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ABSTRACT

The purpose of this study is to examine if neural networks can contribute to
improved forecasts of macroeconomic variables. Specifically, we investigate if the
long short-term memory (LSTM) model can produce better forecasts than a range
of machine learning models like LASSO, and univariate time series models like
SARIMA. We attempt to improve on existing work on LSTM by applying different
feature selection approaches and changing the training data of the model. We
conduct Root Mean Square Error (RMSE) tests on all models, finding the loss
of each model with respect to inflation. We compare the results of our LASSO-
LSTM model to LSTM with PCA feature selection. We also test the performance
of LASSO-LSTM when data augmentation is applied to training data, using the
Moving Block Bootstrapping (MBB) method. LASSO-LSTM is further tested
using a different dataset consisting of financial variables from the EIKON database.
We find that forecasts of LASSO-LSTM generally perform better than LSTM
with PCA feature selection. Despite its strengths LSTM often underperforms
univariate models and other machine learning models. More interpret-able models
like LASSO generally yield better forecasts than LSTM, and seem more suitable
for central bankers and policy makers.

Målet med denne studien er å undersøke om nevrale nettverk kan bidra til forbedrede
prognoser av makroøkonomiske variabler. Mer spesifikt så skal vi undersøke
om long short-term memory (LSTM) modellen kan produsere bedre prognoser
enn maskinlæring modeller som LASSO, og univariate tidsserie modeller som
SARIMA. Vi forsøker å forbedre tidligere arbeid gjort på LSTM ved å bruke
forskjellige variabelvalg-tilnærminger og ved å forandre på treningsdataen til mod-
ellen. Vi utfører en Root Mean Square Error (RMSE) test på alle modellene, og
finner tapet til de respektive modellene med hensyn til inflasjon. Vi sammen-
ligner resultatene til LASSO-LSTM modellen med LSTM med PCA variabelvalg.
Vi tester også prestasjonen til LASSO-LSTM når dataforsterkning er anvendt
på treningsdataen ved hjelp av Moving Block Bootstrapping (MBB) metoden.
LASSO-LSTM er videre tested ved hjelp av ulike datasett bestående av finansielle
variabler fra EIKON databasen. Vi finner at prognoser lagd av LASSO-LSTM
generelt er bedre enn PCA-LSTM. På tross av sine ferdigheter så underpresterer
LSTM ofte sammenlignet med univariate modeller og andre maskinlæringsme-
toder. Mer tolkbare modeller som LASSO gir generelt bedre prognoser enn LSTM,
og virker mer passende som verktøy for sentralbanker og beslutningstakere.

i



PREFACE

This paper is the result of the work on a Master’s thesis in financial economics at
the Department of Economics (ISØ) at the Norwegian University of Science and
Technology (NTNU) in Trondheim.

We would like to thank our supervisors, Sjur Westgaard and Petter Eilif de Lange,
for their valuable guidance and support on writing this thesis. It has been very
helpful having someone with such great insight into the problem area to help us
refine our thoughts and ideas into a presentable thesis. Their great enthusiasm for
our thesis has truly inspired us. We would also like to thank Roderick McCrorie
at the University of St.Andrews for being a great interlocutor and providing valu-
able input for this paper. His insights have helped us understand the broader
implications of our work. We would like to thank Livia Paranhos at the Bank of
England for her feedback on model calibration and encouraging us to explore data
augmentation. Lastly, we would like to thank our friends, families and classmates
for their motivation and support throughout this process.

Trondheim, June 2, 2024

ii



CONTENTS

Abstract i

Preface ii

Contents iv

List of Figures iv

List of Tables vi

Abbreviations viii

1 Introduction 1

2 Literature Review 5
2.1 Inflation forecasting using classical/linear methods . . . . . . . . . . 5
2.2 Inflation forecasting using deep learning . . . . . . . . . . . . . . . 7
2.3 The importance of inflation forecasting in financial markets . . . . . 8
2.4 Relevant variables in inflation forecasting . . . . . . . . . . . . . . . 9

3 Data 13
3.1 Variable-selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 FRED-MD database . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 EIKON database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Models 17
4.1 LASSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 LASSO-LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 ARIMA and SARIMA . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.6 Network training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.6.1 LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.6.2 Other machine learning models . . . . . . . . . . . . . . . . 26
4.6.3 Univariate time series models . . . . . . . . . . . . . . . . . 27

4.7 Model evaluation methodology . . . . . . . . . . . . . . . . . . . . . 28

iii



iv CONTENTS

5 Results 29
5.1 Our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Benchmark performance . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.1 Univariate models . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.2 Machine learning models . . . . . . . . . . . . . . . . . . . . 31
5.2.3 PCA-LSTM performance . . . . . . . . . . . . . . . . . . . . 32

5.3 Model performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3.1 LASSO-LSTM - FRED-MD data . . . . . . . . . . . . . . . 32
5.3.2 FRED-MD and EIKON data with feature engineering . . . . 33
5.3.3 FRED-MD - MBB data . . . . . . . . . . . . . . . . . . . . 34

5.4 Benchmarks versus models of interest . . . . . . . . . . . . . . . . . 34
5.5 Discussion of findings . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.5.1 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . 34
5.5.2 Data availability and model transparency . . . . . . . . . . . 35
5.5.3 Broader implications . . . . . . . . . . . . . . . . . . . . . . 36

5.6 Limitations of our research . . . . . . . . . . . . . . . . . . . . . . . 37
5.6.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.6.2 Forecast horizon . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.7 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Summary and conclusion 39

7 Appendices 45
7.1 Benchmark specification . . . . . . . . . . . . . . . . . . . . . . . . 45

7.1.1 Autoregressive Model AR(p) . . . . . . . . . . . . . . . . . . 45
7.1.2 Seasonal Autoregressive Integrated Moving Average SARIMA 45
7.1.3 Least Absolute Shrinkage and Selection Operator LASSO . . 46
7.1.4 Ridge Regression . . . . . . . . . . . . . . . . . . . . . . . . 47
7.1.5 Random Forest Model . . . . . . . . . . . . . . . . . . . . . 48
7.1.6 LSTM Cell Functions . . . . . . . . . . . . . . . . . . . . . . 50

7.2 Code Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.3 FRED-MD data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.4 Financial data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.5 Moving Block Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . 57

7.5.1 Procedure for Moving Block Bootstrap . . . . . . . . . . . . 57



LIST OF FIGURES

3.1.1 LASSO feature selection for a 12 month forecast . . . . . . . . . . . 14
3.3.1 Descriptive statistics of financial data . . . . . . . . . . . . . . . . . 15

4.2.1 Classification of neural networks. LSTM is a specific type of neu-
ral networks within the group recurrent neural neural networks
(RNN)[30]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.2 Representation of LSTM recurrent structure. LSTM has a cell state
(ct) and a hidden state (ht). As t increases, more information (y)
is put into the cell state and memory state. This new information
in the cell and memory state contribute to the prediction (h)[30]. . 20

4.2.3 The figure illustrates the schematic of a LSTM cell. The cell state
c t−1 and hidden state h t−1 from the previous time step, along with
the current input yt−1, are processed through forget, input, and
output gates. The forget gate determines how much of the previous
cell state should be retained, while the input gate decides how much
new information should be added. These combined results update
the cell state ct. The output gate determines the next hidden state
ht, which, combined with the updated cell state, forms the output
yt|t−1. Activation functions like tanh and sigmoid are used to regu-
late the flow of information within the cell, ensuring that the LSTM
effectively captures long-term dependencies in the data [30]. . . . . 21

4.6.1 The table presents the optimal specifications for the applied LSTM
models, showing the best values for hyper-parameters such as lags,
layers, dropout layers, dropout rate, learning rate, epochs, batch
size, and validation sample . . . . . . . . . . . . . . . . . . . . . . . 26

4.6.2 Optimal hyper-parameters and model specifications for Random
Forest, LASSO, and Ridge regression models. Random Forest uses
500 trees and 4 variables per split, with sequential updating and
Embedded Feature Selection (EFS) incorporating 18 features. LASSO
applies a lambda range of 0.018-0.35 with an L1 penalty, using Pe-
nalized Regression Method (PRM) with 10-50 features and no se-
quential updating. Ridge regression uses a lambda range of 0.219-
11.5 with an L2 penalty, employing PRM with 126 features and no
sequential updating. . . . . . . . . . . . . . . . . . . . . . . . . . . 27

v



vi LIST OF FIGURES

4.6.3 The table presents the optimal hyper-parameters and model speci-
fications for SARIMA and AR(p) models. Selection criteria include
ACF and PACF for SARIMA but not for AR(p). Both models use
BIC for selection, with maximum likelihood estimation (MLE) and
sequential updating. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1.1 The table displays the out-of-sample forecast performance for CPI
inflation using the different models over the period from 2010 to
2023. The performance metric used is the Root Mean Squared
Error (RMSE), evaluated over different forecast horizons. . . . . . 30

5.2.1 12-month forecast using the Random Forest model, comparing ac-
tual (blue line) and predicted (red line) values. The model captures
general trends but diverges significantly at certain points, particu-
larly towards the end of the forecast period. This indicates some
limitations in the model’s predictive accuracy, especially during pe-
riods of high volatility. . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3.1 The figure illustrates a 6-month forecast using the LASSO-LSTM
model, showing actual (blue line) and predicted (red line) CPI-
AUSCL values. The model closely follows the actual values in
periods of low volatility but struggles to capture sharp increases,
particularly towards the end of the forecast period. This indicates
the model’s limitations in predicting sudden changes in the data. . 33

5.3.2 The observed under-performance during these volatile periods sug-
gests that while the LASSO-LSTM model is robust in stable con-
ditions, it may need further tuning or additional features to im-
prove its predictive accuracy when the regime in the data changes.
This highlights a common challenge in time series forecasting, where
models often need to be continuously adapted to handle the com-
plexities of real-world data. . . . . . . . . . . . . . . . . . . . . . . 33

7.4.1 Financial dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



LIST OF TABLES

vii



ABBREVIATIONS

LSTM Long short term memory

LASSO Least absolute shrinkage and selection operator

LASSO-LSTM Least absolute shrinkage and selection operator - Long short term
memory

SARIMA Seasonal autoregressive integrated moving average

ARIMA Autoregressive integrated moving average

AR(p) Autoregressive model

NN Neural network

CNN Conveluted neural net

RNN Reccurent neural net

RF Random forest

GFC Gloabal financial crisis

PCA Principal component analysis

RMSE Root mean square error

MBB Moving block bootstrap

EFS Exhaustive feature selection

PRM Penalized regression method

MLE Maximum likelihood

AIC Akaike information criteria

BIC Baysian information criteria

viii





CHAPTER

ONE

INTRODUCTION

Today most central banks aim at providing monetary and financial stability to
their domestic economy, as well as ensuring that the financial system operates
in the best interest of the wider economy [1]. To do this, maintaining low and
stable inflation and high employment is crucial, and one of the reasons why most
central banks operate with an inflation target. In the last couple of years inflation
has been increasing quite rapidly worldwide, but it is now forecast to decline
[2]. Advanced economies are returning to their inflation targets quicker than
developing economies and emerging markets, mostly due to them having stronger
economic fundamentals. High inflation causes a host of problems for the economy,
and it is in a countries’ best interest to keep inflation under control. Forecasting
inflation is thus a core part of the work done by central banks, and accurate
forecasts are necessary to be able to set interest rates to a level trading off the
inflation target against economic activity [2].

Inflation affects all agents operating in the economy. An increase in the rate
of inflation will reduce the real rate of return on money and assets in general.
Hyperinflation makes budgeting and investment planning difficult as it is nearly
impossible to establish proper discount factors. This in turn, negatively affects
the performance of the financial sector and long-run real activity, and resource
allocation will be less efficient. A hostile environment for capital investments
makes it harder for businesses to function and grow, and has a negative effect on
long-run economic performance, as well as equity market activity. Furthermore,
high inflation can result in tandem increases of stock values, which disappear when
inflation is low [3]. An increase in inflation can also have a discouraging effect on
investments in research and development[4].

Phillips curve models have been widely used for inflation forecasting, and the
relationship between unemployment and inflation is a central theme in macroe-
conomics. This relation has been under a lot of scrutiny, and some researchers
suggests that the inclusion of other indicators like those of Stock and Watson, as
well as commodity prices and financial data, can be more effective in predicting
inflation [5, 6, 7, 8, 9]. Phillips curve models are deemed as outdated by some,
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2 CHAPTER 1. INTRODUCTION

which has created the opportunity for other models to appear on the scene.

In the literature on inflation forecasting, there is a wide use of multivariate models
attempting to enhance the performance of forecasting. An often used data set, as
mentioned above, are the variables applied by Stock and Watson from 1993. Using
these time series for multivariate models, it is possible to perform forecasting based
on significant factors actually contributing to inflation. This dataset has been
employed in several studies following the authors’ findings, and we add financial
data to the mix hopefully capturing a little more of the information explaining
inflation.

It is challenging to find actual out of sample models able to outperform simple
univariate models [10]. More recent work has attempted to improve on forecasting
by applying non-linear machine learning models. Results from previous work have
been mixed, and long-short term memory (LSTM) [11] and Quantile Random For-
est models [12] have not been able to consistently outperform univariate models.
Specifically the SARIMA model tends to perform better, or on par, with with
non-linear approaches. Machine learning methods have proved useful to forecast-
ing, yet there is still room for improvement since there is no significant benefit
compared to univariate models [11].

In this study we attempt to produce reliable inflation forecasts for the US using
LSTM networks, which have some desirable properties including long-term mem-
ory and an ability to capture long term trends that will be further discussed in
chapter 4.2 [13]. We attempt to improve LSTM forecasting capability by applying
feature selection approaches and changing the training data of the model. We
use LASSO for data selection to pick the most important indicators and discard
irrelevant information. We compare the results to some benchmark models like
SARIMA and AR(p), which have performed well in previous research [11]. We
also use other machine learning methods, like random forest, ridge, PCA-LSTM
and LASSO, as benchmarks.

We believe that by combining LASSO and LSTM networks we can increase the in-
terpretability of LSTM, reduce the chances of overfitting, as well as take advantage
of LSTMs ability to explain non-linearity’s and capture complex relationships. We
also believe that the choice of variables is of great importance when conducting
inflation forecasts. That is why we also have dedicated considerable effort into re-
searching the effect of different types of variables. In addition to the classic Stock
and Watson variables, we are including some financial variables, mostly prices,
that we think might improve the performance of our forecast.

The main objectives of this work is:

1. Accuracy assessment: To asses the accuracy of machine learning methods, like
LSTM networks and LASSO. This will be done by using metrics such as root mean
squared error (RMSE).

2. Model comparison: To compare the performance of traditional econometric
methods like SARIMA with modern machine learning methods like LSTM net-
works in forecasting inflation.

3. Policy implications: To examine how the combination of LASSO and LSTM
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networks, and including financial data, can enhance the ability of policymakers to
anticipate inflationary trends and make good decisions.

4. Financial impact: To investigate what implications our results have for the
economy as a whole, focusing on the financial sector and banking.

The remaining part of this work is organized as follows: In section 2 we review
relevant literature. In section 3 we briefly describe our data, and offer some key
descriptive statistics. In section 4 we briefly describe our models and bench-
mark models, as well as specifications related to network training and evaluation
methodology. In section 5 we present and discuss our results, and in the last
section we provide a summary of the main points of the paper.
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CHAPTER

TWO

LITERATURE REVIEW

2.1 Inflation forecasting using classical/linear meth-
ods

Inflation targeting regimes was introduced to many countries in the late 1980s and
early 1990s. Since then, monetary policy decisions have been based of forecasts of
key variables, inflation being especially important. Most central banks regularly
publish forecasts of a number of variables to support and motivate their monetary
policy decisions. To produce these forecasts, central banks usually rely on differ-
ent forecasting models like VAR, DSGE, factor models and short-term indicator
models[1].

Iversen et al [1] analyzed forecasts made in 2007 to 2013, which was a period of
financial crisis and global recession, followed by a slow recovery in several parts
of the world. Iversen et al. studied Swedish inflation, and during this period the
Riksbank consistently overestimated the rate at which inflation would return to
target, as well as the pace at which the repo rate would be raised towards normal
levels. Therefore, the published inflation and repo rate forecasts display a bias.
They found that the inflation and repo forecasts from the DSGE model displayed a
similar bias, while forecasts from the BVAR model had smaller bias[1]. Charmeza
and Ladley [14] used empirical analysis to show that inflation forecasts produced
for monetary policy councils in inflation targeting countries might be subject to
bias towards the inflation target.

The accuracy of inflation forecasts can vary, and some argue that the likelihood
of accurately predicting a change in inflation using modern inflation forecasting
models is small [6]. As a reaction to this statement Fisher et al. [15] reexamined
the results of Atkeson and Ohanian [6] and showed that it might be possible to
forecast inflation over specific horizons and in certain periods. Their study was
conducted using standard Phillips-curve-based inflation forecasting models [15].

Based on conventional wisdom, the modern Phillips curve-based models are per-
ceived as useful tools for inflation forecasting [16]. Modern Phillips curve equations
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6 CHAPTER 2. LITERATURE REVIEW

relates the current unemployment rate to future changes in the inflation rate. This
is based on the idea that there is a baseline rate of unemployment were inflation
remains constant. When unemployment is below the baseline rate, inflation tends
to rise over time, and vice versa. This baseline unemployment rate is called the
non-accelerating inflation rate of unemployment, or "the NAIRU". The NAIRU
Philips curve is widely used to produce inflation forecasts in academic literature,
as well as in policy-making institutions [17].

Atkeson and Ohanian challenge this conventional view, and argue that The Phillips
curve doesn’t explain the nonlinear dynamics displayed by inflation, despite its
theoretical appeal. They compared one-year inflation forecasts from Phillip curve
models to forecasts from a naive model. The naive model makes the simple pre-
diction that "at any date, the inflation rate over the coming year is expected to
be the same as the inflation rate over the past year." [6]. The results of this study
is that the NAIRU Phillips-curve based inflation forecasts had been no more ac-
curate than the forecast of the naive model. They conclude that NAIRU Phillips
curve models are not useful for inflation forecasting [6].

Fisher et al. [15] focus on the ability to forecast inflation in variations of the Con-
sumer Price Index over a sample period 1985-2000. They find that Phillips curve
models forecast the direction of inflation changes quite well across time, but are
less suited to forecasting the magnitude of inflation changes. They further suggest
that the periods which are difficult for inflation forecasting are those associated
with changes in monetary policy regimes.

They suspected that periods of low inflation volatility and periods after regime
shifts favor a naive model. The Phillips curve models did poorly for one-year-
ahead forecasts, but it did well for two-year-ahead forecast. In general The Phillips
curve models performed poorly, and it is not able to forecast the magnitude of
inflation accurately. At the same time, policymakers are aware of the flaws of
inflation forecasting, and therefore pay more attention to the direction of the
change of future inflation. Because of this, Fisher et al. does not evaluate forecast
performance by magnitude as the only criteria. Instead, they also analyze how
the Phillips curve models predict that inflation will change in the future compared
to the current level of inflation. With this new criteria the Phillips curve model
performs quite well. Over the entire 1977-2000 period it is able to forecast the
direction correctly one year ahead 60-70 percent of the time and more than 70
percent for the two year ahead forecast. The results suggested that the Phillips
curve models forecasts the direction of inflation changes quite well across time,
but it is less consistent with forecasting the magnitude of inflation changes. Their
conclusion is that it is possible to forecast inflation accurately in some periods,
but not in others. The periods which it is difficult to predict inflation are those
associated with changes in monetary policy regimes. This implies that in a stable
monetary regime that is expected to persist, it is sensible for policymakers to pay
attention to inflation forecasts [15].

Meyler et al. [18] used ARIMA models to forecast Irish inflation. They emphasize
forecasting performance and minimising out-of-sample forecast error, rather than
maximizing in-sample goodness of fit. They mention a few weaknesses of ARIMA
forecasting. Firstly, some of the traditional model identification techniques are
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subjective, and the reliability of the model might depend on the qualifications of
the forecaster. Secondly, the economic significance of the model is not clear, since
it is not embedded in an underlying theoretical model or structural relationship.
Lastly, ARIMA models are "backwards looking", which makes them poor at pre-
dicting turning points unless this represents a return to long-run equilibrium [18].
At the same time, ARIMA models tend to perform very well on short-run inflation
forecasting, and often outperform more sophisticated models [11]

Robinson [19] found that the Vector Autoregressive Regressive (VAR) model was
better suited for inflation forecasting than other models. VARs are a multivariate
forecasting approach also used by the Federal Reserve Bank and the Bank of
England for forecasting economic trends. The VAR approach is a convenient way
of identifying small selections of economic variables that appear to have been
highly correlated with inflation in the past, and might be useful in forecasting
future inflation [19].

2.2 Inflation forecasting using deep learning

Atkeson and Ohanian [6] motivated researchers to pursue new methods, and not
Phillips curve based models. Some believe deep learning methods have the po-
tential to generate more accurate out-of-sample inflation forecasts than standard
models reviewed in the literature [20]. There are quite a few papers using vari-
ous deep learning methods to predict inflation. Nevertheless, the usual conclusion
is that some deep learning models perform well, but they are rarely superior to
classical methods [11].

A paper by The Bank of England [11] applies LSTM to forecast inflation, and
compares it to more traditional models in the inflation forecasting literature, as
well as other machine learning models like LASSO, Random Forest, Ridge and
Elastic-net. The authors found that LSTM showed competitive forecasting results
both compared to other machine learning methods and traditional benchmarks,
however, these results were not outstanding. At long horizons LSTM seemed to
produce good forecasts, probably due to its ability to model long term trends
and periods of instability, as it is relatively insulated from sudden and short-lived
movements in inflation. The paper reveals LSTM to be an interesting tool for
reducing dimensionality of the data in a way that is relevant for prediction. The
estimated LSTM factors, using the US FRED-MD database, seemed to capture the
underlying inflation trend well. The factors also exhibited high correlation with
business cycle indicators, especially the output gap, which indicates that such
signals are useful inflation predictors. They also did a variance decomposition
analysis which revealed the LSTM factors to be significantly loaded on corporate
bond spreads and housing starts, and the results generally align with the literature
on common inflation predictors [11].

Theoharidis et al. [20] on the other hand, think machine learning methods have
the potential to deliver superior performance compared to traditional economet-
ric approaches. Their results suggests that macroeconomic forecasting can take
advantage of deep learning models, when encountering nonlinearities and nonsta-
tionarity. The main problem for simple univariate econometric models is the non-
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linear dynamics displayed by inflation, making the standard linear Philips curve
inadequate. Sources for non-linearities that have been identified and documented
are nominal rigidity, zero lower bound for interest rates, economic uncertainty,
and fixed costs. They emphasize the importance of the choice of variables that
can systemically be used for prediction, as well as delivering reliable out-of-sample
forecasts. Without tools and criteria to filter them and achieve parsimony, one
becomes prone to data mining biases and overfitting [20].

To address these challenges Theoharidis et al. examine several machine learning
models, evaluating their performance in forecasting inflation. They combine Con-
vLSTM networks for their forecasting abilities and ability to take advantage of
hierarchical patterns that might exist in the data, and VAEs for dimension reduc-
tion. This results in a VAE-ConvLSTM model, which according to their results is
superior to 25 benchmarks, including SARIMA, MA, LASSO, LSTM, Ridge and
Bayes reg. in terms of out-of-sample accuracy for several forecasting periods [20].

Studying Brazilian CPI inflation Garcia et al. [21] use high-dimensional and ma-
chine learning models to forecast real-time inflation, and find that LASSO per-
forms well in data-rich environments. They use shrinkage models like LASSO, as
well as AR models and random walk forecasts as benchmarks. They estimated
forecasts for horizons between five days before the CPI index is published to 11
months plus five days (12 forecasts in total). LASSO based methods seemed to
perform best for short horizons, which Garcia believed to be due to the expert
survey forecasts they used as potential candidate predictors. These forecasts are
precise in the beginning, but lose their predictive power as other factors become
more important [21].

2.3 The importance of inflation forecasting in fi-
nancial markets

Boyd et al. [3] takes a closer look on the impact of predictable inflation on the
financial system, as there is a lot of literature explaining how the financial system
influences long-run rates of economic growth. They found that for countries with
low-to-moderate rates of inflation, there is a very strong negative association be-
tween inflation and financial intermediary development. When inflation rates rise,
the partial correlation between intermediary activity and inflation falls. These
results align quite well with the theoretical predictions, that predictable increases
in the inflation rate interfere with resource allocation and economic growth[3].

The long-run relationship between financial market activity and inflation has been
extensively investigated empirically. At sufficiently high levels of inflation there is
a negative long-run relationship between inflation and real economic performance.
There is a positive correlation between economic performance and the volume of
bank lending activity, the quantity of bank liabilities issued, and the volume of
trading in equity markets. At low-to-moderate long-run inflation rates there is
a strong negative correlation between inflation and the volume of bank lending
activity, the quantity of bank liabilities issues, and the volume of trading in equity
markets. At higher inflation rates these partial correlations essentially disappear
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[22].

The effect of a permanent increase in the inflation rate for long-run activity seems
to be complicated, and probably depends strongly on the initial level of inflation.
For countries with low-to-moderate inflation rates, there is a negative correlation
between real equity returns and inflation. If the inflation is sufficiently high in a
country, this correlation disappears. As economies develop, equity markets tend
to become more important relative to banks [3].

2.4 Relevant variables in inflation forecasting

Stock and Watson [23] showed that many production-related variables are useful
predictors of US inflation, but Atkeson and Ohanian [6] showed that the Philips
curve fails to beat even simple naive models in many cases. This inspired re-
searchers to investigate a range of different models and variables in order to im-
prove inflation forecasts. Inflation is a complex phenomenon than affects several
parts of the economy, as mentioned in the previous section. Because of this, choos-
ing the relevant variables can be difficult, and there is always the risk of overfitting
and unnecessary noise in the model. Still, several researchers have studied the ef-
fect of different types of variables and their relation to inflation.

Stock and Watson [23] explored whether asset prices could be useful in predicting
inflation, and found that some asset prices predict inflation in some countries
in some periods. Asset prices are forward-looking, which make them a class of
potentially useful predictors of inflation. Here, asset prices are interpreted as
including interest rates, spreads, returns, and other measures related to the value of
financial or tangible assets (bonds, stock, housing, gold, etc.). It is a fundamental
concept of macroeconomics, that asset prices and interest rates contain information
about future economic developments. The literature on forecasting using asset
prices has found that interest rates, term spreads, stock returns, dividend yields,
and exchange rates are leading indicators of inflation or economic activity [23].

An advantage of using asset prices is that they are usually observed in real time
with negligible measurement error. Monetary aggregates, on the other hand, re-
quire ongoing redefinition as new financial instruments are introduced. Stock and
Watson evaluated the practical value of asset prices for short- to medium-term
forecasting using data from developed countries like the US and the UK. They
found that forecasts based on individual indicators are unstable, and if an indi-
cator performs well in one period it is not guaranteed that is will do the same in
other periods [23].

Forni et al. [7] found that financial variables help in forecasting inflation at all
horizons. They divided different variables into six blocks, where financial variables
were one of them. They then compared the different blocks, and found that
excluding financial variables induces a deterioration of forecasting performance on
all horizons. Some of the variables they evaluated were nominal and real interest
rates, spreads, stock market prices and exchange rates[7].

Chen et al. [9] investigated the predictive power of commodity prices on infla-
tion. They show that for five small commodity-exporting countries with inflation
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targeting monetary policies, world commodity price aggregates have predictive
power for their CPI and PPI inflation. Commodity prices clearly outperformed
the random walk, and they did not observe any forecast improvements by using
high frequency data. They concluded that commodity indexes are collectively use-
ful for predicting inflation, which is consistent with theories of price rigidity and
gradual exchange rate pass-through [9].

Chen and Rogoff [24] and Amano and van Norden [25] also demonstrated that
global commodity prices play a key role in driving the currency value of several
major commodity-exporting countries. This is called the "commodity currency"
phenomenon, and explain that world commodity price movements have predictive
power for CPI inflation.

Groen et al. [8] use activity and expectations variables for inflation forecasting,
applying Bayesian regression models. The benchmarks used are random walk,
Ridge, and AR. They evaluate the accuracy of real-time inflation forecasting, and
find that using a BMA model that allows for structural breaks in the error variance
results in very accurate point and density forecasts.

Groen et al. divided the predictor variables into three groups The first group
consisted of variables that provide information about either the degree of excess
demand in the economy, or the real costs that firms face. Some variables in this
group are GDP, PCE, real residential investment, import inflator, unemployment
ratio, housing starts, real spot of oil, real food commodities price index, and raw
material commodities. The other group consisted of variables that have informa-
tion about the current of future state of the economy, like M2 monetary aggregate.
These variables reflect household spending and firm expenditure, as well as infor-
mation about the current monetary policy and liquidity in the economy. They also
included data on the term structure of interest rates, since this contains informa-
tion about business cycles, monetary policy, and inflation expectations. Inflation
expectations are also included in the model [8].

Bernanke [26] comments on the relationship between monetary policy, inflation,
and inflation expectations, and their implication for the Phillips curve. Histori-
cally, inflation expectations have had a great impact on actual inflation. Long-
run inflation expectations vary over time, and are not perfectly anchored in real
economies. If people decide prices and wages with reference to the rate of inflation
they expect in the long run and inflation expectations respond less to variations
in economic activity than before, this will result in inflation being relatively less
sensitive to the level of activity. This implies flattening of the Philips curve, and
aligns with the literature. [26].

Staiger et al. [5] suggests that one should deemphasize the non-accelerating infla-
tion rate of unemployment (NAIRU) in public discourse about monetary policy.
They found that even though there is a clear empirical relation in the Phillips
curve, the NAIRU is imprecisely estimated, and forecasts of inflation are insen-
sitive to the NAIRU. They found other leading indicators of inflation that they
view as at least as good as unemployment. They used percentage growth in the
personal consumption expenditure (PCE) price index, excluding expenditures on
food and energy as a measure of core inflation, and percentage growth in the GDP
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as a measure of broad inflation. They used 69 business cycle indicators from Stock
and Watson as a means of comparison with the unemployment rate as predictors.
The capacity utilization rate in manufacturing, the national association of pur-
chasing managers index of new orders, and the federal funds rate were some of
the indicators of inflation that outperformed unemployment. They conclude that
there exist several variables that are equally or more valuable than unemployment
for predicting inflation [5].
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CHAPTER

THREE

DATA

Data has been collected from the FRED-MD and the EIKON databases. The two
datasets have been transformed separately depending on their characteristics. In
this study FRED-MD is used to cover macroeconomic as well as some financial
data, while EIKON covers only financial data. The two sets of data gives a broader
coverage of inflation indicators.

3.1 Variable-selection

Adaptive LASSO has achieved great success in selecting relevant variables consis-
tently, as well as estimating regression parameters efficiently. Because the square
loss function is sensitive to heavy-tailed errors and outliers, adaptive LASSO might
fail to produce reliable estimates for datasets with heavy-tailed errors or severe
outliers, which are common in financial studies.

It is important to apply a first variable selection step to correctly explain the
data and avoid unnecessary noise in statistics. It is also normal that the number
of variables p is larger than the number of available samples n (p>n). LASSO
is used to overcome this drawback, and is widely used due to its capability of
reducing the dimension of the problem.

13
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Figure 3.1.1: LASSO feature selection for a 12 month forecast

3.2 FRED-MD database

The FRED-MD dataset contains monthly US data compiled by McCracken and
Ng. The data is most recently updated in December 2023. This data consists of 128
variables with 768 observations from January 1959 to December 2023. Before we
can use this data to estimate our models, the dataset needs to undergo a series of
transformations. To perform forecasting, it is necessary that the data is stationary.
Variables that are non-stationary have been differenced such that Xt − Xt−12

represents the annual change in the variable. 74 variables are non-stationary and
have been differenced. These variables are provided in the appendix. We have also
treated the dataset for missing data, where missing observations have received the
value of the previous observation.

3.3 EIKON database

Refinitiv EIKON is a well-regarded database that is used extensively in academia.
It includes global economic, company and financial data. Data retrieved from this
database includes some US commodities like gold, platinum, oil, gas and corn,
as well as shipping rates and Baker Hughes. We retrieved monthly data covering
observations from as early as January 1960 and until December 2023. In total
we included and combined 27 financial variables from EIKON and FRED-MD to
create a new dataset with financial data. Some descriptive statistics are presented
in the table below. Further details on the data are included in the appendix.
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Figure 3.3.1: Descriptive statistics of financial data

Forni et al. and Chen et al. emphasized the importance of financial variables and
commodity prices in inflation forecasting, and supports our belief that including
these data can improve the accuracy of forecasting inflation.
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MODELS

4.1 LASSO
LASSO, Least Absolute Shrinkage and Selection Operator, is a method for shrink-
age and selection for regression and generalized regression problems. For compli-
cated phenomenons like inflation, where datasets with a lot of variables are in-
cluded, it is not unlikely that some of the explanatory variables are irrelevant. This
can cause noise in the model, giving us a less accurate forecast. LASSO is used to
select only the most important covariates, discarding irrelevant information and
keeping the error of the prediction as small as possible [27].

LASSO combines properties from both subset selection and ridge regressions. This
makes it able to produce interpretative models (like subset selection), and be as
stable as a ridge regression. The lasso minimizes the residual sum of squares
subject to the sum of the absolute value of coefficients being less than a constant.
Because of this constraint LASSO tends to produce coefficients that are exactly
0, thus giving us interpretive models [28].

Tibshirani [28] defines the Lasso model as follows:

We have data
(xi, yi), i = 1, 2, ..., N

predictor variables
xi = (xil, ..., xip)

T

and responses
yi

We either assume that the observations are independent or that the yis are con-
ditionally independent given the xijs.

We assume that the xij are standardized so that:(∑
i xij

N

)
= 0,

∑
i x

2
ij

N
= 1
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Letting B̂ = (B̂1, ..., B̂p)
T , the lasso estimate (α̂, B̂) is defined by:

(α̂, B̂) = arg min[
N∑
i=1

(yi − α−
∑
j

βjxij)
2]

Subject to ∑
j

|βj|t.

Here t ≥ 0 is a tuning parameter. Now, for all t, the solution for α is α̂ = ȳ . We
can assume without loss of generality that ȳ = 0 and hence omit α.

The parameter t ≥ 0 controls the amount of shrinkage that is applied to the
estimates. Let B̂0

j be the full least squares estimates and let t0 =
∑ |B̂0

j |. Values
of t < t0 will cause shrinkage of the solutions toward 0, and some coefficients may
be exactly equal to 0. For example, if t = t0/2 the effect will be roughly similar
to finding the best subset of size p/2. The design matrix does not need to be full
rank [28]

The reason for including LASSO in our model is to tackle the problems of over-
fitting and optimism bias. A LASSO regression tries to identify variables and
corresponding regression coefficients that constitute a model that minimize pre-
diction error. This is done by imposing a constraint on the model parameters
which shrinks the regression coefficient towards zero, forcing the sum of the abso-
lute value of the regression coefficients to be less than a fixed value (λ).

(α̂, B̂) = arg min[
N∑
i=1

(yi − α−
∑
j

βjxij)
2 + λ

∑
j

|βj|]

After the shrinkage, variables with regression coefficients equal to zero are excluded
from the model[29].

To choose λ one uses an automated k-fold cross-validation approach. To obtain
this the dataset is randomly partitioned into k sub-samples of the same size. When
k-1 sub-samples are used for developing a prediction model, the remaining sub-
sample is used to validate this model. This is done k times, with each of the k
sub-samples in turn being used for validation and the other for model development.
By combining the k separate validation results for a range of λ values and choosing
the preferred λ one gets the results that are used to determine the final model.

An advantage of this technique is that one can reduce overfitting without re-
stricting a subset of the dataset to be used exclusively for internal validation. A
disadvantage of the LASSO approach is that one may not be able to reliably inter-
pret the regression coefficients in terms of independent risk factors, since the focus
is on the best combined prediction, and not on the accuracy of the estimation [29].
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4.2 LSTM
The LSTM model is a variant of the recurrent neural network (RNN) [30]. Unlike
other neural networks, a recurrent neural network updates by time step. This
means that the model will adjust forecasts based on previous time steps. RNN
models have proven particularly useful for data sensitive sequences such as time
series analysis, natural language processing and sound recognition [31]. For exam-
ple in the context of music recognition, it would be possible to observe a pattern
in the sound, making it possible to predict what is to come next or which song it
is [32]. For such models it is crucial that there is a pattern in the data, and that
the sequence of the data anticipates later values.

The RNN model is able to update its memory based on previous steps and consider
long term trends and patterns in the data [13]. Consider an abnormal drop in
inflation for one month, deviating with previous time steps in the data. The
RNN takes into account the underlying pattern in the data based on previous
observations, and considers the fall in inflation as an abnormality. What makes
inflation behavior abnormal, and which patterns the model detects to label the
drop in inflation as abnormal, is inherently difficult to grasp.

Figure 4.2.1: Classification of neural networks. LSTM is a specific type of neural
networks within the group recurrent neural neural networks (RNN)[30].

LSTM on the other hand, differs from RNNs as it possesses an enhanced capability
of capturing long term trends in the data [13]. Consider an inflationary event in
the 1970s that has a similar pattern as one observed recently. The LSTM will see
the similarities in pattern of the two events, and take this into consideration when
making its next prediction. It is important to state that the event occurring in
the 70s will not be fully weighted, but adjusted for short term events seen in the
data. LSTM thus has the ability to consider both distant and recent events, when
making its predictions[12].

LSTM has proven to be highly efficient for sequential data and has been used
to compute univariate forecasts of monthly US CPI inflation. LSTM slightly
outperforms autoregressive models (AR), Neural Networks (NN), and Markov-
switching models, but its performance is on par with the SARIMA model [30].
Recently, it has become harder to outperform naive univariate random walk-type
forecasts of US inflation, but since the mid-80s, inflation has also become less
volatile and easier to predict. Atkeson and Ohanian [6] show that averaging over
the last 12 months gives a more accurate forecast of the 12-month-ahead inflation
than a backwards looking Phillips curve. Macroeconomic literature argues that
the inflation process might be changing over time, making a nonlinear model more
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precise in predicting inflation. According to Almosova and Andresen [30] there are
four main advantages of the LSTM method.

1. LSTMs are flexible and data-driven. It means that researchers don’t have to
specify the exact form of the non-linearity. Instead, the LSTM will infer this from
the data itself.

2. Under some mild regulatory conditions LSTMs and neural networks of any type
in general can approximate any continuous function arbitrarily accurately. At the
same time, these models are more parsimonious than many other nonlinear time
series models.

3. LSTMs were developed specifically for the sequential data analysis and have
proved to be very successful with this task.

4. The recent development of the optimization routines for NNs and the libraries
that employ computer GPUs made the training of NNs and recurrent neural net-
works significantly more feasible.

In contrast to classical time-series models, the LSTM-network does not suffer from
data instabilities or unit root problems. Nor does it suffer from the vanishing
gradient problem of general RNNs, which can destroy the long-term memory of
these networks. LSTM may be applied to forecasting any macroeconomic time-
series, provided that there are enough observations to estimate the model.

Theoretically, Convolutional Neural Networks (CNN), originally developed for im-
ages, could also be used for time series forecasting, if one treats the input as a
one-dimensional image. LSTMs performs particularly well at long horizons and
during periods of high macroeconomic uncertainty. This is due to their lower sen-
sitivity to temporary and sudden price changes compared to traditional models in
the literature. One should note that their performance is not outstanding, for in-
stance compared to the random forest model [12]. Neural nets as well demonstrate
competitive, but not outstanding, performance against common benchmarks, in-
cluding other machine learning methods.

Figure 4.2.2: Representation of LSTM recurrent structure. LSTM has a cell
state (ct) and a hidden state (ht). As t increases, more information (y) is put into
the cell state and memory state. This new information in the cell and memory
state contribute to the prediction (h)[30].

.
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A common weakness of machine learning techniques, including neural networks,
is the lack of interpretability [31]. For inflation in particular this could be a
problem, since much of the effort is devoted to understanding the underlying
inflation process, sometimes at the expense of marginal increases in forecasting
gains. LSTM is on average less affected by sudden, short-lived movements in prices
compared to other models. Random forest has proved sensitive to the downward
pressure on prices caused by the global financial crisis (GFC). Machine learning
models are more prone to instabilities in performance due to their sensitivity to
model specification [30]. This also applies to the LSTM-network. Lastly, LSTM-
implied factors display high correlation with business cycle indicators, informing
on the usefulness of such signals as inflation predictors.

The LSTM model can be described by the cell state function and the internal
memory. These functions start out with their initial value, before new information
attained from new observations enter and impact the value of the function. We
apply the sigmoid and tanh function, giving us the updated values of the internal
memory and cell state.

Figure 4.2.3: The figure illustrates the schematic of a LSTM cell. The cell state
c t−1 and hidden state h t−1 from the previous time step, along with the current
input yt−1, are processed through forget, input, and output gates. The forget gate
determines how much of the previous cell state should be retained, while the input
gate decides how much new information should be added. These combined results
update the cell state ct. The output gate determines the next hidden state ht,
which, combined with the updated cell state, forms the output yt|t−1. Activation
functions like tanh and sigmoid are used to regulate the flow of information within
the cell, ensuring that the LSTM effectively captures long-term dependencies in
the data [30].

4.3 LASSO-LSTM

The LASSO-LSTM model is an integrated machine learning, neural network model.
It integrates the strengths of LASSO and LSTM. The initial step is LASSO, for
feature selection. Predictors are fitted, reducing errors of the residuals in a sim-
ilar fashion to that of OLS. With LASSO a shrinkage parameter (λ) is applied
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to coefficients, shrinking the size of less significant predictors. The size of the
hyper-parameter (λ) is important, as it decides the number of predictors that the
LSTM model will be trained on.

The regularisation term of LASSO has the function of feature selection. The
predictors that are determined to be most significant will not receive large penalties
to their coefficients, rendering them important in the forecasting of inflation. The
regularisation term is set to three sizes. In this study LASSO-LSTM is constructed
with three sizes of architecture, large, medium and small. The regularisation term
is set larger to make the LASSO-LSTM architecture smaller. This approach will
contribute in assessing how to balance underfitting and overfitting, in the context
of macro-economic forecasting.

When dealing with medium sized sample datasets and high dimensional data, the
LSTM model, while known to handle dimensionality well, can run into problems
of overfitting. Work done on LSTM for macroeconomic forecasting has shown
that larger architectures do not necessarily outperform smaller ones [11]. Feature
selection performed by LASSO detects the features that can contribute to the
forecasting performance of the LSTM.

The features considered most important after regularisation, proceed to the LSTM
input layer. Different sizes of architectures then have different amounts of layers.
Larger architectures, more prone to overfitting, receive fewer layers of full con-
nected nodes, and receive drop out layers. Smaller architectures, less prone to
overfitting, can have more layers and/or fewer dropout layers. The LSTM layer
structures can then be trained on forecasting inflation based on the number of
predictors deemed most important by LASSO. The LASSO-LSTM model, as an
augmented version of the LSTM model integrating feature selection, contributes
to model regularization.

An alternative approach commonly used for feature selection, is principal com-
ponent analysis (PCA) [13]. The two approaches deviate in their goals. PCA
deems variables important based on variance. LASSO, by shrinking coefficients,
retains the variables considered important. Thus LASSO-LSTM retains some in-
terpretability, as forecasts are based on important factors, which is of interest to
central banks in their decision making.

4.4 ARIMA and SARIMA

SARIMA, Seasonal Autoregressive Integrated Moving Average, is an extension to
ARIMA that supports the direct modeling of the seasonal component of a time
series. ARIMA does not support a time series with a repeating cycle, and it expects
that data is either not seasonal or that the seasonal component is removed, for
example via seasonal differencing [33].

ARIMA was introduces by Box and Jenkins in 1976, and uses the series past
values to produce forecasts. It uses lagged and forecast error lags to predict future
values. It is derived by general modification of an autoregressive moving average
(ARMA) model [33].
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An ARIMA(p, d, q) model can be represented by equation (1) below [33]:

∆dYt = β0 +

p∑
i=1

ϕiYt−i +

q∑
j=1

θjet−j + et (1)

Here β0 is a constant, ϕi are the coefficients of the autoregressive part with p lags,
and θj are the coefficients of the moving average part with q lags. et is the error
term at time t.

We have a linear combination of lags, and the aim is to identify the p, d, and q
values. The minimum difference (d) is selected in the order by which the autocor-
relation reaches zero. The p is determined by the order of the AR, and should be
equal to the lags in the PAC which significantly crosses the limit set. Equation
(2) shows the Partial Autocorrelation (PAC), where y is considered the response
variable and x1, x2, and x3 are the predictor variables. The PAC between y and
x3, (2), is calculated as the correlation between the regression residuals of y on x1

and x2 with the residuals of x3 on x1 and x2.

PAC =
cov(y, x3|x1, x2)√

var(y|x1, x2) · var(x3|x1, x2)
(2)

The hth order partial autocorrelation can be represented as (3):

PACh =
cov(yi, yi−h|yi−h+1, . . . , yi−1)√

var(yi|yi−1, . . . , yi−h+1) · var(yi−h|yi−1, . . . , yi−h+1)
(3)

The q is calculated based on the Autocorrelation (AC) and denotes the error of
the lagged forecast:

AC =

∑N−k
i=1 (yi − ȳ)(yi+k − ȳ)∑N

i=1(yi − ȳ)2
(4)

Here,

• ȳ: The mean of the time series

• k: The lag, where k ≥ 0

• N : The complete series value

If one requires seasonal patterns in the time series, a seasonal term can be added,
which produces a SARIMA model. This model can be written as (5):

ARIMA(p, d, q) ∗ (P,D,Q)s (5)
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Here (p,d,q) represent the non-seasonal part, and (P,D,Q) represents the seasonal
part of the model. S represents the period number in a season. In this study we
employ SARIMA as we assume there exists seasonality in inflation data.

A seasonal ARIMA model uses differencing at a lag equal to the number of seasons
(s) to remove additive seasonal effects. As with lag 1 differencing to remove a
trend, the lag s differencing introduces a moving average term. The seasonal
ARIMA model includes autoregressive and moving average terms at lag s. The
trend elements can be chosen through careful analysis of AFF and PACF plots
looking at the correlations of recent time steps. Similarly, ADC and PACF plots
can be analyzed to specify values for the seasonal model by looking at correlation
at seasonal lag time steps.

In short, SARIMA supports univariate time series data with a seasonal compo-
nent, and adds three new hyper-parameters to specify the autoregression (AR),
differencing (I) and moving average (MA) for the seasonal component of the series,
as well as an additional parameter for the period of the seasonality. The reason
for comparing NNs with SARIMA is that their celebrated performance might be
due to their ability to capture seasonality. Consequently NNs should be compared
to a linear seasonal model. Commonly economic time series variables change in a
cyclical pattern with time, i.e., exhibit seasonality. In relation to inflation; sales,
holidays, and production cycles can cause seasonal price variations that affect The
Consumer Price Index.

According to most of the literature on inflation forecasting, SARIMA is the top
performing classical model and usually outperforms VAR, AR and ARIMA [11].
Also, compared to the newer machine learning methods like Recurrent neural
networks, LSTM and feed forward neural networks, SARIMA performs on par or
better. This makes the SARIMA model a natural choice for our main benchmark,
as we want to compare machine learning methods to classical methods, as well as
look for ways to improve these methods.

4.5 Benchmark

To determine the performance of the LASSO-LSTM model, we employ standard
benchmarks from the literature. These are the autoregressive model (AR(p)),
the seasonal autoregressive integrated moving average (SARIMA), the random
forest (RF) and the least absolute shrinkage and selection operator (LASSO). To
evaluate out of sample performance, the models has been trained on two sets of
data. Forecasts for the period of 2010 to 2023 has been trained on data from
1960 up to 2010. Forecasts for the period of 1997 to 2009 are produced by models
trained on data for the period from 1960 to 1997.

Once forecasts have been made, we employ standard practice with RMSE tests to
evaluate the performance of the forecast against actual values. We then compare
the LASSO-LSTM model to the benchmark models using Diebol-Mariano test
(DM).
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4.6 Network training

4.6.1 LSTM

We start by splitting the data into training data, two validation sets, and an out-
of-sample set. The training and validation data cover the period from 1960 to
1997, and are used to train the model. The out-of-sample data ranges from 2010
to the end of 2023.

The first step is the tuning of the model, and starts with a set of hyper-parameters.
The LSTM applies these hyper-parameters and creates thousands of epochs, which
are different versions of LSTM using the parameters. The epochs are tested on the
first validation set, and the best tuned epoch is chosen. The chosen epoch is then
tested on the second validation set. This procedure is repeated several times with
different sets of hyper-parameters. All of the chosen epochs are then compared on
the second validation set, and the best tuned one is selected and applied on the
out-of-sample set. This procedure is the standard approach used in the literature
[11]. Refer to Figure 4.6.1 for the specifications related to the different models.

Feature selection occurs ex-ante of the LSTM tuning, and is done using LASSO
and PCA. The features for both LASSO-LSTM and PCA-LSTM are based on
the training data and the first validation sample. The specification of the LSTM
model can be divided into four distinct parts:

1) Feature selection: Features are selected based on their relevance to the data
and the problem at hand. This is an independent step that occurs before training
and optimization.

2) Model configuration: This involves setting a range of structure and parameters
of the LSTM model, including the incorporation of lagged versions, the number
and order of layers, the number of dropout layers, the dropout rate percentage,
and the learning rate.

3) Training and optimization: This step includes setting the number of epochs,
batch sizes, and validation strategies.

4) Model evaluation: This involves comparing different versions of the LSTM
model and selecting the best one based on performance metrics.
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Figure 4.6.1: The table presents the optimal specifications for the applied LSTM
models, showing the best values for hyper-parameters such as lags, layers, dropout
layers, dropout rate, learning rate, epochs, batch size, and validation sample

4.6.2 Other machine learning models

For the other machine learning models the data is split into three parts; training,
validation and out-of-sample. Data from 1960 to 2010 is used for the training data
and validation data.

The first step is embedded feature selection, where features are selected to be
included in the model using training data and the validation sample. This process
is crucial for the Random Forest algorithm. Various hyper-parameters are tested
to identify the best-performing version of the model. These hyper-parameters
remain constant for all forecasts once selected.

Unlike the other models, Random Forest has been specified to sequentially update.
This means that each forecast utilizes all available data up to a certain point in
time. As new forecasts are made, more data is incorporated into the model. The
process of sequential updating allows the Random Forest to continually fit the
available data, ensuring that the model remains up-to-date with the most recent
information. However, the initial feature selection and hyper-parameters chosen
during training remain constant throughout the forecasting period. This approach
ensures that the Random Forest model is both dynamic and robust, adapting to
new data while maintaining a consistent set of features and hyper-parameters.

LASSO and Ridge regression models are trained and fitted using the training
and validation samples, with the penalty term optimized based on the validation
sample performance. LASSO employs an L1 penalty, while Ridge uses an L2
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penalty. After determining the best model specifications, these models are tested
on out-of-sample data.

Figure 4.6.2: Optimal hyper-parameters and model specifications for Random
Forest, LASSO, and Ridge regression models. Random Forest uses 500 trees and
4 variables per split, with sequential updating and Embedded Feature Selection
(EFS) incorporating 18 features. LASSO applies a lambda range of 0.018-0.35 with
an L1 penalty, using Penalized Regression Method (PRM) with 10-50 features and
no sequential updating. Ridge regression uses a lambda range of 0.219-11.5 with
an L2 penalty, employing PRM with 126 features and no sequential updating.

4.6.3 Univariate time series models

The specification of the AR(p) model was based on results from the ACF, PACF
and BIC. The SARIMA model was decided based on the same tests. Both ap-
proaches use maximum likelihood, and other approaches were not tested. Both
time series models are sequentially updated as forecasts are made, adjusting only
the coefficients of the model, not the hyper-parameters.
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Figure 4.6.3: The table presents the optimal hyper-parameters and model spec-
ifications for SARIMA and AR(p) models. Selection criteria include ACF and
PACF for SARIMA but not for AR(p). Both models use BIC for selection, with
maximum likelihood estimation (MLE) and sequential updating.

4.7 Model evaluation methodology
Once results from out of sample for all forecast horizons are determined, the results
are measured against the actual values out of sample. The RMSE test is applied
giving a measure of how well each model performs at each forecasting horizon.
The models are then compared to the benchmarks, which helps determine the
significance of the results. The lower the RMSE results for a forecast the better.
This approach gives a comprehensive understanding of how each model performs
for each forecasting horizon in comparison to other models. RMSE is a nice
evaluation metric, as it penalizes larger errors more severely than smaller errors.
This is particularly relevant as the larger swings and trends within inflation are
more important than small errors.
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RESULTS

5.1 Our approach

In this paper we conduct forecasts using a broad range of models ranging from
univariate, machine learning and recurrent neural network models. Benchmark
models such as univariate SARIMA, and machine learning LASSO and random
forest apply the FRED-MD data set covering different combinations of the 128
variables available in the dataset. The recurrent neural network models applied in
the form of LSTM models, apply different combinations of datasets. LSTM was
specified with FRED-MD, FRED-MD and EIKON data combined, as well as data
augmentation approaches, increasing the number of observations.

All data was split in the same way, where the out of sample forecasts is for the
time period of 2010 to 2023. The forecast horizon ranges from 1 to 48. LSTM
struggles with initializing problems which makes the 1 month ahead forecast non-
representative, and we will therefore not judge LSTM on this forecast horizon.

29
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Figure 5.1.1: The table displays the out-of-sample forecast performance for
CPI inflation using the different models over the period from 2010 to 2023. The
performance metric used is the Root Mean Squared Error (RMSE), evaluated over
different forecast horizons.

5.2 Benchmark performance

5.2.1 Univariate models

Both the AR(p) model and the SARIMA model perform well for all forecasting
horizons, reaffirming the existing findings in the literature. For very short and
very long forecasting horizons, the SARIMA is superior, while for medium long
forecasting horizons the AR(p) model is the superior performer. The performance
of these naive univariate models is superior to most other models for almost all
forecasting horizons.
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5.2.2 Machine learning models

In our study there are three benchmark machine learning models that are used
for comparison with the LSTM model. LASSO is superior compared to other
machine learning models on a three month forecasting horizon. The 6 month
forecast horizon is also quite good, and LASSO is competitive with other models.
However as the forecasting horizons increases the performance of the LASSO model
worsens, showing signs of high bias.

Ridge, with a lot of similarities to LASSO using the L2 penalty term and not the
L1 penalty term, performed similar to LASSO. Performance starts well for the
short forecast horizons, but as the horizon increases the performance of the model
suffers, showing signs of high bias. This indicates that shrinking coefficients to
zero is a better approach when forecasting, as Ridge will adapt to noise in the
model. LASSO beats the Ridge model for all forecasting horizons except for the
12 month forecast.

The last machine learning benchmark model is random forest. Random forest
performs worse than LASSO for the short forecast horizons, but displays a more
consistent performance all over. While LASSO and Ridge perform poorly for the
24 month forecast horizon, random forest is able to produce competitive results.

Figure 5.2.1: 12-month forecast using the Random Forest model, comparing
actual (blue line) and predicted (red line) values. The model captures general
trends but diverges significantly at certain points, particularly towards the end
of the forecast period. This indicates some limitations in the model’s predictive
accuracy, especially during periods of high volatility.
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5.2.3 PCA-LSTM performance

The LSTM benchmark models are applied with PCA, where feature selection
comes in three forms; LSTM small, LSTM medium, LSTM large. For shorter
forecast horizons the LSTM models performs poorly compared to the machine
learning models and the univariate models. This deviates somewhat from findings
in the literature, but it is not too surprising since there is little work on inflation
forecasting using LSTM models. Our findings of LSTM on shorter forecasting
horizons affirm the need for further studies to determine the ability of neural
networks for forecasting inflation. On longer forecasting horizons the LSTM model
outperforms machine learning models, and is partially on par with univariate
models. Comparing the three architecture sizes of the LSTM model illustrates
that for short to medium forecasting horizons, the differences are minimal. One
should thoroughly evaluate if the effort needed to train larger models is worth
the small gain. For longer forecasting horizons the medium sized architecture
performs best, which is probably a result of the balance between overfitting and
underfitting the model.

5.3 Model performance

5.3.1 LASSO-LSTM - FRED-MD data

The first set of models being evaluated for performance are the LASSO-LSTM
models with three sizes of architecture. The LASSO-LSTM models differ from
LSTM in the process of feature selection. Notably, we are interested in compar-
ing how LASSO-LSTM is doing compared to LSTM applying the standard PCA
feature selection approach. We want to assess if the new approach for feature
selection improves model performance. Results show that for small architectures
the LASSO-LSTM model is able to perform better than the LSTM small archi-
tecture with PCA. This is consistent for all horizons except the 24 months ahead,
where LSTM is marginally better. For medium and large size architecture there
is little difference between the LASSO LSTM and PCA-LSTM. As the number of
predictors become larger, and closer to the total number of available predictors,
the two models will converge in performance. As LSTM with LASSO and PCA
converge in performance for larger architectures, this highlights the difference in
performance when only a few features are allowed in the model.

Between the different LASSO-LSTM models the smallest architecture is the best
performer. On the 3 and 24 month forecasts it beats the other two, but it is beaten,
but still competetive, for 6 and 12 month forecasts. The medium architecture is
quite consistent for all forecasting horizons, but performs worse than the small
architecture. The large architecture has some outstanding results, but also some
quite poor ones. This is probably due to overfitting. Notably, the large LASSO-
LSTM architecture is able to outperform the LSTM model without any feature
selection, meaning any feature selection is better than none. Despite some good
forecasts from larger architectures, fewer predictors ensuring no overfitting seem
better when forecasting inflation.
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Figure 5.3.1: The figure illustrates a 6-month forecast using the LASSO-LSTM
model, showing actual (blue line) and predicted (red line) CPIAUSCL values. The
model closely follows the actual values in periods of low volatility but struggles to
capture sharp increases, particularly towards the end of the forecast period. This
indicates the model’s limitations in predicting sudden changes in the data.

Figure 5.3.2: The observed under-performance during these volatile periods
suggests that while the LASSO-LSTM model is robust in stable conditions, it
may need further tuning or additional features to improve its predictive accuracy
when the regime in the data changes. This highlights a common challenge in time
series forecasting, where models often need to be continuously adapted to handle
the complexities of real-world data.

5.3.2 FRED-MD and EIKON data with feature engineering

The next model is the LSTM model with financial data from the EIKON database
and FRED-MD. This model consists mostly of prices, and the results are most
impressive at the short forecasting horizon. As the forecasting horizon becomes
longer the performance gets poorer. This model utilizes prices and not economic
activity. As economic activity is important for longer forecasting horizons, it
makes sense that this model performs best for shorter forecasting horizons. Out
of all the LSTM models the financial data LSTM is the best performing model
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on the short forecasting horizons, reflecting the importance of prices at shorter
forecasting horizons.

5.3.3 FRED-MD - MBB data

The final set of models has undergone a similar feature selection approach as the
first set of LASSO-LSTM and consist of the same dataset. They only differ because
of the moving block bootstrapping. The most important model for comparison in
this case is the LASSO-LSTM with FRED-MD data. The results related to the
data augmented LASSO-LSTM model is quite uninspiring, and the model is not
able to deliver superior results at any forecasting horizon for any size of archi-
tecture. Data augmentation as an attempt to increase training data was for this
reason unsuccessful. The training time of the model also increases considerably,
and it is a lot more time consuming than all other LSTM models. Presumably,
the augmented data does not retain the sequence well enough, and is ineffective in
capturing different regimes and other patterns in macroeconomic data. As LSTM
is sensitive to the structure of the data, better approaches to data augmentation
is needed.

5.4 Benchmarks versus models of interest

While seeing an improvement in performance when switching from PCA to LASSO
feature selection, LSTM is still not able to deliver competitive forecasts compared
to the univariate time series models. For shorter forecasting horizons there are
other machine learning models able to provide better forecasts than LSTM. Specif-
ically, LASSO is able to deliver good forecasts for short term forecast horizons,
beating all others. Random forest is also better at shorter forecast horizons. As
forecast horizons increase the performance of LSTM becomes more competitive.
The LSTM model is better than all of the machine learning models for the 24
month forecast, and competitive for 12 month forecasts. While LSTM produces
good results for 24 month forecasts, all other machine learning models show signs
of high bias. However, during the specification in the validation sample this issue
was not possible to solve, as LASSO and random forest did not improve when
features were removed or added. This indicates that the LSTM model could be
a good option compared to other machine learning models, when dealing with
longer forecast horizons.

5.5 Discussion of findings

5.5.1 Feature selection

We find that the LSTM model does improve in performance when paired with
the LASSO feature selection approach. The model performance is best when few
predictors are included. Performance is converging with PCA-LSTM when the
number of features increases. This suggests the difference in performance is a
result of the approach to feature selection. Although we anticipated better results
from the financial data based LSTM model, it performs well for the shorter forecast
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horizon. This finding indicates that the choice of predictors should be dependent
on the forecast horizon, as features that forecast well short-term differ from the
ones performing well long-term.

Specifically, our findings indicate that prices and stock market indices should be
heavily weighted for short forecast horizons, while predictors like industrial pro-
duction or unemployment are more suited for inflation forecasting at longer fore-
cast horizons. These factors should be considered for all models, but particularly
for LSTM, which is highly sensitive to the choice of predictors. A model designed
with only longer term predictors would capture the extent of this effect more
comprehensively. We do however see this effect playing out in the feature selec-
tion process, where LASSO put more weight on prices for the shorter horizons
compared to longer ones.

5.5.2 Data availability and model transparency

The data-augmented LASSO-LSTM approach failed to produce competitive re-
sults. We believe the primary reason being the retention of the sequence. LSTM
is highly sensitive to sequences, as its recurrent neural network updates based on
the previous step. If the bootstrapped data fails to retain the sequential structure,
the LSTM may start fitting to random noise in the data. Proper data augmenta-
tion that preserves this sequential integrity could allow the LSTM to utilize the
additional data more effectively and improve forecasting accuracy. Since the lack
of sufficient data is considered the biggest obstacle for LSTM in delivering highly
competitive inflation forecasts, well-executed data augmentation could be a viable
solution.

While LSTM has proven competitive for the 24 month horizon compared to bench-
mark machine learning models, there is still a gap in performance compared to
other models for most forecast horizons. This is concerning and we cannot rec-
ommend LSTM for the short forecast horizons. As mentioned previously in the
thesis, LSTM is sensitive to initialization issues, and there is still no clear solu-
tion for this problem. The findings indicate that there is quite a lot of work to
be done for LSTM to handle short term forecasts. We contribute this mediocre
performance for shorter forecast horizons to the availability of data.

Another key point from our work is the challenge of determining the optimal
hyper-parameters for the model. There is a wide range of hyper-parameters that
influence the model’s performance. While general guidelines exist for setting these
hyper-parameters, extensive validation testing is required to find models with min-
imal loss. In reviewing similar work on LSTM for inflation forecasting, the trial-
and-error approach often appears arbitrary and lacks a clear pattern explaining
why certain hyper-parameter combinations perform better than others. This lack
of transparency in neural networks is concerning, as it obscures the underlying
reasoning behind the model behaviour. For forecast recipients such as central
bankers, understanding the relationships and reasons behind forecasts is crucial.
A model with obscure hyper-parameter choices is inherently problematic. While
knowing the predictors used in the forecast provides some clarity, it may not be suf-
ficient to overcome the interpretability issues. Therefore, improving transparency
of such models, and understanding the rationale behind hyper-parameter settings
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is essential for enhancing the reliability and acceptance of these models.

Another issue with the LSTM model is the difficulty related to reproducing re-
sults. Due to its complex structure with multiple layers, dropout layers, batches,
and numerous hyper-parameters, replicating the results achieved in other studies
is challenging. Ensuring that the choice of hyper-parameters are from validation
and hyper-parameters are based on in-sample, is difficult. Unfortunately, our re-
quests for code from authors of papers on LSTM for inflation forecasting were
denied. Additionally, the hyper-parameter descriptions in the most comprehen-
sive papers are often incomplete. This lack of transparency is concerning for the
broader adoption of LSTM in the field. Model transparency is nearly as crucial
to forecast recipients as the forecasts themselves. Models like LASSO offer trans-
parency, making it easier to understand the driving forces behind inflation. This
understanding is vital for central bankers when deciding on policy rates. This dis-
crepancy should be considered, especially when the interpretability of the model
is essential for decision-making.

5.5.3 Broader implications

We highlight some major issues through our findings. Non-parametric models
could potentially be confronting a similar crisis as seen in the 80s and post global
financial crisis, when the univariate time series models started to outperform other
models. Other crisis’s, like when the Philips curve models stopped working after
the GFC are also relevant. It is worth mentioning that we should not understate
the importance of our findings to only cover inflation forecasts, as they also are
relevant to more general problems with macroeconomic forecasting when applying
non-parametric models.

While findings in the literature indicate that there is a use case for neural networks
to forecast macroeconomics data, as such models can capture highly complex non-
linearity in macroeconomic data, we point out a range of concerns in regards to
the use of such models. While non-parametric models are capable of capturing
non-linearity in macroeconomic data for certain windows, problems arise when
there are shifts in regimes or states. It seems apparent that while LSTM is able
to capture non-linearity well when confronted with a new regime, it is not able
to handle the changes related to transitioning to a new economic state. If neural
networks are not able to respond well to regime shifts, the use case of such models
are severely compromised.

The use case of highly complex models like LSTM should be applied to reliably
detect the large movements in inflation. In reality however, it is not unusual for
the model to be fitted well to capture small changes, resulting in large misses
during jumps in inflation. In cases where LSTM is fitted to capture the large
changes in inflation, it comes at a large cost to the models ability to capture small
changes in inflation. This is because it can produce seemingly random jumps in
the forecasts of inflation during periods where only small changes to inflation exist.
It is difficult to find a use case for inflation forecasting with LSTM when small
changes are captured more accurately with univariate models, as LSTM cannot
reliably forecast jumps in inflation. This is our main finding, and it is difficult to
argue for the use of LSTM when small changes are consistently forecast better by
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parametric models, and sudden changes cannot be reliably forecast. Based on this
finding we do not recommend the use of neural networks for forecasting within
macroeconomics.

Lastly, it is worth pointing out the performance of univariate time series models.
The performance shown is in a class of their own when compared to benchmarks
and models of interest. As they are naive models they do not inherently tell
anything about a underlying relationship between predictors and inflation. If there
is no interest in cause, these models prove their utility by performing consistently
for all forecasting horizons. When considering the performance of LSTM, and how
it is not possible to understand the underlying relationship between predictors and
inflation, univariate time series models seem more appropriate. As for cases where
causality is of interest, other machine learning models like LASSO or random forest
seem more appropriate than LSTM. As a result of the forecasting performance
and the lack of transparency of LSTM, it is difficult to recommend and support
the application of the model. It is however worth noting that transparency of
neural networks are improving, as well as forecast performance. Yet given their
current state it is difficult to make the case for LSTM applications within inflation
forecasting.

In summary, the poor performance of neural networks during regime shifts makes
them less suitable for macroeconomic forecasting. These models also suffer from a
lack of interpretability, which is crucial in this field. Additionally, the current liter-
ature on LSTM in macroeconomics is difficult to reproduce, indicating a need for
better documentation and transparency. Our work, which focuses on using LSTM
for inflation forecasting, highlights several significant issues in the application of
deep learning to macroeconomics.

5.6 Limitations of our research

5.6.1 Data

The greatest limitation of LSTM for macroeconomic forecasting is the availability
of data. LSTM requires large sets of data to perform. With macroeconomic data
only being reported on a monthly basis, and data quality deterring a lot before
1960, it is difficult for LSTM to capture the patterns within the data. For any
specification of LSTM, or any size of the data available, it is unlikely that LSTM
will be able to outperform other machine learning or univariate time series models
on a consistent basis.

Further data limitations exist in the patterns within the data. The relationship
between inflation and predictors are highly complex and non-linear. While LSTM
can capture these non-linearities, there is the problem of the non-linearity be-
ing non-stationarity. Having non-stationary non-linearity makes the complexity
within the data that much greater for the model to understand. LSTM is good at
capturing non-linearity, but when these non-linearities change over time it becomes
increasingly difficult..
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5.6.2 Forecast horizon

As shown in the results, LSTM tends to perform better long-term compared to
short-term. In comparison to models like LASSO or SARIMA, which perform
well at shorter forecast horizons, this inconsistency makes LSTM difficult to rec-
ommend. LSTM also has a complex architecture consisting of many layers and a
vast number of hyper-parameters, making it difficult to find a structure right for
forecasting. This also makes it hard to reproduce results. This complexity also
needs to be justified when comparing with other models with fewer layers and
hyper-parameters, where implementation is easier and more accessible.

5.7 Future research
There is a vast range of possibilities to expand on the current work on LSTM.
While LSTM currently does not perform on par with the univariate time series
models, there are still possibilities to improve model performance. As shown pre-
viously, the LSTM model is sensitive to choice of hyper-parameters as well as
feature selection, but just as importantly the number of observations the model
is trained on. While the application of moving block bootstrapping to augment
training data did not improve model performance, data augmentation has shown
promising results in other research. Future work should focus on better imple-
menting data augmentation, retaining regimes in the data as well as the random
walk characteristics within the data. Other approaches of data augmentation as
well as better MBB implementation could potentially yield significant results.

To enhance the performance of LSTM models, integrating LASSO is a promis-
ing approach among several potential improvements. Future research could ex-
plore ensemble models utilizing the strengths of LASSO or random forest, which
already demonstrate strong results. Such ensemble models applied to compete
with traditional time series models is the best direction for future work. En-
semble models may provide significant performance improvements. We generally
believe that future work should focus on tree based models and penalty regression,
rather than recurrent neural networks. Although current LSTM results are not
highly competitive, advancements in RNN models could make them more viable
for macroeconomic forecasting. Additionally, exploring other neural networks,
such as convolutional neural networks and transformers, which show considerable
promise, could yield valuable insights.
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SUMMARY AND CONCLUSION

We have evaluated a range of models forecasting inflation in the US, focusing
particularly on LSTM models. Employing machine learning methods like LASSO
for feature selection improves LSTM performance, but the LSTM model still falls
short compared to other machine learning and time series models for most forecast
horizons. While LSTM performs well for longer horizons, its performance is only
competetive, and not superior, to other methods. Notably, univariate models
such as SARIMA and AR(p) often match or outperform LSTM for most forecast
horizons. This implies that simpler "backward-looking" models can be as effective
as more complex approaches.

From the results arise the question as to why the performance of LSTM is so
lackluster, when LSTM has the ability to deliver good results for other purposes.
Data limitations might be a contributing factor as to why LSTM performed poorly.
There are potentially too few inflationary events to capture any deep learning
within the model. As neural networks require large datasets to be able to capture
deep learning, the real world limitations, with only monthly reporting on inflation,
makes it difficult to capture complex relationship in the model.

With 750 observations spanning significant events like changes in central bank pri-
orities, the GFC, and the COVID-19 pandemic, the relationships within the data
are complex and unique. This combination of unique events and limited observa-
tions may explain the mediocre performance of LSTM and other machine learning
methods. Although LSTM can understand non-linear events, the non-constant
nonlinearities in macroeconomics pose problems. Future work should explore data
augmentation to enhance LSTM performance and mitigate overfitting.

In terms of interpretability, the LASSO-LSTM model shows clear advantages com-
pared to LSTM with different approaches to feature selection. LASSO inherently
provides a certain understanding of the importance of certain variables, as it de-
livers some coefficients and sets others to zero. The fact that including LASSO-
LSTM resulted in better RMSE values, indicates that for macroeconomics LASSO
is a good approach for feature selection. Understanding the underlying dynamics
within the neural network is still complex and difficult to comprehend. However,
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smaller architectures with few features illustrates the importance of the factors in
a regression, removing some fear of fitting to random noise.

While findings in the inflation forecasting literature indicate that LSTM and ran-
dom forest are the most competitive compared to time series models, we are not
able to replicate this performance. LASSO-LSTM is also not capable of signif-
icantly outperforming other machine learning models or univariate time series
models. Reasons for this can be the time horizons used in previous studies. Our
out of sample are based on the period going from post-GFC and after the spike
in inflation post-covid. This period could potentially be subject to more volatility
and nonlinear relationships than LASSO-LSTM is capable of capturing.

Other possible reasons as to why our findings deviate from other studies on LSTM,
is how frequently we performed re-training of the network. Re-training the LSTM
model can yield better performance, resetting the weights in the model. Such
an approach should be used with caution, considering the importance of keeping
out of sample data unseen and the computational intensity involved in retraining
the network. The findings in this thesis should be a warning for policy makers
and business owners in application of machine learning models for macroeconomic
data. While neural networks and machine learning models have proven useful in
a range of areas, they are no silver bullet, and should be used with caution. We
recommend for this reason that any future use of machine learning and neural nets
should be done in addition to univariate time series models like SARIMA.
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CHAPTER

SEVEN

APPENDICES

7.1 Benchmark specification

7.1.1 Autoregressive Model AR(p)

The autoregressive model of order p (AR(p)) is defined as:

Yt = c+ ϕ1Yt−1 + ϕ2Yt−2 + ϕ3Yt−3 + ϵt

where:

• Yt: the value of the time series at time t,

• c: a constant term (intercept),

• ϕ1, ϕ2, ϕ3: the parameters of the model which quantify the influence of the
first, second, and third lag of the series on the current value, respectively,

• ϵt: the error term at time t, which is assumed to be white noise with a mean
of zero and a constant variance.

7.1.2 Seasonal Autoregressive Integrated Moving Average
SARIMA

The Seasonal Autoregressive Integrated Moving Average (SARIMA) model is de-
fined as:

(1−B)1Yt = c+ (1 + θ1B)ϵt + (1 + Θ1B
12)ϵt

where:

• Yt: the time series data,

• B: the backshift operator, where BkYt = Yt−k,
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• ϵt: the error terms, which are assumed to be white noise,

• c: constant term (if included in the model),

• θ1: parameter of the non-seasonal MA component,

• Θ1: parameter of the seasonal MA component at lag 12.

There are a six steps to consider using SARIMA:

Step 1: Check if the series are stationary or not. If a time series has seasonality
or varying trend mean over time, it varies at specific time frames, and must be
transformed into a stationary time series.

Step 2: Applying differencing mechanisms . This is to make the time series station-
ary, if that´s not the case originally, as well as to check for seasonal differencing.
It is done by taking the first difference and checking for stationarity until its
stationarized.

Step 3: Create validation samples.

Step 4: Include AR and MA terms based on AC and PAC.

Step 5: Now the model is ready for prediction

Step 6: Validate the model by comparing the predicted values.

7.1.3 Least Absolute Shrinkage and Selection Operator LASSO

The data was split into training, validation, and test sets. Lambda (λ) was deter-
mined based on results within the validation sample. Introducing some noise to
the Mean Squared Error (MSE) when setting λ yielded the best results. By intro-
ducing some noise to the specified LASSO model, forecasts improved. The model
was trained only on the training and validation sets, without using a Bayesian
approach. Lambda varies between 0.018 and 0.35 for different forecast horizons.
Not sequentially updating, using PRM feature selection with L1 regularization.

7.1.3.1 LASSO Functions

The LASSO (Least Absolute Shrinkage and Selection Operator) method is a re-
gression analysis technique that performs both variable selection and regulariza-
tion in order to enhance the prediction accuracy and interpretability of the statis-
tical model it produces. The mathematical representation of LASSO is as follows:

Objective Function:

β̂ = argmin
β

{
1

2n

n∑
i=1

(yi − xT
i β)

2 + λ

p∑
j=1

|βj|
}

where:yi is the response variable. xi is the vector of predictor variables.
β is the vector of coefficients. λ is the regularization parameter.

Regularization Term:

λ

p∑
j=1

|βj|
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This term adds a penalty equal to the absolute value of the magnitude
of the coefficients, promoting sparsity in the model coefficients (i.e., some
coefficients may become zero).

Feature Selection with L1 Regularization: The L1 regularization used
in LASSO performs feature selection by shrinking some coefficients to zero,
effectively excluding them from the model.

7.1.3.2 Training and Validation

––––1. Data Splitting: The dataset is divided into training, validation, and test
sets.

2. Hyperparameter Tuning: Lambda (λ) is chosen based on the perfor-
mance within the validation set. A range of λ values (0.018 to 0.35) is tested
to determine the optimal value for different forecast horizons.

3. Model Training: The LASSO model is trained on the training and valida-
tion sets using the selected λ.

4. Noise Introduction: Introducing some noise to the Mean Squared Error
(MSE) during λ selection helps to improve forecasts.

The LASSO model described here uses Predictive Recursive Modeling (PRM) for
feature selection and does not update sequentially.

7.1.4 Ridge Regression

Ridge regression is a technique used to analyze multiple regression data that suffer
from multicollinearity. By adding a degree of bias to the regression estimates, ridge
regression reduces the standard errors. The specification for the Ridge model is
as follows: Lambda (λ) varies between 0.219 and 11.5, uses L2 regularization, and
does not update sequentially. Predictive Recursive Modeling (PRM) is used for
feature selection with a total of 126 features.

7.1.4.1 Ridge Regression Functions

Ridge regression (also known as Tikhonov regularization) is a method of estimat-
ing the coefficients of multiple-regression models in scenarios where independent
variables are highly correlated. The mathematical representation of Ridge regres-
sion is as follows:

Objective Function:

β̂ = argmin
β

{
1

2n

n∑
i=1

(yi − xT
i β)

2 + λ

p∑
j=1

β2
j

}
where:yi is the response variable. xi is the vector of predictor variables.
β is the vector of coefficients. λ is the regularization parameter.

Regularization Term:

λ

p∑
j=1

β2
j
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This term adds a penalty equal to the square of the magnitude of the coef-
ficients, which helps to shrink the coefficients and reduce their variance.

Feature Selection with L2 Regularization: The L2 regularization used
in Ridge regression does not perform feature selection by shrinking coeffi-
cients to zero. Instead, it reduces the impact of less important features by
shrinking their coefficients towards zero.

7.1.4.2 Training and Validation

––––1. Data Splitting: The dataset is divided into training, validation, and test
sets.

2. Hyperparameter Tuning: Lambda (λ) is chosen based on the perfor-
mance within the validation set. A range of λ values (0.219 to 11.5) is tested
to determine the optimal value for different forecast horizons.

3. Model Training: The Ridge regression model is trained on the training
and validation sets using the selected λ.

4. Noise Introduction: Introducing some noise to the Mean Squared Error
(MSE) during λ selection helps to improve forecasts.

The Ridge regression model described here uses Predictive Recursive Modeling
(PRM) for feature selection and does not update sequentially.

7.1.5 Random Forest Model

The Random Forest model is an ensemble learning method used for classification
and regression tasks. The model consists of multiple decision trees and outputs the
mode of the classes (classification) or mean prediction (regression) of the individual
trees. Below are the specifics of the random forest model used:

7.1.5.1 Model Specifications

• Number of Trees: 500

• Variables Tried at Each Split: 4

• Feature Selection Method: Exhaustive Feature Selection (EFS)

• Total Number of Features: 18

7.1.5.2 Random Forest Functions

1. Bootstrap Sampling: Randomly sample with replacement from the train-
ing data to create multiple subsets. Let D = {(xi, yi)}ni=1 be the training
dataset with n samples. For each tree t in the forest, generate a bootstrap
sample Dt by sampling n times with replacement from D.

2. Tree Construction: For each tree t in the forest:

(a) Select Features: Randomly select 4 features from the 18 available
features.
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(b) Node Splitting: At each node, split based on the feature that provides
the best split according to a specified criterion. For a node with data
D, evaluate splits using a feature j and threshold θ:

Split Criterion = argmax
j,θ

∆I(D, j, θ)

where ∆I is the improvement in the splitting criterion (e.g., Gini im-
purity for classification or Mean Squared Error for regression).

(c) Recursive Splitting: Recursively repeat the feature selection and
node splitting process until a stopping criterion is met (e.g., maximum
tree depth, minimum number of samples per leaf).

3. Prediction Aggregation: For each observation x to be predicted:

(a) Individual Tree Predictions: Obtain the prediction from each of
the 500 trees ht(x).

(b) Final Prediction: Aggregate the predictions by taking the majority
vote for classification tasks:

ŷ = mode{ht(x)}500t=1

or the average for regression tasks:

ŷ =
1

500

500∑
t=1

ht(x)

4. Feature Importance: Calculate the importance of each feature based on
the improvement in the splitting criterion they bring about, averaged over
all trees.

7.1.5.3 Exhaustive Feature Selection (EFS)

The Exhaustive Feature Selection (EFS) method involves evaluating all possible
combinations of the features to determine the subset that results in the best model
performance. The process is as follows:

1. Initial Feature Set: Begin with the full set of 18 features F = {f1, f2, . . . , f18}.
2. Sequential Update: Sequentially update the model by evaluating all pos-

sible subsets of features.

3. Model Evaluation: For each subset, train the random forest model and
evaluate its performance using a specified metric.

7.1.5.4 Model Retraining and Forecasting

The model is retrained at each point in time, incorporating all available data
up to that point, before making forecasts. The steps are as follows:

(a) Data Accumulation: At time t, use all data Dt = {(xi, yi)}ti=1 avail-
able up to time t to train the model.
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(b) Model Training: Train the random forest model with the specified
hyperparameters (500 trees, 4 variables tried at each split) using the
accumulated data Dt.

(c) Forecasting: Use the trained model to make predictions for the next
time step.

7.1.6 LSTM Cell Functions

The Long Short-Term Memory (LSTM) network is a type of recurrent neural
network (RNN) that avoids the long-term dependency problem of traditional
RNNs. An LSTM cell has three main gates that control the cell state and
the hidden state (memory state):

• Forget Gate: Decides what information to throw away from the cell
state.

• Input Gate: Decides which values from the input will update the cell
state.

• Output Gate: Decides what the next hidden state should be.

7.1.6.1 Notations

xt : Input at time step t

ht−1 : Hidden state at the previous time step t− 1

Ct−1 : Cell state at the previous time step t− 1

ht : Hidden state at the current time step t

Ct : Cell state at the current time step t

Wf ,Wi,Wo,Wc : Weight matrices for forget, input, output gates, and cell state respectively
bf , bi, bo, bc : Biases for forget, input, output gates, and cell state respectively

σ : Sigmoid activation function
tanh : Hyperbolic tangent activation function

⊙ : Element-wise multiplication

7.1.6.2 Forget Gate

The forget gate determines what proportion of the previous cell state to
keep.

ft = σ(Wf · [ht−1, xt] + bf )

7.1.6.3 Input Gate

The input gate determines what proportion of the new information to update
the cell state with.

it = σ(Wi · [ht−1, xt] + bi)
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7.1.6.4 Candidate Cell State

The candidate cell state C̃t is created using a tanh layer.

C̃t = tanh(Wc · [ht−1, xt] + bc)

7.1.6.5 Cell State Update

The new cell state Ct is a combination of the previous cell state and the
candidate cell state, modulated by the forget gate and the input gate.

Ct = ft ⊙ Ct−1 + it ⊙ C̃t

7.1.6.6 Output Gate

The output gate determines the next hidden state, based on the cell state.

ot = σ(Wo · [ht−1, xt] + bo)

7.1.6.7 Hidden State

The hidden state ht is computed by applying the output gate to the tanh of
the cell state.

ht = ot ⊙ tanh(Ct)

7.1.6.8 Summary of LSTM Cell Functions

Forget Gate : ft = σ(Wf · [ht−1, xt] + bf )

Input Gate : it = σ(Wi · [ht−1, xt] + bi)

Candidate Cell State : C̃t = tanh(Wc · [ht−1, xt] + bc)

Cell State Update : Ct = ft ⊙ Ct−1 + it ⊙ C̃t

Output Gate : ot = σ(Wo · [ht−1, xt] + bo)

Hidden State : ht = ot ⊙ tanh(Ct)

7.2 Code Repository
In this thesis a range of models are applied to benchmark and test the
model performance of LSTM. As discussed in the thesis, application of non-
parametric models are problematic as there is a range of hyper-parameters.
In the thesis it is addressed the difficulty of replication. The repositories
below cover models applied. The repositories should be enough such that
replication should be possible. All models run in R, with LSTM running
python in R. Data applied, and handling of data is also presented in the
repositories.

The code developed for this thesis can be accessed at the following GitHub
repository:

[https://github.com/TormodRy/Masters-thesis-models]
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[https://github.com/TormodRy/Masters-thesis-data]

The repositories should contain all scripts, data files, and documentation
required to replicate the results presented in this thesis.

7.3 FRED-MD data
The FRED-MD (Federal Reserve Economic Data - Monthly Database) is a
comprehensive macroeconomic database maintained by the Federal Reserve
Bank of St. Louis. It was developed by Michael W. McCracken and Serena
Ng and provides a wide range of monthly economic and financial data for
the United States.

The dataset includes 128 monthly time series variables, covering aspects
such as output and income, labor market, housing, consumption, orders and
inventories, money and credit, interest rates, prices, and stock markets.

The data spans several decades, with many series starting from the 1950s or
1960s and extending to the present. For more detailed information you will
find a table below or refer to the original paper by McCracken and Ng:

Michael W. McCracken and Serena Ng, "FRED-MD: A Monthly Database
for Macroeconomic Research," Journal of Business and Economic Statistics,
2016.
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The column tcode denotes the following data transformation for a series x: (1) no transformation; (2) ∆xt; (3)
∆2xt; (4) log(xt); (5) ∆ log(xt); (6) ∆2 log(xt); (7) ∆(xt/xt−1 − 1.0). The FRED column gives mnemonics in
FRED followed by a short description. The comparable series in Global Insight is given in the column GSI.

Some series require adjustments to the raw data available in FRED. We tag these variables with an asterisk to
indicate that they been adjusted and thus differ from the series from the source. A summary of the adjustments
is detailed in the paper https://research.stlouisfed.org/wp/2015/2015- 012.pdf

Group 1: Output and income

id tcode fred description gsi gsi:description

1 1 5 RPI Real Personal Income M 14386177 PI
2 2 5 W875RX1 Real personal income ex transfer receipts M 145256755 PI less transfers
3 6 5 INDPRO IP Index M 116460980 IP: total
4 7 5 IPFPNSS IP: Final Products and Nonindustrial Supplies M 116460981 IP: products
5 8 5 IPFINAL IP: Final Products (Market Group) M 116461268 IP: final prod
6 9 5 IPCONGD IP: Consumer Goods M 116460982 IP: cons gds
7 10 5 IPDCONGD IP: Durable Consumer Goods M 116460983 IP: cons dble
8 11 5 IPNCONGD IP: Nondurable Consumer Goods M 116460988 IP: cons nondble
9 12 5 IPBUSEQ IP: Business Equipment M 116460995 IP: bus eqpt

10 13 5 IPMAT IP: Materials M 116461002 IP: matls
11 14 5 IPDMAT IP: Durable Materials M 116461004 IP: dble matls
12 15 5 IPNMAT IP: Nondurable Materials M 116461008 IP: nondble matls
13 16 5 IPMANSICS IP: Manufacturing (SIC) M 116461013 IP: mfg
14 17 5 IPB51222s IP: Residential Utilities M 116461276 IP: res util
15 18 5 IPFUELS IP: Fuels M 116461275 IP: fuels
16 20 2 CUMFNS Capacity Utilization: Manufacturing M 116461602 Cap util

1



Group 2: Labor market
id tcode fred description gsi gsi:description

1 21* 2 HWI Help-Wanted Index for United States Help wanted indx
2 22* 2 HWIURATIO Ratio of Help Wanted/No. Unemployed M 110156531 Help wanted/unemp
3 23 5 CLF16OV Civilian Labor Force M 110156467 Emp CPS total
4 24 5 CE16OV Civilian Employment M 110156498 Emp CPS nonag
5 25 2 UNRATE Civilian Unemployment Rate M 110156541 U: all
6 26 2 UEMPMEAN Average Duration of Unemployment (Weeks) M 110156528 U: mean duration
7 27 5 UEMPLT5 Civilians Unemployed - Less Than 5 Weeks M 110156527 U < 5 wks
8 28 5 UEMP5TO14 Civilians Unemployed for 5-14 Weeks M 110156523 U 5-14 wks
9 29 5 UEMP15OV Civilians Unemployed - 15 Weeks & Over M 110156524 U 15+ wks

10 30 5 UEMP15T26 Civilians Unemployed for 15-26 Weeks M 110156525 U 15-26 wks
11 31 5 UEMP27OV Civilians Unemployed for 27 Weeks and Over M 110156526 U 27+ wks
12 32* 5 CLAIMSx Initial Claims M 15186204 UI claims
13 33 5 PAYEMS All Employees: Total nonfarm M 123109146 Emp: total
14 34 5 USGOOD All Employees: Goods-Producing Industries M 123109172 Emp: gds prod
15 35 5 CES1021000001 All Employees: Mining and Logging: Mining M 123109244 Emp: mining
16 36 5 USCONS All Employees: Construction M 123109331 Emp: const
17 37 5 MANEMP All Employees: Manufacturing M 123109542 Emp: mfg
18 38 5 DMANEMP All Employees: Durable goods M 123109573 Emp: dble gds
19 39 5 NDMANEMP All Employees: Nondurable goods M 123110741 Emp: nondbles
20 40 5 SRVPRD All Employees: Service-Providing Industries M 123109193 Emp: services
21 41 5 USTPU All Employees: Trade, Transportation & Utilities M 123111543 Emp: TTU
22 42 5 USWTRADE All Employees: Wholesale Trade M 123111563 Emp: wholesale
23 43 5 USTRADE All Employees: Retail Trade M 123111867 Emp: retail
24 44 5 USFIRE All Employees: Financial Activities M 123112777 Emp: FIRE
25 45 5 USGOVT All Employees: Government M 123114411 Emp: Govt
26 46 1 CES0600000007 Avg Weekly Hours : Goods-Producing M 140687274 Avg hrs
27 47 2 AWOTMAN Avg Weekly Overtime Hours : Manufacturing M 123109554 Overtime: mfg
28 48 1 AWHMAN Avg Weekly Hours : Manufacturing M 14386098 Avg hrs: mfg
29 127 6 CES0600000008 Avg Hourly Earnings : Goods-Producing M 123109182 AHE: goods
30 128 6 CES2000000008 Avg Hourly Earnings : Construction M 123109341 AHE: const
31 129 6 CES3000000008 Avg Hourly Earnings : Manufacturing M 123109552 AHE: mfg

Group 3: Housing
id tcode fred description gsi gsi:description

1 50 4 HOUST Housing Starts: Total New Privately Owned M 110155536 Starts: nonfarm
2 51 4 HOUSTNE Housing Starts, Northeast M 110155538 Starts: NE
3 52 4 HOUSTMW Housing Starts, Midwest M 110155537 Starts: MW
4 53 4 HOUSTS Housing Starts, South M 110155543 Starts: South
5 54 4 HOUSTW Housing Starts, West M 110155544 Starts: West
6 55 4 PERMIT New Private Housing Permits (SAAR) M 110155532 BP: total
7 56 4 PERMITNE New Private Housing Permits, Northeast (SAAR) M 110155531 BP: NE
8 57 4 PERMITMW New Private Housing Permits, Midwest (SAAR) M 110155530 BP: MW
9 58 4 PERMITS New Private Housing Permits, South (SAAR) M 110155533 BP: South

10 59 4 PERMITW New Private Housing Permits, West (SAAR) M 110155534 BP: West

Group 4: Consumption, orders, and inventories
id tcode fred description gsi gsi:description

1 3 5 DPCERA3M086SBEA Real personal consumption expenditures M 123008274 Real Consumption
2 4* 5 CMRMTSPLx Real Manu. and Trade Industries Sales M 110156998 M&T sales
3 5* 5 RETAILx Retail and Food Services Sales M 130439509 Retail sales
4 64 5 ACOGNO New Orders for Consumer Goods M 14385863 Orders: cons gds
5 65* 5 AMDMNOx New Orders for Durable Goods M 14386110 Orders: dble gds
6 66* 5 ANDENOx New Orders for Nondefense Capital Goods M 178554409 Orders: cap gds
7 67* 5 AMDMUOx Unfilled Orders for Durable Goods M 14385946 Unf orders: dble
8 68* 5 BUSINVx Total Business Inventories M 15192014 M&T invent
9 69* 2 ISRATIOx Total Business: Inventories to Sales Ratio M 15191529 M&T invent/sales

10 130* 2 UMCSENTx Consumer Sentiment Index hhsntn Consumer expect
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Group 5: Money and credit
id tcode fred description gsi gsi:description

1 70 6 M1SL M1 Money Stock M 110154984 M1
2 71 6 M2SL M2 Money Stock M 110154985 M2
3 72 5 M2REAL Real M2 Money Stock M 110154985 M2 (real)
4 73 6 BOGMBASE Monetary Base M 110154995 MB
5 74 6 TOTRESNS Total Reserves of Depository Institutions M 110155011 Reserves tot
6 75 7 NONBORRES Reserves Of Depository Institutions M 110155009 Reserves nonbor
7 76 6 BUSLOANS Commercial and Industrial Loans BUSLOANS C&I loan plus
8 77 6 REALLN Real Estate Loans at All Commercial Banks BUSLOANS DC&I loans
9 78 6 NONREVSL Total Nonrevolving Credit M 110154564 Cons credit

10 79* 2 CONSPI Nonrevolving consumer credit to Personal Income M 110154569 Inst cred/PI
11 132 6 DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding N.A. N.A.
12 133 6 DTCTHFNM Total Consumer Loans and Leases Outstanding N.A. N.A.
13 134 6 INVEST Securities in Bank Credit at All Commercial Banks N.A. N.A.

Group 6: Interest and exchange rates
id tcode fred description gsi gsi:description

1 84 2 FEDFUNDS Effective Federal Funds Rate M 110155157 Fed Funds
2 85* 2 CP3Mx 3-Month AA Financial Commercial Paper Rate CPF3M Comm paper
3 86 2 TB3MS 3-Month Treasury Bill: M 110155165 3 mo T-bill
4 87 2 TB6MS 6-Month Treasury Bill: M 110155166 6 mo T-bill
5 88 2 GS1 1-Year Treasury Rate M 110155168 1 yr T-bond
6 89 2 GS5 5-Year Treasury Rate M 110155174 5 yr T-bond
7 90 2 GS10 10-Year Treasury Rate M 110155169 10 yr T-bond
8 91 2 AAA Moody’s Seasoned Aaa Corporate Bond Yield Aaa bond
9 92 2 BAA Moody’s Seasoned Baa Corporate Bond Yield Baa bond

10 93* 1 COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS CP-FF spread
11 94 1 TB3SMFFM 3-Month Treasury C Minus FEDFUNDS 3 mo-FF spread
12 95 1 TB6SMFFM 6-Month Treasury C Minus FEDFUNDS 6 mo-FF spread
13 96 1 T1YFFM 1-Year Treasury C Minus FEDFUNDS 1 yr-FF spread
14 97 1 T5YFFM 5-Year Treasury C Minus FEDFUNDS 5 yr-FF spread
15 98 1 T10YFFM 10-Year Treasury C Minus FEDFUNDS 10 yr-FF spread
16 99 1 AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS Aaa-FF spread
17 100 1 BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS Baa-FF spread
18 101 5 TWEXAFEGSMTHx Trade Weighted U.S. Dollar Index Ex rate: avg
19 102* 5 EXSZUSx Switzerland / U.S. Foreign Exchange Rate M 110154768 Ex rate: Switz
20 103* 5 EXJPUSx Japan / U.S. Foreign Exchange Rate M 110154755 Ex rate: Japan
21 104* 5 EXUSUKx U.S. / U.K. Foreign Exchange Rate M 110154772 Ex rate: UK
22 105* 5 EXCAUSx Canada / U.S. Foreign Exchange Rate M 110154744 EX rate: Canada
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Group 7: Prices
id tcode fred description gsi gsi:description

1 106 6 WPSFD49207 PPI: Finished Goods M110157517 PPI: fin gds
2 107 6 WPSFD49502 PPI: Finished Consumer Goods M110157508 PPI: cons gds
3 108 6 WPSID61 PPI: Intermediate Materials M 110157527 PPI: int matls
4 109 6 WPSID62 PPI: Crude Materials M 110157500 PPI: crude matls
5 110* 6 OILPRICEx Crude Oil, spliced WTI and Cushing M 110157273 Spot market price
6 111 6 PPICMM PPI: Metals and metal products: M 110157335 PPI: nonferrous
7 113 6 CPIAUCSL CPI : All Items M 110157323 CPI-U: all
8 114 6 CPIAPPSL CPI : Apparel M 110157299 CPI-U: apparel
9 115 6 CPITRNSL CPI : Transportation M 110157302 CPI-U: transp

10 116 6 CPIMEDSL CPI : Medical Care M 110157304 CPI-U: medical
11 117 6 CUSR0000SAC CPI : Commodities M 110157314 CPI-U: comm.
12 118 6 CUSR0000SAD CPI : Durables M 110157315 CPI-U: dbles
13 119 6 CUSR0000SAS CPI : Services M 110157325 CPI-U: services
14 120 6 CPIULFSL CPI : All Items Less Food M 110157328 CPI-U: ex food
15 121 6 CUSR0000SA0L2 CPI : All items less shelter M 110157329 CPI-U: ex shelter
16 122 6 CUSR0000SA0L5 CPI : All items less medical care M 110157330 CPI-U: ex med
17 123 6 PCEPI Personal Cons. Expend.: Chain Index gmdc PCE defl
18 124 6 DDURRG3M086SBEA Personal Cons. Exp: Durable goods gmdcd PCE defl: dlbes
19 125 6 DNDGRG3M086SBEA Personal Cons. Exp: Nondurable goods gmdcn PCE defl: nondble
20 126 6 DSERRG3M086SBEA Personal Cons. Exp: Services gmdcs PCE defl: service

Group 8: Stock market
id tcode fred description gsi gsi:description

1 80* 5 S&P 500 S&P’s Common Stock Price Index: Composite M 110155044 S&P 500
2 82* 2 S&P div yield S&P’s Composite Common Stock: Dividend Yield S&P div yield
3 83* 5 S&P PE ratio S&P’s Composite Common Stock: Price-Earnings Ratio S&P PE ratio
4 135* 1 VIXCLSx VIX

4
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7.4 Financial data

The following table provides a comprehensive overview of various economic and
financial datasets, capturing a wide range of financial activities through various
indexes of commodities and freight rates. Each entry details the dataset’s name,
frequency of data collection, the time period covered, and a brief description of
the variables included. Additionally, the data has been differenced to make it
stationary, often using a year-over-year (YoY) differencing method, such as xt −
xt−12. This transformation helps to remove trends and seasonality, making the
data more suitable for time series analysis. The datasets span from January 1960
to December 2023, offering a broad historical perspective on these key economic
measures.

Figure 7.4.1: Financial dataset

7.5 Moving Block Bootstrap

The Moving Block Bootstrap (MBB) is a resampling technique used to create
bootstrap samples for time series data while preserving the dependence structure
within the data. Unlike traditional bootstrap methods, which resample individual
observations, MBB resamples blocks of consecutive observations. This method is
particularly useful for time series data where the observations are not independent.

7.5.1 Procedure for Moving Block Bootstrap

The MBB procedure involves the following steps:
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1. Choose Block Length: Select an appropriate block length l. The choice
of l is crucial as it affects the balance between bias and variance in the
bootstrap samples.

2. Create Blocks: Divide the original time series {Xt}nt=1 into overlapping
blocks of length l. Specifically, create n− l + 1 blocks:

Bi = {Xi, Xi+1, . . . , Xi+l−1} for i = 1, 2, . . . , n− l + 1

3. Resample Blocks: Randomly sample k = ⌈n/l⌉ blocks with replacement
from the set of overlapping blocks {Bi}. Denote the selected blocks as
{Bi1 , Bi2 , . . . , Bik}.

4. Construct Bootstrap Samples: Repeat the above steps to generate mul-
tiple bootstrap samples. Each bootstrap sample preserves the time series
dependence structure within each block.

5. Original data as the end of the time series: The last part of the
training data should be the original dataset. This is to retain a sequence
when moving from training data to out of sample.




