
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Ba
ch

el
or

’s
th

es
is

Felix Albrigtsen
Kristoffer Longva Eriksen
Kristoffer Juelsen

Uncovering Software Vulnerabilities
Using Source Code Analysis and
Fuzzing

Bachelor’s thesis in Digital Infrastructure and Cyber Security
Supervisor: Donn Morrison
May 2024

Felix Albrigtsen
Kristoffer Longva Eriksen
Kristoffer Juelsen

Uncovering Software Vulnerabilities
Using Source Code Analysis and
Fuzzing

Bachelor’s thesis in Digital Infrastructure and Cyber Security
Supervisor: Donn Morrison
May 2024

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Uncovering Software Vulnerabilities Using Source
Code Analysis and Fuzzing

Felix Albrigtsen Kristoffer Longva Eriksen Kristoffer Juelsen

May 21, 2024

Preface

This thesis marks the end of our three years of studying Digital Infrastructure and
Cyber Security under the Department of Computer Science at the Norwegian Uni-
versity of Science and Technology.

We would like to thank our supervisor, Donn Morrison, for his guidance dur-
ing the course of our research. We would also like to thank Kine Albrigtsen, Sarah
K. Johansen, Heine R. Løge, and Lea L. Raknes for providing valuable feedback
when finalizing this thesis.

Due to the technical nature of this thesis, the reader will get the most out of
reading this with some existing theoretical knowledge of computer science.

iii

Abstract

This thesis aims to explore the capabilities of source code analysis and fuzzing
for uncovering vulnerabilities in programs written in a systems programming lan-
guage. We will be conducting a penetration test on NetSurf, an independent web
browser written in the C programming language.

With a rapid increase in the number of cybersecurity threats, and more appli-
cations moving from the desktop into the web browser, the security of the browser
is more important than ever. The browser is an essential tool for anyone who uses
the web for productivity, communication, entertainment, finance, or a plethora of
other tasks, emphasizing the need to keep it secure.

We will utilize tools and techniques for source code analysis and fuzzing to
search for vulnerabilities in NetSurf. Throughout our research, we will compare
the capabilities of these two methods, and evaluate their performance and us-
ability in different situations. Before going into the practical penetration test, we
will first explain central concepts surrounding penetration testing, source code
analysis, fuzzing, and software vulnerabilities in general.

The findings and experiences from our testing will be used to evaluate and
compare the different tools and techniques in question. We will use these results
in combination with previous research as a background to find answers to our re-
search questions and problem statement. In the end, we will conclude that source
code analysis and fuzzing can complement each other, and the combination of
both techniques can successfully uncover a wide range of bugs and vulnerabilities
in a project like NetSurf.

v

Sammendrag

Målet med denne oppgaven er å utforske hvordan statisk kildekodeanalyse og
fuzzing kan brukes til å avdekke sårbarheter i programmer skrevet i et lavnivåspråk.
I denne oppgaven vil vi gjennomføre en penetrasjonstest av Netsurf, en selvstendig
nettleser skrevet i programmeringsspråket C.

Ettersom antallet trusler innen cybersikkerhet øker, og stadig flere skrivebor-
dsapplikasjoner flyttes inn i nettleseren, er behovet for å sikre nettleseren større
enn noen gang. Nettleseren er et essensielt verktøy for alle som bruker den til
produktivitetsarbeid, kommunikasjon, underholdning, banktjenester og en rekke
andre formål, som tydeliggjør behovet for å sikre den.

Vi skal bruke verktøy og teknikker innen statisk kildekodeanalyse og fuzzing
for å lete etter svakheter i NetSurf. Gjennom denne forskningen skal vi vurdere
disse to metodene ved å sammenligne hvor godt de fungerer i forskjellige situ-
asjoner. Før vi setter igang med den praktiske penetrasjonstestingen skal vi først
forklare sentrale teoretiske konsepter og begreper rundt penetrasjonstesting, statisk
kildekodeanalyse, fuzzing og sårbarheter i programvare.

Vi vil bruke våre funn og erfaringer fra denne testingen til å sammenligne
de forskjellige verktøyene og metodene vi har brukt. Disse resultatene kan brukes
sammen med tidligere forskning som bakgrunn når vi svarer på forskningsspørsmå-
lene og problemstillingen vår. Til slutt vil vi konkludere med at disse to metodene
kan utfylle hverandre godt, og at kombinasjonen av de to kan være effektiv for
å avdekke en rekke forskjellige programvarefeil og sårbarheter i et prosjekt som
NetSurf.

vii

Contents

Preface . iii
Abstract . v
Sammendrag . vii
Contents . ix
Figures . xiii
Tables . xv
Code Listings . xvii
Acronyms . xix
Glossary . xxi
CWE List . xxiv
1 Introduction . 1

1.1 Background . 1
1.2 Purpose . 2
1.3 Target Selection . 3
1.4 Problem Statement . 3
1.5 Research Questions . 4
1.6 Scope . 4
1.7 Thesis Outline . 5

2 Theory . 7
2.1 Penetration Testing . 7

2.1.1 Common Methodologies 7
2.1.2 Penetration Testing Use Cases 8

2.2 Source Code Analysis . 8
2.2.1 Selection of SAST Tools . 9
2.2.2 Advantages of SAST . 9
2.2.3 Disadvantages of SAST . 10

2.3 Fuzzing . 10
2.3.1 Advantages of Fuzzing . 12
2.3.2 Disadvantages of Fuzzing 13

2.4 Vulnerability Overview . 13
2.4.1 Common Vulnerability and Exposures (CVE) 13
2.4.2 Common Weakness Enumeration (CWE) 14
2.4.3 Types of Vulnerabilities . 15
2.4.4 Analysis of Some Relevant CWEs 16

ix

x Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

2.4.5 Program Control . 23
2.4.6 Other Vulnerabilities and Exploits 24

3 Method . 25
3.1 NetSurf and the Build Process . 25
3.2 Working with SAST . 26

3.2.1 Tools . 26
3.2.2 Required Setup . 28
3.2.3 Managing the Results . 29

3.3 Working with Fuzzing . 30
3.3.1 Tools . 30
3.3.2 Required Setup . 30
3.3.3 Managing the Results . 38

3.4 Responsible Disclosure . 40
4 Results . 41

4.1 Source Code Analysis . 41
4.1.1 Snyk . 41
4.1.2 Semgrep . 43
4.1.3 Coverity . 44
4.1.4 Useful Findings . 46
4.1.5 Useless Findings . 52

4.2 Fuzzing . 55
4.2.1 Domato . 55
4.2.2 AFL++ . 57
4.2.3 Findings . 58

4.3 Disclosure of Discovered Vulnerabilities 62
5 Discussion . 63

5.1 Sources of Error . 63
5.1.1 NetSurf Characteristics . 63
5.1.2 Manual Analysis . 64
5.1.3 Usage of SAST Tools . 64
5.1.4 Usage of Fuzzing Tools . 65

5.2 Exploring the Problem Statement 66
5.2.1 Performance and Accuracy of SAST Tools 66
5.2.2 Performance and Accuracy of Fuzzing 67
5.2.3 General Security of the NetSurf Project 68

5.3 Quality of Research . 68
5.4 Future Work . 68

6 Conclusion . 69
Bibliography . 71
A Additional Material . 81

A.1 Initial Findings - Snyk . 81
A.2 Initial Findings - Semgrep . 85
A.3 Initial Findings - Coverity . 90
A.4 Ignore Files . 96

Contents xi

A.5 Nix Flake . 98
A.6 Docker Configuration . 100

Figures

2.1 Magic Quadrant for Application Security Testing [66] 9
2.2 The Binary Fuzzing Pipeline . 11
2.3 CVE Record Lifecycle - From the CVE Website [78] 14
2.4 Example Product Lifecycle - From the CWE Website [80] 15
2.5 Illustration of Stack Frames [83] 19
2.6 Freed Chunks in Tcache Bins . 22
2.7 Linked List of Free Heap Chunks after Reusing One of Them 23
2.8 Output Demonstrating a Use After Free vulnerability 23
2.9 Output from a Double Free . 23

3.1 Screenshot of fuzz-00000.html in netsurf-gtk3 33
3.2 The master section of docker-compose.yml 36
3.3 AFL++ Status Output . 37
3.4 Program Stopped with Abort Signal 39

4.1 Pwndbg Output after a Stack Buffer Overflow 48
4.2 Heap Contents after Copying String to Heap Chunk 49
4.3 Pwndbg Output before Call to textarea_replace_text 50
4.4 Assembly Code for _chain_bloom_generate Displayed in Pwndbg . 51

A.1 Potential Vulnerabilities per Component - Snyk 81
A.2 Potential Medium Vulnerabilities - Snyk 82
A.3 Potential Low Vulnerabilities - Snyk 82
A.4 Potential Vulnerabilities per Component - Semgrep 85
A.5 Potential High Vulnerabilities - Semgrep 85
A.6 Potential Medium Vulnerabilities - Semgrep 86
A.7 Potential Low Vulnerabilities - Semgrep 86
A.8 Potential Vulnerabilities per Component - Coverity 90
A.9 Potential High Vulnerabilities - Coverity 90
A.10 Potential Medium Vulnerabilities - Coverity 91
A.11 Potential Low Vulnerabilities - Coverity 91

xiii

Tables

1 CWE Overview . xxiv

4.1 Overview of Possible Security Vulnerabilities - Snyk 42
4.2 Severity of Possible Security Vulnerabilities - Snyk 42
4.3 Useful SAST Findings - Snyk . 43
4.4 Overview of Possible Security Vulnerabilities - Semgrep 43
4.5 Severity of Possible Security Vulnerabilities - Semgrep 43
4.6 Useful SAST Findings - Semgrep 44
4.7 Overview of Possible Security Vulnerabilities - Coverity 45
4.8 Severity of Possible Security Vulnerabilities - Coverity 45
4.9 Useful SAST Findings - Coverity 46
4.10 Breakdown of the Crashes Discovered by AFL++ 58

xv

Code Listings

2.1 C Code Demonstrating an Integer Overflow 17
2.2 Output Demonstrating an Integer Overflow 18
2.3 C Code Demonstrating a Stack Buffer Overflow 20
2.4 Output Demonstrating a Stack Buffer Overflow 20
2.5 C Code Demonstration of a Use After Free Vulnerability 21
2.6 Python Code Exploiting a Use After Free Vulnerability 22

3.1 Packages Section of flake.nix . 31
3.2 Some Samples from a File Generated by Domato 33
3.3 Bash Script to Process the Files Generated by Domato 34
3.4 AFL-based CC and stdenv Defined in netsurf-nix/default.nix 35
3.5 GDB Backtrace After Opening fuzz-00002.html in NetSurf 38
3.6 fuzz-00002.html Minified . 39

4.1 C Code from idna_encode . 47
4.2 HTML Code Exploiting idna_encode 48
4.3 C Code from gui_get_clipboard . 49
4.4 C Code in _chain_bloom_generate 51
4.5 C Code in fire_dom_keyboard_event 52
4.6 C Code in duk__handle_break_or_continue 53
4.7 C Code in DUK_TVAL_SET_U32 53
4.8 C Code in hlcache_handle_release 53
4.9 C Code for RING_ITERATE_STOP and END 54
4.10 C Code in plot_alpha_bitmap . 54
4.11 Result Statistics from Testing with Domato 55
4.12 Minimal Script that Causes dom_crash/fuzz-00003.html 56
4.13 Minimal Script that Causes dom_crash/fuzz-00016.html 56
4.14 Result Statistics From Testing with Domato, Without JavaScript . . 56
4.15 Example Output from afl-showmap 57
4.16 C Code in box_normalise_table . 58
4.17 C Code in calculate_table_row . 59
4.18 HTML Code Exploiting box_normalise_table 59
4.19 C Code in table_calculate_column_types 59
4.20 HTML Code Exploiting table_calculate_column_types 60

xvii

xviii Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

4.21 C Code in current_node . 60
4.22 HTML Code Exploiting current_node 60
4.23 C Code in textarea_reflow_multiline 61
4.24 HTML Code Exploiting current_node 62

A.1 .snyk File . 96
A.2 .semgrepignore File . 96
A.3 Nix Flake . 98
A.4 Dockerfile to Run AFL++ on NetSurf 100
A.5 Docker Compose Configuration for Running Multiple Instances of

afl-fuzz . 100
A.6 Basic Dockerfile for Debugging an Unmodified NetSurf 101

Acronyms

AFL++ American Fuzzy Lop plus plus. xxi, 5, 11–13, 30, 31, 35–38, 40, 55, 57–
60, 65, 67

ASLR Address Space Layout Randomization. 24

CI/CD Continuous Integration and Continuous Deployment. 8, 28, 64, 66, 69

CLI Command Line Interface. 28

CNA CVE Numbering Authority. 14

CVE Common Vulnerability and Exposures. xix, 13, 14, 40, 62

CVSS Common Vulnerability Scoring System. 14

CWE Common Weakness Enumeration. 14, 15, 24, 29, 30, 41

DOM Document Object Model. 32, 35, 64

GCC GNU Compiler Collection. xxi, 35

GDB GNU Debugger. xxii, 38, 39, 55

GOT Global Offset Table. 22

JOP Jump-Oriented Programming. 24

LOC lines of code. xxi, 4, 41

NVD National Vulnerability Database. 14

NX No-eXecute. 24, 49

PoC Proof of Concept. 5, 7, 14, 30, 40, 62

ROP Return-Oriented Programming. 24

xix

xx Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

SAST static application security testing. 3, 5, 8–12, 15, 26, 27, 29, 30, 38, 41, 42,
44–46, 52, 53, 58, 60, 63–69

XSS Cross-Site Scripting. 47, 56

Glossary

black box a term describing a situation where a (simulated) attacker does not
have any internal knowledge of the target system. 7, 8

breakpoint a configurable point in a program where the debugger will stop exe-
cution [1, p. 33]. 49

clang an LLVM-based c compiler, as an alternative to GCC. 35

compiler a computer program that reads source code and generates an exe-
cutable program. 11, 26, 35, 47, 50–52, 66

core dump a file containing a process’ memory after it terminates unexpectedly
[2]. 38

defect density the amount of vulnerabilities found per X lines of code. 27

Docker virtualization software designed to help developers build, share, and run
container applications [3]. xxi, 30, 36, 37, 62, 67

Docker Compose a tool for orchestrating applications with multiple Docker con-
tainers. 30, 36

fuzzer an application that controls the fuzzing process, such as AFL++. xxii, 10–
13, 30, 32, 35, 37, 38, 65, 67, 68

fuzzing a process that “delivers a large amount of machine-generated inputs as
quickly as possible to the target in order to find some objectives”[4]. v, vii,
xxi, 2–5, 8, 10–13, 30, 35–38, 55, 57, 58, 60, 63–69

GNU Make a tool which controls the generation of executables and other non-
source files of a program from the program’s source files [5]. The Makefile
serves as a “recipe” for compiling and building an application. 25, 26, 28,
31, 35

GTK a free and open source “widget toolkit”, useful for writing graphical user
interfaces. 25, 33, 61

xxi

xxii Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

heap chunk parts of heap memory that has been allocated by malloc or similar
functions [6, p. 2]. xxii, 20, 49, 50

input corpus the pool of files used by a fuzzer to retrieve input files [7]. 11–13,
37, 38, 57, 58, 68

instruction pointer A pointer to the next instruction to execute [8]. 18–20, 24,
48, 49

libc the GNU C Library, which implements all library functions which are specified
by the ISO C standard, and others [9]. 15–17, 20–23, 58, 59

LLVM a collection of modular and reusable compiler and toolchain technologies
[10]. xxi, 35

Nix a purely functional, cross-platform package manager and its corresponding
ecosystem, including the Nix language, nixpkgs repositories and the NixOS
Linux distribution. 26, 28, 30–32, 35, 36, 67

pwndbg a GDB plug-in that improves debugging with GDB [11]. 48, 49

pwntools an exploit development library written in Python, designed for rapid
prototyping and development [12]. 21

stack canary an indicative value added to binaries to ensure that critical stack
values, like the return pointer, are protected from buffer overflow attacks
[13]. 49

stack pointer A pointer to the most recently pushed value on the stack [14]. 18

systemd an software suite for Linux, providing service management, logging,
process control and other system critical features. 38

tcache bin data structure used for keeping track of heap chunks that have been
freed. 20, 22

vulnerability a “flaw in a software, firmware, hardware, or service component
resulting from a weakness that can be exploited, causing a negative impact
to the confidentiality, integrity, or availability of an impacted component
or components” [15]. v, 1–5, 7–10, 12–18, 23, 24, 27–30, 38, 40–45, 47,
49–54, 56, 58, 60–69

weakness “A condition in a software, firmware, hardware, or service component
that, under certain circumstances, could contribute to the introduction of
vulnerabilities” [15]. 14–16, 45, 54

white box a term describing a situation where a (simulated) attacker has com-
plete access to internal details of the target system. 7

xxiii

xxiv Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

CWE List

CWE ID Title
CWE-14 Compiler Removal of Code to Clear Buffers [16]
CWE-20 Improper Input Validation [17]
CWE-22 Improper Limitation of Pathname to a Restricted Directory (“Path Traversal”) [18]
CWE-23 Relative Path Traversal [19]
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer [20]
CWE-120 Buffer Copy without Checking Size of Input (“Classic Buffer Overflow”) [21]
CWE-121 Stack-based Buffer Overflow [22]
CWE-122 Heap-based Buffer Overflow [23]
CWE-125 Out-of-Bounds Read [24]
CWE-131 Incorrect Calculation of Buffer Size [25]
CWE-170 Improper Null Termination [26]
CWE-190 Integer Overflow or Wraparound [27]
CWE-197 Numeric Truncation Error [28]
CWE-252 Unchecked Return Value [29]
CWE-328 Use of Weak Hash [30]
CWE-367 Time-of-Check Time-of-Use (TOCTOU) Race Condition [31]
CWE-369 Divide By Zero [32]
CWE-404 Improper Resource Shutdown or Release [33]
CWE-415 Double Free [34]
CWE-416 Use After Free [35]
CWE-457 Use of Uninitialized Variable [36]
CWE-467 Use of sizeof() on a Pointer Type [37]
CWE-476 NULL Pointer Dereference [38]
CWE-484 Omitted Break Statement in Switch [39]
CWE-561 Dead Code [40]
CWE-563 Assignment to Variable without Use [41]
CWE-606 Unchecked Input for Loop Condition [42]
CWE-676 Use of Potentially Dangerous Function [43]
CWE-775 Missing Release of File Descriptor or Handle after Effective Lifetime [44]
CWE-787 Out-of-Bounds Write [45]
CWE-916 Use of Password Hash With Insufficient Computational Effort [46]

Table 1: CWE Overview

Chapter 1

Introduction

1.1 Background

Software has become an important part of modern society, and just about every in-
dustry, company, and individual uses a wide array of different computer programs
every day. All of these pieces of software are built upon a stack of different tech-
nologies, techniques, and programming languages, and they are generally built to
address a specific problem or use case.

Looking at the Stack Overflow Developer Survey, an annual survey where
around 90.000 software developers from around the world self-report what tech-
nologies they are using at work and for fun, we can see several trends and patterns
in what technologies are in use. One of the largest and most undeniable patterns,
is that the World Wide Web is one of, if not the most important area of software
development today. We can see that over 65% of developers use JavaScript for
work, and over 50% use HTML and CSS in the most recent survey from 2023
[47].

The web browser is one of the core parts of many modern applications, and
is gradually taking over many jobs that native applications used to have. Today,
it is common to edit documents, play video games, and chat with friends directly
in the browser, even allowing entire operating systems like ChromeOS to be built
around the web browser.

On the other end of software development is systems programming, which
can be quite different than web development. In systems programming, you use
lower level languages like C, Zig, and Rust, and work closer to the hardware.
Despite being developed over 50 years ago, C is one of the most widely used
systems programming languages, used by around 16% of professional develop-
ers according to the 2023 Stack Overflow survey [47]. It is a popular choice for
many applications in a wide range of industries, from low-power embedded de-
vices to high-performance servers for business-critical tasks. When writing C, the
programmer is responsible for managing the programs memory. This results in
great performance and freedom, but also responsibility. When writing code with
many complex memory operations, vulnerabilities can be easy to introduce and
difficult to detect.

1

2 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

The number of cybersecurity threats have grown over the last few years and
are expected to keep growing at a fast pace. Threat actors use software vulnerabil-
ities to exploit companies and users for personal gain, in the increasingly lucrative
business of cyber crime [48]. Ensuring that applications and services are secure
is therefore more vital than ever, as the threat landscape adapts and evolves with
emerging technologies, such as Artificial Intelligence (AI) and Large Language
Models (LLMs). To protect against the threat of cyberattacks, we need to know
where the potential vulnerabilities are. This thesis will investigate methods for
finding vulnerabilities, specifically looking at a browser written in C. We will uti-
lize common methods created for this purpose, specifically source code analysis
and fuzzing.

The increasing number of cybersecurity threats has lead to an increased amount
of research and discussion about the topic, both in and outside technical commu-
nities. Research papers regarding cybersecurity have increased by orders of mag-
nitude since 2011 [49]. Regarding the specific field of searching for vulnerabilities
in software, there have been several research papers in the last few years investi-
gating integrating static analysis into the process of fuzzing. Some of these papers
include Static program analysis as a fuzzing aid [50], Shfuzz: A hybrid fuzzing
method assisted by static analysis for binary programs [51], and Hybrid testing:
Combining static analysis and directed fuzzing [52]. However, we have not been
able to find much prior research specifically comparing source code analysis to
fuzzing. Other researchers have used similar techniques when attacking web ser-
vices and APIs using URL fuzzing [53], a technique that has little in common with
our approach to binary fuzzing. Another aspect we have not seen covered in other
research is the possible advantage of using both methods together as a part of the
development process, rather than for penetration testing. This thesis will there-
fore be exploring and comparing these tools when looking for vulnerabilities in
the context of an open source application.

1.2 Purpose

The purpose of this thesis is to explore tools and techniques that can be used to
discover vulnerabilities in software written in systems programming languages
like C. We will describe, use, and evaluate some of these techniques and find out
what tools are the most useful in different circumstances. We will look at source
code analysis and fuzzing, and aim to give a better understanding of how they
work, how to use them, and how they can be effective at finding different types
of software vulnerabilities.

Chapter 1: Introduction 3

1.3 Target Selection

When comparing and analyzing different tools and techniques, the results are
highly dependent on the project we are targeting. Various programming languages,
project structures, coding styles, and types of software can greatly affect what
tools we can use, their performance, and our own performance. We decided to
put down a set of requirements and considerations that could help us select a
target.

We wanted to find a project that is written in a suitable programming lan-
guage, not too small or too large, and able to impact a large number of users.
Regarding programming languages, we wanted to look at a project where differ-
ent code analysis utilities could be the most useful. For static analysis, a strongly
and statically typed language is more suitable than a dynamically typed language,
as every constant and variable has a known type and size, even before compilation
[54]. This rules out everything written in languages like Python or JavaScript, as
types are implied and might change at runtime, making static analysis more dif-
ficult. With a large group of modern languages removed, we are left with more
strongly typed languages like Java, Go, Rust, C++, and C. Out of these languages,
we kept all possibilities open, but with a preference for technologies that we are
familiar working with, mostly C. From experience, we also know that software
written in C are more prone to memory management problems than Rust or Java,
which might make it easier to find vulnerabilities [55].

The other two requirements are more subjective in nature, but equally impor-
tant to choose a good target. In our search, we considered a range of programs in
different styles and categories, from Integrated Development Environment (IDE)s
to web browsers and video streaming utilities. The size of the project is important
to ensure that we have enough varied code to get a representative view of how
our tools handle different sections and styles of code, without having to repeat the
same type of work many times. When looking for vulnerabilities and vulnerability
analysis techniques, we also want to know how our potential findings can impact
users and businesses.

Based on the above criteria, we have decided that NetSurf, an independent
web browser written in C, is the perfect target to demonstrate and evaluate our
set of tools and techniques.

1.4 Problem Statement

This thesis describes our processes and results from investigating how security re-
searchers can discover software vulnerabilities using tools like fuzzing and source
code analysis. To accomplish this, we will perform a penetration test, more specif-
ically a code audit, of some components in NetSurf. We will use static application
security testing (SAST) tools, fuzzing, and a combination of these methods. After
testing, we will evaluate our findings, and compare how the different tools and
techniques fare against different scenarios and vulnerabilities. This should give a

4 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

broader understanding on how a penetration tester can use these tools in combi-
nation for a more effective code audit. With this in mind, we will try to find out if
source code analysis, fuzzing, or a combination of the two can be effective at finding
real vulnerabilities in software written in a systems programming language.

1.5 Research Questions

To elaborate on, and find an answer to our problem statement, we need to target
our testing to help us explore the surrounding topic. These research questions
aim to concretize the specifics of the problem, and allow us to build a factual
background before attempting to answer the problem statement.

RQ1: How effective are source code analysis tools at detecting and
describing security vulnerabilities in NetSurf?

RQ2: How effective is fuzzing at uncovering security vulnerabilities in
NetSurf, in comparison to source code analysis tools? Are the benefits
of fuzzing worth the additional costs?

RQ3: Are we able to find software vulnerabilities in the chosen parts
of the NetSurf web browser project?

1.6 Scope

To focus our work on the most relevant and interesting software components, we
have decided to include the following parts of the NetSurf project in our scope.

• netsurf/netsurf - The main web browser; The core logic of NetSurf, and
all the different frontends.

• netsurf/libhubbub - An HTML5 compliant parsing library
• netsurf/libsvgtiny - An implementation of SVG Tiny for NetSurf
• netsurf/libdom - An implementation of the W3C DOM
• netsurf/libcss - A CSS parser and selection engine

We chose these components because they are highly relevant to the browsers
operations, as well as appearing manageable and understandable. They cover a
substantial part of NetSurf, with the largest component being netsurf, consisting
of over 300.000 lines of code (LOC). We will keep referring to each directory or
component in lowercase, and the NetSurf project stylized in this way, for the rest
of this thesis.

Chapter 1: Introduction 5

1.7 Thesis Outline

The outline and structure of this thesis is based on NTNU’s guide on how you
structure an empirical thesis [56]. This thesis consists of the following six chapters:

1. Introduction - This chapter will describe the background for the thesis
topic, including presenting how we selected our target. This chapter will
also explain the relevance and purpose for conducting our research. We
will then go on to present the problem statement we want to investigate, as
well as the research questions we have chosen to assist us in better under-
standing our problem statement, before setting the scope for our thesis.

2. Theory - In this chapter, we will present and explain the central theoretical
concepts we will utilize in our thesis. We will describe fundamental theory
around the tools we will utilize in our methodology, as well as introducing
concepts these tools rely on to function. This chapter will include the ex-
planation of theories surrounding penetration testing, source code analysis,
and fuzzing, as well as giving an overview of some important types of vul-
nerabilities.

3. Method - This chapter will describe our methodological approach to pen-
etration testing, highlighting how we will use the results from SAST and
fuzzing. We will describe how we set up our working environment to en-
sure reproducibility of our research. This chapter will include the steps for
setting up our SAST tools Snyk, Semgrep, and Coverity, as well as how we
conducted our fuzzing campaigns with Domato and AFL++. It will also
specify how we go about categorizing and analyzing the findings discov-
ered through both static analysis and fuzzing.

4. Results - In this chapter we will provide an analysis of our data by present-
ing, explaining, and evaluating our findings. We will provide an overview of
our findings from both SAST tools and fuzzing, as well as showing statistics
based on these findings. After categorizing the exploitable vulnerabilities,
we will present Proof of Concept exploits for the most important issues, in
addition to pointing out some of the non-exploitable findings presented by
the SAST tools.

5. Discussion - This chapter will include our discussion of the findings and
their implications. Based on our results, we will explain how they can an-
swer our problem statement, in addition to discussing the answers to our
research questions. The chapter will also provide an evaluation of our re-
search, to asses its validity and reliability, including our biases, potential
error sources, and need for further research.

6. Conclusion - In this chapter we will approach a conclusion based on our
results and discussion from the previous chapters.

6 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

Chapter 2

Theory

2.1 Penetration Testing

Penetration testing encapsulates many different tools and techniques that are sim-
ilar to the Tactics, Techniques, and Procedures (TTPs) potential attackers might
use [57]. In essence, penetration testing can be defined as an authorized simu-
lated attack on a computer system to evaluate its security and find vulnerabilities
[58]. In addition, a penetration test might include Proof of Concept (PoC) exploits
to prove and demonstrate that the discovered vulnerabilities are exploitable [59].
A penetration tester could also utilize other methods, such as social engineering
and physical penetration testing, with the goal of compromising a business and
their computer systems [58]. In this thesis, however, we will solely focus on the
technical aspects of penetration testing software.

Penetration testing can be roughly divided into black box and white box testing.
These are defined by how much knowledge the penetration tester has of the tar-
get system [60]. During black box testing, the penetration tester has very limited
knowledge of the system, and must gain understanding of the system by seeing
how it responds to input, often using automated tooling. A more thorough and
complete penetration test can be achieved with black box testing, as it gives the
tester full knowledge of source code, running services, documentation, and what-
ever else might be needed, including information that would not be available to
a real external attacker.

2.1.1 Common Methodologies

While there exists a wide range of different methodologies when it comes to pen-
etration testing, all specialized to handle different targets, they mostly follow the
same format. According to IBM, one of the first and most important parts of a
penetration test is setting the scope [61]. The scope should define when, where,
and how the test will be performed, and an exact definition of the target that will
be tested. The scope includes if it is a black- or white box test, as well as deciding
on tools and techniques to be used. We will use source code analysis, which is a

7

8 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

black box testing method further described in Section 2.2, and fuzzing, which can
be both a black- and white box testing method further described in Section 2.3.

When executing a penetration test it is common to follow a specific set of steps
to ensure that the penetration test follows a set of standards. A typical standard to
follow is the Penetration Testing Execution Standard [62], that encapsulates steps
from intelligence gathering to exploitation. Normally, gathering information about
the target is the first step after pre-engagement, to build a background for laying
a strategic testing plan [63].

As the purpose of this thesis is to compare SAST and fuzzing, the most im-
portant steps for this thesis are intelligence gathering, vulnerability analysis, and
some exploitation [62]. General procedures for responsibly disclosing vulnerabil-
ities are described in Section 2.4.1, and how we plan to disclose our findings is
described in Section 3.4.

2.1.2 Penetration Testing Use Cases

Conducting a penetration test can be a good way to prevent attacks and data
breaches. Having a security testing company properly audit your code base or
infrastructure can be expensive, but is potentially much cheaper than paying ran-
soms, reparations, and fines after an actual attack. A proper penetration test is
much more comprehensive than a simple vulnerability assessment [57]. In many
sectors, such as finance and health care, security audits can also be required by law
or contractual agreements, ensuring public safety by avoiding dangerous attacks.

2.2 Source Code Analysis

Source code analysis is one of the most common methods used in a black box
penetration test. This can be done manually, or using automated static application
security testing (SAST) tools [64]. Using SAST tools is great for scalability, and
excellent at discovering some common vulnerabilities such as buffer overflows
and double frees. They are also very effective at checking software dependencies,
finding known vulnerabilities in the supply chain, to recommend updating or re-
placing third party libraries and utilities. SAST tools are often used by developers
for these purposes, as they can be run often, even automatically in a Continuous
Integration and Continuous Deployment (CI/CD) pipeline, to catch small errors be-
fore they become serious problems in production code.

Automated source code analysis tools can become less accurate in complicated
systems where multiple components interact, making the results more difficult to
predict. This is where manual source code analysis and fuzzing both shine. They
can take a lot of time, but can be very effective at finding complex issues that are
difficult to spot using SAST methods. Using SAST tools are faster than manually
reviewing code, but they can have issues with a large number of false positives
[65]. Even with just a few false positives, a human has to go through the findings
to verify each one, quickly losing some of the time gained by using the SAST tool
in the first place.

Chapter 2: Theory 9

2.2.1 Selection of SAST Tools

The choice of tools depends on the structure and programming language of the
specific application. Different tools also have different rates of false positives, some
are easier to set up than others, and some have significant licensing costs. The
OWASP Foundation’s list of source code analysis tools [64] contains many of the
most used tools for various applications and purposes. It contains several tools that
are specifically aimed at applications written in C, such as Coverity, HCL AppScan,
and CodeSonar.

Another useful source when it comes to selecting the correct tools, is Gartner’s
magic quadrants. Gartner has a specific magic quadrant for many different fields,
including application security testing, as shown in Figure 2.1. While the tools
shown in the figure are not specifically for source code analysis, it can still provide
a good overview over potentially suitable tools.

Figure 2.1: Magic Quadrant for Application Security Testing [66]

2.2.2 Advantages of SAST

Despite the limitations that come with static application security testing, there are
still many of advantages to using it. Most prevalent is the ability to discover poten-
tial vulnerabilities early in the product life-cycle. This is often referred to as Shift

10 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

Left Security, and while not a major part of this thesis, it is still an important reason
for why SAST is a relevant security measure. In short, Shift Left Security revolves
around integrating security earlier in a development lifecycle [67] to enable de-
velopers to address issues early, which reduces overall cost [68]. By implementing
SAST, one becomes more proactive during development, in terms of vulnerabil-
ity management. In addition, Shifting Left may also increase the resiliency and
effectiveness of the code [67].

Another major advantage to SAST is that it is lightweight and efficient. Most of
the time, getting started with a SAST tool is simple and not very time-consuming.
A scan for most modern day SAST tools usually take at most a couple of minutes,
depending on the size of the code base which is being scanned [69].

2.2.3 Disadvantages of SAST

In addition to SAST tools having limitations when it comes to detecting complex
vulnerabilities, it is important to note that they also have other disadvantages. The
most prominent issue that arises when SAST tools are involved, is the amount of
false positives. SAST tools are often missing important context, as they are unable
test the application’s functionality, but rather just analyze the assumed behavior
[65]. A possible consequence of this is that a vulnerability is reported, because
the code contains a potential flaw, even if there is no other code to trigger the
vulnerability in practice. Prior research has shown that using SAST tools to analyze
certain C programs can result in a large number of false positives, even rendering
them equivalent to random guessing [70, p. 18].

Another shortcoming of SAST tools is that they cannot discover runtime issues
[71]. This is mainly a trade-off for being able to use these tools at any stage in
the development process. Since SAST tools are designed to analyze source code,
it is also left blind to configuration errors [72]. Such issues do not manifest from
the source code alone, and can usually not be caught by source code analysis, but
rather through manual review or fuzzing.

2.3 Fuzzing

In addition to the static tools described in the previous sections, we will use
fuzzing, which is a more dynamic approach to explore and exploit a target ap-
plication. On a high level, this means that instead of looking at the source code,
the fuzzer can interact with the target by running the live application and observe
its output. Fuzzing is the most common technique used to automatically discover
software bugs [73]. By working with a compiled target binary, the fuzzing utility
can be more flexible and adaptable to any sort of source, as opposed to SAST tools
which need to be purposely built for each programming language.

One of the most popular tools for this sort of fuzzing is called American Fuzzy
Lop (AFL), originally developed by Michal Zalewski at Google. It uses a new type

Chapter 2: Theory 11

of compiler-based instrumentation and genetic algorithms to generate and dis-
cover clean and interesting test cases, substantially improving the efficiency and
coverage from this type of fuzzing [74]. AFL, and derivatives such as American
Fuzzy Lop plus plus (AFL++), includes a highly optimized and relatively user-
friendly fuzzer and a suite of related utilities aimed at security researchers. AFL++
is an evolution of the original project, with improved tools and techniques that im-
proves performance and quality in almost every step of the process [75].

According to the AFL++ documentation, the process of fuzzing an application
is divided into three steps [76]:

1. Compile the target source code with a special compiler that also prepares
the target for fuzzing, for example by embedding coverage metrics. This
step is called “instrumenting” the target.

2. Prepare the fuzzing by selecting and optimizing the input corpus for the
target. The corpus must be a set of valid input files that can be used by the
target application.

3. Perform the fuzzing of the target. This part is entirely automated, and works
by taking a file from the corpus, randomly mutating it in some way, running
the application on the new file, and observing the output. Crashes and hangs
are recorded and saved, together with the new coverage data, that is also
used as feedback to generate new inputs. This step is illustrated in Figure
2.2.

Figure 2.2: The Binary Fuzzing Pipeline

Given a set of input files and an instrumented binary, AFL++ will try to to
continually modify the input such that all paths, branches, cases, and edge cases
within the program are eventually visited. This can be a resource intensive, but
effective way to discover bugs that SAST, manual unit tests, and integration tests
might have missed.

All of these steps are essential to achieve an efficient fuzzing process. While
most of these steps consists of concepts that might be familiar to most developers,
instrumentation is probably not. Although some fuzzing is possible by analyzing
and modifying existing program binaries, having the source code available and
compiling it yourself makes the entire process easier, and yields better results. The
compiler that ships with AFL++ will, in addition to actually compiling the target,

12 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

embed code that reports its status back to the fuzzer. For most types of fuzzing,
coverage is an essential part of this instrumentation, describing what parts of the
program is actually used and executed in each run. For example, if all executions
until now have taken the false branch of a particular if-statement, and a new
input file causes the true branch to run instead, it means we found a new edge,
a previously unvisited part of the binary. When searching to find as many bugs as
possible, the fuzzer will attempt to visit all of these edges, thus increasing cover-
age.

To build an efficient input corpus, it is imperative to know exactly what that
means. The corpus is, in short, where test cases are stored [7], more specifically
the set of files the fuzzer uses as the basis for new inputs. One should aim to fulfill
a few important criteria when making or finding the files for the corpus. Most
notably, the files should represent typical data that the application would expect
to receive [76], with little overlap or repetition, while retaining a small file size.
While some of these factors seem to be incompatible, like covering the largest
amount of code while keeping the size minimal, AFL++ ships with a suite of tools
to help with building a balanced corpus.

One way to generate a broad corpus is to start with a small sample of good in-
puts, and then programmatically mutate the inputs which are given to the fuzzer.
The mutator will preprocess the corpus by creating new files with slight changes
in the input to increase the covered area [77].

Having many large input files in the corpus takes more time and memory, as
the target will have to go through more data in every one of the many thousands
of executions. Many resources and utilities in the AFL++ project are dedicated
to aid with creating small and efficient corpuses, as it is crucial for good perfor-
mance. The AFL++ project recommends using afl-cmin to trim down the corpus
by removing excess files, followed by afl-tmin to minify each of the remaining
files to be as small as possible [76]. This is very similar to what we ended up doing
in Section 3.3.2 to generate an efficient corpus. In total, this means that the input
corpus should be broad and cover as much of the target functionality as possible,
while remaining compact without repetition or additional noise.

2.3.1 Advantages of Fuzzing

Fuzzing is a type of dynamic analysis that is not dependent on how the source code
is written. This means that it can detect vulnerabilities that are very difficult to
find by reading the source, like complex nested functionality or pointer arithmetic.
The fuzzer does not need to understand what the program attempts to do, it can
simply test inputs and measure the outcome.

Fuzzing automates a lot of the work that would require manual analysis and
review, by trading manual labor for a large amount of computing power. Even
when using techniques like SAST, that already speeds up the process of finding
issues in source code, a lot of work is still required to process and assess the find-
ings they produce. When using fuzzing, you know that all the findings are actual
issues that can occur in the compiled binary, and not false positives originating
from misunderstandings or far-fetched theoretical issues.

Chapter 2: Theory 13

2.3.2 Disadvantages of Fuzzing

While fuzzing can uncover many useful findings, it can still be a complicated and
expensive endeavor. As most types of fuzzing involves some sort of iterative pro-
cess that is continually working through the target, it is inherently resource inten-
sive. A fuzzer might need to execute the target millions of times over the course
of several weeks to test parts of a program, requiring expensive hardware, power,
and time.

A fuzzer like AFL++ relies on feedback from the target, specific details of the
input corpus, and also randomness to generate new inputs, meaning that it is non-
deterministic and unpredictable. As opposed to the predictable nature of a static
analysis tool, where you quickly get a report of the number and types of potential
findings that you need to go through, a fuzzer may not give any output for hours,
days or even weeks between crashes. The user has little control over the focus or
direction of the fuzzer or how long it takes. This makes makes it difficult for a
developer or business to plan or budget towards fuzz testing, as it always comes
with some uncertainty.

Finally, fuzzing can only directly uncover issues that actually lead to practi-
cal problems when running the application. If an application requires user input,
long-running work, interacting with an external system, or other similar features,
it cannot be fuzzed properly without writing a test harness that wraps and sim-
ulates these inputs. Code issues like breaking best practices or style guides, as
well as problems that are not directly reachable, cannot be discovered by fuzzing.
Problems like these should also be fixed, as they might manifest as bugs and vul-
nerabilities in the future, but they can be undetectable by simply running the
compiled binary.

2.4 Vulnerability Overview

In our testing, we are focusing on memory management vulnerabilities, as the
goal of the thesis is to investigate methods for discovering vulnerabilities specifi-
cally in systems programming languages. Exploitation of such vulnerabilities aims
to take advantage of the program logic to leak information or take control of the
program. In this section, we discuss different ways of categorizing and identify-
ing vulnerabilities . We then go on to present some common vulnerabilities and
vulnerability types, to give an idea of the kind of vulnerabilities we will be look-
ing for. For some of the vulnerabilities, we will provide examples of exploitation
techniques, to describe the consequences of successful exploitation.

2.4.1 Common Vulnerability and Exposures (CVE)

The Common Vulnerability and Exposures (CVE) database is a catalog of publicly
known hardware and software vulnerabilities. After finding a vulnerability, one
usually tries to disclose that vulnerability to the vendor, and requesting it to be

14 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

assigned a CVE record1. CVEs are often specific to a certain program, software, or
hardware, and the same CVE is not usually found across different vendors.

In Figure 2.3, the lifecycle of a CVE is shown, from being found, until the
CVE is published or rejected. When filing a CVE, it is important to contact the
correct CVE Numbering Authority (CNA) and request a CVE ID. They will verify
that the submission is filed in accordance with the appropriate requirements and
disclosure policies [78].

Figure 2.3: CVE Record Lifecycle - From the CVE Website [78]

Related Projects

In addition to the CVE database, there are several related projects that ensure vul-
nerabilities are categorized, logged, and published. Similarly to the CVE database,
there is the National Vulnerability Database (NVD). The NVD was created by the
U.S. National Institute of Standards and Technology (NIST), and contains an entry
for every CVE record along with additional resources for PoC exploits, documen-
tation, and publications [79].

Vulnerability databases like CVE and the NVD often use the Common Vulner-
ability Scoring System (CVSS). The CVSS is a scoring system that “can be used
to score the severity of software vulnerabilities” [78]. A higher CVSS number in-
dicates a more severe vulnerability with larger impact, attack surface, or other
worsening quality, without needing to understand the details of the vulnerabil-
ity. These resources are important tools for both penetration testers and unethical
hackers, as well as developers wanting to secure their software from known vul-
nerabilities.

2.4.2 Common Weakness Enumeration (CWE)

Contrary to the CVE database that catalogs concrete vulnerabilities, CWE IDs are
used to map general weaknesses. Rather than presenting and listing exploitable
vulnerabilities, the “Common Weakness Enumeration (CWE) is a community-
developed list of common software and hardware weaknesses” [80]. The main

1Structured data about a Vulnerability associated with a CVE ID

Chapter 2: Theory 15

idea behind keeping a list of all the known weaknesses that could result in vul-
nerabilities is to enable developers to eliminate them before deployment [81].
Getting rid of a potential weakness is usually much easier and cheaper to do in
the early stages of development, rather than having to create patches to fix a vul-
nerability after deployment.

The focus of the CWE list is to act as a preventative measure by assisting with
identification of common vulnerabilities during the process of developing a prod-
uct [81]. As shown in Figure 2.4, the cost of ignoring potential security vulner-
abilities increases the further a product moves in the development process. The
main goal of CWE initiative, according to the CWE Community, is to “stop vulner-
abilities at the source by educating software and hardware acquirers, architects,
designers, and programmers on how to eliminate the most common mistakes be-
fore a product is delivered” [81].

Figure 2.4: Example Product Lifecycle - From the CWE Website [80]

By utilizing CWEs, one can both increase security of a product, as well as re-
duce the potential costs that would arise from having vulnerabilities go unnoticed.
As mentioned in Section 2.2.2, catching these potential vulnerabilities early in the
development life-cycle is favorable, and the CWE initiative assists with uncovering
potential risks early on, if implemented correctly. Several available modern SAST
tools use CWE IDs to map vulnerabilities in a project. This provides developers
with an explanation for why a code snippet triggered a warning.

While CWEs are very useful when organizing findings, it is important to re-
member that the different IDs are not mutually exclusive. For example, a stack
buffer overflow, as will be described in Section 2.4.4, is categorized as CWE-121.
At the same time, it involves writing outside the bounds of a buffer, making it an
out-of-bounds write as well, which is identified by CWE-787.

2.4.3 Types of Vulnerabilities

When discussing software vulnerabilities, we mean any technical flaw resulting
from a weakness that can be exploited, causing a negative impact to the confiden-
tiality, integrity, or availability of the system. While there is a myriad of different
vulnerabilities and categories, we will discuss a few that are particularly relevant
to our research. One common consequence is denial of service, which compro-
mises the availability of a program or system. A relevant example of a denial of
service attack could be a website crashing or freezing a browser.

Some systems implement protections from certain errors, such as libc detecting
an illegal operation like a double free, killing the process. One way to handle these

16 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

situations is with a signal, such as a SIGABRT, which is raised when an exception
is caught. A signal is handled by the operating system, taking control away from
the process before stopping it. Another common signal2 that can be raised when
encountering a fatal problem is a SIGSEGV, often referred to as a “segmentation
fault” or “segmentation violation”. This is caused by the program attempting to
access memory that is restricted or does not exist.

SIGABRTs and segmentation faults often lead to denial of service as the pro-
gram terminates. If a situation leading to a segmentation fault can be controlled
by an attacker, it can often lead to more serious exploitation. This type of exploit
can be the most severe, as it may be escalated and extended to almost any type
of attack, maybe even taking control of the entire computer without the victim
noticing.

2.4.4 Analysis of Some Relevant CWEs

This section will describe five common weaknesses in detail, to provide an idea of
the types of vulnerabilities we are looking for in this thesis. We will explain typical
programming errors like integer overflows and improper null termination as well
as stack and heap based vulnerabilities. Finally, we will discuss some advanced
exploitation techniques for maintaining control of a vulnerable system. The vul-
nerabilities in the following sections are often complex and difficult to avoid.

Fortunately this is not the case for all vulnerabilities. A few examples of this
are division by zero errors (CWE-369), unchecked return values (CWE-252), and
improper input validation (CWE-20). To avoid division by zero errors, the pro-
grammer should check if the denominator is zero before attempting to use it,
and throw an error if it is zero. If this is not done properly, the CPU will raise
a floating point exception signal [82, p. 284], stopping program execution with-
out exiting cleanly. Most library functions return values indicating different types
of successes or errors. These return values should be checked to provide defined
error handling. For input validation, the same return values can often be used.
When input is read using fread, the return value will be the amount of bytes read
into the destination buffer [9, p. 288].

Improper Null Termination (CWE-170)

In C, a string is a data structure defined by the ISO standard as “a contiguous
sequence of characters terminated by and including the first null character” [82,
p. 190]. Such strings are considered null-terminated. Common library functions
such as strcat, strcmp, and strdup use this to decide how many bytes to copy,
compare, and duplicate respectively. The strlen-function counts the number of
bytes from a given address until the next null byte, thus returning the length of
the string. The string length is often used as a parameter to other functions like

2A more complete overview of the different signals and their meanings can be found in the libc
manual [9, p. 728-732].

Chapter 2: Theory 17

malloc, meaning that missing null bytes could have great effects on program ex-
ecution. We will present examples of this later, as copying the incorrect amount
of bytes into a fixed buffer can cause buffer overflows and further problems.

Improper null termination can be avoided by using safe library functions such
as fgets, which automatically null-terminates any input. If manual null termina-
tion is required, the programmer must be very careful to ensure that it is handled
properly. Since this can be complicated and tricky to do manually, libc provides
alternative functions like strncat, strncmp, and strndup to prevent program-
mer mistakes to cause unwanted overflows. Safety is provided by taking an extra
argument n to determine the maximum length to copy, compare, or duplicate,
to avoid writing outside the intended area. Functions like strnlen and strndup
make sure to always null-terminate their target string, safeguarding against both
invalid lengths and missing null termination. It cannot, however, be assumed that
all string functions with a size argument have this functionality. The strncpy-
function, for example, does not [9, p. 110].

Integer Overflow (CWE-190)

An integer overflow can occur when an arithmetic operation on an integer results
in a value larger than the maximum or smaller than the minimum value the integer
type is bound by. To demonstrate this we can attempt to do an addition by adding
200 to 200, using unsigned 8-bit integers. Since these integers consist of 8 bits,
they can hold values from 0 to 255. If we were to add 200 to 200 (each represented
in binary as the 8-bit value 11001000), the result of the arithmetic operation
would be 400 (binary: 110010000). Since the integer can only hold 8 bits, only
the rightmost 8 bits will be stored in memory, which would give the value 144,
rather than the expected 400. This behavior can be used intentionally as a modulo
operation, as long as the program prevents writing the overflowing part of the
value into neighboring memory addresses.

The code and output in Listings 2.1 and 2.2 demonstrate the described integer
overflow. If the code relies on the affected integer being 400, it could crash or
cause new security vulnerabilities. If we were to overflow signed integers instead
of unsigned integers, we would also have to take the sign bit into account. For
example, adding 1 to 127, when stored as a signed 8 bit integer, would result in
127 + 1 = −127, overflowing the variable.

Code listing 2.1: C Code Demonstrating an Integer Overflow

1 #include <stdint.h>
2 #include <stdio.h>
3
4 int main(int argc, char* argv[]) {
5 uint8_t important_number = 200;
6 printf("before addition: %hhu\n", important_number);
7 important_number += 200;
8 printf("after addition: %hhu\n", important_number);
9 return 0;

10 }

18 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

Code listing 2.2: Output Demonstrating an Integer Overflow

$./integer_overflow
before addition: 200
after addition: 144

Vulnerabilities related to integer overflows can be avoided by using macros
like UINT8_MAX to clamp the value, and selecting appropriate integer types for
variables based on their expected values [9, p. 612].

Stack Buffer Overflow (CWE-121)

The stack is an important segment of every process on most modern operating
systems. It is a Last In First Out (LIFO) structure, meaning that new values are
“pushed” onto the top of the stack, and the top value can be “popped” off, without
the ability to read and write values at other positions in the stack. The stack pointer
is used to keep track of the address of the last pushed value [83]. The purpose
of the stack is to store local variables constrained to the scope of each function.
In this section we will explain the stack and how it works, more specifically in
Linux on the AMD64 architecture commonly found in modern computers with
Intel or AMD processors, but the implementation of the stack is similar on other
architectures and operating systems.

For each function call, a new stack frame is created, with enough space for the
local variables in that function. This is demonstrated in Figure 2.5. The required
space for a called function is subtracted from the base pointer and stored in the
new stack pointer, to keep track of the bottom and top of the new stack frame [83].
Local variables are stored close to each other on the stack, and one could imagine
that improper usage of one stack variable can impact neighboring variables.

When a function is called, the state of the previous function must be stored to
be able to proceed from the same place once the function returns. This is done by
storing the caller’s instruction pointer at the top of the previous stack frame, and
the caller’s base pointer at the bottom of the new stack frame. When the called
function returns, these values are loaded back into their appropriate registers,
and the topmost stack frame is popped, resuming execution in the caller. Since
the instruction pointer points to the next instruction to be executed, overwriting
it results in full control of the program execution once the called function returns
[84]. Changing the stored base pointer could also be dangerous, as it is used to
determine the location of the caller’s stack frame which again determines where
to search for variables and the next stored instruction pointer when execution has
been given back to the caller.

A stack buffer overflow involves writing outside of a designated buffer on the
stack. A buffer is a section of contiguous memory, with a fixed size. For example,
the C-code “char text[5]” defines a buffer named “text” with enough room for
5 characters, or bytes. If this code is placed within a function scope, it will be
placed on the stack, within the top section marked “Local Variables” in Figure 2.5.
As described previously in Section 2.4.4, a string is a series of contiguous bytes

Chapter 2: Theory 19

Figure 2.5: Illustration of Stack Frames [83]

terminated by a null byte. When copying a string into a buffer, it is important to
validate that the length of the null-terminated string does not exceed the allocated
length of the buffer.

When the program operates on buffers, either through function calls or regular
instructions, it does not impose any limitations on the size of the buffer, unless this
is explicitly specified by the programmer. Copying the contents of a large buffer
into a smaller buffer will result in data being written past the end of the smaller
destination buffer, essentially “overflowing” that buffer. When data is written to
the memory area of other variables on the stack, the values of these variables will
be changed. As shown in Figure 2.5, the stored instruction pointer is saved on the
stack, somewhere below the local variables. When the top function returns, this
value will be loaded back into the instruction pointer, resuming execution at that
position. This means that a large stack buffer overflow in a local variable can allow
overwriting other variables and then the stored base-, and instruction pointer.

An example of a simple buffer overflow on the stack is shown in Listings 2.3
and 2.4. As we can see, copying the large buffer overwrites the small buffer, and

20 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

places the address of the otherwise unused function where the previous instruc-
tion pointer is stored. This results in the unused function being called once the
vulnerable function returns, demonstrating control of the programs execution.
The required padding of 16 bytes to reach the stored instruction pointer can be
calculated based on the 8 bytes for the small buffer and the 8 bytes for the stored
base pointer between the local variables and the stored instruction pointer.

Code listing 2.3: C Code Demonstrating a Stack Buffer Overflow

1 #include <stdio.h>
2 #include <string.h>
3
4 void unused_function() {
5 puts("This function should never be called!");
6 }
7
8 void vulnerable_function(char* large) {
9 char small[8];

10 strcpy(small, large); // copy the string stored in "large" into "small"
11 return;
12 }
13
14 int main(int argc, char* argv[]) {
15 char large[64];
16 fgets(large, 64, stdin); // read at most 64 bytes into the buffer "large"
17 vulnerable_function(large);
18 return 0;
19 }

Code listing 2.4: Output Demonstrating a Stack Buffer Overflow

$ objdump -t stack_overflow | grep unused_function
0000000000401146 g F .text 0000000000000016 unused_function
$ echo -e "AAAAAAAAAAAAAAAA\x46\x11\x40\x00" | ./stack_overflow
This function should never be called!
zsh: segmentation fault ./stack_overflow

Use After Free (CWE-416)

While the stack is used for local variables with fixed sizes, the heap is used for
dynamically allocated variables that may have varying sizes, such as user input
[9, p. 46]. When required, programmers can allocate heap chunks with specified
sizes, which are used to hold memory until it is no longer needed, upon which the
memory should be freed. Using libc functions, heap chunks can be allocated with
malloc or its derivatives and freed with free from stdlib.h [82, p. 362].

Heap chunks are created using malloc, which returns a pointer to that chunk.
Once the use of a heap chunk is finished, that chunk should be freed, to be stored
into tcache bins for later reuse [6]. However, the pointer returned from malloc
still exists in the variable that was used. If this memory is used again after being
freed, it is called a use after free. This allows an exploit to edit the information
used by libc to keep track of free heap chunks, and influence where new heap
chunks will be created.

Chapter 2: Theory 21

The example in Listing 2.5 demonstrates this with a minimal example in C.
The exploitation technique shown is called tcache poisoning3. For a less cluttered
demonstration, we have linked our binary with glibc 2.314, but the technique still
works very similarly on modern versions of libc.

Code listing 2.5: C Code Demonstration of a Use After Free Vulnerability

1 #include <stdlib.h>
2 #include <string.h>
3 #include <stdio.h>
4
5 void unused_function() {
6 puts("This function should never be called!");
7 }
8
9 char* heap_chunks[2];

10 int chunk_count = 0;
11
12 void create_chunk() {
13 heap_chunks[chunk_count] = malloc(32);
14 chunk_count++;
15 }
16
17 void edit_chunk(int index, char* input) {
18 strncpy(heap_chunks[index], input, 31);
19 }
20
21 void delete_chunk(int index) {
22 free(heap_chunks[index]);
23 // missing heap_chunks[index] = NULL
24 chunk_count--;
25 }
26
27 int main(int argc, char* argv[]) {
28 char input[50];
29 char *action;
30 while(1) {
31 fgets(input, 50, stdin);
32 action = strtok(input, " ");
33 if (strncmp(action, "create", 5) == 0) {
34 create_chunk();
35 } else if (strncmp(action, "edit", 4) == 0) {
36 char* index = strtok(NULL, " ");
37 edit_chunk(atoi(index), strtok(NULL, " "));
38 } else if (strncmp(action, "delete", 6) == 0) {
39 delete_chunk(atoi(strtok(NULL, " ")));
40 }
41 }
42 }

The program in Listing 2.5 stores the heap pointers returned from malloc in
the heap_chunks-array. They are still stored there after being freed in delete_chunk,
and can therefore still be edited using edit_chunk. The script for exploiting the
code in Listing 2.5 can be found in Listing 2.6, where we use python with pwntools
to interact with the program.

3For a more thorough explanation of tcache poisoning, see [85]
4Linking with a custom libc can be done using patchelf [86]

22 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

Code listing 2.6: Python Code Exploiting a Use After Free Vulnerability

1 from pwn import process
2
3 p = process("./use_after_free")
4
5 p.sendline(b"create") # create the first chunk
6 p.sendline(b"create") # create the second chunk
7 p.sendline(b"delete 1") # free the second chunk
8 p.sendline(b"delete 0") # free the first chunk
9 p.sendline(b"edit 0 " + b"\x38\x40\x40".ljust(8, b"\x00")) # edit to point at

↪ fgets@got
10 p.sendline(b"create") # create chunk
11 p.sendline(b"create") # create chunk at the address of fgets@got
12 p.sendline(b"edit 1 " + b"\x16\x12\x40".ljust(8, b"\x00")) # edit fgets@got to

↪ point at unused_function
13
14 p.interactive()

The exploit script first allocates two chunks before deleting them. When they
are freed, the two free chunks are inserted into the linked list of the corresponding
tcache bin. The last chunk to be freed will be placed at the front of the linked list,
with a pointer to the previously freed chunk, as shown in Figure 2.6. When a
chunk with the same size is allocated later, libc will reuse the freed chunk. It then
uses the pointer inside the reused chunk to know where the next free chunk in that
tcache bin is. Since the pointer stored in heap_chunks[0] still points to the first
chunk, this can be edited by the program to control where that chunk is created.

0x22cf2a0 0x0000000000000000 0x00000000000000311.......
0x22cf2b0 0x00000000022cf2e0 0x00000000022ce010 ..,.......,..... ◂— BinType.TCACHE
0x22cf2c0 0x0000000000020000 0x0000000000000000
0x22cf2d0 0x0000000000000000 0x00000000000000311.......
0x22cf2e0 0x0000000000000000 0x00000000022ce010,..... ◂— BinType.TCACHE
0x22cf2f0 0x0000000000000000 0x0000000000000000
0x22cf300 0x0000000000000000 0x000000000001df01 ◂— Top chunk

Figure 2.6: Freed Chunks in Tcache Bins

This gives the attacker the opportunity to edit any writable section of mem-
ory. An exploit could use this to overwrite data in the program’s memory, change
program logic, or take control of the program’s execution flow. When attempting
the latter, a typical target is the Global Offset Table (GOT), which is used to resolve
library functions to their actual memory address at runtime. Listing 2.6 shows
an example exploit that edits the pointer in the last freed chunk to point to the
address of fgets in the GOT.

It then creates a new chunk, causing malloc to expect the next free chunk to
be located at fgets@got, as demonstrated in Figure 2.7. Once that is achieved,
editing a new allocated chunk will change the pointer fgets is resolved to, which
is currently the one on the right in Figure 2.7.

Chapter 2: Theory 23

pwndbg> bins
tcachebins
0x30 [1]: 404038 (fgets@got[plt]) —▸ 0x7f4eccfea630 (fgets)

Figure 2.7: Linked List of Free Heap Chunks after Reusing One of Them

The exploit proceeds to create another “chunk”, now at the address of fgets@got,
and edits this pointer to point at the address of unused_function. The address of
the unused function can be found with the same method shown in Listing 2.4. Now
that fgets@got points to unused_function, any call to fgets will be resolved to
unused_function, resulting in the output seen in Figure 2.8. Since fgets is called
at the start of each iteration of the while loop in main, we know that our new
target will be called some time after edit_chunk returns.

$ python3 uaf_exploit.py
[+] Starting local process ’./use_after_free’: pid 414985
[*] Switching to interactive mode
This function should never be called!

Figure 2.8: Output Demonstrating a Use After Free vulnerability

Double Free (CWE-415)

Another serious heap vulnerability happens when the same memory address is
freed twice without first being allocated as a new chunk. The most severe con-
sequences from this vulnerability are mitigated in later versions of libc. When a
double free happens on modern Linux systems, the program will be stopped with
a SIGABRT signal, as shown in Figure 2.9, limiting the consequences to a denial
of service.

free(): double free detected in tcache 2
Aborted

Figure 2.9: Output from a Double Free

However, the consequences on older or less secure systems can be far more se-
vere. According to MITRE, double free vulnerabilities can provide attackers with
write-what-where gadgets and arbitrary code execution [34], giving them the
same severity as serious use after free vulnerabilities.

2.4.5 Program Control

Previously, we have described how exploits like buffer overflows and use after
frees can be used to affect program flow to call unintended functions, but it might
not be clear why that is useful to an attacker. In the following sections, we will
describe how and why an attacker might want to use these techniques in combi-
nation with crafted payloads to extend the possible consequences into taking and

24 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

keeping control of the attacked system. One common objective is to spawn a shell
on the system, giving the attacker access to run any commands as if they were the
attacked user.

Shellcode

One such technique is using shellcode. This can be done after a stack buffer over-
flow as demonstrated, already in 1996, in Phrack Magazine’s Smashing The Stack
For Fun And Profit [84]. This has since been made harder using techniques such
as No-eXecute (NX) bits and Address Space Layout Randomization (ASLR) [87, p.
10]. The NX-bit is used to control whether a memory section is executable, and
ASLR is used to randomize the base of the binary’s virtual memory address space.
With modern protections, a threat actor might have to change the NX-bit of the
stack and leak a memory address to bypass ASLR, but the main concepts of the
technique remain the same.

Return-Oriented Programming (ROP)

Even when there is no available memory segment that is both writable and exe-
cutable, it is still possible for an threat actor to circumvent these protections and
perform an attack. An example of this is using ROP-chains. ROP-chains chain to-
gether ROP-gadgets to create ROP-attacks. ROP-attacks take advantage of stack
buffer overflows and the ret-instruction on Intel systems to place the addresses
of multiple ROP-gadgets in a sequence on the stack, starting at the address of the
stored instruction pointer. ROP-gadgets consist of code the threat actor would like
the program to execute, followed by a ret-instruction to execute the next gadget.
Every time the program returns, it places the address on top of the stack in the
register for the instruction pointer, calling the next gadget. For many programs,
combining the correct ROP-gadgets gives powerful control of its execution, and
often enough control to create a shell on the target machine [88].

ROP-attacks are viable on other architectures as well, for example on ARM.
On ARM systems, the ret-instruction does not pop the instruction pointer off the
stack, rather loading the previous instruction pointer from a special link register,
making the design of ROP-chains more complicated [89, p. 10]. Instead, it is often
easier to take advantage of ARMs branching instructions in Jump-Oriented Pro-
gramming (JOP) [90]. This involves loading the addresses of ROP-gadgets from
the stack into the correct registers and branching to specific registers. JOP-gadgets
can be chained together similarly to ROP-gadgets, and result in similar levels of
control.

2.4.6 Other Vulnerabilities and Exploits

There are many other vulnerabilities and exploit techniques, in addition to the
ones we have mentioned. Table 1 shows all the relevant CWEs that we have found
in NetSurf from our testing. There are many other vulnerabilities and exploits like
format string vulnerabilities [91] or SigReturn Oriented Programming [92], that
can result in similar program control.

Chapter 3

Method

The goal of this section is to describe how we work with the subject matter to an-
swer our research questions. We will describe our approach to penetration testing
in general, how we will configure our working environment to work with the dif-
ferent tools and techniques we will employ, and how we will process the attained
results. This is important to ensure reproducibility of our research, as well as be-
ing transparent about how we gather, consider, categorize, and use our different
findings. In general, we will use the tools as recommended by their vendors and
other security researchers, and try to establish a common system for using the
results, so the different methods can be compared.

3.1 NetSurf and the Build Process

NetSurf is a cross-platform application built to run on many different UNIX-like
systems, including older systems like RISC OS and AmigaOS, but also modern
UNIXes like Linux and macOS. Although NetSurf includes some features exclusive
to RISC OS, we have landed on a common middle ground using Linux. That means
that we will target building the application with a GTK or framebuffer frontend,
on top of a Linux environment. We do this to create a standardized environment
to get comparable results from all of our testing, and because most of the tools we
use are tested on and optimized for Linux. GTK3 is a free and open source widget
toolkit used to build graphical user interfaces with a standardized look and good
accessibility features. NetSurf can also render its interface using the “framebuffer”
target, where it can draw directly to a display surface without relying on external
graphics libraries or assets. GTK3 is probably the most commonly used and most
user friendly version of NetSurf on Linux, while the framebuffer version is a faster
and simpler build.

To extend this concept of a standardized and controlled environment, we need
a predictable way to build and run NetSurf. NetSurf is a complex project written
in C, and they have created a bespoke build system that configures and builds all
the required libraries and subprojects. Building the application as an end user is
however not complicated at all, as it is abstracted away behind a simple Makefile

25

26 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

for use with GNU Make. This still requires some third party libraries and utilities
to be installed on your system, like make, libgtk, and gperf.

To simplify the install process even further, and to ensure that everyone on our
team is working with identical builds of NetSurf, we decided to use Nix. Nix is a
cross-platform package manager that can be used with their own Linux distribu-
tion NixOS, on top of other Linux distributions like Ubuntu or Arch Linux, or even
on other UNIX-like operating systems like macOS or FreeBSD. Nix packages are
written in a domain specific programming language, also called Nix. This func-
tional programming language lets you define packages and environments with
great control over the build process. A package is defined by its build phases (ac-
tions) and set of inputs, including the actual source code and all of the required
dependencies. The build process, including patching, compilation, and linking, is
done in a sandboxed, virtual environment, such that only the defined inputs can
be used, with no regard for what other tools, packages, and libraries might be
installed on your system. When using our Nix flake to build NetSurf, we know
that we all use the exact same build of every library, compiler, and utility used
to build NetSurf, regardless of the underlying system. This provides reproducibil-
ity, an important factor when finding, documenting and recreating bugs, ensuring
that everyone can access the same exact application.

The previous version of NetSurf was already packaged in nixpkgs1, which
made it easy to build NetSurf 3.11, the latest release at the time of writing. The re-
quired changes mainly consisted of incrementing version numbers, updating the
content hashes, and adjusting some dependencies, and they were immediately
upstreamed into nixpkgs. After NixOS 24.05 is stabilized, anyone should be able
to run “nix-shell -p netsurf.browser”, and have netsurf-gtk3 in their path, ready
to run the latest version of NetSurf. This Nix package serves as a hackable base for
our further research and modification, and lets us tinker with the code and build
tools as we need.

3.2 Working with SAST

3.2.1 Tools

This section describes our suite of SAST tools and how they are configured. We
have chosen an array of different tools, with different advantages, disadvantages,
and business models. These tools aim to fill the same role, but work very differ-
ently to each other. They can for example vary in functionality, user interfaces,
working principles and whether they are cloud-based or run locally.

1https://github.com/NixOS/nixpkgs/blob/nixos-23.11/pkgs/applications/networking/
browsers/netsurf/browser.nix

https://github.com/NixOS/nixpkgs/blob/nixos-23.11/pkgs/applications/networking/browsers/netsurf/browser.nix
https://github.com/NixOS/nixpkgs/blob/nixos-23.11/pkgs/applications/networking/browsers/netsurf/browser.nix

Chapter 3: Method 27

Snyk

Snyk Code is the first SAST tool we will use in our testing. It is a “developer-
first” SAST tool that provides real-time scanning [93]. Snyk Code is a cloud-based
solution which reviews your uploaded source code and then analyzes, tests, and
debugs it, providing a detailed overview over the security vulnerabilities it finds.

Snyk is often used in a commercial environment, which is one of the reasons
we have decided to utilize their tool. They have overall good reviews and are
used by large companies worldwide to test and secure their code [94]. In this
thesis we, utilize the free version of Snyk Code, without access to any of their
“premium features”2. Most of them would however not be useful in our thesis, as
we are only using Snyk to perform source code analysis.

Semgrep

Our second SAST tool, and our only tool with a free and open source engine, is
Semgrep. While Semgrep is still aimed at a commercial audience, it remains open
source and publicly available. Semgrep describes their tool as a “fast, open-source,
static analysis engine for finding bugs, detecting dependency vulnerabilities, and
enforcing code standards” [95]. As the name suggests, coming from “semantic
grep”, semgrep is a text-based system using semantic analysis to understand the
code and match it to a large set of predefined rules to identify bugs and vulnera-
bilities [96].

Coverity

Our final SAST tool is Coverity. Coverity, in particular Coverity Scan, is “a service
by which Synopsys provides the results of analysis on open source coding projects
to open source code developers” [97]. Coverity is Synopsys’s SAST tool, listed in
OWASP’s list of Source Code Analysis Tools3 as specific for C code. Synopsys is
also listed as a leader in Gartners magic quadrant for application security testing
[66], as shown in Figure 2.1. It is also the highest ranking tool in the quadrant.

Coverity provides a clear overview of the issues it finds, as well as displaying
the defect density in the submitted project. With the possibility to assign potential
vulnerabilities to specific team members, Coverity makes it easier for us to both
spread the workload among the members as well as separate the vulnerabilities
into categories that a specific member has more knowledge about. In addition,
Coverity has a reasonable number of classification features which make it easier
to manually rule out false positives that are not already ruled out by Coverity
itself.

2https://snyk.io/plans/
3https://owasp.org/www-community/Source_Code_Analysis_Tools

https://snyk.io/plans/
https://owasp.org/www-community/Source_Code_Analysis_Tools

28 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

3.2.2 Required Setup

In this section we will provide a description of the working environment and the
required steps to use the different tools.

Snyk

To get started with Snyk, you only need to create an account and submit your
code. The code can be uploaded directly in the web interface, or imported from a
repository on GitHub. After importing the repository, Snyk Code will begin scan-
ning the code for security vulnerabilities.

In addition to importing an entire repository, Snyk offers the possibility of
excluding certain files or folders which you do not wish to scan. This is done by
creating a .snyk file and excluding folders using a .gitignore-like syntax, shown
in Appendix A.4. For our testing, we want simplify the review process by excluding
everything outside our scope, following the official documentation4.

Semgrep

Similarly to Snyk, the required setup for getting Semgrep up and running is quite
simple, with the possibility to either scan your code locally, or use Semgrep in your
CI/CD pipelines automatically. For this thesis, we opted for scanning our source
code locally using the Semgrep Command Line Interface (CLI), which only takes
a couple of minutes. We can get started using Semgrep by installing the CLI tool
through pip, signing in with semgrep login, and finally start the scanning with
semgrep ci. When the scan is finished, the results are sent to Semgrep’s servers,
where it is made available in a web interface, similar to Snyk.

Like Snyk, Semgrep has the ability to exclude files with a .semgrepignore file,
similar to a common .gitignore file. By following the official documentation5 we
were able to exclude the same files and folders that we exclude in Snyk, as shown
in Appendix A.4. This is to ensure the tools are scanning the same files, to provide
the most consistent findings.

Coverity

Coverity requires you to build the code you want to scan. Therefore, the required
setup for Coverity is a bit more convoluted than for Snyk and Semgrep, but still
not difficult. As described in Section 3.3.2, we usually use our Nix flake to build
and test NetSurf, but we can still use GNU Make to build NetSurf with its original
build system.

To ensure that Coverity is able to build properly, we first built NetSurf using
the make-command and verified that it runs as expected. Following the setup guide

4https://docs.snyk.io/scan-with-snyk/snyk-code/import-repository-to-snyk/exclud
ing-directories-and-files-from-the-import-process

5https://semgrep.dev/docs/ignoring-files-folders-code/

https://docs.snyk.io/scan-with-snyk/snyk-code/import-repository-to-snyk/excluding-directories-and-files-from-the-import-process
https://docs.snyk.io/scan-with-snyk/snyk-code/import-repository-to-snyk/excluding-directories-and-files-from-the-import-process
https://semgrep.dev/docs/ignoring-files-folders-code/

Chapter 3: Method 29

for Coverity and downloading the Coverity Scan Build Tool for C/C++, we issue
the build command, now through the Coverity Scan Build Tool.

cov-build --dir cov-int make

After the build tool has finished successfully, you can upload the results for
analysis to your project in the Coverity web interface. Whether or not the build
succeeded can be verified by checking the build log with tail ./build-log.txt
and seeing that the build succeeds.

Similarly to Snyk, Coverity allows you to create components to organize the
potential security vulnerabilities based on where they can be found in the project.
This allows us to focus on vulnerabilities found within scope, instead of having
to sort through every potential security vulnerability Coverity uncovers across the
entire project.

3.2.3 Managing the Results

This section will describe how we are going to handle, categorize, evaluate, and
document the potential vulnerabilities found by these SAST tools. This includes
how we are going to handle false positives and how we will present the potential
vulnerabilities. We will keep track of vulnerabilities that might be exploitable by
documenting them in a Kanban board in a repository hosted on a private Gitea
server. This tool has been important for internal planning and timekeeping, but
will not be presented in detail.

In Chapter 4 Results, we will present our findings as a reviewed and organized
compilation of vulnerabilities from each tool. We will list potential vulnerabilities
found in the NetSurf browser, as well as how these security vulnerabilities are
ranked by each tool individually. We will also emphasize any overlaps and dis-
crepancies between the tools, should that be relevant, and evaluate their overall
accuracy.

All of our tools categorize the potential vulnerabilities they find in different
ways, but they all do so by severity and type. We will refer to each type of vul-
nerability by their respective CWE ID and name, as each tool has its own set of
names for different vulnerabilities . When different CWEs are closely related, and
used interchangeably about the same vulnerabilities , we have combined them
into one to make the results more readable. This overview of vulnerability cate-
gories is shown in Table 1 in the CWE List. All the tools do however categorize
their results into low, medium and high severity findings.

When working with SAST tools, handling false positives turned out to be a
large and important task. As mentioned in Section 2.2.3, SAST tools interpret
source code and makes assumptions, which in turn can lead to false positives
[65]. How we are to report false positives in an organized manner was a major
point of discussion when we established this thesis, and we ended up with the
following format in categorizing our findings.

We will not split the findings by false positives and actual vulnerabilities , but
by useful and useless findings. We will put the useless findings aside, as they do

30 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

not lead to actual vulnerabilities or problems that are relevant to a penetration
test. These useless findings will be the findings that are not currently exploitable,
as well as all findings that are unlikely to become vulnerabilities in the future.
We are making this distinction as the terms true and false positives are not suf-
ficient to describe the findings we would like to use during a penetration test. A
SAST tool’s claimed finding may be correct, but if we do not deem it helpful in
reaching increased security, through the methods described in Section 2.1, we will
categorize it as useless.

The useful findings are the findings that are currently vulnerable, or increase
the likelyhood of new vulnerabilities being introduced. We will further categorize
these findings by their respective CWE IDs, and note where a finding could be
represented by more than one CWE.

We will demonstrate the most serious or interesting useful findings through
examples, including the vulnerable code, and a PoC exploit for the most serious
ones. For the useless findings, we will go into detail and showcase some common
issues that best exemplify how the SAST tools struggle when it comes to compre-
hending convoluted code. This will showcase some of the steps we take to confirm
or refute the validity of the findings our SAST tools present, when it comes to the
findings representing a vulnerability or not.

3.3 Working with Fuzzing

3.3.1 Tools

Fuzzing is an entirely different way of finding bugs and vulnerabilities in software.
It works by generating a series of inputs, executing the program and then observ-
ing how the program reacts to it. For this project, we will be working with two
different types of fuzzing; a general binary fuzzer called AFL++, and Domato,
a “fuzzer” specifically for testing web browsers. In addition to these base tools,
we will use Docker, Docker Compose, and Nix to build and automate NetSurf, the
fuzzing tools, and the rest of our working environment.

3.3.2 Required Setup

Build System

As we will get into these types of fuzzing, we are going to need to build and
install NetSurf. We considered the different techniques in question, together with
our goals and objectives, and found that we need several different feature sets
to perform all of our tasks. In total, we found that we need to use these three
different builds to be able to efficiently run our suite of tools:

• A “normal”, graphical browser for user-friendly testing. This would be most
useful in the beginning and for verifying samples of later results with visual
feedback, instead of blindly trusting the results from automated testing.

Chapter 3: Method 31

• The fastest possible version of NetSurf, for manual and automatic tests. This
can be achieved by using framebuffer mode with the “-f ram”-flag to avoid
spawning and maintaining a graphical window, and by modifying the source
code in such a way that NetSurf automatically quits as soon as the page is
finished loading.

• A “fuzzable” build, compiled with AFL++ instrumentation. This will allow
AFL++ to automatically run NetSurf and record coverage data.

With the original buildsystem and Makefiles that ship with NetSurf, we would
have to clear our working environment, modify the browser code to toggle Java-
Script and self-closing, and then rebuild for the appropriate frontend target, when-
ever switching between any of these versions. When doing many iterative changes
to our tests, this would take a lot of time, and would be prone to human error. To
fix this, we modified the Nix-based build system described in Section 3.1, to have
simple options to enable and disable these settings. When a derivation, such as a
package, is built, it is placed in a unique location in the Nix store. This gives us
several advantages over the default build system, most notably that we can use
several different builds at the same time, without them colliding, and that each
step of the build process is cached. Even though netsurf-fb and netsurf-gtk use
different frontends, they use the same HTML parser, PNG renderer, and so on, and
these only have to be built once, saving a lot of time. This package configuration
can be seen in Listing 3.1, an excerpt from the Nix flake shown in full in Appendix
A.5.

24 netsurf-gtk3 = with pkgs; (lib.recurseIntoAttrs
25 (callPackage ./netsurf-nix { })).overrideScope’ (final: pref: {
26 ui = "gtk3";
27 enableDebugging = true;
28 });
29

30 netsurf-fb = with pkgs; (lib.recurseIntoAttrs
31 (callPackage ./netsurf-nix { })).overrideScope’ (final: pref: {
32 ui = "framebuffer";
33 enableDebugging = true;
34 forceEnableScripting = true;
35 });
36

37 netsurf-fb-afl = with pkgs; if (lib.hasSuffix "linux" system) then
38 ((lib.recurseIntoAttrs
39 (callPackage ./netsurf-nix { })).overrideScope’
40 (final: prev: {
41 ui = "framebuffer";
42 enableDebugging = false;
43 exitWhenDone = true;
44 forceEnableScripting = false;
45 stdenv = prev.stdenv_afl;
46 })) else { };

Code listing 3.1: Packages Section of flake.nix

32 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

The options forceEnableScripting and exitWhenDone are created by mod-
ifying the relevant parts of NetSurf’s source code, and putting the changes be-
hind new #ifdef directives. When Nix is building the project, we set a flag in
make that adds the corresponding preprocessor-definitions to conditionally com-
pile with these features. The result is that netsurf-gtk3 is entirely unchanged
from its original codebase, but netsurf-fb-afl automatically quits as soon as
the page finishes loading.

Domato Preparations

When working with a DOM fuzzer, our process consists of generating the input
files, running the application on the given input files, and analyzing the applica-
tions behavior and potential crashes.

For this part of our testing, we wanted to familiarize ourselves with the process
by starting out manually, one test case at a time. We started out with the first step,
and needed to find a way to generate web pages as HTML files that are technically
valid but still likely to hit a wide range of features and edge cases. One of these
tools is Domato, a free software tool by Google Project Zero. Domato consists of a
python application, some templates, and a set of grammar files. It generates a user
specified series of random, but valid files that conform to the specified grammar.
The default configuration describes an HTML file with separate sections for CSS
styling, JavaScript code, and HTML markup, each defined in their own grammar
files. These templates describe a range of valid test files to challenge the DOM
parser, renderer, and JavaScript engine of the browser.

After downloading Domato and installing the required dependencies, we can
run the following commands to generate our initial set of input files:

$ mkdir inputs
$ python generator.py -i 1 -m generate -n 1000 -o inputs

This generated a thousand files numbered as inputs/fuzz-00000.html, fuzz-
00001.html, and so on. We found that a couple hundred to a thousand files cov-
ered all of the interesting behavior described in the default template files. The
template and grammar files describe a wide range of valid HTML markup, CSS
styling and JavaScript code that can make up a website. Domato’s objective is to
cover as many DOM-related features as possible in different sections of the gener-
ated files. These different sections can range from very simple elements like text
paragraphs, to complex systems of SVG graphics with nested paths and shapes.
Listing 3.2 shows an excerpt from the first file, showing the basic structure of the
files generated by Domato.

Chapter 3: Method 33

Code listing 3.2: Some Samples from a File Generated by Domato

<html>
<head>
<style>

#htmlvar00004 { orientation: auto; background-blend-mode: normal; -webkit-mask: url
↪ (#svgvar00005); -ms-text-combine-horizontal: all; border-left: red thick
↪ groove; outline-style: hidden; }

[Several hundred similar lines]

</style>

<script>

/* newvar{htmlvar00001:HTMLTimeElement} */ var htmlvar00001 = document.
↪ getElementById("htmlvar00001"); //HTMLTimeElement

[Several hundred similar lines]

try { var00004.setProperty("-webkit-column-fill", "auto"); } catch(e) { }
try { if (!var00005) { var00005 = GetVariable(fuzzervars, ’SVGPoint’); } else {

↪ SetVariable(fuzzervars, var00005, ’SVGPoint’); } } catch(e) { }
[Several hundred similar lines]

</script>
</head>
<body onload=jsfuzzer()>

<time id="htmlvar00001" datetime="2000-02-01T03:04:05Z" name="fN][kPI#^W(Y+d;29"
↪ muted="muted" classid="'fO"#~|9tSN1*c84}r58" usemap="#htmlvar00003
↪ " itemtype="_:['R](ucPk" width="0">q (!AVIY'T>~</tt>

[Several hundred similar lines]

</body>
</html>

In our initial round of testing, we built and ran netsurf with GTK3 to get some
graphical feedback to show that everything was working. Upon running “netsurf-
gtk3 -v ./fuzzing/inputs/fuzz-00000.html”, a window pops up, showing the net-
surf browser as in Figure 3.1, and our terminal shows some warnings of unsup-
ported JavaScript methods. The output does not look particularly beautiful, as it
is randomly generated by Domato, but shows that the browser reads our file and
processes it without throwing any errors.

x

Figure 3.1: Screenshot of fuzz-00000.html in netsurf-gtk3

34 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

After running NetSurf manually on a couple of these files, we quickly decided
to automate the process to handle the rest of the test cases. We used the bash script
shown in Listing 3.3 to step through the files and sort them into their potential
failure modes.

Code listing 3.3: Bash Script to Process the Files Generated by Domato

#!/usr/bin/env -S nix shell ..#netsurf-fb.browser --command bash

Run NetSurf on each of the files in domato_inputs/, sorting them into
valid, crashing and timeout based on their behavior.
Requires a build of NetSurf with javascript enabled,
and with automatic exit when the page is loaded.

mkdir dom_crash
mkdir dom_timeout
mkdir dom_valid

Number of seconds to wait before killing the process
TIMEOUT=3

CRASH=0
TIMEOUT=0
VALID=0

for inputfile in domato_inputs/fuzz-* ; do
echo "testing $inputfile"
timeout 3 netsurf-fb -f ram "file://$(realpath $inputfile)" 2>&1 >/dev/null
case $? in
Status code for success
"0")
((VALID++))
cp "$inputfile" dom_valid
;;

Status code when "timeout" stops the process
"124")
((TIMEOUT++))
cp "$inputfile" dom_timeout
;;

Any other status codes means that netsurf crashed for some reason
*)
((CRASH++))
cp "$inputfile" dom_crash
;;

esac
done

echo "== Testing complete =="
echo " - $VALID valid"
echo " - $TIMEOUT timed out"
echo " - $CRASH crashed"

Chapter 3: Method 35

AFL++ Preparations

As described in Section 2.3, fuzzing with AFL++ requires us to instrument the
target by compiling it with the custom compiler that comes with the fuzzer.

We made our instrumented binary build of NetSurf by using the existing build
system, but replacing the usual C compiler, GNU Compiler Collection (GCC), with
a special AFL++ version of clang. AFL++ recommends the afl-clang-lto com-
piler, based on the LLVM toolchain, compiling C code down to machine code
with embedded reporting of code coverage, errors, and other information that
the fuzzer can use to analyze the program.

We first tried building NetSurf with the original build system, except swap-
ping out the default compiler with AFL++ itself. Using a non-standard compiler
is usually done by setting the CC and CXX variables when running make. In this
case, however, it seems like make-flags could only affect compilation of the code
found in ./netsurf/, and not the supporting structure like libdom and libhubbub,
which are also important when fuzzing. After building NetSurf with make, afl-fuzz
quickly stated that every single test file caused the same execution path, and that
the fuzzer could not find any new edges. This is probably because the “netsurf
core” was only reading the file, finding out that it was HTML, and then passing it
on to the DOM parser, renderer, CSS library and so on (without instrumentation),
so every one of our test files actually behaved the same in this top level. To work
around this, and actually instrument the entire tech stack bechind NetSurf, we
used Nix again, with the code shown in Listing 3.4.

aflcc = pkgs.wrapCCWith rec {
cc = pkgs.aflplusplus.overrideAttrs (final: prev: {
postInstall = prev.postInstall + ’’
ln -s $out/bin/afl-clang-lto++ $out/bin/cc++
ln -s $out/bin/afl-clang-lto $out/bin/cc

’’;
});
bintools = pkgs.llvmPackages_15.bintools;

};

[...]

stdenv_afl = (with pkgs; overrideCC llvmPackages_15.stdenv aflcc);

Code listing 3.4: AFL-based CC and stdenv Defined in netsurf-nix/default.nix

Here, we have defined a new “standard environment” (stdenv), what Nix calls
the basic build environment for most packages, containing tools such as a C com-
piler, GNU Make, coreutils like ls, cat, mkdir, and tools like patch for working with
source code. As opposed to the GCC, afl-clang-lto is built on clang, a C compiler
based on LLVM. To create our new stdenv, we create a “CC” configuration, which
borrows the linker, archiver, and everything else in “bintools” from LLVM, except
that the actual compiler part is from the AFL++ package. In the last line of Listing
3.4, we take the entire default stdenv from llvmPackages, and keep everything
except the actual compiler, which we replace. When we override the stdenv in

36 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

Listing 3.1, line 43, we enable this change for the netsurf-fb-afl-package only,
while the other packages are built with the default toolchain, usually gcc.stdenv
or llvm.stdenv.

With the package netsurf-fb-afl.browser defined in flake.nix, we are
able to compile a version of NetSurf with AFL++ instrumentation and without
JavaScript, that automatically exits when the page is finished loading. This is a
suitable target for fuzzing, as it will process an HTML file as fast as possible, report
its state back to AFL++ and exit. Fuzzing takes a long time, and an instance of
AFL++ only uses a single CPU core at a time. Because our computers have several
CPU cores, we can make use of AFL++’s ability to run multiple jobs in parallel,
utilizing more of the available compute power for faster fuzzing.

To start running the fuzzing job on our servers, we wanted a setup that is easy
to use on each machine, and decided to use Docker together with Nix to create our
standardized working environment, and Docker Compose to orchestrate several
containers together. We use AFL++ in two different modes of operations, one
master that acts as the central controller that will keep track of the input corpus
and make deterministic checks and changes while fuzzing, and several workers
that receive instructions from the master instance and perform the random fuzzing
[98]. Both of these types of instances run the exact same program, afl-fuzz, but
with slightly different option flags. The AFL++ instances are defined in a simple
Dockerfile shown in Appendix A.4, that only builds the Nix package described
above.

Docker Compose creates the specified containers running the image described
above, while also configuring the network, mounting volumes to supply the input
corpus, and configuring the required settings. The “master” section of the compose
file is shown in Listing 3.2, and the entire file is included in Appendix A.5.

services:
afl-master:
build: .
tmpfs:
- /ramdisk

environment:
- AFL_TMPDIR=/ramdisk

volumes:
- type: bind
source: ./fuzzing/inputs_x
target: /fuzzing/inputs

- type: bind
source: ./fuzz-output
target: /fuzzing/output

network_mode: none
stdin_open: true
tty: true
command: nix-shell -p aflplusplus --command "afl-fuzz -i /fuzzing/inputs -o /

↪ fuzzing/output -e html -M fuzz_master -- /netsurf/result/bin/netsurf-fb
↪ -f ram file://@@"

Figure 3.2: The master section of docker-compose.yml

Chapter 3: Method 37

To start fuzzing on an computer with 8 cores, we just have to install Docker,
clone our repository6, place our corpus into ./fuzzing/inputs_x, and start fuzzing
by running docker compose up -d --build --scale afl-worker=7. This will
build the initial container image, and start one master with 7 additional work-
ers. These instances will communicate with each other and utilize the full power
of the processor for the fastest possible fuzzing.

When afl-fuzz is running, we can connect to its console and the command-
line display shown in Figure 3.3. It shows how long the fuzzing process has been
running, what technique it is currently using, and most importantly, the rate of
new edges, hangs, and crashes. An edge is some conditional path in the program,
like the result of an if-check, switch-statement, or similar. By visiting as many
edges as possible, we gradually visit more of the application. As we hit new edges,
there is a chance that we crash the program, for example by segmentation fault
or failed assertions. When this happens, afl-fuzz will save the HTML file that
caused the problem to a directory so we can inspect it closer.

american fuzzy lop ++4.08c {fuzz_master} (...f/result/bin/netsurf fb) [fast]
process timing overall results

run time : 5 days, 18 hrs, 54 min, 57 sec cycles done : 52
last new find : 0 days, 0 hrs, 1 min, 38 sec corpus count : 24.0k

last saved crash : 0 days, 0 hrs, 2 min, 25 sec saved crashes : 160
last saved hang : 4 days, 17 hrs, 1 min, 22 sec saved hangs : 500+
cycle progress map coverage
now processing : 20.2k.2 (84.1%) map density : 9.39% / 19.03%
runs timed out : 0 (0.00%) count coverage : 6.49 bits/tuple
stage progress findings in depth
now trying : splice 9 favored items : 1015 (6.16%)
stage execs : 51/69 (73.91%) new edges on : 2282 (13.86%)
total execs : 7.67M total crashes : 20 (20 saved)
exec speed : 22.89/sec (slow!) total tmouts : 41.2k (0+ saved)
fuzzing strategy yields item geometry
bit flips : disabled (default, enable with D) levels : 45
byte flips : disabled (default, enable with D) pending : 12.8k
arithmetics : disabled (default, enable with D) pend fav : 5
known ints : disabled (default, enable with D) own finds : 15.1k
dictionary : n/a imported : 8886

havoc/splice : 8375/3.05M, 6893/4.19M stability : 57.64%
py/custom/rq : unused, unused, unused, unused

trim/eff : disabled, disabled [cpu000:100%]
strategy: explore state: in progress

Figure 3.3: AFL++ Status Output

AFL++ will not stop fuzzing on its own, but rather continue iterating over the
input corpus until it is stopped manually. Over time, the fuzzer will cover different
areas of the target application, potentially finding new hangs and crashes. How-
ever, as a larger portion of the possible discoverable issues are found, the rate
of new hangs and crashes must go down. The diminishing returns of extended

6https://github.com/felixalbrigtsen/netsurf-all

https://github.com/felixalbrigtsen/netsurf-all

38 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

fuzzing will make it more efficient to stop fuzzing at some point. This point can
not be known beforehand, but one must use the statistics provided by AFL++, in-
cluding those shown in Figure 3.3, coverage data from tools such as afl-showmap,
and knowledge of the target to judge when fuzzing should be stopped, or when
to move on to an entirely different input corpus. We will get into these specifics
in Section 4.2.2.

3.3.3 Managing the Results

Compared to SAST, we found it more difficult to know what to expect from
fuzzing. For this reason, it was difficult to plan the categories and severities before
starting. To handle and organize the results from both types of fuzzing, we first
need to narrow down where the issue originates by verifying a crash or similar
problem, and building the minimal required steps to reproduce it. This will both
help us in understanding the problem, and is required to file a bug report with
the NetSurf developers.

From our knowledge of the different vulnerability classes described in Section
2.4, we know to be interested in crashes that can come from memory errors like
buffer overflows. For example, if the fuzzer happens to crash with signal 11, it
means a segmentation fault has occurred, caused by some sort of illegal memory
access. That could point to a potentially dangerous vulnerability that could be
used for something malicious like arbitrary code execution.

When a file causes a crash in NetSurf, we can use regular debugging tools to
find out how and why NetSurf crashes. To demonstrate, we can take a look at
the file “fuzz-00002.html”, which crashes with a segmentation fault, and find out
why. We are running Linux, and have enabled the systemd feature that saves the
state of the CPU and execution context whenever an application panics. This core
dump can then be opened in GNU Debugger (GDB) to be inspected.

Code listing 3.5: GDB Backtrace After Opening fuzz-00002.html in NetSurf

$ netsurf-fb -f sdl file://$(pwd)/fuzz-00002.html
[1] 3159726 segmentation fault (core dumped) netsurf-fb -f sdl file://$(pwd)/

↪ fuzz-00002.html
$ coredumpctl gdb
[... gdb output ommited ...]
pwndbg> backtrace
#0 0x00000000005e86f4 in dom_string_byte_length ()
#1 0x00000000005e8732 in dom_string_isequal ()
#2 0x00000000005ece6c in _dom_element_get_attribute_node ()
#3 0x00000000005ec568 in _dom_element_lookup_prefix ()
#4 0x0000000000489dca in dom_node_lookup_prefix (result=0x7fffffff9358, namespace

↪ =<optimized out>, node=<optimized out>)
at /nix/store/eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee-netsurf-libdom-0.4.2/include/dom

↪ /core/node.h:511
#5 dukky_node_lookupPrefix (ctx=0x93b950) at /build/netsurf/Node.bnd:356
#6 0x00000000004fd203 in duk__handle_call_raw (thr=thr@entry=0x93bdb0, idx_func=

↪ idx_func@entry=399, call_flags=<optimized out>, call_flags@entry=8) at
↪ content/handlers/JavaScript/duktape/duktape.c:68357

Chapter 3: Method 39

The GDB command backtrace prints out the call stack, meaning what nested
functions were called leading up to the crash. Here, we can see that the actual
segmentation fault happened in dom_string_byte_length, that was called from
dom_string_isequal, and so on. As function call #6, shown at the bottom of List-
ing 3.5, is a general call to execute some JavaScript, we can see that the top level of
JavaScript was called lookupPrefix. When searching in the original HTML file, we
can see that out of the over 4000 lines of code, only one contains lookupPrefix,
meaning we have probably narrowed down the search to that area. To pinpoint
exactly where the potential bug is, we can now start removing parts of the HTML
file, and check if the program still crashes. We can start out by removing quite
big sections, even several hundred lines at a time, until NetSurf stops crashing or
crashes somewhere else instead. This process requires several minutes of manual
work per file, but eventually leads to a minimal reproducible example of each of
the bugs. However, as we know that NetSurf actually crashes, there is no risk of
this being futile work aimed at a false positive. At the end, we can replace arbi-
trary strings and variable names, like in this case renaming the variable var00033
to a. The resulting HTML file only contains two lines of actual content:

Code listing 3.6: fuzz-00002.html Minified

<html>
<head>
<script>
var a = document.createElementNS("http://www.w3.org/1998/Math/MathML", "mtr");
a.lookupPrefix("b");

</script>
</head>
<body>
</body>
</html>

During our different stages of static and dynamic testing, we have also noticed
that NetSurf contains a series of assert-statements. Assert is a special macro in
C, that verifies that an expression evaluates to true before continuing. If the ex-
pression, for example “base->components.path != NULL” is indeed true, nothing
happens and execution continues as normal. If it evaluates to false, a debug state-
ment is printed to the standard error file, and the program is stopped with an
abort signal, like shown in Figure 3.4.

netsurf-gtk3: utils/nsurl/parse.c:1476: nsurl_join: Assertion ‘base->components.
↪ path != NULL’ failed.

[1] 570343 IOT instruction (core dumped) netsurf-gtk3 file://$(pwd)/
↪ worker_1_crash_18.html

Figure 3.4: Program Stopped with Abort Signal

Because the NetSurf developers have implemented checks, in this case to verify
that the component path actually exists as a non-zero pointer, it is technically
handled. However, it is still a crash that will kill the entire browser, causing denial

40 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

of service, just like a segmentation fault would. We do consider these crashes as
problematic, but not as severe as a segmentation fault, as this has practically zero
potential for arbitrary code execution, leaks, or other attacks besides the denial
of service.

Besides crashes, AFL++ also saves detected hangs separately. An execution is
considered hanging when it has not exited after one second, the default timeout
duration. As the absolute majority of our files, also ones containing several thou-
sand lines of HTML, CSS, and JavaScript, run and exit in under 150 milliseconds,
we think that taking over 6 times longer than that can be a sign of a problem.

3.4 Responsible Disclosure

In the event that we find exploitable vulnerabilities in NetSurf, we need to ensure
that we disclose these vulnerabilities responsibly and correctly. We will practice
what is called responsible or coordinated disclosure for the vulnerabilities we do
find. This is a combination of private and full disclosure, where we will initially
disclose the findings privately to the NetSurf Security Team, before making a full
disclosure once a patch has been released [99]. Because the NetSurf project is
maintained by volunteers in their spare time, we will suggest an embargo of 90-
180 days before releasing the full details to the public.

During our possible disclosure, we will ensure that we provide as much infor-
mation as we can. Providing a good report, with reproducible Proof of Concepts,
makes it easier for NetSurf’s developers to patch the vulnerabilities and speeds
up the entire disclosure process. If applicable, we will apply for CVEs for the rel-
evant vulnerabilities we find, to provide the public with necessary information to
secure their systems. By doing this we follow ethical guidelines for responsible
disclosure, and increase the security of NetSurf for everyone who uses it.

Chapter 4

Results

4.1 Source Code Analysis

In this chapter, we will present how the tools categorized the different vulnera-
bilities, how accurate they were, as well as presenting initial findings for each of
the tools. When we started testing with SAST tools, we immediately noticed how
quickly they were able to process a large code base. NetSurf consists of 587.571
LOC, and all our tools finished scanning in a few minutes. The netsurf compo-
nent consists of a bit more than 300.000 LOC, which is reflected in the fact that
most potential vulnerabilities shown in this chapter come from said component.

In Table 1, we have linked the CWEs with their official description. We also
mapped the vulnerability type from each tool to their corresponding CWE, which
can be see in Appendix A.1, A.2, and A.3. These appendices are used to showcase
the different vulnerabilities and their types, as well as displaying the different
CWEs found by each tool. As mentioned in Section 3.2.3, we will use the CWE
descriptions when presenting the findings in more detail.

Comparing all the tools’ findings together, dismissing CWE-398 and CWE-569,
as we will explain in Section 4.1.3, our tools reported a combined total of 326
possible security vulnerabilities. After comparing the results from each tool with
one another, there were in total 290 unique findings. This was not only because the
tools found the same issues, but also because some of the tools reported the same
issue more than once. We decided to remove these duplicates from the statistics
moving forward, meaning that the percentage of useful findings will appear higher
than what the tools originally reported.

4.1.1 Snyk

Snyk uncovered a total of 106 possible security vulnerabilities. As highlighted in
Table 4.1, the vast majority of these potential vulnerabilities were located within
the netsurf component, making up 104 out of the 106 possible security vulnera-
bilities discovered. Snyk also only assigned a single possible vulnerability with a
“High” severity, as shown in Table 4.2. This is a clear difference to the other tools,
as they were far more likely to assign a vulnerability a high severity rating.

41

42 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

An important thing to note, not only for Snyks results, but also for Semgrep,
is that NetSurf includes some helper utilitities that were included by both SAST
tools. These command line tools are not included in the actual build of the web
browser component of NetSurf itself, but are rather used for code generation and
testing. That means, that even though they are found in the component folders in
our scope, potential vulnerabilities do not affect the security of the application.

Component Amount of Possible Vulnerabilities Percentage
netsurf 104 98.1%

libhubbub 0 0%
libsvgtiny 0 0%

libdom 0 0%
libcss 2 1.9%

Table 4.1: Overview of Possible Security Vulnerabilities - Snyk

Component High Severity Medium Severity Low Severity
netsurf 1 80 23
libcss 0 2 0
Total 1 82 23

Table 4.2: Severity of Possible Security Vulnerabilities - Snyk

Categorizing the Initial Findings

A vast majority of the initial findings presented by Snyk were either false positives
or “useless” in other ways. After thoroughly investigating each finding, and fol-
lowing each step presented by Snyk, we found that only 7 of the 106 findings were
“useful”. This makes up for about 6.6% of all the findings, which turned out to be
the lowest of all our tools. Table 4.3 shows the different useful findings found by
Snyk.

Chapter 4: Results 43

UniqueID CWE Description
SNYK-1 CWE-170 Allocating exactly strlen(str) bytes for a string, such

that it cannot be properly null-terminated.
SNYK-2 CWE-170 Possible improper null termination using strdup, where

it was difficult to track down each usage of the function.
SNYK-3 CWE-170 Possible improper null termination using strcmp, in-

stead of using strncmp.
SNYK-4 – 6 CWE-121 Originally categorized as CWE-170, this is actually a

stack buffer overflow.
SNYK-7 CWE-125 Missing error detection, function should check the re-

turn value of snprintf before using it as an index to
write to.

Table 4.3: Useful SAST Findings - Snyk

4.1.2 Semgrep

Semgrep found a total of 137 potential security vulnerabilities. In contrast to Snyk,
Semgrep categorized 103 potential security vulnerabilites as “High”, making up
75.2% of all the potential vulnerabilities found, as shown in Table 4.5. For Sem-
grep, about 86.9% of all the potential vulnerabilities were located in the netsurf
component.

Component Amount of Possible Vulnerabilities Percentage
netsurf 119 86.9%

libhubbub 0 0%
libsvgtiny 0 0%

libdom 8 5.8%
libcss 10 7.3%

Table 4.4: Overview of Possible Security Vulnerabilities - Semgrep

Component High Severity Medium Severity Low Severity
netsurf 93 22 4
libdom 2 6 0
libcss 8 1 1
Total 103 29 5

Table 4.5: Severity of Possible Security Vulnerabilities - Semgrep

44 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

Categorizing the Initial Findings

Similar to Snyk, most of the findings presented by Semgrep were not very valu-
able. Still, they showcase the potential of SAST tools and what limitations and
challenges they have when it comes to utilizing these tools for security purposes.
In the end, we discovered a total of 6 useful findings, some of which were multi-
ple instances combined into single entries in Table 4.4, making up about 7.9% of
the 139 initial findings. This essentially means that Semgrep was just as effective,
in numbers, at finding potential vulnerabilities as Snyk, but it was slightly more
accurate. Table 4.6 showcases the different useful findings that had some security
implications.

Unique ID CWE Description
SNYK-1 CWE-131 Memory allocation of string length, causing strings

of certain lengths to be improperly null-terminated
(Also found by Snyk).

SEM-1 CWE-14 memset can be optimized out since its argument is
not used later in the same function.

SEM-2 CWE-14 The call to css_bloom_init is optimized out,
memset_explicit should be used instead.

SEM-3 CWE-676 strtok is specified unsafe to call in multi threaded
programs [9, p. 127]. It is used five times in the same
function.

SEM-4 CWE-416 A use after free right before the program is termi-
nated, without any current risk of exploitation.

SEM-5 CWE-125 Memory allocation sizes can be controlled with ac-
cess to the file /etc/mimefiles.

Table 4.6: Useful SAST Findings - Semgrep

4.1.3 Coverity

In total, Coverity uncovered a total of 174 possible security vulnerabilities. The
NetSurf Browser developers have already used Coverity to search for bugs and
vulnerabilities , and these results are publicly available. However, it seems that
they have stopped actively using these tools many years ago, and many newer
changes were never triaged. Out of the 174 total findings, 10 were already marked
as false positives, and 4 were considered intentional choices. We ignored these
findings, and proceeded to go through the remaining 160.

Additionally, Coverity reported security vulnerabilities for CWE-398 and CWE-
569, which are according to MITRE CWE categories and “[...] must not be used
to map to real-world vulnerabilities” [100], [101]. Therefore, we decided to not
directly categorize the items linked with these CWEs as vulnerabilities in this the-
sis, but rather as issues with the code itself, and will not include them in the

Chapter 4: Results 45

statistics of the tool findings. This is based on MITRE’s own explanation of why
CWE Categories should not be used for mapping vulnerabilities, which states that
CWE Categories are informal groupings of different weaknesses that can assist
with data aggregation, navigation, and browsing, but are not weaknesses in them-
selves [100], [101]. CWE-398 is the CWE category for “7PK - Code Quality”, and
CWE-569 is the CWE category for “Expression Issues”.

Removing the potential vulnerabilities linked to CWE-398 and CWE-569, we
were left with 83 potential vulnerabilities that had to be investigated, where
77.1% of them were located in the netsurf component of NetSurf. The distri-
bution of these findings by severity is shown in Table 4.7 and 4.8.

Component Amount of Possible Vulnerabilities Percentage
netsurf 64 77.2%

libhubbub 6 7.2%
libsvgtiny 4 4.8%

libdom 4 4.8%
libcss 5 6%

Table 4.7: Overview of Possible Security Vulnerabilities - Coverity

Component High Severity Medium Severity Low Severity
netsurf 29 33 2

libhubbub 0 1 5
libsvgtiny 1 3 0

libdom 4 0 0
libcss 0 5 0
Total 34 42 7

Table 4.8: Severity of Possible Security Vulnerabilities - Coverity

Categorizing the Initial Findings

In the end, Coverity uncovered a total of 26 useful findings, which is the most out
of all the SAST tools we used. These useful findings make up just over 31.3% of
the 83 potential findings, not counting the discarded findings for CWE-398 and
CWE-569. This is an impressive percentage of useful findings, far ahead of both
Snyk and Semgrep.

46 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

Unique ID CWE Description

COV-1 – 2 CWE-197 Storing epoch time1 in signed 32-bit integers will cause
some functions to break on January 19th, 2038. Coverity
found two instances of this.

COV-3 CWE-197 Storing epoch time in unsigned 32-bit integers will break
one function in year 2106.

COV-4 – 6 CWE-476 A possible NULL pointer dereference, due to missing
checks. Coverity found three instances of this.

COV-7 CWE-476 Function might return a NULL pointer that is immedi-
ately dereferenced.

COV-8 – 9 CWE-561 Unreachable code behind an impossible condition.
COV-10 CWE-561 Unreachable code, as the function has already returned.
COV-11 CWE-252 After calling g_unlink, the return value is not validated
COV-12 CWE-252 Missing error detection for a possible NOMEM error re-

turned by realloc.
COV-13 CWE-561 Unreachable code after an explicit return.
COV-14 CWE-561 An unreachable call to free, which could cause memory

leaks.
COV-15 CWE-404 Potential resource leak, malloced variable goes out of

scope.
COV-16 CWE-404 Small potential resource leak after downloading a file.
COV-17 CWE-119 Out-of-bounds write after allocating the wrong size for

a buffer.
COV-18 CWE-119 Out-of-bounds write after allocating the wrong size for

a buffer.
COV-19 – 26 CWE-561 Checking the expression value from lwc_string

_isequal gives an illusion of error checking and dead
code.

Table 4.9: Useful SAST Findings - Coverity

4.1.4 Useful Findings

Combining the results from all of the SAST tools, we have a total of 41 unique
useful findings. If we compare this number to the total amount of unique findings
by all the SAST tools, this makes up for about 14% of all findings. They range
from programmer mistakes like unreachable code, to big security risks like stack
buffer overflows. Some findings have simple explanations, such as SEM-3, where
the manual pages shows that the strtok function is specified as MT_Unsafe [9, p.
127]. Combining this with the knowledge that NetSurf is multithreaded (MT), we
can determine that this is a security risk. Another example that is easy to confirm
is COV-1 – 2, where time stored in the epoch format in signed 32-bit integers.

Chapter 4: Results 47

This will cause an integer overflow on January 19th, 2038, with the potential
consequences described in Section 2.4.4. While it will not be a problem for many
years, there is no reason to not account for this now, and avoid having to handle
it in the future.

Other findings however, are more complex. In the following sections, we will
take a closer look at SNYK-4 – 6, SEM-2, SNYK-1, and COV-17. SNYK-4 – 6 is a
stack buffer overflow, and the most serious vulnerability found. SEM-2 highlights a
potential issue where the compiler might do optimizations that alter the behavior
of the code. SNYK-1 involves a memory allocation where the size is controlled by
the return value of strlen. COV-17 is an example of a minor out-of-bounds write,
which is often a serious security issue.

Stack Overflow in idna_encode

SNYK-4 – 6 was the most serious of the findings. This is a serious vulnerability,
which makes it concerning that Snyk gave it a very low score, and the other tools
did not detect it at all. It was categorized as improper null termination, stating
that if the input buffer to strncpy is not properly null-terminated, it could cause
vulnerabilities. To find the serious vulnerability we had to do some more inves-
tigation, finding that while the input to strncpy is properly null-terminated, the
length of the source buffer can be controlled by the user.

The code in Listing 4.1 is copied from the idna_encode function in the Net-
Surf source code [102, l. 694-743]. The vulnerability arises from the fact that
idna_encode fully trusts the value of the length argument, without any further
checks. This means that if the function were to be called with a len larger than
256, the fqdn-buffer would be overflowed.

Code listing 4.1: C Code from idna_encode

1 nserror idna_encode(const char *host, size_t len, char **ace_host, size_t *ace_len)
{

2 [...]
3 char fqdn[256];
4 [...]
5 strncpy(fqdn_p, output, output_len);

Snyk was able to find multiple program flows leading to where idna_encode
was called. To reach it, the program calls nsurl_create, which calls nsurl__create
_from_section which then calls idna_encode when parsing the host part of the
URL [103]. nsurl_create keeps track of the correct length of the host string, but
does not impose any limits on it, which can lead to the discussed overflow when
idna_encode is called.

Because fqdn is a stack variable, the exploitation process becomes very similar
to the one described in Section 2.4.4. When NetSurf loads a URL, either through
the address bar, a link or the command line, a call is made to nsurl_create. We
wanted to show how easily a remote threat actor could exploit this vulnerability,
using an embedded link. If a website includes an anchor tag, iframe or other el-
ement with a href or src attribute, for example through an Cross-Site Scripting

48 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

(XSS) attack, the value is parsed with nsurl_create, for example triggering the
exploit shown in Listing 4.2.

Code listing 4.2: HTML Code Exploiting idna_encode

<html lang="en">
<head>

<title>Stack Buffer Overflow</title>
</head>
<body>

<a href="http://
AA
AA
AA
AA
AAAAAAAAAAAAAAAA%49%48%47%46%45%44">link

</body>
</html>

This exploit demonstrates control over the instruction pointer by setting it to
0x444546474849, using the techniques from Section 2.4.4. The correct number of
padding bytes, in this case the 312 “A”-characters, from the start of fqdn to the
stored instruction pointer was found using pwndbg. When viewing this HTML file
in NetSurf, the overflow is triggered, and the result is shown at the bottom of
Figure 4.1, demonstrating control of the instruction pointer.

Thread 1 ’nsgtk2’ received signal SIGSEGV, Segmentation fault.
0x0000444546474849 in ()
LEGEND: STACK | HEAP | CODE | DATA | RWX | RODATA
————————————————[REGISTERS / show—flags off / show—compact—regs off]———————————————
RAX 0x0
RBX 0x6161616161616161 (’aaaaaaaa’)
*RCX 0x555555d90150 ◂— 0x6161616161616161 (’aaaaaaaa’)
*RDX 0x555555d9020f ◂—’

↪ aaa
↪ aaIHGFED’

RDI 0x7fffffffb640 —▸ 0x555555d90150 ◂— 0x6161616161616161 (’aaaaaaaa’)
*RSI 0x7fffffffb5f0 ◂— ’aaIHGFED’
R8 0x0
R9 0x7
R10 0x555555853b80 (no_escape) ◂— 0x0
R11 0x45
R12 0x6161616161616161 (’aaaaaaaa’)
R13 0x6161616161616161 (’aaaaaaaa’)
R14 0x6161616161616161 (’aaaaaaaa’)
R15 0x6161616161616161 (’aaaaaaaa’)
RBP 0x6161616161616161 (’aaaaaaaa’)
RSP 0x7fffffffb620 —▸ 0x555555f68f40 ◂— 0x6161616161616161 (’aaaaaaaa’)
RIP 0x444546474849
—————————————————————————[DISASM / x86—64 / set emulate on]————————————————————————
Invalid address 0x444546474849

Figure 4.1: Pwndbg Output after a Stack Buffer Overflow

Chapter 4: Results 49

Controlling the instruction pointer can give a threat actor access to arbitrary
code execution on the victims machine [22]. Depending on which security mea-
sures are implemented on the victim’s machine, the exploit can also be used for
further escalation of access and privileges. Security measures like stack canaries,
and NX-bits could mitigate the control gained with the stack buffer overflow.

Memory Allocation of String Length in gui_get_clipboard

SNYK-1 was the only vulnerability reported on by more than one tool, as it was
also found by Semgrep. This vulnerability is categorized as low impact, but is still
a verifiable problem that was detected by multiple tools. Snyk linked it to CWE-
170, which seems accurate given the code in Listing 4.3, found in selection.c
in netsurf [104, l. 40]. The return value from strlen is the number of bytes read
before reaching a null character, excluding the null character [82, p. 380]. This
means that for there to be room for the source string and an additional null char-
acter in the allocated heap chunk, the memory allocated is required to have the
size strlen + 1, which is not the case in Listing 4.3.

Code listing 4.3: C Code from gui_get_clipboard

1 static void gui_get_clipboard(char **buffer, size_t *length) {
2 [...]
3 *length = strlen(gtext);
4 *buffer = malloc(*length);
5 [...]
6 memcpy(*buffer, gtext, *length);

The size of any heap chunk must be divisible by 16, with a minimum size of
24 bytes of actual data plus an additional 8 bytes for metadata [6, p. 3]. If we
were to create a chunk with size 32, and then move a string with length 24 into
it, it would not be null-terminated, as shown in Figure 4.22. Carelessly printing
this string would leak the next value on the heap, 0x31. The code in Listing 4.3
is reachable through pasting a value into a web page. Pasting 24 bytes while de-
bugging netsurf in pwndbg, with a breakpoint set in textarea_keypress, gives
the output shown in Figure 4.3. We pasted 24 B’s and, which lead to an addi-
tional byte being appended before passing the string to textarea_replace_text
in textarea_keypress [105].

0x555555e1f140 0x00007fffe8008b80 0x0000000000000021!.......
0x555555e1f150 0x4242424242424242 0x4242424242424242 BBBBBBBBBBBBBBBB
0x555555e1f160 0x4242424242424242 0x0000000000000031 BBBBBBBB1.......

Figure 4.2: Heap Contents after Copying String to Heap Chunk

2While the sections of 8 bytes (16 nibbles) are read from left to right, the contents of each section
of should be read from right to left

50 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

▸ 0x555555736b70 <textarea_keypress+3808> call textarea_replace_text
↪ <textarea_replace_text>

rdi: 0x555555e963d0 ◂— 0x0
rsi: 0x0
rdx: 0x0
rcx: 0x555555e1f150 ◂— ’BBBBBBBBBBBBBBBBBBBBBBBB1’
r8: 0x18
r9: 0x0

Figure 4.3: Pwndbg Output before Call to textarea_replace_text

The appended byte “1” has the ASCII value 0x31, and contains the chunk size
of the next chunk on the heap. Adding any multiple of 16 to 24, below a maximum
heap chunk size limit, would result in another viable length to paste, exploiting the
same vulnerability, as the only requirement is that the heap chunk aligns as shown
in Figure 4.2. This means that the size allocated when exploiting the vulnerability
can be controlled by the attacker, providing more control over which values could
be leaked. A particularly interesting target is the size of the current top chunk,
which can be used by a threat actor to plan allocation sizes of malicious sizes
during heap grooming [106, p. 80]. Fortunately, the length of the pasted string is
currently handled by textarea_keypress, and the memory is not leaked to the
user [105, l. 2450]. Nevertheless, we have included it as a finding as it should be
fixed to avoid future issues caused by careless string handling.

Memset Removal in css_bloom_init

SEM-3 originates when the compiler detects that a call to memset is the last use
of a specific variable. When the compiler encounters an operation, such as the
call to memset within css_bloom_init, that modifies a section of memory that
does not seem to be returned or used again in any way, it may choose to opti-
mize it away. The memset-function is used to clear a section of memory, usually
filling it with zeros. Semgrep claimed that this was happening in many places, and
was correct in this instance. This is demonstrated in Figure 4.4, where we disas-
semble _chain_bloom_generate and look at the underlying code. There, we can
see the absence of a call to css_bloom_init and any code to replace it before the
do-while loop starts at _chain_bloom_generate+19. The code adjacent to the call
to css_bloom_init in _chain_bloom_generate is displayed in Listing 4.4 [107, l.
731],[108, l. 181].

Chapter 4: Results 51

Code listing 4.4: C Code in _chain_bloom_generate

1 static void _chain_bloom_generate(const css_selector *s, css_bloom bloom[
CSS_BLOOM_SIZE]) {

2 css_bloom_init(bloom);
3
4 do {
5 if (s->data.comb == CSS_COMBINATOR_ANCESTOR || s->data.comb ==

CSS_COMBINATOR_PARENT) {
6 const css_selector_detail *d = &s->combinator->data;
7 do {
8 if (d->negate == 0) {
9 _chain_bloom_add_detail(d, bloom);

10 }

pwndbg> disassemble _chain_bloom_generate
Dump of assembler code for function _chain_bloom_generate:

0x000000000024b1b0 <+0>: pxor xmm0,xmm0
0x000000000024b1b4 <+4>: mov r8d,0x1
0x000000000024b1ba <+10>: movups XMMWORD PTR [rsi],xmm0
0x000000000024b1bd <+13>: jmp 0x24b1c9 <_chain_bloom_generate+25>
0x000000000024b1bf <+15>: nop
0x000000000024b1c0 <+16>: test rdi,rdi
0x000000000024b1c3 <+19>: je 0x24b248 <_chain_bloom_generate+152>
0x000000000024b1c9 <+25>: movzx eax,BYTE PTR [rdi+0x30]
0x000000000024b1cd <+29>: mov rdi,QWORD PTR [rdi]
0x000000000024b1d0 <+32>: and eax,0x70
0x000000000024b1d3 <+35>: sub eax,0x10
0x000000000024b1d6 <+38>: test al,0xe0
0x000000000024b1d8 <+40>: jne 0x24b1c0 <_chain_bloom_generate+16>
0x000000000024b1da <+42>: lea rax,[rdi+0x18]
0x000000000024b1de <+46>: jmp 0x24b1ed <_chain_bloom_generate+61>
0x000000000024b1e0 <+48>: cmp BYTE PTR [rax+0x18],0x0
0x000000000024b1e4 <+52>: lea rdx,[rax+0x20]
0x000000000024b1e8 <+56>: jns 0x24b1c0 <_chain_bloom_generate+16>
0x000000000024b1ea <+58>: mov rax,rdx
0x000000000024b1ed <+61>: test BYTE PTR [rax+0x19],0x2
0x000000000024b1f1 <+65>: jne 0x24b1e0 <_chain_bloom_generate+48>

Figure 4.4: Assembly Code for _chain_bloom_generate Displayed in Pwndbg

The compiler was correct that the argument “bloom” was not going to be used
later in css_bloom_init. However, “bloom” was passed to css_bloom_init as a
memory address, and will be used again in css_bloom_generate, at line 9 of List-
ing 4.4. It should therefore not be optimized out. The impact of this vulnerability
is unclear considering the vast amount of possible flows to reach the code in List-
ing 4.4. MITRE describes the possible results as disclosure of potentially sensitive
information as data is not zeroed as expected [16]. To prevent the compiler from
optimizing it out, the call to memset can be changed to a call to memset_explicit
to guarantee safety for the previously used data [82, p. 379].

52 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

Out-of-Bounds Write in fire_dom_keyboard_event

COV-17 is an off-by-one programmer error where a buffer has been allocated one
byte less than it should. The mistake can be seen in Listing 4.5, taken from html.c
[109, l. 176]. The utf8_from_ucs4 function returns the length of the string placed
in the variable utf8, with a maximum value of 6 [110, l. 56].

Code listing 4.5: C Code in fire_dom_keyboard_event

1 bool fire_dom_keyboard_event(dom_string *type, dom_node *target, bool bubbles, bool
cancelable, uint32_t key) {

2 [...]
3 char utf8[6];
4 size_t length = utf8_from_ucs4(key, utf8);
5 utf8[length] = ’\0’;

When utf8[6] is initialized, 6 bytes are reserved on the stack. Since character
arrays are zero-indexed, this makes the first byte accessible with utf8[0], and the
last byte accessible with utf8[5]. In the case that utf8_from_ucs4 were to return
6, the last line in Listing 4.5 would set utf8[6] to 0, causing an out-of-bounds
write. While this is just one byte outside of the allocated bytes, it could influence
the value of short integers or booleans stored there, and potentially change to flow
of the program. As with the vulnerability related to memory allocation of string
length earlier in this section, we have not found any serious consequences from
this small issue. However, it is still a problem that should be fixed, for example by
simply making the utf8 buffer one byte larger.

4.1.5 Useless Findings

While there were many findings that could be used in a penetration test, there
were many false positives and other useless findings. Out of the 290 unique find-
ings, 249 of them were what we categorized as “useless”, making up the remaining
86% of all the findings. As we will demonstrate with a few examples, one strik-
ingly common issue was the tools not understanding preprocessor statements.
Another issue was overreporting, with many different findings being alleged from
the same reported vulnerability.

Misunderstanding Preprocessor Statements

When compiling source code written in a language like C or C++, the compiler
will first run a preprocessor step, that will evaluate statements like #define and
#ifdef, that are only executed during build time and never at runtime. This step
can create powerful macros and conditional code that can be changed before each
build, leading to faster and more compact executables in the end [111]. However,
code that is managed by the preprocessor can be confusing to both humans and
software, like the SAST tools we are using, because the source code can look quite
different to the code that is actually running.

Chapter 4: Results 53

Many examples of SAST tools misunderstanding these can be found in Cover-
itys reporting on duktape.c. On 12 occasions, Coverity claimed to have found an
uninitialized scalar variable, potentially leading to inconsistency or modification
of control flow [36]. However, in each instance preprocessor statements had been
used to initialize this variable shortly before. One example can be seen in Listing
4.6 [112], where Coverity claims tv_tmp is uninitialized on line 78727.

Code listing 4.6: C Code in duk__handle_break_or_continue

78724 duk_tval tv_tmp;
78725
78726 DUK_TVAL_SET_U32(&tv_tmp, (duk_uint32_t) label_id);
78727 duk__handle_finally(thr, &tv_tmp, lj_type);

In this example tv_tmp has been initialized by DUK_TVAL_SET_U32, which is
a preprocessor definition shown in Listing 4.7. The address of tv_tmp is placed
in duk__tv, which is then used to initialize it. All of Coverity’s 12 findings with
uninitialized scalar variables in duktape.c were related to these definitions, with
DUK_TVAL_SET_OBJECT, DUK_TVAL_SET_STRING, and DUK_TVAL_SET_BUFFER being
just a few examples. How this affected our process operating with SAST tools will
be discussed in Chapter 5 Discussion.

Code listing 4.7: C Code in DUK_TVAL_SET_U32

1 #define DUK_TVAL_SET_U32(tv, val) \
2 do { \
3 duk_tval *duk__tv; \
4 duk__tv = (tv); \
5 duk__tv->t = DUK_TAG_FASTINT; \
6 duk__tv->v.fi = (duk_int64_t) (val); \
7 } while (0)

To demonstrate that this issue is not unique to Coverity, we will also discuss an
example with use after free findings in Snyk. Snyk claims that there is a use after
free happening on line 9 and 12 of Listing 4.8. This happens twice in hlcache.c,
leading to four false positives [113, l. 745].

Code listing 4.8: C Code in hlcache_handle_release

1 } else {
2 RING_ITERATE_START(struct hlcache_retrieval_ctx, hlcache->retrieval_ctx_ring,

ictx) {
3 if (ictx->handle == handle && ictx->migrate_target == false) {
4 llcache_handle_abort(ictx->llcache);
5 llcache_handle_release(ictx->llcache);
6 RING_REMOVE(hlcache->retrieval_ctx_ring, ictx);
7 free((char *) ictx->child.charset);
8 free(ictx);
9 RING_ITERATE_STOP(hlcache->retrieval_ctx_ring, ictx);

10 }
11 } RING_ITERATE_END(hlcache->retrieval_ctx_ring, ictx);
12 }

The reason these are not actual use after free vulnerabilities is that RING_ITERA-
TE_STOP and RING_ITERATE_END are not functions, but preprocessor macros that

54 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

do not actually use their arguments at runtime. They can both be seen in Listing
4.9 [114, l. 133]. Snyk reports that they are use after free vulnerabilities because
ictx looks like it is passed to a function after it is freed, on line 8 of Listing 4.8.
However, because ictx is passed to a preprocessor definition, this type of logic
never reaches compilation. Instead, RING_ITERATE_STOP(hlcache->retrieval_
ctx_ring, ictx) is replaced with goto iteration_end_ring_ictx, before com-
pilation, and the address or value of ictx is not actually used when “calling”
RING_ITERATE_STOP.

Code listing 4.9: C Code for RING_ITERATE_STOP and END

1 #define RING_ITERATE_STOP(ring, iteratorptr) \
2 goto iteration_end_ring##_##iteratorptr
3 #define RING_ITERATE_END(ring, iteratorptr) \
4 } while (false); \
5 iteratorptr = iteratorptr->r_next; \
6 } while (iteratorptr != ring); \
7 } \
8 iteration_end_ring##_##iteratorptr:

Overreporting

Contributing to the large amount of useless findings were an unnecessary amount
of findings being reported on the same alleged vulnerabilities. Many examples of
this can be found in Semgrep’s reporting of use after free vulnerabilities. For ex-
ample, Semgrep reported 30 use after free vulnerabilities in plot_alpha_bitmap,
based on the assumption that the variable bitmap could have been freed before the
function was called. The code snippet in Listing 4.10 triggered 5 separate findings,
one for each usage of bitmap. The overall result of this was Semgrep reporting 81
use after free findings in total, making the output cluttered, regardless of whether
the findings were actually correct or not. Better methods for reporting this will be
discussed in Chapter 5 Discussion.

Code listing 4.10: C Code in plot_alpha_bitmap

1 static nserror plot_alpha_bitmap(HDC hdc, struct bitmap *bitmap, int x, int y, int
width, int height) {

2 [...]
3 if ((bitmap->width != width) ||
4 (bitmap->height != height)) {
5 NSLOG(plot, DEEPDEBUG, "scaling from %d,%d to %d,%d",
6 bitmap->width, bitmap->height, width, height);
7 bitmap = bitmap_scale(bitmap, width, height);

Another common issue can for example be seen regarding the vulnerability
described in Section 4.1.4, where many different paths leading to the same root
weakness are reported as individual findings. While this was a somewhat3 useful
finding, Snyk reported on it multiple times. One finding was reported for each

3The reported line was part of a serious vulnerability but not to the extent or for the reason Snyk
claimed.

Chapter 4: Results 55

place it found a call to nsurl_create, potentially leading to the vulnerable code
being executed. This lead to an even larger number of reported findings per vul-
nerability, further cluttering the output and increasing our workload.

4.2 Fuzzing

Our fuzzing results are naturally divided into the results from a one-time execution
of effectively thousands of tests with Domato, and the continuous process of binary
fuzzing with AFL++. As opposed to the static analysis tools, we are not concerned
with false positives or unlikely scenarios, as each of the reported findings, from
both types of fuzzing, are actually confirmed and reproducible hangs or crashes.
This means that our main focus will be on considering the type and impact of each
vulnerability, rather than verifying its validity.

4.2.1 Domato

As described in Section 3.3.2, our fuzzing process began by generating a range
of input files and then manually running and inspecting the first few files that
were generated by Domato. That revealed that a surprisingly large portion of our
files crashed NetSurf, resulting in segmentation faults. To quantify the scale of this
problem, we ran the script as defined and explained in Listing 3.3 on a dataset of
one thousand HTML files, yielding the results shown in Listing 4.11.

Code listing 4.11: Result Statistics from Testing with Domato

== Testing complete ==
- 315 valid
- 75 timed out
- 610 crashed

As we can see, only 31.5% of our original input files were successfully rendered
by NetSurf in under 3 seconds without crashing.

Looking into the new folder of files that cause crashes, we can try to see what
type of errors are generated. We have gone through a sample of these files, and
narrowed them down from around 4000 lines each until we get the smallest files
that will reproduce the same issues with the same backtrace in GDB. As the files
are randomly and independently generated, our selection of the files with the
lowest identifiers are equivalent to a random selection.

In the same vein as Listing 3.5 and 3.6, respectively showing the backtrace
and minimal cause of the crash occurring in fuzz-00002.html, we have looked
into some of these files to get a better understanding of the cause. We found that
most of these problems boiled down to issues in obscure JavaScript functions like
lookupPrefix.

56 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

Code listing 4.12: Minimal Script that Causes dom_crash/fuzz-00003.html

var a = document.createElementNS("http://www.w3.org/2000/svg", "a");
var b = a.classList;
var c = b.value;

Code listing 4.13: Minimal Script that Causes dom_crash/fuzz-00016.html

var a = document.createElement("th");
var b = a.cellIndex;

When going through the backtrace of the various crashes, we can see that al-
most every single one is a variation on just a few different JavaScript functions.
Node.lookupPrefix, Node.classList (as shown in Listing 4.12), and the differ-
ent operations on a HTMLTableCellElement (like the cellIndex in Listing 4.13)
seem to be the most common causes.

As over 60% of our tests lead to crashes, it might indicate that there are many,
potentially dangerous, memory problems in NetSurf. However, we do not believe
that is actually the case. For one, our Domato testing does not reveal 600 differ-
ent vulnerabilities, but rather five to ten different bugs encountered many times.
Even though these problems lead to crashes, we have not been able to exploit
any of them beyond the denial of service effect that naturally follows a crash. The
problems usually consists of null pointer exceptions or a read-loop where illegal
memory is accessed. This means an attacker can use XSS or other initial attack
vectors to crash your browser, potentially losing data, like form data open in an-
other tab. This is still not a severe issue like remote code execution, and we don’t
think it’s possible for an attacker to take control of your computer, steal your in-
formation, or cause any other type of damage.

Another import aspect to note in this context, is that JavaScript support in
NetSurf is still experimental. Their documentation pages state that

At present, NetSurf has only primitive and incomplete support for
JavaScript, which we disable by default. Without JavaScript, NetSurf
is able to provide access to most of sites on the World Wide Web.
Some sites, however, will not display correctly or be unworkable due
to heavy reliance on this standard. [115]

With this in mind, we deem these problems lower risk, as JavaScript has to be
actively enabled.

We wanted to verify that the vast majority of these problems come from the
Duktape JavaScript engine, an experimental feature, by doing the same tests with-
out JavaScript. We ran the same 1000 HTML files on a build of NetSurf without
JavaScript, with the results shown in Listing 4.14.

Code listing 4.14: Result Statistics From Testing with Domato, Without
JavaScript

== Testing complete ==
- 999 valid
- 1 timed out
- 0 crashed

Chapter 4: Results 57

Except for one timeout, we can see that none of the actual crashes originate
from the parts of NetSurf that deal with file loading, HTML parsing, running the
DOM, or rendering, but actually from the Duktape JavaScript engine.

4.2.2 AFL++

After we figured out multi-threaded fuzzing with AFL++, we began fuzzing on a
few of our servers as described in Section 3.3.2, each running a different input
corpus. In total, we have been fuzzing with AFL++ for between 1500 and 2000
core hours, on several servers running Intel Xeon processors from around 2012,
with an estimated average rate of 20-23 executions of NetSurf per second per
core. This is the equivalent of running a quad core CPU of similar speed at full
utilization for two to three weeks.

When fuzzing, we monitored the output from AFL++, and saw a gradual de-
crease in the number of new crashes after a couple of days on each host. Using
the utility afl-showmap bundled with AFL++, we found that this decrease oc-
curred somewhere between 15% and 20% total coverage, where the rate of new
edges started dropping from around 40 to around 20 new edges per hour. A run
of afl-showmap is shown in Listing 4.15. After gathering and evaluating this data
from our first few runs, we stopped subsequent rounds at around 15% coverage,
before starting a new round with a different input corpus.

Code listing 4.15: Example Output from afl-showmap

[*] Reading from directory ’/fuzzing/output/’...
[*] Scanning ’/fuzzing/output/’...
[*] Scanning ’/fuzzing/output/fuzz_0f9550a6487c’...
[*] Scanning ’/fuzzing/output/fuzz_0f9550a6487c/crashes’...
[*] Scanning ’/fuzzing/output/fuzz_0f9550a6487c/hangs’...
[*] Scanning ’/fuzzing/output/fuzz_0f9550a6487c/queue’...
[...]
[*] Scanning ’/fuzzing/output/fuzz_master’...
[*] Scanning ’/fuzzing/output/fuzz_master/crashes’...
[*] Scanning ’/fuzzing/output/fuzz_master/hangs’...
[*] Scanning ’/fuzzing/output/fuzz_master/queue’...
[+] Captured 18786 tuples (map size 98464, highest value 255, total values

47694564875) in ’/dev/null’.
[+] A coverage of 18786 edges were achieved out of 98496 existing (19.07%) with

171823 input files.

When analyzing the output from each of our instances of AFL++, we saw a
total of 725 crashes and 6290 hangs. The crashes are presented in Table 4.10,
where we break down the number of crashes by cause. The majority of these
crashes come from failed assertions, meaning that the situation is handled by
NetSurf, but a significant number of crashes come from severe issues like double
frees and segmentation faults.

58 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

Count Type Cause
402 Abort Assertion failed in nsurl_join
282 Abort Buffer overflow, detected by libc
16 Abort Assertion failed in box_textarea_create_textarea
12 Abort Double free, detected by libc
12 Segmentation Fault Illegal memory accesses described in Section 4.2.3
1 Abort Assertion failed in bitmap_get_width

Table 4.10: Breakdown of the Crashes Discovered by AFL++

Many crashes were duplicates of the same actual problems, for example the
stack buffer overflow in idna_encodewhen creating a URL with nsurl_join caused
more than 100 of the buffer overflows, prompting us to restart that AFL++ process
with a new input corpus to start a new path.

4.2.3 Findings

As described in the previous sections, there were many findings from AFL++ and
Domato, and as they were found with fuzzing, we knew that none were false
positives. The most severe vulnerability found by the SAST tools, the stack buffer
overflow in idna_encode, was also found by AFL++ as described in Section 4.1.4.
When AFL++ finds a crash or a hang, the input file that caused it is placed in the
corresponding output folder. After minimizing and analyzing each of these files,
we got a closer look at how these different problems work. In this section, we will
go into a few of these crashes and why they can occur.

Double Free in box_normalise_table

The first vulnerability AFL++ found was a double free in box_normalise_table. It
is possible that col_info.spans is first freed within box_normalise_table_row_
group, before it is then freed again in line 4 of Listing 4.16 [116, l. 651].

Code listing 4.16: C Code in box_normalise_table

1 static bool box_normalise_table(struct box *table, const struct box *root,
html_content * c) {

2 [...]
3 if (box_normalise_table_row_group(child, root, &col_info, c) == false) {
4 free(col_info.spans);
5 return false;
6 }

The function called in Listing 4.16, box_normalise_table_row_group, calls
box_normalise_table_row, which subsequently calls calculate_table_row. In-
side of calculate_table_row, we find the code in Listing 4.17 [116, l. 83]. From
Listing 4.16, we see that if box_normalise_table_row_group returns false, col_
info.spans will be freed, so it is important that it has not been freed previously.

Chapter 4: Results 59

Code listing 4.17: C Code in calculate_table_row

1 static bool calculate_table_row(struct columns *col_info, unsigned int col_span,
unsigned int row_span, unsigned int *start_column, struct box *cell) {

2 [...]
3 cell_end_col = cell_start_col + col_span;
4 if (col_info->num_columns < cell_end_col) {
5 spans = realloc(col_info->spans, sizeof *spans * (cell_end_col + 1));
6 if (spans == NULL)
7 return false;

The double free can happen because of what happens when realloc is called
with its second argument, size, equal to 0. When this is the case, realloc be-
comes equivalent to free on the first argument, which is col_info.spans [9, p.
49]. The developers might not be aware of this issue, as the if-check before the call
to realloc makes it seem impossible that cell_end_col + 1 evaluates to zero, as
long as col_info->num_columns is at least zero. This is not the case however, as
an integer overflow can happen, as described in Section 2.4.4. If cell_end_col is
0xffffffff on line 4 of Listing 4.17, adding 1 inside the if-check will overflow it to
zero, causing col_info->spans to be freed and the return value to be false, caus-
ing another free. The described integer overflow can be caused by the input file
shown in Listing 4.18. 4294967295 is the decimal representation of 0xffffffff,
the highest value that can be represented by a 32-bit integer.

Code listing 4.18: HTML Code Exploiting box_normalise_table

<html lang="en">
<head>

<title>Double Free</title>
</head>
<body>

<table><th colspan="4294967295"></th></table>
</body>
</html>

When opening this file in netsurf on Linux, libc detects a double free and kills
the process with a SIGABRT. On systems with less protections, the consequences
can be more severe, as described in Section 2.4.4.

Integer Overflow Causing an Out-of-Bounds Write

AFL++ found another integer overflow, with one of them leading to an out-of-
bounds write. This integer overflow originates in table_calculate_column_types
in table.c [117, l. 811], shown in Listing 4.19. If i is “1” and cell->columns is
0xffffffff, the integer overflow will occur, causing a nearly infinite loop.

Code listing 4.19: C Code in table_calculate_column_types

1 bool table_calculate_column_types(const css_unit_ctx *unit_len_ctx, struct box *
table) {

2 [...]
3 i = cell->start_column;
4 for (j = i; j < i + cell->columns; j++) {
5 col[j].positioned = false;
6 }

60 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

This vulnerability can be exploited very similarly to the previous double free,
with colspan=4294967295. The only differences are some extra tags avoiding the
specific flow leading to the realloc, as seen in Listing 4.20. Since j is incremented
almost infinitely, line 5 of Listing 4.19 will eventually access memory outside of
the col-array, causing a segmentation fault.

Code listing 4.20: HTML Code Exploiting table_calculate_column_types

<html lang="en">
<head>

<title>Out-of-bounds write</title>
</head>
<body>

<svg><tr><><th colspan="4294967295">
</body>
</html>

Integer Underflow Causing Out-of-Bounds Read

A similar problem to integer overflows are integer underflows, where a subtrac-
tion causes a value to drop below the lowest representable value, and become
very large instead. AFL++ found one of these underflows, which caused an out-
of-bounds read in current_node, shown in Listing 4.21 [118, l. 1166]. Here,
context.current_node could have been underflowed after a call to handle_in_row,
where its value is decremented by 4[119, l. 78].

Code listing 4.21: C Code in current_node

1166 element_type current_node(hubbub_treebuilder *treebuilder) {
1167 return treebuilder->context.element_stack[treebuilder->context.current_node].

type;
1168 }

The minimized exploit to find this vulnerability was perhaps the most obscure
one, and can be seen in Listing 4.22. Even if the SAST tools would have found
this vulnerability, it is unlikely that we would be able to manually implement a
working exploit, highlighting an advantage of fuzzing. The consequences of this
and the previous out-of-bounds read can be leakage of potentially sensitive data
[24].

Code listing 4.22: HTML Code Exploiting current_node

<html lang="en">
<head>

<title>Out-of-bounds read</title>
</head>
<body>

<table><svg><th><html><td></th><tr>
</body>
</html>

Chapter 4: Results 61

Infinite Loop in textarea_reflow_multiline

This was the only vulnerability found by Domato after disabling JavaScript. It
is less serious than the other vulnerabilities in this section, as it only leads to a
hang, and can not be developed into further control like an out-of-bounds access
potentially could. The vulnerability can be triggered by creating a textarea-tag
with at least 12 bytes of content and its rows-attribute set to 0. When this is the
case, netsurf will expect there to be a row, leading to textarea_reflow_multiline
being called. Parts of the code can be seen in Listing 4.23 [120].

Code listing 4.23: C Code in textarea_reflow_multiline

1 static bool textarea_reflow_multiline(struct textarea *ta, const size_t b_start,
const int b_length, struct rect *r) {

2 [...]
3 do {
4 [...]
5 if (line > scroll_lines && ta->bar_y == NULL) {
6 int h = ta->vis_height - 2 * ta->border_width;
7 if (scrollbar_create(false, h, h, h,
8 ta, textarea_scrollbar_callback,
9 &(ta->bar_y)) != NSERROR_OK) {

10 return false;
11 }
12 [...]
13 restart = true;
14 } else if (line <= scroll_lines && ta->bar_y != NULL) {
15 scrollbar_destroy(ta->bar_y);
16 [...]
17 restart = true;
18 }
19 } while (restart);

Initializing the textarea-tag with enough content and therows-attribute set to
0, causes a scrollbar to be created, as there is not enough room to display the con-
tent in the given number of rows. A side effect of this is scroll_lines being decre-
mented from 0, causing an integer underflow to 0xffffffff. This guarantees that
the if-statement on line 14 of Listing 4.23 evaluates to true on the next iteration,
causing the reverse effect, destroying the scrollbar. Both when a scrollbar is cre-
ated and jdestroyed, restart is set to true, causing the loop to repeat. The even-
tual result is scroll_lines switching back and forth between 0 and 0xffffffff,
causing alternating calls to scrollbar_create and scrollbar_destroy in an in-
finite loop. The program remains unresponsive, pinning a CPU core at full utiliza-
tion, until it is killed with a SIGKILL signal.

The vulnerability appears to be handled in NetSurf with GTK3, meaning that
we have only confirmed that it is exploitable when using the framebuffer frontend.
The exploit also requires the font size on both the html- and body-tag to be lowered
to “smaller”, as shown in Listing 4.24.

62 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

Code listing 4.24: HTML Code Exploiting current_node

<html>
<head>
<style>
html,body {font-size: smaller;}

</style>
</head>
<body>
<textarea rows="0">aaa-bbb-ccc-</textarea>

</body>
</html>

4.3 Disclosure of Discovered Vulnerabilities

Given that we found multiple vulnerabilities in NetSurf, we proceeded with re-
sponsible disclosure of the findings, as planned in Section 3.4. We provided the
NetSurf security team with the Proof of Concepts presented in Section 4.1.4 and
4.2.3, as well as a Dockerfile, which can be seen in appendix A.6. The Docker-
file can be used to create a reproducible and debuggable build of netsurf, which
could be used on any computer and operating system with support for Docker.
We also informed them that we were going to apply for CVEs for the most serious
vulnerabilities, and asked if they had any preferences for how we went about this
process. NetSurf’s security team did not want us to embargo this thesis, allowing
us to make it public right away. We are in the process of reporting these vulnera-
bilities with the proper documentation to MITRE, so they can be assigned official
CVE records.

Chapter 5

Discussion

5.1 Sources of Error

Throughout our research, we have answered our research questions and problem
statement found in Chapter 1 Introduction. We have tried to keep an objective
view on our research, but there are still more factors to consider when reading
our results and conclusions.

5.1.1 NetSurf Characteristics

While we have used a wide array of different tools and techniques in our test-
ing, the application, NetSurf, has stayed the same. That means that our process
and findings might be biased towards the specifics of NetSurf. For example, soft-
ware can be written in a myriad of different programming languages, with wildly
different characteristics and threat models. While NetSurf is written in C, similar
programs could also be written in a more modern systems programming language
like Rust. Such a large difference would drastically change both the type of vul-
nerabilities we are looking for, and what tools we would use. For this reason, our
methods and findings are highly applicable to NetSurf, with the potential devia-
tion gradually increasing the further you stray from NetSurf.

Some other aspects of NetSurf also affect the efficiency of our SAST tools,
like the abundant use of preprocessor statements. In many areas of NetSurf, these
macros make the source code appear very different than the compiled results,
making it more difficult for static analysis tools to understand what will happen
when the program is running. This problem is described in detail in Section 4.1.5,
with examples from NetSurf. This does not affect the fuzzing results at all, since
it operates on the compiled binary, with no regard for how the source code looks.
For other programs written in C, limiting the use of these preprocessor statements
can give the SAST tools a greater advantage with fewer false positives and better
detection of actual vulnerabilities.

When considering whether you should use static analysis or something like
AFL++ for your project, it is also important to consider the amount of work re-

63

64 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

quired to get started with different tools. NetSurf reads URLs and option flags
from the command line, and proceeds to fetch content either from the network or
from a file on disk. This makes it a simple target to fuzz, as we only had to modify
the code to make it exit automatically when the file is loaded and rendered. For
some applications, making the target fuzzable would require a major rewrite. For
example, this would be the case if you are trying to generate network traffic, or
if the application requires a lot of user interaction. Even for NetSurf, we would
probably get a major speed increase by writing a test harness that loaded the file
and passed it through the DOM renderer as fast as possible, instead of spending
time loading settings, bookmarks, browsing history, and so on for every execu-
tion. With NetSurf, it was relatively simple to get a viable fuzzing target, so we
did not go the much more difficult route of writing a new target mode for efficient
fuzzing. For many applications, you would have to create some sort of wrapper or
test harness, increasing the effort required to start fuzzing, potentially by several
orders of magnitude.

5.1.2 Manual Analysis

Working with both SAST tools and fuzzing requires some manual analysis. Fuzzing
requires us to minimize the input files leading to crashes, and determine the source
code causing the vulnerabilities. This process is quite forgiving, as if you remove
the wrong part of the input file, the application will cease crashing. It is also
easier to confirm that our conclusion is correct after determining the location of
a vulnerability.

While fuzzing usually results in clear findings with reproducible crashes, find-
ings from SAST tools may require a lot more work and deeper understanding of
the target code to actually prove and reproduce a bug or vulnerability. This results
in a larger probability of human error leading to uncaught vulnerabilities. After
going through hundreds of false positives and other useless findings, we see the
possibility that we become biased towards dismissing subsequent findings from
SAST tools, even when we actively try to remain objective. This could potentially
have skewed the results further in the direction of SAST tools being ineffective.

5.1.3 Usage of SAST Tools

To provide specific examples on how our usage differs from the typical use cases
for SAST tools, we can emphasize that SAST is often implemented into a CI/CD
pipeline that runs tests automatically. However, we have manually run each of
these tools a single time, in their respective cloud services or locally on our own
computers. Because we have been running one-time intensive runs, rather than a
continuous process to aid development, we found it important to use several SAST
tools instead of choosing one. This choice has shown that there were large and
valuable differences between the different tools and their findings, meaning we
have found considerably more vulnerabilities and problems with this combined

Chapter 5: Discussion 65

technique. This can be seen throughout Section 4.1 and in the appendices, listing
all the findings from each tool.

As described in Section 3.2, we had some problems with the tools reporting
many findings in files outside our scope. This shows that there is a low signal-to-
noise ratio with the default configurations of these SAST tools, requiring a lot of
tuning and filtering with ignore-files to be useful.

With Coverity, a majority of these exclusions were done automatically, as it
does not work by blindly analyzing all the files it can find, but by compiling and
building the project to focus on code that is actually in use. This avoids reporting
useless vulnerabilities in for example test files, dead code files, and other unnec-
essary materials.

5.1.4 Usage of Fuzzing Tools

When applying our results for fuzzing other applications, one must remember
that NetSurf is a fairly small application, at least for a web browser. As described
in Section 5.1.1, NetSurf can natively read its input files from disk, making it
very simple to automate the process of running NetSurf on a generated file. A
consequence of this was that we could run the entire, unmodified application
rather than writing a complicated wrapper. Writing a custom frontend to interact
with NetSurf internals would increase the maximum fuzzing rate, and speed up
the process, but would require a lot more manual labor to set up.

Our fuzzing with Domato was unconventional in the sense that it is not a
fuzzer along the same lines as AFL++. After generating our input files as described
in Section 3.3.2, we opened them in NetSurf and inspected the outputs, instead of
allowing a fuzzer to automatically investigate crashes and search for new edges.
This was extremely efficient at finding JavaScript errors and testing with as much
coverage as possible in one go. However, once JavaScript was disabled, we only
found one hang and zero crashes, and there was no way for Domato to learn from
its findings to increase future efficiency. These results have been very useful to us
when testing a web browser, but might not be easily transferable to other types of
target applications.

In contrast to Domato, AFL++ was able to adapt based on findings, which
might mean that we could have given it even more time than what we described
in Section 4.2.2. It is a continuous process, meaning it could go on for very long
time, on the scale of several weeks or months. Over time, the potential yield will
diminish as the percentage of already covered edges increase, while the cost, in
the form of intensive computing power, remains high. Over time, we will also see
an increased amount of duplicate findings, as the same bugs and vulnerabilities
will be reached in a large number of cases. This also applies to Domato, as it uses
a limited set of grammar rules to create a large number of input files, meaning
there is a large probability of overlapping test cases.

66 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

5.2 Exploring the Problem Statement

In this section, we will explore and approach an answer to each of our research
questions from Section 1.5. The combined results of these will lead to the answer
of our problem statement, which we will present in Chapter 6 Conclusion.

5.2.1 Performance and Accuracy of SAST Tools

RQ1: How effective are source code analysis tools at detecting and
describing security vulnerabilities in NetSurf?

Advantages of working with SAST Tools

Our SAST tools found a total of 41 useful findings, where Coverity reported 63%
of them. One of the main advantages we experienced while working with SAST
tools, especially Coverity, is that they found a lot of code that did not follow best
practices. Pointing out programming mistakes that are not technically errors, and
are not caught by the compiler, but are discouraged due to style guides, security
concerns, and code quality, is very important to developers. One such example was
COV-19 – 26, where potential errors in a preprocessor macro looks to be handled,
but this is not actually the case, and the error handling code is unreachable. While
this is not currently an exploitable vulnerability, it allows writing unsafe code in
the future, leading to new vulnerabilities. Since fuzzing does not have any insight
in the code, it cannot detect these issues, which gives SAST tools a clear advantage
here. If SAST tools are used in a CI/CD context, they can detect and preemptively
avoid some vulnerabilities.

Another advantage is the short runtime, and large number of findings. While
they were not all useful, the SAST tools found significant vulnerabilities almost
instantly, while fuzzing took considerably longer. The process of setting up and
running the SAST tools, as described in Section 3.2, was also quite simple, making
the tools and results more accessible.

Disadvantages of working with SAST Tools

The first disadvantage we noticed was that working with SAST tools consisted of
more heavy manual work than we expected. This was mostly due to the amount
of useless findings that needed to be investigated and removed. The cluttered out-
put we described in Section 4.1.5 contributed to the high workload, and should
probably be avoided by grouping together related vulnerabilities in a more struc-
tured manner. In terms of efficiency, a higher workload is negative as it took more
hours to find the vulnerabilities we found, and a majority of our time was spent
investigating false positives and other useless findings.

Another characteristic leading to more false positives and lower efficiency was
preprocessor statements in the source code confusing our SAST tools, as men-
tioned in Section 4.1.5. The Semgrep team explains that it can be quite simple

Chapter 5: Discussion 67

to create a parser specifically for the C preprocessor statements, however “devel-
oping a parser that simultaneously understands both C/C++ code and its pre-
processor directives is challenging” [121]. Semgrep mentions that “in real-world
scenarios programmers tend to use preprocessor directives in a highly disciplined
manner” [121]. This is not the case in NetSurf, as preprocessor statements are a
very common occurrence across the code base, making it more difficult for source
code analysis tools.

5.2.2 Performance and Accuracy of Fuzzing

RQ2: How effective is fuzzing at uncovering security vulnerabilities in
NetSurf, in comparison to source code analysis tools? Are the benefits
of fuzzing worth the additional costs?

Advantages of Working with Fuzzing

With fuzzing, we were able to identify 6 unique vulnerabilities that are definitely
exploitable, and many other potential problems. Contrary to when we were work-
ing with SAST tools, we were surprised by how little manual effort was required
to process our results after actually running our fuzzers. Each crash or hang re-
port was simple to minimize, and given our access to source code and debug
symbols, we could track them down to specific lines rather quickly. The biggest
positive contributor, however, was the absence of false positives, with each finding
guaranteed to be real, allowing us to prioritize categorizing findings and digging
deeper into their cause. Although we found a relatively low number of exploitable
vulnerabilities through fuzzing, each of the findings are real problems with high
impact.

Disadvantages of Working with Fuzzing

When compared to the SAST tools we have been using, AFL++ and Domato both
required a lot more effort to configure. We needed extensive tooling to get our
fuzzers up and running, including a custom build system with Nix, a scalable
Docker configuration and a lot of automation scripts.

After the initial setup and tuning, most of the manual labor required for fuzzing
was complete. However, we still needed to dedicate a lot of hardware and power
to actually running the fuzzers, which could potentially be quite expensive.

Overall Effectiveness of Fuzzing

Despite requiring many hours of work, deep understanding of NetSurf and its
build system, and powerful hardware, we have definitely found issues and vul-
nerabilities that we would not be able to find without fuzzing.

Fuzzing has provided unique, exploitable findings that would be nearly impos-
sible to discover using automated or manual source code analysis, proving it to be
an essential tool for finding complex vulnerabilities. Particularly AFL++ has pro-
vided us a list of findings entirely without false positives, and a very high average
impact.

68 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

5.2.3 General Security of the NetSurf Project

RQ3: Are we able to find software vulnerabilities in the chosen parts
of the NetSurf web browser project?

We were able to find software vulnerabilities using both SAST tools and fuzzing.
Combined, our methods found a total of 47 useful findings, each taking advantage
of unique vulnerabilities in netsurf. They ranged from best practice violations to
serious vulnerabilities potentially enabling arbitrary code execution.

5.3 Quality of Research

We are able to answer all of our research questions, allowing for a clear conclu-
sion which can be used as a base for future research. To attempt to find useful
results that are applicable to a wide array of similar programs, we chose a suffi-
ciently large project to cover many different characteristics of C programs. Another
contributing factor to the reliability of our research is our usage of three differ-
ent SAST tools as well as two vastly different fuzzing tools. When working with
fuzzing, we also used multiple different input corpuses in an attempt to exhaust
as many paths and edges as possible.

We have found a lot of important technical findings in NetSurf. However, as
this type of software projects includes a large number of different styles, choices,
traits, and characteristics, we understand that our process and results might not be
generally applicable. This means an improvement on our research could have been
made by analyzing more programs, preferably with few similarities to NetSurf.
With more time and resources, we could also have used more SAST and especially
fuzzing tools, to better represent the two categories.

5.4 Future Work

Based on our results and considerations, we believe that our research holds true
for NetSurf, but is not necessarily applicable to other software in general. To ex-
pand on our results, we think the best direction forward would be to perform
similar penetration tests on other software projects. By including other targets,
fuzzers, SAST tools, and methods in our testing, we could gather valuable infor-
mation that would give a better understanding of how these tools and techniques
can be used together in general.

If we had more time to work on this project, we might have expanded our
horizons by looking at another piece of software. By testing one or more additional
applications, preferably with very different characteristics and technologies than
NetSurf, we believe our results could have a greater and more reliable impact
regarding the flexibility and usability of the tools and techniques in question.

Chapter 6

Conclusion
Our goal has been to use our experiences and findings to answer our research
questions to finally shed some light on our problem statement. Any conclusions
described here should be considered alongside the reflections and conditions de-
scribed in Chapter 5 Discussion. The problem statement, as described in Section
1.4 was to investigate if “source code analysis, fuzzing or a combination of the
two can be effective at finding real vulnerabilities in software written in a sys-
tems programming language”. We have determined that each tool can be used
effectively in different circumstances to actually find vulnerabilities, when used
appropriately.

When considering the different vulnerabilities , bugs, and other problems we
have found through our testing, we found it increasingly important to filter out
which issues actually had the largest potential impact. When specifically looking
for dangerous vulnerabilities , as opposed to inconvenient bugs, we have found
fuzzing to be the best tool for the job for an application like NetSurf. We make this
conclusion based on the fact that our fuzzing more efficiently and accurately found
the most serious vulnerability reported by our SAST tools, in addition to other
severe findings that the static analysis failed to uncover. The findings presented
by fuzzing were given with more precision than any SAST tools we utilized, and
all the findings were on average more severe. SAST tools were more efficient in
finding noncompliance with best practices, which help prevent future mistakes
and vulnerabilities . This suggests that SAST tools can be used in a CI/CD context
for this purpose, continuously helping software developers.

In Section 1.1, we described how we could not find any other academic re-
sources describing our specific problem statement. Through our research into this
field, we believe that our methods can be utilized by developers and penetration
testers as an effective step towards finding new vulnerabilities . This combination
has proved very useful for us, and we hope that it can address an existing gap in
academic research as well as being a useful building block in practical applications
of these tools.

Finally, we conclude that a combination of these techniques can yield better
results than each of them individually. Our research suggests that a high level
of security can be achieved by continuously running and following advice from
SAST tools, while periodically using fuzzing to catch more serious vulnerabilities
too complex for the SAST tools to detect.

69

Bibliography

[1] R. Stallman, R. Pesch, and S. Shebs et al., “Debugging with GDB,” Free
Software Foundation Inc., Tech. Rep., Jan. 2002. [Online]. Available: htt
ps://hamblen.ece.gatech.edu/2036/handouts/Fall2012_handouts/g
db-reference.pdf.

[2] Free Software Foundation Inc. “core(5) – Linux manual page.” Accessed
May 19th, 2024. (Dec. 22, 2023), [Online]. Available: https://man7.or
g/linux/man-pages/man5/core.5.html.

[3] Docker. “Docker overview.” Accessed May 8th, 2024. (2024), [Online].
Available: https://docs.docker.com/get-started/overview/.

[4] M. Heuse, A. Fioraldi, D. Maier, D. Zhang, and A. Crump, “Fuzz every-
thing, everywhere, all at once,” Accessed January 10th, 2024, Chaos Com-
munication Congress, Dec. 2023.

[5] Free Software Foundation Inc. “GNU Make.” Accessed May 16th, 2024.
(Feb. 26, 2023), [Online]. Available: https://www.gnu.org/software/m
ake/.

[6] G. Lettieri. “Heap exploitation.” Accessed May 3rd, 2024. (Nov. 15, 2023),
[Online]. Available: https://lettieri.iet.unipi.it/hacking/heap.p
df.

[7] A. Fioraldi and D. Maier. “The LibAFL Fuzzing Library - Corpus.” Accessed
May 7th, 2024. (2024), [Online]. Available: https://aflplus.plus/lib
afl-book/core_concepts/corpus.html.

[8] A. Tolmach, “Notes on x86-64 programming,” Centre national de la recherche
scientifique, Tech. Rep., 2012, Accessed May 14th, 2024. [Online]. Avail-
able: https://usr.lmf.cnrs.fr/~jcf/ens/compil/x86-64.pdf.

[9] S. Loosemore, R. M. Stallman, R. McGrath, A. Oram, and U. Drepper, “The
GNU C Library Reference Manual,” Free Software Foundation Inc., Tech.
Rep., Aug. 29, 2023. [Online]. Available: https://www.gnu.org/softwa
re/libc/manual/pdf/libc.pdf.

[10] The LLVM Admin Team. “The LLVM compiler infrastructure.” Accessed
May 20th, 2024. (2024), [Online]. Available: https://llvm.org/.

[11] D. Czarnota. “Pwndbg.” Accessed May 8th, 2024. (Mar. 23, 2024), [On-
line]. Available: https://github.com/pwndbg/pwndbg.

71

https://hamblen.ece.gatech.edu/2036/handouts/Fall2012_handouts/gdb-reference.pdf
https://hamblen.ece.gatech.edu/2036/handouts/Fall2012_handouts/gdb-reference.pdf
https://hamblen.ece.gatech.edu/2036/handouts/Fall2012_handouts/gdb-reference.pdf
https://man7.org/linux/man-pages/man5/core.5.html
https://man7.org/linux/man-pages/man5/core.5.html
https://docs.docker.com/get-started/overview/
https://www.gnu.org/software/make/
https://www.gnu.org/software/make/
https://lettieri.iet.unipi.it/hacking/heap.pdf
https://lettieri.iet.unipi.it/hacking/heap.pdf
https://aflplus.plus/libafl-book/core_concepts/corpus.html
https://aflplus.plus/libafl-book/core_concepts/corpus.html
https://usr.lmf.cnrs.fr/~jcf/ens/compil/x86-64.pdf
https://www.gnu.org/software/libc/manual/pdf/libc.pdf
https://www.gnu.org/software/libc/manual/pdf/libc.pdf
https://llvm.org/
https://github.com/pwndbg/pwndbg

72 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

[12] Z. Riggle. “Pwntools.” Accessed May 8th, 2024. (Apr. 24, 2024), [Online].
Available: https://github.com/Gallopsled/pwntools.

[13] M. Lemmens, “Stack Canaries Gingerly Sidestepping the Cage,” SANS Cy-
ber Security Blog, Feb. 4, 2021, Accessed May 8th, 2024. [Online]. Avail-
able: https://www.sans.org/blog/stack-canaries-gingerly-sidest
epping-the-cage/.

[14] O. Lawlor. “The stack, cs 301 lecture.” Accessed May 14th, 2024. (2010),
[Online]. Available: https://www.cs.uaf.edu/2010/fall/cs301/lectu
re/10_06_the_stack.html.

[15] MITRE. “CWE Glossary.” Accessed April 24th, 2024. (Nov. 16, 2022), [On-
line]. Available: https://cwe.mitre.org/documents/glossary/index
.html.

[16] MITRE. “CWE-14: Compiler Removal of Code to Clear Buffers.” Accessed
April 23rd, 2024. (2024), [Online]. Available: https://cwe.mitre.org
/data/definitions/14.html.

[17] MITRE. “CWE-20: Improper Input Validation.” Accessed April 23rd, 2024.
(2024), [Online]. Available: https://cwe.mitre.org/data/definition
s/20.html.

[18] MITRE. “CWE-22: Improper Limitation of a Pathname to a Restricted Di-
rectory (Path Traversal).” Accessed April 23rd, 2024. (2024), [Online].
Available: https://cwe.mitre.org/data/definitions/22.html.

[19] MITRE. “CWE-23: Relative Path Traversal.” Accessed April 23rd, 2024.
(2024), [Online]. Available: https://cwe.mitre.org/data/definition
s/23.html.

[20] MITRE. “CWE-119: Improper Restriction of Operations within the Bounds
of a Memory Buffer.” Accessed April 23rd, 2024. (2024), [Online]. Avail-
able: https://cwe.mitre.org/data/definitions/119.html.

[21] MITRE. “CWE-120: Buffer Copy without Checking Size of Input (Classic
Buffer Overflow).” Accessed April 23rd, 2024. (2024), [Online]. Avail-
able: https://cwe.mitre.org/data/definitions/120.html.

[22] MITRE. “CWE-121: Stack-based Buffer Overflow.” Accessed 29th of April
2024. (2024), [Online]. Available: https://cwe.mitre.org/data/defi
nitions/121.html.

[23] MITRE. “CWE-122: Heap-based Buffer Overflow.” Accessed April 23rd,
2024. (2024), [Online]. Available: https://cwe.mitre.org/data/defi
nitions/122.html.

[24] MITRE. “CWE-125: Out-of-bounds Read.” Accessed April 23rd, 2024. (2024),
[Online]. Available: https://cwe.mitre.org/data/definitions/125.h
tml.

https://github.com/Gallopsled/pwntools
https://www.sans.org/blog/stack-canaries-gingerly-sidestepping-the-cage/
https://www.sans.org/blog/stack-canaries-gingerly-sidestepping-the-cage/
https://www.cs.uaf.edu/2010/fall/cs301/lecture/10_06_the_stack.html
https://www.cs.uaf.edu/2010/fall/cs301/lecture/10_06_the_stack.html
https://cwe.mitre.org/documents/glossary/index.html
https://cwe.mitre.org/documents/glossary/index.html
https://cwe.mitre.org/data/definitions/14.html
https://cwe.mitre.org/data/definitions/14.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/23.html
https://cwe.mitre.org/data/definitions/23.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/125.html

Bibliography 73

[25] MITRE. “CWE-131: Incorrect Calculation of Buffer Size.” Accessed April
23rd, 2024. (2024), [Online]. Available: https://cwe.mitre.org/data
/definitions/131.html.

[26] MITRE. “CWE-170: Improper Null Termination.” Accessed April 23rd, 2024.
(2024), [Online]. Available: https://cwe.mitre.org/data/definition
s/170.html.

[27] MITRE. “CWE-190: Integer Overflow or Wraparound.” Accessed April 23rd,
2024. (2024), [Online]. Available: https://cwe.mitre.org/data/defi
nitions/190.html.

[28] MITRE. “CWE-197: Numeric Truncation Error.” Accessed April 23rd, 2024.
(2024), [Online]. Available: https://cwe.mitre.org/data/definition
s/197.html.

[29] MITRE. “CWE-252: Unchecked Return Value.” Accessed April 23rd, 2024.
(2024), [Online]. Available: https://cwe.mitre.org/data/definition
s/252.html.

[30] MITRE. “CWE-328: Use of Weak Hash.” Accessed April 23rd, 2024. (2024),
[Online]. Available: https://cwe.mitre.org/data/definitions/328.h
tml.

[31] MITRE. “CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condi-
tion.” Accessed April 23rd, 2024. (2024), [Online]. Available: https://c
we.mitre.org/data/definitions/367.html.

[32] MITRE. “CWE-369: Divide By Zero.” Accessed April 23rd, 2024. (2024),
[Online]. Available: https://cwe.mitre.org/data/definitions/369.h
tml.

[33] MITRE. “CWE-404: Improper Resource Shutdown or Release.” Accessed
April 23rd, 2024. (2024), [Online]. Available: https://cwe.mitre.org
/data/definitions/404.html.

[34] MITRE. “CWE-415: Double Free.” Accessed April 23rd, 2024. (2024), [On-
line]. Available: https://cwe.mitre.org/data/definitions/415.html.

[35] MITRE. “CWE-416: Use After Free.” Accessed April 23rd, 2024. (2024),
[Online]. Available: https://cwe.mitre.org/data/definitions/416.h
tml.

[36] MITRE. “CWE-457: Use of Unititialized Variable.” Accessed April 23rd,
2024. (2024), [Online]. Available: https://cwe.mitre.org/data/defi
nitions/457.html.

[37] MITRE. “CWE-467: Use of sizeof() on a Pointer Type.” Accessed April
23rd, 2024. (2024), [Online]. Available: https://cwe.mitre.org/da
ta/definitions/467.html.

[38] MITRE. “CWE-476: NULL Pointer Dereference.” Accessed April 23rd, 2024.
(2024), [Online]. Available: https://cwe.mitre.org/data/definition
s/476.html.

https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/170.html
https://cwe.mitre.org/data/definitions/170.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/197.html
https://cwe.mitre.org/data/definitions/197.html
https://cwe.mitre.org/data/definitions/252.html
https://cwe.mitre.org/data/definitions/252.html
https://cwe.mitre.org/data/definitions/328.html
https://cwe.mitre.org/data/definitions/328.html
https://cwe.mitre.org/data/definitions/367.html
https://cwe.mitre.org/data/definitions/367.html
https://cwe.mitre.org/data/definitions/369.html
https://cwe.mitre.org/data/definitions/369.html
https://cwe.mitre.org/data/definitions/404.html
https://cwe.mitre.org/data/definitions/404.html
https://cwe.mitre.org/data/definitions/415.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/457.html
https://cwe.mitre.org/data/definitions/457.html
https://cwe.mitre.org/data/definitions/467.html
https://cwe.mitre.org/data/definitions/467.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/476.html

74 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

[39] MITRE. “CWE-484: Omitted Break Statement in Switch.” Accessed April
23rd, 2024. (2024), [Online]. Available: https://cwe.mitre.org/data
/definitions/484.html.

[40] MITRE. “CWE-561: Dead Code.” Accessed April 23rd, 2024. (2024), [On-
line]. Available: https://cwe.mitre.org/data/definitions/561.html.

[41] MITRE. “CWE-563: Assignment to Variable without Use.” Accessed April
23rd, 2024. (2024), [Online]. Available: https://cwe.mitre.org/data
/definitions/563.html.

[42] MITRE. “CWE-606: Unchecked Input for Loop Condition.” Accessed April
23rd, 2024. (2024), [Online]. Available: https://cwe.mitre.org/data
/definitions/606.html.

[43] MITRE. “CWE-676: Use of Potentially Dangerous Function.” Accessed April
23rd, 2024. (2024), [Online]. Available: https://cwe.mitre.org/data
/definitions/676.html.

[44] MITRE. “CWE-775: Missing Release of File Descriptor or Handle after Ef-
fective Lifetime.” Accessed April 23rd, 2024. (2024), [Online]. Available:
https://cwe.mitre.org/data/definitions/775.html.

[45] MITRE. “CWE-787: Out-of-bounds Write.” Accessed April 23rd, 2024. (2024),
[Online]. Available: https://cwe.mitre.org/data/definitions/787.h
tml.

[46] MITRE. “CWE-916: Use of Password Hash With Insufficient Computa-
tional Effort.” Accessed April 23rd, 2024. (2024), [Online]. Available: ht
tps://cwe.mitre.org/data/definitions/916.html.

[47] Stack Overflow. “Stack Overflow Developer Survey 2023.” Accessed March
8th, 2024. (2023), [Online]. Available: https://survey.stackoverflow
.co/2023/.

[48] A. K. Lab. “What is cybersecurity? types, threats and cyber safety tips.”
Accessed May 8th, 2024. (2024), [Online]. Available: https://www.kasp
ersky.com/resource-center/definitions/what-is-cyber-security.

[49] L. B. Furstenau, M. K. Sott, A. J. O. Homrich, L. M. Kipper, A. A. Al Abri,
T. F. Cardoso, J. R. López-Robles, and M. J. Cobo, “20 years of scientific
evolution of cyber security: A science mapping,” in International confer-
ence on industrial engineering and operations management, IEOM Society
International, 2020, pp. 314–325.

[50] B. Shastry, M. Leutner, T. Fiebig, K. Thimmaraju, F. Yamaguchi, K. Rieck,
S. Schmid, J.-P. Seifert, and A. Feldmann, “Static program analysis as a
fuzzing aid,” in Research in Attacks, Intrusions, and Defenses, M. Dacier,
M. Bailey, M. Polychronakis, and M. Antonakakis, Eds., Cham: Springer
International Publishing, 2017, pp. 26–47, ISBN: 978-3-319-66332-6.

https://cwe.mitre.org/data/definitions/484.html
https://cwe.mitre.org/data/definitions/484.html
https://cwe.mitre.org/data/definitions/561.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/606.html
https://cwe.mitre.org/data/definitions/606.html
https://cwe.mitre.org/data/definitions/676.html
https://cwe.mitre.org/data/definitions/676.html
https://cwe.mitre.org/data/definitions/775.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/916.html
https://cwe.mitre.org/data/definitions/916.html
https://survey.stackoverflow.co/2023/
https://survey.stackoverflow.co/2023/
https://www.kaspersky.com/resource-center/definitions/what-is-cyber-security
https://www.kaspersky.com/resource-center/definitions/what-is-cyber-security

Bibliography 75

[51] W. Wang, D. Tian, R. Ma, H. Wei, Q. Ying, X. Jia, and L. Zuo, “Shfuzz:
A hybrid fuzzing method assisted by static analysis for binary programs,”
China Communications, vol. 18, no. 8, pp. 1–16, 2021. DOI: 10.23919
/JCC.2021.08.001.

[52] P. Shields, “Hybrid testing: Combining static analysis and directed fuzzing,”
Ph.D. dissertation, Massachusetts Institute of Technology, 2023.

[53] R. Scandariato, J. Walden, and W. Joosen, “Static analysis versus pene-
tration testing: A controlled experiment,” in 2013 IEEE 24th International
Symposium on Software Reliability Engineering (ISSRE), 2013, pp. 451–
460. DOI: 10.1109/ISSRE.2013.6698898.

[54] Greg, David and Biggar, Paul, “Static analysis of dynamic scripting lan-
guages,” Aug. 17, 2009. [Online]. Available: https://citeseerx.ist.p
su.edu/document?repid=rep1&type=pdf&doi=1c25bd0d46db26d43a450
08655bf0bd115fd6947.

[55] S. Sakharkar, “Systematic review: Analysis of coding vulnerabilities across
languages,” Journal of Information Security, vol. 14, Oct. 2023. DOI: 10.4
236/jis.2023.144019. [Online]. Available: https://www.scirp.org/jo
urnal/paperinformation?paperid=128108.

[56] NTNU, Structure in a empirical thesis, Accessed February 29th, 2024. [On-
line]. Available: https://i.ntnu.no/academic-writing/strukture-in
-a-empirical-thesis.

[57] Synopsys. “What is Penetration Testing and How Does It Work?” Accessed
May 2nd, 2024. (2024), [Online]. Available: https://www.synopsys.co
m/glossary/what-is-penetration-testing.html.

[58] M. Denis, C. Zena, and T. Hayajneh, “Penetration testing: Concepts, at-
tack methods, and defense strategies,” in 2016 IEEE Long Island Systems,
Applications and Technology Conference (LISAT), IEEE, 2016, pp. 1–6.

[59] P. Engebretson, The basics of hacking and penetration testing: ethical hack-
ing and penetration testing made easy. Elsevier, 2013.

[60] H. Poston, “What are black box, grey box, and white box penetration test-
ing?” Infosec, Aug. 11, 2020, Accessed February 19th, 2024. [Online].
Available: https://resources.infosecinstitute.com/topics/pene
tration-testing/what-are-black-box-grey-box-and-white-box-pe
netration-testing/.

[61] IBM. “What is penetration testing?” Accessed May 2nd, 2024. (Apr. 4,
2024), [Online]. Available: https://www.ibm.com/topics/penetration
-testing.

[62] PTES. “The Penetration Testing Execution Standard.” Accessed Februrary
25th, 2024. (Aug. 16, 2014), [Online]. Available: http://www.pentest-
standard.org/index.php/Main_Page.

https://doi.org/10.23919/JCC.2021.08.001
https://doi.org/10.23919/JCC.2021.08.001
https://doi.org/10.1109/ISSRE.2013.6698898
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1c25bd0d46db26d43a45008655bf0bd115fd6947
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1c25bd0d46db26d43a45008655bf0bd115fd6947
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1c25bd0d46db26d43a45008655bf0bd115fd6947
https://doi.org/10.4236/jis.2023.144019
https://doi.org/10.4236/jis.2023.144019
https://www.scirp.org/journal/paperinformation?paperid=128108
https://www.scirp.org/journal/paperinformation?paperid=128108
https://i.ntnu.no/academic-writing/strukture-in-a-empirical-thesis
https://i.ntnu.no/academic-writing/strukture-in-a-empirical-thesis
https://www.synopsys.com/glossary/what-is-penetration-testing.html
https://www.synopsys.com/glossary/what-is-penetration-testing.html
https://resources.infosecinstitute.com/topics/penetration-testing/what-are-black-box-grey-box-and-white-box-penetration-testing/
https://resources.infosecinstitute.com/topics/penetration-testing/what-are-black-box-grey-box-and-white-box-penetration-testing/
https://resources.infosecinstitute.com/topics/penetration-testing/what-are-black-box-grey-box-and-white-box-penetration-testing/
https://www.ibm.com/topics/penetration-testing
https://www.ibm.com/topics/penetration-testing
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page

76 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

[63] PTES. “Intelligence Gathering.” Accessed Februrary 25th, 2024. (Oct. 6,
2014), [Online]. Available: http://www.pentest-standard.org/index
.php/Intelligence_Gathering.

[64] OWASP Foundation. “Source Code Analysis Tools.” Accessed February 19th,
2024. (2024), [Online]. Available: https://owasp.org/www-community
/Source_Code_Analysis_Tools.

[65] Snyk. “Static Application Security Testing (SAST) Tools.” Accessed March
19th, 2024. (2024), [Online]. Available: https://snyk.io/learn/appli
cation-security/static-application-security-testing/.

[66] M. Horvath, D. Gardner, M. Bhat, R. Chugh, and A. Zhao, “Magic quadrant
for application security testing,” Gartner, Inc., Tech. Rep., May 17, 2023.
[Online]. Available: https://www.synopsys.com/software-integrity
/engage/gartner-mq-auto/gartner-mq-appsec.

[67] M. Milev, J. P. d. A. Sierra, and G. Kamathe. “Shifting security left through
collaboration.” Accessed April 16th, 2024. (Nov. 22, 2023), [Online]. Avail-
able: https://redhat.com/en/blog/shifting-security-left-throug
h-collaboration.

[68] Fortinet. “What Is Shift Left Security?” Accessed April 16th, 2024. (2024),
[Online]. Available: https://www.fortinet.com/resources/cyberglos
sary/shift-left-security.

[69] Synposys. “Static Application Security Testing.” Accessed May 8th, 2024.
(2024), [Online]. Available: https://www.synopsys.com/glossary/wha
t-is-sast.html.

[70] K. Goseva-Popstojanova and A. Perhinschi, “On the capability of static
code analysis to detect security vulnerabilities,” Information and Software
Technology, vol. 68, pp. 18–33, 2015, ISSN: 0950-5849. DOI: https://do
i.org/10.1016/j.infsof.2015.08.002. [Online]. Available: https://w
ww.sciencedirect.com/science/article/pii/S0950584915001366.

[71] S. Dechand. “SAST, DAST, IAST and Feedback-Based Fuzzing.” Accessed
April 17th, 2024. (Apr. 28, 2020), [Online]. Available: https://www.cod
e-intelligence.com/blog/what-is-fast.

[72] Check Point Software Technologies. “How does Static Application Secu-
rity Testing (SAST) work?” Accessed April 17th, 2024. (2024), [Online].
Available: https://www.checkpoint.com/cyber-hub/cloud-security
/what-is-static-application-security-testing-sast/.

[73] J. Fell, “A review of fuzzing tools and methods,” PenTest Magazine, 2017.
[Online]. Available: https://wcventure.github.io/FuzzingPaper/Pap
er/2017_review.pdf.

[74] M. Zalewski. “American fuzzy lop.” Accessed May 21st, 2024. (2020),
[Online]. Available: https://lcamtuf.coredump.cx/afl/.

http://www.pentest-standard.org/index.php/Intelligence_Gathering
http://www.pentest-standard.org/index.php/Intelligence_Gathering
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://snyk.io/learn/application-security/static-application-security-testing/
https://snyk.io/learn/application-security/static-application-security-testing/
https://www.synopsys.com/software-integrity/engage/gartner-mq-auto/gartner-mq-appsec
https://www.synopsys.com/software-integrity/engage/gartner-mq-auto/gartner-mq-appsec
https://redhat.com/en/blog/shifting-security-left-through-collaboration
https://redhat.com/en/blog/shifting-security-left-through-collaboration
https://www.fortinet.com/resources/cyberglossary/shift-left-security
https://www.fortinet.com/resources/cyberglossary/shift-left-security
https://www.synopsys.com/glossary/what-is-sast.html
https://www.synopsys.com/glossary/what-is-sast.html
https://doi.org/https://doi.org/10.1016/j.infsof.2015.08.002
https://doi.org/https://doi.org/10.1016/j.infsof.2015.08.002
https://www.sciencedirect.com/science/article/pii/S0950584915001366
https://www.sciencedirect.com/science/article/pii/S0950584915001366
https://www.code-intelligence.com/blog/what-is-fast
https://www.code-intelligence.com/blog/what-is-fast
https://www.checkpoint.com/cyber-hub/cloud-security/what-is-static-application-security-testing-sast/
https://www.checkpoint.com/cyber-hub/cloud-security/what-is-static-application-security-testing-sast/
https://wcventure.github.io/FuzzingPaper/Paper/2017_review.pdf
https://wcventure.github.io/FuzzingPaper/Paper/2017_review.pdf
https://lcamtuf.coredump.cx/afl/

Bibliography 77

[75] AFLplusplus. “AFL++ Overview.” Accessed May 7th 2024. (2024), [On-
line]. Available: https://github.com/AFLplusplus/AFLplusplus.

[76] AFLplusplus. “Fuzzing with afl++.” Accessed May 7th, 2024. (2024), [On-
line]. Available: https://aflplus.plus/docs/fuzzing_in_depth/.

[77] A. Fioraldi and D. Maier. “The LibAFL Fuzzing Library - Mutator.” Ac-
cessed May 7th, 2024. (2024), [Online]. Available: https://aflplus.pl
us/libafl-book/core_concepts/mutator.html.

[78] MITRE and CVE Working Groups. “CVE Record Lifecycle.” Accessed April
25th, 2024. (2024), [Online]. Available: https://www.cve.org/About
/Process.

[79] National Institute of Standards and Technology (NIST). “Vulnerabilities.”
Accessed April 26th, 2024. (Aug. 3, 2023), [Online]. Available: https:
//nvd.nist.gov/vuln.

[80] MITRE. “About CWE.” Accessesed April 24th, 2024. (Mar. 22, 2024), [On-
line]. Available: https://cwe.mitre.org/about/index.html.

[81] CWE Community. “Frequently Asked Questions (FAQ).” Accessed April
24th, 2024. (Mar. 22, 2024), [Online]. Available: https://cwe.mitre.o
rg/about/faq.html.

[82] ISO/IEC JTC1/SC22/WG14, “ISO/IEC 9899:2023,” ISO/IEC, Tech. Rep.,
Apr. 1, 2023, Accessed April 24th, 2024. [Online]. Available: https://w
ww.open-std.org/jtc1/sc22/wg14/www/docs/n3088.pdf.

[83] E. Gupta. “Memory Layout in C.” Accessed April 24th, 2024. (Jan. 16,
2024), [Online]. Available: https://www.scaler.com/topics/c/memory
-layout-in-c/.

[84] BugTraq, r00t, and Underground.Org, “Smashing the stack for fun and
profit,” Phrack Magazine, vol. 7, 49 Nov. 8, 1996, Accessed April 24th,
2024. [Online]. Available: http://phrack.org/issues/49/14.html.

[85] krloer. “Veal and Car’s first baby (heap).” Accessed April 25th, 2024. (2023),
[Online]. Available: https://ctf.krloer.com/writeups/ept/baby_hea
p/.

[86] P. S. Foundation. “patchelf.” Accessed April 25th, 2024. (Feb. 26, 2023),
[Online]. Available: https://pypi.org/project/patchelf/.

[87] M. A. Butt, Z. Ajmal, Z. I. Khan, M. Idrees, and Y. Javed, “An in-depth sur-
vey of bypassing buffer overflow mitigation techniques,” Applied Sciences,
vol. 12, Jul. 2022. DOI: 10.3390/app12136702.

[88] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented
programming: Systems, languages, and applications,” ACM Transactions
on Information and System Security - TISSEC, vol. 15, pp. 1–34, Mar. 2012.
DOI: 10.1145/2133375.2133377.

https://github.com/AFLplusplus/AFLplusplus
https://aflplus.plus/docs/fuzzing_in_depth/
https://aflplus.plus/libafl-book/core_concepts/mutator.html
https://aflplus.plus/libafl-book/core_concepts/mutator.html
https://www.cve.org/About/Process
https://www.cve.org/About/Process
https://nvd.nist.gov/vuln
https://nvd.nist.gov/vuln
https://cwe.mitre.org/about/index.html
https://cwe.mitre.org/about/faq.html
https://cwe.mitre.org/about/faq.html
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3088.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3088.pdf
https://www.scaler.com/topics/c/memory-layout-in-c/
https://www.scaler.com/topics/c/memory-layout-in-c/
http://phrack.org/issues/49/14.html
https://ctf.krloer.com/writeups/ept/baby_heap/
https://ctf.krloer.com/writeups/ept/baby_heap/
https://pypi.org/project/patchelf/
https://doi.org/10.3390/app12136702
https://doi.org/10.1145/2133375.2133377

78 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

[89] Arm Limited, “Learn the architecture - providing protection for complex
software,” pp. 10–18, 1 Dec. 11, 2023, Accessed April 26th, 2024. [On-
line]. Available: https://developer.arm.com/documentation/102433
/0200/Return-oriented-programming.

[90] Arm Limited, “Learn the architecture - providing protection for complex
software,” pp. 19–22, 1 Dec. 11, 2023, Accessed April 26th, 2024. [On-
line]. Available: https://developer.arm.com/documentation/102433
/0200/Jump-oriented-programming.

[91] MITRE. “CWE-134: Use of Externally-Controlled Format String.” Accessed
May 20th, 2024. (2024), [Online]. Available: https://cwe.mitre.org/d
ata/definitions/134.html.

[92] Wikipedia contributors, Sigreturn-oriented programming — Wikipedia, the
free encyclopedia, Accessed April 26th, 2024, 2023. [Online]. Available: h
ttps://en.wikipedia.org/w/index.php?title=Sigreturn-oriented
_programming&oldid=1167065775.

[93] Snyk. “Snyk Code.” Accessed March 19th, 2024. (2024), [Online]. Avail-
able: https://snyk.io/product/snyk-code/.

[94] Gartner and Reviewers. “Snyk Code Reviews.” Accessed April 3rd, 2024.
(2024), [Online]. Available: https://www.gartner.com/reviews/marke
t/application-security-testing/vendor/snyk/product/snyk-code.

[95] Semgrep. “Docs home | Semgrep.” Accessed April 9th, 2024. (2024), [On-
line]. Available: https://semgrep.dev/docs/.

[96] Y. Padioleau. “Semgrep: A static analysis journey.” Accessed May 20th,
2024. (Nov. 9, 2024), [Online]. Available: https://semgrep.dev/blog
/2021/semgrep-a-static-analysis-journey.

[97] Synopsys. “Frequently Asked Questions (FAQ) - What is Coverity Scan?”
Accessed April 5th, 2024. (2024), [Online]. Available: https://scan.co
verity.com/faq#what-is-coverity-scan.

[98] AFL++. “Tips for parallel fuzzing.” Accessed May 20th, 2024. (2015),
[Online]. Available: https://aflplus.plus/docs/parallel_fuzzing/.

[99] OWASP Foundation. “Vulnerability Disclosure Cheat Sheet.” Accessed May
16th, 2024. (2024), [Online]. Available: https://cheatsheetseries.ow
asp.org/cheatsheets/Vulnerability_Disclosure_Cheat_Sheet.html.

[100] MITRE. “CWE CATEGORY: 7PK - Code Quality.” Accessed April 23rd, 2024.
(Feb. 29, 2024), [Online]. Available: https://cwe.mitre.org/data/def
initions/398.html.

[101] MITRE. “CWE CATEGORY: Expression Issues.” Accessed April 23rd, 2024.
(Feb. 29, 2024), [Online]. Available: https://cwe.mitre.org/data/def
initions/569.html.

https://developer.arm.com/documentation/102433/0200/Return-oriented-programming
https://developer.arm.com/documentation/102433/0200/Return-oriented-programming
https://developer.arm.com/documentation/102433/0200/Jump-oriented-programming
https://developer.arm.com/documentation/102433/0200/Jump-oriented-programming
https://cwe.mitre.org/data/definitions/134.html
https://cwe.mitre.org/data/definitions/134.html
https://en.wikipedia.org/w/index.php?title=Sigreturn-oriented_programming&oldid=1167065775
https://en.wikipedia.org/w/index.php?title=Sigreturn-oriented_programming&oldid=1167065775
https://en.wikipedia.org/w/index.php?title=Sigreturn-oriented_programming&oldid=1167065775
https://snyk.io/product/snyk-code/
https://www.gartner.com/reviews/market/application-security-testing/vendor/snyk/product/snyk-code
https://www.gartner.com/reviews/market/application-security-testing/vendor/snyk/product/snyk-code
https://semgrep.dev/docs/
https://semgrep.dev/blog/2021/semgrep-a-static-analysis-journey
https://semgrep.dev/blog/2021/semgrep-a-static-analysis-journey
https://scan.coverity.com/faq#what-is-coverity-scan
https://scan.coverity.com/faq#what-is-coverity-scan
https://aflplus.plus/docs/parallel_fuzzing/
https://cheatsheetseries.owasp.org/cheatsheets/Vulnerability_Disclosure_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Vulnerability_Disclosure_Cheat_Sheet.html
https://cwe.mitre.org/data/definitions/398.html
https://cwe.mitre.org/data/definitions/398.html
https://cwe.mitre.org/data/definitions/569.html
https://cwe.mitre.org/data/definitions/569.html

Bibliography 79

[102] NetSurf. “idna.c.” Accessed May 4th, 2024. (Jun. 17, 2023), [Online].
Available: https://github.com/netsurf-browser/netsurf/blob/4663
61cb148e301213b8e8aa3b488bb4242827f2/utils/idna.c.

[103] NetSurf. “parse.c.” Accessed May 4th, 2024. (Jun. 17, 2023), [Online].
Available: https://github.com/netsurf-browser/netsurf/blob/4663
61cb148e301213b8e8aa3b488bb4242827f2/utils/nsurl/parse.c.

[104] NetSurf. “selection.c.” Accessed May 3rd, 2024. (Sep. 21, 2019), [Online].
Available: https://github.com/netsurf-browser/netsurf/blob/466
361cb148e301213b8e8aa3b488bb4242827f2/frontends/gtk/selection
.c.

[105] NetSurf. “textarea.c.” Accessed May 3rd, 2024. (Jan. 23, 2022), [Online].
Available: https://github.com/netsurf-browser/netsurf/blob/4663
61cb148e301213b8e8aa3b488bb4242827f2/desktop/textarea.c.

[106] K. Zeng, Y. Chen, H. Cho, X. Xing, A. Doupé, Y. Shoshitaishvili, and T. Bao,
“Playing for k(h)eaps: Understanding and improving linux kernel exploit
reliability,” Proceedings of the 31st USENIX Security Symposium, Aug. 12,
2022. [Online]. Available: https://www.usenix.org/system/files/se
c22-zeng.pdf.

[107] NetSurf. “hash.c.” Accessed May 3rd, 2024. (Aug. 28, 2022), [Online].
Available: https://github.com/netsurf-browser/libcss/blob/b8859
5eb72302cf40e13b78e2d2917c7e98b66c4/src/select/hash.c.

[108] NetSurf. “bloom.h.” Accessed May 3rd, 2024. (Mar. 16, 2022), [Online].
Available: https://github.com/netsurf-browser/libcss/blob/b8859
5eb72302cf40e13b78e2d2917c7e98b66c4/src/select/bloom.h.

[109] NetSurf. “html.c.” Accessed May 4th, 2024. (Jun. 17, 2023), [Online].
Available: https://github.com/netsurf-browser/netsurf/blob/4663
61cb148e301213b8e8aa3b488bb4242827f2/content/handlers/html/ht
ml.c.

[110] NetSurf. “utf8.c.” Accessed May 4th, 2024. (Jun. 17, 2023), [Online].
Available: https://github.com/netsurf- browser/netsurf/blob/4
66361cb148e301213b8e8aa3b488bb4242827f2/utils/utf8.c.

[111] Free Software Foundation Inc. “Top (The C Preprocessor): Ifdef.” Accessed
May 16th, 2024. (2024), [Online]. Available: https://gcc.gnu.org/on
linedocs/cpp/Ifdef.html.

[112] NetSurf. “duktape.c.” Accessed May 16th, 2024. (May 29, 2022), [On-
line]. Available: https://raw.githubusercontent.com/netsurf-brows
er/netsurf/466361cb148e301213b8e8aa3b488bb4242827f2/content/h
andlers/javascript/duktape/duktape.c.

[113] NetSurf. “hlcache.c.” Accessed May 6th, 2024. (Jun. 17, 2023), [Online].
Available: https://github.com/netsurf-browser/netsurf/blob/4663
61cb148e301213b8e8aa3b488bb4242827f2/content/hlcache.c.

https://github.com/netsurf-browser/netsurf/blob/466361cb148e301213b8e8aa3b488bb4242827f2/utils/idna.c
https://github.com/netsurf-browser/netsurf/blob/466361cb148e301213b8e8aa3b488bb4242827f2/utils/idna.c
https://github.com/netsurf-browser/netsurf/blob/466361cb148e301213b8e8aa3b488bb4242827f2/utils/nsurl/parse.c
https://github.com/netsurf-browser/netsurf/blob/466361cb148e301213b8e8aa3b488bb4242827f2/utils/nsurl/parse.c
https://github.com/netsurf-browser/netsurf/blob/466361cb148e301213b8e8aa3b488bb4242827f2/frontends/gtk/selection.c
https://github.com/netsurf-browser/netsurf/blob/466361cb148e301213b8e8aa3b488bb4242827f2/frontends/gtk/selection.c
https://github.com/netsurf-browser/netsurf/blob/466361cb148e301213b8e8aa3b488bb4242827f2/frontends/gtk/selection.c
https://github.com/netsurf-browser/netsurf/blob/466361cb148e301213b8e8aa3b488bb4242827f2/desktop/textarea.c
https://github.com/netsurf-browser/netsurf/blob/466361cb148e301213b8e8aa3b488bb4242827f2/desktop/textarea.c
https://www.usenix.org/system/files/sec22-zeng.pdf
https://www.usenix.org/system/files/sec22-zeng.pdf
https://github.com/netsurf-browser/libcss/blob/b88595eb72302cf40e13b78e2d2917c7e98b66c4/src/select/hash.c
https://github.com/netsurf-browser/libcss/blob/b88595eb72302cf40e13b78e2d2917c7e98b66c4/src/select/hash.c
https://github.com/netsurf-browser/libcss/blob/b88595eb72302cf40e13b78e2d2917c7e98b66c4/src/select/bloom.h
https://github.com/netsurf-browser/libcss/blob/b88595eb72302cf40e13b78e2d2917c7e98b66c4/src/select/bloom.h
https://github.com/netsurf-browser/netsurf/blob/466361cb148e301213b8e8aa3b488bb4242827f2/content/handlers/html/html.c
https://github.com/netsurf-browser/netsurf/blob/466361cb148e301213b8e8aa3b488bb4242827f2/content/handlers/html/html.c
https://github.com/netsurf-browser/netsurf/blob/466361cb148e301213b8e8aa3b488bb4242827f2/content/handlers/html/html.c
https://github.com/netsurf-browser/netsurf/blob/466361cb148e301213b8e8aa3b488bb4242827f2/utils/utf8.c
https://github.com/netsurf-browser/netsurf/blob/466361cb148e301213b8e8aa3b488bb4242827f2/utils/utf8.c
https://gcc.gnu.org/onlinedocs/cpp/Ifdef.html
https://gcc.gnu.org/onlinedocs/cpp/Ifdef.html
https://raw.githubusercontent.com/netsurf-browser/netsurf/466361cb148e301213b8e8aa3b488bb4242827f2/content/handlers/javascript/duktape/duktape.c
https://raw.githubusercontent.com/netsurf-browser/netsurf/466361cb148e301213b8e8aa3b488bb4242827f2/content/handlers/javascript/duktape/duktape.c
https://raw.githubusercontent.com/netsurf-browser/netsurf/466361cb148e301213b8e8aa3b488bb4242827f2/content/handlers/javascript/duktape/duktape.c
https://github.com/netsurf-browser/netsurf/blob/466361cb148e301213b8e8aa3b488bb4242827f2/content/hlcache.c
https://github.com/netsurf-browser/netsurf/blob/466361cb148e301213b8e8aa3b488bb4242827f2/content/hlcache.c

80 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

[114] NetSurf. “ring.h.” Accessed May 6th, 2024. (Nov. 10, 2019), [Online].
Available: https://github.com/netsurf-browser/netsurf/blob/4663
61cb148e301213b8e8aa3b488bb4242827f2/utils/ring.h.

[115] NetSurf. “User information.” Accessed May 5th, 2024. (), [Online]. Avail-
able: https://www.netsurf-browser.org/documentation/info.html.

[116] NetSurf. “box_normalise.c.” Accessed May 7th, 2024. (Oct. 29, 2022),
[Online]. Available: https://github.com/netsurf-browser/netsurf/b
lob/466361cb148e301213b8e8aa3b488bb4242827f2/content/handlers
/html/box_normalise.c.

[117] NetSurf. “table.c.” Accessed May 7th, 2024. (Oct. 29, 2022), [Online].
Available: https://github.com/netsurf-browser/netsurf/blob/4663
61cb148e301213b8e8aa3b488bb4242827f2/content/handlers/html/ta
ble.c.

[118] NetSurf. “treebuilder.c.” Accessed May 7th, 2024. (May 27, 2021), [On-
line]. Available: https://github.com/netsurf-browser/libhubbub/bl
ob/873ed6e236f7669afd3ef44259c34addc6dc95b6/src/treebuilder/t
reebuilder.c.

[119] NetSurf. “treebuilder.c.” Accessed May 7th, 2024. (Jul. 26, 2011), [On-
line]. Available: https://github.com/netsurf-browser/libhubbub/bl
ob/873ed6e236f7669afd3ef44259c34addc6dc95b6/src/treebuilder/i
n_row.c.

[120] NetSurf. “textarea.c.” Accessed May 7th, 2024. (Jan. 23, 2022), [Online].
Available: https://github.com/netsurf-browser/netsurf/blob/4663
61cb148e301213b8e8aa3b488bb4242827f2/desktop/textarea.c.

[121] Semgrep. “Semgrep code brings modern static analysis to c/c++.” Ac-
cessed May 7th, 2024. (Feb. 27, 2024), [Online]. Available: https://se
mgrep.dev/blog/2024/modernizing-static-analysis-for-c.

https://github.com/netsurf-browser/netsurf/blob/466361cb148e301213b8e8aa3b488bb4242827f2/utils/ring.h
https://github.com/netsurf-browser/netsurf/blob/466361cb148e301213b8e8aa3b488bb4242827f2/utils/ring.h
https://www.netsurf-browser.org/documentation/info.html
https://github.com/netsurf-browser/netsurf/blob/466361cb148e301213b8e8aa3b488bb4242827f2/content/handlers/html/box_normalise.c
https://github.com/netsurf-browser/netsurf/blob/466361cb148e301213b8e8aa3b488bb4242827f2/content/handlers/html/box_normalise.c
https://github.com/netsurf-browser/netsurf/blob/466361cb148e301213b8e8aa3b488bb4242827f2/content/handlers/html/box_normalise.c
https://github.com/netsurf-browser/netsurf/blob/466361cb148e301213b8e8aa3b488bb4242827f2/content/handlers/html/table.c
https://github.com/netsurf-browser/netsurf/blob/466361cb148e301213b8e8aa3b488bb4242827f2/content/handlers/html/table.c
https://github.com/netsurf-browser/netsurf/blob/466361cb148e301213b8e8aa3b488bb4242827f2/content/handlers/html/table.c
https://github.com/netsurf-browser/libhubbub/blob/873ed6e236f7669afd3ef44259c34addc6dc95b6/src/treebuilder/treebuilder.c
https://github.com/netsurf-browser/libhubbub/blob/873ed6e236f7669afd3ef44259c34addc6dc95b6/src/treebuilder/treebuilder.c
https://github.com/netsurf-browser/libhubbub/blob/873ed6e236f7669afd3ef44259c34addc6dc95b6/src/treebuilder/treebuilder.c
https://github.com/netsurf-browser/libhubbub/blob/873ed6e236f7669afd3ef44259c34addc6dc95b6/src/treebuilder/in_row.c
https://github.com/netsurf-browser/libhubbub/blob/873ed6e236f7669afd3ef44259c34addc6dc95b6/src/treebuilder/in_row.c
https://github.com/netsurf-browser/libhubbub/blob/873ed6e236f7669afd3ef44259c34addc6dc95b6/src/treebuilder/in_row.c
https://github.com/netsurf-browser/netsurf/blob/466361cb148e301213b8e8aa3b488bb4242827f2/desktop/textarea.c
https://github.com/netsurf-browser/netsurf/blob/466361cb148e301213b8e8aa3b488bb4242827f2/desktop/textarea.c
https://semgrep.dev/blog/2024/modernizing-static-analysis-for-c
https://semgrep.dev/blog/2024/modernizing-static-analysis-for-c

Appendix A

Additional Material

A.1 Initial Findings - Snyk

Figure A.1: Potential Vulnerabilities per Component - Snyk

81

82 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

Figure A.2: Potential Medium Vulnerabilities - Snyk

Figure A.3: Potential Low Vulnerabilities - Snyk

CWE Vulnerabiltiy Type Severity File:Line
CWE-23 Path Traversal netsurf/tools/convert_font.c:1020
CWE-23 Path Traversal netsurf/tools/xxd.c:80
CWE-23 Path Traversal netsurf/tools/convert_image.c:230
CWE-23 Path Traversal netsurf/tools/convert_font.c:316
CWE-23 Path Traversal netsurf/tools/xxd.c:93
CWE-23 Path Traversal netsurf/tools/convert_image.c:253
CWE-23 Path Traversal libcss/src/parse/properties/css_property_parser_gen.c:538
CWE-23 Path Traversal netsurf/tools/split-messages.c:508
CWE-23 Path Traversal netsurf/tools/split-messages.c:515

CWE-122 Buffer Overflow netsurf/frontends/framebuffer/findfile.c:96
CWE-122 Buffer Overflow netsurf/frontends/framebuffer/findfile.c:103
CWE-122 Buffer Overflow netsurf/frontends/windows/findfile.c:103
CWE-122 Buffer Overflow netsurf/frontends/windows/findfile.c:136
CWE-122 Potential buffer overflow from usage of unsafe function netsurf/frontends/windows/findfile.c:121
CWE-122 Potential buffer overflow from usage of unsafe function netsurf/frontends/windows/findfile.c:140
CWE-122 Potential buffer overflow from usage of unsafe function netsurf/frontends/gtk/download.c:388
CWE-125 Potential Negative Number Used as Index netsurf/utils/ssl_certs.c:249
CWE-170 Memory Allocation Of String Length netsurf/frontends/windows/clipboard.c:63
CWE-170 Memory Allocation Of String Length netsurf/frontends/gtk/selection.c:55
CWE-170 Improper Null Termination netsurf/desktop/browser_history.c:74
CWE-170 Improper Null Termination netsurf/utils/idna.c:832
CWE-170 Improper Null Termination netsurf/desktop/browser_history.c:129
CWE-170 Improper Null Termination netsurf/frontends/windows/file.c:164
CWE-170 Improper Null Termination netsurf/frontends/windows/file.c:167
CWE-170 Improper Null Termination netsurf/desktop/page-info.c:310
CWE-170 Improper Null Termination netsurf/desktop/page-info.c:342
CWE-170 Improper Null Termination netsurf/desktop/page-info.c:354
CWE-170 Improper Null Termination netsurf/desktop/page-info.c:359
CWE-170 Improper Null Termination netsurf/contents/fs_backing_store.c:1162
CWE-170 Improper Null Termination netsurf/utils/nsoption.c:271
CWE-170 Improper Null Termination netsurf/utils/nsoption.c:299
CWE-170 Improper Null Termination netsurf/utils/nsoption.c:305
CWE-170 Improper Null Termination netsurf/utils/nsoption.c:311
CWE-170 Improper Null Termination netsurf/utils/nsoption.c:318
CWE-170 Improper Null Termination netsurf/utils/nsoption.c:334
CWE-170 Improper Null Termination netsurf/utils/nsoption.c:311
CWE-170 Improper Null Termination netsurf/desktop/browser_window.c:1188
CWE-170 Improper Null Termination netsurf/desktop/textarea.c:2012
CWE-170 Improper Null Termination netsurf/desktop/searchweb.c:270
CWE-170 Improper Null Termination netsurf/utils/nsurl/parse.c:923
CWE-190 Integer Overflow libcss/src/parse/properties/css_property_parser_gen.c:47
CWE-190 Integer Overflow netsurf/frontends/framebuffer/findfile.c:96
CWE-190 Integer Overflow netsurf/frontends/framebuffer/findfile.c:103
CWE-190 Integer Overflow netsurf/contents/fs_backing_store.c:1162
CWE-190 Integer Overflow netsurf/contents/fs_backing_store.c:1824
CWE-190 Integer Overflow netsurf/contents/urldb.c:2274
CWE-190 Integer Overflow netsurf/contents/urldb.c:2278
CWE-190 Integer Overflow netsurf/contents/urldb.c:2291
CWE-190 Integer Overflow netsurf/contents/urldb.c:2296
CWE-190 Integer Overflow netsurf/contents/urldb.c:4420
CWE-190 Integer Overflow netsurf/frontends/gtk/fetch.c:157
CWE-190 Integer Overflow netsurf/frontends/gtk/fetch.c:162
CWE-190 Integer Overflow netsurf/contents/fs_backing_store.c:1825
CWE-190 Integer Overflow netsurf/contents/urldb.c:2304
CWE-190 Integer Overflow netsurf/frontends/framebuffer/gui.c:2259
CWE-190 Integer Overflow netsurf/frontends/framebuffer/gui.c:1033
CWE-369 Division By Zero netsurf/frontends/framebuffer/fbtk/osk.c:159
CWE-369 Division By Zero netsurf/frontends/framebuffer/fbtk/osk.c:165
CWE-369 Division By Zero netsurf/frontends/framebuffer/fbtk/osk.c:166
CWE-369 Division By Zero netsurf/frontends/framebuffer/fbtk/osk.c:167
CWE-369 Division By Zero netsurf/frontends/framebuffer/fbtk/osk.c:168

Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium

Medium
Medium

Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium

High

Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low

CWE Vulnerabiltiy Type Severity File:Line
CWE-415 Double Free netsurf/content/handlers/html/form.c:1224
CWE-415 Double Free netsurf/content/handlers/html/form.c:1236
CWE-415 Double Free netsurf/content/handlers/html/form.c:1244
CWE-415 Double Free netsurf/content/handlers/html/form.c:1235
CWE-415 Double Free netsurf/content/handlers/html/form.c:1235
CWE-415 Double Free netsurf/utils/idna.c:720
CWE-415 Double Free netsurf/utils/idna.c:727
CWE-415 Double Free netsurf/utils/idna.c:800
CWE-415 Double Free netsurf/utils/idna.c:732
CWE-415 Double Free netsurf/utils/idna.c:806
CWE-415 Double Free netsurf/utils/file.c:374
CWE-416 Use After Free netsurf/content/hlcache.c:762
CWE-416 Use After Free netsurf/content/hlcache.c:813
CWE-416 Use After Free netsurf/content/hlcache.c:764
CWE-416 Use After Free netsurf/content/hlcache.c:815
CWE-416 Use After Free ‎netsurf/content/handlers/html/form.c:1232
CWE-416 Use After Free ‎netsurf/content/handlers/html/form.c:1232
CWE-416 Use After Free ‎netsurf/content/handlers/html/form.c:1242
CWE-416 Use After Free ‎netsurf/content/handlers/html/form.c:1242
CWE-416 Use After Free ‎netsurf/content/handlers/html/form.c:2242
CWE-416 Use After Free netsurf/utils/idna.c:106
CWE-416 Use After Free netsurf/utils/idna.c:263
CWE-416 Use After Free netsurf/utils/idna.c:267
CWE-416 Use After Free netsurf/utils/idna.c:274
CWE-416 Use After Free netsurf/utils/idna.c:277
CWE-416 Use After Free netsurf/utils/idna.c:287
CWE-416 Use After Free netsurf/utils/idna.c:292
CWE-416 Use After Free netsurf/utils/idna.c:302
CWE-416 Use After Free netsurf/utils/idna.c:306
CWE-416 Use After Free netsurf/utils/idna.c:420
CWE-416 Use After Free netsurf/utils/idna.c:420
CWE-416 Use After Free netsurf/utils/idna.c:427
CWE-416 Use After Free netsurf/utils/idna.c:467
CWE-416 Use After Free netsurf/utils/idna.c:477
CWE-416 Use After Free netsurf/utils/idna.c:438
CWE-416 Use After Free netsurf/utils/idna.c:445
CWE-416 Use After Free netsurf/utils/idna.c:455
CWE-416 Use After Free netsurf/utils/idna.c:463
CWE-416 Use After Free netsurf/utils/idna.c:451
CWE-416 Use After Free netsurf/utils/idna.c:386
CWE-416 Use After Free netsurf/utils/idna.c:805
CWE-416 Use After Free netsurf/utils/idna.c:731
CWE-416 Use After Free netsurf/utils/talloc.c:808
CWE-775 Missing Release of File Descriptor or Handle after Effective Lifetime netsurf/frontends/windows/main.c:151
CWE-916 Use of Password Hash With Insufficient Computational Effort netsurf/content/fetchers/about/certificate.c:1052

Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Low
Low

Chapter A: Additional Material 85

A.2 Initial Findings - Semgrep

Figure A.4: Potential Vulnerabilities per Component - Semgrep

Figure A.5: Potential High Vulnerabilities - Semgrep

86 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

Figure A.6: Potential Medium Vulnerabilities - Semgrep

Figure A.7: Potential Low Vulnerabilities - Semgrep

CWE Vulnerability Type Severity File:Line
CWE-14 memset-removal libcss/src/select/bloom.h:183
CWE-14 memset-removal netsurf/tools/convert_font.c:803
CWE-14 memset-removal netsurf/utils/talloc.c:1095
CWE-14 memset-removal netsurf/utils/utf8.c:452
CWE-22 path-manipulation libcss/src/parse/properties/css_property_parser_gen.c:538
CWE-22 path-manipulation netsurf/frontends/gtk/gui.c:1009
CWE-22 path-manipulation netsurf/frontends/gtk/viewdata.c:656
CWE-22 path-manipulation netsurf/frontends/gtk/viewdata.c:722
CWE-22 path-manipulation netsurf/tools/convert_font.c:316
CWE-22 path-manipulation netsurf/tools/convert_font.c:1020
CWE-22 path-manipulation netsurf/tools/convert_image.c:230
CWE-22 path-manipulation netsurf/tools/convert_image.c:253
CWE-22 path-manipulation netsurf/tools/xxd.c:80
CWE-22 path-manipulation netsurf/tools/xxd.c:93
CWE-22 path-manipulation netsurf/utils/log.c:219
CWE-120 unbounded-copy-to-stack-buffer libdom/bindings/xml/libxml_xmlparser.c:718
CWE-120 unbounded-copy-to-stack-buffer libdom/bindings/xml/libxml_xmlparser.c:810
CWE-120 unbounded-copy-to-stack-buffer libdom/src/utils/hashtable.c:413
CWE-120 unbounded-copy-to-stack-buffer libdom/src/utils/hashtable.c:423
CWE-120 unbounded-copy-to-stack-buffer libdom/src/utils/hashtable.c:414
CWE-120 unbounded-copy-to-stack-buffer libdom/src/utils/hashtable.c:424
CWE-120 unbounded-copy-to-stack-buffer netsurf/frontends/gtk/download.c:388
CWE-120 unbounded-copy-to-stack-buffer netsurf/frontends/windows/download.c:107
CWE-125 tainted-allocation-size libcss/src/parse/properties/css_property_parser_gen.c:47
CWE-125 tainted-allocation-size netsurf/content/urldb.c:3084
CWE-125 tainted-allocation-size netsurf/frontends/gtk/gui.c:1016
CWE-125 tainted-allocation-size netsurf/frontends/gtk/viewdata.c:606
CWE-125 tainted-allocation-size netsurf/frontends/gtk/viewdata.c:614
CWE-125 tainted-allocation-size netsurf/frontends/gtk/viewdata.c:651
CWE-125 tainted-allocation-size netsurf/frontends/gtk/viewdata.c:717
CWE-125 tainted-allocation-size netsurf/tools/xxd.c:38
CWE-125 tainted-allocation-size netsurf/utils/filepath.c:254
CWE-125 tainted-allocation-size netsurf/utils/filepath.c:283
CWE-125 tainted-allocation-size netsurf/utils/hashtable.c:321
CWE-131 alloc-strlen netsurf/frontends/gtk/selection.c:55
CWE-319 plaintext-http-link netsurf/resources/nl/welcome.html:46
CWE-328 insecure-hash netsurf/content/fetchers/about/certificate.c:1052
CWE-415 double-free libcss/src/stylesheet.c:772
CWE-415 double-free netsurf/content/content_factory.c:67
CWE-415 double-free netsurf/content/handlers/html/imagemap.c:191
CWE-415 double-free netsurf/content/handlers/javascript/duktape/dukky.c:801
CWE-415 double-free netsurf/content/urldb.c:2780
CWE-415 double-free netsurf/content/urldb.c:2786
CWE-415 double-free netsurf/frontends/framebuffer/schedule.c:83
CWE-415 double-free netsurf/frontends/gtk/viewdata.c:957
CWE-415 double-free netsurf/frontends/windows/plot.c:253

Low
Low
Low
Low

Low

High
High
High
High
High
High
High
High
High
High
High

High
High
High
High
High
High
High
High
High

Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium

CWE Vulnerability Type Severity File:Line
CWE-416 local-variable-malloc-free libcss/src/parse/language.c:1908
CWE-416 local-variable-malloc-free libcss/src/stylesheet.c:760
CWE-416 local-variable-malloc-free libcss/src/stylesheet.c:764
CWE-416 local-variable-malloc-free libcss/src/stylesheet.c:765
CWE-416 local-variable-malloc-free libcss/src/stylesheet.c:769
CWE-416 local-variable-malloc-free libcss/src/stylesheet.c:771
CWE-416 local-variable-malloc-free libdom/bindings/xml/libxml_xmlparser.c:226
CWE-416 local-variable-malloc-free libdom/bindings/xml/libxml_xmlparser.c:226
CWE-416 local-variable-malloc-free netsurf/content/content_factory.c:62
CWE-416 local-variable-malloc-free netsurf/content/content_factory.c:63
CWE-416 local-variable-malloc-free netsurf/content/content_factory.c:65
CWE-416 local-variable-malloc-free netsurf/content/handlers/javascript/duktape/dukky.c:785
CWE-416 local-variable-malloc-free netsurf/content/handlers/javascript/duktape/dukky.c:787
CWE-416 local-variable-malloc-free netsurf/content/handlers/javascript/duktape/dukky.c:788
CWE-416 local-variable-malloc-free netsurf/content/handlers/javascript/duktape/dukky.c:791
CWE-416 local-variable-malloc-free netsurf/content/handlers/javascript/duktape/dukky.c:797
CWE-416 local-variable-malloc-free netsurf/content/handlers/javascript/duktape/dukky.c:832
CWE-416 local-variable-malloc-free netsurf/content/handlers/javascript/duktape/dukky.c:834
CWE-416 local-variable-malloc-free netsurf/content/handlers/javascript/duktape/dukky.c:835
CWE-416 local-variable-malloc-free netsurf/content/handlers/javascript/duktape/dukky.c:835
CWE-416 local-variable-malloc-free netsurf/content/handlers/javascript/duktape/dukky.c:836
CWE-416 local-variable-malloc-free netsurf/content/handlers/javascript/duktape/dukky.c:1673
CWE-416 local-variable-malloc-free netsurf/content/handlers/javascript/duktape/dukky.c:1681
CWE-416 local-variable-malloc-free netsurf/content/urldb.c:2719
CWE-416 local-variable-malloc-free netsurf/content/urldb.c:2720
CWE-416 local-variable-malloc-free netsurf/content/urldb.c:2723
CWE-416 local-variable-malloc-free netsurf/content/urldb.c:2724
CWE-416 local-variable-malloc-free netsurf/content/urldb.c:2727
CWE-416 local-variable-malloc-free netsurf/content/urldb.c:2728
CWE-416 local-variable-malloc-free netsurf/content/urldb.c:2730
CWE-416 local-variable-malloc-free netsurf/content/urldb.c:2732
CWE-416 local-variable-malloc-free netsurf/content/urldb.c:2734
CWE-416 local-variable-malloc-free netsurf/content/urldb.c:2779
CWE-416 local-variable-malloc-free netsurf/content/urldb.c:2785
CWE-416 local-variable-malloc-free netsurf/desktop/download.c:211
CWE-416 local-variable-malloc-free netsurf/frontends/framebuffer/schedule.c:76
CWE-416 local-variable-malloc-free netsurf/frontends/windows/bitmap.c:251
CWE-416 local-variable-malloc-free netsurf/frontends/windows/bitmap.c:257
CWE-416 local-variable-malloc-free netsurf/frontends/windows/bitmap.c:257
CWE-416 local-variable-malloc-free netsurf/frontends/windows/bitmap.c:260
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:130
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:136
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:136
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:153
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:163
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:164

High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High

CWE Vulnerability Type Severity File:Line
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:166
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:166
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:167
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:175
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:175
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:181
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:181
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:190
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:190
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:194
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:195
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:199
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:199
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:206
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:211
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:212
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:213
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:214
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:215
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:246
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:246
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:247
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:251
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:252
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:303
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:306
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:307
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:315
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:316
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:325
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:325
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:326
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:327
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:340
CWE-416 local-variable-malloc-free netsurf/frontends/windows/plot.c:955
CWE-416 local-variable-malloc-free netsurf/utils/talloc.c:808
CWE-416 local-variable-malloc-free netsurf/utils/talloc.c:811
CWE-467 sizeof-pointer-type netsurf/content/handlers/html/redraw.c:1797
CWE-467 sizeof-pointer-type netsurf/content/handlers/html/redraw.c:1808
CWE-676 insecure-use-strtok-fn netsurf/content/handlers/html/imagemap.c:396
CWE-676 insecure-use-strtok-fn netsurf/content/handlers/html/imagemap.c:419
CWE-676 insecure-use-strtok-fn netsurf/content/handlers/html/imagemap.c:438
CWE-676 insecure-use-strtok-fn netsurf/content/handlers/html/imagemap.c:448
CWE-676 insecure-use-strtok-fn netsurf/content/handlers/html/imagemap.c:472
CWE-787 snprintf-return-value-length netsurf/frontends/gtk/resources.c:386

High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium

90 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

A.3 Initial Findings - Coverity

Figure A.8: Potential Vulnerabilities per Component - Coverity

Figure A.9: Potential High Vulnerabilities - Coverity

Chapter A: Additional Material 91

Figure A.10: Potential Medium Vulnerabilities - Coverity

Figure A.11: Potential Low Vulnerabilities - Coverity

CWE Vulnerability Type Severity File:Line
CWE-20 Untrusted value as argument netsurf/content/fs_backing_store.c:Various
CWE-119 Out-of-bounds write netsurf/content/handlers/html/html.c:178
CWE-119 Out-of-bounds access netsurf/content/handlers/javascript/duktape/duktape.c:Various
CWE-119 Out-of-bounds access netsurf/content/handlers/javascript/duktape/duktape.c:16374
CWE-119 Out-of-bounds access netsurf/content/handlers/javascript/duktape/duktape.c:Various
CWE-119 Out-of-bounds write netsurf/desktop/textarea.c:2476
CWE-119 Out-of-bounds access netsurf/content/handlers/javascript/duktape/duktape.c:16409
CWE-125 Out-of-bounds read netsurf/frontends/gtk/toolbar.c:Various
CWE-170 String not null terminated netsurf/content/fs_backing_store.c:1162
CWE197 Use of 32-bit time_t netsurf/content/urldb.c:339
CWE197 Use of 32-bit time_t netsurf/content/urldb.c:Various
CWE197 Use of 32-bit time_t libdom/src/events/event.c:259
CWE-252 Unchecked return value from library netsurf/frontends/gtk/download.c:576
CWE-252 Unchecked return value from library netsurf/frontends/gtk/download.c:870
CWE-252 Unchecked return value netsurf/content/handlers/text/textplain.c:Various
CWE-252 Unchecked return value libcss/src/parse/properties/content.c:417
CWE-367 Time of check time of use netsurf/frontends/gtk/gui.c:1009
CWE-369 Division or modulo by zero netsurf/content/handlers/javascript/duktape/duktape.c:41211
CWE-398 Big parameter passed by value libsvgtiny/src/svgtiny.c:1852
CWE-398 Copy-paste error netsurf/content/handlers/javascript/duktape/duktape.c:87683
CWE-398 Big parameter passed by value libsvgtiny/src/svgtiny.c:749
CWE-398 Big parameter passed by value libsvgtiny/src/svgtiny.c:874
CWE-398 Copy-paste error netsurf/content/handlers/html/object.c:335
CWE-398 Big parameter passed by value libsvgtiny/src/svgtiny.c:1235
CWE-398 Big parameter passed by value libsvgtiny/src/svgtiny.c:1671
CWE-398 Big parameter passed by value libsvgtiny/src/svgtiny.c:1504
CWE-398 Big parameter passed by value libsvgtiny/src/svgtiny.c:1281
CWE-398 Big parameter passed by value libsvgtiny/src/svgtiny.c:1773
CWE-398 Big parameter passed by value libsvgtiny/src/svgtiny.c:1387
CWE-398 Big parameter passed by value libsvgtiny/src/svgtiny.c:1817
CWE-398 Big parameter passed by value libsvgtiny/src/svgtiny.c:1587
CWE-404 Resource leak netsurf/content/handlers/javascript/duktape/dukky.c:1632
CWE-404 Resource leak netsurf/frontends/gtk/download.c:698
CWE-404 Resource leak netsurf/content/handlers/html/css_fetcher.c:319
CWE-404 Resource leak netsurf/frontends/gtk/toolbar.c:2856
CWE-404 Resource leak libsvgtiny/src/svgtiny_gradient.c:Various
CWE-404 Resource leak netsurf/frontends/gtk/toolbar.c:2901
CWE-416 Use after free libdom/src/core/node.c:124
CWE-457 Uninitialized scalar variable netsurf/content/handlers/javascript/duktape/duktape.c:14935
CWE-457 Uninitialized scalar variable netsurf/content/handlers/javascript/duktape/duktape.c:85015
CWE-457 Uninitialized scalar variable netsurf/content/handlers/javascript/duktape/duktape.c:85177
CWE-457 Uninitialized scalar variable netsurf/content/handlers/javascript/duktape/duktape.c:Various
CWE-457 Uninitialized scalar variable libdom/src/core/node.c:1220
CWE-457 Uninitialized scalar variable netsurf/content/handlers/javascript/duktape/duktape.c:85177
CWE-457 Uninitialized scalar variable netsurf/content/handlers/javascript/duktape/duktape.c:Various
CWE-457 Uninitialized scalar variable netsurf/content/handlers/javascript/duktape/duktape.c:49947
CWE-457 Uninitialized scalar variable netsurf/content/handlers/javascript/duktape/duktape.c:24590
CWE-457 Uninitialized pointer read netsurf/content/fetchers/curl.c:694
CWE-457 Uninitialized scalar variable netsurf/content/handlers/javascript/duktape/duktape.c:24559

Medium

Medium
Medium
Medium
Medium

Medium

Medium

Medium

High
High
High
High
High
High
High
High
High
High
High

High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High

Low

Low

Low
Low

Low
Low
Low
Low
Low
Low
Low
Low

CWE Vulnerability Type Severity File:Line
CWE-457 Uninitialized scalar variable netsurf/content/handlers/javascript/duktape/duktape.c:78727
CWE-457 Uninitialized scalar variable netsurf/content/handlers/javascript/duktape/duktape.c:Various
CWE-457 Uninitialized scalar variable netsurf/content/handlers/html/table.c:544
CWE-457 Uninitialized scalar variable libdom/src/core/node.c:1742
CWE-457 Uninitialized scalar variable netsurf/content/handlers/javascript/duktape/duktape.c:24580
CWE-476 Dereference before null check netsurf/content/handlers/javascript/duktape/duktape.c:30141
CWE-476 Dereference after null check netsurf/content/handlers/html/layout.c:4021
CWE-476 Dereference after null check netsurf/frontends/gtk/throbber.c:116
CWE-476 Explicit null dereferenced netsurf/content/handlers/javascript/duktape/duktape.c:36523
CWE-476 Dereference after null check netsurf/content/handlers/html/form.c:2146
CWE-476 Explicit null dereferenced netsurf/content/handlers/html/box_construct.c:1007
CWE-476 Dereference before null check netsurf/content/handlers/html/layout.c:3128
CWE-476 Dereference null return value libcss/src/parse/mq.c:983
CWE-476 Dereference after null check netsurf/content/handlers/html/interaction.c:Various
CWE-476 Dereference after null check netsurf/content/handlers/javascript/duktape/duktape.c:37145
CWE-476 Dereference after null check netsurf/content/handlers/html/layout.c:1061
CWE-476 Explicit null dereferenced netsurf/content/handlers/html/imagemap.c:396
CWE-476 Dereference before null check netsurf/content/handlers/javascript/duktape/duktape.c:30430
CWE-484 Missing break in switch libhubbub/src/treebuilder/element-type.gperf:122
CWE-484 Missing break in switch libsvgtiny/src/colors.gperf:74
CWE-561 Logically dead code libcss/src/select/hash.c:366
CWE-561 Logically dead code netsurf/content/llcache.c:866
CWE-561 Logically dead code netsurf/content/handlers/javascript/duktape/duktape.c:79240
CWE-561 Logically dead code netsurf/content/fetchers/about/testament.c:114
CWE-561 Logically dead code netsurf/content/handlers/javascript/duktape/duktape.c:32528
CWE-561 Logically dead code netsurf/desktop/browser_window.c:4367
CWE-561 Structurally dead code libsvgtiny/src/svgtiny.c:1696
CWE-561 Logically dead code netsurf/desktop/cw_helper.c:60
CWE-561 Logically dead code netsurf/desktop/treeview.c:3967
CWE-561 Structurally dead code libsvgtiny/src/svgtiny.c:594
CWE-561 Logically dead code netsurf/content/handlers/javascript/duktape/duktape.c:38626
CWE-561 Logically dead code netsurf/content/handlers/javascript/duktape/duktape.c:31294
CWE-561 Logically dead code libcss/src/select/hash.c:441
CWE-561 Logically dead code netsurf/content/llcache.c:862
CWE-561 Logically dead code netsurf/content/llcache.c:858
CWE-561 Logically dead code netsurf/content/fetchers/curl.c:176
CWE-561 Logically dead code netsurf/content/handlers/javascript/duktape/duktape.c:31938
CWE-561 Logically dead code netsurf/content/handlers/javascript/duktape/duktape.c:31775
CWE-561 Logically dead code libcss/src/select/hash.c:523
CWE-561 Logically dead code netsurf/content/handlers/javascript/duktape/duktape.c:30597
CWE-563 Unused value libhubbub/src/treebuilder/in_body.c:790
CWE-563 Unused value libhubbub/src/treebuilder/in_body.c:1368
CWE-563 Unused value libhubbub/src/treebuilder/in_body.c:807
CWE-563 Unused value libhubbub/src/treebuilder/in_body.c:2045
CWE-563 Unused value libhubbub/src/treebuilder/in_body.c:990
CWE-569 Operands don't affect result libcss/src/select/mq.h:99
CWE-569 Operands don't affect result netsurf/desktop/treeview.c:1281
CWE-569 Operands don't affect result netsurf/desktop/hotlist.c:Various
CWE-569 Operands don't affect result netsurf/desktop/treeview.c:1352

High
High
High
High
High
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium

Medium
Medium
Medium
Medium

Low
Low
Low
Low
Low

CWE Vulnerability Type Severity File:Line
CWE-569 Operands don't affect result netsurf/content/llcache.c:1790
CWE-569 Operands don't affect result netsurf/content/urldb.c:Various
CWE-569 Operands don't affect result netsurf/desktop/browser_window.c:4690
CWE-569 Operands don't affect result netsurf/desktop/treeview.c:1332
CWE-569 Operands don't affect result netsurf/content/fetchers/curl.c:170
CWE-569 Operands don't affect result netsurf/content/llcache.c:2357
CWE-569 Operands don't affect result netsurf/content/content.c:531
CWE-569 Operands don't affect result netsurf/content/urldb.c:3444
CWE-569 Operands don't affect result netsurf/content/handlers/html/box_inspect.c:619
CWE-569 Operands don't affect result netsurf/utils/nsurl/nsurl.c:121
CWE-569 Operands don't affect result netsurf/content/urldb.c:1387
CWE-569 Operands don't affect result netsurf/content/llcache.c:860
CWE-569 Operands don't affect result netsurf/content/llcache.c:2352
CWE-569 Wrong sizeof argument netsurf/content/handlers/javascript/duktape/duktape.c:92624
CWE-569 Operands don't affect result netsurf/content/fetchers/about/about.c:641
CWE-569 Operands don't affect result netsurf/desktop/treeview.c:1427
CWE-569 Operands don't affect result netsurf/content/urldb.c:3784
CWE-569 Operands don't affect result libcss/src/select/arena.c:83
CWE-569 Operands don't affect result libcss/src/parse/language.c:875
CWE-569 Operands don't affect result netsurf/content/fetchers/curl.c:1311
CWE-569 Operands don't affect result libcss/src/parse/font_face.c:Various
CWE-569 Operands don't affect result libcss/src/select/arena.c:60
CWE-569 Operands don't affect result netsurf/utils/nsurl/nsurl.c:145
CWE-569 Operands don't affect result netsurf/content/llcache.c:1818
CWE-569 Operands don't affect result netsurf/utils/nsurl/nsurl.c:137
CWE-569 Operands don't affect result netsurf/desktop/hotlist.c:504
CWE-569 Operands don't affect result netsurf/utils/nsurl/nsurl.c:113
CWE-569 Operands don't affect result netsurf/utils/nsurl/nsurl.c:153
CWE-569 Operands don't affect result netsurf/content/urldb.c:1398
CWE-569 Operands don't affect result netsurf/desktop/browser_window.c:4704
CWE-569 Operands don't affect result netsurf/content/fetch.c:192
CWE-569 Operands don't affect result netsurf/content/urldb.c:3373
CWE-569 Operands don't affect result netsurf/utils/nsurl/nsurl.c:129
CWE-569 Operands don't affect result netsurf/utils/nsurl/parse.c:1307
CWE-569 Operands don't affect result netsurf/utils/nsurl/nsurl.c:783
CWE-569 Operands don't affect result netsurf/content/urldb.c:1335
CWE-569 Operands don't affect result netsurf/content/handlers/css/select.c:724
CWE-569 Operands don't affect result libcss/src/select/mq.h:134
CWE-569 Operands don't affect result netsurf/content/urldb.c:4174
CWE-569 Operands don't affect result netsurf/desktop/treeview.c:1443
CWE-569 Operands don't affect result netsurf/content/fetchers/resource.c:353
CWE-569 Operands don't affect result netsurf/utils/nsurl/nsurl.c:161
CWE-569 Operands don't affect result netsurf/content/urldb.c:4209
CWE-569 Operands don't affect result libcss/src/select/mq.h:124
CWE-569 Operands don't affect result netsurf/utils/nsurl/nsurl.c:169
CWE-569 Operands don't affect result libdom/src/core/string.c:1019
CWE-569 Operands don't affect result netsurf/content/urldb.c:Various
CWE-569 Operands don't affect result libcss/src/select/select.c:1801
CWE-569 Operands don't affect result netsurf/content/fetchers/curl.c:175

Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium

CWE Vulnerability Type Severity File:Line
CWE-569 Operands don't affect result netsurf/content/fetch.c:183
CWE-569 Operands don't affect result libdom/src/core/element.c:1222
CWE-569 Operands don't affect result netsurf/content/llcache.c:864
CWE-569 Operands don't affect result netsurf/content/fetch.c:136
CWE-569 Operands don't affect result netsurf/content/content.c:508
CWE-569 Operands don't affect result libcss/src/parse/language.c:928
CWE-569 Operands don't affect result libcss/src/select/select.c:2356
CWE-569 Operands don't affect result libcss/src/select/mq.h:145
CWE-569 Operands don't affect result netsurf/desktop/browser_window.c:4712
CWE-569 Operands don't affect result netsurf/content/llcache.c:856
CWE-569 Operands don't affect result netsurf/content/urldb.c:3187
CWE-606 Untrusted loop bound netsurf/content/urldb.c:Various
CWE-676 Calling risky function netsurf/content/handlers/image/image_cache.c:314

Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Low

96 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

A.4 Ignore Files

Code listing A.1: .snyk File

1 # Snyk (https://snyk.io) policy file
2 exclude:
3 global:
4 - buildsystem/**
5 - inst-gtk2/share/netsurf-buildsystem/**
6 - libnsbmp/**
7 - libnsfb/**
8 - libnslog/**
9 - libnspsl/**

10 - libnsutils/**
11 - libparserutils/**
12 - libpencil/**
13 - librosprite/**
14 - librufl/**
15 - libutf8proc/**
16 - libwapcaplet/**
17 - netsurf-nix/**
18 - nsgenbind/**
19 - Makefile
20 - env.sh
21 - flake.lock
22 - flake.nix
23 - flawfinder_out
24 - netsurf/frontends/amiga/**
25 - netsurf/frontends/atari/**
26 - netsurf/frontends/riscos/**
27 - netsurf/frontends/beos/**
28 - netsurf/frontends/monkey/**
29 - netsurf/test/**
30 - libcss/test/**
31 - libdom/test/**
32 - libhubbub/test/**
33 - libhubbub/perf/**
34 - libsvgtiny/test/**
35 - libdom/examples/**
36 - libsvgtiny/examples/**
37 - libhubbub/examples/**

Code listing A.2: .semgrepignore File

1 buildsystem/
2 inst-gtk2/share/netsurf-buildsystem/
3 libnsbmp/
4 libnsfb/
5 libnslog/
6 libnspsl/
7 libnsutils/
8 libparserutils/
9 libpencil/

10 librosprite/
11 librufl/
12 libutf8proc/
13 libwapcaplet/
14 netsurf-nix/
15 nsgenbind/
16 Makefile
17 env.sh
18 flake.lock
19 flake.nix
20 flawfinder_out

Chapter A: Additional Material 97

21 netsurf/frontends/amiga/
22 netsurf/frontends/atari/
23 netsurf/frontends/riscos/
24 netsurf/frontends/beos/
25 netsurf/frontends/monkey/
26 netsurf/test/
27 libcss/test/
28 libdom/test/
29 libhubbub/test/
30 libhubbub/perf/
31 libsvgtiny/test/
32 libhubbub/examples/
33 libsvgtiny/examples/
34 libdom/examples/

98 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

A.5 Nix Flake

1 {
2 description = "Flake for debugging and fuzzing NetSurf";
3

4 inputs = {
5 nixpkgs.url = "github:NixOS/nixpkgs/nixos-23.11";
6 };
7

8 outputs = { self, nixpkgs, ... }@inputs:
9 let

10 systems = [
11 # GDB and AFL are only available for linux
12 "x86_64-linux"
13 "aarch64-linux"
14

15 # ... but everything else should work on mac as well
16 "x86_64-darwin"
17 "aarch64-darwin"
18];
19 forAllSystems = f: nixpkgs.lib.genAttrs systems (system: f system);
20 in {
21 packages = forAllSystems (system: rec {
22 pkgs = import nixpkgs { inherit system; };
23

24 netsurf-gtk3 = with pkgs; (lib.recurseIntoAttrs (callPackage \
25 ./netsurf-nix { })).overrideScope’ (final: pref: {
26 ui = "gtk3";
27 enableDebugging = true;
28 });
29

30 netsurf-fb = with pkgs; (lib.recurseIntoAttrs (callPackage \
31 ./netsurf-nix { })).overrideScope’ (final: pref: {
32 ui = "framebuffer";
33 enableDebugging = true;
34 forceEnableScripting = true;
35 });
36

37 netsurf-fb-afl = with pkgs; if (lib.hasSuffix "linux" system) then
38 ((lib.recurseIntoAttrs (callPackage ./netsurf-nix { })).overrideScope’ \
39 (final: prev: {
40 ui = "framebuffer";
41 enableDebugging = false;
42 exitWhenDone = true;
43 forceEnableScripting = false;
44 stdenv = prev.stdenv_afl;
45 })) else { };
46 });

Chapter A: Additional Material 99

47

48 devShells = forAllSystems (system: rec {
49 pkgs = import nixpkgs { inherit system; };
50

51 # "$ coredumpctl gdb" always runs "gdb" from your path.
52 pwndbg-with-alias = pkgs.pwndbg.overrideAttrs ({ installPhase ? "", ... }: {
53 installPhase = installPhase + ’’
54 ln -s $out/bin/pwndbg $out/bin/gdb
55 ’’;
56 });
57

58 default = pkgs.mkShell {
59 nativeBuildInputs = with pkgs; with self.packages.${system}; [
60 netsurf-fb.browser
61 netsurf-gtk3.browser
62

63 aflplusplus
64] ++ lib.optionals stdenv.isLinux [
65 pwndbg-with-alias
66];
67 };
68 });
69 };
70 }

Code listing A.3: Nix Flake

100 Albrigtsen, F. Eriksen, K. L. Juelsen, K.: Finding Vulnerabilities with SAST & Fuzzing

A.6 Docker Configuration

Code listing A.4: Dockerfile to Run AFL++ on NetSurf

1 FROM nixos/nix:latest AS builder
2
3 RUN nix-build ’<nixpkgs>’ -A aflplusplus
4
5 COPY . /netsurf
6 WORKDIR /netsurf
7
8 RUN nix \
9 --extra-experimental-features "nix-command flakes" \

10 --option filter-syscalls false \
11 build ".#netsurf-fb-afl.browser"
12
13 ENV AFL_AUTORESUME=1
14 ENV AFL_NO_AFFINITY=1
15
16 # These settings should be set on your host for increased performance, but they are not required.
17 ENV AFL_I_DONT_CARE_ABOUT_MISSING_CRASHES=1
18 ENV AFL_SKIP_CPUFREQ=1
19
20 CMD ["nix-shell", "-p", "aflplusplus", "--command", "afl-fuzz -i /fuzzing/inputs -o /fuzzing/output \
21 -e html -M fuzz01 -- /netsurf/result/bin/netsurf-fb -f ram file://@@"]

Code listing A.5: Docker Compose Configuration for Running Multiple Instances of afl-fuzz

1 services:
2 afl-master:
3 build: .
4 tmpfs:
5 - /ramdisk
6 environment:
7 - AFL_TMPDIR=/ramdisk
8 volumes:
9 - type: bind

10 source: ./fuzzing/inputs_x
11 target: /fuzzing/inputs
12 - type: bind
13 source: ./fuzz-output
14 target: /fuzzing/output
15 network_mode: none
16 stdin_open: true
17 tty: true
18 command: nix-shell -p aflplusplus --command "afl-fuzz -i /fuzzing/inputs -o /fuzzing/output \
19 -e html -M fuzz_master -- /netsurf/result/bin/netsurf-fb -f ram file://@@"
20
21 afl-worker:
22 build: .
23 tmpfs:
24 - /ramdisk
25 environment:
26 - AFL_TMPDIR=/ramdisk
27 volumes:
28 - type: bind
29 source: ./fuzzing/inputs_x
30 target: /fuzzing/inputs
31 - type: bind
32 source: ./fuzz-output
33 target: /fuzzing/output
34 network_mode: none
35 stdin_open: true
36 tty: true

Chapter A: Additional Material 101

37 command: nix-shell -p aflplusplus --command "afl-fuzz -i /fuzzing/inputs -o /fuzzing/output \
38 -e html -S fuzz_$(cat /etc/hostname) -- /netsurf/result/bin/netsurf-fb -f ram file://@@"
39
40
41 # Note:
42 # Preparation:
43 # - Choose a set of inputs, e.g. "3".
44 # - cp ./fuzzing/inputs_3 into ./fuzzing/inputs_x
45 # - mkdir fuzz-output
46 #
47 # Running:
48 # - docker compose up --detach --scale afl-worker=X
49 # - "X" is the number of extra workers (in addition to the master). 4 CPU Cores -> X=3
50 # - See the status:
51 # - docker logs -f --tail 50 netsurf-all-afl-master-1
52 # - docker logs -f --tail 50 netsurf-all-afl-worker-X
53 #
54 # The "logs" show the status, and can be opened and closed(^C) at any time.
55 # When exiting, your shell might be confused and look weird. If so, run ‘reset‘.

Code listing A.6: Basic Dockerfile for Debugging an Unmodified NetSurf

1 # docker build . -t netsurf_report
2 # docker run --security-opt seccomp=unconfined -it netsurf_report
3 FROM debian@sha256:1aadfee8d292f64b045adb830f8a58bfacc15789ae5f489a0fedcd517a862cb9
4
5 ENV DEBIAN_FRONTEND noninteractive
6 RUN apt update && apt upgrade
7 RUN apt install -y \
8 make \
9 git \

10 bison \
11 flex \
12 gperf \
13 libcurl3-gnutls \
14 libcurl3-nss \
15 libcurl4 \
16 libcurl4-openssl-dev \
17 libpng-dev \
18 libjpeg-dev
19
20 RUN git clone https://github.com/pwndbg/pwndbg
21 WORKDIR /pwndbg
22 RUN /pwndbg/setup.sh
23
24 WORKDIR /
25 COPY netsurf-all-3.11.tar.gz /
26 RUN tar -xvf /netsurf-all-3.11.tar.gz
27
28 WORKDIR /netsurf-all-3.11
29 RUN make TARGET=framebuffer
30 ADD inputs /html_inputs
31 ENV NETSURFRES=/netsurf-all-3.11/netsurf/frontends/framebuffer/res
32
33 CMD ["/bin/bash"]

	Preface
	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Glossary
	CWE List
	1 Introduction
	1.1 Background
	1.2 Purpose
	1.3 Target Selection
	1.4 Problem Statement
	1.5 Research Questions
	1.6 Scope
	1.7 Thesis Outline

	2 Theory
	2.1 Penetration Testing
	2.1.1 Common Methodologies
	2.1.2 Penetration Testing Use Cases

	2.2 Source Code Analysis
	2.2.1 Selection of SAST Tools
	2.2.2 Advantages of SAST
	2.2.3 Disadvantages of SAST

	2.3 Fuzzing
	2.3.1 Advantages of Fuzzing
	2.3.2 Disadvantages of Fuzzing

	2.4 Vulnerability Overview
	2.4.1 Common Vulnerability and Exposures (CVE)
	2.4.2 Common Weakness Enumeration (CWE)
	2.4.3 Types of Vulnerabilities
	2.4.4 Analysis of Some Relevant CWEs
	2.4.5 Program Control
	2.4.6 Other Vulnerabilities and Exploits

	3 Method
	3.1 NetSurf and the Build Process
	3.2 Working with SAST
	3.2.1 Tools
	3.2.2 Required Setup
	3.2.3 Managing the Results

	3.3 Working with Fuzzing
	3.3.1 Tools
	3.3.2 Required Setup
	3.3.3 Managing the Results

	3.4 Responsible Disclosure

	4 Results
	4.1 Source Code Analysis
	4.1.1 Snyk
	4.1.2 Semgrep
	4.1.3 Coverity
	4.1.4 Useful Findings
	4.1.5 Useless Findings

	4.2 Fuzzing
	4.2.1 Domato
	4.2.2 AFL++
	4.2.3 Findings

	4.3 Disclosure of Discovered Vulnerabilities

	5 Discussion
	5.1 Sources of Error
	5.1.1 NetSurf Characteristics
	5.1.2 Manual Analysis
	5.1.3 Usage of SAST Tools
	5.1.4 Usage of Fuzzing Tools

	5.2 Exploring the Problem Statement
	5.2.1 Performance and Accuracy of SAST Tools
	5.2.2 Performance and Accuracy of Fuzzing
	5.2.3 General Security of the NetSurf Project

	5.3 Quality of Research
	5.4 Future Work

	6 Conclusion
	Bibliography
	A Additional Material
	A.1 Initial Findings - Snyk
	A.2 Initial Findings - Semgrep
	A.3 Initial Findings - Coverity
	A.4 Ignore Files
	A.5 Nix Flake
	A.6 Docker Configuration

