
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Ba
ch

el
or

’s
th

es
is

Joakim Aleksandersen, Sara Savanovic Djordjevic,
Hoa Ben The Nguyen

IceMap

An ice safety mapping system

Bachelor’s thesis in Programming
Supervisor: Pål Anders Floor
Co-supervisor: Marius Pedersen
May 2024

Joakim Aleksandersen, Sara Savanovic Djordjevic,
Hoa Ben The Nguyen

IceMap

An ice safety mapping system

Bachelor’s thesis in Programming
Supervisor: Pål Anders Floor
Co-supervisor: Marius Pedersen
May 2024

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Foreword

The contents of this Bachelor thesis were produced by Joakim Aleksandersen, Sara
Savanovic Djordjevic, and Hoa Ben The Nguyen at the Institute of Computer Sci-
ence, NTNU, Gjøvik. We thank the municipality for providing us with an engaging
and meaningful task. To contribute to a service designed for the benefit of the pub-
lic has been a great experience, and we anticipate further development, deploy-
ment, and use of the IceMap system. We especially want to thank our academic
advisors, Pål Anders Floor and Marius Petersen, for their enthusiasm, support, and
invaluable advice.

iii

Abstract

In Norway, a country known for its appreciation of nature, people refuse to let
cold weather stop them from enjoying outdoor activities. Some winter activities
are riskier than others, such as those that involve traversal of frozen lakes. The
IceMap system was developed to provide an additional safety tool for exactly those
activities as part of a Bachelor thesis in programming. IceMap, which was com-
missioned by Gjøvik municipality, consists of a Python server and a Dart/Flutter-
based mobile application. The server processes weather, satellite and sensor data
to assess the condition of the lake ice. The assessments are displayed in the mo-
bile application as a color coded map. A few similar products are already avail-
able on the market, but these depend on user input from ordinary people who
may have limited knowledge of ice safety. Otherwise, current methods include
manual measurements which are reliable, but unsafe for the pepole conducting
them. To remove the necessity for user input and manual measurements, IceMap
introduces an automated measurement system with a LIDAR-mounted drone and
satellite imagery. Since the necessary sensors could not be acquired during the
project period, the physical components have been replaced with theoretical solu-
tions. Instead of using data from an actual sensor, test data from various online
sources was used and manipulated to fit the projects requirements. Research was
carried out to identify the most suitable sensor types, and all necessary setup to
implement actual sensors is included in the result. What remains is to acquire and
test the system with physical sensors.

v

Sammendrag

I Norge, et land kjent for sin verdsettelse av naturen nekter folk å la kaldt vin-
tervær hindre dem fra å nyte utendørsaktiviteter. Noen vinteraktiviteter er mer
risikable enn andre, for eksempel de som involverer å gå ut på frosne innsjøer.
IceMap systemet ble utviklet fir å tilby et ekstra sikkerhetsverktøy til de som
krysser frossne innjsøer. Systemet ble utviklet som en del av en bacheloroppgave
i programmering. IceMap systemet ble bestilt av Gjøvik kommune, og består av
en Python-server og en Dart/Flutter-basert mobilapplikasjon. Serveren behandler
vær-, satellitt- og sensordata for å vurdere tilstanden til isen på innsjøer. Vurderin-
gene vises i mobilapplikasjonen i form av et fargekodet kart. Noen få lignende
produkter finnes fra før av, men disse avhenger av brukerinspill fra vanlige folk
som kan ha begrenset med kunnskap om istrygghet. Ellers er det i dag vanlig å
gjøre målinger manuelt. Selv om manuelle målinger er pålitelige, er de utrygge
for de som må utføre dem. For å fjerne behovet for brukerinspill og manuelle
målinger introduserer IceMap et autmatisert målesystem med en LIDAR-montert
drone og satellittbilder. Siden de nødvendige sensorene ikke kunne anskaffes i
løpet av prosjektperioden er de fysiske komponentene erstattet med teoretiske
løsninger. I stedet for å bruke data fra en faktisk sensor ble testdata fra ulike
nettkilder manipulert for møte prosjektets formål. Det ble utført forskning for å
identifisere de best egnede sensortypene, og alt nødvendig oppsett for å imple-
mentere faktiske sensorer er inkludert i resultatet. Det eneste som gjenstår er å
anskaffe fysiske sensorer og teste sytemet med sensorene.

vii

Contents

Foreword . iii
Abstract . v
Sammendrag . vii
Contents . ix
Figures . xiii
Tables . xv
Code Listings . xvii
Acronyms . xix
1 Introduction . 1

1.1 Background . 1
1.2 Goals . 2
1.3 Prior knowledge and skills . 3
1.4 Existing software and technologies . 3
1.5 Limitations . 4
1.6 Contributors . 4
1.7 Report organization . 4

2 System requirements and design . 7
2.1 Task division . 7
2.2 System requirements . 7
2.3 Use-case diagram . 8
2.4 Wireframes . 9
2.5 Design reference . 9
2.6 Database design . 10
2.7 Domain model . 11
2.8 System architecture . 11
2.9 Selected programming tools . 13

3 Ice theory and selected APIs . 15
3.1 Ice formation theory . 15
3.2 Icetypes . 16
3.3 DOT guidelines for ice safety . 17
3.4 NVE calculation model . 18
3.5 SENTINEL-2 satellites . 20

4 Selected sensors and background theory 27
4.1 Laser altimeter theory . 27

ix

x IceMap: Bachelor thesis report

4.2 Selected laser altimeter . 30
4.3 Selected drone . 30
4.4 Integration challenges . 31
4.5 Alternative approaches . 31
4.6 Magnetic strip sensor . 32
4.7 Stationary sensors . 32

5 Mobile application . 35
5.1 Server communication . 35
5.2 Main components . 35
5.3 Map widget . 36
5.4 Statistics widget . 39
5.5 Lake search . 40
5.6 Initialization and persistence . 41
5.7 Remaining work . 42

6 Custom map creation . 43
6.1 Adding a lake relation to the system 43
6.2 Dividing the map polygon . 45
6.3 Verifying the output . 47
6.4 Determining subdivision colors . 47
6.5 Exposing the processed data . 49
6.6 Alternative map creation methods . 50
6.7 Areas of improvement . 50

7 Sensor and API implementations . 53
7.1 Drone . 53
7.2 LIDAR files . 53
7.3 LIDAR data processing . 54
7.4 Implementing model given by NVE . 60
7.5 Using Sentinelhub to get icerun dates 62
7.6 Sentinel-hub eval script . 66

8 Result and discussion . 69
8.1 Result goals . 69
8.2 Effect goals . 72
8.3 Learning goals . 72
8.4 Testing and quality assurance . 73
8.5 Documentation and organization . 73
8.6 Sustainability . 74
8.7 Method and process . 74
8.8 AI usage . 75
8.9 Future work . 76
8.10 Alternative use cases . 78

9 Conclusion . 79
Bibliography . 81
A Original task description . 85
B Pre-project plan . 87

Contents xi

C Gantt Chart . 111
D SENTINEL hub, Mjøsa over time . 115
E Depth map, Mjøsa . 117
F Evalscript using 30 days NDMI, NDWI and NDVI 119
G Evalscript using 30 days NDMI . 123
H CSV with Labeled Data . 127
I AI declaration . 129
J SWOT analyses tables . 133

Figures

2.1 Use-case diagram . 9
2.2 Wireframes . 10
2.3 ER diagram . 11
2.4 Domain model . 12
2.5 System architecture diagram . 13

3.1 Examples of NVE model outputs . 21
3.2 SENTINEL-2 pictures . 23
3.3 SENTINEL-2 L2A with ILI and contrast factor 24
3.4 Graphs generated with SentinelHub data 25
3.5 SENTINEL-2 L2A picture with ILI and contrast factor 26

4.1 Drone LIDAR setup . 28
4.2 3D plot of LIDAR test data . 29

5.1 Loading page and two main widgets 36
5.2 Map buttons . 37
5.3 Search feature and no internet behavior 40

6.1 Example of a time consuming request 44
6.2 Pyplot graph from add_new_map endpoint 45
6.3 Verification of cell size formulas . 48
6.4 Alternative map creation methods . 51

7.1 LIDAR trial calculation model . 55

8.1 Utilized technologies . 70
8.2 Example of AI generated test data . 76

xiii

Tables

4.1 Example raw point cloud data from LIDAR scan. 29

2 SWOT analysis: DJI Metrice 300 . 133

xv

Code Listings

5.1 Custom choropleth map class . 37
5.2 Map data source and color mapping 38
5.3 Accuracy clasification . 39
5.4 Fuzzy search match . 40
5.5 Persistent variable lastUpdate . 41
5.6 HTTPS client configuration . 42

6.1 Overpass API query . 43
6.2 Cell size calculation . 46
6.3 Generating the grid . 46
6.4 Combining the map polygon with the grid 46
6.5 Subdivisions feature objects . 47
6.6 Determining subdivision coloring . 48
6.7 Class for updating the map data . 49

7.1 Identify world coordinates relative to LIDAR coordinates 55
7.2 Zip grid of map positions and LIDAR data 56
7.3 griding of scanned area . 57
7.4 Identify and calculating ice thickness if identical coordinates 58
7.5 Using the NVE model . 60
7.6 NVE Calculation function . 60
7.7 Handeling sub_div area and time . 61
7.8 Using NVE to get wanted data . 62
7.9 Sending request to Sentinel Hub . 63
7.10 Getting ice runs for an cordinate . 64
7.11 Updating the iceruns . 64
7.12 Getting iceruns based on state of water changeing 65
7.13 Evalscript for statistical request on sentinel hub 66

xvii

Acronyms

ADB - Android Debug Bridge

AI - Artificial Intelligence

API - Application Programming Interface

BBox - Bounding box

CSV - Comma Separated Values

DBMS - Database Management System

DJI - Da-Jiang Innovations

DOT - The Department of Transportation of the Northwest-
ern Territories

EMI - Electromagnetic Induction

ER diagram - Entity Relationship diagram

GPS - Global Positioning System

I - Intensity

IDE - Integrated Development Environment

ID - Identification

ILI - Icy Lake Index

JSON - JavaScript Object Notation

LAS - Log ASCII Standard

LAZ - LASzip

LIDAR - Light Detection And Ranging

MVP - Minimal Viable Product

NDMI - Normalized Difference Moisture Index

xix

xx IceMap: Bachelor thesis report

NDWI - Normalized Difference Water Index

NIR - Near Infra Red

NDVI - Normalized Difference Vegetation Index

NOK - Noregian currency

NVE - Noregs Vassdrags- og Energidirektorat (The Norwe-
gian Energy Regulatory Authority)

OSM - OpenStreetMap

POI - Point Of Interest

QGC - QGroundControl

RTH - Return-To-Home

SAR - Synthetic Aperture Radar

SDK - Software Development Kit

SVM - Support Vector Machine

SWIR - Short Wave Infra Red

SWOT - Strengths, Weaknesses, Opportunities, and Threats
analysis (analysis framework)

UI - User Interface

USB - Universal Serial Bus

UTM - Universal Transverse Mercator coordinate

Chapter 1

Introduction

As home to Norway’s largest lake, Mjøsa, the citizens of the municipality of Gjøvik
are naturally fond of utilizing the lake for recreational purposes. The lake is a
particularly popular spot during summertime, but many continue to visit the lake
throughout winter. For some, the height of winter is the perfect time to pull out ice
skates, skies, and fishing gear. This is especially true on particularly cold winters,
such as the recent winter of 2023/2024. In order to provide the citizens of Gjøvik
with reliable information regarding the safety of the lake ice, the municipality of
Gjøvik has commissioned a system for automatic measurement of the ice, as well
as an application to convey the ice safety to the general population. To fulfill this
task, we developed IceMap: an automated ice thickness measurement system with
its very own mobile application.

1.1 Background

Traversing a frozen lake can be dangerous. Although it is difficult to find con-
crete statistics, people occasionally fall through the ice on Mjøsa. A quick search
on Firefox shows multiple articles from recent years describing incidents where
people have fallen through the ice. Some may think that the natural solution to
this problem is to ban traversal of the ice, but in Norway such an attempt would
likely be unfruitful. In a country that has long winters and a culture that greatly
values nature, it is difficult to deter the general population from such activities,
even if they are dangerous. Instead, local governments and the police tend to en-
courage the population to take precautions and make safety evaluations.

Until 2024, the municipality of Gjøvik has mitigated such risks by manually
measuring the ice thickness. This approach provides reliable measurements, but
also risks the safety of the person conducting the measurements. Not only are
manual measurements risky, but they are also limited by multiple factors. Firstly,
the person conducting the measurement must be experienced, and such individu-
als are few. There are limits to how large areas can be covered by foot or ski,
and only areas that are already assumed to be safe can be measured. To share

1

2 IceMap: Bachelor thesis report

the information gathered by the sensors, the municipality has also requested an
application to notify people of the measurements conducted by the system.

1.1.1 Problem area and scope

The project focused on implementing existing sensor technologies, processing
their data, creating a map solution, and implementing the map in a mobile applic-
ation. The group did not delve into engineering of existing sensor technologies,
or the creation of new ones, even if the existing technologies were not optimal for
their intended purpose. Due to the width of the project scope, usability and user
testing was not prioritized.

1.1.2 Task description

In addition to a short description of the tasks background, the municipality pro-
posed the following approaches to solving the task:

1. What kind of sensor technology is best suited for measuring ice
thickness?
2. Design and create an app for the municipality’s residents for ice
thickness status and notification of changes.
3. Develop a prototype ice measurement service, complete with sensor,
IT solution and citizen app.

A combination of all three approaches was chosen. The request was completely
open beyond these approaches, meaning that the exact design, requirements, and
tools were left for the group to chose. To further define the task, the group added
their own requirements, which will be covered in chapter 2. The entire Norwegian
task description provided by the municipality can be found in appendix A Original
task description.

1.2 Goals

1.2.1 Result goals

This project aimed to develop a system that could both automate the measuring,
and an application that could convey the data. The system would consist of a
server, a mobile application, and sensors. The server would deal with data input
and processing, while the mobile application would deal display the processed in-
formation. To keep the application user friendly, the resulting mobile application
was expected to be relatively simple and only consist of a couple pages.

The server should utilize a couple of different sensor technologies and third
party APIs to determine the ice thickness. Since sensors could not be deployed and
tested within the project time frame, demonstrating the systems functionalities on

Chapter 1: Introduction 3

test data was deemed sufficient. The system must at the very least demonstrate
its functionalities on Mjøsa, although adding more lakes must be possible.

1.2.2 Effect goals and learning goals

The desired effect of this project is to reduce the need for manual measurements
and user input, and inform people of where safe ice is. The primary learning goals
were to learn to code in Python and Dart, improve knowledge of data processing
and sensors, learn concepts unique to mobile programming, and to build and
design more extensive systems.

1.3 Prior knowledge and skills

1.3.1 Programming

All group members had some prior experience developing in Python, but this ex-
perience was very limited. Dart, Flutter, and mobile programming on the other
hand were almost entirely new to the group. The group was also not familiar
with any of the utilized third party APIs and software’s. These had to be learned
completely from scratch.

1.3.2 Ice theory and data interpretation

To effectively select appropriate data sources and understand how to process the
data, the group had to spend a lot of time researching topics related to ice, LIDAR,
and satellites. To utilize satellite imagery, the group had to gain a baseline under-
standing of various satellite lenses and theory related to wavelengths. Understand-
ing how the different lenses work, their purpose, and how to convert the satellite
data required some proficiency in physics.

1.4 Existing software and technologies

The most similar existing product to IceMap is Iskart.no1 published by NVE. IceMap
is similar in its intended usage, but does not rely on user input. In researching Is-
kart.no and other existing products, the group discovered that the website utilizes
an automatic calculation model, which the group came to implement in their sys-
tem as well.

Several existing sensor solutions were considered for IceMap’s specific require-
ments, but only a few were suitable. The most promising sensor technologies were
experimental and not commercially available, while others were impractical for

1https://www.iskart.no/

4 IceMap: Bachelor thesis report

use in water and outdoor environments. In researching additional data sources,
satellite technology appeared as a viable option.

1.5 Limitations

Because the group was unable to acquire the necessary hardware within the pro-
ject timeline, physical testing of sensor implementations was not possible. These
implementations were instead tested on sensor output data from various online
resources. This data was often not ideal for its intended purpose. LiDAR data and
satellite imagery are rarely created specifically for the measuring and mapping ice
thickness. Consequently, the group had to make use of data sources which were
relevant, but not exact matches.

Usage of various APIs and relevant tools was limited by a budget of 0 NOK
and the absence of data for Norway. Consequently, the group sometimes had to
rely on test data from geographic regions with climates similar to that of Nor-
way. Additionally, some sensor types lacked adequate documentation of the data
format which they outputted, which made if difficult to develop data processing
solutions.The difficulty of this task was greatly increased by the many limitations
of the available data and technologies.

1.6 Contributors

In total, 3 parties were involved in this project: the groups three developers, the
municipality of Gjøvik, and two academic advisors. Three meetings were held with
the municipality during the project period. In these three meetings, the group
gained all the necessary information from the municipality. Afterwards, the group
focused on refining the task further and implementing the system as they deemed
most appropriate. Since the municipality specifically expressed that the group
could solve the task which way they pleased, both parties felt that there was little
need in holding more meetings.

The two academic advisors, Pål Anders Floor and Marius Pedersen, were act-
ively involved in the process. They both aided in ensuring a smooth progression
and provided plenty of valuable ideas and feedback. Choices regarding sensors,
application features, UI (User Interface) design, and the report were all made with
the help of their contributions. Their expertise and guidance played a crucial role
in the success of this project.

1.7 Report organization

Chapter 2 describes the self defined system requirements and design. Chapter 4
and Chapter 3 contain background theory. Chapter 5 describes the implementa-

Chapter 1: Introduction 5

tion of the mobile application and the design decisions from Chapter 2. Chapter 5
can be interesting to read even for those lacking understanding of programming
as it delves into usability and design, but does also contain a lot of code and tech-
nical terms.

Chapter 6 is closely tied to Chapter 5 as it describes the process of creating the
maps displayed in the application. Chapter 7 describe the concrete implementa-
tions of the ice and sensor theory described in Chapter 4. Chapter 5 describes the
end use of all the data processing from Chapter 7. All of the code examples can
be found in Chapter 5, Chapter 6, and Chapter 7.

Chapter 2

System requirements and design

This chapter covers decisions regarding UI design, some individual system com-
ponents, and the overarching system design. The majority of these decisions were
finalized during the planning and system modeling phases. For more details about
how the project timeline was structured, refer to chapter 4 of appendix B Pre-
project plan.

2.1 Task division

The task was divided into three main areas, each of which was assigned to a one
group member. The first area was hardware, which was assigned to Hoa Ben The
Nguyen. This included the research, selection, and implementations of appropri-
ate sensors and drones. The second are was third party APIs and software, which
was assigned to Joakim Aleksandersen. This area dealt with implementing third
party APIs and software for non-sensor data sources, as well as research on the
properties of how ice freezes. The third area was mobile development, which was
assigned to Sara Savanovic Djordjevic. This area dealt with designing and develop-
ing the mobile application, and developing a custom solution for the color coded
map. Many of the tasks conducted during the planning and system design phase
were done collectively. Such tasks included developing the system requirements,
domain model, and the database design.

2.2 System requirements

During the planning phase, the group focused on preliminary research and pro-
ject requirements. The requirements where then iterated over as the group gained
more knowledge of mobile programming and background theory. By the end of
the system modeling phase, the requirements were finalized. Given that these re-
quirements were established early in the project, they were designed to be flexible
enough to accommodate new knowledge and ensure their feasibility. The require-
ments served as a framework rather than a rigid specification. Their flexibility was

7

8 IceMap: Bachelor thesis report

necessary to accommodate a "learn as you go" approach, as it would be difficult
to learn all the necessary knowledge and skills before the implementation phase
began. The following list shows the final iteration of the system requirements.

Sensors: At least one type of stationary sensors must be implemented, in addition to
a moving solutions that can cover a larger area. The stationary sensor must
be able to measure ice thickness under snow cover.

Unit tests: The server must include unit tests with a overall test coverage of 60% or
more.

Mobile application: Must utilize some form of color-coded map to visualize ice thickness, as
well as convey the uncertainty of the used data. The color coding must be
based on data gathered by sensors as well as data from third-party APIs
(Application Programming Interfaces). Such data may include temperature,
precipitation, humidity, water depth, etc.

Response time: The map must be fully loaded within 5 seconds of opening the application.
Database: The system must be connected to a database that stores all sensor measure-

ments with the coordinates and time of measurement.
Data exportation: Any user can export the data used in the calculation of the ice thickness. This

includes measurements from sensors, supplementary data such as weather
conditions sourced from third-party APIs, and satellite imagery.

The decision to aim for 60% unit test coverage was a compromise between
achieving a high degree of test coverage and a consideration of the project’s scope
and time constraints. For a longer project period, larger team, or more experienced
team, the required test coverage could be set higher. The mobile application was
specifically requested by the municipality, while the decisions to include a color
coded map and multiple data sources were decided by the group. The selection of
a 5-second response time was somewhat arbitrary, based on the group’s subject-
ive assessment of what constitutes an acceptable loading time. The database was
intended to server mostly as an archive for the collected data, and the data export
functionality was intended to provide transparency for the end user.

2.3 Use-case diagram

The use case diagram on Figure 2.1 includes the central features of the application.
Of these, three were chosen as strict requirements. The strictly required features
included viewing a color coded map, viewing more detailed data in the form of
graphs, and the ability to export the data used in the application. These function-
alities were expected to be part of the MVP, but were not expected to be the only
features. In addition to these, three additional features were added: search for
other lakes, select areas on the map, and view more layers. Theses functionalities
were added on as goals for the prototype, after the MVP was developed. Since
the system does not rely on user input, verification of users was deemed unne-
cessary. Therefore, the use-case diagram does not differentiate between different

Chapter 2: System requirements and design 9

user types.

Figure 2.1: Use-case diagram with the six central features of the mobile applica-
tion

2.4 Wireframes

The wireframes (see Figure 2.2) were made to map out the general layout for
the main application page. The main components of the wireframe included the
color-coded map, a widget containing various graphs and statistics, and a smal-
ler overlay graph/box for quick access to key map data. The graph and statistics
widget aimed to display detailed information about the state of the ice, weather
conditions, measurement timestamps, and measurement methods. The wireframe
served as an active design reference throughout the entire development phase.

2.5 Design reference

To set a goal for the complexity of both the design and the features of the IceMap
application, the group looked at the My Aurora Forecast application by jRus-
tonApps B.V. [1] for inspiration. The design of this application was simple and
neat, and provided a good reference for some features like searching, sharing,
and map views. The design was not intended to be replicated, but rather acted as
an anchor to prevent the group from undertaking implementations that were far
beyond their skill level. This approach aimed to ensure that the application would
have a robust implementation with a simple, but aesthetic design.

10 IceMap: Bachelor thesis report

Figure 2.2: Wireframes

2.6 Database design

A SQLite database was put in place to archive the processed data. The database
consisted of four entities. Each Measurement entity is uniquely identified by an
unique Identification (ID) and a timestamp indicating when it was taken. Sensor
entities are identified by a unique ID number, and are connected to a single body
of water. Each Measurement has an affiliated Sensor, BodyOfWater, as well as
multiple SubDivision entities. While the Measurement entity contains general in-
formation about the entire measurement, SubDivision entities contain data for a
specific point within the affiliated Measurement area. Figure 2.3 shows each entity,
their affiliated attributes, and the relations between all the entities.

Chapter 2: System requirements and design 11

Figure 2.3: Entity relation diagram for archival of processed data

The choice of SQLite for the DBMS was primarily intended for the production
stage, but while the system only includes a few lakes and sensors, SQLite may be
sufficient. If the system were to expand beyond the reach of Gjøvik, it would prob-
ably require a more comprehensive DBMS like MySQL. As the database primarily
served an archival purpose, and the system was intended only for Gjøvik, there
were few performance requirements. Hence, the choice of DBMS was not con-
sidered thoroughly.

2.7 Domain model

The domain model on Figure 2.4 was made during the earlier stages of the system
modeling phase. The model shows how the group initially envisioned the system
to function. Four data source were expected, each providing different types of
data required for the accurate assessment of the ice thickness. The standardiza-
tion model was intended to process all the input data to a standard format. The
standardized data would then be passed to a calculation model, which would out-
put a safety rating calculated based on all the input data from the standardization
model. The inclusion of the standardization model was a bit redundant, as the
standardization of data could be done in each data input point or in the calcula-
tion model. The domain model was purely intended to aid the group in designing
the system prior to implementation, and was not utilized as an active design refer-
ence. Therefore, the implementation does not match the domain model perfectly.

2.8 System architecture

A shown on Figure 2.5, the system was divided into three parts: an app, server
and various data sources. The data sources include all the system sensors and
two third party APIs. Most of the interesting application code is located in the
Lib directory at the root level of the App directory. Lib includes the entry point,

12 IceMap: Bachelor thesis report

Figure 2.4: Domain model

a file containing constants, and a file containing self defined data structures. The
constants file contains paths to folders and assets, as well as variables which are
read (not written to) globally. The pages, widgets, code handling server requests
are separated in dedicated folders. Most of the other code outside of Lib is auto
generated boiler plate code for various operating systems and platforms.

The entry point for the server is at the root level, together with a constants
file. The constants file mostly contains paths to various files which are used across
multiple folders. The database folder contains the SQLite database contents and
schema. The DataProcessing folder contains code for processing LIDAR data. The
MapHanlder contains code for creating lake maps and updating data for the maps.
The NVE model contains a third-party software from NVE for generating ice stat-
istics. This model is described in more detail in section 3.4. The certificates folder
contains SSL certificates and key files for the server-app communication.

Chapter 2: System requirements and design 13

Entry point

Constants

Database

Data processing

Map handler

NVE model

Certificates

Figure 2.5: This system architecture diagram illustrates the general folder struc-
ture of the system.

2.9 Selected programming tools

The following programming languages, frameworks, and development environ-
ments were deemed most fitting for implementing the requirements:

2.9.1 Python and Pycharm

There are several reasons that made Python the ideal choice for the server. The
language has simple syntax, a long list of libraries, is documented extensively,
and has a very active user community. The user community provides a large col-
lection of tutorials and code examples. Python also has many libraries for data
visualization and manipulation of geometrical data, such as Shapely, GeoPandas,
and Matplotlib. Pycharm was selected as the most suitable IDE (Integrated Devel-
opment Environment), mainly due to the groups prior experience with IntelliJ’s
other IDEs.

14 IceMap: Bachelor thesis report

2.9.2 Dart and Flutter

The two main contestants for the mobile application were React and Dart/Flutter.
Eventually, React Native was ruled out due to having a JavaScript framework,
something the group was not particularly fond of. Since the group also had some
introductory experience with Kotlin, Dart seemed easier to learn. Eventually, the
combination of Dart and Flutter was chosen. The advantages and disadvantages
of Dart and React Native were discussed in the appendix B Pre-project plan.

2.9.3 Android Studio

Android Studio was selected as the development platform for the mobile applic-
ation. As with Pycharm, it was chosen mainly due to the groups prior experience
with the IDE. Android Studio comes pre-equipped with multiple free Android emu-
lators, and has a built in interface for ADB (Android Debug Bridge) connection.
This allows physical devices to quickly be connected to a PC and to transfer the
application wirelessly.

Chapter 3

Ice theory and selected APIs

Given the project’s focus on ice safety and measurement technologies, a grasp of
relevant ice-related theory is essential for understanding many of the decisions
made by the group. The following theory will aid in the comprehension of choices
of sensors, other hardware, APIs, and mathematical formulas implemented in the
server.

3.1 Ice formation theory

Knowing when ice initially manages to establish itself on lakes is what is most im-
portant when it comes to estimating ice thickness. This is due to when ice forms
on the surface of a lake, it grows thicker as heat moves from the ice’s bottom to
the air above. The bottom of the ice is always at the freezing point. If no extra
heat comes from the water below from residue heat, all the heat loss helps the
ice to grow thicker, from the bottom and down. The formation itself might not
happen before the average daily temperature falls below the freezing point as the
temperature needs time to cool down the residue heat inside the lake [2].

When ice sheets grows, they grow from the bottom of the sheet and down-
wards. This growth is caused by the air temperature being sufficiently low to re-
duce the water temperature below the freezing point. As ice layers and snow es-
tablish themselves on the water, they effectively act as a thermal insulator between
the air and the water [3]. This insulating effect can prevent the ice from thicken-
ing, even when temperatures are below 0 ◦C. The underlying waters warmth can
also contribute to the ice formation plateauing.

Under normal conditions, water will freeze at 0 ◦C and have maximum density
at 4 ◦C. This causes water at greater depths to converge towards 4 ◦C. This effect
allows water at deeper levels to remain above freezing temperatures, even when
the surface water has frozen.

15

16 IceMap: Bachelor thesis report

The density of water decreases when it cools, causing colder water to rise and
replace warmer surface water. This creates a layer closer to the surface where
the water is colder than 4 ◦C and a layer where the temperature is at 4 ◦C. These
layers will slowly try to balance each others temperature out. Since water has a
maximum density at 4 ◦C, some may believe that the water temperature will stay
at 4 ◦C at specific depths, but this is only true in certain cases [2]. Strong winds
can cause surface water and deeper water to mix, which can prevent the surface
water from reaching the freezing point and blending the heat causing the temper-
ature to be almost equally same throughout. Lake Erie in North America is one
such example. Here, wind effects are so great that stable ice rarely forms over the
entire body, despite the water being nearly 0 ◦C throughout the entirety of winter.

3.2 Icetypes

Ice is mainly categorized into three types: black ice, slush ice and spring ice. The
ice types have different properties and appear at different times.

Black ice

The first ice type that establishes itself on an lake is black ice. Black ice is char-
acteristic for its transparent and seemingly black color. It is the strongest ice type
and can almost carry an average adult at only 5cm thickness [4].

Slush ice

Slush ice is formed when a layer of wet snow freezes. When the snow weighs
down the underlying ice, the ice can crack and let lake water seep through. This
is usually how the snow becomes wet. The layer of slush freezes from top to bot-
tom, which can result in a layer of wet snow sandwiched between a layer of black
ice at the bottom, and a layer of frozen slush ice at the top. The color of the ice is
an indicator of its strength. Slush ice is characteristically white or grayish, which
is caused by its high content of air. The higher the air content, the whiter the slush
ice. A lower air content and a higher water content will causes a darker, grayish
color. Less air and more water usually creates stronger ice, but this is only true if
the slush is already frozen. Wet slush also has a gray color, but does not have any
carrying capability.

If the slush ice has not bonded with the layer below when new snow falls,
new layers of ice can form on top of the existing ones. This can result in a stack
of multiple slush layers which are mostly composed of surface water. Such an ice
formation is not particularly strong despite being thick. In extreme cases, there
can be meters of slush ice layered on top of a base of black ice. Slush ice can grow
incredibly fast if there are no insulating layers on top of it.

Chapter 3: Ice theory and selected APIs 17

Spring ice/candle ice

During spring when the temperature rises, the ice will slowly become hollow. As
the daily air temperature rises above the freezing point, the ice will start to melt.
While the ice becomes thinner, the ice crystals will start to break down at their
edges and form into vertical rod-like structures. These long vertical crystals have
weak connections between each other. As the crystals gradually become hollow,
they fill with water. Such formations greatly diminish the carrying capacity of the
ice, even when the ice is thick. As this ice type usually forms in spring, it is called
"spring ice", but it is also known as "candle ice" due to the rod-like crystal [2] [5].

3.2.1 Determining effective ice thickness

As different types of ice form on the water, they are not equal in their carrying
capacity. If there are multiple layers on the ice, the strength of the ice is only
as strong as the strongest layer and not the total amount of ice thickness. This
leads to significant doubt about slush ice and candle ice, as it’s uncertain whether
the layers have merged and how strong the bindings are [6]. Because of this, a
choice have been made to make the effective ice thickness always be defaulted to
the black ice as it is the strongest and most predictable ice. Despite this choice,
slush ice and candle ice still does have an carrying capability, but this should be
primarily be assessed by personnel with prior experience with determining ice
thickness through manual labor [7].

3.3 DOT guidelines for ice safety

The Department of Transportation of the Government of the Northwest Territor-
ies (DOT) has guidelines for determining safe ice bearing capacity in a document
for safe ice construction [8]. The document is mainly meant for maintenance and
construction of crossings over ice with vehicles, and will thus be mainly used for
ice at thicker values (effective ice thickness of >10 cm).

The DOT have three operation conditions. These are routine, enhanced and
acute operation. The routine is the most common and simplest to conduct, but also
the most conservative estimate. Acute is the least common, but also the level re-
quiring the most effort to commence. The operating conditions are applied in vari-
ous ways over three phases of operation. These are divided into Pre-construction,
construction and operation phase.

In the scope of this project, the phases and conditions that will be considered
will be restricted to the routine conditions for all phases. This is because it is the
most conservative, thus ensuring higher levels of safety despite the potential unre-
liable/sparse data that are available. This said, it is important to remark that it is
not possible to achieve a routine operation level with only use of already existing

18 IceMap: Bachelor thesis report

sensors technology as one of the requirements for routine operation level require
manual labor and supervisors.

The Routine conditions that are applicable in the scope of the project are as
follows. In all states of operation, Gold’s formula (Eq Equation 3.1) should be
calculated with an A value of 4. For calculating the Gold’s formula, the newest
data should be used. The spatial distance between every measured area should
be within 12 meters of each other. There should be 10-14 days of ice thickness
measurements available.

3.3.1 Gold’s formula

The first step in routine and enhanced operation levels is to utilize Gold’s formula
(Equation 3.1). Golds formula is used for estimating the bearing capacity of an
ice sheet [8]

P = Ah2 (3.1)

P is the estimated bearing capability of the ice in kilograms. A is an value between
3.5 and 6 which is chosen to set how conservative the model is. 3.5 is the most
conservative and 6 is the least. h is the thickness of effective ice at its lowest point.

Gold’s formula can be a good estimator for general bearing efficiency for
vehicles. Canada has historically used this formula for estimating the safety of
ice for work environments. The model originally published in 1981 is not recom-
mended to be used on current day heavy equipment load configurations, as the
model made by Gold does not resemble the same general load configurations of
today’s standard [9]. Thus Gold’s model should not be used in contemporary or-
ganizations when determining required ice thickness for such equipment [9], but
can still be for smaller general use case.

To achieve routine safety by the DOT, the Gold’s formula should be done with
an A of 4 in all phases of operation. Hence when using the Gold’s formula, the A
value will always be set to 4. As 5 cm of effective ice is the estimated thickness ne-
cessary for "navigable ice" [7], Gold’s formula can calculate the estimate carrying
capability. Calculating a maximum capacity of 100 kg for this thickness.

3.4 NVE calculation model

In order to get an estimated ice thickness for any given coordinate in Norway, a
model and software provided by the NVE was utilized. This same model is used
by a NVE in their "iskart" application[10]. The model uses air temperature and
weather data from SeNorge’s API to conduct an ice prognosis. SeNorge is an grid-
ded dataset of daily aggregated temperatures of the Norwegian mainland from
1957 to present day[11].

Chapter 3: Ice theory and selected APIs 19

When using the model, it creates a prognosis for the entire season worth of
data. This is done by requesting data from the closest available point from seNorge
to get the weather and temperature information. The model iterates through the
entire selected timeframe by calculating the evolution of the ice. The model de-
termines if the ice is freezing or melting by the temperature and snow conditions
for each time step. Specifically, the model checks if the air temperature is below
freezing to simulate ice formation and above freezing for ice melting scenarios.

This day-by-day iterative process involves calculating the necessary heat trans-
fer to determine the changes in ice thickness. The model adds new snow layers
and updates the slush levels if applicable. During freezing conditions, it calculates
the amount of ice formed by considering the heat flux through the ice column us-
ing the thermal conductivity of the layers. If melting occurs, it uses a degree-day
model to estimate the reduction in ice thickness, as shown in Equation 3.2.

∆h=melting coefficient×Degree Days (3.2)

The equation uses the unique melting coefficients of each type of snow and ice
respectively. It multiplies this with the time step and the temperature above freez-
ing. This simplifies the complexity of melting. These detailed calculations make
the model relatively time-consuming if run directly in the front end.

The freezing process involves updating the total ice by adding new ice layers
based on the calculated heat flux and thermal conductivity from the top to the
bottom of the total. During melting, the model removes or reduces the thickness
of the top layers using different melting coefficients for snow, slush, and black ice,
depending on the temperature and time step.

As ice thickens and unforeseen variables affect the physical ice which the
model cannot accord for, thus the model becomes more and more deviant over
time. This is something that can be counteracted by including ice run dates, which
are dates where the water is known to have a layer of ice. These dates are manu-
ally given in order to correct the model. Supplying ice run dates also allows for
the most accurate estimation as the dates for the initial ice layer are crucial for
having a most accurate estimation.

When utilizing this model, it is imperative to consider the assumptions taken
and uncertainties underlying in the model. The model itself allows the use for
average water temperature and ice run dates, but these have to be manually
provided to the model. To further improve the model an attempt to utilize the
SENTINEL-2 in order to provide the ice run dates have been used as NVE them-
selves already use SENTINEL-2 to create iskart.no, but apparently not in the act
of creating ice run dates[10]. More information about SENTINEL can be found in
section autorefSent-2-sat Water temperature is something that in the future can

20 IceMap: Bachelor thesis report

be improved by the use of magnetized strip sensors as discussed in this section
section 4.6.

The NVE model is supposed to act like a baseline or fallback strategy in the
IceMap system. By default, if a subdivisions includes sensor data, the sensor data
will be utilized to determine the ice thickness of the subdivision. If a subdivisions
has not been measured by a sensor, it will utilize the data produced by the NVE
model. chapter 5 describes the end usage of the different data sources in more
detail. The selected sensors, which are described in chapter 4, should gather data
with a higher accuracy, but also requires more effort to deploy. Since smaller and
more remote lakes may not have the capability to deploy a drone or even have sta-
tionary sensors, the NVE model provides a baseline for such cases. To mitigate the
lower accuracy of the model output, subdivisions with only NVE data are marked
in the IceMap application as being less accurate (see chapter 5). The model also
works as a fallback strategy when the drone fails or goes out of commission.

3.5 SENTINEL-2 satellites

The problem of having to set ice run dates manually can be solved by integrat-
ing the SentinelHub API. The SENTINEL-2 is part of the Copernicus Programme,
which is coordinated by the European Union and specifically tailored to provide
comprehensive and sustainable Earth observation capability [12]. SENTINEL-2 is
a satellite mission with two identical satellites, SENTINEL-2A and SENTINEL-2B,
which were launched in June 2015 and March 2017 respectively. These satellites
are equipped with high-resolution multi spectral cameras designed to capture vis-
ible, near-infrared (NIR), and short-wave infrared (SWIR) images. [12]

The objective of these satellites is to monitor surface condition and variability.
They achieve this through their high revisit frequency. Each satellite revisits every
10 days, effectively every 5 days when combined. Additionally, with a swath width
of 290km, they can effectively revisit areas at mid-latitudes every 2-3 days [12]

SENTINEL-2 is equipped with 13 spatial bands: four at 10m, six at 20m and
three at 60m spatial resolution [12]. This causes the images captured by SENTINEL-
2 to be highly versatile for various observational purposes. The different spatial
resolutions capture detailed observations of vegetation, soil, and urban areas, and
most importantly bodies of water. This allows the SentinelHub API to be utilised
for observing the ice state on lakes.

SENTINEL-1 and SENTINEL-2 have previously been utilized for monitoring
and forecasting river ice conditions to help manage flood risks. SENTINEL-1, with
its Synthetic Aperture Radar (SAR), was used to detect and differentiate types
of ice formations along the river. SENTINEL-2, was utilized to view the flooding

Chapter 3: Ice theory and selected APIs 21

(a) Output with icerun dates

(b) Output without icerun dates

Figure 3.1: Examples of NVE model outputs with and witout icerun dates

22 IceMap: Bachelor thesis report

and the status of the ice by providing high-resolution imagery in various spectral
bands [13].

The SENTINEL satellites provide valuable insights into ice conditions, demon-
strating that visual appearances alone are not enough to understand the full story
of ice duration. Appendix D SENTINEL hub, Mjøsa over time features multiple im-
ages of Lake Mjøsa taken over a 30-day period, captured using true color lens as
well as the use of a modified multi temporal evalscript [14]. The evalscript view
the Normalized Difference Vegetation Index (NDVI) and the Normalized Differ-
ence Water Index (NDWI) in order to highlight the difference between snow and
water or vegitation and water respectivly. NDVI and NDWI are variations of the
normalized difference index or ratio formula equation (Equation 3.3).

∆= (a− b)/(a+ b) (3.3)

NDVI uses a for NIR and b for red, while NDWI employs a as green and b
as NIR. This help to illustrate the duration of ice presence on the lake. Despite
the ice appearing similar in the images, significant differences in its longevity are
evident. This matches section chapter 4 about how the lake’s conditions affect the
ice. Mjøsa has greater water depths and a river running, see appendix E Depth
map, Mjøsa, causing currents in the area where the ice spent more time to pass.
With this in mind the proposed usage of the SENTINEL framework in this project
would thus be to get the ice runs for given areas on the ice in order to better
suit the model given by NVE specific areas on lakes. Specific evalscripts are found
in appendix F Evalscript using 30 days NDMI, NDWI and NDVI and appendix G
Evalscript using 30 days NDMI.

The standard deviation between pixels on the satellite imagery can be used
to differentiate between areas of water from areas of ice and snow. It is proposed
to use the Icy Lake Index (ILI) equation (Equation 3.4), which uses a variation of
the normalized difference index or ratio (Equation 3.3) with satellite bands as:

ILI= (Red+ SWIR2)/(NIR+ SWIR) (3.4)

The ILI as described in this study [15], it was attempted to classify land, snow,
ice and water. They were able to achieve 94.5% precision for ice with a Support
Vector Machine(SVM). Though it is a higher complexity project that also includes
way more variables, this is what is important for lake ice classification. Figure
3.2a is a picture taken with the use of the ILI, the same picture but as true color
is shown in Figure 3.2b.

By using the statistical API from SENTINEL hub, it’s possible to run an eval-
script on specific areas over a designated time interval, eliminating the need to
download all the images. By specifying a Bounding Box(BBOX) for the interior of

Chapter 3: Ice theory and selected APIs 23

(a) Picture using Ice Lake Index (b) Picture using true color

Figure 3.2: SENTINEL-2 L2A pictures of Mjøsa using SENTINEL hub EO Browser

a lake would thus have different standard deviation based on if there are ice or
not, ultimately thus attaining when the ice is on and off the water.

Figure 3.4b shows a plot of Mjøsa utilizing data from the statistical API. The
plot was generated from multiple months of data where the cloud coverage was
below 40%. As the precise numbers used in the previously mentioned article [15]
were not public at the time of writing this report, the specific evalscript is written
based on the ILI formula and might not be the same as the one used by Jugier.
Using the pure ILI in an evalscript yielded lacking results, which can be seen on
Figure 3.4b where the standard deviation never goes beyond 1. This said, it can
easily be mitigated by multiplying the formula by a single factor to increase the
contrast. This can be easily visualized in Figure 3.3, which shows that there is a
clear difference between water and ice.

In the graph, it is clear that the standard deviation is far lower when ice is
present. The 23rd of December 2023 is the first date where the cloud coverage is
low enough to get a clear picture of Mjøsa with the presence of ice. In this instance,
the standard deviation is 2.58, in contrast to the deviation of 12.65 recorded on
2023-12-03. For more detailed data, see appendix H CSV with Labeled Data.

This difference in deviation makes it possible to distinguish between days with
ice (’ice on’) when deviation is low, and days without ice (’ice off’) when deviation
is high. However, this method does have some limitations. Clouds can affect the

24 IceMap: Bachelor thesis report

Figure 3.3: Picture taken by SENTINEL-2 l2A 2023-12-26 using ILI with a contrast
factor

accuracy of the satellite images. It is possible to filter images from Sentinel Hub
by percentage of cloud coverage, but it is not perfect. Since higher cloud coverage
leads to less reliable data, a more strict filtering for cloud coverage could increase
the reliability. However, this could lead to large time periods with insufficient data.
Figure 3.4a and Figure 3.4b show an example where the API did not output any
data between August and October due to a strict cloud coverage filtering.

Another problem with using standard deviation to tell ice, water, and clouds
apart is when the ice starts breaking, like in Figure 3.5. This approach drastically
increases the standard deviation, incorrectly marking it as clouds. This mistake
commonly occurs during spring and off-seasons. Mistaking ice during off-seasons
isn’t a particularly big problem because the model does not predict ice growth in
warm weather.

Chapter 3: Ice theory and selected APIs 25

(a) Graph of standard deviation with contrast factor

(b) Graph without adjusted contrast factor

Figure 3.4: Graphs generated with SentinelHub data with cloud coverage filter-
ing

26 IceMap: Bachelor thesis report

Figure 3.5: Picture taken from SENTINEL-2 l2A 2024-03-07 using ILI with an
contrast factor

As a final note, when using the ILI, it is important to consider the size of the
area being analyzed, especially when using standard deviation to classify ice. The
evalscript (section 7.6) uses data from bands B04 (Red) and B08 (NIR) at 10m
resolution, and bands B11 (SWIR1) and B12 (SWIR2) at 20m resolution. This
means each pixel represents 10 square meters, but B11 and B12 overlap by 2 by 2
pixels. So, to get a meaningful standard deviation, it needs to capture quite large
areas of the picture [16] as only every 20m2 are effectively unique pixels. Because
of this, the BBox’es should be at least km2 in order to have an adequate amount
of pixels to do produce an effective evaluation.

Chapter 4

Selected sensors and background
theory

The group chose to utilize a drone to operate a LIDAR (Light Detection and Ran-
ging) system. This solution addressed the requirement of a mobile sensor. Integ-
rating a laser altimeter onto the drone enables it to conduct area scans for thick-
ness calculations, thereby evaluating the safety of traversing the ice surface. The
installation of the laser altimeter on the drone is crucial to facilitate its scanning
capabilities and ensure accurate assessment of ice thickness. To meet the require-
ment of a stationary sensor, the group chose to utilize magnetic strip sensors.

4.1 Laser altimeter theory

A laser altimeter is a variant of LIDAR that is primarily deployed for determining
vertical distances from the altimeter to a target object. The technology utilizes
laser to measure distances, generate detailed maps, and create intricate three-
dimensional models of the Earth’s surface.

Laser altimeters work by emitting a pulse of scattered light particles. The dis-
tance to the target object is determined by measuring the time it takes for the
emitted light to return to the altimeter. This concept leverages the constant speed
of light [18] and the second equation of motion formula, as outlined in Equation
(4.1):

d = v0 t + 12 · at2 (4.1)

In this formula, d denotes the distance covered, v0 represents the initial velocity
at the commencement of the calculated distance, v signifies the velocity at the
conclusion of the distance calculation, t denotes the time taken to travel the dis-
tance, and a denotes the acceleration from start to finish.

While the concept relies on the constant speed of light, variations in the drone’s
speed and environmental elements introduces additional complexities to be con-

27

28 IceMap: Bachelor thesis report

Figure 4.1: A typical setup of proposed ice thickness measurement: An airborne
LIDAR illuminates the surface with tightly focused laser beam and measures the
light returning. Reproduced from [17].

sidered. Despite these potential challenges, the position of the target object re-
lative to the altimeter is determined based on the direction and distance of the
returning light. This data can be mapped onto a 3D coordinate system, with sup-
plementary data depending on the type and sophistication of the LIDAR system.

The thickness of ice can be determine by leveraging the penetration capability
of the emitted laser. This is done by ascertaining the distance between the reflec-
tion points on the top and bottom surface of an ice layer. Various studies have
confirmed this method, including those by Sergey et al.cite[19], Fons et al.[20],
and A. Gold[21]. These studies primarily involve space-borne laser altimeters for
analyzing sea ice thickness and estimation of mass. However, it is important to
acknowledge the inherent uncertainties associated with this data, which are in-
fluenced by variables such as humidity, snow, precipitation, and precision of the
sensor apparatus.

The standard output of a LIDAR consist of multiple sets of XYZ coordinates, as
shown in Table 4.1. Each set of XYZ coordinates represents a single point reflected
from the ice surface. By utilizing the X and Y coordinate, points that are vertically
aligned can be grouped together. By examining the Z coordinates and intensity
(I) of these grouped points, the thickness of the ice layer can be discerned.

To examine the utility of LIDAR data, an open-source LIDAR file of the Arc-
tic was obtained from opentopography.org [23]. Since no LIDAR data for Norway
was publicly available, this data from the Arctic was thought to be adequate for

Chapter 4: Selected sensors and background theory 29

X (m) Y (m) Z (m) I

-25.6245 16.3245 8.2345 0.7435
-25.5456 16.2655 8.3532 0.1535
-25.5463 14.2542 6.1435 0.1453
-25.5413 14.4235 6.3246 0.8874
-25.4352 16.3452 8.4235 0.2546
...

Table 4.1: Example raw point cloud data from LIDAR scan.
Reproduced from: [22]

testing and demonstrating the LIDAR data processing. By converting and analyz-
ing the LIDAR scan results from this source using CloudCompare, the graphical
representation in Figure 4.2 of the terrain was generated.
The limitations of a LIDAR lies in its necessity for an unobstructed view of the ice.

Figure 4.2: LIDAR data from Opentopography [23] plotted on a 3D map, showing
how the points are set up using cloudCompare.

In cases where the ice is obstructed by for example snowfall or rain, the measure-
ments will be inaccurate. Determining ice thickness requires evaluating physical
characteristics inherent to both sea ice and freshwater ice, thereby presenting
challenges to monitoring endeavors[24].

30 IceMap: Bachelor thesis report

4.2 Selected laser altimeter

The specific laser altimeter model chosen for the IceMap application is the SEN-
14032 from Garmin1. Multiple other models were considered, but the SEN-14032
ultimately met the groups requirements and limitations best. While many com-
mercial altimeters offer extended range capabilities, they come with a high cost.
Moreover, the majority of available sensors possess limited operating temperat-
ures, rendering them unsuitable for colder environments. It was only upon discov-
ering the SEN-14032 model that the group found a sensor capable of measuring
distances of up to 40 meters, operating in temperatures as low as -20 ◦C, main-
tain a compact dimensions of 20 x 48 x 40 mm and deliver a precision of +/-2.5
cm. Despite the modest accuracy, it adequately fulfills the requirements for de-
termining the minimum ice thickness necessary to support multiple individuals,
as detailed in section 3.3.

4.3 Selected drone

The drone planned to be used for this conceptual process was initially the DJI
Matrice 100, a developer drone made by Da-Jiang Innovations (DJI). This drone
provides several customization options allowing the addition of third party hard-
ware and software. The DJI Matrice also includes its own compatible hardware
and software applications for smooth operation of the drone. The drones manual2

describes functionalities like waypoints navigation for automated flights, point of
interest (POI) for operating on specific coordinates, and some other functionalit-
ies which are relevant for the IceMap system.

The DJI Matrice model seemed to be a great fit upon initials research, un-
til discovering that its minimum operational temperature was -10◦C. Considering
that Norwegian winters commonly reaches temperatures below -20◦C, this posed
a significant limitation. A newer model of that same drone, DJI Matrice 300, was
later discovered to be a better fit. This updated model offers comparable or su-
perior specifications, the same software and hardware benefits, and is capable of
operating in temperatures as low as -20◦C. Hence, the DJI Matrice 300 was selec-
ted to be utilized in the conceptual proof of the system3.

A SWOT analysis was conducted to evaluate the multiple viable options for the
drone. The analysis highlights strengths, weaknesses, opportunities, and threats
associated with the different options. These factor are crucial for making an in-
formed decision that align with the project’s objectives and requirements. Table 2
in appendix shows how the SWOT analysis: DJI Metrice 300 compares to other

1https://www.garmin.com/en-US/p/557294specs
2https://dl.djicdn.com/downloads/m100/M100_User_Manual_EN.pdf
3https://dl.djicdn.com/downloads/matrice-300/20200507/M300_RTK_User_Manual_EN.pdf

Chapter 4: Selected sensors and background theory 31

drone options which were considered.

The SWOT analysis reveals several important insights regarding the drone
selection process. While certain drones offer strengths like cost-effectiveness and
high payload capacity, they may also present limitations such as limited flight time
and the need for additional hardware. Opportunities exist for leveraging third-
party software and hardware integration, but potential threats such as technical
issues and software bugs must also be considered. It is essential to weigh these
factors carefully and consider potential strategies to mitigate weaknesses and cap-
italize on opportunities to select the most suitable drone.

4.4 Integration challenges

The group assumed that integration of the selected drone and sensor would be
possible, but could not guarantee its feasibility due to lacking expertise in both
drones and sensors. However DJI offers a payload SDK for integrating tools like
LIDAR into their drones 4. If this option proves unfeasible, it is suggested to con-
sider a LIDAR provided by the drone manufacturer. DJI provides multiple options
for LIDAR implementations, however, these LIDARs come at a much greater cost
than the ones proposed by the group, and may not meet the operational temper-
ature requirements. Nonetheless, the other specifications outlined in section 4.2
generally meet or exceed the groups requirements for these sensors.

4.5 Alternative approaches

The original plan involved utilizing any inexpensive drone with specifications that
met the minimum requirements. In order to accommodate an automated flight,
an Arduino board was proposed to be mounted on the drone together with the
sensor. Later in the project period, the group discovered the DJI Matrice 300 which
allowed for a much simpler implementation of flight path automation. The code
intended for implementing the Arduino remains available in the GitLab repository
for those interested in a budget-friendly setup. Additionally, code and links to
hardware resources are provided. The necessary components include an Arduino
MKR Zero and NEO 6m (GPS device), along with equipment for mounting the
component on the drone. Wiring instructions for the GPS system and LIDAR can
be found in the tutorials for NEO-6m5 LIDAR6. Although, it is not cost-efficient
given the need of a professional-grade drone capable of operating at a minimum
temperature of -20 ◦C, which typically includes their own integrated hardware
and software solutions.

4https://developer.dji.com/payload-sdk
5https://randomnerdtutorials.com/guide-to-neo-6m-gps-module-with-arduino/
6https://learn.sparkfun.com/tutorials/lidar-lite-v3-hookup-guide/all

32 IceMap: Bachelor thesis report

4.5.1 Air planes

Air planes were also considered as an alternative to using drones. Multiple air
planes commonly fly over Gjøvik and Mjøsa. These could theoretically be used to
mount a LIDAR, but would presented multiple challenges. Specifically, air planes
lack the necessary agility to navigate smaller bodies of water, meaning this solu-
tion would only work for Mjøsa. As the municipality probably does not have the
funding to buy and operate an air plane, the group considered utilizing already de-
ployed air planes. The local hospital and weather station do fly smaller air planes
over Mjøsa, however, the lack of a consistent route would complicate the meas-
urement process. Hence, a drone was deemed the most feasible approach.

4.6 Magnetic strip sensor

Magnetic strip sensors serve as a versatile tool for both saltwater and freshwater
environments [25]. This technology provides both a portable and efficient solution
for the measurement of ice thickness on bodies of water. Magnetic strip sensors
operate on the basis of electromagnetic induction principles (EMI). The sensor
can detect variations in the electrical conductivity of the ice, snow and water layer,
resulting in induced changes in the surrounding magnetic field [25]. The thickness
of the ice can be determined by measuring the changes in the magnetic field. This
technology is used in lakes, rives and other bodies of water, often for climate
research and environmental monitoring. The accuracy of magnetic strips can be
affected by heat, which changes the conductivity in freshwater [26].

4.7 Stationary sensors

The magnetic strip sensor serves as a stationary sensor. In the IceMap system, it
was intended to be utilized for verifying the accuracy of data acquired from the
LIDAR. The sensor was supposed to provide an additional data source in conjunc-
tion with the NVE model. Magnetic strip sensors are primarily used for experi-
mental purposes, and are not commercially available. This can make the sensors
difficult to obtain. Some research articles offer instructions for building a magnetic
strip sensor[27], however, this was outside of the groups expertise, and thus not
pursued. Instead, the group focused on enabling the integration and processing
of data from this sensor type. Magnetic strip sensors were deemed the most fit-
ting sensor type due to their relatively low cost and small size. Most alternative
technologies were either far too costly, or not suitable for use in water.

Chapter 4: Selected sensors and background theory 33

4.7.1 Proposed placements

While the specific positioning of the altimeter ultimately falls under Gjøvik muni-
cipality decision, the group has provided a proposal for the flight path of the drone
on Mjøsa. The group proposes that the drone flies along the shoreline, keeping a
distance of approximately 70m from the shore. The flight path begins in Gjøvik
Sentrum and the LIDAR conducts one scan every 500 meters.

Multiple considerations went in to selection of these two distances. Firstly, it
allows for the creation of a safety zone for individuals to walk on the ice, while
also enabling regular assessment of ice thickness along the shoreline. Additionally,
considering that Gjøvik Sentrum’s shoreline spans about 5000 meters, placing the
scans 500m apart provides broader coverage of variations in ice thickness within
the water. This broader coverage ensures the effectiveness of the data collection,
but frequent enough to account for changes in current which may impact the ice
stability. Since a single drone cannot scan the entire lake, the group has proposed
to focus on the shoreline, where most recreational active happens.

The group recommends to position the magnetized strips sensors along the
shoreline to align with the LIDAR scans to compliment its data. These strips will
be uniformly spaced with a minimum distance of 500 meters, and approximately
70meters from the shoreline. For large lakes such as Mjøsa, the group recommends
deploying a minimum of four sensors, while smaller bodies of water may only
require one. This placement is a compromise between area coverage and cost.

Chapter 5

Mobile application

The mobile application was developed using Dart, the Flutter SDK, and Android
Studio. Three mobile emulators and a physical device were used to test the applic-
ation, these being Pixel 7, Pixel 7 Pro, and Medium Phone API 31. These emulators
are included in the installation of Android Studio. The physical devices was a Mo-
torola g(9) plus. All testing was preformed on Android devices as the group lacked
access to iOS devices. Ideally, the application would be tested on an iOS device
too, but since Flutter provides full support for the newest version of iOS [28] the
group assumes that IOs can be accommodated with minimal effort.

5.1 Server communication

The server and app communicate via HTTPS. Every time the application requests
map data from the server, the lake name is passed as a URL parameter. This URL
is an example of how the application requests data from the server:

https://127.0.0.1:8443/update_map?lake=Mjøsa

Upon launching, the application sends a few get requests to the server in order to
retrieve all the necessary map data.

5.2 Main components

The app consists of two pages: the default page, and the loading page. The load-
ing page is only visible while the application is initializing. Once the application
is done loading, the user is taken to the default page. The default page consists
of a widget with an interactive color coded map, and a widget with a graph and
various ice related data. The app bar contains the name of the currently selected
lake, and a search icon, and a menu icon. As seen on Figure 5.1, the application
was designed with a predominantly dark color scheme. Beyond providing a mod-
ern aesthetic, the color scheme also consumes less power.

35

36 IceMap: Bachelor thesis report

(a) Loading screen (b) Map widget (c) Statistics widget

Figure 5.1: Loading page and two main widgets

5.3 Map widget

The map is rendered by a custom class called ChoroplethMap (see Code list-
ing 5.1). The map consists of subdivisions, each of which can be selected by tap-
ping on it. When a subdivision is selected, the information in the statistics widget
changes to display information for the selected division. Four buttons are layered
over the map widget in its upper right corner. The top button was intended to
overlay a satellite image from the Copernicus API, but this feature was not im-
plemented. The second button displays a map from OpenStreetMap (OSM). The
third button allows the user to download or share the ice data as JSON. The fourth
button displays a layer with information about the color categorization. These fea-
tures can be seen on Figure 5.2. The legend just below the map categorizes the
colors from a safety of 0 to 4. Below the map widget, the text "Last update at ..."
is displayed. The text shows the last time that the application received data from
the server. If the last update was done within the last day, it will only display the
time of the last update. Otherwise, it will only display the date.

5.3.1 Color categorization

Each subdivision is either red, orange, green, or blue. These four colors were
chosen to increase the readability of the map. More than four colors could make
it difficult to discern safe areas from unsafe areas. Red and orange communicate

Chapter 5: Mobile application 37

that the ice is dangerous, but to different degrees. Green and blue communicate
that the ice is safe, again to different degrees. Yellow was chosen to be kept out
to ensure a clear and unambiguous transition from safe to unsafe sections. The
information layer as seen on Figure 5.2c, includes some text and a legend to ex-
plain the color coding in more detail.

Code listing 5.1: Custom choropleth map class

/// ChoroplethMap is a stateful widget that contains a choropleth map.
/// The map is created using the Syncfusion Flutter Maps library and
/// coordinates fetched from the server.
class ChoroplethMap extends StatefulWidget {
const ChoroplethMap({
Key? key,
required this.relation,
required this.measurements,
required this.subdivisions,
required this.onSelectionChanged,

}) : super(key: key);

(a) OpenStreetMap layer (b) Export feature (c) Info layer

Figure 5.2: Map buttons

38 IceMap: Bachelor thesis report

5.3.2 Map rendering

ChoroplethMap requires relation data, a list of measurements, a list of subdivi-
sions, and the callback function onSelectionChanged as parameters. onSelectio-
nChanged returns the index of the selected subdivision to the parent class MapContainerWi-
dget. The parent class indexes the subdivision list to extract and display the ap-
propriate data in the statistics widget. The relation data is GeoJSON data which
is used to render the map. The map is rendered with the Syncfusion library. This
library allows a map to be rendered directly from GeoJSON data and has very
simple implementations for color coding and shape selection.

The relation data contains coordinates that define each subdivision shape.
Each subdivision has a unique ID. The IDs from the relation data are matched
up with the corresponding IDs from the subdivision list. The subdivision list con-
tains information about how each subdivision is supposed to be colored and the
statistics for the subdivision. The coloring is decided in the server. Code listing 5.2
shows how the map data source is defined and how the colors are mapped to each
subdivision. The code which decides the coloring and generates the map source
data is described in chapter 6, while the generation of the measurement data is
described in chapter 7.

Code listing 5.2: Map data source and color mapping

...
// Initialise data source and color mappers

dataSource = MapShapeSource.memory(
widget.relation,
shapeDataField: ’sub_div_id’,
dataCount: widget.subdivisions.length,
primaryValueMapper: (int index) => widget.subdivisions[index].sub_div_id,
shapeColorValueMapper: (int index) => widget.subdivisions[index].color,
shapeColorMappers: const [
MapColorMapper(

from: 0,
to: 1,
color: Color(0xffff0000),
text: ’{0},{1}’),

MapColorMapper(
from: 1,
to: 2,
color: Color(0xffff6a00),
text: ’2’),

MapColorMapper(
from: 2,
to: 3,
color: Color(0xFFb1ff00),
text: ’3’),

MapColorMapper(
from: 3,
to: 4,
color: Color(0xFF00d6ff),

Chapter 5: Mobile application 39

text: ’4’),
],

...

5.4 Statistics widget

The statistics widget is right below the map widget, and containes more detailed
information about the state of the lake ice (see Figure 5.1c). The topmost inform-
ation is text that displays the unique ID of the selected subdivision, the time and
date of the measurement, the coordinates of the measurement point, and the ac-
curacy of the data. Below the text, a bar chart displays the various ice layers and
their thicknesses. The data which was used to generate this chart is from the NVE
model. The chart displays the ice layer conditions for today, the last three days,
and the coming three days.

5.4.1 Data accuracy

The text "Data accuracy" field displays the accuracy of the data for the selected
subdivision. A subdivision that is only based on statistics from the NVE model
has a rating of 1, a subdivision only based on LIDAR data has a rating of 2, and
a subdivision with both data sources has a rating of 3. If both data sources are
included and the discrepancy between them is less than 1.0cm, the rating is 4.
More factors could be included into this classification system, like the sensors
accuracy and the present ice layers, but the group felt that these topics were not
understood well enough to implement. Code listing 5.3 shows part of the code for
classifying the accuracy.

Code listing 5.3: Accuracy clasification

Retrieve ice statistics for current subdivision
ice_stats = get_raw_dates(ice_prognosis_raw_data(sub_div_id=subdiv_id,

x=center_lat, y=center_lng))

Ice statistics were retrieved successfully
if len(ice_stats) > 0 and len(ice_stats[0]) > 0:

accuracy = 3

Set accuracy to 4 if LIDAR data and NVE data have a minimal discrepancy
if abs(avg_thickness - ice_stats[0][’Total␣ice␣(m)’]) < 1.0:

accuracy = 4

else: # Failed to retrieve ice statistics, initialise empty ice stats object
...

accuracy = 2

40 IceMap: Bachelor thesis report

5.5 Lake search

The search feature allows users to change the displayed lake. Tapping the magni-
fying glass on the app bar will open a new view. This view contains a search bar
and a list of all the system lakes (see Figure 5.3). Before anything is entered in
the search bar, all the system lakes are displayed. When the user enters some text,
the results will be narrowed. The narrowing and matching of the search string are
done with the help of the Dart package Fuzzy. Fuzzy provides customization for
threshold of the input matching, which is set to 0.4. After selecting a search res-
ults, the application sends new requests to the server, but with the newly selected
lake as the URL parameter.

Code listing 5.4: Fuzzy search match

List<String> searchResults = [];
final options = FuzzyOptions(threshold: 0.4, findAllMatches: true);
final matcher = Fuzzy(lakeSearchOptions, options: options);
final results = matcher.search(query);
searchResults = results.map((result) => result.item as String).toList();
\end{minted}

(a) Reload animation (b) Search bar (c) No internet connection

Figure 5.3: Search feature and no internet behavior

Chapter 5: Mobile application 41

5.6 Initialization and persistence

The application attempts to establish an internet connection when it launches. If
an internet connection is established, the app makes a few requests to the server. If
the requests receive a response, the server will save the responses to a set of three
files, and update the persistent variable lastUpdate and lastLake. If the variable
lastLake contains a value, this lake will be included as the URL parameter. Other-
wise, the value defaults "Mjøsa". Code listing 5.5 shows how a persistent variable
is set with the Shared Preferences plugin.

Code listing 5.5: Persistent variable lastUpdate

import ’package:shared_preferences/shared_preferences.dart’;
...

final prefs = await SharedPreferences.getInstance();
await prefs.setString(’lastUpdate’, ’${DateTime.now()}’);

If any of the server requests do not receive a response, the application will
try to read the map data from files. These files contain all the necessary map
data which was saved from the last successful server request. On every success-
ful request, the data in these files is overwritten, effectively always storing the
last viewed lake. This mechanism allows the application to function even when
the server does not respond, or when the application fails to establish an internet
connection. If the application fails to establish an internet connection, a SnackBar
displays a warning at the bottom of the page as seen on Figure 5.3c. The SnackBar
remains until an internet connection is established. The application does not only
check the connectivity upon launching, but actively keeps checking. This means
that the SnackBar will also appear if the application is initialized with a connec-
tion, but loses it at a later point.

The loading page is displayed while the application is waiting for initializa-
tion to complete. The function initialiseSate() starts the initialization. This
function is called on every launch, but can also be triggered by reloading the
default page. Reloading can be done by pulling down on the page form above
the map widget. Doing so will trigger a short loading animation which runs until
initilaiseState() completes the re-initialization of the state (see Figure 5.3a).
The same function is called when a new lake is selected trough the search feature.
The icon on the loading page was created by Freepik and posted on Flaction[29],
and is free to use with attribution.

42 IceMap: Bachelor thesis report

5.7 Remaining work

Usability testing was not included as a requirement. Nevertheless, the group inves-
ted time and effort into making the application user friendly. Such efforts included
formulating text in a clear and concise manner, selecting suitable fonts and font
sizes, meaningful color choices, intuitive icons, and including adequate informa-
tion without creating clutter. It would have been beneficial to conduct user testing
on the following aspects: the expected functionalities of the map widget buttons,
the clarity and relevance of the text within the statistics widget, and the overall
comprehension and usability of the color-coded map.

The current color scheme looks fine, but is not very accessible. Since the map
colors are very similar in saturation and shade, individuals with visual impair-
ments may have trouble distinguishing the colors. The general color scheme of
the application could also cause difficulty due to its low contrast. The application
should have provided settings for both increasing the contrast of the map col-
ors, and the colors of the rest of the application. Again, such considerations could
not be implemented due to time restrictions. Given more time, the group would
have utilized the currently decorative menu icon to set up a couple buttons for
toggling between themes. These themes would consist of two sets of default and
high-contrast themes, one set for the general application and one set for the map
coloring.

Proper HTTPS certificates were not generated, so the app was configured to
ignore certificate validation. Before the system is deployed, valid certificates must
be generated and the application must be configured to validate the certificates.
Three files in the application must be updated, all of which are located in the folder
called "server_requests". Code listing 5.6 shows how the app clients are currently
configured. The valid certificates must be placed in the server folder called "cer-
tificates". These are the only two steps required to set up proper communication
between the app and server. All other required setup and configuration was im-
plemented.

Code listing 5.6: HTTPS client configuration

// Custom HTTP client
HttpClient client = HttpClient()
..badCertificateCallback = // NB: temporary disabled SSL certificate

validation
(X509Certificate cert, String host, int port) => true;

Chapter 6

Custom map creation

The application requires a map shape file in order to render the color coded map.
Although many solutions for rendering the maps exist, no readily available tools
for creating the necessary map data were found. Therefore, the group developed
a custom method for creating the required map files. This method involves us-
ing lake shape files from the OverpassTurbo API1, and dividing the shapes into a
uniform grid.

6.1 Adding a lake relation to the system

The first step in adding a lake to the system is manual. OverpassTurbo does not
support fetching relations programmatically and is the only API that allows export-
ing of GeoJSON files for lakes. Therefore, a system administrator must extract the
relation files from OverpassTurbo, export them as GeoJSON files, and then add
them to the system manually. The administrator needs to navigate to the Over-
passTurbo API and retrieve the polygon data for the desired lake. This is done
with a Overpass query. Code listing 6.1 shows the query that must be entered into
the Overpass API. This query will fetch the shape data for the requests lake. The
output will consist of coordinates that make up the outline of the entire lake.

Code listing 6.1: Overpass API query

[out:json];
(
way["natural"="water"]["name"="lakeName"];
relation["natural"="water"]["name"="lakeName"];

);
(._;>;);

out body;

The output from the query must be exported to an appropriately named GeoJSON
file and added to the server. Eeach step of this process is described in detail in the

1https://overpass-turbo.eu/

43

44 IceMap: Bachelor thesis report

projects README file in the GitLab repository2. After the GeoJSON file is added to
the server, the system administrator must initialize the division of the map shape.
This can be done by making a request to
https://127.0.0.1:8443/add_new_lake?lake=lakeName&cell_size=1. The en-
dpoint requires that the name of the newly added lake is provided as a URL para-
meter. The cell_size parameter determines the size of the subdivisions in kilo-
meters, and is optional. If cell_size is omitted, the division will use a default
size of 0.5km. After the shape file is added to the server, and the request is made,
the manual part of the process is over. All remaining steps happen pragmatically
and require no intervention.

The endpoint can be requested multiple times on the same lake. Every time
the function is called, the new output will overwrite any files generated in prior
requests for the specified lake. Re-running the division may be done if the cell size
of prior requests was undesirable. The endpoint writes the resulting GeoJSON file
to the response, and plots the resulting map. The resulting file and the plot should
be inspected to ensure a desirable result. cut_map() is the function that is called
by this endpoint, and can take multiple minutes to complete. The larger the lake
and the smaller the divisions, the longer the function takes to complete. Plotting
is the most time consuming part of the process, but it is highly discouraged from
disabling. It is difficult to ensure that the result is desirable wihtout plotting it.

Figure 6.1: Example of a time consuming request

2https://gitlab.stud.idi.ntnu.no/sarasdj/prog2900

Chapter 6: Custom map creation 45

Figure 6.1 shows an example of running the request in Postman, and Fig-
ure 6.2 shows the resulting plot. As seen in the upper right corner of Figure 6.1,
the example took about 3 minutes and 30 seconds to run, with a cell size of 600m.
This example demonstrates the required time for an extreme case. When running
the same code with a cell size of 2.5km, which is the size shown in all figures in
chapter 5, the response is received in under 30 seconds. For all other Norwegian
lakes, the required time should be far shorter as both the lake size and cell size
can be smaller.

Figure 6.2: Pyplot graph from add_new_map endpoint

6.2 Dividing the map polygon

cut_map() creates the maps by generating a uniform grid and combining it with
the map shape. The spacing between the grid lines is either determined by the
size specified in the endpoint request, or set to the default value of 0.5km. The
cell size is then converted to a height and width in degrees of latitude and longit-
ude. Converting the height and width separately is necessary to ensure that the
divisions become square. If this conversion was omitted, lakes further away from
the equator would get elongated subdivision. In Norway, the height of the cells
would become far longer than they were wide. To prevent this from happening,
the cell width and height are calculated using the code from Code listing 6.2. This
code was developed by modifying formulas posted by Numan Karaaslan on Stack-
Overflow [30]. Code listing 6.5 shows how the grid lines are generated.

46 IceMap: Bachelor thesis report

Code listing 6.2: Cell size calculation

\begin{figure}[h]
\begin{minted}{Python}

Select an arbitrary x and y value from within the polygon
bounds = polygons[0].bounds
start_x, start_y, _, _ = bounds

Convert the cell size to lat and lng
cell_width = cell_size_in_km / 111.3200
cell_height = cell_width / cos(start_x * 0.01745)

Code listing 6.3: Generating the grid

Retrieve the polygon bounds
bounds = poly.bounds
min_x, min_y, max_x, max_y = bounds

List to store all created lines
grid_lines = []

Create new horizontal lines while within bounds
y = min_y
while y <= max_y:

line = LineString([(min_x, y), (max_x, y)])
grid_lines.append(line)
y += cell_height

Create new vertical lines while within bounds
x = min_x
while x <= max_x:

line = LineString([(x, min_y), (x, max_y)])
grid_lines.append(line)
x += cell_width

return grid_lines

Once the grid lines are generated, they are combined into a single polygon us-
ing unary operations. Then, a for loop iterates over all the lines and checks which
parts of the map polygon intersect the lines. The parts of the polygon that inter-
sects the lines are appended onto a list, which will eventually contain all each
grid division. Code listing 6.4 shows how this is done. Upon creating every divi-
sion, it is formatted as a GeoJSON feature object. Each object contains a unique
subdivision ID, the shapes center coordinates, and the coordinates which make
up its geometry. The list of subdivisions is then written to a file called "*lake-
Name_div.json".

Code listing 6.4: Combining the map polygon with the grid

Generate a grid based on the calculated cell size
lines = create_grid(polygon, cell_width*2, cell_height)
lines.append(polygon.boundary)

Merge the grid lines into a single grid object
lines = unary_union(lines)
lines = linemerge(lines)
lines = list(polygonize(lines))

Chapter 6: Custom map creation 47

Combine the polygon and the grid to form the subdivisions
for line in lines:

if line.intersects(polygon):
divided_map.append(line.intersection(polygon))

Code listing 6.5: Subdivisions feature objects

sub_div_id = 0
...
for tile in divided_map:

tile_feature = {
’type’: ’Feature’,
’properties’: {

’sub_div_id’: str(sub_div_id),
’sub_div_center’: center

},
’geometry’: geometry

}

Append new feature object to list, and increment sub_div_id for next
iteration

features.append(tile_feature)
sub_div_id += 1

6.3 Verifying the output

The output of these calculations was verified by comparing the plot created by
cut_map() with distances measured on Google maps. Skumsjøen was used for
simplicity. Firstly, the distance between two points parallel to the x-axis (see Fig-
ure 6.3a) were measured on GoogleMaps. Then, the lake was added to the system
and processed. The cell size was set to 100m for ease of calculation. The distance
from Google maps measured approximately 636m, and the number of divisions
along the measured line counted 6 whole divisions and one partial divisions. With
divisions measuring 100m×100m, this confirmed the expected output. The same
verification was conducted on the height of the lake. The height measured 3.42km
and the divided map measured just about 34 cells tall. Keep in mind that the aspect
ratio of the plot on Figure 6.3b is s little squished, which makes the subdivisions
appear slightly rectangular when they actually are square.

6.4 Determining subdivision colors

calculate_color() is called for every subdivision. The function determines the
coloring of each subdivision. As mentioned in chapter 3, the coloring is determ-
ined by sensor data if it is available for a subdivisions. Otherwise, the color is
determined by the thickness of the black ice layer form the NVE model. Code list-
ing 6.6 shows how the calculate_color() is defined and called for subdivisions

48 IceMap: Bachelor thesis report

(a) Width from Google Maps (b) Map divided into 100m× 100m cells

Figure 6.3: Verification of cell size formulas

without sensor data. calculate_color() assigns colors to subdivisions based on
ice thickness as follows: red for 0cm to 4 cm, orange for 4cm to 8cm, green for
8cm to 12cm, and blue for thicknesses greater than 12 cm. For invalid thickness
values, a default color of grey is used.

Code listing 6.6: Determining subdivision coloring

Create new subdivision object
sub_division = {

’SubdivID’: sub_div_id,
’MinThickness’: black_ice_thickness,
’AvgThickness’: black_ice_thickness,
’CenLatitude’: center_lat,
’CenLongitude’: center_lng,
’Accuracy’: accuracy,
’Color’: calculateColor(black_ice_thickness),
’IceStats’: ice_stats,

}

def calculate_color(thickness: float):
if 0 < thickness <= 4:

Chapter 6: Custom map creation 49

return 1 # Red
elif 4 < thickness <= 8:

return 2 # Orange
elif 8 < thickness <= 10:

return 3 # Green
elif thickness > 12:

return 4 # Blue
else:

return 0 # Default: grey

6.5 Exposing the processed data

All the data processed by the server has to be compiled and exposed on endpoints.
This process is a bit complicated, as data from various sources and with differing
formats have to be matched up with every single subdivision. First, all the most
recently added measurements and their data is read from a file. This file contains
coordinates, dates and times, and the thickness measured by the sensors. Once
all the data is extracted and added to a list of dictionaries, the ice statistics from
the NVE model are requested for every subdivision. While this data is compiled,
the accuracy level and color of the each subdivision is determined as described
in subsection 5.4.1. Since all of this code is very long, those who wish to look
at the concrete implementation can view the file "update_measurements.py" in
"server/map_map_handler" in the GitLab repository3.

6.5.1 Updating the map data

The class UpdateScheduler updates and compiles the map data for each lake. The
class runs indefinitely in a dedicated thread, and calls the function update_all_me-
asurements(update_bbox: bool) regularly. The function fetches the newest API
and sensor data for all lakes. This data is compiled and stored in "*_measure-
ments.py" files for each lake. Once a day, update_all_measurements(update_bbox:
bool) is called with the argument False. This means that the function only up-
dates the data from NVE. Since seNorge updates their data once a day, updating
it any more frequently is not necessary. If the argument True is passed, all Sen-
tinelHub bboxes will be updated in addition to updating the NVE data. Since the
Sentinel satellites have a revisit frequency of 2-5 days, 3 days seemed an appro-
priate frequency to update the bboxes. Code listing 6.7 shows some of the code
for updating the map data.

Code listing 6.7: Class for updating the map data

class UpdateScheduler:
def __init__(self):

self.day_counter = 1

def start(self):

3https://gitlab.stud.idi.ntnu.no/sarasdj/prog2900/-/tree/main/server/map_handler?ref_type=heads

50 IceMap: Bachelor thesis report

"""Schedules the updating of all maps every three days"""
try:

print("Updating␣all␣lake␣data....")

Run update_all_measurements on startup
update_all_measurements(True)

Schedule updates to occur daily
schedule.every(1).days.do(self.daily_update)

Keep scheduler running indefinitely
while True:

schedule.run_pending()
time.sleep(1)

except Exception as e:
print(f"Failed␣to␣schedule␣updates:␣{e}")

def daily_update(self):
if self.day_counter < 3: # Day 1 or 2, no bbox update

update_all_measurements(False)
self.day_counter += 1 # Increment counter

else: # Day three, update all data including bbox
update_all_measurements(True)
self.day_counter = 1 # Reset counter

6.6 Alternative map creation methods

The entirety of the method described so far was the last of three attempted meth-
ods. The first method used an OSM layer as a base map and rendered polygons
over this map. The problem with this approach was related to how the polygons
would be created. Defining a simple polygon like a square or a pentagon was
easy, but generating a shape that matched up with the complex geometry of the
shoreline was difficult. Figure 6.4a demonstrates this problem and the applica-
tions appearance in its earlier stages. The second method involved continuously
splitting the map shape in two from top to bottom, then left to right, until the grid
was formed. This implementation required unexpectedly complicated code and
could at best produce a partially correct grid with noticeable gaps. Figure 6.4b
shows the best achieved result from this method before the approach was aban-
doned. Although it can be improved in multiple areas, the final attempt was the
simplest and only working solution.

6.7 Areas of improvement

It is unfortunate that there are no options to retrieve relation data pragmatically. If
such an option was available, it would be much preferred to the current partially
manual implementation. As the map creation stands now, the sizing of the grid
cells is also manual. Although manual sizing is fine, it would be better to have a
default size that would be proportional to the size of the lake. For example, the

Chapter 6: Custom map creation 51

(a) First method (b) Second method

Figure 6.4: Alternative map creation methods

default size of the grid could be calculated based on the height or width, and en-
sure that the amount of cells were within a meaningful boundary.

As readers familiar with Mjøsa have probably noticed, the island Helgøya is
missing from some of the figures. This island is located in the middle of the widest
part of Mjøsa, as can be seen on Figure 5.2a. The reason that the island is not
included is that only the exterior coordinates of the maps are included in the pro-
cessing. This means that any shapes completely enclosed in a lake, like an island,
is not included. When the interior shapes were included, the server would throw
errors. Some attempts were made at addressing the errors, but a viable solution
was not achieved by the deadline. This issue is not detrimental, but a user that
wishes to inspect the ice conditions surrounding the island may have problems
locating the exact subdivisions which border the island.

The last issue in the map creation process is the occurrence of disproportion-
ately small subdivisions. The map generation process guarantees that subdivisions
have two or more points, but this means that any shape with at least 3 points is
considered adequate. This poses a problem when the average subdivision consists
of, for example, 50 points. These small subdivisions are difficult to spot and select
in the application. Ideally, subdivisions any smaller than a tenth of the average
subdivision size should have been merged with the nearest larger subdivisions.
Implementing this approach could have mitigated the occurrence of dispropor-

52 IceMap: Bachelor thesis report

tionately small subdivisions. This implementation would require logic to determ-
ine which subdivision is the closest and most meaningful to merge the smaller
subdivision with.

Chapter 7

Sensor and API implementations

7.1 Drone

For the Drone, the group choose to utilize the DJI Metrice 3001 leveraging its pre-
existing functions for automated flight, waypoint navigation, and POI manage-
ment as mentioned in section 4.3. Additionally, DJI offers their own SDK2 provid-
ing users with the option to customize their applications for greater control over
drone operations.

Alternatively, for drones other than DJI Metrice 300 that lack built-in auto-
mation functions, the group recommends utilizing QGroundControll (QGC) flight
navigation software along with the PX4 extension. This combination offers en-
hanced automation and stabilization capabilities.

7.2 LIDAR files

The LIDAR is configured to scan a designated area upon reaching a specified co-
ordinate. Data from the scan is then saved and stored in its memory. If a file already
exist, the LIDAR will overwrite it. The saved file is named to identify the measured
area, with a folder named after the name of the water body. The file itself will start
with "measurement_id_" followed by the ID of the measurement coordinates.

Currently, stored files are transferred manually when the drone returns to its
station. Although the system has the capability for automatic transfer, this feature
has not yet been implemented.

While code was developed for Arduino implementation, since the group switched
hardware to the system from DJI Matrice 300. Consequently updating the LIDAR
data must be done manually. This process involves naming the Log ASCII Standard

1https://enterprise.dji.com/matrice-300?site=brandsitefrom=recommended
2https://developer.dji.com/mobile-sdk-v4/

53

54 IceMap: Bachelor thesis report

zip (LAZ) file from the LIDAR after the ID of its measurement coordinate ("meas-
urement_id_{ID_OF_MEASUREMENT}"), then moving it to the folder with the lake
name of the measurement "server/lidar_data/{LAKENAME}/". If file already ex-
ist, it must be overwritten. Here is an example of how the path would look if a
scan of Mjøsa with coordinate ID 3 was added: "server/lidar_data /mjøsa/meas-
urement_id_3".

7.3 LIDAR data processing

During the LIDAR’s imagery process, it captures a designated zone around it. By
utilizing known coordinates and the size of captured zone, specific ice portions
observed on the map can be identified. This determination involves calculating
coordinates relative to the LIDAR data’s coordinates, demanding processing it as
a relative estimation within the file.

7.3.1 First method

Our initial approach to connecting the LIDAR data with the application map in-
volved converting the designated area on the application’s map into the LIDAR
coordinate system using vectors. The group determined the relative sizes by util-
izing Equation (7.1)

A1 = B − C

A2 = G − F

P2 = (P1 − C1) ·
�

A2

A1

�

+ (P1 − C2) + C2,

(7.1)

where P2 is a vector in the LIDAR coordinate system, P1 is a vector in the map
coordinate system, A2 and A1 are coordinate limits of the LIDAR and map re-
spectively, B and C represents the top-right and bottom-left corners of A1, and G
and F for A2’s top-right and bottom-left corners, C1 signifies the center of A1 and
C2 represents the center of A2. This these points are displayed in Figure 7.1 and
demonstrated in pseudo code in Code listing 7.1.

Chapter 7: Sensor and API implementations 55

Figure 7.1: LIDAR trial calculation model

Despite our efforts, stress testing with real coordinates revealed inconsisten-
cies, likely due to memory issues rather than calculation error. The data often re-
turn incorrect values when dealing with decimals. To address this, we considered
rounding and converting back to integer before converting back to to floats to
prevent memory leaks. However, due to the these inconsistencies, we ultimately
decided to abandon the approach displayed in 7.1.

Code listing 7.1: Identify world coordinates relative to LIDAR coordinates

def position_relative_to_pointcloud(A1, P, C1, A2):
minA1, maxA1 = A1
minA2, maxA2= A2
minP1, maxP1 = P1
C2 = tuple((a+b)/2 for a, b in zip(l1,l2))

return [
((p1[0] - C1[0]) * ((minA1[0] - maxA1[0]) / (maxA2[0] - minA2[0])) + C2[0],
(p1[1] - C1[1]) * ((minA1[1] - maxA1[1]) / (maxA2[1] - minA2[1])) + C2[1])

,
((p2[0] - C1[0]) * ((minA1[0] - maxA1[0]) / (maxA2[0] - minA2[0])) + C2[0],
(p2[1] - C1[1]) * ((minA1[1] - maxA1[1]) / (maxA2[1] - minA2[1])) + C2[1])

,
]

7.3.2 Current method

We adopted a different approach: gridding the LIDAR data similarly to the map’s
grid, assuming that each division represented the same area on both the LIDAR
scan and the map’s subareas. The LIDAR and subareas were merged as demon-

56 IceMap: Bachelor thesis report

strated in Code listing 7.2, and compared with the application map to determine
which scanned area corresponds to which part of the application map. To ensure
the accurate merging of the two grids, it was essential that the scanned area size
matched the map’s subarea size. This was achieved by storing the dimensions on
each subarea for each lake’s data. During processing, these dimensions were used
by a flexible function to allocate scanned points into their corresponding subareas,
considering the area size, scan position, and the number of grids, as demonstrated
in Code listing 7.3.

This approach proved more efficient than finding relative positions from map
to LIDAR coordinates. Although it introduced potential issues, such as multiple or
no grids corresponding to a map grid, the group addressed these by finding the
closest center within the scan grids to the map grid. This was done by comparing
the distance between center coordinates using the distance formula between two
points (7.2)

d =
Æ

(x2 − x1)2 + (y2 − y1)2, (7.2)

and allowing for adjustable grid sizes.

Code listing 7.2: Zip grid of map positions and LIDAR data

...
define all the sub-areas within the area, local coordinates
grid_sub_area = define_gridareas(center[0], center[1],

(cell_x, cell_y),grid_size)
define all the sub-areas within the area, LIDAR coordinates
grid_area_lidar_heights =

define_grid_lidardata((min_point, max_point), grid_size, ice_points)

zip together the two list
sub_area_heights = list(zip(grid_sub_area, grid_area_lidar_heights))
...

Chapter 7: Sensor and API implementations 57

However, the group faced challenges with converting distances in meters to
coordinates because coordinates do not represent distance. This was resolved by
using a function called calculate_corners, as shown in ??, which used a formula
provided by Numan Karaaslan as mentioned in chapter 6 to accurately create each
grid as show on Code listing 7.3.

Code listing 7.3: griding of scanned area

separate the zones into smaller area, into a grid
def define_gridareas(lat, lng, area_offset, grid_size):

...

find the center coordinates of each area in grid to find the corner areas
for y in (range(grid_size)):

relative_size_lat = y / grid_size # relative y position on grid
for x in (range(grid_size)):

relative x position on grid
relative_size_lng = x / grid_size
lat_pos = main_area[3][0] + relative_size_lat *

area_size[0] + dist_to_subcenter[0]
lng_pos = main_area[3][1] + relative_size_lng *

area_size[1] + dist_to_subcenter[1]

use the center of sub areas to find the corner of each subarea
subarea_offset = (subarea_offset_lng, subarea_offset_lat)
corners = calculate_corners(lat_pos, lng_pos, subarea_offset)
grided_area.append(corners)

return grided_area

58 IceMap: Bachelor thesis report

7.3.3 Thickness calculation

To determine the thickness of the ice using LIDAR data, the group utilized the
points collected from the LIDAR. This involves comparing points with identical
XY coordinates and filtering out those lacking a counterpart. Subsequently, the
difference between the Z coordinates of points sharing the same XY coordinates
was calculated to determine the ice thickness, as demonstrated in Code listing 7.4.
In zones where multiple ice thickness exist, the smallest thickness in that zone is
considered to determine the safety of the area. While this method may not be the
most sophisticated, the group considers it the best course of action to mitigate the
uncertainties of traversing the ice.

Code listing 7.4: Identify and calculating ice thickness if identical coordinates

def find_height(points):
...
sort the points
sorted_coords = sorted(points, key=lambda coord: (coord[0], coord[1]))

group the sorted points that has the same xy- coordinates together
groupCoords = [list(group) for key, group in

groupby(sorted_coords, key=lambda coord: (coord[0], coord[1]))]

loop through the groups to find the difference in height
for group in groupCoords:

if len(group) < 2 or group[0] == group[1]:
jump over iteration if there is only one coordinate or
LIDAR registered the same point twice
continue

find max and min Z-position of group
min_height = min(coords[2] for coords in group)
max_height = max(coords[2] for coords in group)

difference between them
difference = max_height - min_height
height_differences.append(difference)

list of thickness in an area
return height_differences

7.3.4 Reflection

Integration of third-party hardware proved more challenging than anticipated.
Despite the system’s flexibility, combining multiple third-party components proved
difficult. Limited resources, including documentation, hindered seamless integra-
tion. Additionally, compatibility issues stemming from differences in protocols and
interfaces complicated the process, Despite our efforts, time and resource con-
straint prevented complete integration within this thesis. Acquiring these hard-
ware would allow us to further develop and explore the DJI’s payload SDK and
mobile SDK development for a more automatic implementation rather than the
current manual implementation handling files.

Chapter 7: Sensor and API implementations 59

Moreover, our current ice thickness calculation model, while functional, is
rather simple and lacks complexity. Because it primary relies on the XYZ-coordinates
in a plane disregarding various factors like light diffusion upon colliding with ice,
snow layers on top of the ice surface and diverse type of ice layers by utilizing
the intensity data provided by the LIDAR. Addressing these complexities requires
collaboration with researchers in this field, the group could refine our models.
Integrated more comprehensive data processing techniques, and enhance the ac-
curacy and reliability of our ice thickness measurement.

60 IceMap: Bachelor thesis report

7.4 Implementing model given by NVE

To work with the computational model obtained from NVE, several smaller func-
tions have been developed. These functions are designed to interact with the front-
end interface of the system. The main objective is to create and store data files
that include estimated ice thickness and types, making this information readily
available for any part of the system that needs access.

Code listing 7.5 is an example of how the NVE model is applied to calculate
data for different subdivisions. The code fetches subdivision IDs and their coordin-
ates, filters data for specific dates, and then converts this information into a JSON
format to be stored in a designated folder.

Code listing 7.5: Using the NVE model

sub_divs = get_subdiv_ids_n_cords(location)
filtered_data_for_dates = [(i[0], get_raw_dates\

(ice_prognosis_raw_data(sub_div_id=i[0], x=i[1], y=i[2]), from_date, to_date))\
for i in sub_divs]

jsonify_data_sub_div_ids("skumsjoen", \
filtered_data_for_dates, location = se.plot_folder)

This approach ensures that data generated by the ice prediction model is
stored and ready to be accessed by the front-end without delay. This is partic-
ularly important because retrieving weather data from the SeNorge API, which is
used in these calculations, can be time-consuming when dealing with hundreds of
subdivisions. Therefore, by preparing the data in advance, thus ensures the sys-
tem being able to operate more efficiently without having to wait for live API calls.

The calculation model used is a critical part of how the system predicts ice
conditions. As shown in Code listing 7.6, the function requires several parameters
including weather data from the SeNorge API, location data, time stamps based
on time and place, and icerun dates which are supplied through the Sentinel Hub
API (more about Sentinel Hub implementation here section 7.5).

Code listing 7.6: NVE Calculation function

def calculate_ice_cover_air_temp(inn_column_inn, date, temp, dh_sno, cloud_cover=
None, time_step=60*60*24,

icerun_dates=[]):
"""
Last update: 12.02.2024 aask

:param inn_column_inn: [IceThickness] Initial ice column for modelling.
:param date: [] dates for plotting
:param temp:
:param dh_sno: [] new snow over the period (day)
:param cloud_cover:
:param time_step: [int] fixed time step of 24hrs given in seconds

Chapter 7: Sensor and API implementations 61

:param icerun_dates [] dates when an ice run has cleaned the river for ice.
- Ice reset to ice free

:return:
"""

To make the subdivisions fit into the calculation model and using the SeNorge
helper functions provided by NVE, it is simply a matter of ensuring the coordin-
ates and time frames align properly with the model’s expectations. This process
involves converting geographical coordinates to Universal Transverse Mercator
coordinate 33 (UTM 33) system and calculating the appropriate dates for data
processing. The code snippet shown in figure Code listing 7.7 demonstrates how
these adjustments are made within the system to fit the prediction model’s re-
quirements.

Code listing 7.7: Handeling sub_div area and time

def ice_prognosis_raw_data(to_date=None, sub_div_id=0, x=10.70, y=60.81,
altitude=0, awt=[], mf=0, icerun_dates=[]):

current_date = dt.datetime.now()

if current_date.month < 10:
from_date = dt.datetime(current_date.year - 1, 10, 1)

else:
from_date = dt.datetime(current_date.year, 10, 1)

if to_date is None or to_date > dt.datetime.now():
to_date = dt.datetime.now() + dt.timedelta(days=7)

tyear, tmonth, tday = from_date.year, from_date.month, from_date.day
if tmonth > 7 and tday < 7:

tyear += 1

first_ice = ice.IceColumn(from_date, [])
first_ice.add_metadata(’LocationName’, sub_div_id) # Using sub_div_id as the

location name for metadata
observed_ice = [first_ice]

make the x and y into utm 33 from lon lat
cords = utm.from_latlon(x, y, 33)
x, y = int(cords[0]), int(cords[1])

check if utm is valid
if validate_cords(x, y) is False:

return None

...

In using the calculated ice cover, it is important to classify the raw data into
different ice types, which are then compiled into comprehensive daily records.
These records are meant for front-end use but can also provide a historical over-
view of ice growth. This process is shown in this Code listing 7.8 code where the
calculate_ice_cover_air_temp function has been called and then data neces-
sary for the front-end is extracted.

62 IceMap: Bachelor thesis report

Code listing 7.8: Using NVE to get wanted data

def ice_prognosis_raw_data(to_date=None, sub_div_id=0, x=10.70, y=60.81,
altitude=0, awt=[], mf=0, icerun_dates=[]):

...
Building request
...

calculated_ice = it.calculate_ice_cover_air_temp(copy.deepcopy(first_ice), date
, temp, sno, cloud_cover=cc, icerun_dates=icerun_dates
)

...
Classify ice
...
data = []

for date, slush, black, total, snow2, sno_tot2, cc2, temp2 in zip(dates,
slush_ice, black_ice, total_ice, sno,

sno_tot, cc,
temp):

daily_data = {
"Date": date.strftime("%Y-%m-%d"),
"Slush␣ice␣(m)": round(slush, 3),
"Black␣ice␣(m)": round(black, 3),
"Total␣ice␣(m)": round(total, 3),
"Snow␣depth␣(m)": round(snow2, 3),
"Total␣snow␣(m)": round(sno_tot2, 3),
"Cloud␣cover": round(cc2, 3),
"Temperature␣(c)": round(temp2, 3)

}
data.append(daily_data)

return data

These functions and data handling methods help ensure that the system can
effectively predict and manage ice conditions using the NVE model, maintaining
efficient and timely access to critical environmental data.

Further work on the model would focus on providing the option to include av-
erage water temperature. Currently, the model uses hardcoded values from NVE
for this purpose. While magnetized strip sensors would be ideal for measuring
average water temperature, both the average water temperature data and the
magnetized strip sensors are still experimental. Therefore, further testing and de-
velopment are needed to fully integrate these features into the model.

7.5 Using Sentinelhub to get icerun dates

The primary function of the Sentinelhub API is to gather details about the pres-
ence of ice within specified BBox. Once the data is retrieved, it is saved to CSV
files for each BBox. This information is then used to supply the NVE model with
estimates of ice runs by finding the nearest BBox to any given point required by

Chapter 7: Sensor and API implementations 63

the NVE model. This section explains how this process is carried out.

Working with the Sentinelhub framework allows for making detailed requests
using their statistical API to analyze every pixel within a specified frame. This cap-
ability is demonstrated with the statistical_request_sentinel function shown
in Code listing 7.9. For such requests, a configuration and an evalscript are essen-
tial. These configurations can be accessed and set up within Sentinel Hub’s own
dashboard, detailed in [31].

To access the statistical API, at least the exploratory pricing plan is necessary.
If usage exceeds the allocated amount for the exploratory tier, an upgrade will be
required. For testing purposes, a free account can be created which remains active
for 30 days. More information about accessing configurations in Sentinel Hub can
be found in [31].

Code listing 7.9: Sending request to Sentinel Hub

def statistical_request_sentinel(config, evalscript, time_interval, maxcc, bbox):
try:

request = SentinelHubStatistical(
aggregation=SentinelHubStatistical.aggregation(

evalscript=evalscript,
time_interval=time_interval,
aggregation_interval="P1D"

),
input_data=[

SentinelHubStatistical.input_data(
data_collection=DataCollection.SENTINEL2_L1C,
maxcc=maxcc

)
],
bbox=bbox,
config=config,

)

stats = request.get_data()

dfs = [stats_to_df(polygon_stats) for polygon_stats in stats]

return pd.concat(dfs)

except Exception as e:
print(f"Something␣is␣wrong␣with␣request,␣error:␣{e}")
return None

This code snippet outlines how to set up and execute a statistical data request us-
ing Sentinel Hub’s API. The function initializes a request with specific parameters
such as the evalscript, time interval, maximum cloud coverage, and geographic
bounding box. It then processes and converts the retrieved data into a format
suitable for further analysis. If an error occurs, it catches the exception and noti-
fies the user when running the function to update the iceruns.

64 IceMap: Bachelor thesis report

To determine the ice runs, the necessary coordinates are provided, and then
running a function called get_closest_bbox_and_id sequentially searches through
every bounding box (BBox) listed in a JSON file. It finds the closest BBox and uses
a file with information for the found BBox to retrieve the ice runs for a season.
Although this process may take longer with an increased number of BBoxes in the
JSON file, the function only needs to run concurrently with the NVE model. Since
the NVE model does not need to operate continuously, it is feasible to run both
tasks simultaneously without affecting the front-end operations.

Code listing 7.10: Getting ice runs for an cordinate

location for an given box and returns the closest box cordinates and the id of
the box

lon, lat = 10.66, 60.95 # mjos
closest_box, box_id = box_funcitons.get_closest_bbox_and_id(lon, lat)

data = read_from_csv(f"bbox_sat_data/lake_{box_id}")
icerundates = get_ice_run_dates(data)

This Python snippet in Code listing 7.10 demonstrates how to find the closest
bounding box based on given longitude and latitude coordinates and then how
to read and interpret satellite data associated with that bbox to determine ice run
dates. This method ensures that the NVE model receives timely and accurate up-
dates about ice conditions, crucial for its operations.

To update of the information for each BBox and their ice runs, a function (see
Code listing 7.11 is designed to manage updates. This function handles reading
from a CSV file that stores satellite data per BBox. If the file does not exist, it
creates a new one. If it can read an existing file, the function retrieves the date of
the last recorded image. It then uses this date to make a request to Sentinelhub,
fetching all new images from that date to the current day. The decision to retrieve
images is based on the cloud coverage percentile. It determines if the pictures are
clear enough when the satellite takes pictures of the BBoxes. As a note, it also
means if there are cloudy periods, trying to update the ice runs will try and fail to
receive any data causing large discrepancies in the data.

Code listing 7.11: Updating the iceruns

def update_to_most_recent(file, BBox, evalscript = evalscript.lake_ice_index, maxcc
= 0.4):

""" if file exists, tries to get the most recent date. uses that date to do get
all dates until now. Appends that data to the file

if the file does not exist. create a new one and put all data into it. """
try:

data = pd.read_csv(f"{file}.csv")
last_date = get_last_date(data)
today = dt.datetime.now().strftime("%Y-%m-%d")

data = statistical_request_sentinel(config= sentinel_config.config,
evalscript=evalscript,

Chapter 7: Sensor and API implementations 65

time_interval=(last_date, today),
maxcc=maxcc, bbox=BBox)

if data is not None and data.empty is False:
data = classify_ice(data)
append_data_to_csv(file, data)

return

except FileNotFoundError:
last_date = get_last_date(None)
today = dt.datetime.now().strftime("%Y-%m-%d")

data = statistical_request_sentinel(config=sentinel_config.config,
evalscript=evalscript,

time_interval=(last_date, today),
maxcc=maxcc, bbox=BBox)

if data is not None:
data = classify_ice(data)
save_data_to_csv(file, data)

return

Improvements in fetching ice run data from Sentinel Hub could focus on refining
the evalscript and the method of labeling the data. A more detailed discussion
about adjusting the evalscript can be found in the next chapter, referenced here
7.6. Currently, labeling is based on specific values of variation in each image used
in the statistical request. These values are meticulously chosen after reviewing
three years of data for Mjøsa, assessing the standard deviations and corresponding
conditions. Mislabeling typically occurs when the ice breaks as both ice breaking
and clouds can have high standard deviations.

Ice runs are identified by interpolating dates when the water state of a BBox
changes while filtering out cloudy days. However, filtering for clouds can lead to
errors since cloudy images often show high standard deviations that don’t accur-
ately reflect changes in water state. During ice breakage, these deviations may
indicate broken ice or ice patches, potentially mislabeling ice run dates. While
mislabeling during ice breakage isn’t a significant safety concern—it is apparent
that ice with large visible breaks is unsafe—it can cause inaccuracies in the model,
especially when the model resets ice runs during cloudy winter days when the ice
isn’t actually breaking. This does not pose a safety risk, but it could make the
model less accurate than if the ice runs were used at all.

Ice run dates are calculated by interpolating changes in conditions and filtering
out non-representative data (see ??).

Code listing 7.12: Getting iceruns based on state of water changeing

def get_ice_run_dates(data):
""" Get the dates for when the ice is on and of"""
""" Interpolates the date between two dates where the state for the

ice_condition changes, "does count cloudy days " """
ice_run_dates = []

66 IceMap: Bachelor thesis report

Iterate through the DataFrame to find condition changes
for i in range(len(data) - 1):

current_condition = data.iloc[i][’ice_condition’]
next_condition = data.iloc[i + 1][’ice_condition’]

Check if there is a change in condition, skipps clouds during fall, but
assumes clouds to be breaking ice

if it is after ice as the cloud labeling has a probability to be caused
by ice breakage.

if current_condition != next_condition and (current_condition,
next_condition) not in \

{(’No␣ice’, ’High␣probability␣of␣Cloud’), ("High␣probability␣of␣
Cloud", "No␣ice")}:

Interpolate the date between the current interval_to and the next
interval_from

current_to = pd.to_datetime(data.iloc[i][’interval_to’])
next_from = pd.to_datetime(data.iloc[i + 1][’interval_from’])
midpoint_date = current_to + (next_from - current_to) / 2
ice_run_dates.append(midpoint_date.strftime(’%Y-%m-%d’))

return ice_run_dates

Code listing 7.12 demonstrates a method for detecting significant changes in ice
conditions by interpolating between known intervals of change, while also ac-
counting for cloudy conditions to avoid misleading data. This approach helps en-
sure the accuracy of the NVE model by recording and considering only valid ice
runs, provided that the labels are recorded correctly.

7.6 Sentinel-hub eval script

The evalscript used in the statistical API from Sentinel Hub (see Code listing 7.13)
is written in JavaScript. When using an evalscript in the Sentinel Hub framework,
the first step is to declare the spectral bands used in the setup() function. To cal-
culate the ILI, the group need bands B04 (Red), B08 (NIR), B11 (SWIR1), and B12
(SWIR2), as well as the dataMask, which helps identify each valid pixel. The ILI
calculation takes place within the evaluatePixel function, where it is amplified
using a hardcoded contrast amplification variable discussed in this chapter (see
section 3.5).

Code listing 7.13: Evalscript for statistical request on sentinel hub

//VERSION=3

function setup() {
return {
input: ["B04", "B08", "B11", "B12", "dataMask"],
output: [{
id: "default",
bands: 1,
sampleType: ’UINT8’

Chapter 7: Sensor and API implementations 67

}, {
id: "dataMask",
bands: 1,
sampleType: ’UINT8’

}]
};

}

function evaluatePixel(sample) {
var Red = sample.B04;
var SWIR2 = sample.B12;
var NIR = sample.B08;
var SWIR1 = sample.B11;

var contrast = 120
var result = ((Red + SWIR2) / (NIR + SWIR1)) * contrast;

if (sample.dataMask === 1) {
return {
default: [result],
dataMask: [1]

};
} else {
return {
default: [0],
dataMask: [0]

};
}

}

This JavaScript code defines how the satellite data is processed using Sentinel
Hub’s capabilities. The evaluatePixel function is crucial; it applies the ILI to
calculate the result based on the selected bands and enhances it using the specified
contrast, as discussed in section 3.5. This function determines what each pixel in
the satellite images represents—whether it’s ice, water, or clouds—based on the
standard deviation of the selected area.

Chapter 8

Result and discussion

A system for automated ice thickness measurement and mapping was success-
fully created, meeting the municipality’s requirements. However, further develop-
ment is needed before the system can be fully deployed. This chapter reviews the
accomplished goals, evaluates their success and shortcomings, and outlines the
remaining tasks.

8.1 Result goals

A MVP and prototype were developed for the entire system. While the resulting
system addressed the municipality’s requirements, practical implementation and
hardware testing remains a future task. The prototype, though functional, con-
tained some minor bugs. Despite these bugs, all the selected requirements were
successfully implemented. Figure 8.1 shows some of the programming languages,
libraries, third party APIs, and SDKs which were utilized to create the result. The
figure is not exhaustive, but covers the more interesting technologies.

8.1.1 System requirements

The system requirements were comprised of six points as described in subsec-
tion 1.1.2. Of these points, five were fully implemented. The requirement which
was not fulfilled was the point on unit testing. The following subsections covers
the requirements which were met, while section 8.9 goes more into details of
remaining work.

Sensors

The goal of creating a solution for a mobile sensor was met. The system includes
code for processing raw LIDAR data, formatting it, and calculating estimations of
the ice thickness. An automation of drone flight path has been established, but

69

70 IceMap: Bachelor thesis report

Figure 8.1: A non-exhaustive diagram of programming languages, libraries, and
other technologies utilized to create the result.

not tested on an actual drone.

As discussed in section 4.6, the group could not find a fitting stationary sensor
solution. Magnetic strips were researched and considered, but did not adequately
fit the requirements of the system. Regardless, the system was made modular
enough to allow for relatively simple implementation of such a technology if it
were to become available.

SENTINEL-L2A satellite data and outputs from the NVE model were imple-
mented to server as a baseline for areas where a drone cannot be deployed. This
combination allows the system to gather information about when ice first estab-
lishes on lakes, and the current conditions of the ice. The data is updated every
few days.

Mobile application

The mobile application and color coded map were fully implemented. The map
worked as expected, but it still does not render fully enclosed islands. The statistics

Chapter 8: Result and discussion 71

widget below the map effectively displays details about the state of the lake ice,
both in the form of a chart and some text. The app was developed with usability
in mind, but user testing is yet to be conducted.

Data exportation

The application allows for exportation of the map data, but only as JSON format.
Since this data was intended for regular users, it could have been better to include
at least one second option like CSV, as the average user may not be familiar with
JSON format.

Response time and data exportation

Since the complexity of the system and data processing was unknown, the re-
sponse time served as an upper limit for the servers performance and the effi-
ciency of the server-app communication. As the required response time was set
at a generous 5 seconds, it was easily achieved. Each map data request takes up
to a few hundred milliseconds, resulting in a loading time of one to two seconds
for the application. This has been tested both with Postman and by launching the
app on a phyiscal device.

Unit tests

The unit tests were implemented with he help of the pytest framework. The asser-
tion of the exact test coverage of the system was complicated by the introduction
of the NVE model. As this model is technically a third party software, its code
was not intended to be covered by the unit tests. Since the group was primarily
interested in testing the code they themselves wrote, the NVE model reduces the
overall test coverage. Nevertheless, the total test coverage was 36%, which can be
verified by running pytest –cov. All the tests should pass, and take a few minutes
to complete.

Database

As the database was only intended for long-term archival, the design did not re-
quire a very complex implementation. It included only 4 entities with a few at-
tributes each. While SQLite may not be ideal for large-scale systems, it adequately
serves the needs of a smaller system. Given that IceMap’s expected usage is restric-
ted to municipality of Gjøvik, the existing database implementation is sufficient.
The database implementation can easily be expanded or replaced. An additional
database can also easily be added to store user credentials and facilitate a login
system. Since the current database was intended to be an archive of the ice data,
the group does not recommend that this database is also used for user credentials.

72 IceMap: Bachelor thesis report

Looking back at the choice of DBMS, it is worth to question weather a rela-
tional database was the best choice. The group anticipated that the data would
be more structured and require more complex connections. Considering the final
implementation, it seems that a non-relational DB could have been sufficient. If
the data structures remain more or less unchanged, a solution like AtlasDB or
Firebase could be implemented instead of SQLite. Otherwise, a relational DB like
SQLite or MySQL would remain a better choice.

8.2 Effect goals

If the system is deployed with the proposed sensor technologies, it can fully re-
move the need for manual measuring of the lake ice. This meets the desired effect
goals of the group. Despite this, it is not possible to achieve to reach routine con-
ditions outlined by DOT, but the LIDAR would be able to reduce the manual labor
by supplying measurements.

8.3 Learning goals

In terms of programming, the group learned a lot. Initially with little understand-
ing of mobile programming, the group gained enough knowledge to develop a
decent mobile application. The mobile development process also included new
insights into UI design and usability. The group has become far more familiar
with Python programming, data processing, and ice related theory. With this, the
group deems that the learning goals were reached.

8.3.1 Research of background theory

Researching the mechanics of ice formation and thickening was challenging due to
limited literature on freshwater ice. Understanding of multiple concepts relating
to physics was necessary to both interpret and utilize this research in a meaningful
manner and a lot of time have been spent on trying to comprehend the physics
behind ice. As few data sources were both freely available and relevant, the group
had to to utilize data from Canada, which has the most similar climate to Norway.

Interpretation of LIDAR data require converting the raw sensor data into a
suitable format. Moreover, discerning the significance of the output data was es-
sential to repurposed the data for the measuring of ice thickness, a purpose which
converged from its conventional use. These processes required the group to un-
derstand how LIDAR technologies work on a theoretical level.

Chapter 8: Result and discussion 73

8.4 Testing and quality assurance

Besides unit tests, a few other testing and quality assurance methods were em-
ployed. Postman was a heavily utilized tool for inspecting the JSON and GeoJSON
files which resulted from the map creation process. Given the visual nature this
process, Pyplot was very often used to visually inspect its results. As section 6.3 is
exemplary of, the results of the map creation were not only verified for the aes-
thetics, but also verified to be geographically accurate. Pyplot was also used to
plot the processed data derived from the NVE model.

8.5 Documentation and organization

Each component of the system is documented well. This includes comments, mod-
els, diagrams, a README file, and this report. The documentation not only served
the group in mapping out and planning the system, but also serves as a valuable
resource for future developers. The aim in creating this documentation was to al-
low easy and quick understanding of the system, thereby reducing the time and
resources required for future developers to familiarize themselves with the sys-
tem. Notably, the documentation includes an ER-diagram, domain model, system
architecture diagram, and a README file.

The README file lists and explains all the endpoints. This includes the meth-
ods and paths to the endpoints, as well as explanations of usage and required
parameters. The README also covers dependencies, known bugs, an open use
license agreement, and required setup for the development of the system.

8.5.1 GitLab repository and version control

All of the projects code is contained within a single GitLab repository. To ensure
smooth integration of code, it was forbidden to push directly to the main branch.
This branch was dedicated to keep a fully functional and integrated code base.
Each developer freely created new branches and pushed to those, but could only
introduce new code to ‘main‘ by first pulling the contents of ‘main‘ into their own
branch. Then, all merge conflicts would be resolved before pushing the branches
contents into ‘main‘. This strategy worked well, and allowed three different sets
of code to be integrated with minimal effort.

The group decided to push code to GitLab regularly and keep atomic com-
mits. This means that most of the codes history and progress is kept within the
repository’s history. Anyone who may wish to look further into the progression
of the development can look into the commit history of main or any of the other
branches. This feature was also actively used by the developers for version con-
trol. There were multiple instances where it proved useful to roll back to an earlier

74 IceMap: Bachelor thesis report

commit, and atomic commits certainly made this process easier.

Proper organization of the code structure and the GitLab repository1 was
maintained throughout the entire project. The codebase was organized for easy
navigation, sorted into files and folders with short and descriptive names. To aid
in navigating the codebase, one can also refer to the system architecture diagram
on Figure 2.5.

8.6 Sustainability

Developing with sustainability in mind is exceptionally important in a time of in-
creasing dependence on software. Although this project never set any formal goals
for sustainability, measures that improved the systems sustainability were taken.
Aspects like computational optimization, power usage, and proper documenta-
tion were taken into consideration. These were not only considered to improve
the quality of the result, but also to reduce the required resource usage. If the
project period was longer, the group would certainly have spent more time in op-
timization and efficient power usage. The resulting computational efficiency was
not ideal, and is probably one of the greater downfalls of the system.

Further research into ice behavior significantly contributes to broader climate
studies. This is crucial as the understanding of dynamics of ice is essential in un-
derstanding climate change. Automated data collection through advanced tech-
nologies like satellite imaging and use of drone equipped with LIDAR not only
reduces the need for physical expeditions but also enhances the efficiency and
breadth of data gathering. This approach allows for continuous monitoring of re-
mote and expansive ice-covered regions, contributing vital data for climate models
and predictions. A system like ice map can aid scientists in better understanding
and forecasting changes in ice. This can be useful in studying broader environ-
mental impacts, which are key for developing, mitigating and adapting to climate
change.

8.7 Method and process

As outlined in the pre-project plan, the group chose to use Kanban as the develop-
ment method. The group used a shared Kanban board on Jira to organize tasks on
a more detailed level, while a Gantt chart was created to organize the project on
a larger scale. The Gantt chart divided the entire timeline into four main phases:
planning, system modeling, implementation, and reporting. These phases forced
the group to work systematically and ensure a reasonable design before starting
the implementation. There were minor deviations from the expected start and end

1https://gitlab.stud.idi.ntnu.no/sarasdj/prog2900

Chapter 8: Result and discussion 75

dates, but such deviations were within anticipated bounds. The project plan was
otherwise followed almost step by step.

Two to three physical meetings were held weekly. In two of the weekly meet-
ings, the group discussed the overall advancement of the project progression. This
time was also used to ensured that the group members were up to date on each
other’s contributions. The third weekly meeting included the two academic ad-
visors, and discussed the groups progression, ideas for the system, and general
feedback. To reiterate, the pre-project plan contains more detailed descriptions
of the entire method and the project phases. It also includes a short risk analysis
and more in depth discussions about the choice of programming technologies and
usage of GitLab.

The division and allocation of the three main areas of the project also worked
well. Each member was able to work independently within their assigned area,
while maintaining active communication during the weekly meetings. The project
organization worked perfectly, as it effectively managed organization, progres-
sion, administration, and related areas without any noteworthy problems.

8.8 AI usage

AI was primarily used in three ways in the coding process: learning, debugging,
and generating test data. To allow the group to quickly learn Dart and Python,
ChatGPT was consulted for explanations of unfamiliar topics and syntax. During
the earlier stages of the application programming, ChatGPT was often asked to
generate code, but this habit quickly waned as the group gained understanding of
the Dart syntax and general workings of mobile applications. Any code that was
initially generated by AI was altered, and never used as-is. Eventually, the group
came to rely more on documentation, tutorials, and code examples. Tutorials and
documentation like the one used to render the color coded map provided more
compressive explanations.

When debugging tools proved insufficient for identifying or understanding
bugs, ChatGPT was sometimes conferred. The bugs that ChatGPT was asked to fix
were usually simple mistakes in syntax or logic that had evaded the developers.
ChatGPT is very limited in its ability to identify bugs. Multiple instances arose
where AI was the first attempt at identifying a bug, but proved to be entirely use-
less. For example, ChatGPT was unable to identify a bug that causes the shape
selection of the map to not work. This bugs was eventually addressed by review-
ing the code logic and reading documentation. Other bugs were fixed by reviewing
existing code with similar logic, or completely scrapping the bug-riddled imple-
mentation.

ChatGPT was also asked to produce some test data. This use of ChatGPT was

76 IceMap: Bachelor thesis report

probably the most valuable. Figure 8.2 shows one example of a prompt and out-
put where we asked ChatGPT to produce a few lines of test data for the database.
In addition to coding aid, AI was used as writing aid. To improve the flow and
formulation of the report, some paragraphs were passed through ChatGPT 3, but
no text was fully generated by ChatGPT except for the license agreement in the
README. All text that passed through the AI was of course vetted for mistakes
and corrected.

Figure 8.2: Example of AI generated test data

AI certainly saved the group time, mostly by identifying simpler problems,
working like a quick search engine for learning Python and Dart, and generating
test data. Various online tutorials and forums like StackOverFlow were often more
useful tools for more comprehensive tasks.

8.9 Future work

Since the unit test coverage requirements was not fulfilled, the coverage should
be increased by the inheritors of this project. Additionally, some of the problems

Chapter 8: Result and discussion 77

which have been pointed out throughout this report should be addressed.

8.9.1 Sensors

The current thickness calculation method relies solely on the LIDAR’s coordinated
data, overlooking the potential benefits of utilizing the intensity data. Incorpor-
ating LIDAR’s intensity data could significantly enhance ice thickness measure-
ments, allowing for a more accurate assessments and differentiation of various ice
layers. Additionally, intensity could aid in identifying debris within water or ice.
Identifying debris has a potential to be expanded to create a rescue search system.

In terms of file management, achieving seamless integration for handling sensor
data could be accomplished through automated processes rather than manual
intervention. Utilizing the mobile SDK to develop a program for the drone to
autonomously manage the files, aligning with our initial vision when creating the
Arduino program. This approach would enhance the efficiency and is less prone
to errors.

8.9.2 SentinelHub

Once the previously mentioned concrete numbers and training data [2] become
accessible, using the same SVM to categorize ice will be an improvement. This will
eliminate the need to manually fit BBoxes within a lake, resulting in more precise
coordinates instead of interpolated ones. Additionally, enhancing the evalscripts
for statistical analysis on ice will be possible once the SVM evalscripts are avail-
able. Moreover, utilizing SENTINEL-1 to penetrate cloud cover, despite its lower
resolution and data availability, could be beneficial. Clouds often hinder satellite
observations, so this approach could enhance data availability despite the lower
quality.

8.9.3 Mobile app and map

As discussed in chapter 6, there are some shortcomings of the map generation pro-
cess. These shortcomings are not detrimental, but they do negatively impact the
user experience. These include the occurrence of disproportionately small subdi-
visions, not including fully enclosed geometries, and the partially manual process
of adding new lakes. The design implementation of the application is fairly neat,
but the app still requires usability testing and the inclusion of high contrast color
themes. While these were omitted from the requirements due to time constraints,
usability and accessibility must be ensured before deployment. Although the col-
oring in the map is based on the black ice thickness, it is admittedly a very basic
implementation and could be improved by taking additional factors into account.

78 IceMap: Bachelor thesis report

8.10 Alternative use cases

The application itself is not restricted to use in Norway. As long as the Overpass
API or other suitable APIs can provide relation data for a given lake, it can be
added to the system. All the code and documentation is written in English, which
would allow non-Norwegian speakers to utilize any parts of the result. The only
part of the system that pertains to Norway is the NVE model. The NVE model is
included in the process of deciding the map colors, but could easily be omitted to
only rely on sensor input. The model could also be swapped out with an alternat-
ive data source. Although the system was developed for usage on lakes, it may be
suitable for other bodies of water too, including saltwater bodies.

The color coded map and the application could in theory be used for purposes
other than measurement of ice thickness. The application could for example be
modified to map flooding during summers. Any shape file could be added to the
server, so it is not even restricted to lake shapes. Other geographical shapes like
rivers or even countries could be mapped.

As the system logs and archives ice data, it provides a valuable resource for
researching ice thickness and climate. All gathered data is saved, including meas-
urements, timestamps, average thickness within each subdivision, and all indi-
vidual measurements used in these averages. The ice run data and estimated ice
thickness calculated with the NVE model are also stored in logs.

Chapter 9

Conclusion

Most of the goals that the group set out to achieve were met. The project resulted
in a server that utilizes sensor and API data to determine ice thickness, and a mo-
bile application that displays the processed data on a custom map. However, the
practical functionality of the system still needs to be tested and deployed. Consid-
ering that the system was designed and developed entirely from scratch, and the
groups initial lack of knowledge in ice, sensors, and mobile programming, we are
pleased with the outcome and feel our expectations were met.

To address the remaining components of the project, we believe that enlisting
experts is essential. This includes an expert in ice safety, whether a scientist or
an experienced citizen, and ideally an electrical engineer with expertise in sensor
technologies. Collaborating with such individuals will allow for the implementa-
tion of a more comprehensive ice assessment system that considers more factors
than just the ice thickness. Nonetheless, we have provided a solid foundation for
collecting, processing, and communicating data to the residents of Gjøvik. We are
eager to see how the municipality continues to develop the IceMap system and
the impact it will have on the citizens of Gjøvik.

79

Bibliography

[1] ‘My aurora forecast,’ jRustonApps B.V. (2024), [Online]. Available: https:
//play.google.com/store/apps/details?id=com.jrustonapps.myauroraforecast&
pli=1 (visited on 16/05/2024).

[2] G. D. Ashton. ‘Ice in lakes and rivers - formation, thickness, melting,’ Britan-
nica. (2007), [Online]. Available: https://www.britannica.com/science/
lake-ice/Ice-growth (visited on 08/05/2024).

[3] NVE. ‘Stålis,’ varsom.no. (n.d.), [Online]. Available: https://www.varsom.
no/is/isskolen/istyper/stalis/ (visited on 02/05/2024).

[4] J. H. Halleraker, stålis, in Store norske leksikon, 15th Oct. 2023. [Online].
Available: https://snl.no/st%C3%A5lis (visited on 07/05/2024).

[5] ‘Våris,’ NVE. (n.d.), [Online]. Available: https://www.varsom.no/is/
isskolen/istyper/varis/ (visited on 08/05/2024).

[6] ‘Istykkelse og bæreevne,’ NVE. (n.d), [Online]. Available: https://www.
varsom.no/is/isskolen/istykkelse-og-baereevne/ (visited on 09/05/2024).

[7] K. Valtonen. ‘Praktisk isbedömning, lektion 5 - sammanvägd bedömning.’
(2003), [Online]. Available: https://www.thinkice.com/glaciology/
sv/praktiskisbedomning/sammanvagd/index.htm (visited on 09/05/2024).

[8] Department of Transportation of the Government of the Northwest Ter-
ritories, Guidelines for safe ice construction, Department of Transportation,
2015. [Online]. Available: https://www.inf.gov.nt.ca/sites/inf/
files/resources/0016-001_norex_ice_road_constr._web.pdf (visited
on 23/03/2024).

[9] A. Fitzgerald and W. Janse van Rensburg, Limitiations of gold’s formula for
predicting ice thickness requirements for heavy equipment, 2015. [Online].
Available: https://tspace.library.utoronto.ca/bitstream/1807/
129630/1/cgj-2022-0464.pdf (visited on 24/03/2024).

[10] ‘Om iskart.no,’ NVE. (n.dm), [Online]. Available: https://www.varsom.
no/is/om- is/kart- og- observasjoner/om- iskart- no/ (visited on
14/01/2024).

[11] C. Lussana, seNorge observational gridded datasets. seNorge_2018, version
20.05, 5th Aug. 2020. arXiv: 2008.02021[physics]. [Online]. Available:
http://arxiv.org/abs/2008.02021 (visited on 09/05/2024).

81

https://play.google.com/store/apps/details?id=com.jrustonapps.myauroraforecast&pli=1
https://play.google.com/store/apps/details?id=com.jrustonapps.myauroraforecast&pli=1
https://play.google.com/store/apps/details?id=com.jrustonapps.myauroraforecast&pli=1
https://www.britannica.com/science/lake-ice/Ice-growth
https://www.britannica.com/science/lake-ice/Ice-growth
https://www.varsom.no/is/isskolen/istyper/stalis/
https://www.varsom.no/is/isskolen/istyper/stalis/
https://snl.no/st%C3%A5lis
https://www.varsom.no/is/isskolen/istyper/varis/
https://www.varsom.no/is/isskolen/istyper/varis/
https://www.varsom.no/is/isskolen/istykkelse-og-baereevne/
https://www.varsom.no/is/isskolen/istykkelse-og-baereevne/
https://www.thinkice.com/glaciology/sv/praktiskisbedomning/sammanvagd/index.htm
https://www.thinkice.com/glaciology/sv/praktiskisbedomning/sammanvagd/index.htm
https://www.inf.gov.nt.ca/sites/inf/files/resources/0016-001_norex_ice_road_constr._web.pdf
https://www.inf.gov.nt.ca/sites/inf/files/resources/0016-001_norex_ice_road_constr._web.pdf
https://tspace.library.utoronto.ca/bitstream/1807/129630/1/cgj-2022-0464.pdf
https://tspace.library.utoronto.ca/bitstream/1807/129630/1/cgj-2022-0464.pdf
https://www.varsom.no/is/om-is/kart-og-observasjoner/om-iskart-no/
https://www.varsom.no/is/om-is/kart-og-observasjoner/om-iskart-no/
https://arxiv.org/abs/2008.02021 [physics]
http://arxiv.org/abs/2008.02021

82 IceMap: Bachelor thesis report

[12] ‘Sentinel-2 - missions - sentinel online,’ Sentinel Online, European Space
Agency. (2022), [Online]. Available: https://sentinel.esa.int/web/
sentinel/missions/sentinel-2 (visited on 20/04/2024).

[13] ‘Copernicus sentinels help classify river ice - sentinel success stories - sen-
tinel online,’ European Space Agency. (28th May 2020), [Online]. Avail-
able: https://sentinels.copernicus.eu/web/success- stories/-
/copernicus-sentinels-help-classify-river-ice (visited on 20/04/2024).

[14] K. Chastko. ‘Custom-scripts/sentinel-2/snow_cover_change at main · sentinel-
hub/custom-scripts · github.’ (2022), [Online]. Available: https://github.
com/sentinel- hub/custom- scripts/tree/main/sentinel- 2/snow_
cover_change (visited on 11/03/2024).

[15] R. Jugier, R. Cremese, H. Fournier, N. Duran Gomez, G. Salgues and C.
Thenoz, On water and ice classification from sentinel-2 imagery using ma-
chine learning, 19th Oct. 2022. DOI: 10.1002/essoar.10512606.1. [On-
line]. Available: https://essopenarchive.org/doi/full/10.1002/
essoar.10512606.1 (visited on 20/04/2024).

[16] ‘Sentinel-2 - missions - resolution and swath - sentinel handbook,’ Sen-
tinel Online, European Space Agency. (n.d.), [Online]. Available: https://
copernicus.eu/missions/sentinel-2/instrument-payload/resolution-
and-swath (visited on 30/04/2024).

[17] R. F. Cahalan and T. Várnai. ‘Concept of new lidar measurements of snow
and sea ice thickness,’ NASA and UMBC JCET. (2007), [Online]. Available:
https://earth.gsfc.nasa.gov/sites/default/files/lab_climate/
i3rcimagearchive-17.pdf (visited on 07/02/2024).

[18] ‘Mission - space lasers,’ NASA. (n.d.), [Online]. Available: https://icesat-
2.gsfc.nasa.gov/space-lasers (visited on 06/05/2024).

[19] P. Sergey M, L. Vasily N, K. Vladimir K, Y. Renat N and B. Alexey F. ‘Ice
thickness measurements by raman scattering,’ Optics letters. (May 2014),
[Online]. Available: https://doi.org/10.1364/OL.39.002573 (visited on
12/02/2024).

[20] F. Steven, K. Nathan and B. Marco. ‘A decade-plus of antarctic sea ice
thickness and volume estimates from cryosat-2 using a physical model and
waveform fitting,’ The Cryosphere. (May 2023), [Online]. Available: https:
//tc.copernicus.org/articles/17/2487/2023/tc-17-2487-2023.pdf
(visited on 21/04/2024).

[21] ‘Methods for measuring sea ice thickness in the arctic,’ Deep Trekker. (2023),
[Online]. Available: https://www.deeptrekker.com/resources/measuring-
sea-ice-thickness (visited on 08/05/2024).

https://sentinel.esa.int/web/sentinel/missions/sentinel-2
https://sentinel.esa.int/web/sentinel/missions/sentinel-2
https://sentinels.copernicus.eu/web/success-stories/-/copernicus-sentinels-help-classify-river-ice
https://sentinels.copernicus.eu/web/success-stories/-/copernicus-sentinels-help-classify-river-ice
https://github.com/sentinel-hub/custom-scripts/tree/main/sentinel-2/snow_cover_change
https://github.com/sentinel-hub/custom-scripts/tree/main/sentinel-2/snow_cover_change
https://github.com/sentinel-hub/custom-scripts/tree/main/sentinel-2/snow_cover_change
https://doi.org/10.1002/essoar.10512606.1
https://essopenarchive.org/doi/full/10.1002/essoar.10512606.1
https://essopenarchive.org/doi/full/10.1002/essoar.10512606.1
https://copernicus.eu/missions/sentinel-2/instrument-payload/resolution-and-swath
https://copernicus.eu/missions/sentinel-2/instrument-payload/resolution-and-swath
https://copernicus.eu/missions/sentinel-2/instrument-payload/resolution-and-swath
https://earth.gsfc.nasa.gov/sites/default/files/lab_climate/i3rcimagearchive-17.pdf
https://earth.gsfc.nasa.gov/sites/default/files/lab_climate/i3rcimagearchive-17.pdf
https://icesat-2.gsfc.nasa.gov/space-lasers
https://icesat-2.gsfc.nasa.gov/space-lasers
https://doi.org/10.1364/OL.39.002573
https://tc.copernicus.org/articles/17/2487/2023/tc-17-2487-2023.pdf
https://tc.copernicus.org/articles/17/2487/2023/tc-17-2487-2023.pdf
https://www.deeptrekker.com/resources/measuring-sea-ice-thickness
https://www.deeptrekker.com/resources/measuring-sea-ice-thickness

Bibliography 83

[22] K. Dai, A. Li, H. Zhang, S.-e. Chen and Y. Pan, Surface damage quantific-
ation of postearthquake building based on terrestrial laser scan data, Re-
searchGate, Jun. 2008. [Online]. Available: https://www.researchgate.
net/publication/325512595_Surface_damage_quantification_of_
postearthquake_building_based_on_terrestrial_laser_scan_data
(visited on 07/02/2024), p. 10.

[23] A. G. Fountain, J. C. Fernandez-Diaz, M. Obryk, J. Levy, M. Gooseff, D. J. V.
Horn, P. Morin and R. Shrestha, High-resolution elevation mapping of the
mcmurdo dry valleys, antarctica, and surrounding regions, openTopography,
2017. [Online]. Available: https://doi.org/10.5194/essd-9-435-2017
(visited on 12/02/2024), Earth Syst. Sci. Data, 9, 435–443, [dataset].

[24] S. Laxon, N. Peacock and D. Smith, High interannual variability of sea ice
thickness in the arctic region, nature, 30th Oct. 2003. [Online]. Available:
https://www.nature.com/articles/nature02050 (visited on 21/04/2024).

[25] D. Yinke and C. Xiaomin. ‘Metrology and measurement systems.’ (2012),
[Online]. Available: https://bibliotekanauki.pl/articles/221894.
pdf (visited on 06/05/2024).

[26] W. Huang, Z. Li, X. Liu, H. Zhao, S. Guo and Q. Jia, ‘Effective thermal
conductivity of reservoir freshwater ice with attention to high temperat-
ure,’ Annals of Glaciology, vol. 54, no. 62, pp. 189–195, 2013. DOI: 10.
3189/2013AoG62A075. [Online]. Available: https://www.cambridge.org/
core/journals/annals-of-glaciology/article/effective-thermal-
conductivity-of-reservoir-freshwater-ice-with-attention-to-
high-temperature/D1CC6510A0D4399061FE7031F741D151 (visited on 07/05/2024).

[27] L. Cui, J. Qin and X. Deng, ‘Freshwater ice thickness apparatus based on
differences in electrical resistance and temperature,’ Cold Regions Science
and Technology, vol. 119, pp. 37–46, 2015, ISSN: 0165-232X. DOI: https:
//doi.org/10.1016/j.coldregions.2015.07.009. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0165232X15001688
(visited on 08/04/2024).

[28] Supported deployment platforms, Flutter, Feb. 2024. [Online]. Available:
https://docs.flutter.dev/reference/supported-platforms (visited
on 04/03/2024).

[29] Freepik. ‘Cold-water icons.’ (n.d), [Online]. Available: https://www.flaticon.
com/free-icons/cold-water (visited on 20/05/2024).

[30] N. Karaaslan and volkut. ‘Calculating new longitude, latitude from old + n
meters.’ Answer by Numan Karaaslan to StackOverflow post by Ben. (Nov.
2016), [Online]. Available: https://stackoverflow.com/a/40471701
(visited on 22/04/2024).

[31] ‘Dashboard,’ Sinergise Solutions d.o.o. (n.d.), [Online]. Available: https:
//www.sentinel-hub.com/develop/dashboard/ (visited on 12/05/2024).

https://www.researchgate.net/publication/325512595_Surface_damage_quantification_of_postearthquake_building_based_on_terrestrial_laser_scan_data
https://www.researchgate.net/publication/325512595_Surface_damage_quantification_of_postearthquake_building_based_on_terrestrial_laser_scan_data
https://www.researchgate.net/publication/325512595_Surface_damage_quantification_of_postearthquake_building_based_on_terrestrial_laser_scan_data
https://doi.org/10.5194/essd-9-435-2017
https://www.nature.com/articles/nature02050
https://bibliotekanauki.pl/articles/221894.pdf
https://bibliotekanauki.pl/articles/221894.pdf
https://doi.org/10.3189/2013AoG62A075
https://doi.org/10.3189/2013AoG62A075
https://www.cambridge.org/core/journals/annals-of-glaciology/article/effective-thermal-conductivity-of-reservoir-freshwater-ice-with-attention-to-high-temperature/D1CC6510A0D4399061FE7031F741D151
https://www.cambridge.org/core/journals/annals-of-glaciology/article/effective-thermal-conductivity-of-reservoir-freshwater-ice-with-attention-to-high-temperature/D1CC6510A0D4399061FE7031F741D151
https://www.cambridge.org/core/journals/annals-of-glaciology/article/effective-thermal-conductivity-of-reservoir-freshwater-ice-with-attention-to-high-temperature/D1CC6510A0D4399061FE7031F741D151
https://www.cambridge.org/core/journals/annals-of-glaciology/article/effective-thermal-conductivity-of-reservoir-freshwater-ice-with-attention-to-high-temperature/D1CC6510A0D4399061FE7031F741D151
https://doi.org/https://doi.org/10.1016/j.coldregions.2015.07.009
https://doi.org/https://doi.org/10.1016/j.coldregions.2015.07.009
https://www.sciencedirect.com/science/article/pii/S0165232X15001688
https://docs.flutter.dev/reference/supported-platforms
https://www.flaticon.com/free-icons/cold-water
https://www.flaticon.com/free-icons/cold-water
https://stackoverflow.com/a/40471701
https://www.sentinel-hub.com/develop/dashboard/
https://www.sentinel-hub.com/develop/dashboard/

A Original task description

85

Oppgave 52 BPROG, BIDATA 2-4 stk

1

Oppgavetittel: Kartlegging og varsling av istykkelse på innsjøer/vann

Bedrift: Gjøvik Kommune
Kontaktperson: Ingun Revhaug
E-post: Ingun.revhaug@gjovik.kommune.no
Telefon: 94803195
Lokasjon: Gjøvik

Beskrivelse av oppgaven
Mulige problemstillinger/tilnærminger:

1. Hva slags sensorteknologi egner seg best for måling av istykkelse?

2. Design og lag en app for kommunens innbyggere for status istykkelse og varsling ved endringer

3. Utvikle en prototype på ismålingstjeneste, komplett med sensor, IKT-løsning og innbyggerapp

Bakgrunn

Mange innsjøer, vann og tjern dekkes av is på vinteren i Innlandet. Islagte vann brukes til en rekke

rekreasjonsaktiviteter, som isfiske, stå på skyøter og skiløyper legges ofte over islagte vann. Det kan

imidlertid være vanskelig å vite når isen er tykk/trygg nok. I dag gjøres målinger av istykkelse

manuelt, ved boring.

Både kommunen og innbyggere ønsker seg en løsning for automatisert måling av istykkelse, med

tilhørende mulighet for varsling vårisen endrer status fra "utrygg" til "trygg" og vice versa.

https://www.ntnu.no/bridge/ajax/listing/apply/33357

B Pre-project plan

87

Ice thickness and safety mapping

PROG2900 - Project plan

Joakim Aleksandersen
Sara Savanovic Djordjevic

Hoa Ben The Nguyen

Department of Computer Sience
NTNU
Norway

January 2024

Contents

1 Background and goals 1
1.1 Background . 1
1.2 Goals . 1

1.2.1 Effect goals . 2
1.2.2 Learning goals . 2

2 Scope 4
2.1 Problem area . 4
2.2 Delimitations . 4
2.3 Project description . 4

2.3.1 Preliminary requirement specification 5

3 Proposed technologies and data sources 7
3.1 Programming languages, frameworks and libraries 7

3.1.1 Data visualization . 7
3.1.2 Mobile programming . 7

3.2 Sensor technologies . 8
3.3 Other data sources . 8

4 Planning, organization, and execution 9
4.1 Agile development methodologies . 9
4.2 Chosen methodology . 9

4.2.1 Documentation, quality assurance and configuration management . . . 9
4.3 Roles . 10

4.3.1 Client . 11
4.4 Execution . 11
4.5 Status meetings and decision points . 11
4.6 Inspections and testing . 12

5 Risk analysis 15
5.1 Identification and categorization . 15
5.2 Mitigation and management . 16

References 19

A Original task description 19

B Group contract 19

Figures

1 Gantt-chart . 13
2 Tasks from Gantt-chart . 14

Tables

1 Flutter vs React Native . 7
2 Assumed risks . 15
3 Mitigation and management strategies . 17

1 Background and goals

1.1 Background

In countries like Norway that have abundant lakes and cold long winter seasons, frozen lakes
can be great locations for recreational activities. This is the case at Mjøsa, Norways largest lake.
Every winter Mjøsa attracts ice skaters, fishermen, skiers, and many others, but there are few
who have extensive knowledge in ice safety. Recognizing this gap in knowledge, the munici-
pality of Gjøvik wish to assure that its inhabitants can use the lake ice safely. Our objective is
to increase the general public’s understanding of lake ice safety and encourage the recreational
use of the lake ice. To achieve this goal, we intend to develop an application centered around a
color coded map of the ice thickness and safety on Mjøsa.

Morten Sangvik, an enthusiastic ice skater from Gjøvik, is one of many whom have shared
personal experiences using the lake ice. The article posted in the local newsletter OA descirbes
his ice-skating journey from Gjøvik to Hamar on January 13th 2024 with a friend (Børresen
& Lund, 2024). Despite Sangvik and his friend having multiple years of experience on the
ice, they were still met with public skepticism. The article showcases the prevailing lack of
understanding among the general public as well as some reasons for this lack of knowledge.
One very important reason mentioned is the prevalence of conflicting information. Merely 2
days after the release of Sangviks article, another newsletter posted an article which stated that
the ice was not safe to use (Sangvik, 2024), the very opposite of what Sangvik claimed. This
is one of many examples of news sources publishing information which may confuse readers
and ultimately deter them from using the ice. Such instances make it clear that there is a lack
of reliable and consistent sources that citizens can turn to for information on ice safety. In
response, our initiative endeavors to provide a reliable resource, fostering a culture of informed
decision-making and providing better indicators of safety for those venturing onto the frozen
expanses of lakes like Mjøsa.

1.2 Goals

Currently, the municipality does not have a system to inform its inhabitants of ice thickness and
safety. The closest existing mechanism is the conduction of manual measurements. A handful
of private people in Gjøvik conduct manual measurements by venturing out onto frozen bodies
of water and drilling through the ice. This is both time consuming and risky, especially if done
by inexperienced individuals. One of the municipalities primary wishes is to reduce the need for
manual measurements. Hence, they have requested an automated sensor solution alongside a
user application. We have decided to focus the application around a color coded map. This map

1

should distinguish between safe and dangerous areas of the ice. The color coding system must
be determined by a set of data including at least one sensor solution, and weather/geological
data from third party application program interface (API). In addition to the rendering of the
map, the application must clearly communicate the accuracy of all data and include important
safety precautions when venturing the ice.

1.2.1 Effect goals

As developers, we are able to measure whether the application effectively communicates ice
safety and increases user interest in utilizing the ice safely for recreational activities. These
metrics may be measured through quick user surveys. Beyond these two metrics, there are
multiple desired effects that can only be measured once the application has been deployed,
preferably for at least 1 year. Such metrics include whether the application increases citizens
knowledge on ice safety, and weather it contributes in reducing the number of ice related ac-
cidents. If the number of accidents does decrease, it may also be interesting to research if the
application also reduces the severity of accidents, but they are beyond the scope of the project.

1.2.2 Learning goals

As this is our first experience dedicating a minimum of 25 hours per week to a single project,
a major learning objective for us should be the concentration of our efforts primarily, if not ex-
clusively, on this one project. As this is very similar to how many of us will work in the future
it is imperative for everyone’s learning opportunities to work under these conditions. Another
critical aspect of the project is the fact all of the data we deal with can have serious repercus-
sions. This means we have to be especially critical when analysing data and when representing
data as facts. Learning to deal with data that concerns human safety, and knowledge about what
is fine to present as the ”truth” in safety is quite simply the most important part of the project.

In the solution we wish to utilize sensor-technology, new and old. There is incentive to get
an deeper knowledge of how we can use software to utilize hardware to achieve our goals. This
may include aspects such as computer vision and general usage of sensors technology. We will
also attempt to integrate preexisting sensor technology that are being used to this day such as
the Sentinel satellites that Varsom uses in their ice map (Varsom, n.d.).

• Learn a new mobile development technology, such as Flutter or React Native

• Gain experience in communicating and cooperating with a client

• Employ third-party databases and APIs with a level of complexity exceeding prior expe-
rience

2

• Increase knowledge related to the interaction of hardware and software

• Learn to design and structure comprehensive systems

• Increase knowledge of data accuracy and integrity

3

2 Scope

2.1 Problem area

This project naturally encompasses a diverse range of disciplines. Relevant disciplines may in-
clude geometry, algebra, cartography, physics, geology, meteorology, and glaciology. Despite
the group’s limited expertise in such areas, they are crucial for ensuring accurate mapping of ice
safety. Moreover, as a group predominantly skilled in programming, the integration of hardware
may pose additional challenges. As Gjøvik municipality has provided an open description, the
group has a lot of freedom in how the project is executed and how the application is imple-
mented. Hence, a substantial portion of the project time frame is allocated for research and
system modelling. For more detailed insights into the planned project execution, please refer to
section 5.

2.2 Delimitations

A substantial amount of the project period must be allocated to research and modelling, as the
data we are dealing with data that may affect safety of people. The group has therefore decided
to focus on making a solid proof-of-concept, rather than aiming for an off-the-shelf application.
In practice this means that more time will be spent on back-end development. This decision has
been made with the groups existing experience and interests in mind. Rather than making an
extensive User Interface (UI), the group aims to create a bug-free prototype with only essential
UI components. Further development of the UI will be left to the municipality. This solution
could be advantageous for the municipality, as they can seamlessly integrate their standardized
UI aesthetic rather than having to replace our UI implementation.

Further, the application will initially only map and display information of specific parts of
Mjøsa. We will start by mapping out the water that goes along Mjøspromenaden, since we
anticipate that this is where people are most likely to utilize the ice. While such an applica-
tion may also be useful on other bodies of water, we have chosen to use Mjøsa as a starting
point. Mjøsa has been deemed as the ideal starting points as the municipality’s population is
concentrated around the coast of Mjøsa. Despite this initial focus, the application will be de-
signed with scalability and modularity in mind, ensuring the ease of potential future expansions.

2.3 Project description

The project aims to create a mobile application for visualizing lake ice thickness. The app
will feature a color-coded, partially interactive map indicating ice thickness and calculation

4

accuracy. A simple calculation model will determine data utilization and treatment, influencing
the map’s color coding. The UI simple with minimal features, with a greater focus on making
sure that the information from the back-end is correct. Ice thickness will be calculated using
satellite data, weather data and a sensor solution, preferably mounted on an automated vehicle.
The primary goal will be to implement a sensor solution utilizing a drone. As a sort of security
net, the application should also accommodate a set of stationary sensors. The drone solution
will ensure a larger coverage of the lake, while stationary sensor will ensure measurements in
the case that the drone is not operational.

2.3.1 Preliminary requirement specification

To give a better idea of which features and functionalities the application should include, a
preliminary requirements specification has been made. This specification will be revised after
more research has been conducted.
System requirements

• Data integrity: Satellite and weather data must come from reliable sources, such as state
organizations, research institutes, or companies that work in coordination with such orga-
nizations.

• Data Accuracy: Each measurement must be adjusted for potential sensor solution dis-
crepancies. For instance, if a sensor with a +/- 2.5cm accuracy measures the ice to be
10cm thick, the output should be 7.5cm. In other words, a measurement must always be
adjusted towards the thinnest possible alternative.

• Response time: Upon opening the application, the map must be fully loaded within 10
seconds.

• Safety categorization: Ice safety will be based on the models from World Meteorology
Organization (W.M.O.) egg code1 and Ice Thickness Safety Chart2.

• Sensors: A system that does not surpass the total cost of 100 000 NOK.

• Data storage: Each measurement and the time of the measurement must be stored in an
internal database.

• Scalability: The application must be built to allow for changes of API solutions and
implementation of additional APIs.

1https://cryo.met.no/en/understanding-ice-charts
2https://www.almanac.com/ice-thickness-safety-chart

5

• Calculation model: Calculations must be redone at least every 12th hour, or twice a day
in other words.

Functional requirements

• Map: Color-coded will be the primary data visualization method. Predefined locations
on the map will serve as measurement points for the sensor(s). The measured points will
exhibit a strong color, gradually fading in a predetermined radius from each measurement
point.

• Graphs: A user may click on a colored section of the map to view a more detailed de-
scription of the data that was used to calculate the color/safety level.

• Data exportation: Any user, logged in or not, can export any data that is used in the
calculation of the safety level. This includes measurements from sensors and surveyors,
as well as supplementary data such as weather conditions sourced from weather stations
and APIs, and satellite imagery for assessment of ice coverage and changes over time.

Other requirements

• Unit tests: the back-end of the code must have a minimum coverage of 60% with auto-
mated unit tests.

• Service Level Agreement(SLA): a SLA must be made where the risk of any accidents
resulting from the use of the application is transferred to the publisher of the application.

6

3 Proposed technologies and data sources

3.1 Programming languages, frameworks and libraries

3.1.1 Data visualization

Python serves as a powerful tool for data visualization, being widely used and sought after,
meticulously documented, highly flexible, and having a large and active community (Mikke
Goes Coding, 2022). Importantly, Python provides a wide range of libraries and frameworks
that are suited for data visualization in various forms. Notable libraries include GeoPandas,
Plotly, and Folium, each offering capabilities for generating maps and graphs.

3.1.2 Mobile programming

There are many frameworks and Software Development Kits (SDK) for mobile programming,
all with their own benefits. When researching possible technologies, we have both considered
the groups prior experience with related technologies, and aspects that make the technology
suited for this specific project.
The selection has been reduced to Flutter or React Native. These are some of the best tools that
utilise a single cross-platform code base. Including strong community support and hot reload
feature that enables a real-time visual feedback upon changes in code, enabling a faster devel-
opment process. But there are distinct differences that makes the choice difficult. The following
table showcases some pros and cons of both technologies, as shown in Table 1.

Table 1: Flutter vs React Native

Flutter React Native

SDK JavaScript(JS) framework
Flexible and expressive features JS framework
Support for modern interfaces Easy manipulate native component
High performance, architecture + dart,
speed

Large active user community

Rich customization Highly sought after in the industry
Organized interface Use familiar language Java Script
Younger than react native Fast, but not as fast as flutter
Must learn dart language User interface is complicated
Large file size Is in development
Limited libraries Quality consistency

The choice between these two technologies will be made after the completion of a more com-
prehensive requirement specification.

7

3.2 Sensor technologies

There are many sensor technologies that may be relevant for this project. While researching
such technologies, there is a budget that has to be considered. The higher end of this bud-
get is 100 000 NOK. This threshold represents the maximum expenditure the municipality can
allocate without necessitating external investors or intervention from higher state authorities.
Solutions that go beyond this threshold will therefore not be considered, unless external in-
vestors express interest. Additionally, solutions that require a human to walk/ski/skate on the
ice will be excluded. These restrictions immediately exclude most Radar and Sonar solution.
The following solutions are the ones which may be viable, with a estimated minimum cost:
Drone

• Laser altimeter mounted on drone : 2000 NOK

• Single drone equipped with camera : 500 NOK

Stationary sensor

• System of 5 magnetized strip sensors : 830 NOK

• R-T ice-thickness sensor : 10 000 NOK

3.3 Other data sources

In addition to data gathered from sensors and manual measurements, the following sources may
provide information which may be relevant for creating a calculation or prediction model:

• Weather stations on Mjøsa

• Weather data from third party APIs such as Yr

• Depth and area measurements from the Norwegian Energy and Water Resources Direc-
torate

• NaturalEarth database of rivers and lakes

• World Meteorological Organization (WMO EGG model)

• Copernicus Programme Sentinel satelite API 3

3https://sentinel.esa.int/web/sentinel/copernicus

8

4 Planning, organization, and execution

4.1 Agile development methodologies

Amongst the many popular development methods, we are most inclined to utilise an agile
methodology. Agile methodologies include Kanban, Extreme Programming (XP), and the very
popular Scrum. The main benefits of Agile methodologies for our group is their iterative nature,
which is preferable when a complete requirement specification is not provided by the client.

4.2 Chosen methodology

As the client has not expressed any preferences for development methodologies, we stand free
to choose whatever suits the group most. Considering the nature of the project and previous ex-
periences, we have chosen Kanban. The reason we have chosen Kanban over the more popular
Scrum is due to previous negative experiences with Scrum. For a larger team, it may make sense
to invest time into administration, project management, and formalities. For a team of only three
developers the time and effort required simply outweigh the associated benefits. Spending time
estimating and allocating time for each small task, planning sprints, holding sprint meetings,
and daily scrum is simply unnecessary and complicates the process. Another reason for Kan-
ban being more desirable is the Just In Time (JIT) delivery system. One of the main parts of the
project is combining multiple data sources to find the answer on how thick the ice is at a given
time and space, and the amount of data available being effectively limitless. A result of this is
that the probability of us integrating absolutely all data is low, thus JIT can be used to further
integrate more and more data until deadline for delivery.

4.2.1 Documentation, quality assurance and configuration management

We will utilize Jira and GitLab as the primary project management tools. To track working
hours, gauge division of tasks, and porblem areas, we will use a shared Excel sheet. The sheet
is divided into five categories: development, debugging, documentation, research, and other.
Any documentation that is not natural to keep in the GitLab repo or OverLeaf, such as models
and research notes, are to be kept in a shared OneDrive folder. As documentation is an essential
part of the project, we chose to define the following guidelines to assure proper documentation:

• All tasks should be put on the Kanban board on Jira

• The work in progress column in the Kanban board is limited to a fixed boundary that
must not be exceeded. This boundary is set to 3 tasks per member. If a task is too large

9

to be tackled by a single member, the task may be split into a series of smaller tasks after
discussion with the other group members.

• Lead time (time from task creation to completion) and cycle time (time from a task initi-
ation to completion) are metrics that will be used to identify bottlenecks and ensure that
tasks are divided into appropriate sizes. These metrics are calculated by Jira.

• Commits should be atomic and have a short and informative message. This is to ensure
that every team member has a base understanding of which changes have been made in
the commit.

• All code must be sufficiently commented following the commenting standards of the
specific language.

• Class and variable names must be informative and follow the standards of the specific
languages.

• Every member is encouraged to document daily and consistently.

• Research sources should be written down and included in the report immediately.

• At the end of every milestone/internal deadline we will use up to a week to document

• If members are unsure where to put information, we have a Discord channel dedicated to
communication between team members to ensure a low threshold for asking any applica-
ble questions.

4.3 Roles

We have created three formal roles: Sara will serve as the project leader; Joakim will take on
the role of documentation and storage leader; and Hoa will be the work log leader.

• Project leader: responsible for ensuring that individual tasks and the overall project are
progressing as expected.

• File storage leader: responsible for ensuring that all project files are located at their appro-
priate locations; Jira, Discord, OneDrive, GitLab, or Overleaf, and that these platforms
are kept neat and tidy.

• Work log leader: responsible for ensuring that all members consistently and accurately
log their work hours in the dedicated Excel spread sheet.

10

4.3.1 Client

The client for the project is Gjøvik municipality. The municipality has provided a short descrip-
tion of their desired product. The client has given us a large degree of freedom in how we chose
to design and implement the product. While they will be part of the development process, their
level of active involvement may be less than what is typically expected. The product description
provided by the municipality can be found in the appendix.

4.4 Execution

We have chosen to divide the project period into 4 main phases, these being a planning phase,
system modelling phase, implementation phase, and a reporting phase. The planning phase shall
take up the first 3 weeks of the project period and focuses on mapping out the foundation of the
project as well as conducting preliminary research. Research should be conducted on program-
ming languages, libraries and frameworks, existing technologies, and ice thickness calculation
models. The system modelling phase follows directly after the planning phase. This phase
should result in a clear plan for the system architecture, choice of technologies, requirement
specification, and use case diagram. The implementation phase is where coding and testing
begins. This phase should result in a MVP and a prototype that are both thoroughly tested.
Testing should be conducted throughout the entire phase.

The last two weeks of the implementation phase are dedicated solely to debugging and
polishing the prototype. The last phase is the reporting phase which begins simultaneously as
the system modelling phase, and ends three weeks after the implementation phase is completed.
We plan on following the proposed phases rigidly. If the result is not satisfactory at the end of
a phase, we will try to accept the result as it is and proceed to the next phase without delays.
The end of each phase is considered a milestone. Additionally, a handful of other milestones
are specified within some of the phases. The progression strategy aims create a smooth project
progression by prioritizing the completion of important tasks over detail work and minor bugs.
Figure 1 and figure 2 on page 13 and 14 show the planned project trajectory and milestones.

4.5 Status meetings and decision points

Status meetings are held every other Thursday. These meetings are intended to be informal
meetings to clarify the status of all tasks in the current project phase. If the project is not pro-
gressing as expected, these meetings should be utilized to take management and administration
decisions to ensure that deadlines and milestones are met.

11

4.6 Inspections and testing

The primary form of testing will be a set of automated unit tests. These tests should have a
relatively high coverage. The coverage goal is a minimum of 60%. If sensors are available to
us in the project period, we may attempt to verify that the sensor data is consistent with manual
measurements, but this is not a priority. As the development will focus on back-end, extensive
user testing will not be prioritized. Upon completing the MVP, a quick user survey may be held
to gauge the overall usability of the application.

12

Figure 1: Gantt-chart

13

Figure 2: Tasks from Gantt-chart

14

5 Risk analysis

5.1 Identification and categorization

Table 2 on the next page shows an overview over risks that we have deemed to be likely to occur,
have meaningful consequences, and require a collective effort to manage. Here we consider
both the assumed probability of the risk coming to fruition as well as the consequences of
the risk itself. The probabilities and the severity of the consequences are both divided into 3
categories. A risk with the consequence ’Slight’ is a risk that if it occurs, can be resolved or
managed within a single work day with minimal effort. A risk with the consequence ’Moderate’
is one that may require up to a week to manage and require smaller parts of the implementation
and/or documentation to be reworked. A risk with the consequence ’Sever’ is one that may
require multiple weeks to manage, remodelling of the entire system, reworking major parts of
the implementation, and/or significant alterations to major parts of the documentation.

Table 2: Assumed risks

Num Risk Probability Consequence

1 The application still contains minor bugs at
the end of the implementation phase

Possible Slight

2 Data we receive is unreliable or false Possible Severe
3 A member is suddenly unable to participate

over an extended period
Unlikely Severe

4 A piece of documentation is lost Unlikely Moderate
5 A technology or API must be changed due

to becoming unavailable or the discovery of
unforeseen limitations

Possible Moderate

6 Other course work unexpectedly increases,
taking time and focus away from the project

Possible Moderate

7 We cannot ensure reliable safety of the infor-
mation published in the application

Likely Severe

8 Milestone or internal deadline is not met Likely Moderate
9 Major conflict within the group Unlikely Severe
10 Loss of or significant damage to a major part

source code or report
Unlikely Severe

11 A crucial requirement is not met, or the ap-
plication contains major bugs by the end of
the implementation phase

Possible Severe

12 Final application is not user friendly Likely Moderate

15

5.2 Mitigation and management

Table 3 shows mitigation and management strategies for each of the risks listed in table 2. Some
of the risks do not have mitigation strategies as their occurrence is beyond our control. Others
do not have management strategies as we chose to accept the risk if it occurs. The numbers in
table 3 corresponds with the number of the risk in table 2.

16

Table 3: Mitigation and management strategies

Num Mitigation Management

1 An entire two week period at the end of
the implementation phase is dedicated to
debugging in order to minimise the exis-
tence of bugs

No management

2 Idealy we get access to an verified source
of data or multiple sources where we can
cross reference them

If we are unable to receive reli-
able data, we will then be forced
to set the scope of the project as
a proof of concept and not some-
thing that the public can use as it
will be far to dangerous to release
predictions based on faulty data

3 No mitigation The project scope will be reduced,
starting with the least crucial re-
quirements

4 A shared OneDrive folder is dedicated to
storing various documentation, and one
member is given the role of documenta-
tion and storage leader

The cause of the loss must be un-
veiled and prevented from reoc-
curring. The documentation must
be remade

5 We try to use more popular and well
documented technologies with large user
bases, or get explicit access to databases
we wish to use

The group must collectively find
and decide upon a suitable alter-
native. If a practical alternative
cannot be found, the project must
depend on a theoretical solution

6 No mitigation The group must create a strat-
egy to make up the lost time in
the following weeks, for example
by holding additional meetings or
adding a couple of extra weekly
work hours.

7 We will do our best to research the sub-
ject and ask professionals in order to have
knowledge of safety standards and imple-
ment them to the best of our ability

If we see that the data we create
is too unreliable it should not be
release to the public, but rather
be given to Gjøvik municipality as
guideline instead of facts

17

8 We use Kanban with loose dates for dead-
lines where the deadlines should be com-
pleted within 4 days of a set date.

If the allocated time passes, the
group shall accept the result as it
is and move onto the next dead-
line. If the result strays consid-
erably from the requirements, re-
duction of the project scope will
be discussed

9 The group holds at least 2 meetings
weekly where members are encouraged
to work together, express any grievances,
and to gain insight into work done by
other members

See group contract

10 Platforms and software like GitLab,
OverLeaf, and OneDrive are used to store
code and documentation

The group must collectively de-
cide which parts of the lost
code/documentation must be re-
done, and which must be aban-
doned

11 Consistent planning, administration and
management should ensure that crucial
components of the application are at an
acceptable state by the end of the imple-
mentation phase

The group may extend the phase
by up to 1 week and may have
to work additional hours. If a re-
quirement cannot be implemented
due to practical obstacles, a theo-
retical replacement must be devel-
oped

12 We will conduct an short user test in or-
der to determine if the applicataion is user
friendly enough

If the application is not user
friendly enough we will have to
spend more time to make the UI
be intuitive.

18

References

Børresen, E., & Lund, S. A. (2024). Dette synet vekket bekymring: – Er det jeg som er

redd eller er det dumdristig? Retrieved from https://www.oa.no/dette-synet

-vekket-bekymring-er-det-jeg-som-er-redd-eller-er-det-dumdristig/s/

5-35-1877337?onboarding mode=true (Published January 15, 2024. Accessed
January 25, 2024)

Mikke Goes Coding. (2022). 12 Essential Advantages of Python (Why Learn Python in

2022). Retrieved from https://mikkegoes.com/advantages-of-python/ (Pub-
lished September 4, 2022. Accessed January 25, 2024)

Sangvik, M. (2024). Det er ikke sånn at isen er farlig. Retrieved from
https://www.oa.no/dette-synet-vekket-bekymring-er-det-jeg-som-er

-redd-eller-er-det-dumdristig/s/5-35-1877337?onboarding mode=true

(Published January 18, 2024. Accessed January 25, 2024)
Varsom. (n.d.). Slik lager vi isvarselet. Retrieved from https://www.varsom.no/is/

isvarsling/slik-lager-vi-isvarsel/ (Accessed January 22, 2024)

19

C Gantt Chart

111

Lake Ice Mapping 31 Jan 2024

NTNU

Project manager
Project dates 10 Jan 2024 - 17 May 2024

Completion 0%
Tasks 27
Resources 0

This Gantt chart describes the proposed project trajectory of the Bachelor thesis
project for mapping of lake ice thickness, NTNU Spirng 2024, BPROG group 206.

Name Begin date End date
Project planning 10/01/2024 08/02/2024

Define project scope 10/01/2024 18/01/2024
Risk analysis 10/01/2024 23/01/2024
Propose technologies 10/01/2024 08/02/2024
Research existing technologies 10/01/2024 08/02/2024
Write project plan 10/01/2024 31/01/2024
Milestone: prelimiary sensor choice 25/01/2024 25/01/2024

System modelling 18/01/2024 29/02/2024
Use-case diagram 18/01/2024 31/01/2024
ER-diagram 18/01/2024 05/02/2024
Domain model 18/01/2024 06/02/2024
Requirements specification 18/01/2024 15/02/2024
Determine sensors and APIs 18/01/2024 15/02/2024
Calculation model prototype 01/02/2024 29/02/2024
System architecture diagram 08/02/2024 29/02/2024

Implementation and testing 08/02/2024 30/04/2024
Coding and testing 08/02/2024 23/04/2024
Database implementations 15/02/2024 05/03/2024
Milestone: MVP & first draft report 25/03/2024 25/03/2024
Milestone: protoype 18/04/2024 18/04/2024
Debugging and polishing 19/04/2024 30/04/2024

Report 01/02/2024 16/05/2024
Theory section 01/02/2024 02/05/2024
Implementation section 08/02/2024 09/05/2024
Testing section 15/02/2024 01/05/2024
Introduction and conclusion 18/04/2024 16/05/2024
Milestone: second draft report 25/04/2024 25/04/2024

Lake Ice Mapping 31 Jan 2024

Tasks 2

Lake Ice Mapping 31 Jan 2024

Gantt Chart 3

Name Begin date End date

Project planning 10/01/2024 08/02/2024

Define project scope 10/01/2024 18/01/2024

Risk analysis 10/01/2024 23/01/2024

Propose technologies 10/01/2024 08/02/2024

Research existing technologies 10/01/2024 08/02/2024

Write project plan 10/01/2024 31/01/2024

Milestone: prelimiary sensor choice 25/01/2024 25/01/2024

System modelling 18/01/2024 29/02/2024

Use-case diagram 18/01/2024 31/01/2024

ER-diagram 18/01/2024 05/02/2024

Domain model 18/01/2024 06/02/2024

Requirements specification 18/01/2024 15/02/2024

Determine sensors and APIs 18/01/2024 15/02/2024

Calculation model prototype 01/02/2024 29/02/2024

System architecture diagram 08/02/2024 29/02/2024

Implementation and testing 08/02/2024 30/04/2024

Coding and testing 08/02/2024 23/04/2024

Database implementations 15/02/2024 05/03/2024

Milestone: MVP & first draft report 25/03/2024 25/03/2024

Milestone: protoype 18/04/2024 18/04/2024

Debugging and polishing 19/04/2024 30/04/2024

Report 01/02/2024 16/05/2024

Theory section 01/02/2024 02/05/2024

Implementation section 08/02/2024 09/05/2024

Testing section 15/02/2024 01/05/2024

Introduction and conclusion 18/04/2024 16/05/2024

Milestone: second draft report 25/04/2024 25/04/2024

2024

January February March April May June

D SENTINEL hub, Mjøsa over
time

115

E Depth map, Mjøsa

117

G

G

!
!

!

!

!
!

G

G

G

G

!
!

!

!
!

!

!
!

!

G

G
!

!
!

G
!

G
G

!
!

!

G

G

G

G

G

G

G

G

G

G

G

G

G

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!!!

!
!

!

!
!

!

!
!

!

!
!

!

!
!
!

!
!

!

G

G

G

G

!
!

!

!
!

!

!
!

!

!
!

!

G

G
!

!
!

!
!

G

G
G

!
!

!

G
G

G

G

G

G

G

G

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

G

G

G

G

G

G

G

G

G
G

G

G

G

G
G

G

!
!
!

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!
!

!
!

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!
!

!
!

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G
G

G

G

G

G

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!

!
!

!

!
!

!
!

!

!

!
!

!
!

!

!!!

!!!

!!!

!!!

!
!!

!
!

!

!
!

!

!
!

!

G

G

!

!

!

!
!

G

G
G

!
!

!

! ! !

G

G
G

G

!
!

!

!
!

!

!
!

!

!
!

!
G

G

G

G

G

G

G

G

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

G
G

G

! ! !

! ! ! G

G

G

G
G G G

G

!
!

!

!
!

!

!
!

!

! ! ! ! ! !
! ! !

! !
!

G

G

G

!
!

!

!
!

!

!
!

!

G

G

G

!
!

!

!
!

!

G

G

G

G

G

G

G

G

G

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!

G

G

G

G

G

GG

G

G

G

G

GG
G

GG

G
G

!

!
!

!

!
!

!!
!

!
!

!

!

!!

!!!

!

!!

!
!
!

!
!
!

!
!

!

!
!

!

!!!
!

!
!

!!!

!!!
!!!

!
!

!

G

G

G

G

G

G

G

G

G

G

G

G

G

G

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

G

G

G

G

G

G

G

G

G
G

G
G

G
G

G
G

G

G

G

G

G

G

G

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!
!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
! !

! !
!

!

!

!

!

! !

!
!

!

!
!

!

G

G

G

G

G
G

G

G

G

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!
!

!
!

!

!
!

!
!

!

GG

G

G
G

G
G

G

GG

!

!
!!

!
!

!
!

!

!
!

!
!

!
!

!
!

!

!
!
!

!
!

!

!!!
!!!

G

G

G

G

G

G

G

GG

G

G

G

G

G

G

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!!
!!

!
!

!

!
!

!

!
!

!

!
!!

!
!

!

!

!
!

G

G

G

G

G

!
!

!

!
!

!
!

!
!

!
!

!

G

G

G

G

G

G

G

G G
G

G

G
G

G G

G G G

G

G G

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

!

! !

!
!

!

! ! !

! ! !

!
!

!

!
!

!

!
! ! ! ! !

! ! !

! ! !
! ! !

! ! !
! ! !

! !
!

!

!
!

G

G

G

G

!
!

!

!
!

!

!
!

!

!
!

G

G

G

G
G

G

G

G

G

G

!
!

!

!
!

!

!

!
!

!
!
!

!
!

!

!
!

!

!
!

!

!
!

!

!
!

!

Trosset-
Trosset-

LILLEHAMMER Nord-Mesna

Bjørnåsbrua

Vingnes
Vårsætergrenda

Mesnlia

Odden

Bergetranget

Lortholmen

Sørmesna

Lismarka

Ull-
hammeren

Åsta
Vestre

Vingrom

Åbu

Ulveroa
MJØSA

Åsmarka

Stranda

Brøttum

Bekkodden
Furuodden

Sanden

Brumund-

Åsroa

sjøen

Næra

Biristrand

Brumundsag

Buviksaga

Fluren

BIRI ØVERBYGD

Bergsodden
Næroset

Kvislabruk
RingBiri

Veldresag

Kremmerodden

Le
rda

len

Kvilheim
sag

Fremstad-odden Moelv
Moelvholmen

Sten-

Skulhusodden

Nybygda

Biri Bruk

Byflaten

fjellet

Smedmoen
Ringsaker Rudshøgda

Steinsborga

Redalen
Redalen

Brennsætersaga

Framnes

Dalsjordet

SNERTINGDALEN Gaupen
Brumunddal

Bergset sag

Langodden Nydal

Nerliholmen

Grøtodden

Øverbygda

Dal mølle

odden

Mustadroa

Løiten

Tobru

Brænderi

GJØVIK

Løten

Snippsandodden

Løten

Ridabu
Martodden Disen

Vikodden
Nygard

DomkirkeoddenKvams

dalen

Brenneri HAMAR

Ådalsbruk

Hjellum
Ådalsbruk

Tjuvholmen

Klevbakken
Bryn

Bekke-

mølle

Skum-

Sandvika

sjøen

laget

Skansen

Ilseng

Nordsveodden
Ilseng

Tingnes

BreiskallenBreiskallen

Eskerudodden Stange Brenneri

Skurven Ottestad

HELGØYA

RAUFOSSRAUFOSS
ØstvollØstvoll Kapp

Stange

Holmen Gillund-
stranda

Tangnes

Sletta

Østbygda
Skranke-

foss
MJØSAReinsvoll

Lillo

Lena

Tre-

Strand

Bilittmølle

Gata

BøverbruBøverbru
Kloppen

KolbuKolbu

vatna

Skreia
Lensbygda

Narum

SkjelbreidaSkjelbreida EinaEina Øverskreia

Skreifjella

Tangen

Geitholmen

EINA-EINA-

Eina-Eina-

Espa
Hamnnesodden

strandastranda
VATNET

Gjerdvika
Hennung

Mølla

Gurines-tangen
Eidstangen

Kongeøya Sandøya
Svarthammaren

Tomasodden

Helgedalen

Mjøsstrand

Dynholmen

Ekornholmen

Skrukkelia

Røykenvik

HurdalVerk

Brandbu

EngnestangenRekstadtangen
Jaren

Prestegards-
hagan

RA
ND

SF
JO

RD
EN

Minnesund Storenga

Vassbråa

Øksndalen

Tjuv-

Bråstadbrua
Tangnes-

Hunn-

Skrukkelisjøen

HURDALS-
SJØEN

VORMA

stranda
vollen

123

H E D M A R K

O P P L A N D

A K E R S H U S

S Ø N D R E

L A N D

GLOMMA

G R A N

R I N G S A K E R

G J Ø V I K

S T A N G E

Å M O T

H A M A R L Ø T E N

Ø S T R E T O T E N

H U R D A L

E I D S V O L L

L I L L E H A M M E R

V E S T R E
T O T E N

576 000

576 000

578 000

578 000

580 000

580 000

582 000

582 000

584 000

584 000

586 000

586 000

588 000

588 000

590 000

590 000

592 000

592 000

594 000

594 000

596 000

596 000

598 000

598 000

600 000

600 000

602 000

602 000

604 000

604 000

606 000

606 000

608 000

608 000

610 000

610 000

612 000

612 000

614 000

614 000

616 000

616 000

618 000

618 000

620 000

620 000

622 000

622 000

624 000

624 000

626 000

626 000

628 000

628 000

6 6
96

 00
0

6 6
96

 00
0

6 6
98

 00
0

6 6
98

 00
0

6 7
00

 00
0

6 7
00

 00
0

6 7
02

 00
0

6 7
02

 00
0

6 7
04

 00
0

6 7
04

 00
0

6 7
06

 00
0

6 7
06

 00
0

6 7
08

 00
0

6 7
08

 00
0

6 7
10

 00
0

6 7
10

 00
0

6 7
12

 00
0

6 7
12

 00
0

6 7
14

 00
0

6 7
14

 00
0

6 7
16

 00
0

6 7
16

 00
0

6 7
18

 00
0

6 7
18

 00
0

6 7
20

 00
0

6 7
20

 00
0

6 7
22

 00
0

6 7
22

 00
0

6 7
24

 00
0

6 7
24

 00
0

6 7
26

 00
0

6 7
26

 00
0

6 7
28

 00
0

6 7
28

 00
0

6 7
30

 00
0

6 7
30

 00
0

6 7
32

 00
0

6 7
32

 00
0

6 7
34

 00
0

6 7
34

 00
0

6 7
36

 00
0

6 7
36

 00
0

6 7
38

 00
0

6 7
38

 00
0

6 7
40

 00
0

6 7
40

 00
0

6 7
42

 00
0

6 7
42

 00
0

6 7
44

 00
0

6 7
44

 00
0

6 7
46

 00
0

6 7
46

 00
0

6 7
48

 00
0

6 7
48

 00
0

6 7
50

 00
0

6 7
50

 00
0

6 7
52

 00
0

6 7
52

 00
0

6 7
54

 00
0

6 7
54

 00
0

6 7
56

 00
0

6 7
56

 00
0

6 7
58

 00
0

6 7
58

 00
0

6 7
60

 00
0

6 7
60

 00
0

6 7
62

 00
0

6 7
62

 00
0

6 7
64

 00
0

6 7
64

 00
0

6 7
66

 00
0

6 7
66

 00
0

6 7
68

 00
0

6 7
68

 00
0

6 7
70

 00
0

6 7
70

 00
0

6 7
72

 00
0

6 7
72

 00
0

6 7
74

 00
0

6 7
74

 00
0

6 7
76

 00
0

6 7
76

 00
0

6 7
78

 00
0

6 7
78

 00
0

Mjøsa
1 : 100 000

0 5 km

Ekvidistanse dybdekoter: 20 meter
Rutenett viser UTM-koordinater i sone 32

Datum: Euref 89 (WGS 84)

F Evalscript using 30 days NDMI,
NDWI and NDVI

//VERSION=3 (auto-converted from 1)
/*
Author: Karl Chastko OG Joakim Aleksandersen
*/

function setup() {
return {

input: [{
bands: [

"B03",
"B11",

"B08"
]

}],
output: { bands: 3 },
mosaicking: "ORBIT"

}
}

// Snow index
function calcNDSI(sample) {

ndsi = (sample.B03 - sample.B11)/ (0.01 + sample.B03 + sample.B11);
return ((ndsi>0.2)&(sample.B03>0.15)) ? (ndsi) : 0.0

}

// Water index
function calcNDWI(sample) {

ndwi = (sample.B03 - sample.B08)/ (0.01 + sample.B03 + sample.B08);
return ((ndwi>0.2)&(sample.B03>0.15)) ? (ndwi) : 0.0

}

119

120 IceMap: Bachelor thesis report

// Moisture Index
function calcNDMI(sample) {

ndmi = (sample.B08 - sample.B11)/ (0.01 + sample.B08 + sample.B11);
return ((ndmi>0.2)&(sample.B08>0.15)) ? (ndmi) : 0.0

}

function evaluatePixel(samples,scenes) {
var avg1 = 0;
var count1 = 0;
var avg2 = 0;
var count2 = 0;
var avg3 = 0;
var count3 = 0;
var endMonth = scenes[0].date.getMonth();

for (var i=0;i<samples.length;i++) {
var ndvi = calcNDSI(samples[i]);
var ndwi = calcNDWI(samples[i]);
var ndmi = calcNDMI(samples[i]);
if (scenes[i].date.getMonth()==endMonth)
{

avg3 = avg3 + ndvi + ndmi + ndwi;
count3++;

}
else if (scenes[i].date.getMonth()==(endMonth-1))
{

avg2 = avg2 + ndvi + ndmi + ndwi;
count2++;

}
else
{

avg1= avg1 + ndvi + ndmi + ndwi;
count1++;

}

}
avg1 = avg1/count1;
avg2 = avg2/count2;
avg3 = avg3/count3;

return [avg1*5/3,avg2*5/3,avg3*5/3];

}

F Evalscript using 30 days NDMI, NDWI and NDVI 121

function preProcessScenes (collections) {
collections.scenes.orbits = collections.scenes.orbits.filter(function (orbit) {

var orbitDateFrom = new Date(orbit.dateFrom)
return orbitDateFrom.getTime() >= (collections.to.getTime()-3*31*2*24*3600*1000);

})
return collections

}

G Evalscript using 30 days NDMI

//VERSION=3 (auto-converted from 1)
/*
Author: Karl Chastko OG Joakim Aleksandersen
*/

function setup() {
return {

input: [{
bands: [

"B03",
"B11",

"B08"
]

}],
output: { bands: 3 },
mosaicking: "ORBIT"

}
}

// Snow index
function calcNDSI(sample) {

ndsi = (sample.B03 - sample.B11)/ (0.01 + sample.B03 + sample.B11);
return ((ndsi>0.2)&(sample.B03>0.15)) ? (ndsi) : 0.0

}

// Water index
function calcNDWI(sample) {

ndwi = (sample.B03 - sample.B08)/ (0.01 + sample.B03 + sample.B08);
return ((ndwi>0.2)&(sample.B03>0.15)) ? (ndwi) : 0.0

}

// Moisture Index

123

124 IceMap: Bachelor thesis report

function calcNDMI(sample) {
ndmi = (sample.B08 - sample.B11)/ (0.01 + sample.B08 + sample.B11);
return ((ndmi>0.2)&(sample.B08>0.15)) ? (ndmi) : 0.0

}

function evaluatePixel(samples,scenes) {
var avg1 = 0;
var count1 = 0;
var avg2 = 0;
var count2 = 0;
var avg3 = 0;
var count3 = 0;
var endMonth = scenes[0].date.getMonth();

for (var i=0;i<samples.length;i++) {
var ndvi = calcNDSI(samples[i]);
var ndwi = calcNDWI(samples[i]);
var ndmi = calcNDMI(samples[i]);
if (scenes[i].date.getMonth()==endMonth)
{

avg3 = avg3 + ndwi;
count3++;

}
else if (scenes[i].date.getMonth()==(endMonth-1))
{

avg2 = avg2 + ndwi;
count2++;

}
else
{

avg1= avg1 + ndwi;
count1++;

}

}
avg1 = avg1/count1;
avg2 = avg2/count2;
avg3 = avg3/count3;

return [avg1*5,avg2*5,avg3*5];

}
function preProcessScenes (collections) {

collections.scenes.orbits = collections.scenes.orbits.filter(function (orbit) {

G Evalscript using 30 days NDMI 125

var orbitDateFrom = new Date(orbit.dateFrom)
return orbitDateFrom.getTime() >= (collections.to.getTime()-3*31*2*24*3600*1000);

})
return collections

}

H CSV with Labeled Data

Date From Standard Deviation Ice Condition
2023-09-12 17.09 No ice
2023-09-17 9.43 No ice
2023-09-24 8.26 No ice
2023-10-02 18.72 No ice
2023-10-04 5.82 Ice
2023-10-12 10.86 No ice
2023-10-17 8.66 No ice
2023-10-19 7.47 No ice
2023-11-18 11.41 No ice
2023-12-03 12.65 No ice
2023-12-23 2.58 Ice
2023-12-26 1.68 Ice
2024-01-05 1.32 Ice
2024-01-25 1.05 Ice
2024-02-01 1.26 Ice
2024-02-09 1.02 Ice
2024-02-21 0.75 Ice
2024-02-26 1.72 Ice
2024-03-07 20.65 No ice
2024-03-12 14.76 No ice
2024-04-01 14.9 No ice
2024-04-16 4.43 Ice
2024-04-21 22.89 No ice
2024-05-04 3.22 Ice

127

I AI declaration

129

Declaration of AI aids and -tools
Have any AI-based aids or tools been used in the creation of this report?

No

Yes

If yes: please specify the aid/tool and area of use below.

Text

Spell checking. Are parts of the text checked by:

Grammarly, Ginger, Grammarbot, LanguageTool, ProWritingAid, Sapling, Trinka.ai or similar tools?

Text-generation. Are parts of the text generated by:

ChatGPT, GrammarlyGO, Copy.AI, WordAi, WriteSonic, Jasper, Simplified, Rytr or similar tools?

Writing assistance. Are one or more of the report's ideas or approach suggested by:

ChatGPT, Google Bard, Bing chat, YouChat or similar tools?

If yes, use of text aids/tools apply to this report - please specify usage here:

Codes and algorithms

Programming assistance. Are parts of the codes/algorithms that i) appear directly in the report or ii) have

been used to produce results such as figures, tables or numerical values been generated by: GitHub Copilot,

CodeGPT, Google Codey/Studio Bot, Replit Ghostwriter, Amazon CodeWhisperer, GPT Engineer, ChatGPT,

Google Bard eller lignende verktøy?

If yes, use of programming assistance aid/tools apply to this report - please specify usage here:

Images and figures

Image generation. Are one or more of the reports images/figures generated by:

Midjourney, Jasper, WriteSonic, Stability AI, Dall-E or similar tools?

If yes, use of image generator aids/tools apply to this report – please specify usage here:

Other AI aids or tools. Have you used other types of AI aids or -tools in the creation of this

report? If yes, please specify usage here:

Spell checking: ChatGPT, Overleaf, and Google Translate.

Text generation: License agreement in README file (GitLab repository) was generated by ChatGPT.

Writing assistance:

• ChatGPT: rewriting and spell checking.

• Google Translate: translation and spell checking.

ChatGPT: learning Python and Dart. Some code was generated and used as a foundation, but later
modified and expanded by hand. Also used for some debugging and generation of test/example data.
Copilot: auto completion of single code lines and comments.

I am familiar with NTNU’s regulations on artificial intelligence. I declare that any use of AI aids or tools

areexplicitly stated i) directly in the report or ii) in this declaration form.

Signatures

Date

J SWOT analyses tables

Table 2: SWOT analysis: DJI Metrice 300

Strengths Weakness Opportunities Threats

Operating tem-
perature is -20
to 40 ◦C, high
compared to most
professional-grade
drones that goes
from -10 to 40

Temperature un-
der -20 ◦C will
degrade the per-
formance of the
drone. Might have
to let the drones
rest multiple times
under scans

Additional hard-
ware can be
included, that
includes a battery
heating system or
other hardware
allowing it to
operate in colder
weather

Its operating tem-
perature is still
low compared to
winter 2023/2024
in Norway that
went past -20 ◦C,
drones under -20
◦C needs to be
specialized and is
not commercially
used.

High payload,
capable of 0.93kg.
Smaller than
DJI Matrice 100,
but not enough
to make a big
difference

Privacy concerns
when flying with
a camera over or
past homes, turn
the camera off
and avoid privacy
policies

Having camera
can aid in search
and rescue

Sufficient range,
55 minutes flight
time. If it travels
at max speed with
GPS (17m/s), can
it travel as far as
76km

Additional bat-
tery packages
for longer flight,
can be mounted
without affecting
payload too much.
Making up for lost
performance in
cold weather

Designed to be
highly Water res-
istant not water
proof, should
not be used when
raining or snowing

133

134 IceMap: Bachelor thesis report

Transmission
range 8 km, more
than enough to
cover the shoreline
of the city

Base position of
the transmission
is not limited
to the center of
Gjøvik Sentrum’s
shoreline, but is
advised to be sure

Relative cheaper
compared to
other commercial
drones with the
same operating
temperature

High cost drone,
but you get what
you pay for. ap-
proximately 4
times more ex-
pensive than DJI
Matrice 100

Provide their own
mobile SDK for
greater control
or customized
designers for
software

Provide their own
external third
party software and
hardware

compatible with
most third party
hardware and
software, to be
added to a drone

Provide their own
software develop-
ment kit for full
control of design-
ing a it’s behavior

Software pro-
duced by user is
time consuming to
make from scratch

Arduino are com-
patible and has it
own mount to the
drone

Software pro-
duced by user has
a potential for
bug that results in
crashing

	Foreword
	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	1 Introduction
	1.1 Background
	1.2 Goals
	1.3 Prior knowledge and skills
	1.4 Existing software and technologies
	1.5 Limitations
	1.6 Contributors
	1.7 Report organization

	2 System requirements and design
	2.1 Task division
	2.2 System requirements
	2.3 Use-case diagram
	2.4 Wireframes
	2.5 Design reference
	2.6 Database design
	2.7 Domain model
	2.8 System architecture
	2.9 Selected programming tools

	3 Ice theory and selected APIs
	3.1 Ice formation theory
	3.2 Icetypes
	3.3 DOT guidelines for ice safety
	3.4 NVE calculation model
	3.5 SENTINEL-2 satellites

	4 Selected sensors and background theory
	4.1 Laser altimeter theory
	4.2 Selected laser altimeter
	4.3 Selected drone
	4.4 Integration challenges
	4.5 Alternative approaches
	4.6 Magnetic strip sensor
	4.7 Stationary sensors

	5 Mobile application
	5.1 Server communication
	5.2 Main components
	5.3 Map widget
	5.4 Statistics widget
	5.5 Lake search
	5.6 Initialization and persistence
	5.7 Remaining work

	6 Custom map creation
	6.1 Adding a lake relation to the system
	6.2 Dividing the map polygon
	6.3 Verifying the output
	6.4 Determining subdivision colors
	6.5 Exposing the processed data
	6.6 Alternative map creation methods
	6.7 Areas of improvement

	7 Sensor and API implementations
	7.1 Drone
	7.2 LIDAR files
	7.3 LIDAR data processing
	7.4 Implementing model given by NVE
	7.5 Using Sentinelhub to get icerun dates
	7.6 Sentinel-hub eval script

	8 Result and discussion
	8.1 Result goals
	8.2 Effect goals
	8.3 Learning goals
	8.4 Testing and quality assurance
	8.5 Documentation and organization
	8.6 Sustainability
	8.7 Method and process
	8.8 AI usage
	8.9 Future work
	8.10 Alternative use cases

	9 Conclusion
	Bibliography
	A Original task description
	B Pre-project plan
	C Gantt Chart
	D SENTINEL hub, Mjøsa over time
	E Depth map, Mjøsa
	F Evalscript using 30 days NDMI, NDWI and NDVI
	G Evalscript using 30 days NDMI
	H CSV with Labeled Data
	I AI declaration
	J SWOT analyses tables

