Joakim Aleksandersen, Sara Savanovic Djordjevic,
Hoa Ben The Nguyen

lceMap

An ice safety mapping system

Bachelor’s thesis in Programming
Supervisor: Pal Anders Floor
Co-supervisor: Marius Pedersen

May 2024

2
2
=
2

Lo
o
cC

c
]

~

el
cC
©
]
[}
C
2L
(%4

[%2]

[
o

2
(%]
o
[

=
C

]
cC

R
o
%
o

z

3
£
[
e}
cwn
&9
c g
w s
—a
SE
S o
cU
D«
o2
T Cc
c o
=
85
L
gw
.CD
3
l_
c
©
=]
©
£
—_
L
=
Y—
o
=
(o)
©
L

@ NTNU

Norwegian University of
Science and Technology

Joakim Aleksandersen, Sara Savanovic Djordjevic,
Hoa Ben The Nguyen

IceMap

An ice safety mapping system

Bachelor’s thesis in Programming
Supervisor: Pal Anders Floor
Co-supervisor: Marius Pedersen
May 2024

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

@ NTNU

Norwegian University of
Science and Technology

Foreword

The contents of this Bachelor thesis were produced by Joakim Aleksandersen, Sara
Savanovic Djordjevic, and Hoa Ben The Nguyen at the Institute of Computer Sci-
ence, NTNU, Gjgvik. We thank the municipality for providing us with an engaging
and meaningful task. To contribute to a service designed for the benefit of the pub-
lic has been a great experience, and we anticipate further development, deploy-
ment, and use of the IceMap system. We especially want to thank our academic
advisors, Pal Anders Floor and Marius Petersen, for their enthusiasm, support, and
invaluable advice.

iii

Abstract

In Norway, a country known for its appreciation of nature, people refuse to let
cold weather stop them from enjoying outdoor activities. Some winter activities
are riskier than others, such as those that involve traversal of frozen lakes. The
IceMap system was developed to provide an additional safety tool for exactly those
activities as part of a Bachelor thesis in programming. IceMap, which was com-
missioned by Gjgvik municipality, consists of a Python server and a Dart/Flutter-
based mobile application. The server processes weather, satellite and sensor data
to assess the condition of the lake ice. The assessments are displayed in the mo-
bile application as a color coded map. A few similar products are already avail-
able on the market, but these depend on user input from ordinary people who
may have limited knowledge of ice safety. Otherwise, current methods include
manual measurements which are reliable, but unsafe for the pepole conducting
them. To remove the necessity for user input and manual measurements, IceMap
introduces an automated measurement system with a LIDAR-mounted drone and
satellite imagery. Since the necessary sensors could not be acquired during the
project period, the physical components have been replaced with theoretical solu-
tions. Instead of using data from an actual sensor, test data from various online
sources was used and manipulated to fit the projects requirements. Research was
carried out to identify the most suitable sensor types, and all necessary setup to
implement actual sensors is included in the result. What remains is to acquire and
test the system with physical sensors.

Sammendrag

I Norge, et land kjent for sin verdsettelse av naturen nekter folk & la kaldt vin-
terveer hindre dem fra & nyte utendgrsaktiviteter. Noen vinteraktiviteter er mer
risikable enn andre, for eksempel de som involverer & g ut pa frosne innsjger.
IceMap systemet ble utviklet fir & tilby et ekstra sikkerhetsverktgy til de som
krysser frossne innjsger. Systemet ble utviklet som en del av en bacheloroppgave
i programmering. IceMap systemet ble bestilt av Gjgvik kommune, og bestar av
en Python-server og en Dart/Flutter-basert mobilapplikasjon. Serveren behandler
vaer-, satellitt- og sensordata for & vurdere tilstanden til isen pa innsjger. Vurderin-
gene vises i mobilapplikasjonen i form av et fargekodet kart. Noen fa lignende
produkter finnes fra fgr av, men disse avhenger av brukerinspill fra vanlige folk
som kan ha begrenset med kunnskap om istrygghet. Ellers er det i dag vanlig &
gjore malinger manuelt. Selv om manuelle malinger er palitelige, er de utrygge
for de som ma utfgre dem. For a fjerne behovet for brukerinspill og manuelle
malinger introduserer IceMap et autmatisert malesystem med en LIDAR-montert
drone og satellittbilder. Siden de ngdvendige sensorene ikke kunne anskaffes i
lgpet av prosjektperioden er de fysiske komponentene erstattet med teoretiske
lgsninger. 1 stedet for & bruke data fra en faktisk sensor ble testdata fra ulike
nettkilder manipulert for mgte prosjektets formél. Det ble utfgrt forskning for &
identifisere de best egnede sensortypene, og alt ngdvendig oppsett for & imple-
mentere faktiske sensorer er inkludert i resultatet. Det eneste som gjenstar er a
anskaffe fysiske sensorer og teste sytemet med sensorene.

vii

Contents

Foreword iii
Abstract A
Sammendrag vii
ContentsS ittt e e e ix
Figures e xiii
Tables e XV
Code Listings i vt ittt e e e e xvii
ACTONYINS o i e et e e e e e e e e e e e xix
1 Introduction 1
1.1 Background. 1
1.2 Goals. e 2
1.3 Prior knowledge and skills 3
1.4 Existing software and technologies 3
1.5 Limitationsot i it e e e e e e 4
1.6 ContribUtors ittt e 4
1.7 Reportorganization.o euueenn... 4
2 System requirementsanddesign. 7
2.1 Taskdivision 7
2.2 System requirementst iit it 7
2.3 Use-case diagram v v iv v eee e 8
2.4 Wireframes e 9
2.5 Designreference.t 9
2.6 Databasedesign 10
2.7 Domainmodel 11
2.8 Systemarchitecture 11
2.9 Selected programming tools 13
3 Icetheoryandselected APIs. 15
3.1 Iceformationtheory, 15
3.2 ICetypes . . v v i e e e e 16
3.3 DOT guidelines foricesafety 17
3.4 NVEcalculationmodel 18
3.5 SENTINEL-2 satellites 20
4 Selected sensors and background theory 27
4.1 Laser altimeter theory enn.. 27

ix

X IceMap: Bachelor thesis report
4.2 Selected laser altimeter 30
4.3 Selecteddrone 30
4.4 Integrationchallenges 31
4.5 Alternative approaches 31
4.6 Magnetic Strip SENSOT . . .« . ¢ v v v v it e e e e e e e 32
4.7 Stationary SENSOTS . . « v v v v e v v v v et e e e e e e e e e e 32

5 DMobile application 35
5.1 Server communication 35
5.2 Main components v v v ittt e e e e 35
53 Mapwidget. . .. oot ittt e e e e 36
5.4 Statisticswidget L 39
5.5 Lakesearch 40
5.6 Initialization and persistence 41
5.7 Remainingwork 42

6 Custommapcreationc.. oo, 43
6.1 Adding a lake relation to the system 43
6.2 Dividingthemappolygon 45
6.3 Verifying theoutput. 47
6.4 Determining subdivisioncolors. 47
6.5 Exposing the processeddata 49
6.6 Alternative map creationmethods 50
6.7 Areasof improvement 50

7 Sensor and API implementations. 53
7.1 Drone e e e e e 53
7.2 LIDARSiles 53
7.3 LIDAR data processingo v i v vttt 54
7.4 Implementing model givenby NVE 60
7.5 Using Sentinelhub to geticerundates. 62
7.6 Sentinel-hub eval script 66

8 Resultanddiscussion 69
8.1 Resultgoals. 69
8.2 Effectgoals e 72
8.3 Learninggoals 72
8.4 Testing and quality assurance 73
8.5 Documentation and organization 73
8.6 Sustainability. 74
8.7 Method and processottt 74
8.8 Alusage i e 75
8.9 Futurework 76
8.10 Alternative USE CASES . . . « v v v v v vt it e et e e e e e 78

9 Conclusion 79

Bibliography 81

A Original task description 85

B Pre-projectplan 87

Contents Xi

CGanttChart e 111
D SENTINEL hub, Mjgsa over time 115
EDepthmap, Mj@sa 117
F Evalscript using 30 days NDMI, NDWIand NDVI 119
G Evalscript using 30 days NDMI 123
HCSVwithLabeledData 127
I Aldeclaration 129

JSWOT analysestables 133

Figures

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4
3.5

4.1
4.2

5.1
5.2
5.3

6.1
6.2
6.3
6.4

7.1

8.1
8.2

Use-case diagram cv vttt 9
Wireframes 10
ERdiagram e 11
Domainmodel 12
System architecture diagram 13
Examples of NVE model outputs 21
SENTINEL-2 pictures o v v v v it e ettt e e e e e 23
SENTINEL-2 1.2A with ILI and contrast factor 24
Graphs generated with SentinelHubdata 25
SENTINEL-2 L2A picture with ILI and contrast factor 26
Drone LIDAR SEtUD o i v ittt et e et 28
3Dplotof LIDAR testdata.o vt i i i i e ... 29
Loading page and two main widgets 36
Mapbuttons 37
Search feature and no internet behavior 40
Example of a time consuming request. 44
Pyplot graph from add new map endpoint 45
Verification of cell size formulas 48
Alternative map creationmethods 51
LIDAR trial calculationmodel 55
Utilized technologies 70
Example of Al generated testdata 76

xiii

Tables

4.1 Example raw point cloud data from LIDAR scan

2 SWOT analysis: DJI Metrice 300

XV

Code Listings

5.1 Custom choroplethmapclass. 37
5.2 Map data source and color mapping 38
5.3 Accuracy clasification oL oo 39
5.4 Fuzzysearchmatch 40
5.5 Persistent variable lastUpdate 41
5.6 HTTPS client configuration 42
6.1 Overpass APIquery 43
6.2 Cellsizecalculation 46
6.3 Generatingthegrid 46
6.4 Combining the map polygon withthegrid 46
6.5 Subdivisions feature objects oo 47
6.6 Determining subdivision coloring 48
6.7 Class for updating the mapdata 49
7.1 Identify world coordinates relative to LIDAR coordinates 55
7.2 Zip grid of map positions and LIDARdata 56
7.3 gridingof scannedarea 57
7.4 Identify and calculating ice thickness if identical coordinates 58
7.5 Usingthe NVEmodel 60
7.6 NVE Calculation function 60
7.7 Handeling sub divareaandtime 61
7.8 UsingNVEtogetwanteddata 62
7.9 Sending requestto Sentinel Hub 63
7.10 Getting ice runs foran cordinate 64
7.11 Updating theiceruns 64
7.12 Getting iceruns based on state of water changeing 65
7.13 Evalscript for statistical request on sentinelhub 66

Xvii

Acronyms

ADB - Android Debug Bridge

Al - Artificial Intelligence

API - Application Programming Interface

BBox - Bounding box

CSV - Comma Separated Values

DBMS - Database Management System

DJI - Da-Jiang Innovations

DOT - The Department of Transportation of the Northwest-

ern Territories
EMI - Electromagnetic Induction

ER diagram - Entity Relationship diagram

GPS - Global Positioning System

I - Intensity

IDE - Integrated Development Environment
ID - Identification

ILI - Icy Lake Index

JSON - JavaScript Object Notation

LAS - Log ASCII Standard

LAZ - LASzip

LIDAR - Light Detection And Ranging

MVP - Minimal Viable Product

NDMI - Normalized Difference Moisture Index

Xix

XX IceMap: Bachelor thesis report

NDWI - Normalized Difference Water Index

NIR - Near Infra Red

NDVI - Normalized Difference Vegetation Index

NOK - Noregian currency

NVE - Noregs Vassdrags- og Energidirektorat (The Norwe-
gian Energy Regulatory Authority)

OSM - OpenStreetMap

POI - Point Of Interest

QGC - QGroundControl

RTH - Return-To-Home

SAR - Synthetic Aperture Radar

SDK - Software Development Kit

SVM - Support Vector Machine

SWIR - Short Wave Infra Red

SWOT - Strengths, Weaknesses, Opportunities, and Threats
analysis (analysis framework)

Ul - User Interface

USB - Universal Serial Bus

UTM - Universal Transverse Mercator coordinate

Chapter 1

Introduction

As home to Norway’s largest lake, Mjgsa, the citizens of the municipality of Gjgvik
are naturally fond of utilizing the lake for recreational purposes. The lake is a
particularly popular spot during summertime, but many continue to visit the lake
throughout winter. For some, the height of winter is the perfect time to pull out ice
skates, skies, and fishing gear. This is especially true on particularly cold winters,
such as the recent winter of 2023/2024. In order to provide the citizens of Gjovik
with reliable information regarding the safety of the lake ice, the municipality of
Gjovik has commissioned a system for automatic measurement of the ice, as well
as an application to convey the ice safety to the general population. To fulfill this
task, we developed IceMap: an automated ice thickness measurement system with
its very own mobile application.

1.1 Background

Traversing a frozen lake can be dangerous. Although it is difficult to find con-
crete statistics, people occasionally fall through the ice on Mjgsa. A quick search
on Firefox shows multiple articles from recent years describing incidents where
people have fallen through the ice. Some may think that the natural solution to
this problem is to ban traversal of the ice, but in Norway such an attempt would
likely be unfruitful. In a country that has long winters and a culture that greatly
values nature, it is difficult to deter the general population from such activities,
even if they are dangerous. Instead, local governments and the police tend to en-
courage the population to take precautions and make safety evaluations.

Until 2024, the municipality of Gjgvik has mitigated such risks by manually
measuring the ice thickness. This approach provides reliable measurements, but
also risks the safety of the person conducting the measurements. Not only are
manual measurements risky, but they are also limited by multiple factors. Firstly,
the person conducting the measurement must be experienced, and such individu-
als are few. There are limits to how large areas can be covered by foot or ski,
and only areas that are already assumed to be safe can be measured. To share

2 IceMap: Bachelor thesis report

the information gathered by the sensors, the municipality has also requested an
application to notify people of the measurements conducted by the system.

1.1.1 Problem area and scope

The project focused on implementing existing sensor technologies, processing
their data, creating a map solution, and implementing the map in a mobile applic-
ation. The group did not delve into engineering of existing sensor technologies,
or the creation of new ones, even if the existing technologies were not optimal for
their intended purpose. Due to the width of the project scope, usability and user
testing was not prioritized.

1.1.2 Task description

In addition to a short description of the tasks background, the municipality pro-
posed the following approaches to solving the task:

1. What kind of sensor technology is best suited for measuring ice
thickness?

2. Design and create an app for the municipality’s residents for ice
thickness status and notification of changes.

3. Develop a prototype ice measurement service, complete with sensor,
IT solution and citizen app.

A combination of all three approaches was chosen. The request was completely
open beyond these approaches, meaning that the exact design, requirements, and
tools were left for the group to chose. To further define the task, the group added
their own requirements, which will be covered in chapter 2. The entire Norwegian
task description provided by the municipality can be found in appendix A Original
task description.

1.2 Goals

1.2.1 Result goals

This project aimed to develop a system that could both automate the measuring,
and an application that could convey the data. The system would consist of a
server, a mobile application, and sensors. The server would deal with data input
and processing, while the mobile application would deal display the processed in-
formation. To keep the application user friendly, the resulting mobile application
was expected to be relatively simple and only consist of a couple pages.

The server should utilize a couple of different sensor technologies and third
party APIs to determine the ice thickness. Since sensors could not be deployed and
tested within the project time frame, demonstrating the systems functionalities on

Chapter 1: Introduction 3

test data was deemed sufficient. The system must at the very least demonstrate
its functionalities on Mjgsa, although adding more lakes must be possible.

1.2.2 Effect goals and learning goals

The desired effect of this project is to reduce the need for manual measurements
and user input, and inform people of where safe ice is. The primary learning goals
were to learn to code in Python and Dart, improve knowledge of data processing
and sensors, learn concepts unique to mobile programming, and to build and
design more extensive systems.

1.3 Prior knowledge and skills

1.3.1 Programming

All group members had some prior experience developing in Python, but this ex-
perience was very limited. Dart, Flutter, and mobile programming on the other
hand were almost entirely new to the group. The group was also not familiar
with any of the utilized third party APIs and software’s. These had to be learned
completely from scratch.

1.3.2 Ice theory and data interpretation

To effectively select appropriate data sources and understand how to process the
data, the group had to spend a lot of time researching topics related to ice, LIDAR,
and satellites. To utilize satellite imagery, the group had to gain a baseline under-
standing of various satellite lenses and theory related to wavelengths. Understand-
ing how the different lenses work, their purpose, and how to convert the satellite
data required some proficiency in physics.

1.4 Existing software and technologies

The most similar existing product to IceMap is Iskart.no' published by NVE. IceMap
is similar in its intended usage, but does not rely on user input. In researching Is-
kart.no and other existing products, the group discovered that the website utilizes
an automatic calculation model, which the group came to implement in their sys-
tem as well.

Several existing sensor solutions were considered for IceMap’s specific require-
ments, but only a few were suitable. The most promising sensor technologies were
experimental and not commercially available, while others were impractical for

thttps:/ /www.iskart.no/

4 IceMap: Bachelor thesis report

use in water and outdoor environments. In researching additional data sources,
satellite technology appeared as a viable option.

1.5 Limitations

Because the group was unable to acquire the necessary hardware within the pro-
ject timeline, physical testing of sensor implementations was not possible. These
implementations were instead tested on sensor output data from various online
resources. This data was often not ideal for its intended purpose. LiDAR data and
satellite imagery are rarely created specifically for the measuring and mapping ice
thickness. Consequently, the group had to make use of data sources which were
relevant, but not exact matches.

Usage of various APIs and relevant tools was limited by a budget of 0 NOK
and the absence of data for Norway. Consequently, the group sometimes had to
rely on test data from geographic regions with climates similar to that of Nor-
way. Additionally, some sensor types lacked adequate documentation of the data
format which they outputted, which made if difficult to develop data processing
solutions.The difficulty of this task was greatly increased by the many limitations
of the available data and technologies.

1.6 Contributors

In total, 3 parties were involved in this project: the groups three developers, the
municipality of Gjgvik, and two academic advisors. Three meetings were held with
the municipality during the project period. In these three meetings, the group
gained all the necessary information from the municipality. Afterwards, the group
focused on refining the task further and implementing the system as they deemed
most appropriate. Since the municipality specifically expressed that the group
could solve the task which way they pleased, both parties felt that there was little
need in holding more meetings.

The two academic advisors, Pal Anders Floor and Marius Pedersen, were act-
ively involved in the process. They both aided in ensuring a smooth progression
and provided plenty of valuable ideas and feedback. Choices regarding sensors,
application features, UI (User Interface) design, and the report were all made with
the help of their contributions. Their expertise and guidance played a crucial role
in the success of this project.

1.7 Report organization

Chapter 2 describes the self defined system requirements and design. Chapter 4
and Chapter 3 contain background theory. Chapter 5 describes the implementa-

Chapter 1: Introduction 5

tion of the mobile application and the design decisions from Chapter 2. Chapter 5
can be interesting to read even for those lacking understanding of programming
as it delves into usability and design, but does also contain a lot of code and tech-
nical terms.

Chapter 6 is closely tied to Chapter 5 as it describes the process of creating the
maps displayed in the application. Chapter 7 describe the concrete implementa-
tions of the ice and sensor theory described in Chapter 4. Chapter 5 describes the
end use of all the data processing from Chapter 7. All of the code examples can
be found in Chapter 5, Chapter 6, and Chapter 7.

Chapter 2

System requirements and design

This chapter covers decisions regarding UI design, some individual system com-
ponents, and the overarching system design. The majority of these decisions were
finalized during the planning and system modeling phases. For more details about
how the project timeline was structured, refer to chapter 4 of appendix B Pre-
project plan.

2.1 Task division

The task was divided into three main areas, each of which was assigned to a one
group member. The first area was hardware, which was assigned to Hoa Ben The
Nguyen. This included the research, selection, and implementations of appropri-
ate sensors and drones. The second are was third party APIs and software, which
was assigned to Joakim Aleksandersen. This area dealt with implementing third
party APIs and software for non-sensor data sources, as well as research on the
properties of how ice freezes. The third area was mobile development, which was
assigned to Sara Savanovic Djordjevic. This area dealt with designing and develop-
ing the mobile application, and developing a custom solution for the color coded
map. Many of the tasks conducted during the planning and system design phase
were done collectively. Such tasks included developing the system requirements,
domain model, and the database design.

2.2 System requirements

During the planning phase, the group focused on preliminary research and pro-
ject requirements. The requirements where then iterated over as the group gained
more knowledge of mobile programming and background theory. By the end of
the system modeling phase, the requirements were finalized. Given that these re-
quirements were established early in the project, they were designed to be flexible
enough to accommodate new knowledge and ensure their feasibility. The require-
ments served as a framework rather than a rigid specification. Their flexibility was

8 IceMap: Bachelor thesis report

necessary to accommodate a "learn as you go" approach, as it would be difficult
to learn all the necessary knowledge and skills before the implementation phase
began. The following list shows the final iteration of the system requirements.

Sensors: At least one type of stationary sensors must be implemented, in addition to
a moving solutions that can cover a larger area. The stationary sensor must
be able to measure ice thickness under snow cover.
Unit tests: The server must include unit tests with a overall test coverage of 60% or
more.

Mobile application: Must utilize some form of color-coded map to visualize ice thickness, as
well as convey the uncertainty of the used data. The color coding must be
based on data gathered by sensors as well as data from third-party APIs
(Application Programming Interfaces). Such data may include temperature,
precipitation, humidity, water depth, etc.

Response time: The map must be fully loaded within 5 seconds of opening the application.
Database: The system must be connected to a database that stores all sensor measure-
ments with the coordinates and time of measurement.
Data exportation: Any user can export the data used in the calculation of the ice thickness. This
includes measurements from sensors, supplementary data such as weather
conditions sourced from third-party APIs, and satellite imagery.

The decision to aim for 60% unit test coverage was a compromise between
achieving a high degree of test coverage and a consideration of the project’s scope
and time constraints. For a longer project period, larger team, or more experienced
team, the required test coverage could be set higher. The mobile application was
specifically requested by the municipality, while the decisions to include a color
coded map and multiple data sources were decided by the group. The selection of
a 5-second response time was somewhat arbitrary, based on the group’s subject-
ive assessment of what constitutes an acceptable loading time. The database was
intended to server mostly as an archive for the collected data, and the data export
functionality was intended to provide transparency for the end user.

2.3 Use-case diagram

The use case diagram on Figure 2.1 includes the central features of the application.
Of these, three were chosen as strict requirements. The strictly required features
included viewing a color coded map, viewing more detailed data in the form of
graphs, and the ability to export the data used in the application. These function-
alities were expected to be part of the MVB but were not expected to be the only
features. In addition to these, three additional features were added: search for
other lakes, select areas on the map, and view more layers. Theses functionalities
were added on as goals for the prototype, after the MVP was developed. Since
the system does not rely on user input, verification of users was deemed unne-
cessary. Therefore, the use-case diagram does not differentiate between different

Chapter 2: System requirements and design 9

user types.

—{ View more layers

View color coded <<Bxtend>>

ice map

N
<<Ext§ nd>>

N
N

™ (Selecta map division

Export map data

<<Extend>>
|

Usel

Search for, and view
another map

ilew ice statistics for

the selected division

Figure 2.1: Use-case diagram with the six central features of the mobile applica-
tion

2.4 Wireframes

The wireframes (see Figure 2.2) were made to map out the general layout for
the main application page. The main components of the wireframe included the
color-coded map, a widget containing various graphs and statistics, and a smal-
ler overlay graph/box for quick access to key map data. The graph and statistics
widget aimed to display detailed information about the state of the ice, weather
conditions, measurement timestamps, and measurement methods. The wireframe
served as an active design reference throughout the entire development phase.

2.5 Design reference

To set a goal for the complexity of both the design and the features of the IceMap
application, the group looked at the My Aurora Forecast application by jRus-
tonApps B.V. [1] for inspiration. The design of this application was simple and
neat, and provided a good reference for some features like searching, sharing,
and map views. The design was not intended to be replicated, but rather acted as
an anchor to prevent the group from undertaking implementations that were far
beyond their skill level. This approach aimed to ensure that the application would
have a robust implementation with a simple, but aesthetic design.

10 IceMap: Bachelor thesis report

1. Initial view 2. Point selected view 3. Scrolled view

©00000 Mockplus = 1200AM % 000

A: map of Mjgsa with interactive points
B: box with detailed condition descriptions
C: quick view graph for selected point
D: detailed graphs, models, or text descriptions

Figure 2.2: Wireframes

2.6 Database design

A SQLite database was put in place to archive the processed data. The database
consisted of four entities. Each Measurement entity is uniquely identified by an
unique Identification (ID) and a timestamp indicating when it was taken. Sensor
entities are identified by a unique ID number, and are connected to a single body
of water. Each Measurement has an affiliated Sensor, BodyOfWater, as well as
multiple SubDivision entities. While the Measurement entity contains general in-
formation about the entire measurement, SubDivision entities contain data for a
specific point within the affiliated Measurement area. Figure 2.3 shows each entity,
their affiliated attributes, and the relations between all the entities.

Chapter 2: System requirements and design 11

SubDivision Measurement
1.1 1>
MeasurementiD: INT {PPK} {FK} D: INT {PK} Sensor
1.1 1.*
SubDivisionID: INT {PPK} SensorlD: INT {FK} SensorlD: INT {PK}
GrouplD: INT {PPK} TimeMeasured: DATETIME SensorType: ENUM
1.1
MimimumThickness: FLOAT WaterBodyName: TEXT {FK} Acrive: BOOL
AverageThickness: FLOAT WholeAverageThickness: FLOAT

CenterLatitude: FLOAT

CenterLongitude: FLOAT

Accuracy: FLOAT
BodyOfwater

Name: TEXT {PK}

Figure 2.3: Entity relation diagram for archival of processed data

The choice of SQLite for the DBMS was primarily intended for the production
stage, but while the system only includes a few lakes and sensors, SQLite may be
sufficient. If the system were to expand beyond the reach of Gjgvik, it would prob-
ably require a more comprehensive DBMS like MySQL. As the database primarily
served an archival purpose, and the system was intended only for Gjgvik, there
were few performance requirements. Hence, the choice of DBMS was not con-
sidered thoroughly.

2.7 Domain model

The domain model on Figure 2.4 was made during the earlier stages of the system
modeling phase. The model shows how the group initially envisioned the system
to function. Four data source were expected, each providing different types of
data required for the accurate assessment of the ice thickness. The standardiza-
tion model was intended to process all the input data to a standard format. The
standardized data would then be passed to a calculation model, which would out-
put a safety rating calculated based on all the input data from the standardization
model. The inclusion of the standardization model was a bit redundant, as the
standardization of data could be done in each data input point or in the calcula-
tion model. The domain model was purely intended to aid the group in designing
the system prior to implementation, and was not utilized as an active design refer-
ence. Therefore, the implementation does not match the domain model perfectly.

2.8 System architecture

A shown on Figure 2.5, the system was divided into three parts: an app, server
and various data sources. The data sources include all the system sensors and
two third party APIs. Most of the interesting application code is located in the
Lib directory at the root level of the App directory. Lib includes the entry point,

12 IceMap: Bachelor thesis report

WaterData Drone Sensor
DepthMap BatteryLife Model
WaterTemperature MaxHeight Type
WaterArea MaxWeight
A
SatteliteAPI WeatherAPI SensorDroneAP|
CloudCoverage Source Measurement
IceLoaction Temperature TimeOiMeasurement
Zone Clouds Route
Area Humidity
Wind
Database
Percipitaion
Measurement
DateTime
Location
SensorlD
CalculationModel ThicknessMap
. 3 3 StandardizeData[1.] Depth
StandardizationModel
ApproximatedThickness Zone
RawData
» SafetyCategorization SafetyCategorization
Standardization
Coordinate/Vector Thickness
StandardizedDara
Precision Precision
Radius UtilizedData

Figure 2.4: Domain model

a file containing constants, and a file containing self defined data structures. The
constants file contains paths to folders and assets, as well as variables which are
read (not written to) globally. The pages, widgets, code handling server requests
are separated in dedicated folders. Most of the other code outside of Lib is auto
generated boiler plate code for various operating systems and platforms.

The entry point for the server is at the root level, together with a constants
file. The constants file mostly contains paths to various files which are used across
multiple folders. The database folder contains the SQLite database contents and
schema. The DataProcessing folder contains code for processing LIDAR data. The
MapHanlder contains code for creating lake maps and updating data for the maps.
The NVE model contains a third-party software from NVE for generating ice stat-
istics. This model is described in more detail in section 3.4. The certificates folder
contains SSL certificates and key files for the server-app communication.

Chapter 2: System requirements and design 13

System

Application Server Sensors
Lib El’ltl’y pOiIlt)

LiDars...
Entry point Constants S >

Database Magnetic strips...

Constants L J
HEN ——

0 Other...
Data sturctures Data processing > L J

HEN

Pages

| —
ooo Map handler

Widgets

Hisaets NVE model
EEE 1 OverpassTurbo API
Request handler Certificates
ooo HEE
OooOooOo
[Drone code }
(README]

Figure 2.5: This system architecture diagram illustrates the general folder struc-
ture of the system.

2.9 Selected programming tools

The following programming languages, frameworks, and development environ-
ments were deemed most fitting for implementing the requirements:

2.9.1 Python and Pycharm

There are several reasons that made Python the ideal choice for the server. The
language has simple syntax, a long list of libraries, is documented extensively,
and has a very active user community. The user community provides a large col-
lection of tutorials and code examples. Python also has many libraries for data
visualization and manipulation of geometrical data, such as Shapely, GeoPandas,
and Matplotlib. Pycharm was selected as the most suitable IDE (Integrated Devel-
opment Environment), mainly due to the groups prior experience with IntelliJ’s
other IDEs.

14 IceMap: Bachelor thesis report

2.9.2 Dart and Flutter

The two main contestants for the mobile application were React and Dart/Flutter.
Eventually, React Native was ruled out due to having a JavaScript framework,
something the group was not particularly fond of. Since the group also had some
introductory experience with Kotlin, Dart seemed easier to learn. Eventually, the
combination of Dart and Flutter was chosen. The advantages and disadvantages
of Dart and React Native were discussed in the appendix B Pre-project plan.

2.9.3 Android Studio

Android Studio was selected as the development platform for the mobile applic-
ation. As with Pycharm, it was chosen mainly due to the groups prior experience
with the IDE. Android Studio comes pre-equipped with multiple free Android emu-
lators, and has a built in interface for ADB (Android Debug Bridge) connection.
This allows physical devices to quickly be connected to a PC and to transfer the
application wirelessly.

Chapter 3

Ice theory and selected APIs

Given the project’s focus on ice safety and measurement technologies, a grasp of
relevant ice-related theory is essential for understanding many of the decisions
made by the group. The following theory will aid in the comprehension of choices
of sensors, other hardware, APIs, and mathematical formulas implemented in the
server.

3.1 Ice formation theory

Knowing when ice initially manages to establish itself on lakes is what is most im-
portant when it comes to estimating ice thickness. This is due to when ice forms
on the surface of a lake, it grows thicker as heat moves from the ice’s bottom to
the air above. The bottom of the ice is always at the freezing point. If no extra
heat comes from the water below from residue heat, all the heat loss helps the
ice to grow thicker, from the bottom and down. The formation itself might not
happen before the average daily temperature falls below the freezing point as the
temperature needs time to cool down the residue heat inside the lake [2].

When ice sheets grows, they grow from the bottom of the sheet and down-
wards. This growth is caused by the air temperature being sufficiently low to re-
duce the water temperature below the freezing point. As ice layers and snow es-
tablish themselves on the water, they effectively act as a thermal insulator between
the air and the water [3]. This insulating effect can prevent the ice from thicken-
ing, even when temperatures are below 0 °C. The underlying waters warmth can
also contribute to the ice formation plateauing.

Under normal conditions, water will freeze at 0 °C and have maximum density
at 4 °C. This causes water at greater depths to converge towards 4 °C. This effect
allows water at deeper levels to remain above freezing temperatures, even when
the surface water has frozen.

15

16 IceMap: Bachelor thesis report

The density of water decreases when it cools, causing colder water to rise and
replace warmer surface water. This creates a layer closer to the surface where
the water is colder than 4 °C and a layer where the temperature is at 4 °C. These
layers will slowly try to balance each others temperature out. Since water has a
maximum density at 4 °C, some may believe that the water temperature will stay
at 4°C at specific depths, but this is only true in certain cases [2]. Strong winds
can cause surface water and deeper water to mix, which can prevent the surface
water from reaching the freezing point and blending the heat causing the temper-
ature to be almost equally same throughout. Lake Erie in North America is one
such example. Here, wind effects are so great that stable ice rarely forms over the
entire body, despite the water being nearly 0 °C throughout the entirety of winter.

3.2 Icetypes

Ice is mainly categorized into three types: black ice, slush ice and spring ice. The
ice types have different properties and appear at different times.

Black ice

The first ice type that establishes itself on an lake is black ice. Black ice is char-
acteristic for its transparent and seemingly black color. It is the strongest ice type
and can almost carry an average adult at only 5cm thickness [4].

Slush ice

Slush ice is formed when a layer of wet snow freezes. When the snow weighs
down the underlying ice, the ice can crack and let lake water seep through. This
is usually how the snow becomes wet. The layer of slush freezes from top to bot-
tom, which can result in a layer of wet snow sandwiched between a layer of black
ice at the bottom, and a layer of frozen slush ice at the top. The color of the ice is
an indicator of its strength. Slush ice is characteristically white or grayish, which
is caused by its high content of air. The higher the air content, the whiter the slush
ice. A lower air content and a higher water content will causes a darker, grayish
color. Less air and more water usually creates stronger ice, but this is only true if
the slush is already frozen. Wet slush also has a gray color, but does not have any
carrying capability.

If the slush ice has not bonded with the layer below when new snow falls,
new layers of ice can form on top of the existing ones. This can result in a stack
of multiple slush layers which are mostly composed of surface water. Such an ice
formation is not particularly strong despite being thick. In extreme cases, there
can be meters of slush ice layered on top of a base of black ice. Slush ice can grow
incredibly fast if there are no insulating layers on top of it.

Chapter 3: Ice theory and selected APIs 17

Spring ice/candle ice

During spring when the temperature rises, the ice will slowly become hollow. As
the daily air temperature rises above the freezing point, the ice will start to melt.
While the ice becomes thinner, the ice crystals will start to break down at their
edges and form into vertical rod-like structures. These long vertical crystals have
weak connections between each other. As the crystals gradually become hollow,
they fill with water. Such formations greatly diminish the carrying capacity of the
ice, even when the ice is thick. As this ice type usually forms in spring, it is called
"spring ice", but it is also known as "candle ice" due to the rod-like crystal [2] [5].

3.2.1 Determining effective ice thickness

As different types of ice form on the water, they are not equal in their carrying
capacity. If there are multiple layers on the ice, the strength of the ice is only
as strong as the strongest layer and not the total amount of ice thickness. This
leads to significant doubt about slush ice and candle ice, as it’s uncertain whether
the layers have merged and how strong the bindings are [6]. Because of this, a
choice have been made to make the effective ice thickness always be defaulted to
the black ice as it is the strongest and most predictable ice. Despite this choice,
slush ice and candle ice still does have an carrying capability, but this should be
primarily be assessed by personnel with prior experience with determining ice
thickness through manual labor [7].

3.3 DOT guidelines for ice safety

The Department of Transportation of the Government of the Northwest Territor-
ies (DOT) has guidelines for determining safe ice bearing capacity in a document
for safe ice construction [8]. The document is mainly meant for maintenance and
construction of crossings over ice with vehicles, and will thus be mainly used for
ice at thicker values (effective ice thickness of >10 cm).

The DOT have three operation conditions. These are routine, enhanced and
acute operation. The routine is the most common and simplest to conduct, but also
the most conservative estimate. Acute is the least common, but also the level re-
quiring the most effort to commence. The operating conditions are applied in vari-
ous ways over three phases of operation. These are divided into Pre-construction,
construction and operation phase.

In the scope of this project, the phases and conditions that will be considered
will be restricted to the routine conditions for all phases. This is because it is the
most conservative, thus ensuring higher levels of safety despite the potential unre-
liable/sparse data that are available. This said, it is important to remark that it is
not possible to achieve a routine operation level with only use of already existing

18 IceMap: Bachelor thesis report

sensors technology as one of the requirements for routine operation level require
manual labor and supervisors.

The Routine conditions that are applicable in the scope of the project are as
follows. In all states of operation, Gold’s formula (Eq Equation 3.1) should be
calculated with an A value of 4. For calculating the Gold’s formula, the newest
data should be used. The spatial distance between every measured area should
be within 12 meters of each other. There should be 10-14 days of ice thickness
measurements available.

3.3.1 Gold’s formula

The first step in routine and enhanced operation levels is to utilize Gold’s formula
(Equation 3.1). Golds formula is used for estimating the bearing capacity of an
ice sheet [8]

P = AR 3.1

P is the estimated bearing capability of the ice in kilograms. A is an value between
3.5 and 6 which is chosen to set how conservative the model is. 3.5 is the most
conservative and 6 is the least. h is the thickness of effective ice at its lowest point.

Gold’s formula can be a good estimator for general bearing efficiency for
vehicles. Canada has historically used this formula for estimating the safety of
ice for work environments. The model originally published in 1981 is not recom-
mended to be used on current day heavy equipment load configurations, as the
model made by Gold does not resemble the same general load configurations of
today’s standard [9]. Thus Gold’s model should not be used in contemporary or-
ganizations when determining required ice thickness for such equipment [9], but
can still be for smaller general use case.

To achieve routine safety by the DOT, the Gold’s formula should be done with
an A of 4 in all phases of operation. Hence when using the Gold’s formula, the A
value will always be set to 4. As 5 cm of effective ice is the estimated thickness ne-
cessary for "navigable ice" [7], Gold’s formula can calculate the estimate carrying
capability. Calculating a maximum capacity of 100 kg for this thickness.

3.4 NVE calculation model

In order to get an estimated ice thickness for any given coordinate in Norway, a
model and software provided by the NVE was utilized. This same model is used
by a NVE in their "iskart" application[10]. The model uses air temperature and
weather data from SeNorge’s API to conduct an ice prognosis. SeNorge is an grid-
ded dataset of daily aggregated temperatures of the Norwegian mainland from
1957 to present day[11].

Chapter 3: Ice theory and selected APIs 19

When using the model, it creates a prognosis for the entire season worth of
data. This is done by requesting data from the closest available point from seNorge
to get the weather and temperature information. The model iterates through the
entire selected timeframe by calculating the evolution of the ice. The model de-
termines if the ice is freezing or melting by the temperature and snow conditions
for each time step. Specifically, the model checks if the air temperature is below
freezing to simulate ice formation and above freezing for ice melting scenarios.

This day-by-day iterative process involves calculating the necessary heat trans-
fer to determine the changes in ice thickness. The model adds new snow layers
and updates the slush levels if applicable. During freezing conditions, it calculates
the amount of ice formed by considering the heat flux through the ice column us-
ing the thermal conductivity of the layers. If melting occurs, it uses a degree-day
model to estimate the reduction in ice thickness, as shown in Equation 3.2.

Ah = melting coefficient x Degree Days (3.2)

The equation uses the unique melting coefficients of each type of snow and ice
respectively. It multiplies this with the time step and the temperature above freez-
ing. This simplifies the complexity of melting. These detailed calculations make
the model relatively time-consuming if run directly in the front end.

The freezing process involves updating the total ice by adding new ice layers
based on the calculated heat flux and thermal conductivity from the top to the
bottom of the total. During melting, the model removes or reduces the thickness
of the top layers using different melting coefficients for snow, slush, and black ice,
depending on the temperature and time step.

As ice thickens and unforeseen variables affect the physical ice which the
model cannot accord for, thus the model becomes more and more deviant over
time. This is something that can be counteracted by including ice run dates, which
are dates where the water is known to have a layer of ice. These dates are manu-
ally given in order to correct the model. Supplying ice run dates also allows for
the most accurate estimation as the dates for the initial ice layer are crucial for
having a most accurate estimation.

When utilizing this model, it is imperative to consider the assumptions taken
and uncertainties underlying in the model. The model itself allows the use for
average water temperature and ice run dates, but these have to be manually
provided to the model. To further improve the model an attempt to utilize the
SENTINEL-2 in order to provide the ice run dates have been used as NVE them-
selves already use SENTINEL-2 to create iskart.no, but apparently not in the act
of creating ice run dates[10]. More information about SENTINEL can be found in
section autorefSent-2-sat Water temperature is something that in the future can

20 IceMap: Bachelor thesis report

be improved by the use of magnetized strip sensors as discussed in this section
section 4.6.

The NVE model is supposed to act like a baseline or fallback strategy in the
IceMap system. By default, if a subdivisions includes sensor data, the sensor data
will be utilized to determine the ice thickness of the subdivision. If a subdivisions
has not been measured by a sensor, it will utilize the data produced by the NVE
model. chapter 5 describes the end usage of the different data sources in more
detail. The selected sensors, which are described in chapter 4, should gather data
with a higher accuracy, but also requires more effort to deploy. Since smaller and
more remote lakes may not have the capability to deploy a drone or even have sta-
tionary sensors, the NVE model provides a baseline for such cases. To mitigate the
lower accuracy of the model output, subdivisions with only NVE data are marked
in the IceMap application as being less accurate (see chapter 5). The model also
works as a fallback strategy when the drone fails or goes out of commission.

3.5 SENTINEL-2 satellites

The problem of having to set ice run dates manually can be solved by integrat-
ing the SentinelHub API. The SENTINEL-2 is part of the Copernicus Programme,
which is coordinated by the European Union and specifically tailored to provide
comprehensive and sustainable Earth observation capability [12]. SENTINEL-2 is
a satellite mission with two identical satellites, SENTINEL-2A and SENTINEL-2B,
which were launched in June 2015 and March 2017 respectively. These satellites
are equipped with high-resolution multi spectral cameras designed to capture vis-
ible, near-infrared (NIR), and short-wave infrared (SWIR) images. [12]

The objective of these satellites is to monitor surface condition and variability.
They achieve this through their high revisit frequency. Each satellite revisits every
10 days, effectively every 5 days when combined. Additionally, with a swath width
of 290km, they can effectively revisit areas at mid-latitudes every 2-3 days [12]

SENTINEL-2 is equipped with 13 spatial bands: four at 10m, six at 20m and
three at 60m spatial resolution [12]. This causes the images captured by SENTINEL-
2 to be highly versatile for various observational purposes. The different spatial
resolutions capture detailed observations of vegetation, soil, and urban areas, and
most importantly bodies of water. This allows the SentinelHub API to be utilised
for observing the ice state on lakes.

SENTINEL-1 and SENTINEL-2 have previously been utilized for monitoring
and forecasting river ice conditions to help manage flood risks. SENTINEL-1, with
its Synthetic Aperture Radar (SAR), was used to detect and differentiate types
of ice formations along the river. SENTINEL-2, was utilized to view the flooding

Chapter 3: Ice theory and selected APIs

Stjgrdal season 2023-24

snow
- slush_ice
m—black ice
20 - sush

202311 202312 2024-01 2024-02 2024-03 2024-04 2024-05

T o
Temperature in [C]

Fresh snow in [cm]

(a) Output with icerun dates

Stjgrdal season 2023-24

snow
- sush_ice
m—black ice
20 - sush

Waterline

202311 202312 2024-01 2024-02 2024-03 2024-04 2024-05

T o
Temperature in [C]

Fresh snow in [cm]

(b) Output without icerun dates

Figure 3.1: Examples of NVE model outputs with and witout icerun dates

22 IceMap: Bachelor thesis report

and the status of the ice by providing high-resolution imagery in various spectral
bands [13].

The SENTINEL satellites provide valuable insights into ice conditions, demon-
strating that visual appearances alone are not enough to understand the full story
of ice duration. Appendix D SENTINEL hub, Mjgsa over time features multiple im-
ages of Lake Mjgsa taken over a 30-day period, captured using true color lens as
well as the use of a modified multi temporal evalscript [14]. The evalscript view
the Normalized Difference Vegetation Index (NDVI) and the Normalized Differ-
ence Water Index (NDWI) in order to highlight the difference between snow and
water or vegitation and water respectivly. NDVI and NDWI are variations of the
normalized difference index or ratio formula equation (Equation 3.3).

A=(a—b)/(a+Db) (3.3)

NDVI uses a for NIR and b for red, while NDWI employs a as green and b
as NIR. This help to illustrate the duration of ice presence on the lake. Despite
the ice appearing similar in the images, significant differences in its longevity are
evident. This matches section chapter 4 about how the lake’s conditions affect the
ice. Mjgsa has greater water depths and a river running, see appendix E Depth
map, Mjgsa, causing currents in the area where the ice spent more time to pass.
With this in mind the proposed usage of the SENTINEL framework in this project
would thus be to get the ice runs for given areas on the ice in order to better
suit the model given by NVE specific areas on lakes. Specific evalscripts are found
in appendix F Evalscript using 30 days NDMI, NDWI and NDVI and appendix G
Evalscript using 30 days NDMI.

The standard deviation between pixels on the satellite imagery can be used
to differentiate between areas of water from areas of ice and snow. It is proposed
to use the Icy Lake Index (ILI) equation (Equation 3.4), which uses a variation of
the normalized difference index or ratio (Equation 3.3) with satellite bands as:

ILI = (Red + SWIR2)/(NIR + SWIR) 3.4

The ILI as described in this study [15], it was attempted to classify land, snow,
ice and water. They were able to achieve 94.5% precision for ice with a Support
Vector Machine(SVM). Though it is a higher complexity project that also includes
way more variables, this is what is important for lake ice classification. Figure
3.2a is a picture taken with the use of the ILI, the same picture but as true color
is shown in Figure 3.2b.

By using the statistical API from SENTINEL hub, it’s possible to run an eval-
script on specific areas over a designated time interval, eliminating the need to
download all the images. By specifying a Bounding Box(BBOX) for the interior of

Chapter 3: Ice theory and selected APIs 23

Y
e
&
\g,\o Moy
=
v
‘s
- 4\‘ 14 .
~’f\‘:'
et
N ki
(a) Picture using Ice Lake Index (b) Picture using true color

Figure 3.2: SENTINEL-2 L2A pictures of Mjgsa using SENTINEL hub EO Browser

a lake would thus have different standard deviation based on if there are ice or
not, ultimately thus attaining when the ice is on and off the water.

Figure 3.4b shows a plot of Mjgsa utilizing data from the statistical API. The
plot was generated from multiple months of data where the cloud coverage was
below 40%. As the precise numbers used in the previously mentioned article [15]
were not public at the time of writing this report, the specific evalscript is written
based on the ILI formula and might not be the same as the one used by Jugier.
Using the pure ILI in an evalscript yielded lacking results, which can be seen on
Figure 3.4b where the standard deviation never goes beyond 1. This said, it can
easily be mitigated by multiplying the formula by a single factor to increase the
contrast. This can be easily visualized in Figure 3.3, which shows that there is a
clear difference between water and ice.

In the graph, it is clear that the standard deviation is far lower when ice is
present. The 23rd of December 2023 is the first date where the cloud coverage is
low enough to get a clear picture of Mjgsa with the presence of ice. In this instance,
the standard deviation is 2.58, in contrast to the deviation of 12.65 recorded on
2023-12-03. For more detailed data, see appendix H CSV with Labeled Data.

This difference in deviation makes it possible to distinguish between days with
ice (ice on”) when deviation is low, and days without ice (ice off’) when deviation
is high. However, this method does have some limitations. Clouds can affect the

24 IceMap: Bachelor thesis report

Figure 3.3: Picture taken by SENTINEL-2 12A 2023-12-26 using ILI with a contrast
factor

accuracy of the satellite images. It is possible to filter images from Sentinel Hub
by percentage of cloud coverage, but it is not perfect. Since higher cloud coverage
leads to less reliable data, a more strict filtering for cloud coverage could increase
the reliability. However, this could lead to large time periods with insufficient data.
Figure 3.4a and Figure 3.4b show an example where the API did not output any
data between August and October due to a strict cloud coverage filtering.

Another problem with using standard deviation to tell ice, water, and clouds
apart is when the ice starts breaking, like in Figure 3.5. This approach drastically
increases the standard deviation, incorrectly marking it as clouds. This mistake
commonly occurs during spring and off-seasons. Mistaking ice during off-seasons
isn’t a particularly big problem because the model does not predict ice growth in
warm weather.

Chapter 3: Ice theory and selected APIs 25

NDMI Standard Deviation Over Time

® Noice °
® High probability of Cloud
20] ® ke
»
15 o
§
s
E o
® .
g 10 P
5
a . N
v, .
L]
5 N 4
.
L
.
e * e .0
0
o o® o A0 A A o> S O
o7 o7 27 2 e o7 o 2 2
Interval From
(a) Graph of standard deviation with contrast factor
NDMI Standard Deviation Over Time
05 ° * ke
.
04 .
L]
§ 03 !
]
3
a
®
5
2
502 .
@ .
.
01 °
.
%
0.0 - L .. - *-o o *e
o o* o2 AS A A e S i
27 7 o7 o7 27 e o 2 2
Interval From

(b) Graph without adjusted contrast factor

Figure 3.4: Graphs generated with SentinelHub data with cloud coverage filter-
ing

26 IceMap: Bachelor thesis report

2024-03-07 00:00 - 2024-03-07 23:59, Senlinel-2 L2A, Cuslom script

Figure 3.5: Picture taken from SENTINEL-2 12A 2024-03-07 using ILI with an
contrast factor

As a final note, when using the ILI, it is important to consider the size of the
area being analyzed, especially when using standard deviation to classify ice. The
evalscript (section 7.6) uses data from bands BO4 (Red) and BO8 (NIR) at 10m
resolution, and bands B11 (SWIR1) and B12 (SWIR2) at 20m resolution. This
means each pixel represents 10 square meters, but B11 and B12 overlap by 2 by 2
pixels. So, to get a meaningful standard deviation, it needs to capture quite large
areas of the picture [16] as only every 20m? are effectively unique pixels. Because
of this, the BBox’es should be at least km? in order to have an adequate amount
of pixels to do produce an effective evaluation.

Chapter 4

Selected sensors and background
theory

The group chose to utilize a drone to operate a LIDAR (Light Detection and Ran-
ging) system. This solution addressed the requirement of a mobile sensor. Integ-
rating a laser altimeter onto the drone enables it to conduct area scans for thick-
ness calculations, thereby evaluating the safety of traversing the ice surface. The
installation of the laser altimeter on the drone is crucial to facilitate its scanning
capabilities and ensure accurate assessment of ice thickness. To meet the require-
ment of a stationary sensor, the group chose to utilize magnetic strip sensors.

4.1 Laser altimeter theory

A laser altimeter is a variant of LIDAR that is primarily deployed for determining
vertical distances from the altimeter to a target object. The technology utilizes
laser to measure distances, generate detailed maps, and create intricate three-
dimensional models of the Earth’s surface.

Laser altimeters work by emitting a pulse of scattered light particles. The dis-
tance to the target object is determined by measuring the time it takes for the
emitted light to return to the altimeter. This concept leverages the constant speed
of light [18] and the second equation of motion formula, as outlined in Equation
(4.1):

d=vyt+12-at? (4.1)

In this formula, d denotes the distance covered, v, represents the initial velocity
at the commencement of the calculated distance, v signifies the velocity at the
conclusion of the distance calculation, t denotes the time taken to travel the dis-
tance, and a denotes the acceleration from start to finish.

While the concept relies on the constant speed of light, variations in the drone’s
speed and environmental elements introduces additional complexities to be con-

27

28 IceMap: Bachelor thesis report

P™2m i ice layer ~ 2cm |

rd

N

length

Figure 4.1: A typical setup of proposed ice thickness measurement: An airborne
LIDAR illuminates the surface with tightly focused laser beam and measures the
light returning. Reproduced from [17].

sidered. Despite these potential challenges, the position of the target object re-
lative to the altimeter is determined based on the direction and distance of the
returning light. This data can be mapped onto a 3D coordinate system, with sup-
plementary data depending on the type and sophistication of the LIDAR system.

The thickness of ice can be determine by leveraging the penetration capability
of the emitted laser. This is done by ascertaining the distance between the reflec-
tion points on the top and bottom surface of an ice layer. Various studies have
confirmed this method, including those by Sergey et al.cite[19], Fons et al.[20],
and A. Gold[21]. These studies primarily involve space-borne laser altimeters for
analyzing sea ice thickness and estimation of mass. However, it is important to
acknowledge the inherent uncertainties associated with this data, which are in-
fluenced by variables such as humidity, snow, precipitation, and precision of the
sensor apparatus.

The standard output of a LIDAR consist of multiple sets of XYZ coordinates, as
shown in Table 4.1. Each set of XYZ coordinates represents a single point reflected
from the ice surface. By utilizing the X and Y coordinate, points that are vertically
aligned can be grouped together. By examining the Z coordinates and intensity
(I) of these grouped points, the thickness of the ice layer can be discerned.

To examine the utility of LIDAR data, an open-source LIDAR file of the Arc-
tic was obtained from opentopography.org [23]. Since no LIDAR data for Norway
was publicly available, this data from the Arctic was thought to be adequate for

Chapter 4: Selected sensors and background theory 29

| X (m) | Y (m) | Z (m) I
-25.6245 16.3245 8.2345 0.7435
-25.5456 16.2655 8.3532 0.1535
-25.5463 14.2542 6.1435 0.1453
-25.5413 14.4235 6.3246 0.8874
-25.4352 16.3452 8.4235 0.2546

Table 4.1: Example raw point cloud data from LIDAR scan.
Reproduced from: [22]

testing and demonstrating the LIDAR data processing. By converting and analyz-
ing the LIDAR scan results from this source using CloudCompare, the graphical
representation in Figure 4.2 of the terrain was generated.

The limitations of a LIDAR lies in its necessity for an unobstructed view of the ice.

PointSourceld
145.000000

144.500000
144.000000
143.500000
143.000000
142.500000
142.000000

141.500000

141.000000

Figure 4.2: LIDAR data from Opentopography [23] plotted on a 3D map, showing
how the points are set up using cloudCompare.

In cases where the ice is obstructed by for example snowfall or rain, the measure-
ments will be inaccurate. Determining ice thickness requires evaluating physical
characteristics inherent to both sea ice and freshwater ice, thereby presenting
challenges to monitoring endeavors[24].

30 IceMap: Bachelor thesis report

4.2 Selected laser altimeter

The specific laser altimeter model chosen for the IceMap application is the SEN-
14032 from Garmin'. Multiple other models were considered, but the SEN-14032
ultimately met the groups requirements and limitations best. While many com-
mercial altimeters offer extended range capabilities, they come with a high cost.
Moreover, the majority of available sensors possess limited operating temperat-
ures, rendering them unsuitable for colder environments. It was only upon discov-
ering the SEN-14032 model that the group found a sensor capable of measuring
distances of up to 40 meters, operating in temperatures as low as -20 °C, main-
tain a compact dimensions of 20 x 48 x 40 mm and deliver a precision of +/-2.5
cm. Despite the modest accuracy, it adequately fulfills the requirements for de-
termining the minimum ice thickness necessary to support multiple individuals,
as detailed in section 3.3.

4.3 Selected drone

The drone planned to be used for this conceptual process was initially the DJI
Matrice 100, a developer drone made by Da-Jiang Innovations (DJI). This drone
provides several customization options allowing the addition of third party hard-
ware and software. The DJI Matrice also includes its own compatible hardware
and software applications for smooth operation of the drone. The drones manual?
describes functionalities like waypoints navigation for automated flights, point of
interest (POI) for operating on specific coordinates, and some other functionalit-
ies which are relevant for the IceMap system.

The DJI Matrice model seemed to be a great fit upon initials research, un-
til discovering that its minimum operational temperature was -10°C. Considering
that Norwegian winters commonly reaches temperatures below -20°C, this posed
a significant limitation. A newer model of that same drone, DJI Matrice 300, was
later discovered to be a better fit. This updated model offers comparable or su-
perior specifications, the same software and hardware benefits, and is capable of
operating in temperatures as low as -20°C. Hence, the DJI Matrice 300 was selec-
ted to be utilized in the conceptual proof of the system®.

A SWOT analysis was conducted to evaluate the multiple viable options for the
drone. The analysis highlights strengths, weaknesses, opportunities, and threats
associated with the different options. These factor are crucial for making an in-
formed decision that align with the project’s objectives and requirements. Table 2
in appendix shows how the SWOT analysis: DJI Metrice 300 compares to other

Thttps:/ /www.garmin.com/en-US/p/557294specs
Zhttps://dl.djicdn.com/downloads/m100/M100_User Manual EN.pdf
*https://dl.djicdn.com/downloads/matrice-300/20200507/M300_RTK User Manual EN.pdf

Chapter 4: Selected sensors and background theory 31

drone options which were considered.

The SWOT analysis reveals several important insights regarding the drone
selection process. While certain drones offer strengths like cost-effectiveness and
high payload capacity, they may also present limitations such as limited flight time
and the need for additional hardware. Opportunities exist for leveraging third-
party software and hardware integration, but potential threats such as technical
issues and software bugs must also be considered. It is essential to weigh these
factors carefully and consider potential strategies to mitigate weaknesses and cap-
italize on opportunities to select the most suitable drone.

4.4 Integration challenges

The group assumed that integration of the selected drone and sensor would be
possible, but could not guarantee its feasibility due to lacking expertise in both
drones and sensors. However DJI offers a payload SDK for integrating tools like
LIDAR into their drones *. If this option proves unfeasible, it is suggested to con-
sider a LIDAR provided by the drone manufacturer. DJI provides multiple options
for LIDAR implementations, however, these LIDARs come at a much greater cost
than the ones proposed by the group, and may not meet the operational temper-
ature requirements. Nonetheless, the other specifications outlined in section 4.2
generally meet or exceed the groups requirements for these sensors.

4.5 Alternative approaches

The original plan involved utilizing any inexpensive drone with specifications that
met the minimum requirements. In order to accommodate an automated flight,
an Arduino board was proposed to be mounted on the drone together with the
sensor. Later in the project period, the group discovered the DJI Matrice 300 which
allowed for a much simpler implementation of flight path automation. The code
intended for implementing the Arduino remains available in the GitLab repository
for those interested in a budget-friendly setup. Additionally, code and links to
hardware resources are provided. The necessary components include an Arduino
MKR Zero and NEO 6m (GPS device), along with equipment for mounting the
component on the drone. Wiring instructions for the GPS system and LIDAR can
be found in the tutorials for NEO-6m® LIDAR®. Although, it is not cost-efficient
given the need of a professional-grade drone capable of operating at a minimum
temperature of -20 °C, which typically includes their own integrated hardware
and software solutions.

“https://developer.dji.com/payload-sdk
Shttps://randomnerdtutorials.com/guide-to-neo-6m-gps-module-with-arduino/
Shttps://learn.sparkfun.com/tutorials/lidar-lite-v3-hookup-guide/all

32 IceMap: Bachelor thesis report

4.5.1 Air planes

Air planes were also considered as an alternative to using drones. Multiple air
planes commonly fly over Gjgvik and Mjgsa. These could theoretically be used to
mount a LIDAR, but would presented multiple challenges. Specifically, air planes
lack the necessary agility to navigate smaller bodies of water, meaning this solu-
tion would only work for Mjgsa. As the municipality probably does not have the
funding to buy and operate an air plane, the group considered utilizing already de-
ployed air planes. The local hospital and weather station do fly smaller air planes
over Mjgsa, however, the lack of a consistent route would complicate the meas-
urement process. Hence, a drone was deemed the most feasible approach.

4.6 Magnetic strip sensor

Magnetic strip sensors serve as a versatile tool for both saltwater and freshwater
environments [25]. This technology provides both a portable and efficient solution
for the measurement of ice thickness on bodies of water. Magnetic strip sensors
operate on the basis of electromagnetic induction principles (EMI). The sensor
can detect variations in the electrical conductivity of the ice, snow and water layer,
resulting in induced changes in the surrounding magnetic field [25]. The thickness
of the ice can be determined by measuring the changes in the magnetic field. This
technology is used in lakes, rives and other bodies of water, often for climate
research and environmental monitoring. The accuracy of magnetic strips can be
affected by heat, which changes the conductivity in freshwater [26].

4.7 Stationary sensors

The magnetic strip sensor serves as a stationary sensor. In the IceMap system, it
was intended to be utilized for verifying the accuracy of data acquired from the
LIDAR. The sensor was supposed to provide an additional data source in conjunc-
tion with the NVE model. Magnetic strip sensors are primarily used for experi-
mental purposes, and are not commercially available. This can make the sensors
difficult to obtain. Some research articles offer instructions for building a magnetic
strip sensor[27], however, this was outside of the groups expertise, and thus not
pursued. Instead, the group focused on enabling the integration and processing
of data from this sensor type. Magnetic strip sensors were deemed the most fit-
ting sensor type due to their relatively low cost and small size. Most alternative
technologies were either far too costly, or not suitable for use in water.

Chapter 4: Selected sensors and background theory 33

4.7.1 Proposed placements

While the specific positioning of the altimeter ultimately falls under Gjgvik muni-
cipality decision, the group has provided a proposal for the flight path of the drone
on Mjgsa. The group proposes that the drone flies along the shoreline, keeping a
distance of approximately 70m from the shore. The flight path begins in Gjgvik
Sentrum and the LIDAR conducts one scan every 500 meters.

Multiple considerations went in to selection of these two distances. Firstly; it
allows for the creation of a safety zone for individuals to walk on the ice, while
also enabling regular assessment of ice thickness along the shoreline. Additionally,
considering that Gjgvik Sentrum’s shoreline spans about 5000 meters, placing the
scans 500m apart provides broader coverage of variations in ice thickness within
the water. This broader coverage ensures the effectiveness of the data collection,
but frequent enough to account for changes in current which may impact the ice
stability. Since a single drone cannot scan the entire lake, the group has proposed
to focus on the shoreline, where most recreational active happens.

The group recommends to position the magnetized strips sensors along the
shoreline to align with the LIDAR scans to compliment its data. These strips will
be uniformly spaced with a minimum distance of 500 meters, and approximately
70meters from the shoreline. For large lakes such as Mjgsa, the group recommends
deploying a minimum of four sensors, while smaller bodies of water may only
require one. This placement is a compromise between area coverage and cost.

Chapter 5

Mobile application

The mobile application was developed using Dart, the Flutter SDK, and Android
Studio. Three mobile emulators and a physical device were used to test the applic-
ation, these being Pixel 7, Pixel 7 Pro, and Medium Phone API 31. These emulators
are included in the installation of Android Studio. The physical devices was a Mo-
torola g(9) plus. All testing was preformed on Android devices as the group lacked
access to i0OS devices. Ideally, the application would be tested on an iOS device
too, but since Flutter provides full support for the newest version of i0OS [28] the
group assumes that IOs can be accommodated with minimal effort.

5.1 Server communication

The server and app communicate via HTTPS. Every time the application requests
map data from the server, the lake name is passed as a URL parameter. This URL
is an example of how the application requests data from the server:

https://127.0.0.1:8443/update _map?lake=Mjgsa

Upon launching, the application sends a few get requests to the server in order to
retrieve all the necessary map data.

5.2 Main components

The app consists of two pages: the default page, and the loading page. The load-
ing page is only visible while the application is initializing. Once the application
is done loading, the user is taken to the default page. The default page consists
of a widget with an interactive color coded map, and a widget with a graph and
various ice related data. The app bar contains the name of the currently selected
lake, and a search icon, and a menu icon. As seen on Figure 5.1, the application
was designed with a predominantly dark color scheme. Beyond providing a mod-
ern aesthetic, the color scheme also consumes less power.

35

36 IceMap: Bachelor thesis report

742 % 6 838 & @

Mjssa = Mjgsa

Ice stats

TileID: O

Center coordinate: (60.8713, 10.9257)

Data certainty: 3/4

Ice layers

Ice stats

Tile ID: 0
4

(a) Loading screen (b) Map widget (c) Statistics widget

Figure 5.1: Loading page and two main widgets

5.3 Map widget

The map is rendered by a custom class called ChoroplethMap (see Code list-
ing 5.1). The map consists of subdivisions, each of which can be selected by tap-
ping on it. When a subdivision is selected, the information in the statistics widget
changes to display information for the selected division. Four buttons are layered
over the map widget in its upper right corner. The top button was intended to
overlay a satellite image from the Copernicus API, but this feature was not im-
plemented. The second button displays a map from OpenStreetMap (OSM). The
third button allows the user to download or share the ice data as JSON. The fourth
button displays a layer with information about the color categorization. These fea-
tures can be seen on Figure 5.2. The legend just below the map categorizes the
colors from a safety of O to 4. Below the map widget, the text "Last update at ..."
is displayed. The text shows the last time that the application received data from
the server. If the last update was done within the last day, it will only display the
time of the last update. Otherwise, it will only display the date.

5.3.1 Color categorization

Each subdivision is either red, orange, green, or blue. These four colors were
chosen to increase the readability of the map. More than four colors could make
it difficult to discern safe areas from unsafe areas. Red and orange communicate

Chapter 5: Mobile application 37

that the ice is dangerous, but to different degrees. Green and blue communicate
that the ice is safe, again to different degrees. Yellow was chosen to be kept out
to ensure a clear and unambiguous transition from safe to unsafe sections. The
information layer as seen on Figure 5.2c, includes some text and a legend to ex-
plain the color coding in more detail.

Code listing 5.1: Custom choropleth map class

/// ChoroplethMap is a stateful widget that contains a choropleth map.
/// The map is created using the Syncfusion Flutter Maps library and
/// coordinates fetched from the server.
class ChoroplethMap extends StatefulWidget {
const ChoroplethMap({
Key? key,
required this.relation,
required this.measurements,
required this.subdivisions,
required this.onSelectionChanged,
}) : super(key: key);

749 & @

= Mjgsa Q = Mjgsa

Color categorization

y unlikely

) @ cxtremely unlikely

Exporting JSON data.
Data accuracy

The higher thi

Last updated at 19:48

Ice stats Ice stats

Tile ID: 0 Tile ID: 0
L) <

(a) OpenStreetMap layer (b) Export feature (c) Info layer

Figure 5.2: Map buttons

38 IceMap: Bachelor thesis report

5.3.2 Map rendering

ChoroplethMap requires relation data, a list of measurements, a list of subdivi-

sions, and the callback function onSelectionChanged as parameters. onSelectio-
nChanged returns the index of the selected subdivision to the parent class MapContainerWi-
dget. The parent class indexes the subdivision list to extract and display the ap-
propriate data in the statistics widget. The relation data is GeoJSON data which

is used to render the map. The map is rendered with the Syncfusion library. This

library allows a map to be rendered directly from GeoJSON data and has very

simple implementations for color coding and shape selection.

The relation data contains coordinates that define each subdivision shape.
Each subdivision has a unique ID. The IDs from the relation data are matched
up with the corresponding IDs from the subdivision list. The subdivision list con-
tains information about how each subdivision is supposed to be colored and the
statistics for the subdivision. The coloring is decided in the server. Code listing 5.2
shows how the map data source is defined and how the colors are mapped to each
subdivision. The code which decides the coloring and generates the map source
data is described in chapter 6, while the generation of the measurement data is
described in chapter 7.

Code listing 5.2: Map data source and color mapping

// Initialise data source and color mappers
dataSource = MapShapeSource.memory (
widget.relation,
shapeDataField: ’sub div id’,
dataCount: widget.subdivisions.length,
primaryValueMapper: (int index) => widget.subdivisions[index].sub div_id,
shapeColorValueMapper: (int index) => widget.subdivisions[index].color,
shapeColorMappers: const [
MapColorMapper (
from: 0O,
to: 1,
color: Color(oxffffoee0),
text: '{0},{1}"),
MapColorMapper (
from: 1,
to: 2,
color: Color(Oxffff6a00),
text: '2'),
MapColorMapper (
from: 2,
to: 3,
color: Color(OxFFb1lffe0),
text: '3"),
MapColorMapper (
from: 3,
to: 4,
color: Color(OxFFOOd6fT),

Chapter 5: Mobile application 39

text: '4"),

5.4 Statistics widget

The statistics widget is right below the map widget, and containes more detailed
information about the state of the lake ice (see Figure 5.1c). The topmost inform-
ation is text that displays the unique ID of the selected subdivision, the time and
date of the measurement, the coordinates of the measurement point, and the ac-
curacy of the data. Below the text, a bar chart displays the various ice layers and
their thicknesses. The data which was used to generate this chart is from the NVE
model. The chart displays the ice layer conditions for today, the last three days,
and the coming three days.

5.4.1 Data accuracy

The text "Data accuracy" field displays the accuracy of the data for the selected
subdivision. A subdivision that is only based on statistics from the NVE model
has a rating of 1, a subdivision only based on LIDAR data has a rating of 2, and
a subdivision with both data sources has a rating of 3. If both data sources are
included and the discrepancy between them is less than 1.0cm, the rating is 4.
More factors could be included into this classification system, like the sensors
accuracy and the present ice layers, but the group felt that these topics were not
understood well enough to implement. Code listing 5.3 shows part of the code for
classifying the accuracy.

Code listing 5.3: Accuracy clasification

Retrieve ice statistics for current subdivision
ice stats = get raw_dates(ice prognosis raw data(sub_div_id=subdiv_id,
x=center lat, y=center 1lng))

Ice statistics were retrieved successfully
if len(ice stats) > 0 and len(ice stats[0]) > 0:
accuracy = 3
Set accuracy to 4 if LIDAR data and NVE data have a minimal discrepancy
if abs(avg thickness - ice stats[0][’Total,ice,(m)’]) < 1.0:
accuracy = 4

else: # Failed to retrieve ice statistics, initialise empty ice stats object

accuracy = 2

40 IceMap: Bachelor thesis report

5.5 Lake search

The search feature allows users to change the displayed lake. Tapping the magni-
fying glass on the app bar will open a new view. This view contains a search bar
and a list of all the system lakes (see Figure 5.3). Before anything is entered in
the search bar, all the system lakes are displayed. When the user enters some text,
the results will be narrowed. The narrowing and matching of the search string are
done with the help of the Dart package Fuzzy. Fuzzy provides customization for
threshold of the input matching, which is set to 0.4. After selecting a search res-
ults, the application sends new requests to the server, but with the newly selected
lake as the URL parameter.

Code listing 5.4: Fuzzy search match

List<String> searchResults = [];

final options = FuzzyOptions(threshold: 0.4, findAllMatches: true);
final matcher = Fuzzy(lakeSearchOptions, options: options);

final results = matcher.search(query);

searchResults = results.map((result) => result.item as String).toList();
\end{minted}

825 & @ '% 823 & o M
Bearch

Mjgsa

Mjosa

Skumsjoen g

¢ B s B B)

q' we 't yﬁ u i’ o pn
asdf gh j kI

& z x cvbnnm®

o o

v []] &

(a) Reload animation (b) Search bar (¢) No internet connection

Figure 5.3: Search feature and no internet behavior

Chapter 5: Mobile application 41

5.6 Initialization and persistence

The application attempts to establish an internet connection when it launches. If
an internet connection is established, the app makes a few requests to the server. If
the requests receive a response, the server will save the responses to a set of three
files, and update the persistent variable lastUpdate and lastLake. If the variable
lastLake contains a value, this lake will be included as the URL parameter. Other-
wise, the value defaults "Mjgsa". Code listing 5.5 shows how a persistent variable
is set with the Shared Preferences plugin.

Code listing 5.5: Persistent variable lastUpdate

import ’'package:shared preferences/shared preferences.dart’;

final prefs = await SharedPreferences.getInstance();
await prefs.setString(’lastUpdate’, ’'${DateTime.now()}’);

If any of the server requests do not receive a response, the application will
try to read the map data from files. These files contain all the necessary map
data which was saved from the last successful server request. On every success-
ful request, the data in these files is overwritten, effectively always storing the
last viewed lake. This mechanism allows the application to function even when
the server does not respond, or when the application fails to establish an internet
connection. If the application fails to establish an internet connection, a SnackBar
displays a warning at the bottom of the page as seen on Figure 5.3c. The SnackBar
remains until an internet connection is established. The application does not only
check the connectivity upon launching, but actively keeps checking. This means
that the SnackBar will also appear if the application is initialized with a connec-
tion, but loses it at a later point.

The loading page is displayed while the application is waiting for initializa-
tion to complete. The function initialiseSate() starts the initialization. This
function is called on every launch, but can also be triggered by reloading the
default page. Reloading can be done by pulling down on the page form above
the map widget. Doing so will trigger a short loading animation which runs until
initilaiseState() completes the re-initialization of the state (see Figure 5.3a).
The same function is called when a new lake is selected trough the search feature.
The icon on the loading page was created by Freepik and posted on Flaction[29],
and is free to use with attribution.

42 IceMap: Bachelor thesis report

5.7 Remaining work

Usability testing was not included as a requirement. Nevertheless, the group inves-
ted time and effort into making the application user friendly. Such efforts included
formulating text in a clear and concise manner, selecting suitable fonts and font
sizes, meaningful color choices, intuitive icons, and including adequate informa-
tion without creating clutter. It would have been beneficial to conduct user testing
on the following aspects: the expected functionalities of the map widget buttons,
the clarity and relevance of the text within the statistics widget, and the overall
comprehension and usability of the color-coded map.

The current color scheme looks fine, but is not very accessible. Since the map
colors are very similar in saturation and shade, individuals with visual impair-
ments may have trouble distinguishing the colors. The general color scheme of
the application could also cause difficulty due to its low contrast. The application
should have provided settings for both increasing the contrast of the map col-
ors, and the colors of the rest of the application. Again, such considerations could
not be implemented due to time restrictions. Given more time, the group would
have utilized the currently decorative menu icon to set up a couple buttons for
toggling between themes. These themes would consist of two sets of default and
high-contrast themes, one set for the general application and one set for the map
coloring.

Proper HTTPS certificates were not generated, so the app was configured to
ignore certificate validation. Before the system is deployed, valid certificates must
be generated and the application must be configured to validate the certificates.
Three files in the application must be updated, all of which are located in the folder
called "server_requests". Code listing 5.6 shows how the app clients are currently
configured. The valid certificates must be placed in the server folder called "cer-
tificates". These are the only two steps required to set up proper communication
between the app and server. All other required setup and configuration was im-
plemented.

Code listing 5.6: HTTPS client configuration

// Custom HTTP client
HttpClient client = HttpClient()
..badCertificateCallback = // NB: temporary disabled SSL certificate
validation
(X509Certificate cert, String host, int port) => true;

Chapter 6

Custom map creation

The application requires a map shape file in order to render the color coded map.
Although many solutions for rendering the maps exist, no readily available tools
for creating the necessary map data were found. Therefore, the group developed
a custom method for creating the required map files. This method involves us-
ing lake shape files from the OverpassTurbo API', and dividing the shapes into a
uniform grid.

6.1 Adding a lake relation to the system

The first step in adding a lake to the system is manual. OverpassTurbo does not
support fetching relations programmatically and is the only API that allows export-
ing of GeoJSON files for lakes. Therefore, a system administrator must extract the
relation files from OverpassTurbo, export them as GeoJSON files, and then add
them to the system manually. The administrator needs to navigate to the Over-
passTurbo API and retrieve the polygon data for the desired lake. This is done
with a Overpass query. Code listing 6.1 shows the query that must be entered into
the Overpass API. This query will fetch the shape data for the requests lake. The
output will consist of coordinates that make up the outline of the entire lake.

Code listing 6.1: Overpass API query

[out:json];
(
way["natural"="water"]["name"="1lakeName"];
relation["natural"="water"]["name"="1lakeName"];
)
(._5>3);
out body;

The output from the query must be exported to an appropriately named GeoJSON
file and added to the server. Eeach step of this process is described in detail in the

https://overpass-turbo.eu/

43

44 IceMap: Bachelor thesis report

projects README file in the GitLab repository?. After the GeoJSON file is added to
the server, the system administrator must initialize the division of the map shape.
This can be done by making a request to

https://127.0.0.1:8443/add new lake?lake=lakeName&cell size=1. The en-
dpoint requires that the name of the newly added lake is provided as a URL para-
meter. The cell size parameter determines the size of the subdivisions in kilo-
meters, and is optional. If cell size is omitted, the division will use a default
size of 0.5km. After the shape file is added to the server, and the request is made,
the manual part of the process is over. All remaining steps happen pragmatically
and require no intervention.

The endpoint can be requested multiple times on the same lake. Every time
the function is called, the new output will overwrite any files generated in prior
requests for the specified lake. Re-running the division may be done if the cell size
of prior requests was undesirable. The endpoint writes the resulting GeoJSON file
to the response, and plots the resulting map. The resulting file and the plot should
be inspected to ensure a desirable result. cut_map() is the function that is called
by this endpoint, and can take multiple minutes to complete. The larger the lake
and the smaller the divisions, the longer the function takes to complete. Plotting
is the most time consuming part of the process, but it is highly discouraged from
disabling. It is difficult to ensure that the result is desirable wihtout plotting it.

Params

Query Params

Value Description

Body

Pretty

Figure 6.1: Example of a time consuming request

2https://gitlab.stud.idi.ntnu.no/sarasdj/prog2900

Chapter 6: Custom map creation 45

Figure 6.1 shows an example of running the request in Postman, and Fig-
ure 6.2 shows the resulting plot. As seen in the upper right corner of Figure 6.1,
the example took about 3 minutes and 30 seconds to run, with a cell size of 600m.
This example demonstrates the required time for an extreme case. When running
the same code with a cell size of 2.5km, which is the size shown in all figures in
chapter 5, the response is received in under 30 seconds. For all other Norwegian
lakes, the required time should be far shorter as both the lake size and cell size
can be smaller.

61.11 3
H
*

61.0 T‘&'Vt
60.9 A .

} "
60.8 y

60.7
60.6 %;
{.'
60.5 - ‘z
k)
60.4 - >
T

T T T
104 10.6 10.8 11.0 11.2

Figure 6.2: Pyplot graph from add_new_map endpoint

6.2 Dividing the map polygon

cut_map() creates the maps by generating a uniform grid and combining it with
the map shape. The spacing between the grid lines is either determined by the
size specified in the endpoint request, or set to the default value of 0.5km. The
cell size is then converted to a height and width in degrees of latitude and longit-
ude. Converting the height and width separately is necessary to ensure that the
divisions become square. If this conversion was omitted, lakes further away from
the equator would get elongated subdivision. In Norway, the height of the cells
would become far longer than they were wide. To prevent this from happening,
the cell width and height are calculated using the code from Code listing 6.2. This
code was developed by modifying formulas posted by Numan Karaaslan on Stack-
Overflow [30]. Code listing 6.5 shows how the grid lines are generated.

46 IceMap: Bachelor thesis report

Code listing 6.2: Cell size calculation

\begin{figure}[h]
\begin{minted}{Python}
Select an arbitrary x and y value from within the polygon
bounds = polygons[0].bounds
start x, start 'y, , = bounds

Convert the cell size to lat and lng
cell width = cell size in km / 111.3200
cell height = cell width / cos(start x * 0.01745)

Code listing 6.3: Generating the grid

Retrieve the polygon bounds
bounds = poly.bounds
min_x, min_y, max_x, max_y = bounds

List to store all created lines
grid lines = []

Create new horizontal lines while within bounds
y = min_y
while y <= max y:
line = LineString([(min_x, y), (max_x, y)I)
grid lines.append(line)
y += cell _height

Create new vertical lines while within bounds
X = min_Xx
while x <= max_ Xx:
line = LineString([(x, min_y), (x, max_y)])
grid lines.append(line)
x += cell width

return grid_lines

Once the grid lines are generated, they are combined into a single polygon us-
ing unary operations. Then, a for loop iterates over all the lines and checks which
parts of the map polygon intersect the lines. The parts of the polygon that inter-
sects the lines are appended onto a list, which will eventually contain all each
grid division. Code listing 6.4 shows how this is done. Upon creating every divi-
sion, it is formatted as a GeoJSON feature object. Each object contains a unique
subdivision ID, the shapes center coordinates, and the coordinates which make
up its geometry. The list of subdivisions is then written to a file called "*lake-
Name_div.json".

Code listing 6.4: Combining the map polygon with the grid

Generate a grid based on the calculated cell size
lines = create grid(polygon, cell width*2, cell height)
lines.append(polygon.boundary)

Merge the grid lines into a single grid object
lines = unary _union(lines)

lines linemerge(lines)

lines = list(polygonize(lines))

Chapter 6: Custom map creation 47

Combine the polygon and the grid to form the subdivisions
for line in lines:
if line.intersects(polygon):
divided_map.append(line.intersection(polygon))

Code listing 6.5: Subdivisions feature objects

sub_div_id = 0

for tile in divided map:
tile feature = {

"type’: 'Feature’,

"properties’: {
"sub div_id’: str(sub_div_id),
"sub div _center’: center

}

"geometry’: geometry

}

Append new feature object to list, and increment sub div id for next
iteration

features.append(tile feature)

sub_div_id += 1

6.3 Verifying the output

The output of these calculations was verified by comparing the plot created by
cut_map() with distances measured on Google maps. Skumsjgen was used for
simplicity. Firstly, the distance between two points parallel to the x-axis (see Fig-
ure 6.3a) were measured on GoogleMaps. Then, the lake was added to the system
and processed. The cell size was set to 100m for ease of calculation. The distance
from Google maps measured approximately 636m, and the number of divisions
along the measured line counted 6 whole divisions and one partial divisions. With
divisions measuring 100m x 100m, this confirmed the expected output. The same
verification was conducted on the height of the lake. The height measured 3.42km
and the divided map measured just about 34 cells tall. Keep in mind that the aspect
ratio of the plot on Figure 6.3b is s little squished, which makes the subdivisions
appear slightly rectangular when they actually are square.

6.4 Determining subdivision colors

calculate color() is called for every subdivision. The function determines the
coloring of each subdivision. As mentioned in chapter 3, the coloring is determ-
ined by sensor data if it is available for a subdivisions. Otherwise, the color is
determined by the thickness of the black ice layer form the NVE model. Code list-
ing 6.6 shows how the calculate color() is defined and called for subdivisions

48 IceMap: Bachelor thesis report

60.770 A

60.765 -

60.760

60.755 1

. 60.750
;j','_tS:NT oSbakkeﬁ:@

60.745 -

60.740 -

I I L]
10.53 10.54 10.55
(a) Width from Google Maps (b) Map divided into 100m x 100m cells

Figure 6.3: Verification of cell size formulas

without sensor data. calculate color() assigns colors to subdivisions based on
ice thickness as follows: red for Ocm to 4 c¢m, orange for 4cm to 8cm, green for
8cm to 12cm, and blue for thicknesses greater than 12 cm. For invalid thickness
values, a default color of grey is used.

Code listing 6.6: Determining subdivision coloring

Create new subdivision object

sub_division = {
"SubdivID’': sub div id,
'MinThickness’: black ice thickness,
"AvgThickness’: black ice thickness,
'CenLatitude’: center_lat,
"CenLongitude’: center 1lng,
"Accuracy’: accuracy,
"Color’: calculateColor(black ice thickness),
"IceStats’: ice_ stats,

def calculate color(thickness: float):
if 0 < thickness <= 4:

Chapter 6: Custom map creation 49

return 1 # Red

elif 4 < thickness <= 8:
return 2 # Orange

elif 8 < thickness <= 10:
return 3 # Green

elif thickness > 12:
return 4 # Blue

else:
return 0 # Default: grey

6.5 Exposing the processed data

All the data processed by the server has to be compiled and exposed on endpoints.
This process is a bit complicated, as data from various sources and with differing
formats have to be matched up with every single subdivision. First, all the most
recently added measurements and their data is read from a file. This file contains
coordinates, dates and times, and the thickness measured by the sensors. Once
all the data is extracted and added to a list of dictionaries, the ice statistics from
the NVE model are requested for every subdivision. While this data is compiled,
the accuracy level and color of the each subdivision is determined as described
in subsection 5.4.1. Since all of this code is very long, those who wish to look
at the concrete implementation can view the file "update_measurements.py" in
"server/map_map_handler" in the GitLab repository>.

6.5.1 Updating the map data

The class UpdateScheduler updates and compiles the map data for each lake. The
class runs indefinitely in a dedicated thread, and calls the function update _all me-
asurements (update bbox: bool) regularly. The function fetches the newest API
and sensor data for all lakes. This data is compiled and stored in "* measure-
ments.py" files for each lake. Once a day, update all measurements(update bbox:
bool) is called with the argument False. This means that the function only up-
dates the data from NVE. Since seNorge updates their data once a day, updating
it any more frequently is not necessary. If the argument True is passed, all Sen-
tinelHub bboxes will be updated in addition to updating the NVE data. Since the
Sentinel satellites have a revisit frequency of 2-5 days, 3 days seemed an appro-
priate frequency to update the bboxes. Code listing 6.7 shows some of the code

for updating the map data.

Code listing 6.7: Class for updating the map data

class UpdateScheduler:
def init (self):
self.day counter =1

def start(self):

Shttps://gitlab.stud.idi.ntnu.no/sarasdj/prog2900/-/tree/main/server/map_handler?ref type=heads

50 IceMap: Bachelor thesis report

"""Schedules the updating of all maps every three days"""
try:
print("Updating,all, lake data....")

Run update all measurements on startup
update all measurements(True)

Schedule updates to occur daily
schedule.every(1l).days.do(self.daily update)

Keep scheduler running indefinitely
while True:
schedule.run_pending()
time.sleep(1)
except Exception as e:
print(f"Failed_to,schedule updates: {e}")

def daily update(self):
if self.day counter < 3: # Day 1 or 2, no bbox update
update all measurements(False)
self.day counter += 1 # Increment counter
else: # Day three, update all data including bbox
update _all _measurements(True)
self.day counter = 1 # Reset counter

6.6 Alternative map creation methods

The entirety of the method described so far was the last of three attempted meth-
ods. The first method used an OSM layer as a base map and rendered polygons
over this map. The problem with this approach was related to how the polygons
would be created. Defining a simple polygon like a square or a pentagon was
easy, but generating a shape that matched up with the complex geometry of the
shoreline was difficult. Figure 6.4a demonstrates this problem and the applica-
tions appearance in its earlier stages. The second method involved continuously
splitting the map shape in two from top to bottom, then left to right, until the grid
was formed. This implementation required unexpectedly complicated code and
could at best produce a partially correct grid with noticeable gaps. Figure 6.4b
shows the best achieved result from this method before the approach was aban-
doned. Although it can be improved in multiple areas, the final attempt was the
simplest and only working solution.

6.7 Areas of improvement

It is unfortunate that there are no options to retrieve relation data pragmatically. If
such an option was available, it would be much preferred to the current partially
manual implementation. As the map creation stands now, the sizing of the grid
cells is also manual. Although manual sizing is fine, it would be better to have a
default size that would be proportional to the size of the lake. For example, the

Chapter 6: Custom map creation 51

W zoa

lceMap

Ice stats

Time of measurement
Date 1/1/2024
Time® 10-00

4

(a) First method (b) Second method

Figure 6.4: Alternative map creation methods

default size of the grid could be calculated based on the height or width, and en-
sure that the amount of cells were within a meaningful boundary.

As readers familiar with Mjgsa have probably noticed, the island Helggya is
missing from some of the figures. This island is located in the middle of the widest
part of Mjgsa, as can be seen on Figure 5.2a. The reason that the island is not
included is that only the exterior coordinates of the maps are included in the pro-
cessing. This means that any shapes completely enclosed in a lake, like an island,
is not included. When the interior shapes were included, the server would throw
errors. Some attempts were made at addressing the errors, but a viable solution
was not achieved by the deadline. This issue is not detrimental, but a user that
wishes to inspect the ice conditions surrounding the island may have problems
locating the exact subdivisions which border the island.

The last issue in the map creation process is the occurrence of disproportion-
ately small subdivisions. The map generation process guarantees that subdivisions
have two or more points, but this means that any shape with at least 3 points is
considered adequate. This poses a problem when the average subdivision consists
of, for example, 50 points. These small subdivisions are difficult to spot and select
in the application. Ideally, subdivisions any smaller than a tenth of the average
subdivision size should have been merged with the nearest larger subdivisions.
Implementing this approach could have mitigated the occurrence of dispropor-

52 IceMap: Bachelor thesis report

tionately small subdivisions. This implementation would require logic to determ-
ine which subdivision is the closest and most meaningful to merge the smaller
subdivision with.

Chapter 7

Sensor and API implementations

7.1 Drone

For the Drone, the group choose to utilize the DJI Metrice 300" leveraging its pre-
existing functions for automated flight, waypoint navigation, and POI manage-
ment as mentioned in section 4.3. Additionally, DJI offers their own SDK? provid-
ing users with the option to customize their applications for greater control over
drone operations.

Alternatively, for drones other than DJI Metrice 300 that lack built-in auto-
mation functions, the group recommends utilizing QGroundControll (QGC) flight
navigation software along with the PX4 extension. This combination offers en-
hanced automation and stabilization capabilities.

7.2 LIDAR files

The LIDAR is configured to scan a designated area upon reaching a specified co-
ordinate. Data from the scan is then saved and stored in its memory. If a file already
exist, the LIDAR will overwrite it. The saved file is named to identify the measured
area, with a folder named after the name of the water body. The file itself will start
with "measurement_id_" followed by the ID of the measurement coordinates.

Currently, stored files are transferred manually when the drone returns to its
station. Although the system has the capability for automatic transfer, this feature
has not yet been implemented.

While code was developed for Arduino implementation, since the group switched
hardware to the system from DJI Matrice 300. Consequently updating the LIDAR
data must be done manually. This process involves naming the Log ASCII Standard

https://enterprise.dji.com/matrice-300?site=brandsitefrom=recommended
Zhttps:/ /developer.dji.com/mobile-sdk-v4/

53

54 IceMap: Bachelor thesis report

zip (LAZ) file from the LIDAR after the ID of its measurement coordinate ("meas-
urement_id_{ID OF MEASUREMENT}"), then moving it to the folder with the lake
name of the measurement "server/lidar data/{LAKENAME}/". If file already ex-
ist, it must be overwritten. Here is an example of how the path would look if a
scan of Mjgsa with coordinate ID 3 was added: "server/lidar_data /mjssa/meas-
urement_id_3".

7.3 LIDAR data processing

During the LIDAR’s imagery process, it captures a designated zone around it. By
utilizing known coordinates and the size of captured zone, specific ice portions
observed on the map can be identified. This determination involves calculating
coordinates relative to the LIDAR data’s coordinates, demanding processing it as
a relative estimation within the file.

7.3.1 First method

Our initial approach to connecting the LIDAR data with the application map in-
volved converting the designated area on the application’s map into the LIDAR
coordinate system using vectors. The group determined the relative sizes by util-
izing Equation (7.1)

A]_ :B—C
Ay =G—F 7.1)
A
Py = (P, _C1)'(A—2) + (P, — Cy) + Cy,
1

where P, is a vector in the LIDAR coordinate system, P; is a vector in the map
coordinate system, A, and A; are coordinate limits of the LIDAR and map re-
spectively, B and C represents the top-right and bottom-left corners of A;, and G
and F for A,’s top-right and bottom-left corners, C; signifies the center of A; and
C, represents the center of A,. This these points are displayed in Figure 7.1 and
demonstrated in pseudo code in Code listing 7.1.

Chapter 7: Sensor and API implementations 55

Aq

v

Figure 7.1: LIDAR trial calculation model

Despite our efforts, stress testing with real coordinates revealed inconsisten-
cies, likely due to memory issues rather than calculation error. The data often re-
turn incorrect values when dealing with decimals. To address this, we considered
rounding and converting back to integer before converting back to to floats to
prevent memory leaks. However, due to the these inconsistencies, we ultimately
decided to abandon the approach displayed in 7.1.

Code listing 7.1: Identify world coordinates relative to LIDAR coordinates

def position relative to pointcloud(Al, P, C1l, A2):
minAl, maxAl = Al

minA2, maxA2= A2

minP1l, maxPl = Pl

C2 = tuple((a+b)/2 for a, b in zip(11,12))

return [
((pl[0] - C1[0]) * ((minAl[G®] - maxAl[0]) / (maxA2[0] - minA2[0])) + C2[0],
(pl[1] - C1[1]) * ((minAl[1l] - maxAl1l[1]) / (maxA2[1] - minA2[1])) + C2[1])
((pZ[d] - C1[0]) * ((minAl[O] - maxAl[0]) / (maxA2[0] - minA2[0])) + C2[0],
(p2[1] - C1[11) * ((minAl[1] - maxAl[1]) / (maxA2[1] - minA2[1])) + C2[1])

’

7.3.2 Current method

We adopted a different approach: gridding the LIDAR data similarly to the map’s
grid, assuming that each division represented the same area on both the LIDAR
scan and the map’s subareas. The LIDAR and subareas were merged as demon-

56 IceMap: Bachelor thesis report

strated in Code listing 7.2, and compared with the application map to determine
which scanned area corresponds to which part of the application map. To ensure
the accurate merging of the two grids, it was essential that the scanned area size
matched the map’s subarea size. This was achieved by storing the dimensions on
each subarea for each lake’s data. During processing, these dimensions were used
by a flexible function to allocate scanned points into their corresponding subareas,
considering the area size, scan position, and the number of grids, as demonstrated
in Code listing 7.3.

This approach proved more efficient than finding relative positions from map
to LIDAR coordinates. Although it introduced potential issues, such as multiple or
no grids corresponding to a map grid, the group addressed these by finding the
closest center within the scan grids to the map grid. This was done by comparing
the distance between center coordinates using the distance formula between two
points (7.2)

d = /(3 —x12+ (¥, — y1)2 (7.2)

and allowing for adjustable grid sizes.

Code listing 7.2: Zip grid of map positions and LIDAR data

define all the sub-areas within the area, local coordinates
grid sub area = define gridareas(center[Q], center[1],
(cell x, cell y),grid size)
define all the sub-areas within the area, LIDAR coordinates
grid area lidar heights =
define grid lidardata((min_point, max point), grid size, ice points)

zip together the two list
sub _area heights = list(zip(grid sub area, grid area lidar heights))

Chapter 7: Sensor and API implementations 57

However, the group faced challenges with converting distances in meters to
coordinates because coordinates do not represent distance. This was resolved by
using a function called calculate corners, as shown in ??, which used a formula
provided by Numan Karaaslan as mentioned in chapter 6 to accurately create each
grid as show on Code listing 7.3.

Code listing 7.3: griding of scanned area

separate the zones into smaller area, into a grid
def define gridareas(lat, lng, area offset, grid_size):

find the center coordinates of each area in grid to find the corner areas
for y in (range(grid size)):
relative size lat =y / grid size # relative y position on grid
for x in (range(grid size)):
relative x position on grid
relative size lng = x / grid size
lat pos = main_area[3][0] + relative size lat *
area size[0] + dist to subcenter[0]
lng pos = main area[3][1] + relative size 1lng *
area size[l] + dist to subcenter[1]

use the center of sub areas to find the corner of each subarea
subarea offset = (subarea offset lng, subarea offset lat)
corners = calculate corners(lat pos, lng pos, subarea offset)
grided_area.append(corners)

return grided area

58 IceMap: Bachelor thesis report

7.3.3 Thickness calculation

To determine the thickness of the ice using LIDAR data, the group utilized the
points collected from the LIDAR. This involves comparing points with identical
XY coordinates and filtering out those lacking a counterpart. Subsequently, the
difference between the Z coordinates of points sharing the same XY coordinates
was calculated to determine the ice thickness, as demonstrated in Code listing 7.4.
In zones where multiple ice thickness exist, the smallest thickness in that zone is
considered to determine the safety of the area. While this method may not be the
most sophisticated, the group considers it the best course of action to mitigate the
uncertainties of traversing the ice.

Code listing 7.4: Identify and calculating ice thickness if identical coordinates

def find height(points):

sort the points
sorted coords = sorted(points, key=lambda coord: (coord[0], coord[1]))

group the sorted points that has the same xy- coordinates together
groupCoords = [list(group) for key, group in
groupby(sorted coords, key=lambda coord: (coord[0], coord[1]))]

loop through the groups to find the difference in height
for group in groupCoords:
if len(group) < 2 or group[0] == group[1l]:
jump over iteration if there is only one coordinate or
LIDAR registered the same point twice
continue

find max and min Z-position of group
min height = min(coords[2] for coords in group)
max_height = max(coords[2] for coords in group)

difference between them
difference = max _height - min_height
height differences.append(difference)

list of thickness in an area
return height_differences

7.3.4 Reflection

Integration of third-party hardware proved more challenging than anticipated.
Despite the system’s flexibility, combining multiple third-party components proved
difficult. Limited resources, including documentation, hindered seamless integra-
tion. Additionally, compatibility issues stemming from differences in protocols and
interfaces complicated the process, Despite our efforts, time and resource con-
straint prevented complete integration within this thesis. Acquiring these hard-
ware would allow us to further develop and explore the DJI's payload SDK and
mobile SDK development for a more automatic implementation rather than the
current manual implementation handling files.

Chapter 7: Sensor and API implementations 59

Moreover, our current ice thickness calculation model, while functional, is
rather simple and lacks complexity. Because it primary relies on the XYZ-coordinates
in a plane disregarding various factors like light diffusion upon colliding with ice,
snow layers on top of the ice surface and diverse type of ice layers by utilizing
the intensity data provided by the LIDAR. Addressing these complexities requires
collaboration with researchers in this field, the group could refine our models.
Integrated more comprehensive data processing techniques, and enhance the ac-
curacy and reliability of our ice thickness measurement.

60 IceMap: Bachelor thesis report

7.4 Implementing model given by NVE

To work with the computational model obtained from NVE, several smaller func-
tions have been developed. These functions are designed to interact with the front-
end interface of the system. The main objective is to create and store data files
that include estimated ice thickness and types, making this information readily
available for any part of the system that needs access.

Code listing 7.5 is an example of how the NVE model is applied to calculate
data for different subdivisions. The code fetches subdivision IDs and their coordin-
ates, filters data for specific dates, and then converts this information into a JSON
format to be stored in a designated folder.

Code listing 7.5: Using the NVE model

sub_divs = get subdiv_ids n_cords(location)

filtered data for dates = [(i[0], get raw dates\
(ice_prognosis raw data(sub_div_id=i[0], x=1i[1], y=i[2]), from_date, to_date))\
for i in sub divs]

jsonify data sub div ids("skumsjoen", \
filtered_data_for_dates, location = se.plot_folder)

This approach ensures that data generated by the ice prediction model is
stored and ready to be accessed by the front-end without delay. This is partic-
ularly important because retrieving weather data from the SeNorge API, which is
used in these calculations, can be time-consuming when dealing with hundreds of
subdivisions. Therefore, by preparing the data in advance, thus ensures the sys-
tem being able to operate more efficiently without having to wait for live API calls.

The calculation model used is a critical part of how the system predicts ice
conditions. As shown in Code listing 7.6, the function requires several parameters
including weather data from the SeNorge API, location data, time stamps based
on time and place, and icerun dates which are supplied through the Sentinel Hub
API (more about Sentinel Hub implementation here section 7.5).

Code listing 7.6: NVE Calculation function

def calculate ice cover air temp(inn_column_inn, date, temp, dh sno, cloud cover=
None, time step=60*60*24,
icerun dates=[]):

Last update: 12.02.2024 aask

:param inn column inn: [IceThickness] Initial ice column for modelling.
:param date: [1 dates for plotting

rparam temp:

:param dh_sno: [1 new snow over the period (day)

:param cloud cover:
:param time step: [int] fixed time step of 24hrs given in seconds

Chapter 7: Sensor and API implementations

61

rparam icerun dates [1 dates when an ice run has cleaned the river for ice.

- Ice reset to ice free
rreturn:

To make the subdivisions fit into the calculation model and using the SeNorge
helper functions provided by NVE, it is simply a matter of ensuring the coordin-
ates and time frames align properly with the model’s expectations. This process

involves converting geographical coordinates to Universal Transverse Mercator
coordinate 33 (UTM 33) system and calculating the appropriate dates for data

processing. The code snippet shown in figure Code listing 7.7 demonstrates how

these adjustments are made within the system to fit the prediction model’s re-

quirements.

Code listing 7.7: Handeling sub_div area and time

def ice prognosis raw data(to date=None, sub div_id=0, x=10.70, y=60.81,
altitude=0, awt=[], mf=0, icerun dates=[]):

current date = dt.datetime.now()

if current date.month < 10:

from date = dt.datetime(current date.year - 1, 10, 1)
else:

from date = dt.datetime(current date.year, 10, 1)

if to date is None or to date > dt.datetime.now():
to_date = dt.datetime.now() + dt.timedelta(days=7)

tyear, tmonth, tday = from date.year, from date.month, from date.day
if tmonth > 7 and tday < 7:
tyear += 1

first ice = ice.IceColumn(from _date, [])

first ice.add metadata(’LocationName’, sub div id) # Using sub div id as the
location name for metadata

observed ice = [first ice]

make the x and y into utm 33 from lon lat
cords = utm.from latlon(x, y, 33)
X, y = int(cords[0]), int(cords[1])

check if utm is valid
if validate cords(x, y) is False:
return None

In using the calculated ice cover, it is important to classify the raw data into
different ice types, which are then compiled into comprehensive daily records.
These records are meant for front-end use but can also provide a historical over-
view of ice growth. This process is shown in this Code listing 7.8 code where the
calculate ice cover air_ temp function has been called and then data neces-

sary for the front-end is extracted.

62 IceMap: Bachelor thesis report

Code listing 7.8: Using NVE to get wanted data

def ice prognosis raw data(to date=None, sub div_id=0, x=10.70, y=60.81,
altitude=0, awt=[], mf=0, icerun dates=[]):

Building request

calculated ice = it.calculate ice cover air temp(copy.deepcopy(first ice), date
, temp, sno, cloud cover=cc, icerun dates=icerun_dates
)

Classify ice
data = []
for date, slush, black, total, snow2, sno tot2, cc2, temp2 in zip(dates,
slush ice, black ice, total ice, sno,
sno_tot, cc,
temp) :

daily data = {
"Date": date.strftime("%Y-%m-%d"),

"Slush_ice,(m)": round(slush, 3),
"Black,_ice,(m)": round(black, 3),
"Total,ice,(m)": round(total, 3),
"Snow,depth,(m)": round(snow2, 3),
"Total,snow,(m)": round(sno_tot2, 3),
"Cloud,cover": round(cc2, 3),
"Temperature,(c)": round(temp2, 3)

}
data.append(daily data)

return data

These functions and data handling methods help ensure that the system can
effectively predict and manage ice conditions using the NVE model, maintaining
efficient and timely access to critical environmental data.

Further work on the model would focus on providing the option to include av-
erage water temperature. Currently, the model uses hardcoded values from NVE
for this purpose. While magnetized strip sensors would be ideal for measuring
average water temperature, both the average water temperature data and the
magnetized strip sensors are still experimental. Therefore, further testing and de-
velopment are needed to fully integrate these features into the model.

7.5 Using Sentinelhub to get icerun dates

The primary function of the Sentinelhub API is to gather details about the pres-
ence of ice within specified BBox. Once the data is retrieved, it is saved to CSV
files for each BBox. This information is then used to supply the NVE model with
estimates of ice runs by finding the nearest BBox to any given point required by

Chapter 7: Sensor and API implementations 63

the NVE model. This section explains how this process is carried out.

Working with the Sentinelhub framework allows for making detailed requests
using their statistical API to analyze every pixel within a specified frame. This cap-
ability is demonstrated with the statistical request sentinel function shown
in Code listing 7.9. For such requests, a configuration and an evalscript are essen-
tial. These configurations can be accessed and set up within Sentinel Hub’s own
dashboard, detailed in [31].

To access the statistical API, at least the exploratory pricing plan is necessary.
If usage exceeds the allocated amount for the exploratory tier, an upgrade will be
required. For testing purposes, a free account can be created which remains active
for 30 days. More information about accessing configurations in Sentinel Hub can
be found in [31].

Code listing 7.9: Sending request to Sentinel Hub

def statistical request sentinel(config, evalscript, time interval, maxcc, bbox):
try:
request = SentinelHubStatistical(
aggregation=SentinelHubStatistical.aggregation(
evalscript=evalscript,
time_interval=time interval,
aggregation interval="P1D"
)
input data=[
SentinelHubStatistical.input_data(
data collection=DataCollection.SENTINEL2 L1C,
maxcc=maxcc
)
1,
bbox=bbox,
config=config,

)
stats = request.get data()
dfs = [stats to df(polygon stats) for polygon stats in stats]
return pd.concat(dfs)
except Exception as e:

print(f"Something, is, wrong with_ request, _error: _{e}")
return None

This code snippet outlines how to set up and execute a statistical data request us-
ing Sentinel Hub’s API. The function initializes a request with specific parameters
such as the evalscript, time interval, maximum cloud coverage, and geographic
bounding box. It then processes and converts the retrieved data into a format
suitable for further analysis. If an error occurs, it catches the exception and noti-
fies the user when running the function to update the iceruns.

64 IceMap: Bachelor thesis report

To determine the ice runs, the necessary coordinates are provided, and then
running a function called get closest bbox and_id sequentially searches through
every bounding box (BBox) listed in a JSON file. It finds the closest BBox and uses
a file with information for the found BBox to retrieve the ice runs for a season.
Although this process may take longer with an increased number of BBoxes in the
JSON file, the function only needs to run concurrently with the NVE model. Since
the NVE model does not need to operate continuously, it is feasible to run both
tasks simultaneously without affecting the front-end operations.

Code listing 7.10: Getting ice runs for an cordinate

location for an given box and returns the closest box cordinates and the id of
the box

lon, lat = 10.66, 60.95 # mjos

closest box, box id = box_ funcitons.get closest bbox and id(lon, 1lat)

data
icerundates

read from csv(f"bbox sat data/lake {box id}")
get ice run dates(data)

This Python snippet in Code listing 7.10 demonstrates how to find the closest
bounding box based on given longitude and latitude coordinates and then how
to read and interpret satellite data associated with that bbox to determine ice run
dates. This method ensures that the NVE model receives timely and accurate up-
dates about ice conditions, crucial for its operations.

To update of the information for each BBox and their ice runs, a function (see
Code listing 7.11 is designed to manage updates. This function handles reading
from a CSV file that stores satellite data per BBox. If the file does not exist, it
creates a new one. If it can read an existing file, the function retrieves the date of
the last recorded image. It then uses this date to make a request to Sentinelhub,
fetching all new images from that date to the current day. The decision to retrieve
images is based on the cloud coverage percentile. It determines if the pictures are
clear enough when the satellite takes pictures of the BBoxes. As a note, it also
means if there are cloudy periods, trying to update the ice runs will try and fail to
receive any data causing large discrepancies in the data.

Code listing 7.11: Updating the iceruns

def update to most recent(file, BBox, evalscript = evalscript.lake ice index, maxcc
= 0.4):
"ttoif file exists, tries to get the most recent date. uses that date to do get
all dates until now. Appends that data to the file
if the file does not exist. create a new one and put all data into it. """
try:
data = pd.read csv(f"{file}.csv")
last _date = get last date(data)
today = dt.datetime.now().strftime("%Y-%m-%d")

data = statistical request sentinel(config= sentinel config.config,
evalscript=evalscript,

Chapter 7: Sensor and API implementations 65

time interval=(last date, today),
maxcc=maxcc, bbox=BBox)

if data is not None and data.empty is False:
data = classify ice(data)
append data to csv(file, data)

return

except FileNotFoundError:
last_date = get _last date(None)
today = dt.datetime.now().strftime("%Y-%m-%d")

data = statistical request sentinel(config=sentinel config.config,
evalscript=evalscript,
time interval=(last date, today),
maxcc=maxcc, bbox=BBox)

if data is not None:
data = classify ice(data)
save data to csv(file, data)
return

Improvements in fetching ice run data from Sentinel Hub could focus on refining
the evalscript and the method of labeling the data. A more detailed discussion
about adjusting the evalscript can be found in the next chapter, referenced here
7.6. Currently, labeling is based on specific values of variation in each image used
in the statistical request. These values are meticulously chosen after reviewing
three years of data for Mjgsa, assessing the standard deviations and corresponding
conditions. Mislabeling typically occurs when the ice breaks as both ice breaking
and clouds can have high standard deviations.

Ice runs are identified by interpolating dates when the water state of a BBox
changes while filtering out cloudy days. However, filtering for clouds can lead to
errors since cloudy images often show high standard deviations that don’t accur-
ately reflect changes in water state. During ice breakage, these deviations may
indicate broken ice or ice patches, potentially mislabeling ice run dates. While
mislabeling during ice breakage isn’t a significant safety concern—it is apparent
that ice with large visible breaks is unsafe—it can cause inaccuracies in the model,
especially when the model resets ice runs during cloudy winter days when the ice
isn’t actually breaking. This does not pose a safety risk, but it could make the
model less accurate than if the ice runs were used at all.

Ice run dates are calculated by interpolating changes in conditions and filtering
out non-representative data (see ??).

Code listing 7.12: Getting iceruns based on state of water changeing

def get _ice run_dates(data):
""" Get the dates for when the ice is on and of"""
""" Interpolates the date between two dates where the state for the
ice_condition changes, "does count cloudy days " """
ice run_dates = []

66 IceMap: Bachelor thesis report

Iterate through the DataFrame to find condition changes
for i in range(len(data) - 1):
current _condition = data.iloc[i]['ice condition’]
next_condition = data.iloc[i + 1][’'ice_condition’]

Check if there is a change in condition, skipps clouds during fall, but
assumes clouds to be breaking ice

if it is after ice as the cloud labeling has a probability to be caused
by ice breakage.

if current_condition != next_condition and (current_condition,
next condition) not in \

{('No,ice’, ’'High,probability,of,Cloud’), ("High,probability of,
Cloud", "No,ice")}:

Interpolate the date between the current interval to and the next
interval from

current to = pd.to datetime(data.iloc[i][’interval to'])

next from = pd.to datetime(data.iloc[i + 1][’interval from’])

midpoint date = current to + (next from - current to) / 2

ice_run_dates.append(midpoint_date.strftime(’%Y-%m-%d’))

return ice run_dates

Code listing 7.12 demonstrates a method for detecting significant changes in ice
conditions by interpolating between known intervals of change, while also ac-
counting for cloudy conditions to avoid misleading data. This approach helps en-
sure the accuracy of the NVE model by recording and considering only valid ice
runs, provided that the labels are recorded correctly.

7.6 Sentinel-hub eval script

The evalscript used in the statistical API from Sentinel Hub (see Code listing 7.13)
is written in JavaScript. When using an evalscript in the Sentinel Hub framework,
the first step is to declare the spectral bands used in the setup() function. To cal-
culate the ILI, the group need bands B04 (Red), BO8 (NIR), B11 (SWIR1), and B12
(SWIR2), as well as the dataMask, which helps identify each valid pixel. The ILI
calculation takes place within the evaluatePixel function, where it is amplified
using a hardcoded contrast amplification variable discussed in this chapter (see
section 3.5).

Code listing 7.13: Evalscript for statistical request on sentinel hub

//VERSION=3

function setup() {
return {
input: ["B04", "Be8", "B1l", "B1l2", "dataMask"],
output: [{
id: "default",
bands: 1,
sampleType: 'UINT8’

Chapter 7: Sensor and API implementations 67

oA
id: "dataMask",
bands: 1,
sampleType: 'UINT8’
13
};
}

function evaluatePixel(sample) {
var Red = sample.B04;
var SWIR2 = sample.B12;
var NIR = sample.B08;
var SWIR1 = sample.B11;

var contrast = 120
var result = ((Red + SWIR2) / (NIR + SWIR1)) * contrast;

if (sample.dataMask === 1) {
return {
default: [result],
dataMask: [1]

s
} else {
return {
default: [0O],
dataMask: [0]
+

}
}

This JavaScript code defines how the satellite data is processed using Sentinel
Hub’s capabilities. The evaluatePixel function is crucial; it applies the ILI to
calculate the result based on the selected bands and enhances it using the specified
contrast, as discussed in section 3.5. This function determines what each pixel in
the satellite images represents—whether it’s ice, water, or clouds—based on the
standard deviation of the selected are<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>