
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Ba
ch

el
or

’s
th

es
is

Bratlie, Cecilia Norevik
Oueslati, Eimen
Skålerud, Nils Petter

Rendering Vector-Based
Geographical Maps with Qt

Bachelor’s thesis in Bachelor of Programming, Bachelor of
Engineering in Computer Science
Supervisor: Palomar, Rafael
Co-supervisor: Su, Xiang
May 2024

Bratlie, Cecilia Norevik
Oueslati, Eimen
Skålerud, Nils Petter

Rendering Vector-Based Geographical
Maps with Qt

Bachelor’s thesis in Bachelor of Programming, Bachelor of
Engineering in Computer Science
Supervisor: Palomar, Rafael
Co-supervisor: Su, Xiang
May 2024

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Geographical maps are an important tool when navigating unfamiliar areas and terrain, and

they power logistics worldwide by modeling the shape, size, and location of features, cities,

and countries. The Qt framework currently does not support visualizing maps using vector

graphics. Vector graphics have several benefits in terms of visual fidelity and visualizing

maps, including scaling of imagery without loss of visual quality. The Qt Group wishes to

investigate how to integrate this technology into their software ecosystem. Providing vector-

based visualization of maps may make the Qt framework a more competitive product. This

thesis establishes a proof-of-concept software that demonstrates how to render maps with

the Qt framework and vector graphics.

iii

Sammendrag

Geografiske kart er et sentralt verktøy ved utforsking av ukjente områder og terreng, og de er

avgjørende for logistikk over hele verden ved å modellere formen, størrelsen og lokasjonen

til landskapsformasjoner, byer og land. Per i dag støtter ikke Qt-rammeverket visualisering

av kart ved bruk av vektorgrafikk. Vektorgrafikk har flere fordeler, inkludert muligheten til

å skalere bilder uten tap av bildekvalitet. The Qt Group ønsker å utforske hvordan denne

teknologien kan innlemmes i deres programvaremiljø. Å kunne vise vektorbaserte kart kan

bidra til å gjøre Qt-rammeverket til et mer konkurransedyktig produkt. Denne avhandlingen

etablerer en konseptutprøvende programvare som demonstrerer hvordan kart kan fram-

stilles med Qt-rammeverket og vektorgrafikk.

iv

Preface

Two supervisors have guided the work on this thesis. We greatly appreciate Associate Profes-

sor Xiang Su’s supervision and support of the project during its first two months. He helped

us come up with the original project plan and encouraged us to perform software testing on

the implemented software. After that, Associate Professor Rafael Palomar assumed the role

of supervisor. We would like to thank him for his help and guidance during the final months

of the project. His knowledge of C++, software testing, and reporting was invaluable to us

during the project’s final months, and we are incredibly grateful.

The Qt Group, the product owner, has been a joy to work with. Everyone from Qt has

been supportive, kind, and helpful to us, providing input, support, and even cake (!) when

working with us. We would like to especially thank Matthias Rauter, our contact person at

Qt, for his support while working on the project.

v

Contents

1 Introduction . 1

1.1 Problem Domain, Delimitation, and Task Definition 1

1.2 Motivation . 2

1.3 Target Audience . 3

1.4 Thesis Goals . 4

1.5 Team Background and Skills . 5

1.6 Other Roles . 6

1.7 Project Work Framework . 6

1.8 Tools and Technologies . 7

1.9 Thesis Structure . 8

2 Background . 10

2.1 Raster-Based versus Vector-Based Rendering . 10

2.2 MapTiler . 15

2.3 Mapbox Vector Tiles . 19

3 Requirements Specifications . 26

3.1 Product Owner Requirements . 26

3.2 Problem Delimitation . 27

3.3 Use Cases . 28

4 Design . 30

4.1 Fundamental Design Choices . 30

4.2 Architectural Design . 31

4.3 System Components . 33

4.4 Graphical User Interface Design . 37

5 Implementation and Production . 39

5.1 Network Implementation . 39

vi

vii

5.2 The Viewport . 42

5.3 Style Sheet Parsing . 43

5.4 Vector Tiles Parsing . 47

5.5 Parallel Loading of Tiles . 48

5.6 Rendering Map Data . 50

6 Development Process . 53

6.1 Development Plan . 53

6.2 Scrum . 54

7 Testing and Quality Assurance . 56

7.1 Unit Testing . 56

7.2 Benchmark: Tile Parsing . 57

7.3 Benchmark: Multithreaded TileLoader . 59

7.4 Continuous Integration . 62

7.5 Testing of Graphical Output . 63

7.6 Acceptance Test . 65

7.7 Quality Assurance . 68

8 Installation . 70

8.1 Software Dependencies and Tools . 70

8.2 Application Prequisites . 71

9 Discussions and Conclusions . 72

9.1 Discussions . 72

9.2 Usage of Artificial Intelligence . 75

9.3 Criticisms of the Thesis . 76

9.4 Future Work . 76

9.5 Assessment of Team Work . 77

9.6 Final Conclusion . 78

Bibliography . 79

A Original Project Plan . 84

B Product Backlog . 122

C Sprint Schedule . 124

D Meeting Examples . 125

E Math Formulas . 134

E.1 World-Normalized Coordinates . 134

viii

E.2 Converting Longitude and Latitude to World-Normalized Coordinates 134

E.3 Indexing of Tiles . 135

E.4 Tile-Positional Triplet . 135

E.5 Viewport Size . 136

E.6 Calculating Visible Tiles . 136

F Vector Tile Protobuf Structure . 139

G Feature Attributes Encoding Example . 142

H Unit Test Example . 145

I Software Review with Product Owner, April 2024 147

J Software Review Questions, April 2024 . 150

K Final Acceptance Test . 156

L Continued Development Report . 160

L.1 Introduction . 160

L.2 Improving Rendering Performance . 160

L.3 Stylesheet Parsing . 161

L.4 Symbols . 164

List of Figures

1.1 Map-style Basic-V2 example . 2

1.2 Tools used in the project . 8

2.1 Raster-image illustration . 11

2.2 Magnifying vector and raster-graphics . 12

2.3 Raster vs vector image quality Differences . 14

2.4 MapTiler Basic-V2 world map . 16

2.5 MapTiler spatial partitioning . 16

2.6 MapTiler style examples . 17

2.7 MapTiler data domain model . 18

2.8 Vector tile structure diagram . 21

2.9 Layer structure diagram . 23

2.10 Rendering a square using vector graphics . 25

3.1 Use case diagram . 28

4.1 Data flow diagram . 31

4.2 Architectural component diagram . 32

4.3 Package diagram . 33

4.4 Request tile sequence diagram . 35

4.5 Initial GUI mockup . 38

4.6 Final GUI design . 38

5.1 Flowchart modeling the networking component 40

5.2 Viewport example . 43

6.1 Github project ScrumBoard screenshot . 55

ix

x

7.1 Tile parsing benchmark results . 59

7.2 TileLoader threaded benchmark results . 61

7.3 Merlin report example . 66

9.1 Team work distribution . 78

9.2 Hourly statistics for the team . 79

E.1 Converting longitude and latitude to world-normalized coordinates 135

E.2 Tile-position-triplet definition . 136

E.3 Calculating viewport size as a factor of the world map 136

E.4 Calculating set of tiles within viewport . 137

E.5 Approximating Tile On-screen Size . 138

L.1 openstreetmap map style sprite image . 165

L.2 camping icon top-left coordinate location . 166

L.3 camping icon . 166

List of Tables

7.1 Acceptance test summary . 67

8.1 Software dependencies and tools . 71

B.1 Product backlog . 122

C.1 Sprint schedule . 124

J.1 Acceptance Test Questions and Feedback . 152

xi

Listings

2.1 Person Protocol buffer Message Example. 20

2.2 Relation between command integer, command ID, and command count . . . 23

2.3 Decoding parameter integer . 24

5.1 MapTiler style sheet example . 41

5.2 MapTiler tile sheet example . 41

8.1 Qt v6.6 compiler errors . 71

appendices/protobuf/Tile.proto . 139

G.1 Feature Metadata JSON Encoding.Taken From Github Repository [16] 143

G.2 Feature Metadata Protobuf Encoding. Taken From Github Repository [16] . . 144

H.1 Unit test where ChatGPT helped . 146

L.1 OpenStreetmap style sheet sprite URL field . 164

L.2 image-icon JSON field example . 165

L.3 icon details from sprite index file . 167

xii

Acronyms

CI Continuous Integration. 32, 62, 64, 65, 74

FR Functional Requirement. 26

GUI Graphical User Interface. 1, 2, 27, 33, 37, 38, 48, 77

MSVC Microsoft Visual C++. 58, 60

NFR Non-Functional Requirement. 27

NTNU Norwegian University of Science and Technology. 4, 76

PBF Protocolbuffer Binary Format. 41

TDD Test-Driven Development. 4

UN United Nations. 74

xiii

Glossary

aspect-ratio The mathematical relation between width and height in a rectangle. Expressed

as a scalar width÷ height. 42, 43, 136

hardware-acceleration Accelerating a workload by using dedicated hardware. This gener-

ally allows higher throughput and improved power-efficiency [1]. In this paper, it is

mostly used in the context of graphics where dedicated Graphics Processing Units are

employed to improve graphics performance. 13

Merlin A component of the software developed in this thesis. This component is responsible

for performing automated graphical output tests. 64

pixel map Digital imagery encoded as a table of color-values. Also commonly referred to

as “bitmaps”. Individual cells of this table may be referred to as a “pixel”. This kind of

image-encoding you will find when using digital photography, and is also employed

in image-file-formats such as PNG or JPEG. 11

Protobuf Google Protocol Buffers. 47, 58

tile-normalized coordinate Two-dimensional coordinates, denoted by the symbol TN ∈
[0, 1]2. The components 0 and 1 map to the directions X and Y, respectively. In the X

direction, 0 maps to the left edge of the map-tile and 1 maps to the right edge. In the

Y direction, 0 maps to the top edge of the map-tile and 1 maps to the bottom edge.

134

tile-position-triplet A triplet T containing components describing a tile’s position within

the Web Mercator projection. The components include zoom-level z ∈ {0,1, . . . , 16}
and the zero-based indexed coordinates (x,y) ∈ {0, 1, ..., 2z−1}2. The formal definition

is described in Figure E.2. 135

xiv

xv

TileLoader A component of the software developed in this thesis. This component is re-

sponsible for loading tiles on background-threads as well as storing and caching them.

31–34, 36, 49, 59

viewport Rectangle that is projected onto the world map based on the displays view config-

uration. These components include center coordinates and zoom level. The viewport

forms a relation between a segment on the world map and what is displayed on the

display. See section 5.2 for more. 13, 42, 43, 136

world-normalized coordinate Two-dimensional coordinates, denoted by the symbol WN ∈
[0, 1]2. The components 0 and 1 map to the directions X and Y, respectively. In direc-

tion X, 0 maps to the left edge of the world-map and 1 maps to the right edge. In

direction Y, 0 maps to the top edge of the world-map and 1 maps to the bottom edge.

134, 137

zoom-level A scalar property of the viewport. Determines the size of the area of the world

map that is projected into the viewport. 13, 42, 43, 135, 136

Chapter 1

Introduction

1.1 Problem Domain, Delimitation, and Task Definition

1.1.1 Problem Domain

The Qt Framework [2], developed by The Qt Group, is a popular tool for creating computer

applications with a Graphical User Interfaces (GUIs). In many applications, it is desirable

to include functionality to display and interact with geographical maps as part of the user

experience. In this thesis, The Qt Group and their representative will also be referred to as

the “product owner” or simply “Qt”.

The Qt Group has asked us to investigate how to integrate vector-based map functionality

into their software ecosystem to render a world map, as opposed to utilizing traditional

raster source data to generate maps (see section 2.1 for more details).

The problem domain is in the intersection between being able to load and parse vector

data and then subsequently rendering the map to a display using the Qt framework. This

problem domain involves computer graphics, parsing JSON data based on complex schemas,

networking, and multithreading.

1.1.2 Problem Delimitation

The problem domain is vast, while the team’s time and pre-existing knowledge of the topic

are limited. The scope of the project has been intentionally narrowed to enable the team to

achieve a few very specific goals, as outlined in section 1.4.

1

Chapter 1: Introduction 2

Figure 1.1: Map-style Basic-V2 example. Image pulled from MapTiler [4]

This thesis deliberately excludes alternative map display technologies, other GUI-toolkits,

and features such as 3D graphics and rotation of the map. It also does not cover adaptations

for web or mobile platforms. The narrow focus allows for a detailed exploration of map

functionality in selected scenarios. The delimitations are fully described in section 3.2.

1.1.3 Task Definition

The team is to develop an application that can display a geographical map, and the rendered

map must be generated using vector data. The map data has to be parsed and rendered in

real-time and allow live user interaction (for instance zooming in and out, and moving

around the map).

The application will render geographical map data supplied by the MapTiler service [3].
Specifically, it should be able to display the MapTiler map style called Basic-V2 [4] (see

Figure 1.1). The rendered map must include elements such as terrain, roads, street and

place names.

1.2 Motivation

The product owner wishes to investigate how they might improve the support for map func-

tionality in the Qt framework. At the time of writing, the Qt framework only supports raster-

based map rendering. The use of raster-based rendering comes with several downsides,

some of which are elaborated upon in section 2.1. Including this type of functionality may

help the Qt framework become a more competitive product. Through this thesis, the prod-

uct owner wishes to gain insight into what challenges must be solved in order to integrate

Chapter 1: Introduction 3

vector-based rendering of geographical maps into their software ecosystem.

1.3 Target Audience

The thesis has been written as a report to be read by someone who has a basic understand-

ing of programming and software engineering, such as software developers or software

engineering students. The thesis pays great attention to design choices and describes the

implementation details required to understand, reproduce, and further extend this work.

Assumptions About the Reader

This thesis focuses on many technical aspects of application development and assumes the

reader has good foundational knowledge of computer science. The reader should have some

background knowledge about the following topics:

• Mathematics: Basic calculus, including reading basic mathematical notation.

• Basic Networking: Knowing what HTTP requests are, and that HTTP responses may

return both a status code and data when HTTP requests are made.

• Foundations of Computer Graphics

• Computer Programming: Understanding of core programming concepts such as data

structures and classes, algorithms, and software design patterns. Multithreading and

thread synchronization techniques are also relevant.

Additionally, having a good understanding of the C++ programming language (or a similar

programming language like C or Java) and the Qt framework may be beneficial.

Chapter 1: Introduction 4

1.4 Thesis Goals

This section lists the thesis goals established by the team. To what extent the goals were

reached by the end of the project, will be reflected upon in chapter 9.

Result Goals

• Deliver a proof-of-concept application that showcases vector graphics rendering of

geographical maps using the Qt framework.

• Establish a project that the team can include in their professional portfolio.

• Provide useful research material for The Qt Group to implement improved support for

map-functionality in the Qt Framework. The developed solution is not expected to be

production-ready.

Effect Goals

• Demonstrate the benefits of vector-based rendering for geographical maps within the

Qt framework to the broader developer community. This includes showcasing scala-

bility and enhanced user interaction capabilities compared to raster-based rendering.

• Cultivate a collaboration between the Norwegian University of Science and Technol-

ogy (NTNU) and The Qt Group. This could lead to more student projects, internships,

and research initiatives to help bridge the gap between academic learning and indus-

try needs.

Learning Goals

• Improve programming and coding skills, in particular learning how to use C++ with

Qt.

• Learn how to test C++ applications.

• Improve competence in Scrum-based development.

• Improve competence on Test-Driven Development (TDD) through real-world practice.

• Learn more about best practices when developing in a team

• Learn from the development culture at Qt and integrate this into the work and adher-

ing to Qt’s development methodologies.

Chapter 1: Introduction 5

1.5 Team Background and Skills

In this thesis, ”the team” will refer to the authors of this report; the group of the three stu-

dents presented below.

Cecila Norevik Bratlie

Bachelor of Programming (BPROG)

Cecilia had taken three classes using C or C++, but she considers herself to be more skilled

in programming languages like Golang, Rust, or Kotlin. She has no experience with Qt from

before. She will be responsible for networking components in the application and project

quality assurance.

Eimen Oueslati

Bachelor of Engineering in Computer Science (BIDATA)

Eimen is more proficient in Java and did not know C++ ahead of the project. However, he

was fairly familiar with object-oriented languages. He has also worked with Golang, Mat-

Lab, and Python. He has no experience with Qt prior to the project’s start. He will be in

charge of application data parsing and support project quality assurance.

Nils Petter Skålerud

Bachelor of Programming (BPROG)

Nils is very experienced with C++ and had some prior knowledge of Qt and their frame-

work before the project began. He has also developed his own graphics engine in C++ and

is very knowledgeable when it comes to graphics and rendering. Ahead of the project, Nils

had experience working with advanced C++ coding practices, multi-threading, and com-

puter graphics, though not in the context of the Qt ecosystem. Given his extensive skill and

experience as a C++ developer, he will serve as both the project team leader and Scrum

master.

1.5.1 Team Motivation

Nils Petter had initially sought out The Qt Group for a thesis, and the team agreed that this

thesis was the one they were the most motivated to work on. The team was interested in

working with C++, and not many other thesis options allowed the use of C++. The team

Chapter 1: Introduction 6

was also interested in being able to visit the Qt offices to gain insights about professional

software development environments.

The team members had previously worked together and agreed to cooperate on the

thesis since the previous experience was great. When discussing the assignment with others,

in particular lecturers and others associated with the Department of Computer Science,

it was estimated the thesis work would be quite challenging for any student group. With

Cecilia and Eimen having limited C++ knowledge at the start of the project, the team was

aware that they would have to learn a lot throughout the development process.

1.6 Other Roles

Supervisors

The project had two supervisors during the development process. The initial supervisor,

Xiang Su, oversaw the project for two months. Subsequently, Rafael Palomar assumed the

role of project supervisor and supervised it until its completion in May, 2024. The team held

occasional meetings With the first supervisor. With the second supervisor, weekly meetings

were scheduled with a provided agenda. These meetings facilitated discussions on current

progress and addressed any challenges encountered since the last meeting.

Qt Representative

The representative from The Qt Group was Matthias Rauter, who has been the primary

contact person for the thesis. The Qt representative’s role has involved introducing the team

to the problem domain, suggesting improvements to the system, and providing feedback on

the development of the thesis project.

1.7 Project Work Framework

During the project development, the team utilized Scrum as the working methodology. Dur-

ing development, the team visited the Qt offices often weekly to consult with them on current

progress, hear their wishes for the project, and ask for guidance when needed.

Chapter 1: Introduction 7

1.7.1 Team Meetings

The team usually had team meetings once or twice daily. Exactly how they were organized,

is outlined further in the project plan (see Appendix A) and chapter 6, and finally reflected

upon in section 9.5.

1.7.2 Supervision Meetings

Throughout the duration of the project, the team has had weekly meetings with the su-

pervisor. These meetings would often include the team giving a progress update, and also

receiving feedback from the supervisor on how to academically improve the project. During

the latter half of development, the focus of these meetings shifted gradually towards the

report part of the project.

1.7.3 Product Owner Meetings

The product owner frequently participated in meetings with the team, especially during

the first months of the project. Meetings were initially held weekly and would include the

team giving progress updates and receiving feedback from the product owner to make sure

the project was adhering to requirements and meeting the product owner’s expectations.

Meetings were often held physically in Nydalen, Oslo, at Qt’s offices. Later in development,

the team conducted short, intermittent discussions with the product owner via Teams to

ensure that the project progressed as Qt expected.

On several occasions, the team consulted with employees at The Qt Group to gather

input on new features or issues that arose during development. These consultations never

included the employees writing code; instead, they provided high-level feedback on how to

approach the problems in question.

1.8 Tools and Technologies

The team used multiple tools and technologies to facilitate the planning, execution, and

management of the project. Monday.com and Google Drive have been used for project man-

agement and planning. Discord has been used for internal team communication. Microsoft

Teams has been used for communication with supervisor and Product Owner. Overleaf was

Chapter 1: Introduction 8

Figure 1.2: Tools used in the project

the primary tool used for writing the thesis. GitHub was used to host the source code of

the developed system, as well as managing the Scrum issue board during development. For

project execution and software development, a multitude of tools have been used: Visual

Studio Code, Qt Creator, C++, CMake, the Qt framework, and Docker. A visual overview of

the tools utilized is shown in Figure 1.2.

1.9 Thesis Structure

This report is divided into 9 chapters. Chapter 1 gives a non-technical overview of the the-

sis project. This includes outlining the task, project goals, thesis target audience, how work

was organized, and the structure of the thesis report document. Chapter 2 provides de-

tails on technologies and related problem domains that the reader should be aware of to

understand the implementation. Chapter 3 contains requirements, expectations, and de-

limitations for the final product. Chapter 4 outlines the technical and non-technical design

aspects of the final system, including the rationale for design decisions. Chapter 5 explains

the software implementation in further detail, stating how application components function

Chapter 1: Introduction 9

and integrate with each other. Chapter 6 discusses how the development process has been

structured. Efforts the team has made to improve the quality and testing of the final solu-

tion are covered by chapter 7. This includes topics such as unit testing, component testing,

acceptance testing, and quality assurance measures. Chapter 8 explains how to build and

run the project, listing tools that are necessary for this to be successful. Chapter 9 discusses

the approaches mentioned in chapter 5, as well as alternative approaches. It also includes

a discussion on why certain approaches were chosen over the alternatives.

The thesis refers to a repository containing the developed software source code described

by the thesis. This repository is distributed alongside this thesis report and is available on-

line, see Bratlie et al. [5]. The full list of references used in the thesis, followed by appendices,

can be found at the end of the document.

Chapter 2

Background

This chapter establishes the prerequisite knowledge and terms required to understand the

thesis and software implementation. Additionally, it describes challenges and conventions

within the problem domain that are relevant to the system presented in the thesis.

2.1 Raster-Based versus Vector-Based Rendering

The process of outputting visual imagery to a display can involve a multitude of complex

approaches. This section discusses two common approaches relevant to this thesis work,

raster imagery and vector graphics. These terms describe how the source image data is en-

coded when stored. Both approaches present advantages and disadvantages, and this section

will only discuss those that are the most relevant to the project. Further reading material

can be found in GOMEZ GRAPHICS [6].
This section outlines how utilizing vector-based graphics may lead to improved visual

fidelity and correctness of a displayed image. These benefits serve as a motivation for the

product owner to investigate integrating support for vector-based maps into the Qt frame-

work.

2.1.1 Raster Images

Raster-based imagery implies the source image is encoded as matrices of color values1. In

the context of this project, each individual map tile (defined in subsection 2.2.2) is a static

1Single/multiple channels depending on the type of image

10

Chapter 2: Background 11

Figure 2.1: Raster-image illustration. Image taken from [6].

image encoded as a matrix of colors. The matrix has a fixed width and height. This type of

encoding is often referred to as pixel maps [7]. In this thesis, the term raster images refers to

this encoding. An illustration of how computer imagery can be broken down into a matrix

of colors is shown in Figure 2.1.

2.1.2 Vector Graphics

The term vector graphics refers to the process of producing computer imagery based on

geometrical shapes, such as lines, polygons, and curves. These shapes are defined in terms

of the Cartesian coordinate system [8].
Modern displays are commonly raster-based. Consequently, vector graphics must be pro-

jected and rasterized onto the display in order to be displayed correctly. This thesis will only

cover polygons, lines, and points for the source data, as that is what MapTiler provides (see

section 2.2).

2.1.3 Benefits and Disadvantages

This section discusses two benefits that come with vector-based graphics, which are highly

relevant to the motivation of this thesis. These benefits are specifically related to scalability

and layered rendering.

Chapter 2: Background 12

Figure 2.2: Magnifying vector and raster-graphics. Image taken retrieved from Yug, modifi-
cations by Cfaerber et al. [11]

Scalability

As a consequence of being geometrically defined, vector-based graphics can scale up and

down to any size with no impact on the visual fidelity [9]. Scaling can be applied to the

geometrical shapes before they are rasterized onto the display.

In contrast, raster images exhibit visual artifacts, which refer to unintended distortions,

when magnified. This type of visual artifact is commonly known as pixelation [10] and can

be recognized by the image visibly turning into a matrix of colored squares. This effect can

be seen in Figure 2.2.

Layered Rendering

Vector graphics allow for grouping of data based on what the data represents. A core benefit

of this structure is being able to transform shapes differently based on categorization or

hide categories altogether. One relevant example is how terrain shapes can be distinguished

from text and symbol shapes when using vector data. With this approach, a map-rendering

implementation may rotate the world map without also rotating the orientation of text

and symbols. Different scaling may be applied between text and terrain, allowing text and

symbol sizes to remain constant relative to the display. This may be a desired property when

rendering geographical maps, since text and symbols can stay the same while scaling other

elements.

Raster-based imagery does not provide this functionality. Raster-based imagery inher-

ently binds all elements together. A transformation applied to the map – like rotation or

Chapter 2: Background 13

scaling – affects all elements of the image uniformly, including text and symbols. Conse-

quently, text may become visually distorted or unreadable when the map is transformed

(such as when rotated to be upside down). This property disallows hiding an element, as

there is no additional raster data that stores the background data separately.

2.1.4 Other Considerations

There are additional factors to consider when implementing either approach. While vector-

based graphics introduce improvements to visual fidelity and flexibility, their implemen-

tation is more complex and computationally intensive compared to using raster maps. A

common approach is to use hardware-acceleration in order to generate vector imagery at a

sufficiently high rate to be used in interactive applications.

2.1.5 Demonstration

Screenshots of both approaches being utilized within the final software of this project are

shown in Figure 2.3. This figure uses a non-discrete viewport zoom-level (see section 5.2 for

additional viewport information), near the boundary where one of two discrete map detail

levels is chosen. Consequently, each tile is magnified as much as possible. These images

have been intentionally selected and magnified to showcase the image-quality problems of

raster-based rendering in a worst-case scenario.

The limitation of text scaling is apparent in this figure. Figure 2.3b has the correct text-

size displayed. Meanwhile, the text size is visibly magnified in Figure 2.3a. In the raster-

based screenshot, the text also has perceptible pixelation.

Chapter 2: Background 14

(a) Raster

(b) Vector

Figure 2.3: Raster vs vector image quality Differences

Chapter 2: Background 15

2.2 MapTiler

At the time of writing, The Qt Group does not provide services that host geographical map

data that can be displayed by the system presented in this thesis. For this reason, the map

software needs to rely on a third-party service to load the geographical data. Qt has re-

quested that the team design their software to fetch this information from the third-party

MapTiler service [3] (this delimitation is described further in section 3.2). MapTiler supplies

both geographical map data and specifications on how the map should be visualized. The

remainder of section 2.2 gives an overview of how MapTiler supplies the geographical data

that is necessary to render the application’s map.

2.2.1 Web Mercator Projection

The world is a three-dimensional sphere, therefore it is important to use a projection formula

to project each part of the world onto a two-dimensional plane that can be visualized. Map-

Tiler utilizes a variant of the Mercator projection [12], which is the most common projection

utilized in end-user applications.

MapTiler uses the Web Mercator projection. Web Mercator is a variant of the Mercator

map projection with the adjustment that the world map is cropped to be perfectly square.

Consequently, the northernmost and southernmost parts of the world are not included in the

map. An example of the Web Mercator projection is found in Figure 2.4. The projection can

be understood in this figure by inspecting how geometry is placed onto the two-dimensional

plane. In particular, a common trait (and disadvantage) of Mercator is how shapes become

increasingly bigger when moving towards the northern and southern edges of the map.

2.2.2 Spatial Partitioning

MapTiler splits a square two-dimensional world map into multiple smaller, quadratic pieces,

which will be referred to as “tiles”. The way the world map is divided forms a quad-tree

[13]. This allows the world map to be divided up into different levels according to the

level of detail the application wants to display. A visualization can be found in Figure 2.5.

A rendering implementation can therefore select a level of detail that maps adequately to

the zoom that is currently being used to display the map. In essence, a lower zoom will

result in fewer tiles, where each tile has a lower amount of detail and covers a larger area

Chapter 2: Background 16

Figure 2.4: MapTiler Basic-V2 world map. Image supplied by MapTiler.

Figure 2.5: MapTiler spatial partitioning. Image pulled from MapTiler [14]

of the world map. A higher zoom will result in more tiles, where each tile will have a higher

amount of details and covers a smaller portion of the map.

This has the advantage of allowing the user’s device to only store the tiles that it needs.

Additionally, a rendering implementation does not need to display details that would oth-

erwise be imperceptible. A disadvantage of this is the added complexity that stems from

stitching together multiple tiles to create the illusion of one seamless, coherent world map.

If the tiles are not perfectly aligned, it can lead to visual artifacts like gaps in the final map.

2.2.3 Data Overview

This section describes some of the data exposed by MapTiler to allow third-party applications

(such as the system presented in this thesis) to render geographical maps.

Chapter 2: Background 17

(a) Bright-V2 (b) OpenStreetMaps

Figure 2.6: MapTiler style examples

MapTiler provides different map “styles”, where each unique style contains geographical

data that will be visualized differently. An example of different styles can be found in Fig-

ure 2.6, which shows the difference in style between the Bright-V2 and the OpenStreetMaps

styles. Note how the figure shows two images of the same area, with different styling and

set of elements.

The style sheet determines how a map should be styled, while a tile sheet is what contains

tile data. Multiple style sheets may reference the same tile sheet(s). Consequently, multiple

styles may use the same set of vector tile data while being visualized differently. How the im-

plemented application handles style sheets and their connection to tile sheets, is elaborated

upon further in section 5.1.

Chapter 2: Background 18

Figure 2.7: MapTiler data domain model

Figure 2.7 illustrates how MapTiler structures data. This representation is for illustra-

tion purposes only specific to the thesis. The entities in this figure can be described as the

following:

• Style — A named description of the visual style of a geographical map representation

along with the data associated.

• Vector Style Sheet — Describes the appearance of a style when rendered with vector

graphics. This includes what elements are included (such as specific roads, text, and

symbols) and also how they are styled (color, outline, size). The vector style sheet

references exactly one tile sheet. The style sheet is exported as a JSON file and adheres

to the MapTiler GL Style Specification [15].
• Vector Tile Sheet — References a collection of vector tiles and also contains relevant

information to that collection. This will include – but is not limited to – attribution.

This data allows third-party applications to credit the correct actor for gathering the

data.

• Mapbox Vector Tile — Binary data stream that contains vector-based geographical

data within a single tile. Data is encoded according to the MapBox Vector Tile specifi-

cation [16].

Chapter 2: Background 19

• Raster Style Sheet — Describes minimal information related to displaying raster-tiles.

• Raster Tile — Raster image describing a single tile. Commonly encoded as a PNG or

JPEG image file.

2.3 Mapbox Vector Tiles

The Mapbox Vector Tile specification [16] is the standard used by MapTiler for encoding the

geographic data contained in a single tile. It does not contain information on how to style

the data when visualized. A basic understanding of the standard, specifically how the data is

structured and encoded, is necessary to understand the implementation of the application.

It is critical that the software presented is able to decode this encoding scheme in order to

successfully present the map to the user.

2.3.1 Protobuf

Vector Tiles Encoding Format

Vector tiles are a space-efficient format for storing geographic vector data. They are a spe-

cific application of Google Protocol buffers. “Protocol buffers are language-neutral, platform-

neutral extensible mechanisms for serializing2 structured data” [17].

Protocol Buffers Benefits

Protocol Buffers are a fast and efficient encoding format for structured data. They work by

invoking a protocol buffer compiler to generate language-specific classes from a .proto file

definition. Protocol buffers provide numerous advantages including efficient data storage,

rapid parsing, support across multiple programming languages, and enhanced functional-

ity through automatically generated classes. Many projects including gRPC, Google Cloud,

Envoy Proxy, Twitter, and Apache Mesos use them. The benefits of protocol buffers include:

• Cross-language Compatibility: Since generating a class for a specific message is re-

liant on the definition residing in the .proto file, the protocol buffers compiler can

generate classes for a lengthy list of programming languages including C++, C#, Java,

PHP, Python, and Ruby. This makes protocol buffers language-neutral, meaning that

two programs created with different programming languages can communicate using

2Serializing data means transforming it into a format that can be stored or transmitted more efficiently

Chapter 2: Background 20

protocol buffers (together with gRPC) given that the programs are written in one of

the supported languages.

• Extensibility: Protocol buffers enable you to update the proto definition without the

need to update the code, providing you follow the appropriate practices when creating

message definitions in proto files. This means that not only do protocol buffers offer

backward compatibility capabilities, but also forward compatibility. Old code will be

able to read newer version messages ignoring newly added attributes, and new code

can read old messages assigning default values to new fields.

Protocol Buffers Limitations

Protocol buffers might not be the best fit for some situations as they suffer from some limita-

tions. They are best suited for small data chunks that can be internally loaded into memory

and might cause problems for larger data volumes. Protocol buffers are also not well sup-

ported in non-object-oriented programming languages. They are also not self-describing,

meaning that they can not be fully interpreted without their corresponding .proto files. An-

other disadvantage of protocol buffers is that they are not human-readable. Unlike JSON and

XML, protocol buffers have a binary representation which makes them very fast to serialize

and deserialize at the cost of readability.

Protocol Buffers Functionality

To use protocol buffers, a message schema must first be defined in a .proto file. Following

the protocol buffers documentation examples [17], a “Person” message can be created. List-

ing 2.1 defines the "Person" message with three fields: name, id, and email. The message

fields must specify if the field is optional or repeated, the data type of the fields, the name

of the field, and a field number.

1 message Person {
2 required string name = 1;
3 required int32 id = 2;
4 optional string email = 3;
5 }

Listing 2.1: Person Protocol buffer Message Example.

After defining the message schema, the protocol buffer compiler should be invoked to

generate corresponding classes in the chosen language. The generated classes can then be

used to serialize and deserialize data.

Chapter 2: Background 21

Figure 2.8: Vector tile structure diagram

2.3.2 Vector Tile Structure

The Mapbox Vector Tile specification [16] describes the components of vector tiles and their

internal structure. It includes instructions on decoding vector tiles from Protobuf files into

geometry that can be rendered on the screen. The vector tile Protobuf message is defined in

Appendix F. The internal structure of the data inside a vector tile follows the proto message

definition. A vector tile contains two major components, layers and features. An illustration

of the vector tile structure is shown in Figure 2.8.

Tile Layers

Each tile must contain at least one layer. A layer encapsulates geometric features and their

corresponding metadata. Layers usually contain features of the same type, either polygons,

lines, or points. The features in layers are usually aggregated by type. For example, a polygon

layer could contain all the features of buildings, or a line layer could contain all the features

of roads. A layer is composed of the following components:

• Version: Defaults to 1. This is the version number of the layer and it should contain

the major version number. This is used by decoders to determine if they can decode

layers of this version. Decoders may skip layers with unknown versions.

• Name: This serves as the id of the layer. Each layer name must be unique within the

parent tile.

• Features: A list of geometric features. Each layer must contain at least one feature.

Chapter 2: Background 22

• Keys: A 0-indexed list that stores the keys of the metadata of features.

• Values: A 0-indexed list that stores the values of the metadata of features.

• Extent: Defaults to 4096. A number that represents the extent of the coordinate sys-

tem. For example an extent of 100 means that each coordinate unit within the tile

refers to 1/100th of its square dimensions. In the case of an extent that is equal to

100, the point that has the coordinates (0, 0) would be on the top left of the tile, and

a point that has the coordinates (100, 100) would be on the bottom right of the tile.

Layer Features

A feature represents a geometric entity within a layer. A feature can be of type polygon,

line, or point. They encapsulate geometry information in addition to optional metadata that

can be used for styling the features. An illustration of the structure of a layer is shown in

Figure 2.9. Features are composed of the following components:

• Type: This property is an enumerator that specifies the type of the feature and it can

take one of the following values: POLYGON, LINESTRING, POINT, UNKNOWN. This

property is used to determine how to decode and render the features.

• Geometry: A list of 32-bit integers encoding the commands and coordinates used to

render the feature.

• Tags: An optional list of integer pairs referring to the zero-indexed lists of keys and

values inside the parent layer. These tags are used by the renderer in conjunction with

the style sheet to style the feature.

• ID: An optional integer, unique for every feature within a layer, that can be used to

identify the feature.

Geometry Encoding

Geometry data is encoded as a 32-bit integer array. Each integer in the list represents ei-

ther a command-type or a parameter for a command. The geometry is defined in a screen

coordinate system, such that the top-left corner is the origin of the coordinate system. The

X-axis points positively to the right and the Y-axis points positively downwards. A command

integer is an integer that encodes a command ID and a command count. A command ID

describes an operation. The supported commands are:

• MoveTo: This command has the ID 1 and moves the painter to the specified coordi-

nates. This command takes two parameters that represent the X and Y values of the

point that the painter must move to.

Chapter 2: Background 23

Figure 2.9: Layer structure diagram

int commandInteger = (commandID & 0x7) || (commandCount << 3);
int commandId = CommandInteger & 0x7;
int commandCount = commandInteger >> 3;

Listing 2.2: Relation between command integer, command ID, and command count

• LineTo: This command has the ID 2 and draws a line from the current position of

the painter to the specified coordinates. This command takes two parameters which

represent the x and y values of the end point of the line to be drawn. This command

changes the painter’s position to be at the end of the line that was just drawn.

• ClosePath: This command has the ID 7 and closes the current path. This means that a

line will be drawn from the current painter position to the start position of the current

path. This command does not change the position of the painter.

The command count specifies how many times the command should be executed. The com-

mand ID is encoded as the three least significant bits of the integer, and the command count

is encoded as the remaining 29 bits. The relation between the command integer, the com-

mand ID, and the command count is shown in Listing 2.2.

Geometry coordinates are encoded using zigzag encoding [18]. In this encoding, positive

Chapter 2: Background 24

int value = (ParameterInteger >> 1) ^ -(ParameterInteger & 1);

Listing 2.3: Decoding parameter integer

and negative integers are both encoded as positive integers. Some command integers can

take parameters. The number of parameters needed is equal to twice the commandCount.

Decoding parameter integers can be done using the conversion shown in Listing 2.3.

Geometry Decoding Example

This example illustrates how to decode a tile of size 10x10 with a 2 cell buffer where the

following array encodes a square:

[9, 4, 4, 26, 12, 0, 0, 12, 11, 0, 15]

The geometry array can be decoded and rendered with the following steps:

• Step 1: Decode the first command integer "9", which translates to command ID =
1 and command count = 1, this corresponds to MoveTo being executed once. The

next two parameter integers are "4" and "4" since the command count is equal to 1.

Then, the parameter integers are decoded, giving the coordinate pair (2,2). This pair

represents the coordinates for where to execute the operation. When executing the

command, the painter moves to the point (2,2).

• Step 2: Decode the next command integer "26", which translates to command ID = 2

and command count = 3. This corresponds to performing LineTo 3 times. The next 6

parameter integers are "12", "0", "0", "12", "11", and "0" since the previous command

count was equal to 3. The parameter integers are decoded to get the following coor-

dinate pairs: (0,6), (6,0), and (-6, 0). Then, the commands are run to get the three

sides of the square. Each coordinate pair is relative to the current pen position one

and not to the origin of the tile.

• Step 3: Decode the last command integer "15", which translates to command ID = 7

and command count = 1. This corresponds to ClosePath 1 time. ClosePath does not

require any parameters and closes the path.

Following these steps will lead to the results presented in Figure 2.10.

Chapter 2: Background 25

Figure 2.10: Rendering a square using vector graphics

Feature Attributes

Feature attributes are referred to as metadata throughout the project. The features’ meta-

data provides additional information about features that can be used for dynamic styling.

The chosen tileset for our project uses the MapTiler Planet schema for metadata [19]. The

metadata is encoded as a tags list of integer pairs referencing the zero-based indices of the

keys and values list of the parent tile. The number of elements in the tags list must be even.

An example of how the metadata is encoded can be found in Appendix G.

Chapter 3

Requirements Specifications

3.1 Product Owner Requirements

The project requirements were formulated by Qt. These requirements were adjusted through-

out the development process after discussions with the team.

3.1.1 Functional Requirements

The Functional Requirements (FRs) specified by Qt are as follows:

— FR 1: The system shall render a map to the display, with the source data being vector-

based.

— FR 2: The system shall be able to render any section of the world map.

— FR 3: MapBox Vector Tile Format [16] shall be the format of choice for the vector

source data to be used by the system.

— FR 4: The map rendered by the system shall include roads, place names, and basic

terrains.

— FR 5: The system shall support as least the BasicV2 [4] vector map style from MapTiler.

— FR 6: The system must render the map in real-time. Real-time rendering involves pro-

ducing the graphics "just in time". The imagery is generated during software runtime,

not rendered ahead of time.

The product owner did not expect the final program to be a production-ready application.

The development team was offered a high degree of freedom to develop and explore differ-

ent approaches given that the final system satisfies the requirements listed above.

26

Chapter 3: Requirements Specifications 27

3.1.2 Non-Functional Requirements

The Non-Functional Requirements (NFRs) for the system are as follows:

— NFR 1: The system shall be suitable for Qt to use as a reference for their continued

map software development.

— NFR 2: The Qt framework and tools shall be actively used in the software.

— NFR 3: The system shall use software-based rendering with QPainter [20].
— NFR 4: The system solution must be well documented, including how to parse relevant

information and the process to display it correctly. The thesis report serves as this

documentation.

— NFR 5: The software will be licensed under the MIT license [21].

3.2 Problem Delimitation

This project explicitly focuses on map functionality within the context of the Qt ecosystem,

while using an external API called MapTiler to download the geographic data from the web.

There are several topics that won’t be covered, this list is non-exhaustive and covers only

the most relevant topics:

• This thesis will not discuss alternative solutions or technologies for displaying maps.

• This thesis will not be discussing the implementation of map-functionality in the con-

text of GUI-toolkits beyond Qt.

• This thesis will not discuss the implementation of map data provided by services other

than MapTiler.

• The thesis will only focus on displaying maps using the Web Mercator projection [12]
(see subsection 2.2.1). Other types of map projections are not discussed.

• This thesis will only prioritize displaying simple map elements that are useful for nav-

igating urban areas. Map elements that are useful for research purposes, or elements

that help navigate the wilderness, will not be discussed.

• This thesis will only discuss rendering maps as a flat two-dimensional plane. Three-

dimensional graphics will not be discussed.

• Rotation of the map will not be discussed. The map will always be displayed with

north facing the top of the display.

Chapter 3: Requirements Specifications 28

Figure 3.1: Use case diagram

• The solution will only be developed for Windows and Linux desktop platforms1. Web

and mobile platforms are not discussed.

3.3 Use Cases

As mentioned in section 3.1, this project is not meant to be a full-fledged application. With

that being said this project is meant to be a reference, it is a starting point for a production-

level application that displays maps using vector graphics and the Mapbox standard [16].
Figure 3.1 is an example of how a final application might be used:

3.3.1 Use Case Descriptions

Case Description

Use Case 1 Input tile location or coordinate

Actor User

1Due to the cross-platform nature of the Qt framework, the team expects it to be possible to run the software
on mobile without significant effort.

Chapter 3: Requirements Specifications 29

Goal Input the coordinates to move to

Description The user needs to input the longitude and latitude coor-

dinates and a zoom level to which the map widget will

snap.

Use Case 2 Move around the map

Actor User

Goal Move the center of the map to one of the four directions

Description Mover the map up, down, right, or left. This triggers a

new rendering pipeline for the new tiles that should be

rendered on the viewport. This might also trigger new

tile requests if the tiles are not in the cache.

Use Case 3 Zoom in/out

Actor User

Goal Increase or decrease zoom level

Description Zoom in or out which might trigger new tile requests if

the new viewport zoom level warrants a change in the

map zoom level.

Chapter 4

Design

4.1 Fundamental Design Choices

The overall design decisions for the project were made to satisfy the requirements listed in

chapter 3. As the development team was offered a high degree of freedom in choosing the

tools, technologies, and architecture for the system, a list was created in the early stages of

the project development to delineate these components. The following list describes some

of the choices that were made:

• The solution must be coded in the C++17 standard.

• The Qt framework and Qt tools must be used actively to develop the software.

• The source map data must be supplied by the MapTiler service [3].
• The final map must include basic elements that can represent urban areas. This in-

cludes the following:

◦ Roads, including road names

◦ Rivers, water

◦ Building outlines

◦ Basic fill-colored terrain

◦ Place-names, landmarks

• The solution must include interactive controls, including panning and zooming.

• The solution must include testing such as unit testing, automated testing, and inte-

gration testing.

A data flow diagram of the system can be found in Figure 4.1.

30

Chapter 4: Design 31

Figure 4.1: Data flow diagram

4.2 Architectural Design

The architecture of the software was designed to be modular and scalable, with an empha-

sis on testability. The architecture facilitates extensibility by decoupling components and

defining clear boundaries between subsystems, while also promoting code reusability. The

implemented architecture is a take on the server-client pattern [22, pp. 180–182], where

the TileLoader acts as the server and the MapWidget acts as the client. An overview of the

system is illustrated in Figure 4.2. A detailed description of each component can be found

in section 4.3.

Although the architecture is simple, the internal implementation of each component is

quite complex.

4.2.1 Testability as a Core Design Principle

When designing the architecture of the project, testability was a consideration from the be-

ginning. The project emphasized modular testing, allowing detailed scrutiny of each com-

ponent’s functionality in isolation.

Chapter 4: Design 32

Figure 4.2: Architectural component diagram

Each component was designed to be testable. Components had to be highly configurable

while limiting their reliance on other components. As an example, the TileLoader compo-

nent was designed to function with and without internet connectivity. The TileLoader can

rely solely on a local disk cache to load tiles. It can accept different cache directory paths

on both Unix-based systems and Windows at runtime to locate this cache and can be con-

figured to selectively load vector tiles only. This flexibility is essential when testing specific

functionalities in both online and offline environments.

Running tests on individual components is not possible if all components are tightly

built into the main application package. It is necessary to separate testable code away from

a single executable package in order to test each component in isolation. Therefore, the

architecture separates functionality into separate packages. All common functionality is de-

fined as one library-type package “maplib”. Tests and the application can then be defined as

executable-packages that are linked to maplib. This allows for testing of individual compo-

nents correctly. Packages are implemented using CMake targets in the implementation. An

overview of these packages can be seen in Figure 4.3.

The primary application normally requires a windowing system present on the operating

system in order to run, which is not available inside headless test environments. Splitting

the packages as outlined makes it possible to run the tests in a headless environment, such

as during Continuous Integration (CI) (see section 7.4).

Chapter 4: Design 33

Figure 4.3: Package diagram

4.3 System Components

This section describes the software solution at a conceptual level. It describes the design of

system software components, and how the components were designed to interact.

4.3.1 TileLoader Component

The TileLoader is responsible for loading individual tiles from the MapTiler web service and

caching them locally. The TileLoader was designed to:

• Accept a set of tile-coordinates to prepare for displaying.

• Store ready tiles in memory, in a form that can be read and displayed.

• Remove tiles from memory when they are no longer actively being used.

• Process requests asynchronously and in parallel in relation to user interface opera-

tions.

• Cache tiles locally on disk.

• Notify user interface components whenever a new, relevant tile is ready for display.

The TileLoader is designed to process tiles in an asynchronous and parallelized manner in

relation to the GUI logic. As shown in section 7.2, processing tiles is too time-consuming to

leverage a smooth user experience. Consequently, it is important to run the tile-processing

workload in the background in a way that does not interfere with the responsiveness of the

GUI. A downside to this approach is that the rendering will output frames where not all tiles

are present, as they are still loading. Instead, the display will be refreshed with new tiles as

they are loaded.

Chapter 4: Design 34

Cache

Due to the high latency of downloading tiles from the web1, the TileLoader stores a cache

of the most recently used tiles. The purpose of this cache is two-fold; to reduce the amount

of traffic to the MapTiler service, and to decrease loading times by loading the tile directly

from local files. MapTiler restricts how many web requests a given MapTiler account can

perform in a short time-span. Because the application is interactive and requests tiles when

they become visible, it may request anywhere from dozens to hundreds of tiles to MapTiler

with each use.

The caching mechanism contains two levels. Tiles will be cached on disk. A subset of

these tiles will also be cached in memory while the application runs. Keeping recently used

tiles in memory is convenient for rendering the tiles repeatedly and also allows the tiles to

instantly appear if they were previously used.

It was initially planned to evict tiles from memory over time to minimize memory usage,

but the eviction policy was not implemented due to time constraints and a lack of prioriti-

zation. This is discussed further in section 9.3 and section 9.4.

Request Process

The most important function exposed by the TileLoader is the Bach::TileLoader::requestTiles

method. This is the function that will take a list of tile-coordinates, and immediately return

the tiles that are ready while queuing up missing tiles for background processing. A visual

overview of this procedure is shown in Figure 4.4.

4.3.2 Rendering Component

Rendering is a critical component of the project and is responsible for drawing map data

correctly to the display. This includes rendering polygons, lines, and text with styling that is

similar to that found in the raster-based maps. This component has the following require-

ments:
1Compared to loading from disk.

Chapter 4: Design 35

Figure 4.4: Request tile sequence diagram

Chapter 4: Design 36

• Request tiles from the TileLoader.

• Display tiles inside the viewport.

• Display multiple tiles on-screen as one seamless map.

• Render without a complete set of tiles.

• Use the QPainter class [20] for drawing primitives such as polygons, lines, and text.

• Rendered tiles must include elements such as terrain, roads, and place names.

• Rendered tiles must be styled according to the MapTiler style sheet specifications.

Such as color, line width, text size, text color, and text outlines.

• Support usage of unit tests.

• Filter out specific displayed elements based on configuration, such as hiding all roads.

The rendering component needs to be able to render without a complete set of tiles to

fill the viewport. This is because the TileLoader does not load tiles immediately, and instead

streams them into memory over time. The rendering component will render nothing in place

of missing tiles, and instead render new frames as new tiles are loaded.

4.3.3 Networking Component

The networking component has been designed for network interactions to get different vec-

tor tile types semi-automatically from the web. This meant hard-coding the initial required

steps of the network interactions, but automating subsequent network calls where possible.

One goal for the network component design was to make it easy to add, update, or swap

between style sheet, source, and tile sheet types. In addition, errors must be handled grace-

fully, and software problems are logged to the developer while an appropriate error message

may be displayed to the end user. The network error system is complex enough to handle

critical errors, but simple enough to make it easy for the product owner to re-use, modify, or

replace when they take over the project, making the software more sustainable. It would be

straightforward to hardcode the style sheet and tile sheets for the Basic-V2 map style. This

would be simple to implement since one could write a few lines of code, hardcoding the de-

sired requests to hardcoded URLs. It would also be fairly cheap, since that implementation

is fast, and hence would be cheaper than a more involved implementation.

A downside of this approach is that it could make future development for Qt more te-

dious since the entire system would need a rework or re-implementation to change between

map types. The software should be flexible enough to handle that situation out of the box.

Implementing support for grabbing tile data semi-automatically also means that is easy to

Chapter 4: Design 37

swap between and check different map types. If one rebuilds the project and calls for a

different style sheet type or source type (given that they exist in the MapTiler API), the net-

working components can grab all relevant data and handle potential errors correctly. If a

future developer wants to call data that’s stored in a different format, the interactions would

of course have to be re-implemented. But for as long as map data has the same structure

as MapTiler’s JSON-encoded data, the software will be able to grab that data correctly and

handle errors.

4.4 Graphical User Interface Design

The product owner did not provide the team with requirements for the graphical interface.

Qt offered to design the interface and provide all icons and other graphical elements, but

the team declined since it wouldn’t be allowed to be delivered as a part of the thesis.

At the beginning of the project, a document was made detailing some requirements the

team had for the graphical interface. The design was inspired by maps on MapTiler’s website

and Google Maps.

One goal of the graphical interface design was to make interactions available via click-

able buttons. In addition, it should support map panning with the mouse buttons and map

zooming with the mouse wheel. This would offer users multiple ways of interacting with the

application. Furthermore, the interface should use a color scheme that matches Qt’s color

scheme to stylistically fit in with other Qt applications. Qt often uses green, grey, black, and

white in designs, as well as having rectangular buttons with rounded corners.

4.4.1 Initial GUI Design Plans

The user interface had to support zooming and panning and correspondingly signal to the

rendering component when it needed to redraw the map. The original user interface en-

abled these operations by using finger gestures, cursor actions, and on-screen controls. The

original GUI was mocked up as shown in Figure 4.5.

4.4.2 Final GUI

Due to time constraints, the final version of the GUI design is different from what the team

envisioned during the planning phase. However, the final GUI supports all the planned and

Chapter 4: Design 38

required functionality. An illustration of the final application, with its GUI, is shown in Fig-

ure 4.6.

Figure 4.5: Initial GUI mockup Figure 4.6: Final GUI design

Chapter 5

Implementation and Production

This section describes how the software was implemented along with descriptions of chal-

lenges the team faced in doing so. For the sake of brevity, this section is intentionally non-

exhaustive and only particularly interesting implementation parts have been documented

here.

5.1 Network Implementation

As previously outlined, the application relies on downloading map data from the external

MapTiler API. Even though the final version of the network implementation is relatively

simple, it performs a critical role in the system. The network component must download

tiles automatically from the web at runtime unless they’ve been previously cached.

When downloading tiles from MapTiler, multiple requests have to be made in a row to get

data. If the requests return data successfully, the data must be parsed, and then additional

requests must be made based on the parsed results. The flowchart in Figure 5.1 models

these steps 1.

First, the map style sheet type must be selected and then requested from MapTiler. This

style sheet is encoded in JSON. If the first request is successful and returns valid data, one

of the style sheet fields should be called “sources” (as long as the API follows the current

structure), see Listing 5.1. This is where a source type must be selected, where multiple

vector and raster source types may be available. Each source type has an associated link

1Flowcharts usually flow down to the right. This figure flows down to the right, goes up to the right, and
flows down again to fit on the page.

39

Chapter 5: Implementation and Production 40

Figure 5.1: Flowchart modeling the networking component

Chapter 5: Implementation and Production 41

1 {
2 "version": 8,
3 "id": "basic-v2",
4 "name": "Basic",
5 "sources": {
6 "maptiler_planet": {
7 "url":

"https://api.maptiler.com/tiles/v3/tiles.json?key=myKey",,→

8 "type": "vector"
9 }, ... /* SNIP */

Listing 5.1: MapTiler style sheet example

1 "tiles": [
2 "https://api.maptiler.com/tiles/v3/{z}/{x}/{y}.pbf?key=myKey"
3]

Listing 5.2: MapTiler tile sheet example

under the “url” field, which is where the corresponding tile sheet is hosted. For this project,

the “maptiler_planet” source type is used.

To get the corresponding tile sheet, a GET request must be made to the URL of “map-

tiler_planet”. If the request is successful, the tile sheet is downloaded. This contains a final

link at the bottom in the “tiles” field (Listing 5.2). The vector tiles are encoded as Protocol-

buffer Binary Format (PBF) files on MapTiler, which is why that final URL is referred to as

PBF link or PBF URL in the thesis.

To finally download a vector tile from MapTiler, the application replaces z, x, and y with

zoom level, longitude, and latitude in the PBF link and makes GET requests to download

vector tiles.

Which PBF link one gets in the end, depends on the selected style sheet and source

type. Sometimes, different style sheets have the same source value but ultimately have dif-

ferent vector tile sheets. Additionally, there is no guarantee that tiles will always be hosted

at the exact same location on the web. The network component has been implemented to

be able to get vector tiles automatically for as long as the expected JSON fields (“sources”,

“maptiler_planet”, and “url”) can be parsed.

Chapter 5: Implementation and Production 42

The functionalities that interact with the MapTiler API primarily handle HTTP requests

with (potential) errors and results. The networking component also parses HTTP responses.

The ResultType enum class was implemented to support this and contains HTTP and pars-

ing successes or errors.

The HttpResponse and ParsedLink structs both utilize the ResultType. The HttpResponse

stores network response data as a byte array (this will contain map data), and the success

or error as a ResultType. The ParsedLink stores a parsed URL string, and a ResultType.

The implementation is simple but stores data together with a (potential) error. This could

help the developer determine if there are problems with either the downloaded data itself,

parsing as a part of the networking, issues with the MapTiler API, and bugs in other com-

ponents. This feature has helped debug code throughout development, as there have been

times where MapTiler responded successfully, but data would be parsed incorrectly by other

components further downstream.

5.2 The Viewport

In order to position and scale tiles correctly on-screen, the team designed an abstract con-

cept to mathematically model how smaller portions of the world-map are projected onto

the display2. This concept was named the “viewport” and can be thought of as the camera

for the map. The viewport is defined as an axis-aligned3 rectangle that is projected onto

the world map based on the displays ”view“ configuration. This configuration includes cen-

ter coordinates relative to the world-map and a zoom-level property. The viewport forms a

relation between a segment on the world map and what is output to the display.

The viewport shares the aspect-ratio of the display. Because the display can be rectangu-

lar (such as a smartphone), the viewport can also be rectangular. By allowing the viewport

to share the same aspect-ratio as that of the display, we can avoid graphical stretching of

shapes when projecting from the viewport to the display. A demonstration of the viewport

can be seen in Figure 5.2.

The viewport includes a scalar zoom-level property that determines the size of the area

covered on the world map. This property defines the length of the viewport’s as 2−Z , which

is then interpreted as a factor of the world map. Consequently, a higher zoom-level will

2While the team designed this concept for this project, the team expects that other map-applications include
a very similar concept.

3Aligned relative to the display

Chapter 5: Implementation and Production 43

(a) (b)

Figure 5.2: Viewport example. Viewport visualized as a black dashed rectangular line-
segment. (a) shows the viewport in the context of the world map. (b) shows how the map
would be displayed on-screen. Figure is for demonstration purposes only, and does not re-
flect the output of the application.

magnify the world map on the display. A viewport zoom-level of 0 will make the viewport

be equal size to the world map, while each integer step will make the map four times as

large4 in relation to the viewport. The calculated length is then mapped to the longest side

of the viewport’s rectangle, while the shorter side takes the aspect-ratio of the viewport into

account.

There is no relation described by MapTiler between the viewport’s zoom-level and the

level of detail of the world map. It is highly beneficial to establish such a relation in order

to display the optimal amount of detail on the world map, depending on the viewport’s

zoom-level. The relation that has been developed for the system presented is outlined in

Appendix E.

5.3 Style Sheet Parsing

The styles sheet is a JSON document containing essential information used for styling tiles’

layers [15]. The styling information is encoded into JSON objects inside the Layers list in

4Since the relation is applied in both X and Y direction

Chapter 5: Implementation and Production 44

the style sheet document. Layers generally contain two sub-properties that influence how

the layer is rendered, a layout property and a paint property. The layout property includes

properties such as line cap style, text font, text letter spacing, and symbol spacing, while

the paint property includes properties such as background color, fill color, fill opacity, and

line width. The style sheet divides the layer types into nine layer style types, of which the

application utilizes the following four:

• Background: This layer style describes the styling properties of the map background.

This layer does not correspond to any map features, it represents the default layer

where there is nothing to render. The properties that are used from this layer type

are:

◦ Background-color: The color to be used for the background.

◦ Background opacity: The opacity of the background.

• Fill layer style type: This layer style is exclusive to features of type polygon. The

properties used from this layer type are:

◦ fill-antialias: Determines whether anti-aliasing is used to render this layer.

◦ fill-color: The color used to fill the polygons.

◦ fill-opacity: The opacity of the fill layer.

• Line layer style type: this layer style corresponds to features of the type line. The

properties used from this layer type are:

◦ line-cap: Determine the line’s cap style. The cap style can be either butt, round,

or square5.

◦ line-color: The color used for the pen to draw the line.

◦ line-dasharray: An array for the length of the alternating dashes and gaps that

form the dash pattern.

◦ line-join: Determine the style used when joining lines. The join style can be

bevel, round, or miter6.

◦ line-opacity: The opacity of the line.

◦ line-width: The width of the line.

• Symbol layer style type: This layer style corresponds to features of type point. How-

ever, this also corresponds to road names which are features of type line. The prop-

5Details on line cap styles supported by the Qt framework can be found in https://doc.qt.io/qt-6/qpen.
html#cap-style

6Details on line join styles can be found in https://doc.qt.io/qt-6/qpen.html#join-style

https://doc.qt.io/qt-6/qpen.html#cap-style
https://doc.qt.io/qt-6/qpen.html#cap-style
https://doc.qt.io/qt-6/qpen.html#join-style

Chapter 5: Implementation and Production 45

erties used from this layer type are:

◦ text-color: The color of the text.

◦ text-field: The text to be rendered.

◦ text-font: The for stach to use for text rendering.

◦ text-halo-color: The color of the text outline.

◦ text-halo-width: The width the the text outline.

◦ text-letter-spacing: The space between individual letters. This is used only for

curved text as the letter spacing is automatically determined from the font and

text size for normal text.

◦ text-max-angle: The maximum allowed angle difference between two adjacent

characters in curved text.

◦ text-max-width: The maximum allowed width for text wrapping.

◦ text-opacity: The opacity of the text.

◦ text-size: font size.

◦ text-transform: Whether the text should be all uppercase, all lowercase, or not

altered.

Depending on its type, each layer style is parsed into one of the following classes: BackgroundStyle,

FillLayerStyle, LineLayerStyle, SymbolLayerStyle, or NotImplementedStyle. All these

classes are subclasses of the AbstractLayerStyle class, which encapsulates all the data that

is common for all layer style types. The shared style properties are:

• ID: The id of the layer style.

• source-layer: This references the id of the layers in the actual vector data. This is what

is used to tie each layer style to its corresponding layer in the vector tile.

• source: The name of the source tile set.

• minzoom: The minimum zoom level for the layer.

• maxzoom: The maximum zoom level for the layer.

• visibility: Determines whether this layer should be rendered or not.

• filter: used to exclude certain features.

Since styling values can be of different value types, the layer style classes use QVariant7 to

store these values. Note that not all the styling values are raw values, sometimes they can

be expressed as expressions that need to be resolved.

7The Qvariant class is a union for the most common Qt classes, see: https://doc.qt.io/qt-6/qvariant.
html

https://doc.qt.io/qt-6/qvariant.html
https://doc.qt.io/qt-6/qvariant.html

Chapter 5: Implementation and Production 46

5.3.1 Expression Parsing

Some style properties are written as expressions that need to be resolved in order to get the

actual values. The expressions have their own specification [23]. Expressions are expressed

as JSON lists in the style sheet. The most common expression list pattern is to have a string

specifying the expression operation as the first element, and then the two operands to exe-

cute the expression on. To solve this problem, a basic interpreter that would resolve all the

expressions currently supported by the application was implemented. The Evaluator static

class is responsible for evaluating and resolving expressions. The class is made static because

it doesn’t need to hold any state. All the supported expression strings are saved in a map.

Each expression string is saved as a key in the map, with the value being a pointer to the

function that resolves that expression. The static function Evaluator::resolveExpression

is responsible for resolving expressions by calling the appropriate function. Note that ex-

pressions can be nested, and to solve this, indirect recursion was used, where all the func-

tions that deal with expressions can call Evaluator::resolveExpression if they encounter

a nested expression. The supported expressions in the current application are:

• get: Takes one operand. It retrieves a property value from a feature’s metadata.

• has: Takes one operand. It checks if a feature has a specific property in its metadata.

• in: Takes two operands, an input value, and a list of values. It checks if the input value

exists in the list.

• !=: Takes two operands. Check for the inequality of the operands.

• ==: Takes two operands. Check for the equality of the operands.

• >: Takes two operands. Check if the first operand is greater than the second.

• all: Takes a list of expressions, and checks if all the expressions evaluate to true.

• case: Takes a list of inputs and expression pairs, and returns the first input whose

corresponding expression evaluates to true.

• coalesce: Takes a list of expressions and returns the result of the first expression that

does not evaluate to null.

• match: Takes a label and a list of input and output value pairs. Returns the output

whose input matches the label.

• interpolate: Takes an input value and a list of numbers. Performs a linear interpolation

of the input value on the list of numbers.

Chapter 5: Implementation and Production 47

5.4 Vector Tiles Parsing

After receiving the vector tile data from the Maptiler API, the data needs to be deserial-

ized to extract meaningful information that can be used to render the vector data. This is

done in two stages. The first stage is to deserialize the protocol buffer message, and then

decode and parse the message content. The deserialization and parsing are done from the

Bach::tileFromByteArray function.

5.4.1 Deserializing the Protocol Buffer Message

This is the first step to extract the information from the received network response. This is

done through a deserialization method using the QProtobufSerializer8 class object that

deserializes the Protobuf message into the class generated by the protoc compiler (men-

tioned in subsection 2.3.1). Note that this step is a major cause of the poor performance of

the application, this is due to a bug in the internal function for deserializing protocol buffer

messages from Qt. A bug report has been issued for this.

5.4.2 Parsing and Decoding the Tile Data and Geometry

After the protocol buffer message has been deserialized, the class data has to be accessed

to extract relevant information. This step starts by iterating over the list of layers inside the

tile and creating TileLayer objects for each layer. The next step is to iterate over all the fea-

tures for each layer and check its type. Checking the type of the feature is necessary because

decoding geometry is done differently for each feature type. The loop will call the metadata

parsing function populateFeatureMetaData and then decode the feature’s geometry array

to a QPainterPath9 object using either polygonFeatureFromProto, lineFeatureFromProto,

textLineFeatureFromProto, or pointFeatureFromProto depending on the feature type.

The geometry decoding follows the MapBox Vector Tile specification [16]. The type of a

feature is stored as an enumerator. Features of type polygon encode the geometry of coun-

tries, oceans, buildings, etc. Features of type line encode the geometry of borders, rivers,

roads, etc. Features of type point encode the geometry of text such as continents, country

8See: https://doc.qt.io/qt-6/qprotobufserializer.html
9See: https://doc.qt.io/qt-6/qpainterpath.html

https://doc.qt.io/qt-6/qprotobufserializer.html
https://doc.qt.io/qt-6/qpainterpath.html

Chapter 5: Implementation and Production 48

names, cities, place names, etc. One notable exception is that road names, and curved text

in general are encoded as line features. Any other feature types are ignored.

5.5 Parallel Loading of Tiles

As per the requirements in chapter 3, it was important to load tiles in an asynchronous

manner so as to not let slow tile-loading interfere with app responsiveness. As discussed in

section 7.2, parsing tiles will halt the application if performed on the same thread as the

GUI logic.

In order to address this, the team decided to employ background threads. Using back-

ground threads significantly improved performance and application responsiveness, by of-

floading long operations to independent execution units. This comes with the drawback that

some parts of the visible map may not be present at all times. Instead, tiles will be loaded

over time and placed into view as they finish loading.

QThreadPool

The implementation uses the QThreadPool class [24] from the Qt framework to manage

background worker threads. This class implements the pattern within multi-threaded com-

puting commonly known as “thread-pool” [25]. This allows the implementation to move

away from the philosophy of managing threads, and instead manage asynchronous “tasks”.

It also simplifies the code by letting QThreadPool manage the lifetime of each thread.

When utilizing a thread-pool, tasks can be sent to a fixed collection of threads. Each

thread will then extract a new task from an internal list as they finish executing tasks. This

is useful in the case where many tiles are loaded. The tiles that are queued first will load with

minimal interruption. This allows the CPU to allocate more time to process the tiles that are

queued first, consequently, they are likely to finish processing earlier. This is in contrast to

the alternative where there are many individual threads active, where all threads compete

equally for time on the CPU. In such a scenario, the effect is that each tile takes longer to

process, and will be finished in a less predictable order.

The performance impact of scaling from a single background thread to multiple has been

measured and is discussed in section 7.3. Following the favorable results, the implementa-

tion configures the thread-pool to use the ideal number of threads based on the CPU being

Chapter 5: Implementation and Production 49

used10.

5.5.1 Request Process

Any time a collection of tiles is requested from the TileLoader, one of two things will happen.

If the tile in question is already loaded in memory, the tile is returned immediately. If the

tile is not found in memory, it will be submitted as a job to the thread-pool for background

loading. By letting the request function not block execution and return as early as possible,

the function can be used inside rendering code without performance problems. Any kind of

thread-blocking will lead to lower responsiveness and negatively impact the rendering per-

formance. Consequently, it becomes important to return from the request function as soon as

possible. The code for this process can be found in the function TileLoader::requestTiles,

inside the file lib/TileLoader.cpp

5.5.2 Per-Task Operations

From then on, each task is responsible for loading a single tile (either from disk or web) and

then inserting it correctly into the cache. A task is assigned exactly one tile-coordinate that it

should load. The task must then determine whether the tile being loaded is already present

on the disk cache. If the tile is not already present on disk, the byte stream is requested

through a network request. If the tile is present on disk, it can be loaded from file. Both

of these approaches will result in a byte stream, modeled by the QByteArray class [26],
containing the serialized MapBox Vector Tile data [16].

Once we’ve loaded the necessary QByteArray, what remains is to parse it into a VectorTile

object, write it to the disk cache, and then finally insert it into the memory storage.

Because there are multiple threads attempting to put data into a single, shared memory

storage, thread-synchronization is used to prevent race-conditions [27]. A mutex lock [28]
is employed to cover all shared data, which each thread must lock before memory storage

can be modified.

Finally, whenever a new tile has been inserted into memory, it needs to trigger the signal

callback to tell other systems that a new tile is now available. In the implementation, the

only system that gets notified is the MapWidget object.

10Which is the default behavior at the time of writing

Chapter 5: Implementation and Production 50

5.6 Rendering Map Data

5.6.1 Rendering Polygons

Rendering polygons is a straightforward task when using QPainter [20]. All the rendering

code does is pass the path containing the polygon and apply the style parameters to the

painter object, then call QPainter::drawPath [29] method.

5.6.2 Rendering Lines

The process for rendering lines is the exact same as rendering polygons, except lines have

additional styling properties(see section 5.3.)

5.6.3 Rendering Text

Text features are a special type of feature in the sense that the geometry only describes the

position of the text and not the text content itself. The text content is in the feature metadata

(attributes). Text features usually contain the text content in more than one language. To

determine which text is required, the "text-field" property in the feature’s corresponding

layer style is used. Text is the last component to be rendered on screen, as it should be

rendered on top of everything else. Most text features, such as continent names, country

names, city names, and place names are point features. However, some text features, such

as road names, are line features since this type of text is supposed to be rendered along a

straight or curved line.

Place Names

Most tiles will include a very dense set of coordinates on the world map for displaying text.

Consequently, each piece of text will be positioned close enough together to overlap. This

effect is in some cases quite extreme and will cause the text to overlap until it becomes

unreadable. It is necessary to implement a collision detection algorithm for the text, to

determine what text should be shown or hidden. Consequently, all text features need to go

through a pre-processing step. In this step, all text features are sorted based on a property

“rank”, which determines how important a text feature is. Text with a higher rank has higher

rendering priority in case of collision. The text features are then iterated and parsed into a

Chapter 5: Implementation and Production 51

struct that contains the text’s content, position, font, color, and outline data. After text has

been processed, it is added to a list to be rendered. Only text that has passed the collision

detection filter is added to the list. This list is then looped through to render all its text

elements. After that, everything else is rendered in the current viewport. The first iteration of

text rendering was done using the QPainter::drawText method [30]. However, this method

did not provide any utility for text outlines. To solve this, QPainterPath [31]was used for the

text, and an additional outline was added. This solution produced correct results, but it was

very slow since the text had to be converted into a path with the QPainterPath::addText

method [32]. The final software uses the QTextLayout::draw method [33], which provides

a way to add text outlines without too big of an overhead. Originally, text was rendered using

the QPainter::drawPath method [29]. Note that the QPainter’s drawing method does not

support text outline and text wrapping at the same time.

This was solved by switching to QTextLayout and creating a custom function for text

wrapping. A special case of normal text is a long text, which includes “United States of Amer-

ica”, “People’s Republic of China”, and “Democratic Republic of the Congo”. Text that would

exceed the maximum allowed width specified by the “text-max-width” property would need

to be split into several lines. The split text is treated as if it were multiple separate instances

of text. The text positioning is done through the following formula: y = (I− L/2)∗H where

I is the zero-based index of the text in the text array, L is the length of the array, and H is

the height of the text given the current font size. All the text elements in the array have the

same X coordinate.

Rendering Curved text

Curved text is a special case of text where the rendering must follow a line path. Since the

Qt framework does not provide such functionality, a custom solution must be implemented.

The process for curved text rendering goes through the following steps:

• Stage 1: Process the Feature Geometry

Curved text features are of type Line. However, they are processed differently from

normal line features. Line features can be composed of multiple lines, which compli-

cates determining exactly where the text should be rendered. To solve this, a separate

function was implemented for decoding the line geometry. This function returns only

the longest line segment in the list of line segments.

Chapter 5: Implementation and Production 52

• Stage 2: Process the Text

The first step in this stage is to collect the text that will be rendered. The code then

checks if the text can fit within the line. Instances of text that do not fit are discarded.

The text must then be processed character by character to determine the position and

rotation of each character using the following algorithm (CurrentLength is set to 0 at

the start of the loop):

1. Get the coordinates of the point along the path at CurrentLength

2. Get the angle of the path at CurrentLength.

3. Check if the difference between this angle and the previous angle exceeds the

maximum allowed angle difference. If it exceeds this value, return from the func-

tion.

4. Increase CurrentLength by the width of the character + letter spacing.

After being processed, the curved text is stored in a struct containing the font, text

color, opacity, outline details, and a list of structs each containing a single character

with its position and rotation angle.

• Stage 3: Render the text

Rendering curved text is also done using the QTextLayout::draw method [33]. Note

that all the text for the entire viewport is rendered in one loop. All the elements in the

text list are iterated over, and for each element, individual character structs are looped

over. Finally, they are rendered using their corresponding position and rotation angle.

Chapter 6

Development Process

In this chapter, the development process and Scrum as a project management framework

will be discussed. The project plan (see Appendix A) outlines the original plan, and the

team adhered to it to a large degree. This chapter outlines the overarching development

methodology. Later, in section 9.5, the implementation of the development plan is discussed.

6.1 Development Plan

The project can be split into three phases: (1) The planning phase; (2) the implementation

phase; and (3) the reporting phase. Note that the documentation process leading to the final

report was performed during the entire development process.

The planning phase was dedicated to those activities preceding the implementation

phase, such as establishing contact with the supervisor and product owner, acquiring the

key competencies, learning the key technologies (like C++ and the Qt framework), famil-

iarizing with the development environment, planning the project development (establishing

team guidelines, procedures, and rules), establishing the software requirements and system

design. While some parts of the software were developed during this time, the major goal

of this period was to prepare for the following development phases.

The dedicated development phase consisted of developing the software itself and imple-

menting features listed in the project plan while maintaining the code base and improving

quality along the way. During this time, there was also a change of supervisor for the project,

so a week was spent familiarising the new supervisor with the project.

During the final phase, the dedicated reporting period, most of the team’s time was

53

Chapter 6: Development Process 54

dedicated to writing the final project report and making minor improvements to existing

software, without implementing major new features. Additional new features wouldn’t be

implemented unless the product owner required it, to avoid delivering unplanned, unfin-

ished, untested, or poorly documented code.

Minor improvements included cleaning up code and improving its readability by chang-

ing its style, renaming variables to be more descriptive, adding and improving code docu-

mentation, fixing bugs, improving error handling to ensure software behaves as expected,

and updating unit tests.

6.2 Scrum

During the development process, a customized version of Scrum was used, Figure 6.1 shows

the Scrum board used to organize the project tasks. Each sprint would last for two weeks

and have sprint goals. Each sprint would be planned during a Scrum planning meeting at the

beginning of the sprint. The work and workflow would then be reviewed halfway through

the sprint during a Scrum review meeting. On the final day of the sprint (or the same day

as the next sprint would start) there would be a Scrum retrospective where the workflow

was assessed and adjusted. In addition, the team had stand-up meetings multiple times

per week, usually 4 days a week. These meetings would last between 15-60 minutes and

completed and planned daily work would be discussed. These stand-ups ensured consistent

teamwork and progress and allowed the team to address any problems. Eimen and Cecilia

were required to notify the team if they had any suggestions to improve project quality, and

this was primarily done during standup meetings.

Chapter 6: Development Process 55

Figure 6.1: Github project ScrumBoard screenshot

The team has two programming and one computer science student. Two of us were also

retaking courses this semester, leading to the team having different schedules. Therefore,

Scrum usage had to be customized. The differences in study programs meant at least one

person was busy with other projects for a few hours to a couple of weeks, and the team

accommodated this when planning work.

Scrum was used since it’s an agile workflow. It allowed for planning work for each sprint,

adjusting the work during the sprint, and moving development activities to different times

based on reviews and retrospectives. This made the workflow flexible.

Chapter 7

Testing and Quality Assurance

During this project, the team learned how to perform and implement different kinds of tests:

unit tests for C++ with Qt using the Qt Test framework, rendering component tests, and an

acceptance test with the product owner to check that the software was acceptable to Qt.

The tests were performed to learn new testing techniques, test the quality of the software

in multiple ways, and finally use the results to improve software quality.

7.1 Unit Testing

Unit tests were developed using the Qt Test module1, which is part of the Qt framework.

Unit testing serves as a basis for testing individual components of the project’s software [22,

p. 232]. Implementing unit tests is beneficial to improve software quality, locate bugs, and

provide documentation [34].
No one in the team was familiar with C++ unit testing frameworks ahead of develop-

ment. It is possible to develop unit tests with Doctest2, Catch23, or Qt Test. Doctest and

Catch2 seem to be popular unit testing frameworks for C++, but Qt Test supports the Qt

framework out of the box, has a lot of documentation available online, and the product

owner could help if there were problems. Qt Test was chosen as the unit test framework for

these reasons.
1Qt Test documentation: https://doc.qt.io/qt-6/qttest-index.html
2Doctest can be found here: https://github.com/doctest/doctest/blob/master/doc/markdown/

tutorial.md
3Catch2: https://github.com/catchorg/Catch2

56

https://github.com/doctest/doctest/blob/master/doc/markdown/tutorial.md
https://github.com/doctest/doctest/blob/master/doc/markdown/tutorial.md
https://github.com/catchorg/Catch2

Chapter 7: Testing and Quality Assurance 57

When using Qt Test, CMake can add test resources to each test file and build test executa-

bles. Each Qt Test executable can contain multiple unit tests inside. Each executable built

with Qt Test will set up its own “test” main function environment from where implemented

tests are performed. The unit tests were organized so that .cpp files in the lib folder had

their own Qt Test unit test executable in the unit-tests folder.

Tests can be run from the terminal with the ctest command, or they can be run directly

from Qt Creator.

Qt has a code coverage tool called Squish Coco, which relies on another tool called the

Code Coverage Browser. Squish Coco generates code coverage reports and the Code Cov-

erage browser displays which parts of the code have been unit-tested. Since the team had

decided to use Qt Test, using Coco to generate code coverage reports was explored. There

are multiple steps that must be completed to get Squish Coco to work on Windows, and

the team was unable to set it up due to build complications. The project supervisor recom-

mended making as many unit tests as possible and not spending additional time getting

code coverage tools to work. This was also discussed with the product owner, who agreed.

7.2 Benchmark: Tile Parsing

Benchmark tests are used to “... determine current performance and can be used to improve

application performance” [35]. The purpose of the tile parsing benchmark is to determine

whether parsing tiles is so slow that it warrants being performed as an asynchronous back-

ground task.

During the early stages of development, the team and product owner observed the pars-

ing of tiles using the Qt gRPC module to be slow. One example of this was when the team

tried loading an entire map with 16 tiles in the debug mode. After 10 minutes had passed,

only 4 tiles had finished loading and rendered to the screen. The following discusses how

it was confirmed that the performance issue is caused by the Qt gRPC module and not re-

lated to the tile-loading code developed by the team. How the results support the decision

to make the application multi-threaded, is also discussed.

This benchmark can be run locally by running the executable tile_parsing_benchmark.

Chapter 7: Testing and Quality Assurance 58

7.2.1 Benchmarking Test Methodology

The benchmark test loads all the tiles in zoom level 2, which sums to 16 tiles in total. Each

file is loaded from disk into memory before any test runs to avoid disk IO interfering with

the results. This test is executed 10 times to get a sample pool. Then, the average load time

per file is calculated to estimate how much time is spent loading a tile.

This test was run locally on Windows 11, with a Ryzen 3700X CPU and 32GB of memory.

The test was not run on a clean installation of the operating system, but an attempt was

made to minimize the amount of other processes running on the system by terminating

non-critical system processes. The Microsoft Visual C++ (MSVC) compiler was used. The

test was performed in two configurations, once with the compiler set to the debug profile

and once with the release profile.

7.2.2 Expected Results

The vector data that the software loads follows the MapBox Vector Tile v1.0 standard [16],
which is in turn a standard built on the Protobuf technology. Protobuf is designed to be

an efficient data-interchange format with fast deserialization speeds. Comparable, exact

measurements on Protobuf have proven hard to find. The team hopes to see near-instant

parsing speeds when dealing with file sizes that range from 10 KiB to 1 MiB.

7.2.3 Test Results and Discussion

The test results are shown in Figure 7.1. The results show that loading a single tile, on

average, takes 8684.52 ms for the debug profile, and 1534.64 ms for the release profile.

The test only loads high-level tiles, which the team has observed to be somewhat slower

to parse than tiles in higher zoom levels.

In addition, the test benchmarks the function VectorTile::fromByteArray(const QByteAr-

ray&). This function both performs the Protobuf parsing and parses the intermediary struct

into a structure that can then be displayed. An improvement could be modifying the test to

use only the internal implementation that performs the Protobuf parsing section.

The benchmark shows that no profile is fast enough to leverage a responsive user expe-

rience without offloading work to some background execution. A satisfactory result would

involve being able to load ~16 tiles quickly enough to not produce visible stuttering. It

Chapter 7: Testing and Quality Assurance 59

Figure 7.1: Tile parsing benchmark results

must be possible to load multiple tiles without the user interface becoming unresponsive.

Therefore, it is beneficial to offload the tile-parsing workload to other threads, which will

not interfere with application responsiveness.

7.3 Benchmark: Multithreaded TileLoader

The purpose of this benchmark is to determine whether using multiple background worker

threads yields a performance improvement – compared to using a single background worker

thread – when loading multiple vector tiles. The total time it takes to load multiple tiles will

be inspected under different configurations.

The test compares performance by requesting multiple sets of tiles to the TileLoader.

How many background threads the TileLoader is allowed to use will also be adjusted, and

the performance will be tested for each case. The benchmark can be run locally by running

the executable tileloader_threaded_benchmark.

7.3.1 Methodology

The test pre-loads tile files into a temporary folder, which can then be read by the TileLoader.

The TileLoader is configured to not pull any tiles from the web. The TileLoader has been

configured to only load vector tiles4. A new instance of the TileLoader is created between

each iteration to not allow the TileLoader to cache data between runs.
4Meaning no raster-based tiles are loaded.

Chapter 7: Testing and Quality Assurance 60

The selection of tiles has been chosen based on observations made by the team during

normal use of the application. The team has observed that the number of tiles being pro-

cessed when moving the viewport around varies anywhere from 0 to ~16. The range of tiles

being loaded was decided to be from 1 to 32. The selection of which specific tiles to load

was determined by attempting to emulate a heavy load. Therefore, the tiles are chosen by

listing all tiles in zoom-level 3 (64 tiles in total, using BasicV2 style), sorting the tiles by file

size in descending order, and selecting the first 1 to 32 tiles.

The test was run locally on Windows 11, with a Ryzen 3700X CPU and 32GB of memory

with a Kingston A2000 SSD. The test was not run on a clean installation of the operating

system, but an attempt was made to minimize the number of other processes running on

the system by terminating processes not critical to the operating system. The build uses the

MSVC compiler with the ”Release” CMake profile. The test will run in configurations of a

single thread and 16 threads, as that is the optimal thread count chosen by QThreadPool

when used on this machine.

The benchmark initially compared loading tiles from disk and tiles pre-loaded in memory.

Using the hardware mentioned, the performance difference was negligible5. For simplicity,

this benchmark will only load from disk. This finding indicates that the workload is not

IO-bound.

Each configuration was tested 5 times and an average was calculated for each configu-

ration.

7.3.2 Expected Results

Inspection of source code shows that parsing an individual tile can be done largely in iso-

lation. The team expects to be able to parallelize the process very effectively, given enough

tiles to saturate all CPU cores. Consequently, enough tiles must be loaded in parallel to

saturate all CPU cores on the system and maximize performance improvements. In the-

ory, there should be an inverse linear relationship between time reduction and core-count

(100% − 100% ÷ core-count). Following this theory, the team would expect to see a 50%

time reduction when using 2 cores, 75% time reduction with 4 cores, and 87.5% when using

8 cores. The team recognizes that the software and the test are subject to real-world inaccu-

racies and imperfect implementation. Therefore, the team expects significant performance

improvement but far less than the theory would suggest.

5<1% difference in favor of loading from disk

Chapter 7: Testing and Quality Assurance 61

Figure 7.2: TileLoader threaded benchmark results. The horizontal axis represents the
amount of tiles loaded in this data point. The vertical axis represents how much time it
takes to load all the given tiles in milliseconds, where lower is better.

The team expects some variability in the results. The test data consists of unequal tiles.

Each individual tile will have different contents, and this will impact the time it takes to

parse the different tiles. How large this will impact the variability of the results is unclear

ahead of the test.

The team expects that adding tiles while keeping the tile count less than or equal to the

CPU core count, should introduce little to no increase in processing time. This is due to the

test methodology being bottlenecked by the tile that takes the longest time to process, in

this specific scenario.

7.3.3 Results and Discussion

The test results have been plotted in Figure 7.2. The results show that multithreading im-

proves performance, but only when loading multiple tiles simultaneously. The results show

a trend that adding more tiles introduces diminishing additions to the overall processing

time. This is inherent due to our method for extracting tiles from zoom-level 3, where the

first tiles are expected to load more slowly than the latter tiles due to the tiles with fewer

data being loaded last. At tilecount = 8 there was a 78.7% reduction in processing time,

which was close to the expectation set by the team (87.5%).

Chapter 7: Testing and Quality Assurance 62

As expected, new tiles can be loaded with nearly no impact on load times as long as the

number of tiles is less than or equal to the number of cores.

QThreadPool will create the background threads on-demand by default, and the current

implementation relies on this behavior. Instantiating new threads can be costly, and because

they are instantiated during testing, test results are less accurate. An improvement to the

test could include instantiating threads ahead of time to more closely mimic or represent a

TileLoader object that has already been alive for some time.

The test shows a clear pattern of increased throughput of tile processing when using

multiple threads. This supports the team’s decision to employ multiple background worker

threads when processing tiles.

7.4 Continuous Integration

In March 2024, unit tests were correctly deployed on GitHub. The system was set up so

that unit tests would be built from the dev and main branches and had to pass before other

branches could be merged into them.

CI is used to ensure that code base updates do not break the previously developed system

and that the system behaves as expected.

The CI setup uses GitHub Actions [36] and Docker [37]. GitHub Actions workflows build

the project and then run unit tests and Merlin graphics test (see subsection 7.5.3). If these

tests fail, the pull requests are blocked until the code or tests have been updated. The most

important workflow is called main.yml and can be found in the repository under the path

.github/workflows/main.yml.

As the required version of Qt (v6.7) is not provided in any of the available GitHub Actions

images at the time of writing6, Qt must be compiled from source in order for the project to

build and run correctly. This compilation process usually takes at least 20 minutes. With

a minimal setup, this compilation process would have to be executed all over again every

time the workflow is initiated. The consequence of this is that the continuous integration

test would have very poor responsiveness.

To remedy this, a Docker image based on Ubuntu 22.04 was created. A Dockerfile

script clones, builds, and installs Qt. Basing the continuous integration on this Docker image

makes it possible to omit compiling Qt every time the Actions workflow compiles the project.

6At the time of writing when using Ubuntu 22.04, only Qt v6.2.4 was available.

Chapter 7: Testing and Quality Assurance 63

This significantly improves the responsiveness of the continuous integration, allowing it to

complete significantly faster.

7.5 Testing of Graphical Output

Component rendering tests were implemented to increase robustness during development,

by having that tests that can automatically detect rendering regressions. A large portion of

the project entails rendering, and implementing rendering tests was therefore deemed to be

critical to ensure robustness during development, even if it was not required by the product

owner (see chapter 3).

If the incorrect rendering code is merged, the corresponding rendering tests should fail.

The team therefore wanted to implement tests that could capture the expected results of

the rendering software at a point in time where the team deemed the displayed map to be

correct. New code would generate new rendering results, and these would be compared to

the baseline. Note that the team is not qualified to determine when maps are technically

correct, but a baseline would be established to be able to graphically compare old and new

rendering.

7.5.1 Ideal Data-Flow

The rendering test subsystem was designed to be executed based on a collection of test

cases. Each test included details about the viewport, the list of tiles to render, and how the

map should be rendered (e.g. what elements to include in the rendering). The system should

then be able to produce a set of output images based on the test cases. The team assumed

that a collection of image files to be sufficient for these outputs, one image per test case.

It would then be possible to generate these output images at a specific point in time for

future comparisons with images generated by new(er) rendering code. This set of outputs

will be referred to as a baseline, which will form the basis of future graphics rendering tests.

Whenever the behavior of the rendering functionality is updated and intentionally produces

different images, the baseline would have to be updated.

Graphics tests were performed on the baseline using newer code. The newer code would

attempt to generate the same test cases and compare the newly generated output to the

equivalent output found in the baseline. If the tests discover that the results are unaccept-

Chapter 7: Testing and Quality Assurance 64

able, it is indicative of either a regression in the rendering functionality or that the baseline

has to be rebuilt to reflect new rendering behavior.

Ideally, there should exist some mechanism to inspect the failed test cases, so that it is

easier to isolate what the issue might be. The rendering tests should be simple to run both

locally, and remotely inside the CI workflow so that everyone in the team can run tests and

inspect the results easily.

One expected issue with comparing images is accounting for minor differences in ren-

dering behavior across platforms and devices [38]. The team expects the tests to record

minor imperceptible differences between outputs due to internal implementation details. It

would be beneficial to have a threshold mechanism that allows for minor differences to be

evaluated as acceptable by the tests.

7.5.2 Lancelot

Qt recommended using one of their internal tools, “Lancelot”, for image comparison. Lancelot

is used to catch regressions in Qt’s existing rendering code. Lancelot seemed to cover most

of the rendering test requirements, it would establish a baseline, save the results, and then

newer code could be tested against the baseline. However, the use of Lancelot was dropped

due to its complexity and poor documentation. No team member was able to understand

how to proceed with the setup. After careful consideration, the team collectively decided

to create their own simple solution as an alternative to Lancelot. This solution was dubbed

Merlin.

7.5.3 Merlin

Merlin handles automated testing of graphical output. Merlin is able to read a predetermined

JSON file containing test cases and output the expected rendered images as image files.

The team wanted to keep Merlin as small as possible and not involve too many systems.

For the image comparison evaluation, the team agreed that using third-party tools would

be more reliable than what the team could produce on their own. The solution was to use

an external tool called ImageMagick [39] to handle the image comparison evaluation, this

also implements the functionality for acceptable differential thresholds.

Detailed instructions on how to operate Merlin, as well as defining test cases, are found

in the file tests/merlin/README.md in the source code repository [5].

Chapter 7: Testing and Quality Assurance 65

7.5.4 Output

If all test cases were found acceptable, then the merlin_rendering_output_tests program

will return a success result code. However, in the case that a test case is deemed unaccept-

able, the executable will generate a folder failure_report which will contain the specific

test cases that failed, along with the expected baseline and a differential image. This report

is also output as an artifact during CI.

This type of error report is demonstrated in Figure 7.3. This figure demonstrates a re-

gression, where lines are not being rendered. The intended correct behavior is to have lines

rendered during tests that enable them. In such a scenario, red highlights will be rendered

in all areas (pixels) where the produced image differs from the baseline past the threshold.

Figure 7.3a shows an image of what is considered to be the correct output, as described

by the baseline. Figure 7.3b shows an image of what is outputted by the current state of

the software, in this case with an intentional regression. Figure 7.3c shows the differential

between the previous two outputs. Any parts that deviate from the baseline are highlighted

in red. In this case, this means all the lines that are missing in the rendering are highlighted

in red. A critical limitation of this tool is that it is unable to reliably determine the correctness

of text.

7.6 Acceptance Test

Acceptance testing is the final phase of software testing [40], and it “... ensure[s] that sys-

tems are high-quality and meet the needs of their users” [41]. If a product passes an ac-

ceptance test, it means the product is adequate and is approved by its end user [42, 43].
On May 14th, 2024, the product owner performed an acceptance test to approve the final

delivered software.

The test had 10 test cases with tasks to perform, and the test design is inspired by tech-

nologies [41]. If the tester deemed the test result to be acceptable, “Pass” is filled into the

table, otherwise “Fail” is filled in. The test cases were based on the software requirements.

In the end, all tests passed, and the product owner approved the software. The full test can

be found in Appendix K, while a brief overview is available in table 7.1. The acceptance test

covers all project requirements, except NFR 4. As mentioned in subsection 3.1.2, writing

and delivering the thesis itself is what meets this requirement.

Chapter 7: Testing and Quality Assurance 66

(a) Baseline (b) Generated (c) Diff

Figure 7.3: Merlin report example

Chapter 7: Testing and Quality Assurance 67

Table 7.1: Acceptance test summary

Test Task Requirements Result
01 Download and run the program

successfully.
FR 1 Pass

02 Run the program and check that
vector tiles are loading.

FR 1 Pass

03 Run the program and wait for the
map to finish loading.

FR 2, FR 6 Pass

04 Zoom in until text, roads, rivers,
and buildings are rendering.

FR 4 Pass

05 Confirm that .mvt files are loaded
and cached.

FR 3 Pass

06 Confirm that Basic V2 Map Type is
used.

FR 5 Pass

07 Confirm that Qt can continue de-
velopment of codebase.

NFR 1 Pass

08 Check that Qt functionality is used
in the software.

NFR 2 Pass

09 Confirm that QPainter has been
used in the codebase.

NFR 3 Pass

10 Confirm that the project uses an
MIT license.

NFR 5 Pass

Chapter 7: Testing and Quality Assurance 68

7.7 Quality Assurance

7.7.1 External and Internal Standards

One development goal was to follow Qt’s best practices7, while also adhering to C++ best

practices8. Code documentation, in terms of comments, was written using the QDoc stan-

dard (a documentation style and tool developed by Qt)9, that is similar to Doxygen. If QDoc

is to be used to generate official documentation, the documentation comments should be on

the .cpp files, not .h files. This is why most of the project source code has documentation

comments on .cpp files.

Furthermore, the team established a set of rules for the use of version control systems.

In this project, Git was employed. Each commit had to follow the internal Git Guidelines

document (see the Project Plan in Appendix A). This was done to improve the quality of each

commit by explaining briefly and precisely the commit content, making the Git workspace

more professional. Each commit had to describe what had been implemented or changed

and mention any relevant issues in the Issue Tracker. Commits like this made it easier to

track what was implemented when, tie issues to commits, and roll back when mistakes

were made.

Additionally, rules were introduced for how to interact with the main and dev branches.

The dev branch was a staging post before pulling major features to main. No one could pull

directly to main, and all pulls to main had to be done via merge requests. When making merge

requests to main and dev, at least one other person had to review the code and approve the

pull request. If any problems or errors were caught at this stage, all problems had to be

addressed before merging. This added a manual check before every pull to main, meaning

no one could make accidental or unplanned changes to the project’s most important branch.

The team was allowed to make changes directly to dev for minor changes, but the group

still reviewed each other’s work for larger pull requests into dev to maintain good software

quality by performing regular code reviews.

All team meetings, supervision meetings, and meetings with Qt were documented fol-

lowing meeting template documents made by the team (see. The meeting documents helped

organize and document the workflow consistently. Scrum structured the workflow, while the

7Qt best practices can be found here: https://doc.qt.io/qt-6/best-practices.html
8C++ core guidelines: https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
9Writing documentation with QDoc: https://doc.qt.io/qt-6/qdoc-guide-writing.html

https://doc.qt.io/qt-6/best-practices.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://doc.qt.io/qt-6/qdoc-guide-writing.html

Chapter 7: Testing and Quality Assurance 69

meeting documentation shows what was worked on when, and the GitHub Issue Tracker10

with its Scrum Board11 were used to track the critical development and reporting tasks.

Using the Issue Tracker and Scrum board allowed the team to track development and split

tasks between team members.

10Issue Tracker: https://github.com/cecilianor/Qt-thesis/issues
11Scrum Board: https://github.com/users/cecilianor/projects/2

https://github.com/cecilianor/Qt-thesis/issues
https://github.com/users/cecilianor/projects/2

Chapter 8

Installation

This chapter covers building and running the source code. The exact instructions can be

found in the repository associated with this thesis [5], in the BUILD_INSTRUCTIONS.md and

HOW_TO_RUN.md files. Details on how to use the Merlin subsystem can be found in the file

tests/merlin/README.md. Any other related details will be listed in the README.md file lo-

cated in the root directory of the repository.

8.1 Software Dependencies and Tools

The software dependencies and tools used in this project, as well as their versions, are listed

in Table 8.1.

The project strictly relies on Qt v6.7.0 (and up) due to fixes applied to the Qt GRPC

module. At the time of writing, this version is very new and therefore is not available through

package managers such as apt-get on Ubuntu 22.04. This means the build process on Linux

includes building Qt from source, which requires numerous additional steps to build the

project. The team was unable to build Qt from source on Windows due to not being able to

resolve the third-party library requirements of the Qt GRPC module.

The fixes necessary to the code present in v6.7.0 involve updating Qt Protobuf API func-

tionality, specifically to identify the type of decoded Protobuf values. If one tries to compile

the project for Qt v6.6.3, there are several compiler errors, most of which are shown in

Listing 8.1. These bugs were fixed in v6.7.0.

70

Chapter 8: Installation 71

Table 8.1: Software dependencies and tools

Tool Version Usage

Windows 11 22H2 Primary OS used for development

Ubuntu 22.04 Used for Dockerising the project (for GitHub CI/CD)

git 2.39.1 Source control. Downloading source files.

Qt 6.7.0 Rendering, networking, Protobuf parsing, containers,
threading, helper utilities

GCC 11.4.0 C++ compiler for Ubuntu

MSVC v143 C++ compiler for Windows

CMake 3.22.1 Generating build files

Ninja 1.10.2 Running compilation and linker step on build files

vcpkg 2024-01-11 Package manager for Windows

Protobuf 3.21.12 Dependency for QtGrpc module

Image Magick 6.9.11 Image comparison during rendering output tests

8.2 Application Prequisites

A prerequisite to run the main application executable is to supply it with a private MapTiler

API key. This allows the application to successfully get map data from MapTiler. If the reader

wishes to run the supplied code, they must get a (free) MapTiler API key before running the

application.

A user can either set the key as an environment variable or supply the key in a text file

and place it in the same folder as the executable. Exact instructions are found in the file

HOW_TO_RUN.md (see the source code associated with this thesis [5]).

Qt-thesis\lib\VectorTiles.cpp(346): error C2039: 'hasStringValue': is not a member of
'vector_tile::Tile_QtProtobufNested::Value'

Qt-thesis\build\Desktop_Qt_6_6_3_MSVC2019_64bit-Debug\vector_tile.qpb.h(80): note: see
declaration of 'vector_tile::Tile_QtProtobufNested::Value'

Error continues...

Listing 8.1: Qt v6.6 compiler errors

Chapter 9

Discussions and Conclusions

9.1 Discussions

Developing the map application has shown that it is possible to generate and render a geo-

graphical map using vector-based data. The learning curve has been steep due to the team

having to acquire many new skills, and this has led to multiple aspects of development being

both interesting and challenging.

When implementing the network component, two major issues had to be addressed.

First, the networking component had to be able to store and handle errors gracefully, while

bearing in mind that the product owner wanted its error-handling system to be simple. This

was solved by storing data and its potential error together in a struct. This solution was

simple to use and update.

Qt’s QNetworkAccessManager class blocks rendering when both network handling and

rendering run on the same thread. When the rendering component would wait for the net-

work access manager to complete execution, the application would appear to be unrespon-

sive. Multithreading solved this problem. It also improved application execution times since

the loading of individual tiles could be moved to separate threads and be executed in paralle

l(see section 7.3).

After a few months of development, support for tile caching to disk was implemented.

This allowed for fewer network calls to be made during program execution.

The vector tile decoder is another crucial component of the application. Its implementa-

tion was straightforward for the most part (see section 5.4). A challenge with implementing

this component is that road names, and curved text in general, are tied to a point layer style

72

Chapter 9: Discussions and Conclusions 73

while they contain line geometry. To solve this, all instances of curved text had to be isolated

from other line features and processed separately.

Another aspect of the project that was challenging is text rendering. Outlining text and

allowing text wrapping is crucial to render text correctly. The issue is that Qt does not have

functionality that supports both features simultaneously. To solve this issue, two approaches

were considered. The first approach involves using the QPainter class1. When QPainter is

used, the text and its position are passed to the QPainter::drawText method2, and the

painter object will take care of rendering the text. The advantage of this approach is that it

has a simple implementation and the painter object automatically takes care of text wrap-

ping. The disadvantage is that the method does not support text outlines. Alternatively,

QPainter::drawPath3 can be used to manually add text outlines after converting the text to

a painter path object using QPainterPath::addText method4. However, this method does

not offer automatic text wrapping. This approach also lowers the rendering quality and

negatively affects performance. The latter method was used during the early stages of text

rendering, then the team consulted with Qt and was directed to use the QTextLayout5 class.

This class offers text outlines, as well as being faster than directly using the painter, and

offers better rendering quality. However, it does not offer any functionality for text wrap-

ping, so this functionality has to be implemented by the team. The team decided to use

the QTextLayout class with a custom function for text wrapping. Using the automatic text

outline and getting better quality and performance outweigh the disadvantages of missing

the text wrapping functionality.

The project also uncovered bugs in Qt’s underlying software, which have been rectified

in parallel with the map software development. One of these bugs was the main cause of

the performance issues in the application, and is related to parsing the protocol buffers into

C++ classes using QProtobufSerializer.

Developing the software on Windows has proven to be challenging, and the team rec-

ommends using a Unix-based operating system like Linux for future development.

1See: https://doc.qt.io/qt-6/qpainter.html
2See: https://doc.qt.io/qt-6/qpainter.html#drawText
3See: https://doc.qt.io/qt-6/qpainter.html#drawPath
4See: https://doc.qt.io/qt-6/qpainterpath.html#addText
5See: https://doc.qt.io/qt-6/qtextlayout.html

https://doc.qt.io/qt-6/qpainter.html
https://doc.qt.io/qt-6/qpainter.html#drawText
https://doc.qt.io/qt-6/qpainter.html#drawPath
https://doc.qt.io/qt-6/qpainterpath.html#addText
https://doc.qt.io/qt-6/qtextlayout.html

Chapter 9: Discussions and Conclusions 74

9.1.1 Test Result Discussions

The system has been tested extensively using multiple different test methods. The most

important one may be the acceptance test, where Qt accepts the software for final delivery,

and confirms that the project meets all requirements. The passing unit tests confirm that

the unit-tested functionality behaves as expected. The CI has supported development by

ensuring that new functionality would integrate with older functionality without causing

any software bugs.

The benchmark tests have shown that utilizing background threads is a necessity to en-

sure application responsiveness. The tests in section 7.2 show that the processing of tiles is

slow to a problematic degree in both debug and release builds of the software. The bench-

mark tests in section 7.3 have shown that there is a significant performance improvement

from utilizing multiple threads when loading tiles in parallel.

The introduction of multithreading greatly increased the responsiveness of the applica-

tion but is still not within acceptable targets for production-ready software in either debug

or release builds. It should be noted that even if the application performance in the release

profile was sufficient, the debug profile performance is still problematic. Developers often

need to develop and do iterative testing using the debug profile. If loading tiles is too slow, it

will negatively affect the iteration times of the developers and impact overall productivity. As

an example, while the product owner accepted the final version of the system, they pointed

out that the software was so slow they thought it had stopped responding when running

the application. The current performance bottleneck for processing tiles is confirmed by the

product owner to be a performance bug within the Qt framework.

The developed Merlin tool has allowed for visual regression testing, and this would be

impossible to test with unit tests.

9.1.2 Sustainability

The work in this thesis may contribute to the following United Nations (UN) Sustainability

Goals [44].

• Goal 04 – Quality Education

• Goal 08 – Decent Work and Economic Growth

• Goal 10 – Reduced inequalities

• Goal 13 – Climate Action

Chapter 9: Discussions and Conclusions 75

The Qt framework itself and this thesis are distributed as open-source. Therefore all

implementation details are available for the public to inspect and utilize. This information

is available freely to everyone on the internet. Everyone with internet access, regardless of

background, can access this information and may learn from studying the source code. This

contributes to goals 4 and 10.

By making the software available for public use in this way, third parties may then go

on to improve their own software products and in turn, create more competitive products

for the software industry. This may facilitate economic growth in terms of bringing more

competition to the market, and also through creating job positions that will have to maintain

this functionality. This contributes to goal 8.

A feature of the software that may make the project more economically and environmen-

tally sustainable, is the usage of data caching to disk. The project uses tiles that are grabbed

dynamically from MapTiler. By reducing the amount of network requests, the cost to operate

the software will be lowered as well as reducing the load on networking hardware. This in

turn allows the hardware to live longer. This contributes to goals 8 and 13.

9.2 Usage of Artificial Intelligence

Little production code has been generated using artificial intelligence tools. The team ex-

perienced tools like ChatGPT to provide insufficient code advice and outdated information

on how to utilize the modern parts of the Qt framework and hence advises against using

AI tools to generate C++ code where Qt is used. Artificial intelligence tools were used for

other things for the project.

About 10-20 % of unit tests were implemented with the help of AI tools. ChatGPT and

Copilot provided guidance to correct unit tests. If the tools suggested tests were incorrect,

the source code and corresponding tests would be inspected manually to ensure correctness.

AI tools were also used to guide the team when containerizing the project (Docker). Chat-

GPT was used to help solve problems with LATEXand Overleaf to spend less time formatting

the report, leaving more time for other project activities. Finally, both ChatGPT and Copilot

were asked to help set up Squish Coco (Unsuccessfully, see chapter 7).

The team and supervisor believe the development of the project has been supported by

a balanced use of AI tools. They were used with the aim of improving the learning and

reducing the load on repetitive tasks and contributions that add little value, thus enabling

Chapter 9: Discussions and Conclusions 76

the team to focus on more meaningful contributions to the project.

9.3 Criticisms of the Thesis

Before proposing this project, the team consulted with NTNU’s teaching staff and Qt’s rep-

resentative, who anticipated this project proposal to be quite challenging. The initial work

progressed well, and development was challenging, but not too challenging. As the work

progressed, it gradually got more difficult.

Some problems in the thesis likely stem from the combination of a lack of background

knowledge and skills at the start of the project, and the very steep learning curve. The

team generally had limited knowledge of C++, Qt (with compilation of Qt from source),

CMake, and test development for C++, and these technologies had to be acquired or learned

for the project. Reaching sufficient skill levels was more demanding and took longer than

anticipated.

Even if the final software meets its requirements, it would benefit from having additional

work put into the caching mechanism, implementing the cache eviction policy, improving

text rendering, and in particular improving the rendering of street names. Utilizing cover-

age reports could help locate untested code and support additional unit test development,

ensuring a larger portion of the codebase could have been unit-tested thoroughly.

9.4 Future Work

This section highlights some of the improvements the team would like to have included

if given more time to work on the project. These elements could contribute to creating a

production-level application. An in-depth discussion of some possible improvements can be

found in Appendix L.

A missing feature that is crucial to make the map application production-ready is the

cache eviction policy. The implemented software caches tiles in memory. However, these

tiles are stored in memory for the entirety of the program’s lifetime. An eviction policy is

necessary to limit memory usage. There are two simple approaches to this problem. The

first is to implement a timeout-based eviction policy, where tiles that remain in memory for

a given duration are deleted, and the timer is refreshed when the tile is accessed. The second

approach is to implement a space-based eviction policy. In this approach, the cache has a

Chapter 9: Discussions and Conclusions 77

maximum capacity. The capacity can be calculated either by tile count or utilized memory

space, and whenever the cache is full, the application deletes the least used tiles.

The current application utilizes software accelerated rendering with QPainter [20]. A

major improvement that should be considered for future work would be to implement

hardware-accelerated graphics rendering for the application. This can be done by using

QRhi [45].
Another feature that could be improved is the graphical interface. The current GUI is

sufficient for a proof-of-concept application. However, for a production-level application,

a complete redesign of the application’s graphical interface must take place. This should

be done after analyzing the target audience of the application and assessing the graphical

interface of already existing map applications, as well as referencing the best practices for

GUI design.

9.5 Assessment of Team Work

As previously mentioned in the thesis, the team consisted of two programming students

and one computer science student. This provided the team with a broad range of skills and

capabilities that could benefit the project. Figure 9.1 shows the teamwork distribution across

thirteen categories, and Figure 9.2 lists the team’s time distribution.

Most of the project time was spent coding (404 hours), writing and proofreading the

thesis (382 and 111 hours), and having team meetings (296 hours), with a total work time

of 1852 hours (see Figure 9.1 and Figure 9.2). Team meetings would usually consist of

assigning work, and they would also include joint work sessions to design, program, or test

the system.

Having frequent short team stand-up meetings ensured a consistent workflow, and weekly

meetings with the supervisor ensured that the thesis was progressing and stayed on track.

The project plan was followed to a large extent, but some adjustments were made during

development, for example when the first viable prototype was completed during sprint 3

instead of the planned sprint 4. This allowed the team to spend additional time improv-

ing code quality, implementing additional unit tests, and researching how to render texts

and cache data. Using Scrum was crucial to the success of the project, as it allowed for ad-

justments and improvements of the software during the development phase. It also helped

mitigate any inconsistencies in the workflow of the project. In addition, the team rules listed

Chapter 9: Discussions and Conclusions 78

Figure 9.1: Team work distribution

in Appendix A helped keep the project on track.

The team is very proud to have developed software that fulfills the requirements laid out

by the product owner. The team believes the result goals and the learning goals outlined in

section 1.4 have been achieved. While the effect goals are hard to evaluate at the time of

writing, the team hopes they are achieved in time as well.

9.6 Final Conclusion

Both the development team and the product owner are pleased with the thesis outcomes.

Matthias Rauter, Qt’s representative, has given positive feedback on the project’s results.

Knowing that Qt is pleased with the product demonstrates that the project has been a suc-

cess.

Working on the thesis has deepened our understanding of software development in the

context of C++ and the Qt framework, and we are all more confident in our software de-

velopment skills. In addition, we’ve gained a new set of skills, specifically in terms of using

C++ and the Qt framework to develop a graphical application, unit testing C++ with Qt,

Chapter 9: Discussions and Conclusions 79

setting up CI/CD environments, performing threading experiments, and ultimately learning

to work as a team with different strengths, motivations, and approaches to programming.

Furthermore, we have gained insight into the challenges that developers face in profes-

sional settings, from analyzing and fixing software bugs to setting up testing infrastructure

and maintaining a large codebase.

Figure 9.2: Hourly statistics for the team

Bibliography

[1] HEAVY.AI. “What is hardware acceleration? definition and FAQs.” Accessed: 2024-

02-28. (2022), [Online]. Available: https://www.heavy.ai/technical-glossary/

hardware-acceleration.

[2] The Qt Group. “Qt Framework.” Accessed 2024-04-22. (2024), [Online]. Available:

https://www.qt.io/product/framework.

[3] MapTiler. “Maptiler.” Accessed 2024-01-11. (2023), [Online]. Available: https://

www.maptiler.com/.

[4] MapTiler. “Basic | lightweight basemap for overlaying own geodata.” Accessed 2024-

04-22. (2024), [Online]. Available: https://www.maptiler.com/maps/basic/.

[5] C. N. Bratlie, E. Oueslati, and N. P. Skålerud. “Qt bachelor thesis repository.” Accessed

2024-05-20. Commit hash 47fc45b. (2024), [Online]. Available: https://github.

com/cecilianor/QT-thesis.

[6] GOMEZ GRAPHICS. “Raster vs vector.” Accessed 2024-05-12. (2024), [Online]. Avail-

able: https://vector-conversions.com/vectorizing/raster_vs_vector.html.

[7] J. D. Foley, Computer Graphics: Principles and Practice. Addison-Wesley Professional,

1995, p. 13.

[8] R. Descartes and P. J. Olscamp, “Discourse on method, optics, geometry, and meteo-

rology,” 1965. [Online]. Available: https://api.semanticscholar.org/CorpusID:

60649903.

[9] B. Lutkevich. “Vector graphics.” Accessed 2024-05-11. (2021), [Online]. Available:

https://www.techtarget.com/whatis/definition/vector-graphics.

[10] T. Bachmann, Perception of pixelated images. Academic Press, 2016.

80

https://www.heavy.ai/technical-glossary/hardware-acceleration
https://www.heavy.ai/technical-glossary/hardware-acceleration
https://www.qt.io/product/framework
https://www.maptiler.com/
https://www.maptiler.com/
https://www.maptiler.com/maps/basic/
https://github.com/cecilianor/QT-thesis
https://github.com/cecilianor/QT-thesis
https://vector-conversions.com/vectorizing/raster_vs_vector.html
https://api.semanticscholar.org/CorpusID:60649903
https://api.semanticscholar.org/CorpusID:60649903
https://www.techtarget.com/whatis/definition/vector-graphics

Chapter 9: Discussions and Conclusions 81

[11] Yug, modifications by Cfaerber et al. “Demonstration of differences between bitmap

and svg images.” Accessed 2024-05-14. (2006), [Online]. Available: https://commons.

wikimedia.org/wiki/File:Bitmap_VS_SVG.svg.

[12] S. E. Battersby, M. P. Finn, E. L. Usery, and K. H. Yamamoto, “Implications of web

mercator and its use in online mapping,” Cartographica: The International Journal

for Geographic Information and Geovisualization, vol. 49, no. 2, pp. 85–101, 2014.

[13] J. Kang. “An interactive explanation of quadtrees.” Accessed 2024-04-11. (2014),

[Online]. Available: https://jimkang.com/quadtreevis/.

[14] MapTiler. “Coordinates, tile bounds and projection.” Accessed 2024-04-22. (2024),

[Online]. Available: https://www.maptiler.com/google- maps- coordinates-

tile-bounds-projection.

[15] MapTiler. “Gl style specification.” Accessed 2024-01-11. (2024), [Online]. Available:

https://docs.maptiler.com/gl-style-specification/.

[16] V. Agafonkin, J. Firebaugh, E. Fischer, K. Käfer, C. Loyd, T. MacWright, A. Pavlenko, D.

Springmeyer, and B. Thompson. “MapBox Vector Tile Specification v1.0.0.” Accessed

2024-01-11, MapBox. (2014), [Online]. Available: https://github.com/mapbox/

vector-tile-spec/blob/master/2.1/README.md.

[17] Protocol buffers documentation, Accessed 2024-02-06. [Online]. Available: https:

//protobuf.dev.

[18] Encoding, Accessed 2024-04-23. [Online]. Available: https://protobuf.dev/programming-

guides/encoding/#signed-ints.

[19] “Maptiler planet schema.” Accessed 2024-04-23. (2024), [Online]. Available: https:

//docs.maptiler.com/schema/planet/.

[20] The Qt Group. “QPainter class.” Accessed 2024-01-11. (2024), [Online]. Available:

https://doc.qt.io/qt-6/qpainter.html.

[21] Massachusetts Institute of Technology. “MIT license.” Accessed 2024-01-11. (2024),

[Online]. Available: https://mit-license.org/.

[22] I. Sommerville, SOFTWARE ENGINEERING, 10th ed. Pearson Education, 2016.

[23] MapTiler. “GL Style Specification, Expressions.” Accessed 2024-01-11. (2024), [On-

line]. Available: https://docs.maptiler.com/gl-style-specification/expressions/.

https://commons.wikimedia.org/wiki/File:Bitmap_VS_SVG.svg
https://commons.wikimedia.org/wiki/File:Bitmap_VS_SVG.svg
https://jimkang.com/quadtreevis/
https://www.maptiler.com/google-maps-coordinates-tile-bounds-projection
https://www.maptiler.com/google-maps-coordinates-tile-bounds-projection
https://docs.maptiler.com/gl-style-specification/
https://github.com/mapbox/vector-tile-spec/blob/master/2.1/README.md
https://github.com/mapbox/vector-tile-spec/blob/master/2.1/README.md
https://protobuf.dev
https://protobuf.dev
https://protobuf.dev/programming-guides/encoding/#signed-ints
https://protobuf.dev/programming-guides/encoding/#signed-ints
https://docs.maptiler.com/schema/planet/
https://docs.maptiler.com/schema/planet/
https://doc.qt.io/qt-6/qpainter.html
https://mit-license.org/
https://docs.maptiler.com/gl-style-specification/expressions/

Chapter 9: Discussions and Conclusions 82

[24] The Qt Group. “QThreadPool class.” Accessed 2024-04-02. (2024), [Online]. Avail-

able: https://doc.qt.io/qt-6/qthreadpool.html.

[25] R. Kriemann, “Implementation and usage of a thread pool based on posix threads,”

Max-Planck-Institue for Mathematics in the Sciences, Inselstr, pp. 22–26, 2004.

[26] The Qt Group. “QByteArray class.” Accessed 2024-04-24. (2024), [Online]. Available:

https://doc.qt.io/qt-6/qbytearray.html.

[27] R. H. Netzer and B. P. Miller, “What are race conditions? some issues and formaliza-

tions,” ACM Letters on Programming Languages and Systems (LOPLAS), vol. 1, no. 1,

pp. 74–88, 1992.

[28] B. B. Brandenburg and J. H. Anderson, “Real-time resource-sharing under clustered

scheduling: Mutex, reader-writer, and k-exclusion locks,” in Proceedings of the ninth

ACM international conference on Embedded software, 2011, pp. 69–78.

[29] The Qt Group. “QPainter class.” Accessed 2024-04-24. (2024), [Online]. Available:

https://doc.qt.io/qt-6/qpainter.html#drawPath.

[30] The Qt Group. “QPainter class.” Accessed 2024-04-24. (2024), [Online]. Available:

https://doc.qt.io/qt-6/qpainter.html#drawText.

[31] The Qt Group. “QPainterPath class.” Accessed 2024-01-11. (2024), [Online]. Avail-

able: https://doc.qt.io/qt-6/qpainterpath.html.

[32] The Qt Group. “QPainterPath class.” Accessed 2024-04-24. (2024), [Online]. Avail-

able: https://doc.qt.io/qt-6/qpainterpath.html#addText.

[33] The Qt Group. “QTextLayout class.” Accessed 2024-04-24. (2024), [Online]. Avail-

able: https://doc.qt.io/qt-6/qtextlayout.html#draw.

[34] C. Solutions. “5 benefits of unit testing and why you should care.” Accessed 2024-

05-21. (2022), [Online]. Available: https://cswsolutions.com/blog/posts/2022/

december/5-benefits-of-unit-testing-and-why-you-should-care/.

[35] I. B. Machines. “Benchmark testing.” Accessed 2024-05-14. (2021), [Online]. Avail-

able: https://www.ibm.com/docs/en/db2/10.5?topic=methodology-benchmark-

testing.

[36] GitHub. “GitHub Actions.” Accessed 2024-03-25. (2024), [Online]. Available: https:

//github.com/features/actions.

https://doc.qt.io/qt-6/qthreadpool.html
https://doc.qt.io/qt-6/qbytearray.html
https://doc.qt.io/qt-6/qpainter.html#drawPath
https://doc.qt.io/qt-6/qpainter.html#drawText
https://doc.qt.io/qt-6/qpainterpath.html
https://doc.qt.io/qt-6/qpainterpath.html#addText
https://doc.qt.io/qt-6/qtextlayout.html#draw
https://cswsolutions.com/blog/posts/2022/december/5-benefits-of-unit-testing-and-why-you-should-care/
https://cswsolutions.com/blog/posts/2022/december/5-benefits-of-unit-testing-and-why-you-should-care/
https://www.ibm.com/docs/en/db2/10.5?topic=methodology-benchmark-testing
https://www.ibm.com/docs/en/db2/10.5?topic=methodology-benchmark-testing
https://github.com/features/actions
https://github.com/features/actions

Chapter : Discussions and Conclusions 83

[37] Docker. “Docker.” Accessed 2024-03-25. (2024), [Online]. Available: https://www.

docker.com/why-docker/.

[38] Y. H. Yee and A. Newman, “A perceptual metric for production testing,” in ACM SIG-

GRAPH 2004 Sketches, 2004, p. 121.

[39] ImageMagick Studio LLC. “ImageMagick: Create, Edit, Compose, or Convert Digital

Images.” Accessed 2024-04-12. (2024), [Online]. Available: https://imagemagick.

org/index.php.

[40] G. for Geeks. “Acceptance testing – software testing.” Accessed 2024-05-18. (2024),

[Online]. Available: https : / / www . geeksforgeeks . org / acceptance - testing -

software-testing/.

[41] T. technologies. “Acceptance Testing : What, Why, Types & How to Do?” Accessed

2024-05-13. (2024), [Online]. Available: https://testsigma.com/guides/acceptance-

testing/.

[42] A. Alliance. “What is acceptance testing?” Accessed 2024-05-18. (2024), [Online].
Available: https://www.agilealliance.org/glossary/acceptance-testing/.

[43] A. S. Gillis. “Acceptance testing.” Accessed 2024-05-18. (2024), [Online]. Available:

https://www.techtarget.com/searchsoftwarequality/definition/acceptance-

test.

[44] United Nations. “The 17 goals.” Accessed 2024-04-24. (2024), [Online]. Available:

https://sdgs.un.org/goals.

[45] The Qt Group. “QRhi class.” Accessed 2024-01-11. (2024), [Online]. Available: https:

//doc.qt.io/qt-6/qrhi.html.

[46] P. O’Malley. “Write acceptance tests.” Accessed 2024-05-13. (), [Online]. Available:

https://openclassrooms.com/en/courses/4544621-learn-about-agile-project-

management-and-scrum/5081076-write-acceptance-tests.

https://www.docker.com/why-docker/
https://www.docker.com/why-docker/
https://imagemagick.org/index.php
https://imagemagick.org/index.php
https://www.geeksforgeeks.org/acceptance-testing-software-testing/
https://www.geeksforgeeks.org/acceptance-testing-software-testing/
https://testsigma.com/guides/acceptance-testing/
https://testsigma.com/guides/acceptance-testing/
https://www.agilealliance.org/glossary/acceptance-testing/
https://www.techtarget.com/searchsoftwarequality/definition/acceptance-test
https://www.techtarget.com/searchsoftwarequality/definition/acceptance-test
https://sdgs.un.org/goals
https://doc.qt.io/qt-6/qrhi.html
https://doc.qt.io/qt-6/qrhi.html
https://openclassrooms.com/en/courses/4544621-learn-about-agile-project-management-and-scrum/5081076-write-acceptance-tests
https://openclassrooms.com/en/courses/4544621-learn-about-agile-project-management-and-scrum/5081076-write-acceptance-tests

Appendix A

Original Project Plan

Note that the original project plan had two appendices that themselves were called appendix

A and B. The thesis appendix B will follow after these appendices.

84

Project Plan

Cecilia Norevik Bratlie, Eimen Oueslati, Nils Petter Sk̊alerud

January 2024

Contents

1 Goals and Restrictions 1

1.1 Background . 1

1.2 Project Goals . 1

1.3 Restrictions . 2

1.4 License . 3

2 Scope 4

2.1 Problem domain . 4

2.2 Delimitation . 4

2.3 Problem Statement . 5

3 Project organization 9

3.1 Roles and responsibilities . 9

3.2 Routines and Group Rules . 9

4 Planning, Follow-Up, and Reporting 10

4.1 Project Management Methodology: Scrum 10

4.2 Plan for Status Meetings and Decision Points 10

5 Quality Assurance 12

5.1 Routines, Standards, Documentation, Tools 12

5.2 Plans for Inspections and Testing . 14

5.3 Project Level Risk Analysis Overview . 15

1

6 Plan for Execution 19

6.1 Gantt Chart . 19

6.2 Milestones . 19

6.3 Sprint schedule . 20

6.4 Product backlog . 20

Bibliography 24

A Group Contract 25

B Git Guidelines 29

List of Figures

1 Product mockup . 7

2 Project Gantt Chart . 19

List of Tables

1 Risk analysis table . 16

1 Risk analysis table . 17

1 Risk analysis table . 18

2 Milestones . 20

3 Sprint schedule . 21

4 Product backlog . 22

0

1 Goals and Restrictions

1.1 Background

The Qt Group (product owner) is a software company whose primary product is the Qt frame-

work for C++. This framework primarily provides development tools to make applications

or graphical user interfaces (GUI). Including map functionality is essential for many types of

applications, and this is something the Qt Group would like to have developed further.

Qt has some existing solutions for map functionality, but these are based on raster-based

images and maps. The raster image format, also known as bitmap images, are pixel-based

images. Raster images are constructed from pixels, small dots that hold distinct color and

tonal details (University of Michigan (2023)). Qt wants us to develop software using vector

data to render and display maps. Vector maps are formed by calculating and drawing paths

between points using mathematical algorithms rather than pixel values.

Previously, Qt used an open-source version of MapBox v1 (Agafonkin et al. (2014)), to

develop its map software. When MapBox version 2 was released, it was closed-source, and Qt

needed an alternative to further develop its map-oriented functionalities. An alternative to

MapBox is MapTiler, and this is the one that will be used for the project. MapTiler provides

free APIs that can serve different maps, map types, map tiles, and represent different kinds

of terrain, buildings, and landmarks on a map. MapTiler supplies map-data, divided into

tiles, in the MapBox Vector Tile v1 format.

Qt already has access to software to generate and process raster-based maps. They now

want us to create a proof-of-concept on using Qt framework for creating vector-based map

rendering and functionality.

1.2 Project Goals

1.2.1 Result Goals

• Create a program or programs that can be used and developed further by ourselves and

others in the future.

• Develop a good project to show future employers.

• Achieve a grade of B or higher.

1

1.2.2 Effect Goals

• Implement a proof of concept that Qt’s current tools can create vector-based map

rendering. This includes:

– Downloading map style sheets and vector-tile data using HTTP requests.

– Cache map vector tile data.

– Parsing styling information from the MapTiler stylesheet, such as fill-color, line-

widths etc.

– Implementing map panning.

– Implementing map zooming.

• Implement vector map rendering functionality with the QPainter tool (The Qt Group

(2024a)).

• The final source code should be usable to the Qt Group for future development.

• Include good documentation that follows C++ standards, Qt conventions, and our

internal guidelines to facilitate continued development after project completion.

1.2.3 Learning Goals

• Learn more about how to complete a project in a professional environment.

• Learn how to use the Qt framework when developing C++ applications.

• Achieve a practical understanding of how to develop application-tools with map-functionality.

• Learn more about how to properly apply Scrum as a development framework.

• Learn how to write an academic report as a larger team based on developing the app.

1.3 Restrictions

Qt has informed us that we may shape our thesis to a large extent as long as we focus

on rendering of vector-based map data in the MapBox tile format. We are free to use

any programming language or framework, but Qt would like to continue development of the

software after the project is completed. Since Qt primarily uses C++ with the Qt framework,

we would like to use them as well to ease Qt’s future development. In light of this, our team

and Qt have collaborated to formulate the following restrictions for the project:

• The solution must be coded in the C++17 programming language.

• Use the Qt framework and tools actively in the software.

2

• Use software-based rendering with QPainter (The Qt Group, 2024a).

• Render a basic map that includes roads, basic terrain, and landmarks. These are

represented by lines, fill, and symbols in the map style sheets.

• The source map data must based on the MapBox vector tile data-format (Agafonkin

et al., 2014), supplied by the MapTiler service.

• The source data and displayed map need to be in vector-format, not relying on using

raster images.

1.4 License

The project will be licensed under the MIT license (Massachusetts Institute of Technology,

2024). Qt has given us some freedom in terms of choosing license for our project, but we

were strongly recommended to use MIT. This allows Qt to do what they want with the final

software, while letting the group retain ownership. If Qt or anyone else will keep using or

developing the software, they must credit the group as the original authors.

3

2 Scope

2.1 Problem domain

Relevant technologies

The problem and solution will include, but is not limited to, the following technologies:

• C++17 programming language

• Qt6 framework (The Qt Group (2024b))

• MapBox vector tile data specification (Agafonkin et al. (2014))

• Vector-based rendering

• Networking: HTTP, Protobuf, JSON

• Unit and component testing in a C++ context

2.2 Delimitation

End User Experience

The developed sofware will serve as a proof-of-concept map application for Qt. As such, the

end user experience is not a primary concern for the project. As such we will not conduct

end user tests.

Runtime Performance

The emphasis of this project does not lie in achieving optimal runtime performance. Qt

has clarified that they expect the performance of the software to be poor based on the

given restrictions. The application will use software-based rendering1, utilizing QPainter,

not hardware-accelerated rendering.

As such, the project will selectively adopt advanced optimization techniques, only employ-

ing it when strictly necessary for the usability of the application. These kinds of optimizations

include multi-threading and custom allocation strategies. The rationale for this decision is

to avoid complicating both code and architecture, as these kinds of optimization may often

lead to higher risk of race conditions and use-after-free bugs. For this project, the benefit of

increased performance does not justify the added complexity.

Nevertheless, the project will have to include concurrency and caching in some limited

form, as described in subsection 2.3.

1Software-based rendering involves executing drawing algorithms on the CPU rather than leveraging GPU
capabilities, which, while simpler to integrate, typically yields suboptimal runtime performance.

4

QML

Integration of the Qt Modeling Language (QML) will not be a component of this project.

While QML represents a forward-looking focus of Qt to streamline application development

processes, its integration complexity is too demanding for this project.

Map Features

Our project will focus on functionality that is useful to users in urban areas, as elaborated

in subsection 2.3. Consequently, we will not implement nautical charts or topographic or

geological maps, as these maps contain and display data differently than a typical street

map.

Data Sources

The finished project will read map and tile data downloaded from MapTiler, supplied in the

Mapbox version 1 data format.

Platform Compatibility

While Qt is cross-platform and should theoretically build and run for most platforms with

little effort, our project will focus solely onWindows x86 and Android-based mobile platforms.

This is due to the groups experience with said platforms and also lack of devices that run

Linux, MacOS, or iOS.

2.3 Problem Statement

We will make a proof-of-concept application that renders maps based on vector data.

The following project description will focus on adhering to the restrictions (see subsec-

tion 1.3). Additionally, a few other features have been added based on what the group is

enthusiastic to develop, or based on what we believe will strengthen our thesis.

Core functionality

The final solution will heavily prioritize the primary functionality: Loading and rendering

maps.

Loading maps

The application will load map-data supplied from MapTiler. The map-data will be in the

MapBox vector tile data format. The loading will be done in an asynchronous, concurrent

manner relative to user interaction and rendering logic, in order to allow smooth operation

of the application while new tiles are being loaded.

The rationale for making tile loading asynchronous is based on our expectations for the

speed at which tiles can be downloaded and processed. In the case of loading taking time

5

in a synchronous context, the user interaction will halt until all the tiles are processed. We

expect this to result in severe stuttering during the user interactions.

The asynchronous loading has certain effects on the user experience, such as tiles appear-

ing on the display in a deferred manner. An example includes the user panning the view, the

map is panned smoothly but loaded tiles will appear over time.

In order to limit how many HTTP requests we make to MapTiler, a caching of the loaded

map-tiles will be implemented. This caching will ensure that previously loaded tiles are

stored persistently and loaded from the device the application is running on.

Rendering of maps

The displayed map will feature elements such as fill-colored background terrain, roads, road

names, landmarks (like restaurants and parks), and satellite imagery. The rendering will be

able to display multiple map tiles when necessary to fill the screen, and also be able to display

any tile at any location at any zoom level. Furthermore, the map-rendering functionality will

be able to filter in and out certain elements from the displayed map itself, such as roads,

rivers, buildings, background.

Additionally, the rendering will try to adhere to the stylesheet (supplied by MapTiler) of

the map as much as possible. This includes fill-colors, outlines and other graphical effects.

At the point of writing this project plan, it is hard to determine exactly the complexity

of this task. The team expects that fill-colors and outlines will be possible to implement,

while each subsequent styling type will be evaluated for implementation during the course of

development.

The rendering functionality will be implemented using the QPainter class from the Qt

framework.

The displayed map will focus on layers and elements that are useful in a urban navigation

use-case.

The displayed map will also be able to switch the background to raster-based satellite

imagery.

User Interface

The user interface will be designed to work on both desktop and mobile, with the user

interface designed to be mobile-first.

The user interface will include interactivity controls, such as panning and zooming the

viewed map. This will be done by having on-screen controls, and also by using the Windows

mouse cursor or through touch-input on mobile devices.

The UI will include (but is not limited to) the following functionality:

• Increase and decrease zoom-level.

6

Figure 1: Product mockup

• Pan the view in north, west, east and south directions.

• Enable and disable the rendering of specific layers in the map.

• Manually enter coordinates and zoom level.

• Change background from simple to satellite photo.

Platforms

The application will run on Windows. Though the details of Android deployment is unclear

at the time of writing, we expect that it will also run on Android smartphones.

Mockup

A rough mockup of the final product can be found in Figure 1. This figure visualizes what

components might exist in the final solution, but does not necessarily represent the final

design.

Analysis of continued development

An important aspect of our thesis will be focused on analysing the viability of continued

development of our solution. In this analysis, we will be discussing details regarding how

useful it is for someone to continue our work after the project is over, and also we will be

analysing what parts would have to be modified and what features would be the immediate

next step. Such an analysis can provide good value to Qt and also serve as a valuable learning

exercise for the group.

7

This analysis would include topics such as how to transition rendering into hardware-

acceleration, and a discussion surrounding how to rewrite parts to conform better to Qts

internal code.

2.3.1 Prototype

One big milestone for our project is a prototype. This prototype is estimated to be finished

halfway through the development process and will ensure that we implement the most core

functionalities of our final project. It is is critical that this prototype is able to load and

display a single tile.

The prototype may be include some more functionality if it’s useful simple to include and

is useful towards the final project requirements.

The prototype will include the following functionality

• Download and parse the style JSON from MapTiler

• Download, parse and process a single tile from MapTiler

• Display the given tile:

– Display all polygon and line features from the vector tile data

• Location and zoom-level will be hardcoded.

8

3 Project organization

3.1 Roles and responsibilities

• The Qt Company, Matthias Rauter: Product owner.

• Nils: Team leader, Scrum master, and Latex/Overleaf supervisor.

• Eimen: Network and quality assurance responsible.

• Cecilia: Responsible for quality assurance and Git.

3.2 Routines and Group Rules

See appendix A for the project’s group contract where routines and group rules are described.

9

4 Planning, Follow-Up, and Reporting

4.1 Project Management Methodology: Scrum

We will follow the Scrum methodology to structure the workflow. This section describes our

Scrum plan (scrum.org (2024)) for the project. Scrum was chosen not only to emulate a

professional work environment, but also for its agility in allowing us to adjust our work and

workflow when necessary. By default, Scrum is not designed to prioritize documentation.

The goal is always to have a working product or program. In our adaptation of Scrum,

we have included specific tasks in the product backlog that are focused on writing various

sections of the thesis, ensuring that our academic requirements are integrated into the agile

workflow. The work will be split across 2-week sprints. Every sprint starts and ends on every

other Wednesday. In the middle of these sprints, we will have a sprint review.

4.2 Plan for Status Meetings and Decision Points

4.2.1 Sprint Planning

Sprint planning will happen on every other week, marking the beginning of a sprint. In this

meeting we will establish the goals and tasks for the coming sprint. Under sprint planning,

the scrum master will prepare a goal for that particular sprint. The team will discuss how

much time they have available for this sprint, and what can realistically be done for the

sprint. The team will pick tasks from the Product Backlog and divide it up into smaller

subtasks. They will then define the criteria for this task being ”done” (for example when a

task is completed and has been written about in the report), and estimate how much time

they will need.

4.2.2 Sprint Review

Sprint reviews happen in the middle of a sprint. This is where the team demonstrates what

they’ve been working on, what challenges they faced and how they solved them. The purpose

of this meeting is to adjust the current sprint goals if necessary, and also to fill the entire

team on pieces of the project that they haven’t directly touched themselves. This helps us

stick to our goal of everyone being responsible for every piece of the code. This meeting

happens at mid-point of a sprint, one week into the sprint.

10

4.2.3 Sprint Retrospective

The retrospective happens at the end of a sprint, very close to the sprint planning meeting.

It should function as a short summary of what has been done and not been finished. This is

where we discuss tasks that need to be extended into an upcoming sprint. We also discuss any

problems the team has with the organization of the work, such as re-evaluating the structure

of meetings.

11

5 Quality Assurance

5.1 Routines, Standards, Documentation, Tools

Routines and Standards

Everybody in the group is responsible for ensuring good project quality, but Eimen and

Cecilia take extra responsibility for code and text quality assurance. We have agreed that

we need to document what we’re working on every week in a timesheet and write technical

notes when decisions are made. We also agree to follow an internal standard for how to use

Git.

Additionally, we will work on the report during the entire semester (and we’ve already

started at the time of handing in the project plan). We will also do our best to follow C++

standards and Qt standards in our code base.

Documentation

The Scrum framework dictates that one shouldn’t focus too much on documentation, and

it’s having a working program or project is the most important when using Scrum. Since the

report is the primary way that the project will be assessed, we will prioritize documentation

to a great extent. Critical documentation activities are:

• Writing and completing the final report and all other mandatory deliverables for the

project.

• Taking notes from all meetings with the team, supervisor, and Qt in a standardised

way.

• Writing technical notes and documents when making decisions, researching topics that

are relevant to the project, and documenting problems, proposed solutions, and imple-

mented solutions.

• Use documentation comments in source code, like QDoc, which is Qt’s documentation

comment standard.

• Use regular comments to explain source code.

• Use Git issues and commits do document what was or is to be done when. Commits

shall link to applicable issues to make it easy to access relevant content directly from

the issues themselves or commit history.

• Document usage of AI tools both in text and code. Larger code snippets will have it

marked in the doc comments if and where AI has been used to generate code. It must

12

be specified what and how AI has been used in all facets of the project (for imagery,

figures, tables, coding help, as a learning tool, or writing aid).

Latex

The project plan and final report are written in LaTex, using Overleaf. All the project code

is in the Qts GitLab instance and our personal GitHub instance, the latter can be found

here: https://github.com/cecilianor/QT-thesis.

Git

Git is used to store project source code files. It is also going to be used to write and back up

technical documents that don’t warrant their own reports but are still used for the project

and/or final report. Git issues are used to organise work, and the issues also make up the

project Scrum board. Issues may be split into ’sub-issues’ that refer back to the ’parent’

issue. This allows us to divide the workload between team members and see who is working

on what part of larger issues.

Team Git guidelines have been formalized in a Git Guidelines document that has been

appended to the project plan. It covers how the Git issues must be made (content and

format), how to write semantic Git commits, and how to format Markdown files on Git.

Planned AI Usage

AI tools like ChatGPT may be used for guidance during the project. It can be used to find

inspiration when writing text or code, or it can be used as a teacher to teach us new topics.

The team doesn’t have to document using AI tools for these purposes along the way, but they

should still be mentioned in the ”Reflections about AI Usage” section in the final report.

AI may also be used to write or proofread text, generate or comment code, or gener-

ating imagery for the project. If AI has been used to do any of these things, it must be

clearly documented where, and how it has been used. It must be stated in the text itself

or in a comment above the code: ’The following paragraph/code has been generated using

ChatGPT.’

Cecilia monitors how AI tools are used and ask members about AI usage at least every 2

sprints and review AI generated content. We are all responsible for not overusing or misusing

AI tools. If we think AI must be used to generate an entire solution, it may indicate that

our skill level is too low, that the project scope is too high, or that we need to approach the

problem differently. These issues must be addressed when they come up, and we’ll discuss

how to handle them during team meetings. The software and report must be made by us,

AI is only supposed to be a supporting tool.

13

5.2 Plans for Inspections and Testing

5.2.1 Inspections

The QA heads will inspect text and code multiple times throughout the semester to ensure

the project, the process, and the report quality are as good as possible. QAs must notify the

team if they think something needs improvement.

5.2.2 Testing

Unit tests and component tests will be performed to uncover mistakes and errors, check that

the software behaves as intended, and to enhance overall software quality. Acceptability tests

will also be performed with the product owner to ensure Qt gets a satisfactory software.

Maximizing the usability of the end software is not a project goal. Due to the nature of

the project being mostly oriented as a proof of concept, this project will not include user

tests. Qt has informed us that code coverage is not a major concern either, and we believe

this can be too time-consuming to add in addition to other planned test. Therefore, the

group will not use code coverage tools.

Unit testing - Data Parsing

Unit tests will be implemented early on in development to test data parsing, one of the first

project tasks. The tests will be performed on functions that handle parsing of third-party

data. This means validating that MapTiler data is correctly parsed into the intended C++

structures and functions. This category of testing includes taking a ’snapshot’ of tile data

provided by MapTiler, and basing tests on the snapshot. This also introduces some level of

mocking by relying on a local copy of the MapTiler data.

A part of the unit tests will also include validating loaded values, e.g whether the number

of roads is correct or that it includes expected style data. An example of this is to compare

the number of layers that are parsed and loaded against what is stored in the snapshot. This

ensures that parsing executed without errors and that the result is valid.

Component Tests - Comparing Display Output

Component tests will be run on the application’s rendering functionality. This entails testing

when the rendering functionality is able to output a baseline image that is free of render-

ing artifacts, and that it contains all the visual elements it should. At this point, we can

implement a rendering component test that will run the same data set as the ground truth

data and compare the output of newer software versions to the ground truth. The baseline is

expected to be re-determined a few times during the course of development as the feature-set

14

changes. This type of test could prove vital to ensuring that the rendering-code does not

suffer regressions. For this type of test, Qt’s rendering testing tool Lancelot can be used.

A major concern with this approach is whether the test results will be reliable. Compar-

ing pixels of a display output is sensitive to minor imperceptible differences. These minor

differences might show up as false negatives in test results. To mitigate this, one could ex-

periment with a threshold to allow some differences. Another concern is keeping the baseline

up-to-date whenever the functional-requirements change.

Performance Test - Parsing and Rendering (Optional)

Useful performance benchmarks could be to check motion fluidity and the response time

needed to display a map. These can be measured in Frames Per Second (FPS) and seconds,

respectively. For our project, performance is not a key metric for success and therefore will

only happen if there is un-allocated development time near the end of the project.

Benchmarking the response time would include measuring how much time it takes to

download, parse, process and display map-tiles. To test the motion fluidity, we would measure

how long it takes to render a completely new frame at a position on the map.

Acceptance test with Qt

Near the end of development, we will hold an acceptance test with Qt where we demonstrate

our application and take feedback from Qt to map what is missing from our solution. This

will include reviewing the code itself as well as the user-facing experience. This will serve as

the final point for Qt to submit their feedback to the project.

5.3 Project Level Risk Analysis Overview

This section covers the identified project risks, their likelihood, their consequences level, and

their corresponding mitigation strategy. The likelihood of a risk happening is assessed to be

either unlikely, likely, or highly likely. The risk levels are assessed to be one of the following:

• Insignificant: The risk will not require any changes and will not impact the project

much, if at all.

• Unproblematic: This risk should not cause any major delays or require large adjust-

ments to the project’s plan.

• Problematic: If a risk of this level occurs, some adjustments to the project’s scope

might be necessary. This might cause some delays and might require contacting the

thesis supervisor and/or course coordinator.

• Critical: Risks of this level will cause major changes to the project plan and ultimately

the end product of the project. Robust mitigation strategies must be put in place for

15

these risks.

The description of the risks and their mitigation strategies are described in Table 1.

Table 1: Risk analysis table

Nr. Description Mitigation strategy

1 Risk:

Team member quits the course

Likelihood:

Unlikely

Consequence:

Critical

Seeing that the occurrence likelihood of this sce-

nario is minuscule, No strict mitigation strategy

has been set in place. However, in the worst-case

scenario where this scenario happens, the re-

maining team members should adjust the scope

of the project to account for the missing team

member.

2 Risk:

Team member leaves the project

for over two weeks

Likelihood:

Unlikely

Consequence:

Problematic

The Supervisor and/or course coordinator will

be contacted to plan the workflow going for-

ward. We may have to adjust the project’s scope

and redistribute the tasks among the remaining

team members. If the team member disappears

without contact, the measures will apply after a

week instead of two.

3 Risk:

Loss of contact with Qt

Likelihood:

Unlikely

Consequence:

Critical

We will try to reach the contact person at Qt

through email or Microsoft Teams. However, as

a preventative measure, a clear definition of the

project’s requirements and scope will be set at

the early stages of the project to avoid any ma-

jor delays or disruptions to the workflow in this

scenario. In addition, the thesis supervisor will

be contacted to get guidance on how to proceed

going forward.

16

Table 1: Risk analysis table

Nr. Description Mitigation strategy

4 Risk:

Loss of contact with the supervi-

sor

Likelihood:

Unlikely

Consequence:

Problematic

We will try to reach the thesis supervisor by

email or Skype. The course coordinator will

be contacted to solve any problems concerning

communication with the supervisor

5 Risk:

Too great or narrow project

scope

Likelihood:

Likely

Consequence:

Critical

The scope of the project will be adjusted accord-

ingly. A scrum development model has been

adopted to quickly address any change in the

requirements or scope of the project

6 Risk:

Inconsistent workflow

Likelihood:

Unlikely

Consequence:

Problematic

A meeting should be held between the team

members to address any inconsistencies in the

workflow. Having consistent team communica-

tion and Scrum meetings with stand-ups, re-

views, and retrospectives helps mitigate this risk

since we have to communicate and work consis-

tently.

7 Risk:

Information loss

Likelihood:

Unlikely

Consequence:

Critical

Seeing as this scenario will have a major impact

on the project, all project files are being stored

in cloud solutions to avoid data loss (GitHub,

Overleaf, Google Drive). In the case of local file

loss on our end, the specific file is to be pulled

from the cloud solution. Cecilia will back up

repository code and Overleaf text files weekly

on hard-drive as well in case files are lost from

any of the cloud solutions.

17

Table 1: Risk analysis table

Nr. Description Mitigation strategy

8 Risk:

Disagreement amongst group

members

Likelihood:

Unlikely

Consequence:

Insignificant - Problematic

Disagreements amongst the group members will

be solved during meetings. If no solution is

reached, the group leader will have the final

say in the matter. We believe the consequences

can be insignificant to problematic depending on

how long the disagreement persists, and if it can

be resolved quickly or not.

9 Risk:

Team member falls ill

Likelihood:

Highly likely

Consequence:

Unproblematic

Seeing as we have no control over this particular

scenario and its high occurrence likelihood, we

may redistribute the workload for that particu-

lar week.

18

Figure 2: Project Gantt Chart

6 Plan for Execution

6.1 Gantt Chart

The Gantt chart for the project is described in Figure 2.

6.2 Milestones

For this project we have prepared a few milestones to ensure that the groups work stays

focused and directed as much as possible. These milestones, as well as their deadlines are

listed in Table 2.

19

Table 2: Milestones

Date Milestone

March 10th Minimum viable prototype (MVP)

April 21st Feature freeze

May 5th Complete code freeze

May 21st Delivery of final report

6.3 Sprint schedule

Each sprint will have a clearly defined goal (as described in in subsection 4.2). The list of

sprints for the project duration, as well as planned sprint goals can be found in Table 3.

6.4 Product backlog

The product backlog (Table 4) is the basis for the Scrum board, and it’s used and updated

during sprint planning. The product backlog will be updated throughout development as

more details of the implementation becomes clearer.

The team has decided that tasks in the product backlog aren’t complete until they’ve been

written about in a technical note or the final report. The text can be a draft and doesn’t have

to make it into the final report, but it must describe what, how, and why something was done

the way it was. If the writer isn’t sure if a task is complete, it’s marked as Ready-for-review

in the issue board, and one (or more) team members will review the work.

Table 4 contains the initial product backlog with rough estimates of the time required to

finish tasks. A ’low’ estimate implies up to 2 days of work, ’medium’ implies between 2-4

days of work, and a ’high’ estimate implies more than 4 days of work. The list is in loose

chronological order, but tasks can be done in parallel.

20

Table 3: Sprint schedule

Sprint Week Goals

1 3-4 Get acquainted with Qt framework and complete project plan.

2 5-6 Design overall software architecture. Load, parse, process, display
(initial) tile data.

3 7-8 Load, parse, process, display tile data (continued). Start imple-
menting unit tests and component tests when functionality is ready.

4 9-10 Complete MVP. Automate unit tests for tile data processing. Con-
tinue updating unit and component tests. Start data caching.

5 11-12 Implement map interactivity: panning and zooming. Load multiple
tiles. Continue with data caching.

6 13-14 Software improvement based on acceptability test. Start of dedi-
cated reporting phase. Begin analysis of continued development.

7 15-16 Feature freeze. Fix bugs, optimise code, clean up repository.

8 17-18 Gather all technical notes and work on final report. Fix bugs.

9 19-20 Finish the final report.

21

Table 4: Product backlog

Task Estimated time spent

Deliver project plan High

Begin final report Low

Design initial UI Medium

Design overall architecture High

Domain Model diagram Low

Architecture diagram Low

Data flow diagram Medium

Setup initial development environment Low

Parse single map tile High

Simple HTTP commands Low

Parse style JSON Low

Parse tile PBF Low

Generate layer vertices Low

Create initial unit tests Medium

Downloading map-data Low

Parsing data-structures Low

Validating parsed data Low

Set up automated testing environment High

Automate unit tests Medium

Automate component tests Medium

Acceptability tests with Qt Medium

Test if initial software architecture is acceptable Low

Test if initial GUI is acceptable Low

Test if prototype is acceptable Low

Test if final software is acceptable Low

Render single tile Medium

Output polygons with QPainter Low

Finish prototype High

Component testing: Rendering High

Loading multiple tiles Medium

Caching tile HTTP responses Medium

Rendering: Panning/zooming support Medium

Dynamically loading tiles Medium

22

Task Estimated time spent

Rendering: Satellite imagery Medium

Interactive controls Medium

Panning Low

Zooming Low

Tracking user-location (Optional) Low

Report: Analysis of continued development High

Finish report High

23

References

Agafonkin, V., Firebaugh, J., Fischer, E., Käfer, K., Loyd, C., MacWright, T., Pavlenko, A.,

Springmeyer, D., & Thompson, B. (2014). MapBox Vector Tile Specification v1.0.0

[Accessed 2024-01-11]. MapBox. https://github.com/mapbox/vector-tile-spec/tree/

c9be969f24c4e8d8f3ea13b232757b31184d2f13/1.0.0

Massachusetts Institute of Technology. (2024). MIT license [Accessed 2024-01-11]. https :

//mit-license.org/

scrum.org. (2024). What is scrum? Retrieved January 16, 2024, from https://www.scrum.

org/learning-series/what-is-scrum/

The Qt Group. (2024a). QPainter class [Accessed 2024-01-11]. https ://doc .qt . io/qt - 6/

qpainter.html

The Qt Group. (2024b). Qt6 reference pages [Accessed 2024-01-11]. https://doc.qt.io/qt-

6/reference-overview.html

University of Michigan. (2023). Raster images [Accessed 2024-02-01]. https ://guides . lib .

umich.edu/c.php?g=282942&p=1885352

24

A Group Contract

25

A Group Contract

26

A Group Contract

27

A Group Contract

28

Git Guidelines

Cecilia Norevik Bratlie

January 2024

Contents

1 Introduction 2

2 Git Guidelines 3

2.1 Git Issues . 3

2.2 Git Commit Message Structure 3

2.2.1 Commit Examples . 5

2.3 Subject Line Keywords Descriptions 5

2.4 Footer Keywords Descriptions . 6

2.5 Markdown Guidelines for GitHub and GitLab Wiki 6

1

B Git Guidelines

29

1 Introduction

The following document describes how Git will be used during the QT bachelor

thesis project. The goals of this document are to:

• Streamline how the Git workspace is used and developed by all team

members.

• Improve the overall quality of the project by making commits as consistent

as possible between team members.

• Use Git in a professional way by following good practises for Git commits

and Markdown text.

• Make it easier to understand developed code at a glance, without having

to read the source code itself (at least initially). If something is unclear or

wrong with the code, good commits can help locate errors, and roll back

to the correct previous version if necessary.

• Document commits in a semantic way. This means using tags like ‘feature‘,

‘fix‘ or others, and providing a commit description.

• Make it easier for QT to take over development after the thesis is done,

since they can go back in the logs and see how the system was developed.

2

B Git Guidelines

30

2 Git Guidelines

2.1 Git Issues

Git issues must be linked to the project’s Scrum board. Give the issue a de-

scriptive title, and add additional information in the comment section. An issue

called ”Complete Project Plan” without any further description is incomplete

and must be updated. Some textual description or (check)list of tasks specifies

what needs to be done to complete the issue. Issues can contain a larger set

of tasks that are then assigned to smaller ’sub’ or ’child’ issues. The ’children’

must refer back to the original ’parent’ issue. This is done to ensure that once

the child issues are complete, the parent issue is updated accordingly. It’s also

good practise to refer to related issues.

Example from Issue #5

The following issue has a title and a description of the work, and it is acceptable

during the project. Note how it refers back to a parent issue at the bottom:

The Gantt chart must be c rea ted to hand in as a part o f the

p r o j e c t plan d e l i v e r a b l e . I t must conta in p r o j e c t s p e c i f i c

a c t i v i t i e s with mi l e s t one s and dead l i n e s f o r when p r o j e c t

d e c i s i o n s must be made .

Updates #3 once completed .

2.2 Git Commit Message Structure

A Git commit message should be structured as follows (Commits.org, n.d.,

Seguin and Hevery, 2019):

<type>(<scope >): <subjec t>

<BLANK LINE>

<body>

<BLANK LINE>

<f oo t e r>

The type is the keyword describing the commit in a semantic way. The two most

important ‘type‘ keywords are ‘fix‘ and ‘feat‘, but others also exist (see Seguin

and Hevery, 2019). The type and subject must be provided on the first line.

3

B Git Guidelines

31

For the sake of consistency in the team, leave the subject line non-capitalized.

There is no period (.) at the end of the subject line or footer lines, but the

body line has that. The subject line must not have more than 50-70 characters,

and it’s written in the imperative tense (fix), not the present (fix/fixes/fixing)

or past tense (fixed).

The (<scope>) is optional and can provide additional contextual informa-

tion about the item that’s being updated, like an element, language, parser, and

so on. The ‘scope‘ always refers to a noun.

The <body> describes the commit content in further detail and is optional

to use. Note that further paragraphs in the body start after a blank line.

Finally, you can add a <footer> that starts on a new line. The footer refers

to issues if the commit updates or is related on an issue. Footers have their own

keywords, and the issues are referred to with # followed by the issue number

(like #2).

4

B Git Guidelines

32

2.2.1 Commit Examples

Example of a non-semantic commit:

updated bug . . .

This kind of commit should not be written and pushed to Git. It’s lacking a

keyword and doesn’t describe clearly communicate what the commit actually

updates or fixes, or if it’s related to an issue.

Example of a semantic commit (retrieved from Commits.org, n.d.):

f i x : prevent rac ing o f r eque s t s

Introduce a reque s t id and a r e f e r e n c e to l a t e s t r eque s t .

Dismiss incoming re sponse s other than from l a t e s t r eque s t .

Remove t imeouts which were used to mi t i ga t e the rac ing

i s s u e but are ob s o l e t e now .

Reviewed−by : Z

Refs : #123

This commit uses semantic keywords and descriptions. It’s clear what the com-

mit changes, and the commit refers to an issue. Note that the ’Reviewed-by’

section in the footer is optional for us. Only use it if someone else reviews your

commit before it’s committed.

2.3 Subject Line Keywords Descriptions

The following descriptions are based on Commits.org, n.d. and Seguin and Hev-

ery, 2019. The ‘type‘ keywords to use in the subject line are:

• fix: The commit fixes a bug in the code.

• feat: The commit adds a new feature to the code.

• docs: Updates to written documentation, including fixing typos in text

or code.

• style: Changes to the styling of code, like adding or removing white-

spaces, adding semicolons or colons, or reformatting the code.

5

B Git Guidelines

33

• build: Changes to the build system or external dependencies, like if you

change or add dependencies to a project.

• ci: Used if the commit changes CI configuration files and scripts.

• refactor: Changes to code that don’t add features or fix bugs.

• perf : Code edits that increase performance.

• test: Adding or updating tests.

• chore: Used for changes where other keywords don’t apply.

2.4 Footer Keywords Descriptions

In the footer, one refers to issue numbers. Git accepts the following keywords

in the footer (Collins, 2022):

• Close, Closes, Closed: Closes an issue.

• Fix, Fixes, Fixed: Fixes an issue.

• Resolve, Resolves, Resolved: Resolves an issue, so that the issue can now

be reviewed before closing it.

Git will update issues in the Git system when these keywords are used, meaning

that commits can update, resolve or close issues directly. Prefer using the

imperative tense here.

2.5 Markdown Guidelines for GitHub and GitLab Wiki

When writing documents on Git, headers should be used. Headers start with

#, ##, ..., ###### followed by a space and mark headers from level <h1>

to <h6>. Emphasis is marked with italics, strong emphasis should be marked

with bold. Refer to the following document or talk to Cecilia if something is

unclear.

6

B Git Guidelines

34

References

Collins, M. (2022). Conventional commits: A better way. Retrieved January 16,

2024, from https://medium.com/neudesic- innovation/conventional-

commits-a-better-way-78d6785c2e08

Commits.org, C. (n.d.). Conventional commits. Retrieved January 16, 2024,

from https://www.conventionalcommits.org/en/v1.0.0/

Seguin, A., & Hevery, M. (2019). Contributing to angular. Retrieved January

16, 2024, from https://github.com/angular/angular/blob/22b96b9/

CONTRIBUTING.md#-commit-message-guidelines

7

B Git Guidelines

35

Appendix B

Product Backlog

Table B.1: Product backlog

Task Estimated time spent

Deliver project plan High

Begin final report Low

Design initial UI Medium

Design overall architecture High

• Domain Model diagram Low

• Architecture diagram Low

• Data flow diagram Medium

Setup initial development environment Low

• Setting up Qt Protobuf module for Windows Low

Parse single map tile High

• Simple HTTP commands Low

• Parse style JSON Low

• Parse tile PBF Low

• Produce QPainterPath from layer data Low

Render single tile Medium

• Output polygons with QPainter Low

• Include fill-color from stylesheet Low

Finish prototype High

122

Chapter B: Product Backlog 123

Task Estimated time spent

• Combine functionalities into one branch Medium

Create initial unit tests Medium

• Downloading map-data Low

• Parsing data-structures Low

• Validating parsed data Low

• Component testing: Rendering with Lancelot High

Set up automated testing environment High

• Automate unit tests Medium

• Automate component tests Medium

Acceptability tests with Qt Medium

• Test if initial software architecture is acceptable Low

• Test if initial GUI is acceptable Low

• Test if prototype is acceptable Low

• Test if final software is acceptable Low

Loading multiple tiles Medium

• Caching tile HTTP responses Medium

Rendering: Panning/zooming support Medium

• Dynamically loading tiles Medium

• Displaying multiple tiles at correct size/position Medium

Rendering: Satellite imagery Medium

Interactive controls Medium

• Panning Low

• Zooming Low

Tracking user-location (Optional) Low

Report: Analysis of continued development High

Finish report High

Appendix C

Sprint Schedule

Table C.1: Sprint schedule

Sprint Week Goals

1 3-4 Get acquainted with Qt framework and complete project plan.

2 5-6 Design overall software architecture. Load, parse, process, display
(initial) tile data.

3 7-8 Load, parse, process, display tile data (continued). Start implement-
ing unit tests and component tests when functionality is ready.

4 9-10 Complete MVP. Automate unit tests for tile data processing. Continue
updating unit and component tests. Start data caching.

5 11-12 Text rendering. Implement PNG comparison. Bugfixes. Build instruc-
tions and testing continued.

6 13-14 Software improvement based on acceptability test. Start of dedicated
reporting phase. Begin analysis of continued development.

7 15-16 Feature freeze. Fix bugs, optimise code, clean up repository. Contin-
ued work on report.

8 17-18 Gather all technical notes and work on final report. Fix bugs.

9 19-20 Finish the final report.

124

Appendix D

Meeting Examples

125

<> Meeting
Date: Month, Day, 2024
Time: 00:00-00:00
Present: Eimen, Nils, Cecilia, (+others)
Secretary:

Agenda
●

Notes

Topic 1

Topic 2

1

Standup Meeting
Date: April 2nd, 2024
Time: 10:00-10:30
Present: Nils, Cecilia, Eimen
Secretary: Nils

Agenda
● Standup
● Other discussion points

Standup
Nils:

● Has worked on:
○ Raster tiles

■ Had issues merging commits from dev when trying to create PR to
dev-branch. Ended up cherry picking files and making a manual
commit to dev-branch.

■ Made sure to keep load-rastertiles branch intact, but it might need to
be rollbacked in case some functionality was lost.

○ Would like to merge the text rendering as well, but that has to be sorted later.
○ Loaded MapTiler key from environment variable

● Will work on:
○ Lancelot testing
○ Text rendering merging?
○ Nils can write a benchmark that tests the performance differences between

running one background thread versus many for parsing. Cecilia: Would be
really good to do this.

Cecilia:
● Has worked on:

○ Raster tiles
○ Has implemented unit testing for the rendering maths:

■ Nils: Will need to double check that this was merged into the
dev-branch

■ Had some problems with losing thread-safety and getting
thread-errors when trying to refactor lambda functions and gave up
temporarily.

○ Been working a lot on the report:
■ NTNU has a template that they highly recommend we use

○ Got feedback from Rafael about unit tests
○ Question: Will we have symbols in our app?

● Will work on:
○ Help Nils and Eimen

2

○ Port report to the new template
○ Text Matthias about acceptance test next Tuesday

Eimen:
● Has worked on:

○ Cleaned up the text branch
● Will work on:

○ Text rendering

Regarding symbols
We picked a map type that doesn’t have symbols! Eimen confirms it takes a lot of time to
parse expressions. Nils thinks we don’t have time. We initially wanted this feature, but didn’t
have time. We can write this down as a criticism in the report. Look into how it works, and
write about how we would approach it. Suggest for future work?

It is also problematic that we would have to support a new map-style in order to properly test
symbols.

We can also mention that symbols would require changes to how we cache.

Immediate tasks
● Check that Cecilia’s rendering and unit test changes were merged into dev-branch
● Merge place-names

3

Supervision Meeting
Date: April 12th, 2024
Time: 10:00-10:30
Present: Nils, Eimen, Cecilia, Rafael
Secretary: Everyone

Agenda
● Progress update
● Acceptance
● References in report to specific Qt classes
● Questions from team members

Notes

01 Progress update
This week is feature freeze, no new major features will be added (with some small
exceptions). We will now focus on report writing, only coding will be bugfixing or minor
implementations that will make the software look and perform as well as possible.

● Merlin (home-made automated rendering output testing system).
● Curved text rendering
● Dashed lines
● Map drag and drop panning

Nils will make a PR to Rafaels Docker script. Projects own Docker file is currently not up to
date due to needing a new required dependency (imagemagick).

We will try to implement a simple cache eviction policy next week.

02 Acceptance
We performed an acceptance test. Let’s discuss how it was done and the results.
Nils:

● Confirmed that we are meeting the software requirements. One piece of the
requirements was missing in the list of requirements, so that needs to be addressed.
(Done)

● Key findings:
○ Product owner agreed to participate.
○ Largely met the requirements, and he is very happy with the software so far

4

● Matthias’ 3 wishes:
1) Mouse input (important)
2) QTextLayout (important)
3) Add street names (bonus)

How to display these results in the report?

03 References in report to specific Qt
Nils: I’ve been quite a bit of references in the report, pointing to the documentation of central
classes/tools we use in Qt. Examples include QThreadPool, QNetworkAccessManager,
QRhi, Vulkan, DirectX, Metal … Is this common, or should we focus more on articles?

Could use footnotes for more technical documents

04 Other Discussion Points

Merlin
● It’s possible to store test image data on GitHub
● Rafael will send some resources to Nils on Teams

Text Rendering
Eimen Showcases Text Rendering to Rafael

5

Qt Meeting
Date: January 8th, 2024
Time: 12:00 - 13:00
Present: Eimen, Nils, Cecilia, Matthias (Qt representative)
Secretary: Cecilia

Project plan link: https://www.overleaf.com/read/mwgmcysdtwrw#03b5a7

Agenda
● What have we worked on so far?
● Our ideas for the project
● Restrictions from Qt?
● Clarifications?
● Coding standards in Qt? Any formatting tools?

Notes

What have we worked on so far?
● Report and documentation.

Our Ideas for the Project
Copy-paste in the functional requirements we discussed, so Matthias can see them?
Can be found here:
https://docs.google.com/document/d/1mB74R2aKfUNuBTwOrPnKRWzKpg4RZcwdUGOqb9
cEaOc/edit?usp=sharing

Our ideas:
● Lines, polygons
● Qt version must be matched against a particular Android SDK version.
● Platforms: Desktop primarily, but we will design the UI as mobile-first to make it

easier to port to Android or other OS’s
● Do some styling of the map.
● We are not focusing on navigation in the map.

MVP:
● Get core functionalities in place early

Restrictions/Limitations from Qt?
● Write that software-rendering is a restrictions.
● Compare raster and vector results form MapTiler.

6

Clarifications?
● Anything Matthias or we want to know, clarify, ask.

Qt Code Standards, Qt Formatting Tools
● Matthias will ask someone at QT about this and update the team when he knows.
● There are standards.
● Note: It’s not very strict in Qt, though.
● Qt does NOT require us to follow a specific format as long as the C++ code is valid

and compiles.
● Compare raster and vector results form MapTiler.

Automated Testing and other Tests (?)
● It’s possible to set up tests for data parsing.
● Qt has auto-tests that test basic functionality and ensure that nothing crashes, like

SVG tests (crashes and security), graphics tests (test output of a picture, is a
baseline test where the same image is always used), Matthias has shown us how the
result of one of these tests can look. The Lancelot can be set up outside of the Qt CI.

7

pipeline:

Tips from Matthias
● Always write Qt, not QT!!
● Map layers: Line layer, polygon layer, symbol layer
● Do we add satellite raster imagery? This is optional, but shouldn’t be too hard to add,

maybe take 1-2 days.
● Use designers to create mockups: Karolina
● Most important part: Split the assignment into separate tasks or parts:

○ Downloading data
○ Parsing data
○ User interface

● Tell Qt how feasible we think it is to continue development of this project. Matthias
would really like this. Make sure we document what we are covering or not in the
software we’re developing. This is good for both Qt and the report thesis.

●

8

Appendix E

Math Formulas

E.1 World-Normalized Coordinates

Two terms are central to this project; world-normalized coordinatess and tile-normalized co-

ordinatess. World-normalized coordinates is a coordinate-space that is used commonly in-

ternally in our implementation. This coordinate-space was created by us for this project, a

similar one may or may not exist in other map implementations as well. The purpose of this

coordinate-space is to simplify any math in the implementation, by making it less confusing

which coordinate space we are working in. The world-normalized coordinate is defined as

having its origin (0, 0) in the top-left corner of the world map. The X axis moves positively

to the right. The Y axis moves positively downwards. Each axis is normalized respective to

the world map itself. This means that in the X direction, a value of 0 maps to the world

maps left edge, while a value of 1 maps to the right edge. in the Y direction, a value of 0

maps to the world maps top edge, while a value of 1 maps to the bottom edge. Because we

can assume the world-map to be perfectly square, the world-normalized coordinate-space

is guaranteed to be uniform along both axes.

E.2 Converting Longitude and Latitude to World-Normalized

Coordinates

Given longitude λ ∈ [−π,π] and latitude φ ∈ [−0.5π, 0.5π], we can calculate our world-

normalized coordinates by first applying the Mercator formula and then normalizing the

134

Chapter E: Math Formulas 135

range. The value φmax is defined as such to make the aspect ratio of the Mercator projection

be equal to 1, thus transforming the Mercator projection into Web Mercator. This process is

defined in Figure E.1.

normalize(value, min, max) =
value−min
max−min

φmax ≃ 1.4837270864

x = λ

y = ln
�

tan
�

π

4
+
φ

2

��

WNx = normalize(x ,−π,π)
WNy = normalize(y,−φmax,φmax)

Figure E.1: Converting longitude and latitude to world-normalized coordinates

E.3 Indexing of Tiles

We may index into the correct tiles by taking the maps zoom-level into account. In this thesis,

we define the “map zoom-level” as the integer which defines how many times the world-

map has been divided. This is used to index into the correct level of detail in the quad-tree.

This value has an upper bound determined either by the style-sheet. In this thesis, we only

discuss the map-style Basic, which at the time of writing has 16 levels (0 to 15) in total. In

our mathematical notation, we define this value as Z ∈ {0,1...15}.
We can then describe the number of tiles in each direction in the XY-plane as 2zoom. Con-

sequently, tiles are laid out in a two-dimensional grid, with tiles having indexed coordinates

in the set {0,1...2zoom − 1}.

E.4 Tile-Positional Triplet

In this paper, the term tile-position-triplet refers to an individual tile’s position within the

map’s zoom-level, along with the zoom-level that tile belongs to. It is denoted by the sym-

bol T with components (x,y,z). The formal definition, along with the constraints of the

components, is described in Figure E.2

Chapter E: Math Formulas 136

z ∈ {0, 1, . . . , 16}
x ∈ {0, 1, . . . , 2z − 1}
y ∈ {0, 1, . . . , 2z − 1}
T= (x,y,z)

Figure E.2: Tile-position-triplet definition

E.5 Viewport Size

Given the viewport’s zoom-level Z ∈ [0...16] and the viewport’s aspect-ratio. We can cal-

culate a viewport’s width Vwidth and height Vheight as a factor of the world map’s size by

employing the formula described in Figure E.3.

Vwidth = 2−Z ·min
�

1, Vaspect
−1
�

Vheight = 2−Z ·max(1, Vaspect)

Figure E.3: Calculating viewport size as a factor of the world map

E.6 Calculating Visible Tiles

We can calculate the set of visible tiles by projecting four of the viewport’s edges — left,

top, bottom and right — onto the world map. From there we can translate these into the

same coordinate-space as the indexed coordinates of the tiles. By applying a floor and ceiling

operation to these results, respectively, we can form the boundaries of a set of tiles in X and

Y directions. The final set {T} can be expressed as the cartesian product of these sets as

described in Figure E.4.

This approach is limited to axis-aligned viewports. A rotating viewport would require a

different approach.

Chapter E: Math Formulas 137

Given:

Zoom-level of map Z

Viewport center coordinates in world-normalized coordinatesWN

Viewport width in world-normalized coordinate-space Vwidth

Viewport height in world-normalized coordinate-space Vheight

Let:

l =
�

2Z ·
�

WNx −
Vwid th

2

��

r =
¡

2Z ·
�

WNx +
Vwid th

2

�¤

t =
�

2Z ·
�

WNy −
Vheight

2

��

b =
¡

2Z ·
�

WNy +
Vheight

2

�¤

A= {(x i, yi), . . .}= {l, l + 1, . . . , r} × {t, t+ 1, . . . , b}
{T}= {(x i, yi, Z)|(x i, yi) ∈ A}

Figure E.4: Calculating set of tiles within viewport

E.6.1 Selecting Map Level of Detail

There is, technically, no relation between the viewport zoom-level and the map zoom-level.

However, it is important to define one so that the application will render a level of detail

that is adequate for the degree of viewport zoom. Failure to do so can have a consequence

of the map containing either too little or too much detail, which can impact both user ex-

perience and runtime performance. It should be noted that since the viewport zoom is part

of continuous set of values, while the map zoom is in set of integer values, it’s impossible to

keep tiles at a fixed on-screen size while the viewport-zoom changes.

One option is to form a relation where the viewport is rounded and clamped to the

nearest integer. This will provide a near 1 : 1 relation where each tile will have an on-screen

that is close to being equal to the screens size. Such a relation can be described as

At the request of the product owner, we developed a simple formula that allows to us to

fit our map-zoom level as to make each tile close to a specific size on-screen. In our case, we

wanted to make on-screen tiles have a size of 512 pixels and then choose the closest map

Chapter E: Math Formulas 138

zoom-level to achieve this. Our formula is outlined in Figure E.5.

Given:

Vwidth the width of the display (in pixels)

Vheight the height of the display (in pixels)

Vzoom the viewport’s zoom level

desiredsize the desired tile size (in pixels)

targetmapzoom= round

�

Vzoom − log2

�

desiredsize

max
�

Vwidth, Vheight

�

��

result= clamp (targetmapzoom,0, 15)

Figure E.5: Approximating Tile On-screen Size

Appendix F

Vector Tile Protobuf Structure

1 option optimize_for = LITE_RUNTIME;

2

3 message Tile {

4

5 // GeomType is described in section 4.3.4 of the specification

6 enum GeomType {

7 UNKNOWN = 0;

8 POINT = 1;

9 LINESTRING = 2;

10 POLYGON = 3;

11 }

12

13 // Variant type encoding

14 // The use of values is described in section 4.1 of the specification

15 message Value {

16 // Exactly one of these values must be present in a valid message

17 optional string string_value = 1;

18 optional float float_value = 2;

19 optional double double_value = 3;

20 optional int64 int_value = 4;

21 optional uint64 uint_value = 5;

22 optional sint64 sint_value = 6;

23 optional bool bool_value = 7;

24

25 extensions 8 to max;

26 }

27

139

Chapter F: Vector Tile Protobuf Structure 140

28 // Features are described in section 4.2 of the specification

29 message Feature {

30 optional uint64 id = 1 [default = 0];

31

32 // Tags of this feature are encoded as repeated pairs of

33 // integers.

34 // A detailed description of tags is located in sections

35 // 4.2 and 4.4 of the specification

36 repeated uint32 tags = 2 [packed = true];

37

38 // The type of geometry stored in this feature.

39 optional GeomType type = 3 [default = UNKNOWN];

40

41 // Contains a stream of commands and parameters (vertices).

42 // A detailed description on geometry encoding is located in

43 // section 4.3 of the specification.

44 repeated uint32 geometry = 4 [packed = true];

45 }

46

47 // Layers are described in section 4.1 of the specification

48 message Layer {

49 // Any compliant implementation must first read the version

50 // number encoded in this message and choose the correct

51 // implementation for this version number before proceeding to

52 // decode other parts of this message.

53 required uint32 version = 15 [default = 1];

54

55 required string name = 1;

56

57 // The actual features in this tile.

58 repeated Feature features = 2;

59

60 // Dictionary encoding for keys

61 repeated string keys = 3;

62

63 // Dictionary encoding for values

64 repeated Value values = 4;

65

66 // Although this is an "optional" field it is required by the ←-
specification.

Chapter F: Vector Tile Protobuf Structure 141

67 // See https://github.com/mapbox/vector-tile-spec/issues/47

68 optional uint32 extent = 5 [default = 4096];

69

70 extensions 16 to max;

71 }

72

73 repeated Layer layers = 3;

74

75 extensions 16 to 8191;

76 }

Appendix G

Feature Attributes Encoding Example

This example taken from the vector tile specification repository [16]: For example, a GeoJ-

SON feature like:

142

Chapter G: Feature Attributes Encoding Example 143

{

"type": "FeatureCollection",

"features": [

{

"geometry": {

"type": "Point",

"coordinates": [

-8247861.1000836585,

4970241.327215323

]

},

"type": "Feature",

"properties": {

"hello": "world",

"h": "world",

"count": 1.23

}

},

{

"geometry": {

"type": "Point",

"coordinates": [

-8247861.1000836585,

4970241.327215323

]

},

"type": "Feature",

"properties": {

"hello": "again",

"count": 2

}

}

]

}

Listing G.1: Feature Metadata JSON Encoding.Taken From Github Repository [16]

Could be structured like this:

Chapter G: Feature Attributes Encoding Example 144

layers {
version: 2
name: "points"
features: {

id: 1
tags: 0
tags: 0
tags: 1
tags: 0
tags: 2
tags: 1
type: Point
geometry: 9
geometry: 2410
geometry: 3080

}
features {

id: 2
tags: 0
tags: 2
tags: 2
tags: 3
type: Point
geometry: 9
geometry: 2410
geometry: 3080

}
keys: "hello"
keys: "h"
keys: "count"
values: {

string_value: "world"
}
values: {

double_value: 1.23
}
values: {

string_value: "again"
}
values: {

int_value: 2
}
extent: 4096

}

Listing G.2: Feature Metadata Protobuf Encoding. Taken From Github Repository [16]

Appendix H

Unit Test Example

Below follows a code snippet that shows how the thesis unit tests look. This test was checked

for logical errors by posting it to ChatGPT. Please note that the formatting is styled differently

from how it is in the actual code so that it will fit on the page here.

145

Chapter H: Unit Test Example 146

// Test the getTilesLink function with an unknown source type
void UnitTesting::
getTilesLink_unknown_source_type_returns_unknown_source_type_error()
{

QString unknownType = ("random_string");
// Create a valid JSON style sheet with a different source type
QJsonObject sourcesObject;
QJsonObject sourceTypeObject;
sourceTypeObject["url"] = "https://example.com/tiles";
sourcesObject["another_source_type"] = sourceTypeObject;
QJsonObject jsonObject;
jsonObject["sources"] = sourcesObject;
QJsonDocument styleSheet(jsonObject);

// Call the function with the style sheet and an unknown source type
ParsedLink parsedLink = Bach::getTilesheetUrlFromStyleSheet(styleSheet,

unknownType);,→

// Verify that the result type is unknown source type
QCOMPARE(parsedLink.resultType, ResultType::UnknownSourceType);

}

Listing H.1: Unit test where ChatGPT helped

Appendix I

Software Review with Product Owner,

April 2024

On April 9th, 2024, a semi-structured acceptance test was performed where Matthias Rauter

tested the software. Some tasks and questions were prepared beforehand, but feedback

could also be provided freely as the conversation went along. The interviewer could ask

follow-up questions and inquire further about any topic. That way, the interviewer could

ensure that desired input was gathered, while Qt’s contact person could provide feedback

on current and missing features if he liked to. The prepared questions, with the team’s

interview notes, can be found in Appendix J.

Software Review Setup

Eleven test questions were prepared before performing the test. Before starting the test,

Matthias was notified that he could stop the test at any point, and he confirmed he wanted

to participate voluntarily and was okay with having data gathered for the thesis. He was

notified that any personal or sensitive information (for example about family, religion, or

sexuality) would not be recorded or used.

The software itself was configured to run without the participant having to input any

additional information (like the MapTiler key) to start the program. The screen was shared

via a projector to show performed software interactions to the team while the test was

ongoing.

147

Chapter I: Software Review with Product Owner, April 2024 148

Results

During the test, Matthias was asked to freely explore the application. The following was

pointed out: dotted lines were missing, that one could change (map) projection in the future,

that QTextLayout could be used to improve application performance, that mouse controls

and street names should be added, that one could add support for having the map either

stop or wrap once the user goes outside the map boundaries, that it could be nice to hide

the map controls automatically after some time had passed, and decrease the size of the "+"

and "-" buttons. He further stated that the application didn’t have to support map symbols.

Matthias stated multiple times that the team should be happy and proud of the result.

At the end of the conversation, the contact person was asked to pick the three features he

thought were critical to improve or implement before final delivery, to which the following

four were mentioned:

1. Use QTextLayout to render text instead of the current solution to improve application

performance.

2. Add mouse input.

3. Add street names.

4. List standards or (map) features the software supports.

The contact person stated that he was very happy with the application, but that the

team should try to add QTextLayout (1) and mouse controls (2) before the final delivery.

He stated that (3) and (4) would be nice to implement as well, but that these were not

critical. Additionally, 1-4 were not required to be completed. The software was approved by

Qt.

Feature Changes and Implementations Based on Software Review

Since the test, the team implemented support for QTextLayout, added panning and zooming

mouse interactions, and street names are now displayed in the application. A list of map

features that the software supports, has been added to the project’s GitHub.

Based on the acceptance test, the team decided not to add additional support for parsing

map types other than Basic V2. Using a different map type is required if the software must

render symbols. Since the test revealed that supporting symbols was no longer required, the

team decided to not implement symbol support.

Chapter I: Software Review with Product Owner, April 2024 149

Conclusion

The results of the acceptance test show that Qt was satisfied with the application as it was

in April 2024. The product owner gave input on features that they saw hadn’t been imple-

mented, like dashed-lines support, mouse interactions (panning and zooming), and missing

street names. Qt’s contact person wanted the team to try using QTextLayout for text ren-

dering and implement mouse interactions before the final delivery. Adding in street names

and listing standards or features the software supports were also mentioned as nice addi-

tions. None of these features were required to be completed for the final delivery. Finally, it

was confirmed that supporting symbols in the software was no longer a requirement of the

software.

Appendix J

Software Review Questions, April 2024

150

Chapter J: Software Review Questions, April 2024 151

Num Task/Instruction Question(s)

1 Revise the requirements

that we agreed upon, as

outlined in section 3.1 in

the report.

Can you confirm that the requirements

are correct? Is anything incorrect or

missing?

2 Let the product owner

play with the application

for 1-2 minutes.

Could you tell us your first impressions?

What do you think about the applica-

tion? Are any elements missing or being

rendered incorrectly?

3 Have the product owner

zoom, pan and filter out

elements (fill, line, text).

Start at the initial zoom

level and go down to at

least zoom level 10.

How is the loading time (to you)? Are

there any rendering issues when zoom-

ing or loading? Is the responsiveness

and performance acceptable to you? If

not, could you please elaborate?

4 Switch between the raster

tiles and vector tile maps.

What are your first impressions of the

two modes? Does anything stick out to

you as interesting, nice, bad, or some-

thing else? There are slight color varia-

tions between the two map types. What

do you think about that? Is there any-

thing you can see here you’d like to have

changed?

5 Have product owner in-

put pre-prepared coordi-

nates for New York man-

ually.

How is that experience? Can you de-

scribe it? Does the system behave like

you expect it to?

6 Have product owner in-

put a self-chosen set of co-

ordinates manually.

How is that experience? Can you de-

scribe it? Does the system behave like

you expect it to?

Chapter J: Software Review Questions, April 2024 152

7 Have product owner nav-

igate to Nydalen or Gjøvik

with the buttons on the

left in the GUI.

How is that experience? Can you de-

scribe it? Does the system behave like

you expect it to?

8 Test the buttons on the

menu in the upper right

corner.

Do they behave like you’d expect? Is

anything missing there?

9 Inspect the text. What do you think about the text?

Follow-up if product-owner doesn’t

mention this un-prompted: Does text

look acceptable? Is it critical to include

curved text for road names?

10 Play with the application

and try to break it.

Can you play with the application and

try to break it?

11 Ask for final feedback and

start post-test discussion.

We have gone through all of the ques-

tions. Is there anything you would like

to discuss further? Do you have any

questions for us? What would you like

us prioritize for the final improvements

of the software?

Table J.1: Acceptance Test Questions and Feedback

Post-Test Discussion

After asking these questions, the post-test discussion with Matthias started.

Chapter J: Software Review Questions, April 2024 153

Notes Taken By Nils During the Test

• Product Owner agreed to the test.

• We largely met the requirements set out by the Product Owner

• Product Owner was generally very happy with the result of the project. (Seems to have

exceeded their expectations?)

• Product Owner tried to repeatedly press the panning buttons. Then had to wait for a

while before app became responsive again and would then have panned far.

• "The raster ones have slightly more features. They seem to have lines smaller than one

pixel."

• Product Owner said he liked the rendering filters (fill, lines, text).

• Product Owner said he liked the raster-tile comparison functionality (more than ex-

pected, it was initially not requested).

• Product Owner pointed out these possible features or attributes in the software:

• Product Owner asked how it would look when loading other style sheets.

• Product Owner tried to write in coordinates by only typing in zoom and no coordinates

but this didn’t work. Also wanted to load coordinates by pressing enter (instead of

manually clicking Go button).

• Product Owner would like in the documentation, a matrix of features and styles sup-

ported.

• Regarding filtering buttons in top-left: "For debugging and example application, it’s

super useful. For a front-end product you would keep this away."

• "This is really good responsiveness with no text. With text is almost acceptable respon-

siveness if zoomed in."

• Said he wants to see other map types, but he clarified that it wasn’t for this project

• Initially Product Owner did not notice a slight variation in color between vector and

raster-rendering. "That indicates we’re missing a feature. That might be a bug we can

solve. Some customers might use color to identify parts of the map in the future". He

stated that this wasn’t a problem for him, but that it may be an issue to some end-users

of graphical applications, and that this is sometimes reported by them.

◦ Cursor movement (panning and zooming) not implemented. For zooming, it

doesn’t need to support pinching, only scrollwheel.

◦ Product Owner suggested that the final feature before hand-ind should be curved

text.

Chapter J: Software Review Questions, April 2024 154

◦ World map is not repeating when panning all the way to the side. Could also

instead implement limits on how much you can pan outside world map.

◦ Product Owner noticed that tiles have mistaken boundary problems sometimes

(line placement bug)

◦ Product Owner noticed that dashed lines are not rendered correctly.

◦ Product Owner noticed that lines that are supposed to be less than 1 pixel wide,

ended up becoming exactly one pixel wide when anti-aliasing is not enabled.

◦ Product Owner mentioned debug information could have more info, but also that

parts of it could or should be hidden for thesis presentation?

◦ Could potentially have an improved approach to render-filters where we list each

individual layer of the loaded style sheet.

◦ Auto-hide controls, suggested after 3 seconds. He suggested that they pop into

their own menu that can be opened again, or that they can become partially

transparent after the suggested time.

◦ Add background to controls.

◦ Product Owner pointed out that text gets cut off around tile boundaries. (Problem

with using tile-local text collision rather than global).

◦ Mentioned he would have liked the+ and - symbols to be smaller than they were.

◦ Product Owner would have liked the coordinates-UI to update when moving the

viewport around.

◦ Product Owner mentioned text rendering is ’unproportionally’ slow. He stated

the class QTextLayout should improve it.

• Cecilia: Final question, can you break it? Product Owner could write 190 into longi-

tude. Viewport can be zoomed out too much. Checks memory usage, Product Owner

stated it was acceptable, "Still less than Chrome".

• Product Owner disconnected the internet and introduced some terminal errors, but it

did not impact the actual visuals or user experience.

• Discussion after test: Product owner mentioned potentially changing or using other

projections, like azimuth. Something called Proj4 was also mentioned in this context.

Notes Taken By Cecilia During the Test

When Cecilia had finished asking Matthias the listed questions, she asked him to pick three

features he thought needed to be implemented in the project’s final weeks. He wanted the

following to be improved:

Chapter J: Software Review Questions, April 2024 155

• Use QTextLayout instead of the current solution.

• Add mouse input.

• Add street names.

• He finally mentioned: It would be amazing to list standards or (map) features the

software supports.

He stated that he was very happy, but that we should try to add at least QTextLayout

and mouse controls.

Software Review Summary

The overall impression from the Product Owner seemed to be good, since he stated multiple

times we should be proud of our work, and that the program looks good. He approved

the product in its current state, but asked us to improve text rendering and adding mouse

controls if we could make it in time for the final delivery of the thesis.

Appendix K

Final Acceptance Test

This test contains 10 test cases (see the next page). Each case explains the pre-requisites

(”Given”). The ”When” fields list what the tester needs to do, and the ”Then” fields lists

what should happen next for the test to be successful.

If the product owner approves of the results, ”yes” will be filled in for each ”Approved

by product owner” section and ”no” otherwise. The test design is inspired by [46] and [41].

156

Chapter K: Final Acceptance Test 157

Scenario: 01 Download and run the program successfully.
Corresponding requirements FR 1
Given Having access to the Qt thesis GitHub and a MapTiler key.

This can be found at https://github.com/cecilianor/
Qt-thesis.

When Tester clones the main branch from the repository AND
follows the GitHub build instruction to build and run the
code.

Then The program starts and renders the map.
Approved by product owner yes

Scenario: 02 Run the program and check that vector tiles are loading.
Corresponding requirements FR 1
Given The program is running.
When Clicking the ”Showing tile type” button to swap between

raster and vector map type AND then zooming in and out
with mouse wheel or W and S keys.

Then The map swaps between vector and raster source type.
When zooming in and out, the vector image will always
be sharp, the raster image will be blurry when between
whole number/integer zoom levels, like 2.5. This will
show visually that vector data has been used.

Approved by product owner yes

Scenario: 03 Run the program and wait for the map to finish loading.
Corresponding requirements FR 2, FR 6
Given The program is running.
When The program runs for the first time AND the machine has

network access.
Then Vector map tiles start loading automatically and will be

rendered one at a time, in real-time, until all tiles in the
viewport have been rendered.

Approved by product owner yes

https://github.com/cecilianor/Qt-thesis
https://github.com/cecilianor/Qt-thesis

Chapter K: Final Acceptance Test 158

Scenario: 04 Zoom in until text, roads, rivers, and buildings are ren-
dering.

Corresponding requirements FR 4
Given The program is running.
When Using W and S keys to zoom in/out OR using mouse

wheel to zoom in to zoom level 14 OR press the ”Gjøvik”
button and zoom in from there. Pressing the debug but-
ton will show the zoom level for the current tiles.

Then Place and road names, roads, rivers, and buildings are
displayed.

Approved by product owner yes

Scenario: 05 Confirm that .mvt files are loaded and cached.
Corresponding requirements FR 3
Given The tester has run the program for the first time AND

downloaded at least one vector map tile.
When The tester accesses their generic cache location AND the

tile has been written to the cache location.
Then The tile data is stored in the cache as an .mvt file (MapBox

Vector Tile format)
Approved by product owner yes

Scenario: 06 Confirm that Basic V2 Map Type is used.
Corresponding requirements FR 5
Given The tester has view access to the GitHub repository AND

has opened the main.cpp file in the app folder.
When Locating line 42.
Then The code calls to use the correct Basic V2 map type.
Approved by product owner yes

Scenario: 07 Confirm that Qt can continue development of codebase.
Corresponding requirements NFR 1
Given The tester has view access to the GitHub repository and

all project source files.
When Inspecting source code files.
Then The tester assesses the codebase to determine if it’s suit-

able for Qt’s continued map software development.
Approved by product owner yes

Chapter K: Final Acceptance Test 159

Scenario: 08 Check that Qt functionality is used in the software.
Corresponding requirements NFR 2
Given The tester has view access to the GitHub repository and

all project source files.
When The tester inspects a source file, for example

MapWidget.cpp in the app folder.
Then The tester can confirm that the Qt framework is used by

the software.
Approved by product owner yes

Scenario: 9 Confirm that QPainter has been used in the codebase.
Corresponding requirements NFR 3
Given The tester has view access to the GitHub repository and

all project source files.
When Inspecting header files and functions in the files

Rendering.h and Rendering.cpp in the lib folder.
Then The tester can confirm that QPainter has been used in

the software.
Approved by product owner yes

Scenario: 10 Confirm that the project uses an MIT license.
Corresponding requirements NFR 5
Given The tester has view access to the GitHub repository and

all project source files.
When The tester opens https://github.com/cecilianor/

Qt-thesis/tree/main.
Then An MIT license can be located when scrolling down to the

Readme and License section.
Approved by product owner yes

https://github.com/cecilianor/Qt-thesis/tree/main
https://github.com/cecilianor/Qt-thesis/tree/main

Appendix L

Continued Development Report

L.1 Introduction

This report has been written as a part of the delivery of a bachelor thesis from 2024. This

thesis work entailed parsing and then rendering both raster and vector-based map data for

the Qt group, the project’s product owner.

The report briefly covers the project context, scope, and implemented features. After-

wards, it presents some issues that were encountered during development, followed by a

reflection on what could be improved, and finally suggesting what Qt could do to continue

developing the map software after they take it over after the deliverance of the bachelor

thesis.

L.2 Improving Rendering Performance

Given more time, the group would look into methods to improve the responsiveness and

motion fluidity of the application. The project uses software acceleration (a side-effect of

using the QPainter tool) for the rendering, which means the actual drawing algorithms are

ran executed on the CPU. Graphics rendering is a massively parallelized operation that can

be greatly accelerated by using a GPU (Graphics Processing Unit). Compared to a CPU, a

GPU excels at performing rendering tasks both in terms of absolute performance and also

in terms of power-efficiency. By offloading the rendering workload to the GPU, we expect to

gain considerable performance improvements in terms of how fast individual frames can be

produced. This in turn means we can output more Frames Per Second (FPS) which means

160

Chapter L: Continued Development Report 161

an improvement in perceived motion fluidity and responsiveness.

L.2.1 Challenges

While the group is not experienced in hardware-accelerated rendering in the context of

the Qt framework, we can estimate certain tasks that would be required to facilitate the

transition.

In order to facilitate hardware-accelerated rendering, one must use a graphics API (Vulkan,

DirectX, Metal). We would expect this aspect to be implemented using Qt QRhi[45] class,

which provides a high-level abstraction over multiple graphics APIs.

L.2.2 Moving Data to the GPU

The code works a lot with geometry. Fortunately, all of the data are a combination of points

and edges (no curves), which maps nicely onto what a GPU wants to work with. In our

solution, lines and polygons are represented by the QPainterPath[31] object. This object

does not work within the context of hardware-accelerated rendering.

For polygons, we expect that this data will have to be encoded as a list of vertices and

indices in order to be rendered using the GPU.

Lines are encoded as lists of points, with an external value describing the thickness. In

order to be rendered, lines would therefore have to be triangulated into proper meshes.

L.3 Stylesheet Parsing

Given more time on this project, there are certain limitations we would like to address when

parsing style sheets.

Improved Style Sheet parsing

Our current application is highly tailored to the stylesheet that was recommended by Qt, the

basic-v2 [4]. For the future development of the project, an improvement would be to make

the application accept any style sheet, even those that are not provided by Maptiler -as long

as they adhere to the style specification [15]. The subclasses of the AbstractLayerStyle

only parse and use the properties that we need for the basic-v2 style, which is only a

Chapter L: Continued Development Report 162

small subset of all the properties allowed. An ideal solution would check for the presence

of all possible properties and be able to parse and use any subset of them. Furthermore, the

Evaluator class if only able to process the expressions that are used in the basic-v2 style

sheet. An improvement of the class would be to add support for all the possible expressions

in the specification [23]. The Evaluator class is designed to be extensible so that adding

support for all the other expressions, even future expressions, would be seamless and would

not require any change in the already existing code. The only thing that would be needed is

to add the static functions that would handle the new expressions to the class and add their

entry in the map member variable.

L.3.1 Error Handling

In the current implementation, it’s always assumed that loaded style sheets come from Map-

Tiler and are compliant with the MapTiler style-sheet specification[15]. An ideal solution

would allow for a style sheet to come from any source, and be used in the application.

A challenge is here that a style sheet is not guaranteed to follow the MapTiler style-sheet

specification.

An example of style sheets containing invalid values is expressions [23]. The "linear" op-

erator, denoting a linear interpolation, requires exactly 2 operands. This should be denoted

as a JSON array with length 3, where the first element is the operator and the remaining

elements count as the operands. It’s possible to write a style-sheet JSON that is a valid JSON

but is not a valid style-sheet, by writing a JSON array that does not have the correct length.

In our project, we do not handle such an error.

L.3.2 Layer Filtering

The group wanted to implement more advanced functionality for showing and hiding dif-

ferent elements of the map. An approach we had planned out but had no time for, included

being able to show/hide specific layers defined by the style sheet. This approach would in-

clude an additional step during the parsing of the style-sheet, to grab the list of layer-names.

We then would create a map structure that maps specific layers to a boolean value, repre-

senting whether the layer should be hidden or shown. This would then be configurable in a

UI and passed into the rendering functionality.

Chapter L: Continued Development Report 163

L.3.3 Improved Text Rendering

Road names

Tex rendering was one of the more complicated problems to solve during development,

especially curved text rendering. Since Qt does not support any functionality for curved

text using QPainter [20], we had to make our custom solution for curved text rendering.

This solution has some shortcomings. Some areas that would be a good subject for future

development within text rendering would be:

• Improve speed: Our solution is not as efficient as it should be for a real-time render-

ing application. Some optimizations to curved text rendering might be a good idea for

a future development task. However, it is important to note that all rendering oper-

ations are software-accelerated, which makes rendering much slower. Implementing

hardware acceleration might solve this problem.

• Improve individual character positioning and rotation: Another improvement that

could be made is the position and rotation of each character within the text. This

means making sure that individual characters are rendered exactly where they should

be and with the correct rotation. Our current solution does an approximation of where

the character should be drawn.

• Improve non-lating text rendering: Our current solution does not consider non-

latin languages including Arabic, Hebrew, and some Asian languages. This causes text

written in these languages not to be correct, as some of these languages are written

from right to left, or individual characters change shape depending on their position

within the text. This is also a good task to take on for future development regarding

text rendering.

L.3.4 Rendering Fallback for Missing Tiles

Due to the nature of our asynchronously loaded tiles, whenever the user zooms into an

area where tiles are not yet loaded, the user will be met with only the background color.

When the user has an internet connection, tiles should get loaded in over time and the

user should see proper information. However, this type of user experience can potentially

be improved in the case where the user has no internet connection, or has higher-level tiles

loaded. A solution for improving this would involve identifying visible tiles that are missing

from cache, searching for their higher-level counterpart and then rendering a subset of that

Chapter L: Continued Development Report 164

larger tile in place of the missing tile. This way, we allow the user to see something more

than the background color,

L.4 Symbols

Icons

The map style that we chose for our application does not include any icons. However, a

complete solution should support icons, and this might be a good task that developers who

want to use our work or build upon it should work on. To include this functionality the

following operations must be performed:

• Parse URL to request sprites: The first step is to grab the sprite URL from the style

sheet for the specific map style being used. The link must provide two files, an index

file and an image file. For the openstreetmap style sheet, we can parse the following

field:

"sprite":
"https://api.maptiler.com/maps/openstreetmap/sprite",→

Listing L.1: OpenStreetmap style sheet sprite URL field

• Request the index file: The index file can be requested by appending ".json" to the

sprite URL. The index file contains information that describes the position and size of

individual icons within the sprite PNG. The index file can optionally specify the format

of the icons.

• Request the image file: The image file can be requested by appending ".png" to the

sprite URL. The image file contains the PNG for all the icons in a specific map style.

For OpenStreetMap style, requesting the sprite PNG returns the image shown in Fig-

ure L.1.

• Extract icons from the image file using the index file data: The style sheet will

specify the name of the icon to be used in a certain layer using the key "icon-image",

the value for the key would be used to extract the icon from the image file. The value

of the "icon-image" should correspond to a key in the sprite index file. The value cor-

responding to the key in the index file has an object value containing the necessary

Chapter L: Continued Development Report 165

Figure L.1: openstreetmap map style sprite image

information to extract the icon. For example, a layer in the style sheet could include

the following field:

"icon-image": "camping"

Listing L.2: image-icon JSON field example

This will then be used as a key to look up the icon details in the index file. The index

file should include something similar to this:

We then use this information to extract the icon. We go to the exact pixel with coor-

dinated "x" and "y" specified in the index file, which is at the top-left of the camping

icon as shown in Figure L.2 And finally, we cut a rectangle with a width equal to the

"width" value and a height equal to the "height" value from the "camping" object in

the index file, we then obtain the exact icon as shown in Figure L.3.

Suggested QPainter Improvements

The QPainter class has a solid API and a wide range of functionality for software-accelerated

rendering. However, during the development of our application, some functionality that

would be expected from the QPainter class is missing, especially for text rendering. this

functionality would be expected by developers who use the framework. These functionalities

are namely:

Chapter L: Continued Development Report 166

Figure L.2: camping icon top-left coordinate location

Figure L.3: camping icon

Chapter L: Continued Development Report 167

"camping": {
"width": 14,
"height": 14,
"x": 420,
"y": 768,
"pixelRatio": 1.0

}

Listing L.3: icon details from sprite index file

• Support curved text-rendering: A crucial feature that might be beneficial to many

developers using the Qt framework would be rendering text along a path. In our ap-

plication, we opted for a custom solution to render text, specifically road names, on

a curved path. However, this feature would be expected from the QPainter’s text ren-

dering capabilities. The suggested improvement is to have a function to which you

can pass a QPainterPath and a String as parameters that would render the text along

the path. Optionally an overload for this function could take an enum and a float to

configure the rendering so that the function can make the text either appear once on

the path or render it so that the text repeats as long as there is space for it using the

the passed float a spacing between text.

• Support text outlining and wrapping with QPainter: Rendering text with outlines

and having text-wrapping at the same time was another challenge that we had to make

a custom solution for. The QPainter class does not support text outlines however it does

include automatic text-wrapping. The QTextLayout class does support text outlines but

has no text-wrapping capabilities. The solution we opted for was using QTextLayout

with a custom function for text wrapping. The suggested improvement is to include

the option for text outlines in the QPainter text rendering functionality. This feature

should be simple to include since the QPainter uses QTextLayout internally.

	1 Introduction
	1.1 Problem Domain, Delimitation, and Task Definition
	1.2 Motivation
	1.3 Target Audience
	1.4 Thesis Goals
	1.5 Team Background and Skills
	1.6 Other Roles
	1.7 Project Work Framework
	1.8 Tools and Technologies
	1.9 Thesis Structure

	2 Background
	2.1 Raster-Based versus Vector-Based Rendering
	2.2 MapTiler
	2.3 Mapbox Vector Tiles

	3 Requirements Specifications
	3.1 Product Owner Requirements
	3.2 Problem Delimitation
	3.3 Use Cases

	4 Design
	4.1 Fundamental Design Choices
	4.2 Architectural Design
	4.3 System Components
	4.4 Graphical User Interface Design

	5 Implementation and Production
	5.1 Network Implementation
	5.2 The Viewport
	5.3 Style Sheet Parsing
	5.4 Vector Tiles Parsing
	5.5 Parallel Loading of Tiles
	5.6 Rendering Map Data

	6 Development Process
	6.1 Development Plan
	6.2 Scrum

	7 Testing and Quality Assurance
	7.1 Unit Testing
	7.2 Benchmark: Tile Parsing
	7.3 Benchmark: Multithreaded TileLoader
	7.4 Continuous Integration
	7.5 Testing of Graphical Output
	7.6 Acceptance Test
	7.7 Quality Assurance

	8 Installation
	8.1 Software Dependencies and Tools
	8.2 Application Prequisites

	9 Discussions and Conclusions
	9.1 Discussions
	9.2 Usage of Artificial Intelligence
	9.3 Criticisms of the Thesis
	9.4 Future Work
	9.5 Assessment of Team Work
	9.6 Final Conclusion

	Bibliography
	A Original Project Plan
	B Product Backlog
	C Sprint Schedule
	D Meeting Examples
	E Math Formulas
	E.1 World-Normalized Coordinates
	E.2 Converting Longitude and Latitude to World-Normalized Coordinates
	E.3 Indexing of Tiles
	E.4 Tile-Positional Triplet
	E.5 Viewport Size
	E.6 Calculating Visible Tiles

	F Vector Tile Protobuf Structure
	G Feature Attributes Encoding Example
	H Unit Test Example
	I Software Review with Product Owner, April 2024
	J Software Review Questions, April 2024
	K Final Acceptance Test
	L Continued Development Report
	L.1 Introduction
	L.2 Improving Rendering Performance
	L.3 Stylesheet Parsing
	L.4 Symbols

