87 {

88 Debug.LogError("JsonReaderException: " + e.Message);

89 }

90 catch (Exception e)

91 {

92 Debug.LogError("Exception: " + e.Message);

93 }

94 }

95

96 }

8.3.2 Movement script

1 using System.Collections;

2 using System.Collections.Generic;

3 using UnityEngine;

4

5 public class Movement : MonoBehaviour

6 {

7 public GameObject Propeller;

8 public GameObject Blade1;

9 public GameObject Blade2;

10 public GameObject Blade3;

11 public GameObject Blade4;

12 public GameObject Azimuth;

13 public float targetRpm = 0.0f; // Target RPM that we want to interpolate towards

14 public float targetPitch = 0.0f; // Target pitch that we want to interpolate towards

15 public float targetAzi = 0.0f; // Target azimuth angle that we want to interpolate

towards

16

17 private float currentRpm = 0.0f; // Current RPM used for interpolation

18 private float currentPitch = 0.0f; // Current pitch used for interpolation

19 private float currentAzi = 0.0f; // Current azimuth used for interpolation

20

21 private Quaternion[] initialBladeRotations;

22 private Quaternion initialAzimuthRotation;

23

24 public float interpolationSpeed = 1.0f;

25

26 void Start()

27 {

28 // Store the initial rotations of the blades

29 initialBladeRotations = new Quaternion[4];

30 initialBladeRotations[0] = Blade1.transform.localRotation;

31 initialBladeRotations[1] = Blade2.transform.localRotation;

32 initialBladeRotations[2] = Blade3.transform.localRotation;

33 initialBladeRotations[3] = Blade4.transform.localRotation;

34

35 // Store the initial rotation of the Azimuth

36 initialAzimuthRotation = Azimuth.transform.localRotation;

37 }

38

92

39 void Update()

40 {

41 // Interpolate the RPM, Pitch, and Azi values "smoothly" towards their targets

42 currentRpm = Mathf.Lerp(currentRpm, targetRpm, Time.deltaTime * interpolationSpeed);

43 currentPitch = Mathf.Lerp(currentPitch, targetPitch, Time.deltaTime * interpolationSpeed)

;

44 currentAzi = Mathf.Lerp(currentAzi, targetAzi, Time.deltaTime * interpolationSpeed);

45

46 // Calculate rotation amount based on interpolated rpm

47 float rotationAmount = currentRpm * Time.deltaTime * 6f; // Convert rpm to degrees per

second

48 Propeller.transform.Rotate(Vector3.forward, rotationAmount);

49

50 // Rotate each blade based on interpolated pitch

51 RotateBlade(Blade1, currentPitch, Vector3.up, 0);

52 RotateBlade(Blade2, currentPitch, Vector3.up, 1);

53 RotateBlade(Blade3, currentPitch, Vector3.up, 2);

54 RotateBlade(Blade4, currentPitch, Vector3.up, 3);

55

56 // Rotate azimuth based on interpolated azi angle

57 RotateAzi(currentAzi);

58 }

59

60 public void UpdatePitch(float newPitch)

61 {

62 targetPitch = newPitch; // Set target pitch

63 }

64

65 public void UpdateRPM(float newRPM)

66 {

67 targetRpm = newRPM; // Set target RPM

68 }

69

70 public void UpdateAziDirection(float newAzi)

71 {

72 targetAzi = newAzi; // Set target azimuth direction

73 }

74

75 void RotateBlade(GameObject blade, float pitchValue, Vector3 axis, int index)

76 {

77 if (blade != null)

78 {

79 // Calculate the angle based on the pitch value (mapped to a suitable range if needed

)

80 pitchValue = pitchValue * 0.35f; // To make the blades stop at 35 degrees

81 float angle = Mathf.Clamp(pitchValue, -100f, 100f);

82

83

84 // Rotate the blade around the specified axis relative to its initial rotation

85 Quaternion targetRotation = initialBladeRotations[index] * Quaternion.AngleAxis(angle

, axis);

86 blade.transform.localRotation = targetRotation;

93

87 }

88 else

89 {

90 Debug.LogWarning("Blade object is not assigned.");

91 }

92 }

93

94 void RotateAzi(float aziValue)

95 {

96 if (Azimuth != null)

97 {

98 Quaternion targetRotation = Quaternion.AngleAxis(aziValue, Vector3.up);

99 Azimuth.transform.localRotation = Quaternion.Lerp(Azimuth.transform.localRotation,

initialAzimuthRotation * targetRotation, Time.deltaTime * interpolationSpeed);

100 }

101 else

102 {

103 Debug.LogWarning("Azimuth object is not assigned.");

104 }

105 }

106 }

8.3.3 Propeller Particle System Controller script

1 using System.Collections;

2 using System.Collections.Generic;

3 using UnityEngine;

4

5 public class PropellerParticleSystemController : MonoBehaviour

6 {

7 public Movement movementScript;

8 private ParticleSystem propellerParticles;

9 private ParticleSystem.VelocityOverLifetimeModule velocityOverLifetimeModule;

10 private ParticleSystem.ShapeModule shapeModule;

11

12 void Start()

13 {

14 propellerParticles = GetComponent<ParticleSystem>();

15 if (propellerParticles == null)

16 {

17 Debug.LogError("ParticleSystem component not found!");

18 this.enabled = false;

19 return;

20 }

21

22 if (movementScript == null)

23 {

24 Debug.LogError("Movement script is not assigned!");

25 this.enabled = false;

26 return;

27 }

28

94

29 velocityOverLifetimeModule = propellerParticles.velocityOverLifetime;

30 shapeModule = propellerParticles.shape;

31 velocityOverLifetimeModule.enabled = true;

32 propellerParticles.Play();

33 }

34

35 void Update()

36 {

37 if (velocityOverLifetimeModule.enabled)

38 {

39 float speedModifierValue = movementScript.targetPitch / 100.0f;

40

41

42

43 // Conditionally adjust the X-rotation of the shape module

44 if (speedModifierValue < 0)

45 {

46 shapeModule.rotation = new Vector3(180f, 0f, 0f); // Rotate 180 degrees around

the X-axis

47 }

48 else

49 {

50 shapeModule.rotation = Vector3.zero; // No rotation

51 }

52 // Update the speed modifier

53 velocityOverLifetimeModule.speedModifier = new ParticleSystem.MinMaxCurve(Mathf.Abs(

speedModifierValue)); // Set length of speed to propeller

54 }

55 else

56 {

57 Debug.LogWarning("VelocityOverLifetimeModule is not enabled.");

58 }

59 }

60 }

8.4 Pre-project planning report

95

108

8.5 Gantt Chart using MS Planner

Figure 49: Gantt Diagram of Bachelor Project Showing Timelines and Milestones.

109

8.6 Timesheet in Excel

110

Frem til 13.mars er man,tir,ons brukt til INGA

uke Dag Dato Torstein Kommentar Logg Robert Kommentar Logg
1 Mandag 08.01.2024 4,00 4,00

Tirsdag 09.01.2024 7,50 Riggbygging 7,50 Riggbygging
Onsdag 10.01.2024 7,50 Riggbygging 7,50 Riggbygging
Torsdag 11.01.2024 7,50 Forprosjektrapport 7,50 Forprosjektrapport
Fredag 12.01.2024 0,00 INGA 0,00 INGA
Lørdag 13.01.2024
Søndag 14.01.2024

2 Mandag 15.01.2024
Tirsdag 16.01.2024
Onsdag 17.01.2024
Torsdag 18.01.2024 7,50 Tur på båt 7,50 Tur på båt
Fredag 19.01.2024 7,50 7,50
Lørdag 20.01.2024
Søndag 21.01.2024

3 Mandag 22.01.2024 3,00 3,00
Tirsdag 23.01.2024 4,00 4,00
Onsdag 24.01.2024
Torsdag 25.01.2024 7,50 Forprosjektrapport ferdigstillielse 7,50 Forprosjektrapport ferdigstillielse
Fredag 26.01.2024 8,50 8,50
Lørdag 27.01.2024
Søndag 28.01.2024

4 Mandag 29.01.2024
Tirsdag 30.01.2024
Onsdag 31.01.2024
Torsdag 01.02.2024 7,50 Visualisering 7,50 Server
Fredag 02.02.2024 7,50 Visualisering 7,50 Server
Lørdag 03.02.2024
Søndag 04.02.2024

5 Mandag 05.02.2024
Tirsdag 06.02.2024
Onsdag 07.02.2024 4,00 Riggbygging 4,00 Riggbygging

Torsdag 08.02.2024 7,50
Møte med KM utvikling
Teste REST API

Fant ut hvordan REST API skal brukes oppmot serveren på
marinecontrolleren. 7,50 Riggbygging/Visualisering

Fredag 09.02.2024 7,50
Lage python kode som henter data
med REST API Fikk koden til å fungere 7,50 Unreal Visualisering

Lørdag 10.02.2024
Søndag 11.02.2024

6 Mandag 12.02.2024
Tirsdag 13.02.2024
Onsdag 14.02.2024

Torsdag 15.02.2024 7,50
Møte med Morild
Rapportskriving Skreve innledning og litt teori 7,50 Møte med Morild

Fredag 16.02.2024 7,50 Rapportskriving. Visualisering Enkel AR app på mobilen 7,50 Visualisering

Lastet ned Unity og prøvde å lære
litt programvaren. Fikk testet en
enkel AR app på telefon.

Lørdag 17.02.2024 7,50 Lage c++ kode som bruker REST API Fikk ikke teste rèelt pga sykdom
Søndag 18.02.2024 7,50

7 Mandag 19.02.2024 7,50 7,50 Visualisering

Tirsdag 20.02.2024 7,50 7,50 Visualisering, thruster movement

Laget movement script som
beveger thruster modellen slik
som threepp, begynt smått på
kommunikasjon mellom marine
controller og unity men ingenting
som funker endå

Onsdag 21.02.2024 7,50 7,50

Torsdag 22.02.2024 7,50 Kommunikasjon/koding

Vi har bestemt oss for å lage produktet med Python først
for å prototype enklere. Laget en UDP client i python og
fått kommunikasjon med Unity på en annen pc. Laget en
OPC_UA server. har problemer med å laste opp til
serveren. 7,50 Visualisering/Kommunikasjon

Fredag 23.02.2024 7,50 7,50
Lørdag 24.02.2024
Søndag 25.02.2024

8 Mandag 26.02.2024 7,50 7,50
Tirsdag 27.02.2024 7,50 7,50
Onsdag 28.02.2024 7,50 7,50

Torsdag 29.02.2024 7,50 Kommunikasjon/koding

Fikk til å laste opp til fra client serveren. Løsningen var å
lage alle objekter på server-siden å bare sette verdiene
fra clienten. Fikk også til å laste opp "live" verdier fra CAF
ved bruk av websocket. Har bestemt å bruke websocket
til verdier som skal oppdateres raskt og Rest api til verdier
som kan ta lenger tid. Dette er fordi websocket bruker for
mye prosessorkraft når den skal hente alle topics. Rest Api
klarer effektivt å hente all data, men bruker omtrent 0.3
sekund per objekt. Siden vi har 22 objekter blir
forsinkelsen rundt 6 sekund som er litt tregt. 7,50

Fredag 01.03.2024 7,50

Laget klient som sender data fra
OPC_UA serveren til unity ved bruk av
UDP. Meldingen sendes som en touple
(string,value)

Fikset bug i komunikasjonskoden. heiltall virket ikke.
string,bool,array osv. virker fortsatt ikke. 7,50

Lørdag 02.03.2024 7,50
Søndag 03.03.2024 7,50

9 Mandag 04.03.2024 7,50 7,50
Tirsdag 05.03.2024 7,50 7,50
Onsdag 06.03.2024 7,50 7,50
Torsdag 07.03.2024 7,50 7,50
Fredag 08.03.2024 7,50 7,50

Lørdag 09.03.2024 Koding/Kommunikasjon

Endret server koden slik at den oppretter alle variabler
som riktig data type. Innser at ditte kanskje ikkje va lurt,
da vi kjem til å koble oss opp mot forskjellige thrusterer
samtidig i fremtiden, og da vil det være bedre om clienter
kan lage variabler selv.

Søndag 10.03.2024
10 Mandag 11.03.2024 7,50 7,50

Tirsdag 12.03.2024 7,50 7,50

Timeplan

Onsdag 13.03.2024 7,50 7,50

Torsdag 14.03.2024 7,50 7,50
Se og lære hvordan vannfysikk fungerer i
spill/visualisering

Fredag 15.03.2024 jobbreise 7,50 Teste forskjellige "water" assets i unity
Lørdag 16.03.2024 jobbreise
Søndag 17.03.2024 jobbreise

11 Mandag 18.03.2024 jobbreise 7,50 Teste forskjellige "water" assets i unity

Tirsdag 19.03.2024 jobbreise 10,50 Teste forskjellige "water" assets i unity

Fant ut at vannshader til nyeste
versjon av Unity i HDRP var det
beste alternativet i VR.

Onsdag 20.03.2024 jobbreise 7,50 Lage Thrust Partikler fra Thruster
Torsdag 21.03.2024 7,50 7,50 Lage Thrust Partikler fra Thruster
Fredag 22.03.2024 7,50 7,50 Lage Thrust Partikler fra Thruster
Lørdag 23.03.2024
Søndag 24.03.2024

12 Mandag 25.03.2024 7,50 7,50 Bestille Meta Quest 3 for AR-implementasjon

Tirsdag 26.03.2024 7,50 7,50 Anskaffe Ny Ut-Båt design, legge inn på Unity

Importere modell fra Autodesk
3DS Max til en FBX fil slik at vi kan
åpne fila i Blender for å editere og
"skrelle" modellen for ubrukte
objekt.

Onsdag 27.03.2024 7,50 7,50
Editere UT-Båt 3D-modell, fjerne ubrukte ting inne i
Blender.

Torsdag 28.03.2024 7,50 7,50
Fredag 29.03.2024 7,50 7,50 Plassere Thrustere på UT-Båt
Lørdag 30.03.2024
Søndag 31.03.2024

13 Mandag 01.04.2024 7,50 7,50 Plassere Thrustere på UT-Båt
Tirsdag 02.04.2024 7,50 7,50

Onsdag 03.04.2024 7,50 7,50 Anskaffe AR briller og Teste, konvertere fra VR til AR.
Torsdag 04.04.2024 7,50 7,50
Fredag 05.04.2024 7,50 7,50
Lørdag 06.04.2024
Søndag 07.04.2024

14 Mandag 08.04.2024 7,50 7,50

Tirsdag 09.04.2024 7,50 Koding/Kommunikasjon

Fikk til kommunikasjon med flere thrustere. Suksess i å
formatere melding som json og sende over udp til Unity.
Klarte å konvertere programmet til kjørbar .exe fil. la til
data om target udp i communicationData.json 7,50

Onsdag 10.04.2024 7,50 7,50

Torsdag 11.04.2024 9,50 Koding/Kommunikasjon

Fikset kliss i kommunikasjonen ved å endre funksjonen
som henter data. Siden vi nå begrenser oss til noen få
variabler som vi skal visualisere, kan vi bruke 1 ws
connection per topic. det ser ut til å fungere fint. 7,50

Fredag 12.04.2024 7,50 7,00
Lørdag 13.04.2024
Søndag 14.04.2024

15 Mandag 15.04.2024 7,50 7,50
Tirsdag 16.04.2024 7,50 7,50

Onsdag 17.04.2024 7,50 Koding/Kommunikasjon
restapi og websocket clientene virker og kan kjøre
separat 7,50

Torsdag 18.04.2024 7,50 Rapportskriving 7,50 Rapportskriving
Fredag 19.04.2024 7,50 Rapportskriving 7,50 Rapportskriving
Lørdag 20.04.2024
Søndag 21.04.2024

16 Mandag 22.04.2024 7,50 Rapportskriving 7,50 Rapportskriving
Tirsdag 23.04.2024 7,50 Rapportskriving 7,50 Rapportskriving
Onsdag 24.04.2024 7,50 Rapportskriving 7,50 Rapportskriving
Torsdag 25.04.2024 7,50 Rapportskriving 7,50 Rapportskriving
Fredag 26.04.2024 7,50 Rapportskriving 7,50 Rapportskriving
Lørdag 27.04.2024
Søndag 28.04.2024

17 Mandag 29.04.2024 7,50 Rapportskriving 7,50 Rapportskriving
Tirsdag 30.04.2024 7,50 Rapportskriving 7,50 Rapportskriving
Onsdag 01.05.2024 7,50 Rapportskriving 7,50 Rapportskriving
Torsdag 02.05.2024 7,50 Rapportskriving 7,50 Rapportskriving
Fredag 03.05.2024 7,50 Rapportskriving 7,50 Rapportskriving
Lørdag 04.05.2024
Søndag 05.05.2024

18 Mandag 06.05.2024 12,00 Rapportskriving. 12,00 Rapportskriving.
Tirsdag 07.05.2024 12,00 12,00

Onsdag 08.05.2024 12,00 Testing
Teste program på stasjonær pc. Installere unity
versionskontroll for å enklere flytte programmet 12,00 Testing

Teste program på stasjonær pc.
Installere unity versionskontroll
for å enklere flytte programmet

Torsdag 09.05.2024 12,00 Feilsøking

Fikse problem som oppstod med unity version control.
Feilen var at vi hadde brukt port 5000, som ble opptatt av
UVC 12,00 Feilsøking

Fikse problem som oppstod med
unity version control. Feilen var at
vi hadde brukt port 5000, som ble
opptatt av UVC

Fredag 10.05.2024 12,00 Testing/forbereding

Teste att programmet virker. Koblet opp 2 pelicase og
fergeinstallasjon mot systemet vårt. Planla litt film. Møte
med foredragsholder Eli Anne Tvergrov for tips til endelig
presentasjon og film 12,00 Testing/forbereding

Teste att programmet virker.
Koblet opp 2 pelicase og
fergeinstallasjon mot systemet
vårt. Planla litt film. Møte med
foredragsholder Eli Anne Tvergrov
for tips til endelig presentasjon og
film

Lørdag 11.05.2024
Søndag 12.05.2024

19 Mandag 13.05.2024 9,00 Planlegging/Forbereding Finne utstyr til filming. Planlegge film. Skrive manus 9,00 Planlegging/Forbereding
Finne utstyr til filming. Planlegge
film. Skrive manus

Tirsdag 14.05.2024 9,00 Filming. Lydopptak. Redigering Filming. Lydopptak. Redigering 9,00 Filming. Lydopptak. Redigering Filming. Lydopptak. Redigering
Onsdag 15.05.2024 9,00 Dokumentering redigering. Rapportskriving 9,00 Dokumentering redigering. Rapportskriving
Torsdag 16.05.2024 9,00 Dokumentering Rapportskriving/finpussing 9,00 Dokumentering Rapportskriving/finpussing
Fredag 17.05.2024
Lørdag 18.05.2024

Søndag 19.05.2024 7,50 Finpuss
finpussing på rapport. Legge til alle appendix. Lage
endelig dokument 7,50 Finpuss

finpussing på rapport. Legge til
alle appendix. Lage endelig
dokument

20 Mandag 20.05.2024 5,00 Avslutning Levere endelig dokument. Forberede fremføring 5,00 Avslutning
Levere endelig dokument.
Forberede fremføring

Tirsdag 21.05.2024 7,50 Avslutning Fremføring. Feiring 7,50 Avslutning Fremføring. Feiring
Onsdag 22.05.2024
Torsdag 23.05.2024
sum 644,00 644,50

8.7 Minutes of the meeting with Morlid Interactive

Meeting with Morild
Date: February 15, 2024
Location: Daeskogen
Participants: Torstein Skare, Robert Moltu, Per Magne Dalseth, Geir Olav Otterlei

The meeting was convened to discuss how the Morild’s offshore simulator and expertise could be leveraged in our
bachelor’s thesis. After brainstorming, it was decided that Morild would develop a front-end visualization application
that can send and receive signals. Additionally, it was agreed that the project team will provide the 3D models to be
visualized and specify the command requests to be sent via UDP to retrieve the values. Since the Morild could not
deliver the application until early may, it was also mentioned that the project group should create a basic visualization
using unity in order to test the communication.

8.8 Meeting minutes with Supervisors

114

Stikkord fra møtet:

• Sikkerhet og robusthet

• Med målsetning om at verktøyet skal brukes i felt

• Utvidelse og optimalisering av funksjonalitet i programmet

• To-veis kommunikasjon

• Automatisk konfigurering fra configfil

• Mer effektiv datahenting fra CAF

• Gjøre programmet executable / mer brukervennlig

• PLS simulator for sammenkobling og mer reell opplæring

o Visualisering

• Tenk om igjen på ting som er blitt gjort (Drøft, sett opp alternativ)

• Nyskapende (Visualisering)

• OSI-modell (nettverkskommunikasjon)

• Eige data (omregninger i server istedenfor Ignition)

• WAGO Compact100 (snakk med anders) / IOT-Edge Controller Wago

Møtereferat:

Etter møter med både KM og faglærer, har bachelor gruppen kommet frem til ett par viktige

punkt som er ønskelig å oppnå i løpet av prosjektet. Tema som robusthet/sikkerhet, utvidelse og

optimalisering av programmet, PLS-simulator for sammenkobling og visualisering har vært

nevnt som viktige punkt å gå videre med i prosjektet. Gruppen har som mål ved endt bachelor at

programmet skal være mulig å bruke i felt, samtidig som at det skal være et nyskapende og

teknologisk produkt/program. Dette planlegger vi å få til ved å utbedre prototypen og

forsvare/endre noen av valgene som er blitt gjort, valg som f.eks. å bruke OPC-UA som server.

 Planen er nå å følge 3 hovedpunkt som er:

- Sikkerhet og robusthet

o Gjøre programmet robust nokk til at det ikke krasjer CAF

o Noe cyber security

- Utvidelse og optimalisering av funksjonalitet i programmet

o To-veis kommunikasjon (først med CAF)

o Automatisk konfigurering av ip-adresser fra config-fil i marinecontroller.

o Mer effektiv datahenting (Få C++ serveren til å virke)

▪ Dele opp programmet i henting, beregning og lagring, slik at beregninger

skjer i server og ikke i GUI(Ignition).

o Gjøre programmet mer brukervennlig.

▪ Lage .exe fil?

o Oppstarts script?

- Bruke en PLS til å lage en thruster simulator, slik at vi kan fjerne hardware fra nåværende

testrigg (Pelicase) (Låne foreksempel Wago Compact100 fra skulen?).

o Digital tvilling av thruster(Unreal Engine? Fortsette med Threepp? Codesys?)

Møtereferat
Dato: 26.1.24
Lokasjon: NMK “Heland”
Deltagere: Torstein, Robert,
Ottar, Robin, Håkon

Spørsmål til møte:

- Håndskrevne spm.

Stikkord fra møte:

- Få frem akademisk med gode tester for robusthet

- Autogenererte config-filer

- Testing siden,

- Svart boks for mange,

- Design, bør være likt som system til KM

- Etikk, ulovlig distrubering slik at folk får tak i det, PM mista jobben sin.

- LCA, Gjør programmet uavhengig slik at fleire produkt kan brukast. (Generaliserbarhet) bruke på

1000 ting.

- Bærekraftighet, reise, effektiv tuning osv.

- Logging: Bruken av programmet, kor, kor ofte, kor lenge, ka folk trykk på osv. (Måle ting, om folk

blir flinkare, maskinlæring) GDPR? Lære om læringen.

- Møter annenhver uke, Torsdager 11:30 til 12:00 HELAND/ANDRE ROMM

- Savner opplæringsbehovet, å vise fornuftigheten.

- Testing av kurs service folk

-

Referat fra møte:

I løpet av dette møte har prosjekt gruppen fått nyttig informasjon fra veiledere og oppdragsgiver. Ett

gjennomgående tema er å få dokumentert arbeid som er blitt gjort på en akademisk måte, samtidig som

at det forklarer behovet og fornuftigheten bak prosjektet. Det å ta ett skritt tilbake og vurdere hva som er

blitt gjort og hvordan prosjektet kan bli løst på best mulig måte er viktig. Når det kommer til utvidelse av

funksjonalitet til produktet, er det blant annet snakket om muligheten for autogenererte flyt diagram fra

config-filer. I tillegg er tanken om å redegjør tester for programmet god, å lage tester i programmet og

sette krav til hvordan programmet bør funke er smart. Videre funksjonalitet som design og bør være

gjennomtenkt og bør se ut som et KM-produkt og ha en type «Standard».

Iløpet av møtet ble det også snakket om etikk, bærekraftighet og LCA. For etikk så er tema som at

kursholdere kan få mindre arbeid, ulovlig distribuering og bedre opplæring på steder som vanligvis ville

fåt dårlig opplæring eksempel på etiske problemstillinger til produkter. I tillegg ble en ide om å lage en

metode for logging av bruken av programmet, som forteller hvor ofte, lenge eller hva folk trykker på i

programmet et alternativ som gruppen kan jobbe med å legge til i prosjektet. I denne logginga kan man

f.eks også bruke maskinlæring for å få nyttig informasjon. Et annet viktig tema for oppgaven er å få med

behovet og vise fornuftigheten og behovet til produktet. Det er planlagt at fysisk demo/testing av

produktet i ett kurs vil være kjempenyttig for å få feedback fra kursdeltagere og kursholdere. Og ett annet

kurs på slutten av bacheloren for å få et godt resultat bit å skrive om. Det ble også nevnt å holde møter

Møtereferat
Dato: 26.1.24
Lokasjon: NMK “Heland”
Deltagere: Torstein, Robert,
Ottar, Robin, Håkon

annenhver uke på torsdager kl.11.30 til 12:00 dersom gruppen trenger mer tid på møte skal vi bli enige

om å ha ett utvidet møte- i forkant av møte.

«Formål og mål, med delmål på veien. Og hvordan man adresserer oppgavene.»

Spørsmål til neste møte:

Stikkord fra møte:

- Tenk gjennom metodevalg og oppgaven

- Hva tjener man ved å bruke WS eller Proto (RestAPI) eller MQTT.

- Visualisering, simulere verdier til thrusteren for å få smooth signal (Ha en ide om ka som er

behov å trene på)

- System som lagrer data (Playback funksjonalitet)

o Er det live data fra en båt

o Eller data fra koffert

o Kor data kjem fra

o Koble seg til en database istedet for å koble seg til en koffert

- Kor man bør ligge i løpet

o Husk å lever gantt diagram og fyll ut skjema ligg på blackboard til veiledere. Legg det i

innkallingen.

- Zoome litt ut få overblikk.

- Ka betyr resultatet, vise litt forståelse (når det kjem til rapport)

-

Referat fra møte:

I løpet av møtet fikk gruppen en bedre forståelse og mer overblikk over hvordan selve bachelor

oppgaven bør gjennomføres. Gruppen ble også kjent med at til neste møtet skal det leveres inn

relevante dokumenter som viser fremgang til veiledere (Gantt diagram og div) i tillegg til dette ble vi

enige om at å både benytte Gantt diagram og SCRUM ikke var nødvendig, derfor ble det bestemt på

møtet å benytte kun Gantt diagrammet for prosjektstyring. Før møtet hadde gruppen kartlagt litt

potensielle metoder for datahenting til serveren der valget mellom å utnytte websockets eller å benytte

Rest API(Protobuff) må bli dokumentert i rapporten. For visualisering ble vi enige om at visualiseringen

skal dekke behovene til training og ha en ide på hva som er behovet å trene på.

En ide om å ha et system som lagrer data (Playback funksjonalitet) var også diskutert som en god ide

som en funksjonalitet til training programmet. Dette for å lagre data som har vært live på enten en båt

eller en koffert. Slik at man kan se hvor dataen kommer fra og spille tilbake det som har skjedd. Dette vil

også åpne for en mulighet for at vi kan koble oss til en database trådløst istedet for å koble seg fysisk til

en koffert/båt.

8.9 Periodic reports

120

AIS 2900
Bacheloroppgave

ingeniørfag

Project
Next Generation Training

Environment for Kongsberg

Maritime

Number of meeting this period 3).
0 planned

Firma - Oppdragsgiver
NTNU-Ålesund / Kongsberg
Maritime

Side
1 av 3

Progress report Period/week(s)
2

Number of hours this period. (from

log) Approx. 75h

Prosjektgruppe (navn)
Gruppe 7

Dato
22.02.24

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne
rapportperioden

Main goal/purpose for these periods work

- Discover options and solutions for communication and visualization

Planned activities this period
- Discuss solutions with Kongsberg developers
- Discuss with other relevant people
- Improve facilities and tools
- Make plans for quality control
- Create program to retrieve data

Actually conducted activites this period
- Conducted meeting with KM developers
- Conducted meeting with Morild Interaktiv

Description of/ justification for potential deviation between planned and real activities
-

Description of/ justification for changes that is desired in the projects content or in the further plan of action – or progress report

- After having a meeting with Morild our plans for the visualization part of the project
changed our plan a little. Initially the plan was to utilize Unreal Engine as the main game
engine for developing the visualization, but after the meeting with Morild the group
decided it was best to utilize Unity for making the thruster visualization. The primary
reason for transitioning towards Unity was to utilize a platform that Morild was using in
case of a partnership between us therefore using the same platform seemed beneficial, but
also the group got some good input from them on how to go through with the visualization.
Additionally, another big reason to transition towards Unity was because of the
documentation for this game engine compared to Unreal Engine. Although Unreal Engine
might be the newest and the best graphical looking engine Unity has been out for the
longest period and is therefore the most used engine, making it easier for us to look up
documentations, tutorials, and forums for us to complete our desired goals.

- A new method to collect data has been found and made in Python. The team has found that
REST API seems to look beneficial for our desired goals instead of using websockets to
collect data. This is because REST API allows us to retrieve objects containing multiple
datapoints which we can separate from the object on the client end. Further testing of
REST API is our next plan of action.

Main experience from this period

- Meeting with Morild has given the group a further understanding of game/visualization
development and changed some of our opinions on the project's visualization part. It has
also given us useful knowledge and connections within the business/industry.

- Talking to developers within Kongsberg Maritime led us to test REST API which has
increased our knowledge about websockets and REST API and the differences between
them.

- Visualization development has proven to be more effective after transitioning to Unity. The
process of implementing the movement in Unity was similar to my approach in Threepp.
The logic governing the rotation of each object was similar between the two methods.

AIS 2900
Bacheloroppgave

ingeniørfag

Project
Next Generation Training

Environment for Kongsberg

Maritime

Number of meeting this period 3).
0 planned

Firma - Oppdragsgiver
NTNU-Ålesund / Kongsberg
Maritime

Side
2 av 3

Progress report Period/week(s)
2

Number of hours this period. (from

log) Approx. 75h

Prosjektgruppe (navn)
Gruppe 7

Dato
22.02.24

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne
rapportperioden

Main purpose/focus next period

- Set up communication between Unity and the Marine controller

Planned activities next period

- Create a functioning visualization in Unity
o Functioning with values from marine controller
o 3D-Visualsation on a screen
o Look at adding water effects
o Look at adding Olympic Octopus in and placing the thruster on the ship.

- Further test and develop our REST API client.
o Check latency with many topics (~400)

- Create a program to convert the received data to appropriate datatypes/values. For
example, booleans are received as integers 0 and 1. Another use case could be to
interpolate data.

Other

- Since the meeting was cancled, we chose include some additional questions below

Wish/need for counceling
- Citation for logos and copying from Wikipedia for the theoretical part of the report.
- Does NTNU have Meta Quest 3? We are planning to test AR (Augmented Reality)

visualization for the digital twin, which depends on us having the correct equipment to test.
- Should we focus on developing rapidly using Python, or to create an efficient program with

C++? We believe that testing with Python is smart.
- Should we write the next report in Norwegian?

Approval/signature group leader
Torstein Skare
Robert Moltu

Signature other group participants
-

GANNT-Diagram showing the period that is relevant for the coming periods:

AIS 2900
Bacheloroppgave

ingeniørfag

Project
Next Generation Training

Environment for Kongsberg

Maritime

Number of meeting this period 3).
0 planned

Firma - Oppdragsgiver
NTNU-Ålesund / Kongsberg
Maritime

Side
3 av 3

Progress report Period/week(s)
2

Number of hours this period. (from

log) Approx. 75h

Prosjektgruppe (navn)
Gruppe 7

Dato
22.02.24

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne
rapportperioden

AIS 2900
Bacheloroppgave

ingeniørfag

Project
Next Generation Training

Environment for Kongsberg

Maritime

Number of meeting this period 3).
1 planned

Firma - Oppdragsgiver
NTNU-Ålesund / Kongsberg
Maritime

Side
1 av 4

Progress report Period/week(s)
2

Number of hours this period. (from

log) Approx. 75h

Prosjektgruppe (navn)
Gruppe 7

Dato
22.02.24

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne
rapportperioden

Main goal/purpose for these periods work

- Use discoveries from last period to connect communications script with visualization and
apply it to VR.

Planned activities this period

- Develop thruster visualization on computer screen
o Thruster movement
o UDP-communication
o Get 3D model of UT-Boat
o Utilize Meta Quest 2 for visualization

▪ Make Objects Grabbable
▪ Make Objects Scalable (Sub-optimal but partially functionable)

o Interpolate values coming from communication script
o Document findings in report

- Develop server for storing data from CAF.
- Make client that can move data from CAF to our server.

Actually conducted activites this period

- Scheduled periodic meetings with supervisors
- Meeting with Arne Styve to get Meta Quest 2 VR headset

- All points that were planned for this period were conducted except documenting the
findings in the report.

- Created simple OPC_UA server
- Created a client that uses websocket to retrieve a small list of topics from CAF and store

the data on OPC_UA server.
- Created a client that retrieves data from OPC_UA and sends the data by UDP

Description of/ justification for potential deviation between planned and real activities
- The progress within the project has been very good this period and a lot has been

accomplished, but because of a report and an exam in another course (INGA) large parts of
this period have gone in to studying for this subject. Which is why documenting the
findings in the report has been de-prioritized. This will be done as soon as possible.

Description of/ justification for changes that is desired in the projects content or in the further plan of action – or progress report

- We have decided to make the communication part of the project in separate modules such
as server, websocket client and RESTAPI client. This is because neither of the methods are
designed to deliver all the data we need at “realtime.” Using websockets allows us to
gather and send data faster than RestAPI and will be used for the most important data
coming from the marine controller. Therefore, will websockets be used for the
visualization part of the project Unity/Ignition, while the rest of the data can be retrieved
using RestAPI. RestAPI introduced around 0.3 seconds of delay per object (we are
interested in around 20 objects. 0.3*20=6seconds total)

Main experience from this period

- Visualization development has proven to be effective in Unity. By using the Meta XR all in
one SDK allows us to be able to develop a VR visualization.

AIS 2900
Bacheloroppgave

ingeniørfag

Project
Next Generation Training

Environment for Kongsberg

Maritime

Number of meeting this period 3).
1 planned

Firma - Oppdragsgiver
NTNU-Ålesund / Kongsberg
Maritime

Side
2 av 4

Progress report Period/week(s)
2

Number of hours this period. (from

log) Approx. 75h

Prosjektgruppe (navn)
Gruppe 7

Dato
22.02.24

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne
rapportperioden

- Achieved communication between Marine Controller – Communication Script –
Visualization, which was a good experience.

- Mostly experienced how the CAF server works. When using websockets to retrieve data
from the server, it seems like ~40 topics is the limit and anything above does not get
updated at a frequent interval. This limit could be increased to 80 because the server
supports batch subscriptions, but the limit is 2.

Main purpose/focus next period

- Look at a solution to get communication from more than one marine controller

- Improve visualization
o Scaling of object
o Method for multiple marine controllers
o Applying thruster model to UT-Boat

- Try to get from KM/NTNU
o Getting in new models from KM(Azimuth/TCNS)
o Meta Quest 3

- Improve communication
o Make every relevant datatype work.
o Make GUI to start/stop and to set information such as IP-addresses and number of

connections.

Planned activities next period

- Create a program to convert the received data to appropriate datatypes/values. For
example, booleans are received as integers 0 and 1.

- Search for a method to know which variables must be updated
- Make a new script that uses the other scripts as modules. (Hard because of asynchronous

programming)
- Fix suboptimal scaling feature in visualization.
- Look at the possibility for multiple marine controllers/thrusters running simultaneously.
- Request a Meta Quest 3 headset
- Apply thruster models to a UT-Boat

Other

- Postponed creation of a simulator to march.14. So we can finish our current tasks.

Wish/need for counceling
- Now that we have a working VR model, we want a Quest 3 to test AR

Approval/signature group leaders
Torstein Skare
Robert Moltu

Signature other group participants
-

GANTT-Diagram showing the period that is relevant for the coming periods:

AIS 2900
Bacheloroppgave

ingeniørfag

Project
Next Generation Training

Environment for Kongsberg

Maritime

Number of meeting this period 3).
1 planned

Firma - Oppdragsgiver
NTNU-Ålesund / Kongsberg
Maritime

Side
3 av 4

Progress report Period/week(s)
2

Number of hours this period. (from

log) Approx. 75h

Prosjektgruppe (navn)
Gruppe 7

Dato
22.02.24

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne
rapportperioden

AIS 2900
Bacheloroppgave

ingeniørfag

Project
Next Generation Training

Environment for Kongsberg

Maritime

Number of meeting this period 3).
1 planned

Firma - Oppdragsgiver
NTNU-Ålesund / Kongsberg
Maritime

Side
4 av 4

Progress report Period/week(s)
2

Number of hours this period. (from

log) Approx. 75h

Prosjektgruppe (navn)
Gruppe 7

Dato
22.02.24

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne
rapportperioden

Status Charts from Microsoft Planner

AIS 2900
Bacheloroppgave

ingeniørfag

Project
Next Generation Training

Environment for Kongsberg

Maritime

Number of meeting this period 3).
1 planned

Firma - Oppdragsgiver
NTNU-Ålesund / Kongsberg
Maritime

Side
1 av 4

Progress report Period/week(s)
3

Number of hours this period. (from

log) Approx. 75h

Prosjektgruppe (navn)
Gruppe 7

Dato
22.02.24

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne
rapportperioden

Main goal/purpose for these periods work

- For visualization this period aimed to research the possibility for water physics and
flow/flush visualization from the thruster in live movement.

- For backend development this aimed to introduce multiple thrusters and a GUI

Planned activities this period
- Look at a solution to get communication from more than one marine controller
- Improve visualization

o Scaling of object
o Method for multiple marine controllers
o Applying thruster model to UT-Boat

- Try to get from KM/NTNU
o Getting in new models from KM(Azimuth/TCNS)
o Meta Quest 3

- Improve communication
o Make every relevant datatype work.
o Make GUI to start/stop and to set information such as IP-addresses and number of

connections.
o Duplex communication

Actually conducted activites this period

- Received Meta Quest 3 headset and set it up with our current VR project.

- Received a new UT-boat model from Kongsberg Ship Design and removed unnecessary

details and objects. Converted to file to a format usable in Unity

- Received UT-boat model from NTNU (Olympic Octopus)

- Discovered a problem with using the Rest-Api. Only sub-objects can be retrieved. This

makes this method too slow when collecting many topics.

- Discovered problems in server code. It looks like 320 topics are added, but only 95 are

added.

- Made a function that checks which datatype data collected from marine controller is, and

use that information to upload the data correctly to our OPC-UA server..
Description of/ justification for potential deviation between planned and real activities

- The progression this period has not been as great as last week's period. This is partially due
to one of the weeks being set off to an exam in (INGA), preparation for a bachelor's
midway presentation, and another being set off to easter holidays.

- A simple GUI has been created, but there were problems running the programs. We believe
this is because PyCharm (the IDEwe use) automatically configures some settings that we
now must do manually.

- We have not added functionality to add multiple thrusters/marine-controllers because of the
problems discovered on the server and GUI. We believe fixing the problems should come
first.

Description of/ justification for changes that is desired in the projects content or in the further plan of action – or progress report

- The discovery that Rest-Api can only retrieve sub-objects introduced many more objects

than we believed initially and increases the time to retrieve data multiple times. This makes

us revert to the initial plan of using websockets to collect most of the data. Since our

AIS 2900
Bacheloroppgave

ingeniørfag

Project
Next Generation Training

Environment for Kongsberg

Maritime

Number of meeting this period 3).
1 planned

Firma - Oppdragsgiver
NTNU-Ålesund / Kongsberg
Maritime

Side
2 av 4

Progress report Period/week(s)
3

Number of hours this period. (from

log) Approx. 75h

Prosjektgruppe (navn)
Gruppe 7

Dato
22.02.24

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne
rapportperioden

visualization does not require a lot of separate variables RestAPI could be used to collect

the data we desire to be the most real-time.

- Extra functionality on the server such as duplex communication and GUI

- For the visualization, the period regards researching and testing several types of assets

regarding water physics to try to understand how water works in “games”. Additionally

importing the UT-boat models to Unity has been tested and applied with live movement.
Main experience from this period

- Water physics turned out to be more complex than we initially thought. This is why in most
games water is rendered as a blend of materials and shaders with no physical or interactive
logic to it to reduce the computational load. Where effects like bouncy, ripples and
splashes are made by using self-made particle systems are used to accomplish this. This is
why a particle system was made this week that follows the thrust direction on the propeller.

- The only options available to collect data without extra hardware are Rest-Api and
websockets.

- Experiments from last period regarding the number of topics retrieved with websocket
seems to be wrong. Because our current program retrieves over 300 values. This is without
using batch subscription

Main purpose/focus next period

- Improve server

- Make visualization from VR to AR.

- Improve control over the objects in VR/AR

- Document progress so far in the report.

Planned activities next period

- Make sure that all values we believe to be uploaded to the server, actually are uploaded
uploaded to the server

- Connect to multiple marine controllers.
- Make GUI or startup script
- Use received Meta Quest 3 and research possibilities for AR
- Implement laser pointer to grab objects in visualization
- Research implementation of HUD (Head up display) for visualiztion

o Spawning objects
o Display values
o Etc more ideas?

Other

-

Wish/need for counceling
- Removing the creation of a simulator completely from the project. This serves no purpose

to further improve the training environment and it already exists. In addition, it seems like
we would be short on time. This can be discussed during the meeting.

Approval/signature group leaders Signature other group participants

AIS 2900
Bacheloroppgave

ingeniørfag

Project
Next Generation Training

Environment for Kongsberg

Maritime

Number of meeting this period 3).
1 planned

Firma - Oppdragsgiver
NTNU-Ålesund / Kongsberg
Maritime

Side
3 av 4

Progress report Period/week(s)
3

Number of hours this period. (from

log) Approx. 75h

Prosjektgruppe (navn)
Gruppe 7

Dato
22.02.24

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne
rapportperioden

Torstein Skare
Robert Moltu

-

GANTT-Diagram showing the period that is relevant for the coming periods:

AIS 2900
Bacheloroppgave

ingeniørfag

Project
Next Generation Training

Environment for Kongsberg

Maritime

Number of meeting this period 3).
1 planned

Firma - Oppdragsgiver
NTNU-Ålesund / Kongsberg
Maritime

Side
4 av 4

Progress report Period/week(s)
3

Number of hours this period. (from

log) Approx. 75h

Prosjektgruppe (navn)
Gruppe 7

Dato
22.02.24

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne
rapportperioden

Status Charts from Microsoft Planner

AIS 2900

Bacheloroppgave

ingeniørfag

Project
Next Generation Training

Environment for Kongsberg

Maritime

Number of meeting this period 2.
1 planned

Firma - Oppdragsgiver
NTNU-Ålesund / Kongsberg

Maritime

Side
1 av 4

Progress report Period/week(s)
2

Number of hours this period. (from

log) Approx. 75h

Prosjektgruppe (navn)
Gruppe 7

Dato
4.18.24

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne

rapportperioden

Main goal/purpose for these periods work

- Make visualization from VR to AR

- Improve user controlls in VR/AR

- Improve server

Planned activities this period

- Make sure that all values we believe to be uploaded to the server, actually are uploaded to

the server

- Connect to multiple marine controllers.

- Make GUI or startup script

- Use received Meta Quest 3 and research possibilities for AR

- Implement laser pointer to grab objects in visualization

- Research implementation of HUD (Head up display) for visualiztion

o Spawning objects

o Display values

Actually conducted activites this period

- Successfully adapted the VR environment to AR

- Successfully connected 4 thrusters simultaneously and visualized movement in AR

- Made server robust enough to handle handle wrong connection data.

- Successfully retrieved and sent signals using restapi.

- Worked on modularization of the code.
Description of/ justification for potential deviation between planned and real activities

- Making a HUD display for the Visualization

- This period’s focus has been implementing and converting the visualization from VR

with the Quest 2 headset to AR with a new Quest 3 headset that supports AR.

Additionally, the focus has been to make the AR visualization more user-friendly

focusing on improving grab, distance grab and making models interactable.

Implementing the movement of multiple thrusters from multiple marine controllers

including movement of azimuth thrusters has been a priority. The result of these

priorities has been that a HUD has not been successfully implemented and is also

discussed as more of a “game development” task rather than a task for our criterias for

our education.

- Making GUI for the communication program has been deprioritized because we have made

config files that configure all the necessary communication settings and what data is

gathered. In addition, a readme file and an executable to explain how to use the program

and to run and distribute it more easily.
Description of/ justification for changes that is desired in the projects content or in the further plan of action – or progress report

- It was discovered that while we successfully gathered 300 topics from the server, the data

was jumbled, meaning that the topic/value pairs were sometimes wrong. We believe this

was happening on the KM server.

- Previous plan to get all the relevant signals from CAF was to use websocket and restAPI in

combination. While this is possible to do, it would take some time and still be relatively

AIS 2900

Bacheloroppgave

ingeniørfag

Project
Next Generation Training

Environment for Kongsberg

Maritime

Number of meeting this period 2.
1 planned

Firma - Oppdragsgiver
NTNU-Ålesund / Kongsberg

Maritime

Side
2 av 4

Progress report Period/week(s)
2

Number of hours this period. (from

log) Approx. 75h

Prosjektgruppe (navn)
Gruppe 7

Dato
4.18.24

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne

rapportperioden

slow. From testing we believe that the KM (Kongsberg Maritime) server has to be

upgraded with new functionality to enable realtime data gathering of all the data. As a

temporary solution we have limited the program to around 10 topics for visualization.
Main experience from this period

- To have a stable data gathering solution, KM servers must be upgraded.

- To make the user experience in AR better, skills in game development are needed.

Main purpose/focus next period

- Write bachelor report

- Look into the possibilities regarding implementation of a load simulator on the current

thruster simulator (pelicase).
Planned activities next period

- Write most of the report

- Check the possibilities of implementing a load simulator

Other

-

Wish/need for counceling

- Looking into implementing a load simulator to expand and lift the project's complexity and

get some math, physics e.g. Need some counselling for this part. Do we have a sufficient

amount of time? What should we prioritize?

Approval/signature group leaders

Torstein Skare

Robert Moltu

Signature other group participants

-

GANTT-Diagram showing the period that is relevant for the coming periods:

AIS 2900

Bacheloroppgave

ingeniørfag

Project
Next Generation Training

Environment for Kongsberg

Maritime

Number of meeting this period 2.
1 planned

Firma - Oppdragsgiver
NTNU-Ålesund / Kongsberg

Maritime

Side
3 av 4

Progress report Period/week(s)
2

Number of hours this period. (from

log) Approx. 75h

Prosjektgruppe (navn)
Gruppe 7

Dato
4.18.24

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne

rapportperioden

AIS 2900

Bacheloroppgave

ingeniørfag

Project
Next Generation Training

Environment for Kongsberg

Maritime

Number of meeting this period 2.
1 planned

Firma - Oppdragsgiver
NTNU-Ålesund / Kongsberg

Maritime

Side
4 av 4

Progress report Period/week(s)
2

Number of hours this period. (from

log) Approx. 75h

Prosjektgruppe (navn)
Gruppe 7

Dato
4.18.24

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne

rapportperioden

Status Charts from Microsoft Planner

AIS 2900
Bacheloroppgave

ingeniørfag

Project
Next Generation Training

Environment for Kongsberg

Maritime

Number of meeting this period 2.
1 planned

Firma - Oppdragsgiver
NTNU-Ålesund / Kongsberg
Maritime

Side
1 av 3

Progress report Period/week(s)
2

Number of hours this period. (from

log) Approx. 75h

Prosjektgruppe (navn)
Gruppe 7

Dato
4.18.24

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne
rapportperioden

Main goal/purpose for these periods work

- Begin writing report

- Write Theory and Methodology part of report

Planned activities this period
- Write most of the report
- Check the possibilities of implementing a load simulator

Actually conducted activites this period

- Theory and Method portion of the report mostly finished.

- About 50% of report has been written.

- Started on writing result parts

- Looked into implementation of load simulation.
Description of/ justification for potential deviation between planned and real activities

- The user-friendliness of the visualization could be even better and more logical to grab and
hold objects. It has been tried to be improved but has been set on “pause” to give time to
focus on writing the thesis.

Description of/ justification for changes that is desired in the projects content or in the further plan of action – or progress report
- Have not began to implement a thruster load sim, focus on writing report atleast 80%

finished before implementing new parts to the project.
Main experience from this period

- It seems possible to use restapi to both get and reupload the load after calculations, but
every attempt so far have crashed CAF.

- When users test the AR part of the project, they are too excited by the AR technology to
focus on the thrusters and notice the thruster movements. We have reduced the size of non-
moving objects to make the users focus on the thrusters, which seemed to work.

- Noticed that the user-friendliness for the visualization could be improved after demo
testing.

Main purpose/focus next period

- Finish the report
Planned activities next period

- Deliver report

Other

-

Wish/need for counceling

AIS 2900
Bacheloroppgave

ingeniørfag

Project
Next Generation Training

Environment for Kongsberg

Maritime

Number of meeting this period 2.
1 planned

Firma - Oppdragsgiver
NTNU-Ålesund / Kongsberg
Maritime

Side
2 av 3

Progress report Period/week(s)
2

Number of hours this period. (from

log) Approx. 75h

Prosjektgruppe (navn)
Gruppe 7

Dato
4.18.24

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne
rapportperioden

Når vi skal referere til et spesifikt kapittel i en manual, skal vi referere heile manualen eller
kapittelet også korleis gjer vi det?

Approval/signature group leaders
Torstein Skare
Robert Moltu

Signature other group participants
-

GANTT-Diagram showing the period that is relevant for the coming periods:

AIS 2900
Bacheloroppgave

ingeniørfag

Project
Next Generation Training

Environment for Kongsberg

Maritime

Number of meeting this period 2.
1 planned

Firma - Oppdragsgiver
NTNU-Ålesund / Kongsberg
Maritime

Side
3 av 3

Progress report Period/week(s)
2

Number of hours this period. (from

log) Approx. 75h

Prosjektgruppe (navn)
Gruppe 7

Dato
4.18.24

1) Noter her kort tilbakemelding om antall møter – fordelt på typer (interne, styringsgruppe, møte med veileder) - i denne
rapportperioden

Status Charts from Microsoft Planner

-

9 Bibliography

[1] Aiohttp. Welcome to AIOHTTP. URL: https://docs.aiohttp.org/en/stable/index.html.

[2] Autodesk. Autodesk 3ds Max: Create massive worlds and high-quality designs. URL: https : / / www .
autodesk.co.uk/products/3ds-max/overview?term=1-YEAR&tab=subscription.

[3] Blender. The Software. URL: https://www.blender.org/about/.

[4] Cambridge Dictionary. Parsing Definition. URL: https://dictionary.cambridge.org/dictionary/
english/parsing.

[5] opcua-asyncio contributors. A Minimal OPC-UA Servers. URL: https://opcua-asyncio.readthedocs.
io/en/latest/usage/get-started/minimal-server.html.

[6] GeeksforGeeks. User Datagram Protocol (UDP). URL: https://www.geeksforgeeks.org/user-
datagram-protocol-udp/.

[7] Kongsberg Maritime. Azipull thruster. URL: https://www.kongsberg.com/maritime/products/
propulsors-and-propulsion-systems/thrusters/azipull/.

[8] Kongsberg Maritime. Standard tunnel thruster. URL: https://www.kongsberg.com/maritime/
products/propulsors- and- propulsion- systems/thrusters/standard- tunnel-

thruster2/.

[9] Kongsberg Maritime. Swing-up Azimuthing Thruster. URL: https://www.kongsberg.com/maritime/
products / propulsors - and - propulsion - systems / thrusters / swing - up - tcnsc -

azimuthing-thruster/.

[10] Kongsberg Maritime. Technologies for sustainable oceans. URL: https://www.kongsberg.com/
maritime/.

[11] Unity Learn. Introduction to Particle Systems. URL: https : / / learn . unity . com / tutorial /
introduction-to-particle-systems#.

[12] Meta. Expand your world with Meta Quest 3. URL: https://www.meta.com/no/en/quest/quest-
3/.

[13] Software Ideas Modeler. CASE tool for diagrams, software design & analysis. URL: https://www.softwareideas.
net/.

[14] MQTT. MQTT: The Standard for IoT Messaging. URL: https://mqtt.org/.

[15] Open Bridge. About. URL: https://www.openbridge.no/home/about.

[16] Johannes Valøy Robert A Moltu Torstein D Skare. Industriprosjekt AIS2221. URL: https://www.overleaf.
com/project/64f858effe92ab46ada54cd5.

[17] Unity. Unity User Manual 2022.3 (LTS). URL: https://docs.unity3d.com/Manual/UnityManual.
html.

[18] Unity-Technologies. HDRP Water Sample Scenes. URL: https://github.com/Unity-Technologies/
WaterScenes.

[19] ValemTutorials. ValemTutorials Youtube Channel. URL: https://www.youtube.com/@ValemTutorials.

139

https://docs.aiohttp.org/en/stable/index.html
https://www.autodesk.co.uk/products/3ds-max/overview?term=1-YEAR&tab=subscription
https://www.autodesk.co.uk/products/3ds-max/overview?term=1-YEAR&tab=subscription
https://www.blender.org/about/
https://dictionary.cambridge.org/dictionary/english/parsing
https://dictionary.cambridge.org/dictionary/english/parsing
https://opcua-asyncio.readthedocs.io/en/latest/usage/get-started/minimal-server.html
https://opcua-asyncio.readthedocs.io/en/latest/usage/get-started/minimal-server.html
https://www.geeksforgeeks.org/user-datagram-protocol-udp/
https://www.geeksforgeeks.org/user-datagram-protocol-udp/
https://www.kongsberg.com/maritime/products/propulsors-and-propulsion-systems/thrusters/azipull/
https://www.kongsberg.com/maritime/products/propulsors-and-propulsion-systems/thrusters/azipull/
https://www.kongsberg.com/maritime/products/propulsors-and-propulsion-systems/thrusters/standard-tunnel-thruster2/
https://www.kongsberg.com/maritime/products/propulsors-and-propulsion-systems/thrusters/standard-tunnel-thruster2/
https://www.kongsberg.com/maritime/products/propulsors-and-propulsion-systems/thrusters/standard-tunnel-thruster2/
https://www.kongsberg.com/maritime/products/propulsors-and-propulsion-systems/thrusters/swing-up-tcnsc-azimuthing-thruster/
https://www.kongsberg.com/maritime/products/propulsors-and-propulsion-systems/thrusters/swing-up-tcnsc-azimuthing-thruster/
https://www.kongsberg.com/maritime/products/propulsors-and-propulsion-systems/thrusters/swing-up-tcnsc-azimuthing-thruster/
https://www.kongsberg.com/maritime/
https://www.kongsberg.com/maritime/
https://learn.unity.com/tutorial/introduction-to-particle-systems#
https://learn.unity.com/tutorial/introduction-to-particle-systems#
https://www.meta.com/no/en/quest/quest-3/
https://www.meta.com/no/en/quest/quest-3/
https://www.softwareideas.net/
https://www.softwareideas.net/
https://mqtt.org/
https://www.openbridge.no/home/about
https://www.overleaf.com/project/64f858effe92ab46ada54cd5
https://www.overleaf.com/project/64f858effe92ab46ada54cd5
https://docs.unity3d.com/Manual/UnityManual.html
https://docs.unity3d.com/Manual/UnityManual.html
https://github.com/Unity-Technologies/WaterScenes
https://github.com/Unity-Technologies/WaterScenes
https://www.youtube.com/@ValemTutorials

[20] Wikipedia. Three.js. URL: https://en.wikipedia.org/wiki/Three.js.

[21] Wikipedia. Unity. URL: https://en.wikipedia.org/wiki/Unity_(game_engine).

[22] Wikipedia. Unreal Engine. URL: https://en.wikipedia.org/wiki/Unreal_Engine.

140

https://en.wikipedia.org/wiki/Three.js
https://en.wikipedia.org/wiki/Unity_(game_engine)
https://en.wikipedia.org/wiki/Unreal_Engine

	Preface
	Acknowledgements
	Abstract
	Sammendrag
	Terminology
	Introduction
	Background
	Current Training Environment
	Project Baseline
	Project Objectives and Innovation
	Structure of the Report

	Theory
	Visualisation
	Blender
	Unreal Engine
	Unity
	Threepp
	Autodesk 3DS Max
	Meta Quest 3 VR/AR Headset

	CAF
	OPC-UA
	Software Version Table
	Package Table
	OpenBridge Design System
	Simple WebSocket Client
	Pitch on Propeller
	Interpolation
	Unity Asset Store
	Tunnel Thruster
	TCNS - Swing-up Azimuth Thruster
	Azipull Thrusters
	MQTT
	UDP
	Courotines
	Parsing

	Methodology
	Design and structure of the program
	Collecting data from CAF
	Testing the collection methods

	Distributing Data
	Making The Communication App
	OPC-UA Server
	Websocket To OPC-UA
	Rest To OPC-UA
	OPC-UA To Unity
	Integration of System Components via the Main Application Module
	Simulating Thrust Load
	Challenges With Two-way Communication
	Making the App more accessible
	Customizing OPC-UA Topics to Reuse Old GUI

	Testing the Ignition Program with the App
	Visualization in VR/AR
	Tools and considerations
	Selection of Visualization Tools
	Hardware and Software Considerations

	Acquiring and Preparing 3D Models
	Integrating 3D Models into Unity
	Data Integration and Movement Simulation
	Data Communication Setup
	Movement Mechanics Implementation

	Augmented and Virtual Reality Setup
	Setup of Meta Quest Features

	Learning about Water Physics
	Transitioning to Augmented Reality
	Developing the UT-7128 Ship Design Scene
	Adding Multiple Thrusters
	Azimuth Movement

	Unity Version Control Problem
	Making the Unity Visualization More Accessible
	HUD-Panels Integration

	Results
	Communication Program
	Using Ignition to Visualize Live Diagrams
	Augmented Reality in Maritime Training
	Qualitative Findings

	Discussion
	Communication Issues Caused by Unity Version Control
	Stand-alone AR Visualization on Headset
	Interpolating
	Data Gathering Issues
	Why two-way communication was not implemented

	Visualization
	Water Physics
	Enhancing User-Friendliness in AR
	Positive Feedback and Future Potential
	Autogenerated Software Block Diagrams in Ignition

	Different Use-cases for the Solution
	Future Possibilities

	Evaluating the Qualitative Research Methods

	Conclusion
	Recommendations
	Appendices
	Python communication program
	Main application
	ws_to_opc module
	rest_to_opc module
	opc_to_unity module
	start_opc_server
	Simulate_thrust_load module
	UDP client
	Websocket client
	functions

	Python Test Codes
	REST API Single session
	REST API Test Multiple Sessions
	Websocket Test Multiple Clients

	Unity codes in C#
	UDP Client script
	Movement script
	Propeller Particle System Controller script

	Pre-project planning report
	Gantt Chart using MS Planner
	Timesheet in Excel
	Minutes of the meeting with Morlid Interactive
	Meeting minutes with Supervisors
	Periodic reports

	Bibliography

