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Abstract

The Institutional Grammar (IG) is a grammar for systematic study and analysis of
institutions. The purpose of the IG is to formalize a way to define institutions and
analyse institutions expressed in natural language in order to make those analytic-
ally accessible. The essential unit of analysis are so-called institutional statements
that include strategies (e.g., conventions of behaviour), norms (socially enforced
behaviour) and rules (legally enforced behaviour). These institutional statements
are annotated or encoded with components of the IG to perform this analysis.
The task of annotating institutional statements requires knowledge and expert-
ise of the IG, as well as substantive time investment. The purpose of this thesis
is to assist in the annotation of institutional statements. This assistance comes
in the form of a prototype of an automated annotation software that bases its
automated annotations on Natural Language Processing (NLP) techniques and a
custom matching function to match components of the IG to parts of text based on
the output of the NLP pipeline. The contributions were developed in stages, start-
ing with an initial pilot prototype for the automated annotations based solely on
dependency parsing and Part-of-Speech (POS)-tagging. This was developed along-
side an updated user interface prototype for the Institutional Grammar Parser (IG
Parser) annotation tool that was later integrated into the main IG Parser program.
The pilot project was further extended through the development of IG2NLP with
additional functionality, tooling and NLP techniques. Further, an Application Pro-
gramming Interface (API) was developed together with a prototype integration of
the API into the IG Parser, which extends the functionality of the IG Parser with
automated annotation. The main contributions of this thesis are the development
of a matching function from dependency parsing, coreference resolution, Named
Entity Recognition (NER), POS-tags and uFeats to components of the IG and the
integration of this in a prototype. The use of custom manually created rules based
on NLP techniques gives reproducible results and shows the potential of using
NLP to assist in the annotation task. The solution shows good performance on
regulative statements consisting of single fully formed sentences. The solution
also automates the annotation of constitutive statements and nested statements,
however the accuracy is lower for these features. Further contributions are the
testing methodology developed for testing the annotations and the discussion of
limitations, strengths and future work. In the end, the solution developed in this
thesis serves as a proof of concept that lays the foundation for further work in
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automated annotation using NLP.



Sammendrag

"Institutional Grammar" (Institusjonell Grammatikk) er en grammatikk for sys-
tematisk studie og analyse av institusjoner. Målet til den Institusjonelle Gram-
matikken er å formalisere en måte å definere institusjoner og å analysere instit-
usjoner uttrykt i naturlig språk for å gjøre institusjonene tilgjengelige for analyse.
Den essensielle enheten av analyse er såkalte "institutional statements" (institus-
jonelle uttrykk) som inkluderer strategier (dvs. konvensjoner av atferd), normer
(sosialt håndhevet atferd) og regler (lovlig håndhevet atferd). Disse institusjon-
elle utrykkene er kommentert eller kodet med komponenter av den Institusjon-
elle Grammatikken for å utføre denne analysen. Oppgaven av å kode institusjon-
elle uttrykk krever kunnskap og ekspertise i den Institusjonelle Grammatikken og
betydelig tidsinvestering. Hensikten til denne oppgaven er å hjelpe med kodin-
gen av institusjonelle uttrykk. Denne hjelpen er i form av en prototype av et pro-
gram som automatiserer kodingen av uttrykkene basert på Naturlig Språkbehand-
ling (NLP) og en modell for å knytte komponenter av den Institusjonelle Gram-
matikken til deler av tekst basert på resultatene av Naturlig Språkbehandling på
uttrykket. Bidragene til oppgaven ble utviklet i stadier. Først ble et innledende
pilotprosjekt utviklet. Dette pilotprosjektet var en prototype som automatiserte
kodeprosessen basert på avhengighetsanalyse og POS-tagging. Denne prototypen
ble utviklet i parallell med en prototype på et oppdatert brukergrensesnitt til IG
Parser kodeverktøyet (tekstredigeringsprogram for institusjonelle uttrykk), denne
prototypen ble senere integrert inn i IG Parser kodeverktøyet. Pilotprosjektet ble
videreutviklet gjennom utviklingen av IG2NLP programmet med ekstra funksjon-
alitet, verktøy og med koding basert på flere NLP teknikker. Videre ble et API utvik-
let sammen med en prototype for integrasjon av API inn i IG Parser, som utvider
funksjonaliteten til IG Parser med automatisert koding. Bruken av en skredder-
sydd modell for å knytte komponenter til tekst basert på NLP gir reproduserbare
resultater og viser potensialet av å bruke NLP til å hjelpe med kodeoppgaver. Løs-
ningen viser god ytelse på "regulative statements" (regulerende uttrykk) som be-
står av enkeltformede setninger. Løsningen automatiserer også koding av nestede
uttrykk (utrykk som inneholder andre utrykk) og "constitutional statements" (kon-
stitusjonelle uttrykk), men ytelsen er lavere på disse oppgavene. Videre bidrag
inkluderer testmetoden utviklet for å teste kodingen og diskusjonen av begrens-
ninger, styrker og videre arbeid. Alt i alt virker løsningen utviklet i denne oppgaven
som et konseptbevis som legger grunnlaget for videre arbeid innen automatisert
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koding ved help av NLP.
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Chapter 1

Introduction

This chapter serves as an introduction to the thesis and starts with an introduction
to the topic, followed by an introduction of the problem, the contributions of the
thesis, and finally an outline of the rest of the thesis.

This thesis is intended for an audience with some basic prior knowledge in the
field of Natural Language Processing and with a Computer Science background.

1.1 Topic

The IG is a grammar for systematic study and analysis of institutions. Annotation
of institutional statements of the IG is a process that requires time, expertise, and
effort. To assist in the annotation of such statements I am researching two aven-
ues. First the use of Natural Language Processing together with custom matching
software as a method of semi-automating the annotation process. By using NLP
methods such as Dependency Parsing and POS-tagging structured information can
be extracted from the institutional statements, which can be used to match com-
ponents of the IG to elements of the statement text. Further, an updated interface
to, and integration of the new software into the IG Parser annotation tool was
developed to assist in the annotation process.

This thesis has two primary software artefacts, the IG2NLP automated an-
notation software and the IG Parser updated user interface and prototype API
integration.123

1The IG2NLP software is available on GitHub: https://github.com/Kjaerandsen/IG2NLP
2The updated user interface is integrated into the main IG Parser GitHub Repository:

https://github.com/chrfrantz/IG-Parser
3The API integration prototype is available on GitHub: https://github.com/Kjaerandsen/IG-

Parser-prot-vis/tree/api-integration

1
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1.1.1 Research Questions

This thesis seeks to answer the following research questions:

1. To what degree can NLP tools be used to automate the annotation process
of institutional statements to the IG Script notation?

2. How accurate is automated parsing of text into IG Script notation using the
solution?

The first research question can be divided into two subquestions:

1. Which NLP techniques could be used to help automate parts of the IG an-
notation process?

2. What are the current trends in the relevant papers on unstructured text pro-
cessing with NLP?

These questions will be mainly addressed through the related work section
(section 2.3), and the subsequent literature review in the third chapter (chapter 3)
which gives a more general insight into the current landscape of NLP with a focus
on techniques potentially applicable to automating IG annotation. This chapter
is followed by a chapter introducing the specific NLP techniques and toolkit used
in the prototype (chapter 4). Finally, the prototype and development chapters
(chapters 5 and 6) go into specific detail on the way NLP techniques can be ap-
plied for this task.

The second research question is answered by using statistical metrics in the testing
and evaluation chapter (chapter 7). Where the automated annotations produced
by the developed IG2NLP prototype are evaluated by comparing the annotations
to a manual annotation across different datasets.
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1.2 Outline

The thesis is structured in chapters as described below:

• Chapter 2: introduces the Institutional Grammar, its background, and its use
cases along with examples.

• Chapter 3: presents the background literature review performed to gain in-
sight into the wider field of Natural Language Processing and to find NLP
techniques that can potentially be used to automate the annotation of insti-
tutional statements.

• Chapter 4: goes into further detail on the NLP techniques used in the solu-
tion presented in this thesis, and presents an introduction and discussion of
Large Language Models (LLMs) in relation to their potential strengths and
weaknesses for the automated annotation task.

• Chapter 5: showcases the background and basis of the "IG2NLP" solution
developed for this thesis, including information on the datasets used, pre-
processing, and pilot projects.

• Chapter 6: showcases the IG2NLP software developed for this thesis, includ-
ing various stages of development, principles behind the design, the imple-
mentation, surrounding tooling and integration, and a brief evaluation of
the performance of the solution.

• Chapter 7: presents and discusses testing of the solution, this includes the
results of this testing on various statements, its implications, the limitations
of the solution, and potential ways to address these limitations.

• Chapter 8: summarizes the thesis, discusses potential future improvements
and work, and concludes the thesis.





Chapter 2

The Institutional Grammar

The Institutional Grammar (IG) was first presented in 1995 in an article by Sue
E. S. Crawford and Elinor Ostrom named "A grammar of institutions"[1]. Craw-
ford and Ostrom presented a grammar of institutions with the "ADICO" syntax,
containing the "Attribute, Deontic, Aim, Condition and Or Else" components, and
presented a method of using the grammar for the systematic analysis of differ-
ent types of institutions, namely shared strategies, norms and rules[1]. The pur-
pose of the IG is to formalize a way to define institutions and analyse institu-
tions expressed in natural language in order to make those analytically accessible.
The Essential units of analysis are so-called institutional statements that include
strategies (e.g., conventions of behaviour), norms (socially enforced behaviour)
and rules (legally enforced behaviour). This initial paper was followed by sev-
eral papers extending the IG, and using it in research, and analysis. A framework
for this analysis was later formalized with the Institutional Analysis and Devel-
opment (IAD) framework[2]. Following the formalization of the IAD framework
Basurto et al. presented an attempt at coding institutional statements from U.S.
legislation with the IG[3]. This article provided guidelines for identifying insti-
tutional statements, coding and analysing them, and further included a method
of nested analysis looking at aggregating units of observation for analysis instead
of only looking at individual units. The article showed how the IG can be used
to describe policy and to get insight into roles, responsibilities and emphasis in
the policy, and concluded with a set of limitations including inter-coder reliability
and ambiguity[3]. To mitigate some of these limitations Siddiki et al. presented
a revision of the guidelines discussed above for applying the IG and presented
a new component to the grammar, the so-called "Object" in the article "Dissect-
ing Policy Designs: An Application of the Institutional Grammar Tool"[4]. Siddiki
et al. provide a definition of the Object as: "the inanimate or animate part of a
statement that is the receiver of the action described in the aIm and executed
by the agent in the Attribute"[5]. The purpose of the Object was to reduce am-
biguity in coding by making a clear distinction between the Object component
and the Attribute and further by helping to distinguish the other components in
a statement. Another purpose of the paper was to increase inter-coder reliabil-

5
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ity, in addition to helping in analysis. Another subsequent development to the IG
was the introduction of the Nested ADICO (nADICO) by Frantz et al. in the paper
"nADICO: A Nested Grammar of Institutions"[6]. This paper expanded on the nest-
ing capabilities of the IG with refinements to allow capturing and expressing the
intricacies of institutions. The paper further aimed to refine the differentiation of
norms and rules[6]. Finally, Christopher Frantz and Saba Siddiki presented the IG
2.0[7]. The Institutional Grammar 2.0 included an updated IG syntax , supporting
the annotation of both constitutive and regulative statements, alongside updated
coding guidelines through the supplementary IG 2.0 Codebook[8]. In the later
released "Institutional Grammar" Book Frantz and Siddiki present a formal syntax
for annotating institutional statements in text with the IG Script notation[9].

This thesis focuses on the IG 2.0 and uses the IG Script notation of the IG 2.0
in the given examples and in the annotation work. The related work section on
the other hand (section 2.3) will discuss related work that was performed with
the prior "IG 1.0". The next sections will go over the two types of institutional
statements; regulative and constitutive statements. This will be followed by an
introduction to components of the IG and the IG Script notation, in addition to
related work. Finally, a subsection on challenges in annotation using the IG is
presented.

2.1 Regulative and Constitutive Statements

The IG 2.0 has components for both regulative and constitutive statements. In
context of the IG 2.0 Regulative statements are statements that describe rules or
norms that regulate behaviour, Frantz and Siddiki describe regulative statements
as: "regulative statements describe actions for actors within particular contexts.
They may further indicate prescription and consequences related to the referenced
action."[10]. A basic example of this can be "Students must attend class in a given
course, or else they will fail the course", in this case, the actor or student has a
rule that must be followed. If the rule is not followed by the actor in the specified
circumstance then there is a consequence of failing the course specified.

Constitutive statements on the other hand are statements that describe facts
or describe the setting, this can be definitions of terms for example, or a descrip-
tion of roles. Frantz and Siddiki explain that "constitutive statements parameterize
features of the institutional system within particular contexts"[10]. An example
of a constitutive statement could be describing what a student refers to in the
previous example. For example, "A student refers to a person currently attending
an educational institution", where a basic description of what a student is in the
context of the statement is provided. In addition to statements that are exclus-
ively constitutive or regulative, there are hybrid statements with nesting where a
part of the statement can be constitutive nested within a regulative statement for
example.

This thesis provides an attempt at automating the annotation of both con-
stitutive and regulative statements, while the problem of detecting whether a
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statement is regulative, constitutive or hybrid is a challenge that is not solved
in this thesis.

2.2 Components of the Institutional Grammar

The IG uses components to describe meaning in institutional statements. For reg-
ulative statements for example, this can be distilled into the main components of
the sentence. For example, with the sentence "Students must attend class", the ob-
ligation is "must". This is the Deontic component of the statement. Then looking
at the sentence we describe who or what the obligation belongs to, in this in-
stance "students", which defines the Attribute component of the statement. Then,
we know the actor, the obligation, and now the action is the Aim component,
which is "attend". Finally, the Direct Object component describes what the direct
object of the sentence is, or what the Attribute acts upon with the Aim. In this case,
it describes what the student must attend, which is "class". By using these com-
ponents of the IG we can extract meaningful information from the institutional
statement. Further components of regulative statements also include Activation
Conditions which describe the conditions for the statement to be in effect, such as
an activation date, Execution Constraints describing constraints for the statement
such as defining a timeline for completion of a task and Properties of various com-
ponents giving additional context to the components. For constitutive statements,
the Attribute component is replaced by the Constituted Entity, the Aim with the
Constitutive Function, the Deontic by the Modal and the Objects by the Consti-
tuting Properties. The two statement types do however both use the Activation
Condition, the Execution Constraint and the Or Else components.

The Institutional Grammar Script Notation

The IG Script notation is a way to annotate institutional statements in-text. By en-
capsulating words and sentences with a symbol such as "A" for the Attribute com-
ponent, and a set of matching brackets. A basic example of an Attribute component
is: "A(Entity)". The "A" refers to the specific component, and the parentheses sig-
nal that the component is not nested, and define the scope of the component. A
component can contain multiple words: "A(Member State)", a suffix to link com-
ponents and their respective properties: "A1(Entity) A1,p(Entity Property)", and
semantic annotations: "A[entity=Member State](it)", which in this case describes
who or what entity the "it" refers to. Further components can have internal scoping
when dealing with logical operators For example, "A(Students [AND] Teachers)",
and can have nested components contained within such as for an Activation Con-
dition:

"Cac{if the A(Member State) A,p(concerned) I(decides not to address) the
Bdir(recommendations [OR] substantial part thereof)}"



8 Jonas K.@NTNU: IG2NLP - Automated NLP Based Annotation

This example is the first part of statement 7.3.3 of the dataset used in the
development and testing of this thesis. Subsequent examples will also be from the
development dataset. For an example of a fully annotated statement with nesting,
suffixes, logical operators and multiple components see the following:

A(Member States) A1,p(relevant) A1(EU institutions), A1(bodies) and
A1(agencies) D(should) I(ensure) that, Cac(in cases of large-scale cybersecurity

incidents [AND] crises), Bdir{they A([Member states ...]) I(coordinate)
Bdir,p(their) Bdir(efforts) Cex(through a Joint Cyber Unit which enables mutual
assistance through expertise from Member State authorities [AND] relevant EU

institutions [AND] bodies [AND] agencies)}.

This example includes Attribute components linked to the Attribute Property
"relevant" with a suffix, a nested Direct Object component, logical "and" operators
inside an Execution Constraint, inference of the Attribute in the Direct Object
and more. Through this example a wide range of the capabilities of the IG Script
notation for in-text annotation can be seen, however there are additional features
that are not present in this example such as semantic annotations, the Indirect
Object component, and the components of constitutive statements.

A table showing the full list of components and their respective IG Script nota-
tion symbols as used in the IG2NLP software as presented in the IG Parser syntax
guide can be seen below (table 2.1):1

Symbol Component
A Attribute
A,p Attribute Property
D Deontic
I Aim
Bdir Direct Object
Bdir,p Direct Object Property
Bind Indirect Object
Bind,p Indirect Object Property
Cac Activation Condition
Cex Execution Constraint
E Constituted Entity
E,p Constituted Entity Property
M Modal
F Constitutive Function
P Constituting Property
P,p Constituting Properties Property
O Or Else

Table 2.1: IG Components and their respective IG Script symbols

1IG Parser Syntax guide https://ig-parser.newinstitutionalgrammar.org/help/
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These symbols will be used throughout this document to refer to their respect-
ive components. Please refer back to this table in such cases.

Through these various symbols the annotation of statements can be performed
using a basic text editor, or pen and paper. Although, there are specific annotation
tools more fit-for-purpose such as the INCEpTION platform2 with the IG layers3,
and the tailor-made IG Parser4, which is specifically designed and developed for
this purpose.

2.3 Related Work

The task of automating the annotation process has been previously attempted.
These previous attempts will be discussed in this section, along with their de-
tails, contributions, limitations and future work. This section is partially based on
previous related work sections from the Research Project Planning (MACS4000)
deliverable and the Advanced Project Work (APW) deliverable of the previous
semester. However, this section goes into further detail and has been mostly re-
written. As discussed above these two papers do not use the IG 2.0, which has
implications to the comparability of these results to the solution in this paper.
There are also additional factors to consider when annotating using the IG 2.0
with the increased feature set leading to more alternatives and complexity when
annotating.

Matia Vannoni proposed a method based on computational linguistics for ex-
tracting the "Attribute", "Object", "Deontic", "Neg", "Aim", Object Properties, Attrib-
ute Properties, and "Conditions" from institutional statements[11]. This method
used dependency parsing to extract these features from text through a manual
mapping-based approach. The "Or else" component was not covered in this solu-
tion. Vannoni et al. mentions integration of NER, and handling co-referencing as
opportunities for future work, in addition to machine learning for future research.
Another aspect for potential future work is the inclusion of topic modelling as a po-
tential method for "categorizing conditions according to their type (time, space,
and so on)"[12]. Potential limitations mentioned in the paper are in validation
through comparison to a manual encoding of the dataset, as inter-coder reliabil-
ity can cause inaccuracies in the manual encoding.

Another article by Rice et al. presents the development of a solution for auto-
mated annotation of policy texts[13]. This approach is also based on dependency
parsing, but instead of using a manual mapping approach from the dependency
parsing output to IG components, a machine learning approach is taken. Where a
supervised model is trained to map the output of the statement after dependency
parsing into IG elements, this comes with the benefit of potentially higher accur-
acy, but has a risk of overfitting to the datasets used in training. This can cause

2INCEpTION annotation platform website: https://inception-project.github.io/
3Institutional Grammar Layers for INCEpTION: https://github.com/InstitutionalGrammar/IG-

Inception-Layers
4IG Parser website: https://ig-parser.newinstitutionalgrammar.org/
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the solution to be less accurate on institutional statements in other fields, or with
different sentence structures or formatting than what the model has previously
seen. Another downside to training a model is the requirement of labeled training
data. The specific components the solution covers are the "Attribute", the "Aim",
the "Deontic", "Objects", "Conditions", and the "Or else".

Both of these articles use an earlier version of the institutional grammar without
the nesting capabilities of the nADICO or the IG 2.0 and the semantic annotation
of IG 2.0. Another aspect to consider is that due to the earlier version of the IG
the list of potential components is smaller than that of the IG 2.0, for example the
Condition component mentioned in these papers does not distinguish between
Activation Conditions and Execution Constraints. Further, both papers rely on de-
pendency parsing as the primary technique behind their mapping approach, which
shows that there is potential in using NLP techniques for automated annotation
of institutional statements, and that dependency parsing is an effective technique
for this task. However, there are several additional available NLP techniques that
the papers have not tested. Another aspect that both papers touch on is the use
of machine learning models for the matching of IG components, with Vannoni et
al. mentioning it as potential future work, and Rice et al. basing their solution on
machine learning. However, basing the matching on a machine learning model
can also introduce potential drawbacks such as the requirement of training data,
reproducibility and the potential of overfitting to the datasets used in training.

To differentiate and expand upon this related work I will be looking into us-
ing additional NLP techniques for the automation, additionally, the solution de-
scribed in this thesis is built for the IG Script notation of the IG 2.0, which uses a
newer syntax with different characteristics and additional features. The addition
of further features necessitates solutions for handling more statement data and
detection of additional components. An example of the added complexity is the
handling of nested component structures, with components potentially containing
nested components within, and the handling of constitutive statements that have
their own components, in addition to some shared components with regulative
statements. For the initial prototype discussed in a later section (Section 5.2) the
focus was on annotating the "Object", "Attribute", "Aim,", "Deontic" and "Activation
Condition" components using dependency parsing, to gauge the performance of
a manual mapping approach based on dependency parsing for the IG Script nota-
tion. This prototype was then expanded upon with further component coverage,
and the inclusion and utilization of additional NLP techniques (Section 6.1). Fi-
nally, another innovation of the solution in this thesis is the development of an
API and the prototype integration into the IG Parser annotation tool, extending
the utility of the solution by facilitating user input on request.
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2.4 Challenges

Annotation of institutional statements is a multi-faceted issue with increasing
levels of complexity depending on which features are utilized.

With the inclusion of further complexity through additional features the an-
notation becomes more resource intensive. As the more encompassing annota-
tion requires increased knowledge of the IG to handle more advanced annotation
tasks, and performing these additional annotation tasks also increases the time
investment necessary. The primary challenge this thesis addresses is the annota-
tion process, specifically the time and expertise required to annotate institutional
statements. For more basic statements the solution presented in this thesis frees
up time by allowing for rapid batch processing. While for more advanced state-
ments manual intervention is still necessary in several cases, however the automa-
tion can assist in the groundwork by providing an initial annotation suggestion,
thereby offering a more efficient semi-automated coding. An iterative approach
may also be utilized by coders where they look at the statement, use the automated
annotation, and then make iterative alterations to approach a more accurate an-
notation, or split up the statement in smaller parts that are separately ran through
the solution.

The development of such an automation solution has its own challenges, in
the expertise required, the necessity of varied datasets to base the automation on,
selection of techniques or ground methods for annotation, reproducibility of res-
ults and the potential of overfitting the solution to a certain dataset or statement
structure. The expertise required comes in the form of both knowledge of the IG
and in NLP techniques to be able to detect and utilize patterns in statements to be
able to create consistent rules or a method for automated annotation. The choices
taken to approach a solution and mitigation of the various challenges outlined
above will be presented and discussed throughout the thesis.

After initial research into the problem of annotation a literature review was
performed to gain deeper insight into the field of NLP to identify possible can-
didate techniques for the inclusion in the automation process. The next chapter
presents this literature review and its results.





Chapter 3

Literature Review

This literature review was first performed as a part of the Research Project Plan-
ning (MACS4000) course in the preceding autumn semester. It has subsequently
been updated and newly released papers have been included. The following sec-
tions contain a literature review on Natural Language Processing in unstructured
text with the purpose of finding out if there are natural language processing (NLP)
techniques that can be used to automate the process of annotating institutional
statements into IG Script notation.

3.1 Objective

The goal of this literature review is to find out what NLP techniques are relevant to
automating the annotation of Institutional Statements. For this literature review,
I have the following research questions:

1. Which NLP techniques could be used to help automate parts of the IG an-
notation process?

2. What are the current trends in the relevant papers on unstructured text
processing with NLP?

Further, the goal of this literature review is to assess the field of NLP processing
in unstructured text related to the goal of automating the annotation process,
this includes learning the relevant trends, strengths, and weaknesses in the field.
It was narrowed down to get a grasp on which NLP techniques can be used to
add automation capabilities to the IG Parser. As such the literature review will be
focused on techniques useful for in-text annotation and techniques relevant to the
requirements of the Institutional Grammar.

13
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3.2 Document Selection

The initial search resulted in 130,859 documents for NLP written out and in ab-
breviated form, while for both NLP and Natural Language Understanding (NLU)
there were 10,719 documents. To narrow down the scope of the literature review
to a manageable and relevant selection several steps have been taken. The focus
will be on unstructured text. As such the initial search term has been narrowed
down to:

( nlp OR ( natural AND language AND processing ) ) AND ( ( natural AND
language AND understanding ) OR nlu ) AND text AND unstructured

By completely spelling out NLP and NLU in addition to including the abbre-
viations the chance of accidentally missing documents is reduced. The search
was performed in Scopus, which is a database of peer-reviewed literature such
as journal articles and conference papers.

The initial search for this revised term resulted in 259 documents. This was
narrowed down by limiting the language to English, then by specifying the docu-
ment types to articles, book chapters, conference papers, reviews, and conference
reviews, and finally the subject area to computer science. This resulted in a total
of 163 documents. As the field is constantly evolving and to narrow down the
amount of papers to a more manageable level the search was limited to papers
from 2017 and onwards. 2017 was included as it showed a rather substantial in-
crease in documents published compared to the previous years. Now the total was
127 documents, and after checking for availability through NTNU the final total
of documents was 114 documents as of November 28th, 2023. The search was
subsequently performed again a last time on the 14th of May 2024, in which two
new relevant papers were found and introduced to this literature review.
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3.2.1 Document Exclusion

After reading the abstracts and conclusions of the documents they were divided
into categories and new exclusion criteria were formed to narrow down the scope
of the literature review to a more relevant selection of documents. The exclusion
of documents was done through categorizing them, and evaluating whether the
focus of the document and the techniques used were relevant to automating in-
text annotation of Institutional Statements into IG Script notation. In the following
section, a list of categories used for exclusion will be presented.

• Document classification or clustering
Documents where the focus is on extracting information from documents
and using it to classify or cluster documents. This includes applications such
as creating knowledge graphs and word clouds. This was deemed irrelevant
to the task as the focus is on annotating text in documents, not on inform-
ation extraction or generating statistics of documents.
• Image or video captioning or information extraction

Extracting information from images or video is not directly relevant to in-
text annotation. This includes efforts for text extraction from videos and
images and captioning of images or videos.
• Question generation or answering and conversational agents

While question answering models and conversational agents could be used
to assist a user in annotation. This would be a supervised or semi-automated
process which is not the focus area of this project.
• Summarisation

As with the point above, summarisation is not directly relevant when dealing
with a fully automated system for annotation.
• Dataset or corpus generation and documents focusing on improving training

performance of models
These are subjects related to machine learning models and data-set creation
which is outside of the scope of this project.

Further Exclusions

By further reading through documents with a focus on sentiment analysis this
was deemed to be irrelevant. Sentiment analysis is the task of classifying text or
parts of text with sentiment. Generally, this sentiment is in the form of positive or
negative sentiment. This sentiment classification can be useful for evaluating user
feedback which can be seen in the paper "How We Failed in Context: A Text-Mining
Approach to Understanding Hotel Service Failures" by Shuyue Huang, Lena Jin-
gen Liang, and Hwansuk Chris Choi where they use sentiment analysis on hotel
reviews to understand service failure[14], and the paper "Sentiment Analysis Ap-
plication and Natural Language Processing for Mobile Network Operators’ Sup-
port on Social Media" by Kingsley A. Ogudo and Dahj Muwawa Jean Nestor which
covers using sentiment analysis to gauge customer satisfaction on mobile network
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services[15]. Sentiment classification is not relevant to parsing institutional state-
ments, however, as sentiment is not a factor in these kinds of statements, where
the focus is on the logic and dependencies within statements, not on opinions
or sentiment. Papers that focused on sentiment analysis were therefore excluded
from this literature review.

3.2.2 Document Inclusion

After the initial reading of abstracts and conclusions, the inclusion criteria were
updated to include documents that used or discussed the following NLP tech-
niques:

1. Relation Extraction
2. Semantic Role Labelling
3. Temporal
4. NER / entity recognition
5. Co-reference resolution
6. Negation
7. Causality Detection
8. Dependency Parsing
9. Constituency Parsing

Papers with one or more of these techniques that were not excluded due to
the exclusion criteria outlined above were included in the review.

3.2.3 End Notes

To not exclude relevant documents based solely on these criteria the abstracts and
conclusions of each document were read, and where extra attention was needed
the documents were skimmed through to see if they contained relevant informa-
tion. Following the exclusion of papers based on the reasons outlined above there
were 26 remaining documents. Following the updated search on the 14th of May,
a further two documents were included, with an updated total of 28 remaining
documents.
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3.3 Data Analysis and Methodology

Through looking at the included papers they can be categorized by year, domain,
NLP techniques, and document type. After classifying the documents they will
be introduced in categories to introduce and discuss their findings. Before the
techniques are related to automated annotation of institutional statements and
trends in the documents are discussed as a whole.
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Figure 3.1: Documents by year

When looking at the release date of the papers in the table above (table 3.1)
we see a relatively stable line, with a spike of relevant papers in the year 2022,
and a lower number of relevant papers present in 2020 and 2018. The average
amount of relevant papers per included year is just under four. These papers can
be split into types of documents and the type of work done.

Review 3.6%

1

Article 39.3%

11

Conference paper 57.1%

16

Figure 3.2: Document type
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The chart above (figure 3.2) shows that the documents are primarily articles
and conference reviews, with a single review document, and the majority of al-
most 54% of the documents are conference papers. The majority of conference
papers can be an indication that the field is active as conferences have more rapid
release cycles than other types of literature.

Further, we can look at the type of work performed in each paper. For this,
they have been categorized roughly by their contribution to the space. With the
following categories:

• Review or survey
Documents that give an insight into the field at large, or a subset of the field.

• Application of NLP
Documents which apply NLP techniques or tools to a problem.

• NLP technique development
Documents that develop something new within NLP, such as a new tech-
nique, or developing a model for a new domain.

This categorization can be seen in the pie chart below (figure 3.3:

NLP technique development 28.6%

8

Application of NLP 60.7%

17

Review or survey 10.7%

3

Figure 3.3: Document type of work performed

The majority of papers are in the category of application of NLP, with NLP
technique development coming in second, and finally, there are two surveys and
one review.
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Further, the papers were divided into rough evaluation groups. Where the cat-
egories are based on the testing or evaluation performed in the papers. Including
qualitative, quantitative, and both. This grouping excluded the surveys and the
review as they have a different structure than the other papers. Qualitative evalu-
ation is an evaluation where the authors describe the outcome and try to explain
the underlying factors leading to the outcome and what can be done differently
in the future. Quantitative evaluation is where the authors use methods such as
statistics for precision and recall to evaluate performance. This evaluation cat-
egorization can be seen in the pie chart below (figure 3.4):

Quantitative 56%

14

Qualitative 16%

4Qualitative and quantitative 28%

7

Figure 3.4: Type of evaluation performed
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3.3.1 Quality Evaluation

To assess the quality of the included studies the following questions will be asked
of each document and each question will be rated from one to five:

1. Is the aim of the paper clearly defined?
2. Are the results clearly presented and evaluated?
3. Are the techniques used general or applicable to other domains?
4. Is the focus of the paper relevant?

The ranking scale used is a five-point scale with one and two representing a
disagreement with the question, three representing a weak agreement, and four
and five representing stronger agreement with the question. The first question acts
as a basic quality evaluation question of the paper that looks within the paper to
see whether the aim is clearly defined. The second question looks at the results of
the paper and whether they are made clear, and are properly presented. The third
question looks at the techniques used in the papers and is an evaluation of whether
they are more domain- or topic-specific or more general. Finally, the fourth point
looks at the relevance of the paper’s focus. This is a combination of evaluating
the relevance of the techniques used for the goal of this literature review, which
is finding techniques to help in the automation of institutional statement annota-
tion or encoding. The other element evaluated in this point is the focus area of the
paper, for example, if the paper is focused on extracting information on materials
as in the paper "Materials information extraction via automatically generated cor-
pus" then the focus area is not directly relevant, however the techniques used are
relevant. This combination of lower topic relevance and higher technique relev-
ance, or the inverse causes a ranking of three. If the score were to reach a number
lower than three for this fourth question then the paper would be excluded from
the literature review due to relevance. Further, a combined average score of less
than four would be a reason to consider omitting the paper from the literature re-
view. This average is made from all the questions weighted equally, this is due to
the importance of all the questions. As they all cover important aspects for the lit-
erature review, the first two cover the quality of the papers, and the last two cover
whether the techniques can be applied to other domains and the relevance of the
paper. The combination of all these four points gives a final more encompassing
evaluation.
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The rankings of the included papers can be seen in the table below (table 3.1):

Document 1 2 3 4 Average
[16] 5 5 4 3 4.25
[17] 5 5 4 3 4.25
[18] 5 5 3 3 4
[19] 5 5 5 4 4.75
[20] 5 5 5 5 5
[21] 5 5 4 4 4.5
[22] 5 4 5 4 4.5
[23] 5 4 5 4 4.5
[24] 5 4 3 4 4
[25] 5 5 3 4 4.25
[26] 5 5 5 4 4.75
[27] 5 5 3 4 4.25
[28] 5 N/A 3 4 4
[29] 5 5 3 3 4
[30] 5 5 4 4 4.5
[31] 5 5 3 3 4
[32] 5 5 4 4 4.5
[33] 5 5 4 4 4.5
[34] 5 5 4 4 4.5
[35] 5 5 4 3 4.25
[36] 5 5 3 3 4
[37] 5 5 5 3 4.5
[38] 5 N/A 3 5 4.33
[39] 5 4 4 4 4.25
[40] 5 N/A 5 4 4.67
[41] 5 5 3 3 4
[42] 5 5 3 4 4.25
[43] 5 5 5 4 4.75

Table 3.1: Quality assessment of filtered articles/papers

The documents included all have averages between 4 and 5 which means
that they are deemed as relevant papers with a sufficient quality to be included
in the literature review. This assessment is based on the points discussed above,
specifically, the last two points look at if the techniques discussed or used in the
papers are relevant to this literature review and if the focus of the paper is relevant
to this literature review. Papers that have focus areas that are not directly relevant
to this literature review may be included if they use techniques or methods that
are relevant. In such cases, the relevant parts of the documents will be discussed.
The "N/A" is specific to surveys or overview papers where the main focus is on
introducing other works in the field or the field at large.
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3.4 Categories

To cluster the documents a set of categorizations has been made, as described in
the methodology section. These categories include details on the documents such
as their type of work, domain, techniques used, and more. In this subsection, I will
present some statistics surrounding these categories and briefly discuss relevant
points to the different categories.

For domains, there was a wide spread of domains covered in the selection, with
a majority of the documents focusing on general-purpose techniques. A few papers
also focused on languages other than English, either exclusively or inclusively.
Although there were also papers spread out in specific domains such as a few
papers in the clinical domain, three papers focusing on security or cybersecurity,
and several other small groupings.

Further, all the papers were categorized by the techniques they applied or dis-
cussed. The following techniques were the main techniques which were deemed
relevant:

1. Relation Extraction
2. Semantic Role Labelling
3. Temporal
4. Named Entity Recognition / Entity Recognition
5. Co-reference Resolution
6. Negation
7. Causality Detection
8. Dependency Parsing
9. Constituency Parsing

These techniques were grouped into three main groups with the first two sur-
rounding defining a relationship between entities in a text. The second grouping
was for items four to seven of the techniques. These are all techniques that look
at a single aspect in the text respectively. Finally, dependency and constituency
parsing. These techniques both look at the basic grammatical structure of the text
at a sentence level. They also both output the results as a tree with structure de-
pendencies related through the branches. The coverage of the various techniques
discussed can be seen in the table below (table 3.2):
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Technique Documents Percentage
Relation Extraction 14 50 %
Semantic Role Labelling 3 10.7%

Temporal 4 14.3%
NER / ER 21 75 %
Co-reference resolution 4 14.3%
Negation 1 3.6%
Causality detection 1 3.6%

Dependency Parsing 5 17.9%
Constituency Parsing 2 7.1%

Table 3.2: NLP technique usage in the included documents

When looking at the percentages we can see that NER / Entity Resolution (ER)
are used by more than two out of three papers, showing that they are very promin-
ent techniques. Further relation extraction is also used in a lot of documents, with
almost half the documents performing or discussing some form of relation extrac-
tion. For the final grouping dependency parsing shows over twice the amount of
usage as constituency parsing in these documents.

The following sections will go over each of these groupings, present the papers
that are within each, and their findings.

3.5 Findings

NLP is a wide field with a multitude of different techniques and models developed
to process text. Pajila et al. presents the landscape of NLP through a Survey[38].
Pajila et al. describe how NLP can be divided into components and these com-
ponents are categorized into two main types, NLU and Natural Language Gen-
eration (NLG)[38]. For this literature review, the focus is on the field of NLU so
the details on NLG are out of scope and will not be discussed. Further, the paper
describes how NLP contains the components phonology, morphology, pragmatics,
semantics, lexicology, and syntax, as core linguistic features of natural language.
These features will be introduced below:

Phonology studies sounds, and how they are organized and developed.
Morphology is used to study words, how they are structured, how they can be

created through the combination of morphemes, and how the form of a word can
be used to indicate a variation. This includes adding "un" to "known" to create un-
known, changing the meaning from suggesting something is known to suggesting
the opposite and changing the inflexion of a word to signify tenses, for example,
"I am driving" and "I drove".

Lexicology is the study of words and what they communicate in terms of mean-
ing and is connected to POS-tagging. POS-tagging tags words based on the sur-
rounding words and context, and uses the most likely tag for each word if there
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are multiple alternatives. An example of a POS-tag is "AUX" which is the auxili-
ary that accompanies a verb and contributes additional meaning to the verb. I.e.
"must" or "may" before a verb signifies if the verb is an obligation or a voluntary
option.

Syntax looks at sentences at the phrase level instead of the word level. Looking
for combinations of words that indicate more meaning than the words themselves.
This method relies on keeping the structure of the sentence and therefore does not
use the same pre-processing steps as other techniques may use. It is important
to keep structure to keep the meaning consistent, for example, "John has a tall
house" and "tall John has a house" imply that the house is tall and that John is
tall respectively. Further for POS-tagging the structure can be important as the
meaning of a word can change depending on the structure.

Semantics focuses on the meaning of phrases. A combination of words can sig-
nify meaning not directly written out. This is similar to and described by the phrase
"reading between the lines", which does not mean actually reading between the
lines, but instead finding meaning by considering the bigger picture. This can also
include understanding which meaning a word has in context, as several words
can have multiple meanings.

Pragmatics look at context and how the context can affect the meaning of
language. For example, the phrase "I love dogs" in a normal conversation might
be interpreted literally, while in a situation where a dog has made the floor dirty,
the same phrase might convey dissatisfaction instead.

Further, the paper describes applications of NLP as chatbots and virtual as-
sistants, sentiment analysis, machine translation, speech recognition, text sum-
marization, NER, and information retrieval. In this literature review, the NER and
information retrieval use cases are the most relevant. With NER described as "a
major NLP application"[38], that is used to extract entities such as people and or-
ganizations from text. Pajila et al. describe how "NER involves tokenization, part-
of-speech tagging, and dependency parsing."[38], showing how NLP techniques
build upon each other to create more advanced functionality. In the other relevant
use case of information retrieval, the paper describes Information Extraction (IE),
"Information extraction (IE automatically extracts structured information from
unstructured or semi-structured text input."[44]. This information includes entit-
ies and relations, in addition to events and facts. Finally, the document goes over
the weaknesses of NLP. The weaknesses include ambiguity in language making
it difficult to interpret text, and domain-specific language with domains having
terminology which is unique to the domain. This can make it difficult to use NLP
models when several domains include unique terms or meanings of words. Fur-
ther training data can be a problem, with little or biased training data results can
vary. Finally, explainability, where it can be difficult to understand why the tool
has come to a conclusion, which might reduce confidence in the results.
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3.5.1 Single Focus Techniques

This subsection will cover techniques that focus on a single aspect of language.
With techniques looking at temporal aspects, negation, resolution of co-references,
and recognition of entities.

Temporal

Temporal aspects in this case surround techniques used to find or relate time or
dates with text. For example, looking at timelines. Amy L. Olex and Bridget T.
McInnes present a review of temporal reasoning in the clinical domain for timeline
extraction[28]. In this case, the focus is on timeline extraction from Electronic
Health Records (EHRs) and other clinical documents[28]. Temporal information
expresses when an event occurs or did occur and potentially the duration of an
event. For a basic example "The weather report says it will rain tomorrow", shows
an event of rain, that will occur tomorrow or the day after today. Temporal in-
formation can be expressed in many ways, such as a reference to a holiday can
indirectly express a date, or a reference to a previous event can express when the
current one occurred. I.e. "the patient fell 2 months after knee surgery"[28]. To
process temporal data in texts temporal annotation is used, which standardizes the
formatting of text and relevant information such as events and temporal informa-
tion. For temporal annotation, several models have been developed over the years
such as TIDES for a general domain model and THYME-TimeML specifically for
the clinical domain. There are several models for temporal information extraction.
This paper takes it further by building on temporal information extraction to ex-
tract timelines, within the clinical domain. This adds complexity in finding clinical
events and excluding events that are not medical but may appear in general mod-
els. Further, co-reference resolution is mentioned as a possible method to remove
duplicates and detect instances where the same entity is referred to in several
ways. Other tasks in timeline extraction in the clinical domain include ordering of
events and visualization. The paper concluded that there is still a long way to go
before timeline extraction can be put into practice. Olex and McInnes described
that improvements are needed in temporal identification, event identification, co-
reference resolution, the ordering of events, visualization, and handling the whole
patient history, which can include duplicates and many documents.

Paula Chocrón, Álvaro Abella, and Gabriel de Maeztu present "ContextMEL"
a method for classifying contextual modifiers in clinical text[25]. This paper also
focuses on extracting information from EHRs. The system uses expert annotations
to build a dataset that is used to train deep learning models[25]. These models are
trained for three so-called modifiers in the paper, which are temporality, certainty,
and negation. I will focus on the temporality aspect for this section, and revisit the
negation modifier in the relevant subsection. ContextMEL is a system for training
models, by first annotating data and then training models on the annotations. The
data that is worked on is in Spanish and Catalan, however, the authors present
the methods as domain-independent, so the same process could theoretically be
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applied to other domains. The temporality task divides events into three categor-
ies, with the labels "Antecedent, Plan, Current Episode"[25]. Antecedent refers to
clinical history, the plan is the future plan, in this case, it is commonly a treat-
ment and the current episode is what is the current event. The classifiers were
trained using two different methods. One is based on Long Short-Term Memory
(LSTM) and the other is based on the Bidirectional Encoder Representations from
Transformers (BERT) language model.

LSTM is a Recurrent Neural Network (RNN) introduced by Sepp Hochreiter
and Jürgen Schmidhuber in 1997 in the paper "Long Short-Term Memory"[45].
LSTM was developed to solve the problem of error backflow in RNNs where error
signals would either vanish or explode causing unstable learning. To solve this
LSTM has an architecture allowing for a constant flow of error signals[45]. LSTMs
are suitable for sequence learning tasks that involve remembering things that have
occurred multiple times.

BERT is a language model presented by Jacob Devlin et al.[46]. The BERT
language model works in two stages, first a pre-training phase on unlabeled data,
followed by a fine-tuning phase with labelled data. This two-stage method allows
BERT to be adapted to many tasks through fine-tuning, these tasks can include
tasks such as NER, inference and question-answering[46]. For the temporality
aspect, the performance of the BERT approach outperformed the LSTM approach
by almost three percent in accuracy with an accuracy of 84.41%. The testing was
performed on a set of 100 manually annotated examples. The results also showed
precision and recall of the LSTM model for the Past, Present, and Future labels[25]
as can be seen in the table below (table 3.3):

Tag Precision Recall
Past 77.93% 78.03%
Present 77.89% 77.93%
Future 89 % 88.80%

Table 3.3: ContextMEL Temporality LSTM results

Showing the best performance for the future tag, with similar performance
between the past and present tags at around 78%.

Husari et al. present a method for analysis of cyber threat intelligence based on
NLP[24]. In this paper, the domain is cyber security, as opposed to the earlier pa-
pers within the clinical domain[24]. The techniques used in this paper are depend-
ency parsing, and temporal relation extraction using temporal anchors. Where
certain keywords are used to relate dependencies to temporal data. For example
"then" and "before" are used to show ordering or events. This ordering is used to
reformat the text with a logical temporal order. The paper finds that "the types of
malicious artifacts exhibit a high temporal dependency which indicates that some
types of artifacts are preconditions to other types"[24]. However, the paper is lim-
ited by not presenting more details from the test results and in the methodology
using only English temporal anchors or keywords. This is a limited approach that
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can not pick up all temporal data in the text, so Husari et al. describe that they
will expand the set of temporal anchors to improve the coverage.

Zaeem et al. present work in modelling and analysing identity threat beha-
viours through text mining[17]. Again the domain is security, this time with a fo-
cus on identity theft. The paper collects information from news stories and reports
on identity theft[17]. The approach used is text mining, using a combination of
pre-processing techniques, noun phrases, NER, and POS-tagging. The algorithm
proposed collects news articles and theft reports and then processes these docu-
ments using a pipeline. The pipeline performs preprocessing and NER, and uses
the collected data to create an identity theft record which is later analyzed. Within
the theft record, two temporal aspects are relevant, "time selection" and "timeline".
For the time selection, two methods are discussed, the first is looking at the pub-
lication date of the article, and the second is using NER. The timeline aspect cor-
relates loss due to an identity threat with dates. The results of these aspects, in
addition to other aspects that I did not discuss, are then analyzed, presented, and
compared to a manual investigation showing comparable trends for the various
categories.

For IG temporal information can be useful in discovering Activation Conditions
or Execution Constraint components. Where a condition can be in the form of a
certain period a rule is effective. For example, when discussing curfew it might
only be in effect after ten and before six the next morning. This form of condition
can be seen as a temporal anchor as discussed by Husari et al.[24]. It is worth
discussing how applicable the techniques used in the papers are as the first two
papers are within the clinical domain, which has a lot of domain-specific language
and requirements, and the last two are within security. For the clinical papers, the
first paper[47] discusses a lot of domain-specific models that are not directly ap-
plicable, however, the methodology behind creating them and solving the problem
of timeline extraction can be replicated in other domains. ContextMEL[25] on the
other hand is generalizable, however it does require training data. For the other
two papers[24][17] they use general techniques which apply to several domains.
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Causality Detection

A technique for detecting causality was presented by Khetan et al. in the paper
"Causal-BERT: Language models for causality detection between events expressed
in text"[35]. Khetan et al. present causality detection using a BERT-based method
where BERT is fine-tuned to find relations between cause and effect or "other"
between events in text[35]. The technique relates two events, with a relation of
the type "cause-effect" or "other", these events the model finds relations between
are expressed in the same sentence. A given example of a classified true positive
is:

"<e1>Dehydration </e1>from <e2>fluid loss </e2>generally is the only major
problem the virus can cause, most often in the elderly."[35]

In the example, there is a causal relation between fluid loss and dehydration.
The model showed F1 scores of over 90% on three datasets, with F1 scores over
95% on the same datasets when pre-training and fine-tuning were performed.

While this method of causality detection shows promising results, whether it
is useful for the parsing of institutional statements is unclear. There might be use
cases in finding constraints for the statements for example, but this will need to
be tested.

Negation

ContextMEL which was referred to above in the subsection about temporal aspects
also has a modifier for negation detection[25]. This module finds cases whether
some logic in a sentence is negated or not[25]. The accuracy of the solution based
on the BERT approach was 95.16% and for the LSTM approach it was 95.70% as
can be seen in the table below (table 3.4):

Tag Precision Recall
Positive 96.67% 95.47%
Negative 92.86% 94.71%

Table 3.4: ContextMEL Negation LSTM results

The negation module showed precision and recall of over 90% in both posit-
ive and negative. Additionally, the model outperformed the state-of-the-art NegEx
model on the Spanish dataset with an accuracy of 94.22% versus 83.14%. Specific-
ally, this refers to NegEx-MES which is applied to Spanish medical texts, however,
there are also NegEx systems created for other domains.

This paper shows that negation detection can achieve a very high accuracy
and be applied to specific domains such as the clinical domain in this case. When
looking at IG negation detection might be helpful to verify that the logic of the
statement is properly conveyed through the annotation.
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Co-reference Resolution

When dealing with natural language text a common occurrence is the referencing
of the same entity in different ways. A basic example of this is "John and Mary are
studying in the library, he has an exam tomorrow.", where "John" and "he" are the
same entity. To be able to process this text correctly it is important to understand
that "he" is the same entity as "John". Co-reference resolution is a NLP technique
aimed to solve this problem.

As discussed earlier the paper by Olex and McInnes describes co-referencing
models for the clinical domain as a method for removing duplicate information
and linking data between documents[28].

Swagata Acharya, Sourav Mandal, and Rohini Basak present a model for solv-
ing arithmetic problems using NLP and classification based on rules[36]. A part of
this model is co-reference resolution which is used as a pre-processing step where
pronouns are substituted with nouns using NeuralCoref[36].

Huang et al. describe "Building Cybersecurity Ontology for Understanding
and Reasoning Adversary Tactics and Techniques"[30]. They describe using co-
reference resolution through adopting "Ellipsis Subject Resolution (ESR), Pronoun
Resolution (PR) and the Entity Resolution (ER) components from EXTRACTOR"[30].
These are all methods that are used in the paper to substitute co-references with
the relevant subjects in the text. ESR detects sentences starting with a verb and
looks for the most probable of possible subject candidates from earlier sentences
to resolve the reference. PR resolves pronoun references and ER resolves noun or
verb phrases referring to an entity in the sentence.

Kunal Khadilkar, Dr. Siddhivinayak Kulkarni, and Dr. Sitalakshmi Venkatraman
propose an approach for automatic summarization of speeches and essays using
knowledge graphs[23]. In this paper co-reference resolution is used as a step in the
proposed method for generating knowledge graphs[23]. Co-reference resolution
is in this case used to link entities with their preposition occurrences. With an
example given of resolving "He" as "Adam" in the text. This way all branches which
lead to Adam can be properly included in the knowledge graph.

As seen above co-reference resolution can be helpful in many contexts, Olex
and McInnes describe using it for deduplication[23], while the other papers use
the technique as a simple substitution technique as a processing step. For the IG
it is important to specify all entities clearly, and the entities specified in the state-
ments are vital to the meaning of the statement, therefore resolving co-references
is important.
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Named Entity Recognition / Entity Recognition

NER and ER are techniques for recognizing entities in text. These entities can be
entities such as people, places, and organizations. The recognition of entities is a
NLP technique which is often used in pipelines with other techniques, and some
modern methods combine NER and other techniques. An example of this is presen-
ted in the paper "Multi-Entity Collaborative Relation Extraction"[26] where NER
and Relation Extraction (RE) are performed collaboratively, this paper is discussed
in further detail in the relation extraction subsection. Another paper "Structured
Approach for Relation Extraction in Legal Documents" first uses NER followed by
RE as two separate steps, this paper will also be discussed in more detail in the RE
subsection. In this section, some of the papers using NER will be presented and
discussed, as well as papers presenting developments to the technique or applying
it to new domains.

Siddharth Mehta, Gautam Jain, and Shuchi Mala present an approach based
on NLP for exploring social media posts and tags and clustering the data to loca-
tions[39]. Their methodology includes using NER to extract location tags, which
are then used to cluster the information[39].

Pengyu Zhang uses NER to extract numerical facts from Chinese text in the
paper "A Numerical Fact Extraction Method for Chinese Text"[31]. The paper pro-
poses two NER methods, that supervised methods based on BERT and are called
"NER combine" and "quantity MRC"[31]. These methods take two different ap-
proaches to finding entities and quantities related to the entities in Chinese text.

Santoso et al. present a method for extracting concept for ontology building
based on NER[29]. They propose a model for NER using bidirectional-LSTM which
takes an input of word embeddings in the form of vectors[29]. The model per-
forms both POS-tagging and NER simultaneously on Indonesian text and shows
good performance compared to other models.

Afnan Iftikhar, Syed Waqar Ul Qounain Jaffry, and Malik, Muhammad Kam-
ran present their work developing a NER model for legal judgments in the paper
"Information Mining From Criminal Judgments of Lahore High Court"[21]. They
use a labelled dataset of criminal judgments with nine entity types to train three
different classifiers[21]. The methods are "conditional random field", "Maximum
Entropy classifier" and "Trigrams ’N’ Tags". These methods showed average F1
scores of 0.96, 0.79, and 0.91 respectively. Showing that NER can be effectively
adapted to and used in the legal domain.

Boudjellal et al. present a BERT-based model for NER on Arabic biomedical
text[27]. The model is focused on a very specific domain of Arabic biomedical text,
which comes with the problem of having fewer resources than English models or
other more general models. The extracted entities are specific to the biomedical
domain and include entities such as diseases and symptoms. The model was built
by using AraBERT base weights and pre-training on the AraBERT base data in ad-
dition to biomedical Arabic literature and then fine-tuned. The model developed
was named ABioNER and was compared to AraBERT and BERT multilingual cased
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models, showing better performance than the two on two different entity types,
showing an F1 score of 85.65. This score was higher than AraBERT with 83.69 and
BERT multilingual cased which had an F1 of 82.12. Showing that pre-training a
BERT model on domain-specific data can lead to increased performance on data
within that domain.

Another paper using NER in the clinical domain is presented by Fang Dong et
al. in the paper "Chinese Medical Named Entity Recognition Based on Pre-training
Model"[42]. This paper proposes a NER model for Chinese text in the clinical
domain based on RoBERTa (a pretraining approach for BERT presented by Yinhan
Liu et al.[48]), adversarial training and hybrid encoding layers[42]. The model
was tested on three medical case datasets and showed increased performance over
the baseline.

Miha Štravs and Jernej Zupančič present a method for NER in the paper "Named
Entity Recognition Using Gazetter of Hierarchical Entities"[20]. The method uses
word similarities based on lemmatization, stemming, word embeddings, and sim-
ilarity at the character level to find predetermined entities in text[20]. By using
lemmatization and stemming the entities can be found even when they are format-
ted in different ways such as with spelling errors or in different tenses. Other
strengths of the solutions are that they can be adapted to different domains by
changing the entity gazetteers and the performance can be increased by changing
out the underlying techniques for stemming or lemmatization. The solution spe-
cifically was made for and tested on Slovenian and English text, showing better
performance than Elastic Search in testing.

NER is a central NLP technique that is used in many domains and languages
and for many use cases. Including domains such as the clinical domain[27][42],
the English language, as well as Chinese[31][42], Arabic[27], Slovenian[20], In-
donesian[29], and a multitude of other languages. For use cases, it is often used
as a step in a NLP pipeline or framework, where the entities are further processed
or used, for example in RE where relations between entities are extracted, or in
co-reference resolution where co-references to entities are handled. NER has the
potential to be useful for finding various IG components in institutional state-
ments, such as "Objects", and "Attributes" and potential constraints for entities
related to a time or a quantity.
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3.5.2 Dependency and Constituency Parsing

"In computational linguistics, the term parsing refers to the task of creating a parse
tree from a given sentence."[49]. Dependency and constituency parsing are two
techniques that look at grammar at the sentence level and structure dependencies
within the sentence in the form of a parse tree. The techniques approach this prob-
lem using two different types of grammar, but both end up with trees displaying
the logical dependencies or structure of a sentence.

Dependency Parsing

With dependency parsing "the syntax of the sentence is expressed in terms of de-
pendencies between words"[49]. These dependencies bind two words together,
and have a direction, either left or right, and a dependency type. There are some
additional requirements to the nodes, they all connect to the root, and every node
has one branch connecting to the node, except for the root. Some of the depend-
encies can include objects and auxiliary. The exact dependencies vary based on
the implementation. As discussed earlier Swagata Acharya, Sourav Mandal, and
Rohini Basak presented a model for solving arithmetic problems using NLP[36].
In the methodology, they use dependency parsing to replace conjunctions used
for joining two quantities. The example given is "Carolyn starts with 47 marbles
and 6 oranges."[36], where the sentence is then split into two, both starting with
"Carolyn starts with" and then presenting the item and quantity. The paper also
used NER to find the entity that has a quantity, e.g. the marbles in the example
above.

Lai et al. present an NLP approach to study floods and storms[34]. In the paper,
they use dependency parsing as a method for connecting flood reason entities with
locations[34]. The method uses a dependency parser on sentences in a document
or article, and then trees are converted to graphs. The graphs are then connected
at the head, and Dijkstra’s algorithm is used to find the closest location to the
flood reason entity to connect them. Spacy’s dependency parser is used to create
the parse trees. The method is compared to a method of nearest neighbour as
well, which they found to perform worse. The dependency parsing method linked
fewer total location links in the test, but had a higher contextual accuracy.

Muditha Tissera and Ruvan Weerasinghe present an approach for extracting
knowledge from unstructured text based on grammatical structure[33]. In this
work dependency parsing is used as the basis of extraction[33]. The dependency
parser is used to get the grammatical structure, again the Spacy dependency parser
is used. The authors then present a mapping approach that uses the dependencies
to create triples (subject, predicate, object components). At the most basic level,
this mapping is simply a process of looking at dependency tags and converting the
data to a triple using basic rules, but the method is expanded upon. The expansion
encompasses the selection of the most appropriate candidate based on the link
to the root token, and further inclusion of prepositions, compound words, and
more to enhance the meaning of the triple. Further details on this paper will be
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discussed in the Relation of Entities subsection.
Huang et al. describe building a cybersecurity ontology as discussed in the

subsection about co-reference resolution[30]. Another technique used in the pa-
per is dependency parsing. They use Stanza for dependency parsing, which is a
NLP package written in Python. Dependency parsing is used for extracting triplets
from the input sentence. The method consists of collecting subject-object rela-
tionships and finding the closest verb to the object as the relation. Additionally,
a method based on simple mapping rules is implemented. Further details on this
paper will be discussed in the Relation of Entities subsection.

As discussed in the subsection about temporal information Husari et al. presen-
ted a method for analysis of cyber threat intelligence based on NLP[24]. As with
the papers above the method used is a mapping approach based on dependency
parsing[24]. Where a "Threat Action" is found by looking at the typed dependen-
cies and their parent and child nodes.

Through the papers discussed a pattern emerges, of using dependency pars-
ing as a tool for extracting structure from sentences, often using manual mapping
approaches. The technique is also applied to different domains, with maths[36],
flood and storm data[34], and cybersecurity[30] covered in these examples. This
shows that the technique is general and can be applied to various domains. Sim-
ilar approaches using manual mapping may be effective in parsing institutional
statements using the IG as well.
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Constituency Parsing

Constituency parsing is a technique where a sentence is divided into constituents
represented in a parse tree. These constituents are phrases that belong to cat-
egories in the grammar, and the grammar is context-free[49]. For example, using
constituency parsing on the sentence "The quick brown fox jumped over the lazy
dog.", the sentence gets divided into a noun phrase for "the quick brown fox" and
"jumped over the lazy dog" is a verb phrase. This is simplified, as there are other
constituents below and above the verb phrase. Additionally, it is common to also
show POS-tags for the words together with the constituents when presenting the
parse tree.

Jose L. Martinez-Rodriguez, Ivan Lopez-Arevalo, and Ana B. Rios-Alvarado
present an approach for constructing knowledge graphs using an OpenIE-based
approach[19]. In the paper, they use constituency parsing as a step in the process
of generating the knowledge graphs. Specifically constituency parsing is used to
"group words into sub-phrases that function as a single unit"[19] in the form of
noun-phrase units. These units are then later used to associate entities with in-
formation.

Özge Gürbüz and Onur Demirörs present an ontology bases methodology for
creating business process models based on organizational guidelines[18]. They
use constituency parsing together with a mapping function to categorize inform-
ation in sentences into the categories: "what", "where", "why", "when", "who", and
"how"[18]. This mapping function looks at a node and the parent node and maps
the span according to a simple template. For example "when" maps to the constitu-
ency tags "PP" connected to "Root". These categories are then further matched into
process entities.

These papers show that constituency parsing can be used to extract informa-
tion from sentences, by grouping words in a structured way that implies meaning.
The second paper is especially relevant in the categories it collects using constitu-
ency parsing. These categories can be related to IG with "when" and "where" for
example possibly relating to conditions or constraints. Showing a mapping ap-
proach from constituents to IG as a possibility.
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3.5.3 Relation of Entities

This subsection focuses on relating entities to each other through various NLP
techniques. With the main goal of finding relations between entities.

Relation Extraction

Kartik Detroja, C.K. Bhensdadia, and Brijesh S. Bhatt present "A survey on Rela-
tion Extraction"[40]. In the paper relation extraction is introduced as a sub-task
of information extraction, RE concepts are introduced before methodologies and
deep learning methods are presented, followed by domain-specific implementa-
tions, additionally datasets for RE system evaluation are presented[40]. Inform-
ation extraction is used to extract information from unstructured text, RE spe-
cifically extracts information in the form of semantic relations between entities.
The example of "(Sardar Patel, birth_place, Nadiad)"[40] is given, showing that
the person was born in the location. This is a tuple, with three elements, which
can also be referred to as a triple. The process of RE can be performed separately
from entity recognition, but there are also approaches that combine the two. In
the paper, different methods for performing RE are presented and categorized into
two main groups, traditional methods and deep learning methods. The traditional
methods include rule-based methods, which rely on pattern-matching rules, these
methods are domain-specific and rely on expertise for building the rules. Further,
there are two main categorizations of supervised and unsupervised methods. With
the distinction of unsupervised methods not requiring labelled data, while super-
vised methods require labeled training data. Semi-supervised methods need less
labelled training data, and distant supervision methods use text together with
knowledge bases to extract relations without manually labelled data. Deep learn-
ing methods include Convolution Neural Network (CNN) based methods which
can both use supervised methods and distant supervision-based methods, meth-
ods based on RNN and LSTM, and finally encoder-decoder or transformer-based
methods. Further in domain-specific relation extraction, the authors mention two
main challenges. The first is that many RE models are trained on general data,
which can have different word distribution than domain-specific text. The second
is that models trained on general text do not perform well on domain-specific text.
So, domain-specific relation extraction models might need to be trained on data
from the specific domain to improve the performance.

Yan et al. present a semi-supervised information extraction framework based
on using NER, a RE algorithm based on distance heuristics and an ordered neurons-
LSTM network in the article "Materials information extraction via automatically
generated corpus"[37]. This framework is semi-supervised and relies on automat-
ically generating a corpus, which is used to train the semi-supervised information
extraction technique[37]. Information extraction is the task of extracting struc-
tured information from unstructured text. The corpus in this paper is generated
using NER to extract entities, and mapping rules with the tool Snorkel to gener-
ate the corpus. These mapping rules are explained with the superalloys as a way
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to relate the superalloy with the solvus temperature of the alloy among other re-
lations. Further, a relation extraction model was trained, with relations between
the superalloys and their hardness, solvus temperature, and density. Showing F1
scores of 85.81, 89.27 and 94.02 respectively. This relation extraction model used
an ordered neurons-LSTM network. Using this relation extraction model struc-
tured information could be extracted from unstructured text. A reason for using
this semi-supervised approach is to reduce the amount of labelled data required
for the information extraction framework, as many neural network techniques
require large and accurate datasets for training.

Lai et al. also use NER and relation extraction in the paper "A Natural Lan-
guage Processing Approach to Understanding Context in the Extraction and Geo-
Coding of Historical Floods, Storms, and Adaptation Measures"[34]. As discussed
earlier in the sections on dependency parsing and NER, this paper describes NLP
techniques used for gathering information on floods and storms[34]. In this case,
relation extraction is used to link city and street entities in the data, which is used
as a step for geocoding and clustering the data in the paper.

Relation extraction is also used in the clinical domain as presented by Hasham
Ul Haq, Veysel Kocaman, and David Talby in "Deeper Clinical Document Under-
standing Using Relation Extraction"[32]. This paper presents a framework for text
mining of clinical documents using a combination of NER and RE[32].The relation
extraction performed in this paper is domain-specific, finding instances of medical
conditions related to body parts, which can then again be related to subparts, or
have other relevant relations such as measurements and their values, and units.
This paper demonstrates how relation extraction can be a useful technique in spe-
cialized domains with domain-specific relations, just as it can be used with more
general relations.

In the legal domain, Anjali K. Sasidharan and Rahulnath R. present an ap-
proach for RE in the paper "Structured Approach for Relation Extraction in Legal
Documents"[43]. The authors describe an approach starting with NER, followed
by triple (subject, predicate and object) extraction and RE. This process is used
to generate knowledge graphs. These knowledge graphs help in showing connec-
tions between laws, concepts and cases, and can be helpful for analysis[43].

As presented above RE can be performed together with NER, which is what Liu
et al. describe in the paper "Multi-Entity Collaborative Relation Extraction"[26].
The paper describes a method using NER in combination with RE for multi-entity
RE[26]. The model uses four modules, the NER module, the RE module, a graph
convolutional networks module, and a classification module. Where the graph
convolutional networks are used to integrate the entities and relations to enhance
the performance of the modules. Testing showed increased performance for dif-
ferent RE models in terms of F1 scores on two different data sets when used with
the framework.

A way to represent relations in a structured form is to use triples, which can
come in the form of subject-predicate-object pairs or other pairings between two
entities and a relation. The papers below all use this form to represent relations.
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As discussed in the section about dependency parsing Muditha Tissera and
Ruvan Weerasinghe present an approach for Automatic Knowledge Extraction
(AKE) from English news sources to triples[33]. In the paper, they extract in-
formation from news in the form of subject-predicate-object triples. The triple
extraction uses a method based on dependency parsing where the triples are ex-
panded upon with the inclusion of prepositions, compound words, and more to
enhance the meaning of the extracted triple. An example of this expansion is given
with the triple "countries" - "achieved" - "gains" expanded to "most countries" and
"significant gains", this way the triple has more meaning[33]. The method was
tested on two different news datasets and showed good performance. In the test-
ing of the method on the BBC News dataset 92.6% of the extracted triples were
meaningful. This technique of a rule-based triple extraction based on dependency
parsing is interesting as the technique does not rely on a lot of training data and
can potentially be adapted to other domains than news.

The papers discussed earlier by Huang et al.[30], Kunal Khadilkar, Dr. Siddhiv-
inayak Kulkarni, and Dr. Sitalakshmi Venkatraman[23], Jose L. Martinez-Rodriguez,
Ivan Lopez-Arevalo, and Ana B. Rios-Alvarado[19], and by Özge Gürbüz and
Onur Demirörs[18], also extract relations in the form of triples. Huang et al. use
triples for building a cybersecurity ontology, the triplets are built with a rule-based
approach based on dependency parsing[30]. Kunal Khadilkar, Dr. Siddhivinayak
Kulkarni, and Dr. Sitalakshmi Venkatraman use triples as a way to create know-
ledge graphs from text, with all relations in the form of triples to the same object or
entity being represented as nodes connected to that object or entity in a graph[23].
The paper by Jose L. Martinez-Rodriguez, Ivan Lopez-Arevalo, and Ana B. Rios-
Alvarado also uses triples to create knowledge graphs[23]. Finally, Özge Gürbüz
and Onur Demirörs present a method for going from organizational guidelines to
business process models, where the processed guidelines are represented in the
form of triples[18].

These papers show that relation extraction is useful in many different fields
and that it can be used to extract meaningful information from unstructured text.
Relation extraction might have use cases in finding the relations in the statements
and relating them to components of the IG 2.0. How applicable this is to pars-
ing institutional statements depends on how well the existing models translate to
institutional statements, as supervised methods can require a lot of labelled train-
ing data and might not generalize well to other domains, which can be a limiting
factor. However, the results from the paper by Muditha Tissera and Ruvan Weeras-
inghe[33] show that a rule-based mapping approach can be effective. Further, the
extraction in the form of triples might have an impact on how useful the technique
is for the parsing process which will require testing to gauge.
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Semantic Role Labelling

Semantic Role Labelling (SRL) is a technique used to extract information from text
at a deeper level than earlier techniques, these semantic roles describe the logic
of the sentence with more context than the parse tree methods discussed earlier,
by linking words to semantic roles and defining relations between them. Màr-
quez et al. describe the purpose of labelling these semantic roles as characterising
events, by describing semantic relations of a predicate and associated words[50].
Semantic roles used in SRL can include the agent which is who is doing some-
thing, the predicate which is the main verb of the sentence describing the what
and the recipient which is the recipient of the action in this case. Màrquez et al.
provide the example "[The girl on the swing]Agent [whispered]Pred to [the boy
beside her]Recipient"[50].

Kumar Manas and Adrian Paschke present "Semantic Role Assisted Natural
Language Rule Formalization for Intelligent Vehicle"[41]. This paper uses SRL,
soft rule-based selection restrictions, and large language models (LLMs) to ex-
tract predicates, arguments, and temporal aspects from natural language rules and
instruction"[41]. This data is then processed using a LLMs to generate machine-
readable rules for intelligent vehicles such as autonomous vehicles and drones.
This way these rules can be interpreted by the intelligent vehicles.

James J. Nolan, Mark Stevens, and Peter David present an approach for auto-
matically extracting technical information from open source unstructured data[22].
The approach used is a combination of NLP techniques including statistical topic
modelling, entity extraction and disambiguation, and semantic role labelling[22].
Specifically, this paper describes the development of the tool Tech-Trakr which col-
lects web data from specific sites, news, and documents and extracts information.
This approach uses statistical topic modelling to classify and cluster documents
based on discovered topics. Further SRL is used to find relations between entities
extracted using entity extraction and disambiguation. Entity disambiguation is the
process of resolving co-references to entities. With this extracted information the
tool can create technology profiles showing attributes and relations and the tool
can be used to navigate through the information sources related to the specific
attributes.

Another paper that uses semantic role labeling is "Shoo the Spectre of Ignor-
ance with QA2SPR" by Simone Scannapieco and Claudio Tomazzoli[16]. In this
paper, the authors present the creation of an architecture for question answering
where a novel technique of Prioritised Semantic Role Labelling (PSRL) is used
to improve the identification of questions and ranking of answers[16]. The PSRL
technique is built for Italian and is based on five phases consisting of tokenization,
schank verb analysis, feature extraction, Italian logical analysis rules retrieval, and
complement checking, matching, and priority. Schank verb analysis is a method
used for representing conceptual dependencies in text. Where the two basic forms
are dependencies between an actor an action and an object, and an object and a
state. Through Schank verb analysis the PSRL method finds conceptual depend-
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encies, in cases where there are several complementing dependencies to the same
actor or object a ranking method is used. Where certain types of complements
are ranked higher than others, mainly object or possession relations are ranked
over location or time relations. By using this ranking approach the authors ex-
pand upon SRL to help in automatic question answering by ranking the answer
candidates.

These papers show that SRL can be a useful technique for various domains to
extract more meaningful information from text. These relations could potentially
be useful for annotating institutional statements as well. With the basic pattern of
Schank verb analysis in "Shoo the Spectre of Ignorance with QA2SPR" there are
parallels between the form of actor, action, object, and the annotation of institu-
tional statements with the "Attribute", "Aim" and "Direct Object". The same goes
for the SRL pattern of actor-predicate-recipient, which has the same parallels.
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3.6 Discussion

The field on NLP is vast and diverse. With a substantial amount of different tech-
niques, frameworks, and implementations. For example NER can be used as a gen-
eral technique to find entities in unstructured text or be adapted to the clinical do-
main or legal domain to find entities specific to those domains. The problem with
domain-specific text is that it can contain domain-specific terms or phrases which
can be difficult for general techniques to recognize. Therefore, these domain-
specific models are created, however creating such models requires knowledge
within the domain, or a lot of resources for creating mapping rules, or labelled
datasets for training. To reduce the amount of resources needed for creating such
models there are developments in semi-supervised and unsupervised methods
which require less labelled data. The alternative to such approaches is mapping
approaches, which instead requires expert knowledge and testing to create rules
to structure information from text. For prominent techniques NER is used in a lot
of the literature as a technique that is either the main focus of the paper or as a
technique in a pipeline or framework. For example, RE centered on finding rela-
tions between entities and some of the newer methods for RE perform NER and RE
together[26]. Several papers performing relation extraction present the relations
in the form of triples[33][30][18][19][23], which is a structured representation
of the relation between two entities.

For the first research question "Which NLP techniques could be used to help
automate parts of the IG annotation process?" there are several techniques that
show promise. From dependency parsing to relation extraction, all the included
techniques show some potential for automating distinct aspects of the annotation
process. The combination of these techniques through a mapping approach from
the output of these techniques to components of the IG shows promise. How ef-
fective this is in practice will depend on the mapping approach used, and how
well the models and techniques work for institutional statements.

The second research question "What are the current trends in the relevant
papers on unstructured text processing with NLP?" can be answered by look-
ing at the bigger picture. The most prominent techniques in the papers are NER
and RE. Which are both used in a majority of the papers. Another trend in the
papers is the use of BERT in various fields with BERT adapted to be used for
causality detection[35], and NER on Arabic biomedical text[27] among other use
cases. Finally, there are a lot of papers that use either machine learning-based ap-
proaches[27][25], or rule-based approaches[33][30]. The two approaches have
tradeoffs, with machine learning approaches requiring training data and resources
for training, while rule-based approaches require expert knowledge to create the
rules or mappings.

A limitation of this review is that the focus is on using NLP for the parsing of
institutional statements using the IG, as there is little research in combining NLP
and IG. The related work shows that there are approaches using both machine
learning and manual mapping together with NLP techniques for automating the
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annotation process of institutional statements, and shows that dependency pars-
ing can be useful for this task. Other than the related work, the included studies
show many different techniques and use cases for NLP, but how effective these
techniques will be for institutional statements will need to be tested. Further re-
search will also need to be performed to find tools and implementations of these
techniques which can be utilized.

Another limitation is that the literature review was performed by a single re-
viewer, which can lead to potential bias in the document selection and review
process. To mitigate this a structured approach to the review was taken and the
process with the reasoning behind the exclusions and inclusions was documented.
With more reviewers, this risk could however be better mitigated.

Future work will be to research available tools for the various techniques and
how they can be utilized for parsing institutional statements. This will include
gradually testing techniques to see if they can be used to automate some aspects
of the annotation process and to evaluate the performance of the techniques on
institutional statements. With the advent of new conversational LLMs in the recent
years new opportunities have opened up for performing advanced tasks through
LLMs. Therefore, future work will include looking at LLMs and whether they can
be useful for this application.

3.7 Literature Review Conclusion

Through looking at the 26 included documents and reading through their findings
and developments I have discovered several NLP techniques which show prom-
ise for automating the annotation process of institutional statements with the IG.
Techniques including NER to find entities, which has potential for finding the "At-
tribute" component in statements, and as a step in finding the related entities for
the statement to find the "Aim" and "Object" using techniques such as depend-
ency parsing or RE. How effective this solution will be depends on the aspects
which are covered by the solution, the techniques and models used and the map-
ping approach taken. However, the related work (section 2.3) shows that there
is promise in using dependency parsing for automation, and that both machine
learning-based mapping[13] and manual mapping approaches[51] have poten-
tial. Another consideration is in the choice of specific models or approaches for
the techniques which will be used. As domain-specific language can reduce the ef-
fectiveness of general models, how applicable general models are to institutional
statements will need testing. Trends in the papers included the use of NLP in a
majority of the papers, creating relations between entities using either RE or pars-
ing methods and there was a good split between using machine learning methods
and manual mapping approaches. Future work will include finding and testing
models for the different techniques discussed in this review and expanding on the
research by looking at new releases in the field. Another aspect in future work
will be to look at LLMs to gauge whether they can be useful for the task at hand.





Chapter 4

Natural Language Processing

Natural language processing is a widely used field of technology where machines
process natural language for tasks such as information extraction, clustering of
information, analysis of user sentiment, and information generation. It is a wide
field with various distinct use cases and is an actively developed field with broad
support for different languages. In this chapter, relevant NLP techniques and tools
will be presented and discussed concerning their potential for helping in the an-
notation process of institutional statements. First, a toolkit will be presented, fol-
lowed by presenting various relevant techniques facilitated by the toolkit to fur-
ther the understanding of techniques previously mentioned in the literature re-
view, before a section on LLMs is presented.

4.1 Utilized NLP Techniques

As part of the literature review and an initial pilot project, the Stanza Python NLP
library and certain NLP techniques have shown promise for the task at hand. These
techniques will be discussed in further detail here, and in the following chapter
this pilot project (section 5.2) will be presented with more in-depth information
on the initial implementation.

4.1.1 Stanza

Stanza is a Python NLP Package with support for many different NLP techniques.
The Stanza toolkit was presented by Peng Qi et al. in the paper "Stanza: A Python
Natural Language Processing Toolkit for Many Human Languages"[52]. Stanza
was chosen due to its features, the wide range of supported NLP techniques, the
pre-trained models available, the documentation, and the interface for using Stan-
ford CoreNLP.1 By using this package a lot of the techniques that were deemed as
potentially useful for automating the annotation of institutional statements could
be utilized from the same package. Further, the interface to CoreNLP allows for

1CoreNLP website: https://stanfordnlp.github.io/CoreNLP/
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further feature expansion in the future. Another reason to use a single toolkit is
that this reduces the complexity of the solution and allows all processing of the
input data to be performed in a single pipeline which reduces the execution time.
More details on the initial testing and why Stanza was chosen are provided in
the section on the pilot project (section 5.2). The relevant techniques in Stanza
include Named Entity Recognition, Coreference Resolution and POS-Tagging and
Dependency Parsing, these techniques and their implementations in Stanza will
be presented in the subsections below.

4.1.2 Named Entity Recognition

A commonly used NLP technique is Named Entity Recognition. NER is used to
detect and classify entities in a sentence. This can help in structured informa-
tion extraction and classification. For example, an entity detected as a Person or
an Organization might correlate with an Attribute component, or in the case of
constitutive statements a Constituted Entity component. However, in testing, this
was not found to be a reliable metric, although with further developments and
new models NER could be useful in the future. Concerning semantic annotations
information from NER can be helpful to give additional context to the compon-
ents such as information on time, or dates, or whether a phrase is a law. These
NER classifications are used in the annotation process primarily to handle con-
ditions. In this case, the time or date, and law categorizations are useful to add
information through semantic annotations to condition components, specifically
to Execution Constraint components. For more detail on the handling of semantic
annotations see the development section (section 6.2.3). The NER model used
is general purpose, and in cases where the institutional statements consist of a
lot of domain-specific language this may cause problems with the domain-specific
terms or words. In such cases a model trained on the domain in question may
perform better, however, this would require training new models and may result
in overfitting to the domain and reduce the applicability to a single domain.

4.1.3 Coreference Resolution

Another important factor in the annotation of institutional statements is the prob-
lem of co-referencing, or referencing entities, specifically Attribute and Consti-
tuted Entity components with pronouns such as "it", "them", "he", etc. For the
statements to be explicit and to reduce the room for misunderstanding it is vital
to resolve such occurrences and clearly state what the entity referred to is. To
handle such occurrences the Coreference resolution technique shows promise. As
the technique is specifically designed to handle such cases, the inclusion of the
technique was therefore a requirement when selecting the correct tool for the ap-
plication. In the initial experiments of the pilot project, Coreference resolution
was not available in Stanza, however, it was at the time available to use through
the CoreNLP interface. Further, in the 1.7.0 release of Stanza, a Coreference resol-
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ution model was introduced.2 The implementation is based on "Word-Level Core-
ference Resolution" by Vladimir Dobrovolskii[53] and "Conjunction-Aware Word-
level Coreference Resolution" presented by D’Oosterlinck et al.[54]. Dobrovolskii
presents a method of performing coreference resolution at the word-level, instead
of the span level and subsequently reconstructing the spans to enable a lower com-
plexity of O(N2) and to consider all potential coreferences[53]. D’Oosterlinck et
al. expand on this word-level coreference resolution approach by dealing with
one of the limitations of this approach, which is conjunctions such as the given
example "Tom and Mary are playing. He is 7 years old. They are siblings"[55].
In this example the coreference must handle a conjunction of two persons, and
recognize that "they" refers to both, and that "he" refers to Tom.

The Stanza implementation finds coreferences in statements and links them
together using id’s. This coreference resolution model is used to simply replace
pronoun references to Attribute or Constituted Entity components with their re-
spective parent component. An example is the recognition that "they" refers to an
earlier annotated Attribute component with the text "Member States". For more
details on the implementation into the IG2NLP software see the relevant section
in the development chapter (section 6.2.3).

4.1.4 Stanza Universal Dependencies Models

The other relevant models in Stanza are based on the Universal Dependencies
v2.12. This includes their POS-Tagger with uFeats, the Dependency Parser, Lem-
matization and more. These models will be briefly discussed below along with
their use cases for the automated annotation.

POS-tagging and UFeats

POS-tagging classifies each word in a sentence with a specific POS-Tag and this
gives additional information to base the annotation of components on. The Stanza
POS-tagger tags words with both a UPOS-tag (Universal part-of-speech tag) and
an XPOS-tag (a treebank-specific POS). These POS-tags can often correlate with
certain components and are used as a part of the process to match words with
components in the IG2NLP software. For example, Attributes and Constituted En-
tities often correlate with the PROPN POS-tag (proper noun) of the UPOS, the
Constitutive Function component is often correlated with a VERB and Modals of
constitutive functions correlate with the MD (modal) POS-tag of the XPOS. Fur-
ther the POS-tagging model of stanza includes morphological features with the so-
called "uFeats". These universal morphological features include information such
as the tense of a word, whether a word is in singular or plural form and more. The
singular or plural classification is used in semantic annotation for entities (Attrib-
utes and Constituted Entity components), while the classification of word tense
may be helpful in the future to handle cases where the Aim is in the past tense.

2Stanza 1.7.0 Release on GitHub: https://github.com/stanfordnlp/stanza/releases/tag/v1.7.0
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This is specifically relevant to cases in the dataset where an Aim in the base state-
ment is in past tense and the manual annotation has changed the tense to present
tense, however, there are further considerations to make before automating this
process.

4.1.5 Dependency Parsing

Dependency parsing is a technique for generating parse trees with structural in-
formation of sentences or natural language texts. This technique works by finding
dependencies within a sentence and creating branches in the form of head con-
nections between these dependants to extract structured information from text.
This process follows the concept of a dependency grammar, with phrases or words
connected through head relations. The end result of dependency parsing is a parse
tree with each word connected through branches to the root node. The depend-
ency parsing technique is analogous to the annotation process, where parts of
statements are classified and connected through annotation. A substantial part
of annotating institutional statements lies in the detection of the dependencies
of a sentence, for detecting and determining the various components and their
scope in a statement. Most of the matching of components to the statement text
in the IG2NLP solution is based on the dependency parse tree. For example, early
testing in the pilot project which will be presented in further detail in the sub-
sequent chapter (section 5.2) showed a high correlation between the root node
of a dependency parse tree and the Aim (I) component of an institutional state-
ment. Where the root is often a verb that is contained in an Aim component in the
statement.

Lemmatization

The lemmatization model is used to normalize the words in an input statement
to their lemma form. For example in several cases in the dataset, there are Aim
(I) components where the Aim component is in past tense such as the phrase
"carried out" which is annotated as "I([carry out])" in the present tense. In this
case, the lemma of the word "carried" is carry, and could be used to automate
this process of changing the tense of the aim. However, changing the tense of
words in a statement can change the internal context of the statement. Because
of this the method of using lemmatization or uFeats to change Aim tense is not
yet implemented.

This thesis bases its solution solely on the techniques mentioned in this chapter,
however with the current rapid innovations and developments in the field of LLMs
they show promise as a logical next step for the solution. The benefit of using these
techniques over LLMs is the reproducibility of the results based on their determ-
inistic operation, with consistent output given the same input and models used.
This ensures reproducible results and consistent annotation performance. How-
ever, with these techniques, there are limitations that may potentially be solved
through the introduction of further techniques or by using LLMs. The following
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section will go over some of the strengths and weaknesses of LLMs, and presents
potential use cases in automated annotation.

4.2 Large Language Models

In recent years a lot of progress has been made in the LLM front, with the release
of OpenAI’s ChatGPT, Google Bard, Meta Llama and more LLMs. These LLMs of-
fer conversational AI models that can respond to human language and perform
a variety of tasks. In the paper "A Comprehensive Overview of Large Language
Models" Humza Naveed et al. present an overview of current LLMs[56]. Use cases
of LLMs presented include usage in Law to code datasets, summarize content and
explain legal terms, and usage of general purpose LLMs for a range of tasks such
as drafting documents, answering questions and summarizing content[57]. How-
ever, Naveed et al. note that the quality of the answers is correlated with the qual-
ity of the training data, so applying a general LLM to IG 2.0 Annotation may have
limitations due to the recency of the IG 2.0 specification release and the amount of
available materials. Relevant challenges of LLMs mentioned include the potential
for bias, overfitting and hallucinations which are answers that are incorrect due
to input misinterpretation, conflicting answers or simply factually incorrect. Other
challenges include cost and privacy concerns[58]. These challenges can be detri-
mental when dealing with LLMs, the possibility of incorrect annotations due to
hallucinations, bias or overfitting can be problematic. Further, cost can be a major
limitation in adopting LLMs, and privacy concerns may make LLMs unsuitable for
handling confidential data. Finally, a potential concern is the reproducibility of the
results, when prompting a LLM with the same question multiple times, multiple
different answers can be obtained. This behaviour may be beneficial for human
users in cases where a different explanation of a term is wanted, or where a hal-
lucination is detected by a human user. Where the user can then ask the question
again to obtain a new answer. However, for certain workloads and domains (e.g.,
information systems in business contexts, scientific computing) a consistent and
reproducible output may be preferable. Because of these limitations using LLMs as
the sole method for automated institutional statement annotation may be limited,
however, LLMs may be helpful as a step in the annotation process. An LLM can
for example be prompted with specific tasks such as to verify the scope of a com-
ponent, or to help distinguish between condition types. With a basis of NLP tech-
niques such as the ones described above a consistent annotation can be achieved
with reproducible results, and an LLM can potentially serve as a tool for improving
aspects based on this initial base encoding. In this case LLMs can potentially be
used to indicate errors in the encoding, to distinguish between component types
in cases of ambiguity or as a method of checking the type of statement. This way
the annotations can be more consistent and reproducible, while still benefiting
from the capabilities of LLMs.

The next chapter (chapter 5) will introduce the pilot projects leading up to the
work in this thesis, which uses some of the techniques described in this chapter.
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This is followed by a chapter (chapter 6) on the development of the IG2NLP solu-
tion which builds upon these prototypes and implements the rest of the NLP tech-
niques described in this chapter, with the exception of LLMs.



Chapter 5

Background work

In this chapter, the background for the development of the IG2NLP software will
be presented

IG2NLP is a solution for automated annotation of institutional statements us-
ing the IG Script notation of the IG 2.0. The solution covers basic aspects of en-
coding such as component detection, and component scoping, and more advanced
features such as the detection of nested conditions and adding semantic annota-
tions to components. These features are available through a program meant for
offline batch processing of statements, in addition to a Representational State
Transfer (REST) API for annotations on request. Further, the work includes fea-
ture updates to the IG Parser annotation tool for institutional statements and a
prototype of the IG Parser with the automated annotations integrated through
the REST API. This chapter describes the background work underlying the main
development of the project, this includes the steps taken in pre-processing the
datasets used for testing and development and initial pilot projects used as a basis
for the work performed in this thesis.

As previously discussed in the section on Natural Language Processing there
is great potential in using NLP for annotation purposes. Methods such as Depend-
ency Parsing and Named Entity Recognition can give information on the structure
and meaning of a sentence. Which together with a "matching function" can be used
to detect components in institutional statements. This is the foundation of IG2NLP,
namely the use of NLP techniques together with a custom matching function as a
method for enabling semi-automated annotation of institutional statements. In the
following subchapters pre-processing of data will be discussed, before the solution
is presented in steps related to its development, first initial testing will be presen-
ted and discussed, followed by iterations on the software and their effects.

49
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5.1 Pre-processing

To properly develop and evaluate an automation solution it is vital to have enough
high-quality data to be able to both develop the solution and evaluate it over time.
As the solution is based on dependency parsing, the structure of input statements
has a direct impact on the annotated results. Therefore a breadth of input state-
ments with varying structures is vital to enable the solution to adapt to different
structures and to handle more edge cases. A breadth of data can also help mitigate
potential over-fitting. Through developing and testing the tool on a wider array
of statements from several backgrounds.

In addition to the pre-processing steps that will be described below the state-
ments were also divided into two groups of statements, relating to the two types
of institutional statements; constitutive and regulative statements. In the future, it
may be possible to develop a proper method for automatically detecting whether a
statement is regulative or constitutive, but for the initial testing and development,
the statements were manually separated instead. Following these steps, the initial
dataset used for research and development consisted of statements from European
Union climate regulation and an ENISA Cybersecurity Act. With a total of 63 reg-
ulative statements and 22 Constitutive statements. The dataset of statements was
used for the conceptual development of the automated annotation solution. As
the solution does not rely on any machine learning or large language models the
underlying datasets used in development are not trained on, in the same sense as
they would be in a machine learning environment. The matching of components
to text is done through a custom matching function based on output from vari-
ous NLP techniques and should not run the same risk of overfitting as automated
training solutions. This is due to the nature of the matching function, as it uses
manually created rules based on structural data from the NLP pipeline used and
is not trained on the statements themselves. However, the rules are based on pat-
terns found in the dataset, so there is still some potential for overfitting, or for
edge cases not contained in the dataset.

Because the solution is based on an input statement and needs to be com-
pared to a manually annotated control, two items per statement need to be pro-
cessed; the input statement, and the manual annotation of that statement. The
pre-processing of these two items per statement can be divided into the following
distinct steps:

1. For the input statements extra line breaks were removed, and special char-
acters were either replaced or removed.

2. Additionally for several statements in the data sets the manually annotated
statement was only based on parts of the input statement text. To allow for a
one-to-one comparison between the version annotated through automation
and the control these input statement texts were truncated to only include
the same statement text as in the manually annotated statement text where
possible. So any text preceding or following the manually annotated state-
ment text was omitted.
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3. The manually annotated statements were further modified to ensure a con-
sistent annotation style between statements and to allow for direct semi-
automated comparisons between the manual and the automated annota-
tions. This included steps such as removing grammatical articles such as
"the, a, all and any" from components such as Attributes, Constituted Entit-
ies, and Direct Objects. For example, if the manually annotated statement
was "A(the Member State)" it would be modified to "the A(Member State)".
Thereby ensuring consistent formatting and allowing automated comparis-
ons.

4. Further processing included the removal of line breaks and special charac-
ters in the input statements and in some cases different handling of logical
operators for a consistent style. For example, a statement with two consec-
utive Attribute components, "One and Two", can be annotated both as:

"A(One) and A(Two)" and "A(One [AND] Two)"

In such cases, the IG Parser handles both versions with the same implied
logical "And" linkage between the Attributes, and therefore statements were
modified in cases where the automated and manual annotations differed to
facilitate semi-automated testing.

5. Suffixes (id’s used to distinguish between components of the same type,
or to link properties to specific component instances) were also removed
from components to simplify the comparison process. However, in future
iterations, if suffix handling is implemented then this step will be removed
from the pre-processing.

6. Finally, in the dataset of the ENISA Cybersecurity Act punctuation was moved
outside of components, ergo if a component included the ending full stop
of a sentence, the full stop was moved outside the scope of the component.

In the following section initial experiments in automated annotation of these
statements will be presented and discussed, followed by iterations on these initial
experiments, new functionality introduced over time, and evaluation of the final
solution.
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5.2 Initial Experiments

This subsection outlines initial experiments with automated annotation of insti-
tutional statements, these experiments were performed as part of the Advanced
Project Work (APW) course in the preceding autumn semester and the following
text is partially based on the report text and work for that course.

To test whether dependency parsing combined with a manual matching func-
tion was a viable method for automating the annotation of institutional statements
a pilot project was created. This pilot project consisted of two phases. Firstly tool
selection and evaluation. Where a set of criteria was created to select tooling for
the project. These criteria included:

• Free to use
• Recently updated or in active development
• Inludes models for NER or ER
• Inludes models for Dependency parsing
• Inludes models for Coreference resolution
• Has pre-trained models available

The initial search was based on a broad search on open search engines, in addi-
tion to the inclusion of tools from research papers from the initial literature search
and review. The alternatives were then narrowed down by excluding tools based
on the requirements and finally, initial test programs were developed for Stanza
and Spacy to decide between the two. At the time of the experiments Spacy had
a Coreference resolution model available in the spacy-experimental branch, how-
ever, this model relied on an earlier version of Spacy and was not updated at
the time of testing to the newer versions, or included in the main Spacy tool.
While Stanza also had a Coreference resolution model available through Stanford
CoreNLP. Which could be used with Stanza through an interface in Stanza that
calls CoreNLP. The initial testing to decide between the two solutions used basic
dependencies with a direct matching between dependency parsing dependencies
and IG components. These components were limited to Attributes, Aims, Deont-
ics, and Direct Objects. In the end, the choice was Stanza due to its integration
with Stanford CoreNLP, which opens the possibility of using CoreNLP functional-
ity in the future if beneficial. Further, it had the benefit of supporting Coreference
resolution in the newest version of the program through the CoreNLP interface.
Although the main deciding factor was the performance of Stanza in testing com-
pared to Spacy, where the Stanza solution based on basic matching rules had
a lower percentage of False Positive component detection. Following these initial
tests the Stanza matching function was iterated upon with initial experimentation
of condition detection based on the Adverbial Clause Modifier (advcl) depend-
ency. This initial experimentation showed potential in dependency parsing as a
base method for annotation, however, the performance was still lackluster with
a very high false positive rate for Direct Object components and a true positive
rate of around 30% for Attribute and Aim components, Deontic components had
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a high true positive rate however of 94.44% in the testing. This testing was per-
formed on a smaller dataset than the testing that will be presented later, limited
to only regulative statements and a total of 18 statements.

Limitations of this initial experiment were in the simplicity of the implementa-
tion, and the underlying tools and models. The initial matching function was only
based on direct dependency on component matching, which has the limitation of
improper component scoping. See the image below for an example of this direct
matching (figure 5.1):

Figure 5.1: Dependency parse trees, first with all relevant input data, second with
words replaced by their component matches.

An example of this scoping limitation is that Direct Objects can include several
words such as "such recommendations", or nested statements consisting of several
different components. There were initial experiments with broadening the scope
of components and their coverage, however this was basic and inaccurate. These
scope-broadening techniques were divided into two. The first was logical oper-
ator handling where if the component end was followed by a logical operator
then both the operator and the subsequent word were included in the compon-
ent. So, for example with the text "doctors and nurses", if "doctors" was detected
as an Attribute component, then "and nurses" would also be included in the com-
ponent. However, in some cases, this led to incorrect encapsulation in some cases
where the logical operand was not connected directly to the preceding word and
instead referred to the larger sentence structure. To mitigate this the matching
function was updated as part of the thesis project to traverse the parse tree prop-
erly to check the head of each logical operator. The other scoping extension was
for Activation Conditions. The Activation Condition rule was a very specific im-
plementation, relying on an advcl dependency, the component being located at
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the start of the sentence, and the presence of a comma to divide the Activation
Condition from the rest of the sentence. An example statement where this rule
was used and effective from the climate regulation dataset is statement 4.1.2.2:
"When implementing the target referred to in the first subparagraph, the relev-
ant Union institutions...". A dependency parse tree for this statement can be seen
below (figure 5.2):

Figure 5.2: Partial dependency parse tree with advcl dependency and a comma
signalling an Activation Condition.

In this case, the component is detected by the "advcl" dependency, and the sen-
tence is divided by a comma preceding "the relevant...", leading to the Activation
Condition:

"Cac(When implementing the target referred to in the first subparagraph),..."

This implementation was limited in several ways, first, the specificity of the
rule meant that it only covered very specific statement structures starting with an
Activation Condition. Second, Activation Conditions and Execution Constraints
have a lot of overlap, so a mechanism for distinguishing between the two is ne-
cessary to accurately annotate statements. Finally, Activation Conditions support
nesting, so a method for detecting components within the scope of a component
is required, as a mechanism for detecting whether or not the component is nested.
Further limitations of the initial experiments were that tools such as Named En-
tity Recognition and Coreference resolution were not utilized and that constitutive
statements did not have handling implemented, so such statements could only be
annotated as regulative. In the following subsections, a pilot project for user in-
terface improvements to the IG Parser will be presented, and further iterations on
the software discussed will be presented, along with how these limitations were
handled and other ways the software was expanded to improve accuracy, cover-
age, and functionality.
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5.3 The IG Parser User Interface Pilot Project

As a part of the Advanced Topics in Software and Systems Engineering course, a
prototype for an updated user interface for the IG Parser institutional statement
annotation and visualisation tool was developed.12 This subsection will present
the background for this work, the development goals and requirements, and fi-
nally the resulting artefact from this work. This section is based on the report for
the course and has been modified to be more concise and to use it as an introduc-
tion to further work performed as part of the thesis artefacts.

The basis of the work on user interface improvements to the IG Parser was
a heuristics evaluation based on the heuristics proposed by Mohamed Benaida in
the paper "Developing and extending usability heuristics evaluation for user inter-
face design via AHP"[59]. In this heuristics evaluation, the IG Parser along with
two other annotation tools was evaluated, and a less thorough overview of an
additional three annotation tools was performed. Through this analysis, a set of
limitations to the IG Parser was discovered, and this led to requirements and ideas
for the new user interface. The primary points of improvement were annotation
speed, ease of use, and error prevention. Firstly for annotation speed and ease of
use, an updated interface was developed with buttons for each different compon-
ent type and alternate annotation options. The old method of annotation relied
entirely on user text input, while the new interface has two primary input methods
added, which are selection-based input with buttons for the various components,
and a second method that allows for keyboard input using keybindings for each
component type. In addition to this, the whole page was updated to facilitate
keyboard navigation, modals were developed to give annotation information in
the editor itself, instead of relying on external resources or resources on a differ-
ent page of the website, and confirmation prompts were added to the example
selection to prevent users from accidentally overwriting their work. Finally, the
addition of colour coding to visualize the component annotations was implemen-
ted. This was intended to make distinguishing annotations from the text more
clear and fast, and to help in distinguishing between different component type
annotations. A comparison between the two user text editing windows can be
seen below (figure 5.3):

1GitHub repository for the prototype: https://github.com/Kjaerandsen/IG-Parser-prot-vis
2As of the time of writing an updated version of the prototype is integrated into the main IG

Parser page located at: https://ig-parser.newinstitutionalgrammar.org/
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Figure 5.3: Text editor window before and after visualization work.

Here you can see the colour coding divided into categories with separate col-
ours per category. Categories are divided into components shared across statement
types (both regulative and constitutive) are pink, constitutive statement exclus-
ive components are yellow, regulative statement exclusive components are green,
and finally blue for Properties and Objects.

Following selective user testing, the developed prototype of the editor UI served
as a basis for the refinement of the IG Parser, building the basis for the integration
of the IG2NLP software for automated statement annotation, a feature that will
be presented and discussed in a later section (Section 6.3.4).



Chapter 6

IG2NLP

In this chapter, the development of the IG2NLP software will be introduced fol-
lowed by sections with detailed discussions on the various developments.1 These
developments are based on the starting point with the pilot projects outlined
above, followed by the requirements and system architecture outlined in this sec-
tion, further the subsequent section goes over the matching function, and itera-
tions to cover the different limitations of the pilot project, leading into details on
the software artefacts and tooling.

6.1 Development

The primary development process consists of a primary goal connected to a de-
velopment branch on the git instance. This goal is worked towards in its spe-
cific branch, and all developments are tested on the datasets to evaluate the arte-
facts. Using the manual annotations as a reference and the previous iteration as
a baseline makes it quick to recognize whether the new developments lead to
improvements or regressions. This testing was assisted by a multi-level imple-
mentation of logging which facilitates error handling, and information gathering
at several levels to help in testing and debugging. For smaller self-contained func-
tions a test-driven approach was utilized with unit tests to validate all base cases
of the functions. After the goal is reached and the artefact has been tested on the
test data set the changes can be merged into the main branch again, leading to a
new goal and development cycle. The development of the matching function con-
sisted of a three-step process. The first step was pattern recognition, where the
dataset was looked at, together with information on the IG and annotation, and
output from the NLP pipeline was looked at. This included running dependency
parsing among other NLP techniques on the testing data, visualizing the output in
the form of dependency parse trees and text files, and finally looking at the output
to discover patterns in structure, dependencies, pos-tags or other factors linking
the output of the various NLP techniques to IG components. This led to the second

1The IG2NLP software is available on GitHub: https://github.com/Kjaerandsen/IG2NLP
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step of creating rules based on the findings. These rules consisted of rules at vari-
ous levels, at the most basic level a simple matching between either a POS-tag or
a dependency and a component. More advanced examples include dependencies
reliant on the presence of other components connected to the component, for ex-
ample, a Property of a component, and finally components containing more than
one word. These components can include for example an entire phrase, several
logical operators, or even several internal nested components. The rules for these
components are therefore more complex and can include positive and negative
lookahead, recursive matching function execution and logical operator handling.
Finally, after new rules are formulated, they are tested on the dataset. Using the
manual annotations as a reference and the previous iteration as a baseline makes
it quick to recognize whether the new rules lead to improvements or regressions.
If the new rules cause performance regressions, then they may be reworked in
the second step, the pattern may be looked at again to consider alternative ap-
proaches, or the rule may be scrapped entirely.

6.1.1 Requirements

The goal of the software is to assist in the annotation of institutional statements
with the IG Script notation. To enable this the following requirements were defined:

• Handling of components for regulative statements
• Handling of components for constitutive statements
• Consistent output
• Support for batch processing
• REST API
• Logging or another method for signalling errors, warnings, and suggestions
• Documentation with instructions for how to use the software and input

structures used

6.1.2 System Architecture

The IG2NLP software consists of two primary applications in the form of Python
programs:

1. IG2NLP:
The primary software artefact takes an input of statements in a structured
JavaScript Object Notation (JSON) format and can batch annotate them as
either constitutive statements or regulative statements.

2. API:
A REST API was made for the integration of the automated annotation tool
to other software such as the IG Parser.

In addition to these two primary software artefacts, a broad set of tooling was
developed with additional functionality primarily focused on the development of
the software, and evaluation of its performance.
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This suite of tools includes:

• Cache.py - a program for caching the output of the NLP pipeline, which al-
lows for rapid iteration on matching rules, or testing of different parameters
without necessitating the extra work of processing all statements again.
• ParseTrees.py - a program for generating dependency parse trees in the form

of HTML documents for a dataset.
• dependencyParsing.py - a program for generating a single dependency parse

tree in the form of a served webpage.
• A test suite that will be described in the subsequent testing chapter.

The development and functionality of this suite of tools will be presented and
discussed in the subsequent sections, starting with the matching function.
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6.2 Matching Function Feature Development

This section will go over and present features developed as part of the thesis work.
The focus in this section lies on the matching function itself, highlighting indi-
vidual aspects by reiterating the associated challenge, and how it is addressed.
The matching function as described in the section on the pilot project in the pre-
vious chapter (Section 5.2) is the main function that handles the matching of
components in the IG to output from the NLP pipeline. This matching function
uses a combination of POS-tags, dependency parse trees, NER data and more to
match components of the IG to parts of statement text. This section starts from the
baseline described in the prototype section, followed by describing developments
to the scoping of components, continuing with additional component coverage to
handle more component types, and finally introduces the implementation of ad-
ditional NLP techniques and their impact, usefulness, and limitations. Other parts
of the software such as extra visualization programs, the test suite, and the API
will be covered in a later section (Section 6.3).

6.2.1 Component Scoping

Compound words

In the English language compound words are a common occurrence. In several
natural language processing techniques words are compounded to assign logic to
the correct scope of words. In such cases multiple words are handled as a single
token, this is called "Multi-Word Tokens". For the IG2NLP application cases where
two or more words should be treated as one were common, for example, the At-
tribute "A(Member States)", it does not make sense to split the words "Member"
and "States". To reduce the complexity of the matching function and the complex-
ity of the scoping of components in such cases a pre-processor was created. The
pre-processor handles compound words and combines them into single words for
future matching as can be seen in the figure below (figure 6.1):

Figure 6.1: Basic compound word combination example.

The same basic combination is performed for some more complex cases as
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well, such as in compounds longer than two words, or with a punct (punctuation)
dependency between the two words (words bound by a dash), for example, "long-
term" is treated as a single word.

Logical operator handling

In institutional statement annotation, logical operators consist of three possible
logical operators: the logical and ([AND]), logical "and/or" ([OR]; inclusive or)
and the "either or" ([XOR]; exclusive or). At the most basic level, a simple word-
matching function can be used to detect such operators and annotate them as
logical operators. This function would work by going through each word one by
one, and checking whether the word converted to lowercase is contained in the
list of supported logical operators. However, as previously discussed in the section
about the pilot project, this does not work in all sentence structures and may
cause invalid inclusion of words into components. Another alternative with the
same basic structure is to use dependency parsing and look for the Coordination
(cc) dependency, or the "CCONJ" POS-tag from POS-tagging. This can further be
extended to find the proper scope of the logical inclusion using the Conjunct (conj)
dependency. An example of a simple dependency parse tree with a logical operator
can be seen in the figure below (figure 6.2):

Figure 6.2: Basic logical operator parse tree example.

Further components with a larger scope may contain internal logical operators
as part of their contents. In these cases, a detection function handles detecting
internal logical operators and potentially handles internal conflicts. For example
in the third IG Parser example statement there is an Aim (I) component with the
base text "review, and reward or sanction". In this case there is both a logical
"AND" and a logical "OR". This would then result in the second logical operator
being scoped or encapsulated with parentheses to allow for parsing. This results
in the component:

I(review [AND] (reward [OR] sanction))

However, the manually annotated statement annotates the "OR" as an "either
or" ([XOR]; exclusive or) instead of an "and/or" ([OR]; inclusive or) as in the
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automated solution. This is a limitation of the automated solution, where there is
currently no mechanism for detecting whether an "OR" should be an "and/or" or
an "either or". Another limitation is the internal scoping, the current implement-
ation handles cases where there are both "OR" and "AND" logical operators in a
component, and encapsulates the operator with its surrounding words to make
the statement parseable, however, this scoping may need manual refinement to
accurately convey the underlying meaning. To indicate this to the user a comment
is added to the API output suggesting manual review, and a warning is logged and
printed to the terminal of IG2NLP with the message "WARNING: Found both "and"
and "or" logical operators in component, please review manually to solve potential
encapsulation issues.".

Activation condition detection and scoping

In the previous section on the pilot project the basic scoping and detection mech-
anism for Activation Conditions was presented. Where the detection was based
on positioning in the sentence at the start of the sentence, and the presence of
a dividing comma to signal the end of the component scope. To further develop
this detection the mechanism was updated to also support Activation Conditions
in other parts of the input statement. The main detection mechanism is still based
on the advcl dependency. However, instead of relying on the start of the sentence
and a comma to end the component scope, the scoping is now handled through
two directional inclusion functions. A positive lookahead, and a positive lookbe-
hind for words connected to the advcl dependency directly or indirectly. This way
the dependency parse tree is properly utilized to scope the condition and the scop-
ing is independent of the position of the advcl dependency.

In the next subsection on component coverage extension, the mechanism for
differentiating between the Activation Condition and Execution Constraint com-
ponents, and the detection and handling of nesting within components such as
those two will be presented. Further component coverage implementation will
also be presented, including the implementation of the components used in con-
stitutive statements and component properties.
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6.2.2 Component Coverage Extension

The initial pilot project only covered the following components:

• Attribute
• Deontic
• Aim
• Direct Object
• Activation Condition

To expand the functionality of the matching function, and to increase the use-
fulness of the software this list of supported components needed expansion to
cover all possible components, both for regulative and constitutive statements.
This meant adding handlers for the following components to the matching func-
tion:

• Indirect Object
• Execution Constraint
• Constituted Entity
• Modal
• Constituting Properties
• Constitutive Function
• Or Else

and properties for all the components that support properties, such as Direct Ob-
ject Properties. In this section, the handling of these components will be intro-
duced, along with different limitations and potential solutions starting with the
detection of Execution Constraints and distinguishing them and Activation Con-
dition components.

Execution Constraints and differentiation of conditions

By reviewing the datasets and comparing the structure of the sentences, the de-
pendencies, and other output data from running the NLP pipeline on the data and
comparing this with the manually annotated statements several patterns emerged.
Two of these patterns were specific to Execution Constraints, the first being an
overlap between the mechanism for detection of Activation Condition compon-
ents and Execution Constraint components. As in some cases the advcl depend-
ency corresponded with an Execution Constraint instead of an Activation Condi-
tion. The other pattern was a link between the Execution Constraint component
and the Oblique Nominal (obl) dependency. This pattern on the other hand had
less overlap with Activation Conditions. So the matching function based on the
advcl dependency needed a method of distinguishing between the two condition
types. For this a simple method of looking at the internal dependencies within the
included scope of the component was used, if the words of the component con-
tained two or more internal obl dependencies then the component is annotated
as an Execution Constraint instead of an Activation condition. Using this method
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the two condition types can share a single handler, and be differentiated using
a simple function. For the obl dependency, the primary detection is for Execu-
tion Constraints, however, there was some overlap with other components such
as objects, which is mitigated using position information and adjacency to other
components. Although, this does not eliminate the issue entirely and further work
is necessary to improve the annotation accuracy.

Nested component handling

The next challenge for conditions was in handling cases where the conditions
contained nested structures with other components within themselves. Take the
start of statement 7.3.3 from the dataset as an example:

"if the Member State concerned decides not to address the recommendations or a
substantial part thereof [...]".

In this case the matching function detects the phrase at the start of the state-
ment as an Activation Condition component:

"Cac(if the Member State concerned decides not to address the
recommendations or substantial part thereof)".

The matching function then looks for nested components within the Activa-
tion Condition, if the requirements are met then the internal components are also
annotated as can be seen below:

"Cac{if the A(Member State) A,p(concerned) I(decides not to address) the
Bdir(recommendations [OR] substantial part thereof)}".

To detect and handle such cases of nested components a method of recur-
sion was utilized. Where for components that have support for nesting within
the matching function (currently the matcher has implemented this for Activa-
tion Conditions, Execution Constraints, and Or Else components), the matching
function is run again on the contents of the component. The results of the next
matching function are then checked, with a basic rule for regulative statements
requiring at least an Aim and an Attribute component to be present, and for con-
stitutive statements a Constituted Function and a Constituted Entity are required.
If these components are present then the brackets type is changed to indicate a
nested component, and the results of the other matching function replace the text
of the component. On the other hand, if the matching function does detect the
necessary components, then the text is simply kept as is, and the component is
annotated as not nested. See the figure below for a basic workflow visualization
of the parser (figure 6.3). Note that the entire figure exists within the matching
function as an individual match, and the end block represents the matching func-
tion going to the next word, where this block can again be called if the matching
function detects the subsequent words as a potential nested component.
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Figure 6.3: Nested component handling

In the model above the functionality shown exists within the matching func-
tion, with the starting point being a case of the matching function where it calls
itself on the contents of a component. The end case is the nested matching func-
tion exiting and the original matching function continuing to match the rest of
the statement if there are additional words.

The limitation of this approach is shared with one of the primary limitations
of using dependency parsing as the main information source for annotation; the
solution is unable to handle inference. As in many statements, it is not explicitly
stated that the Attribute is the actor of the Activation Condition for example, and
it is instead inferred from the context, e.g., in the statement 7.3.1 from the devel-
opment dataset:

"Where recommendations are issued in accordance with paragraph 2 [...]"

The manually annotated statement infers the Attribute in the Activation Con-
dition as "the Commission":

"Cac{Where A([Commission]) I([issues]) Bdir(recommendations) are issued
Cex(in accordance with paragraph 2)} [...]"



66 Jonas K.@NTNU: IG2NLP - Automated NLP Based Annotation

Detection and handling of such cases is an unsolved challenge for now. How-
ever, there are potential avenues for solving such issues that will be described at
a later stage in this thesis.

Or Else component handling

The third component with nesting support in the solution is the Or Else. For the de-
tection of the Or Else component, a simple dictionary approach was used. Where
if an "or" word is followed by "else" or contains the word "otherwise", then the rest
of the sentence is annotated as the contents of an Or Else component. Unique to
the Or Else is that the component is always treated as a nested component, and
it shares the basic method of reusing the matching function on its contents with
the conditions.

Properties

Another factor to cover in the annotation of institutional statements is the proper-
ties of components. The IG Parser supports the following property components:2

• Attributes Property
• Direct Object Property
• Indirect Object Property
• Constituted Entity Property
• Constituting Properties Properties

To detect such components a combination of positioning, dependencies, and
head connections of words is used. For example, a subset of dependencies con-
nected to components such as the Attribute can be used to detect a property of
the component, or included in the component depending on context. For example
an Adverbial Modifier (advmod) or an Adjectival Modifier (amod) dependency. A
common factor in attribute detection is this dependency head connection to an-
other component with support for properties. Other dependencies are also used
in certain contexts to detect attributes, for example, in some cases, an obl de-
pendency is used to indicate a property of a Direct Object, Indirect Object, or
Constituting Property component instead of an Execution Constraint.

Limitations to the method used in the IG2NLP software include difficulty in
differentiating between instances where a property should be included in the main
component, or kept as a separate property component, and handling nesting in
properties. All properties in the IG 2.0 support nesting, however, this was not
present in the test data used for development and was therefore not covered in
the software.

The Constituting Property component mentioned above as supporting nest-
ing is a component used in constitutive statements. In the following section, the

2List shows a subset of the component list from the IG Parser Syntax Guide page https://ig-
parser.newinstitutionalgrammar.org/help/
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introduction of constitutive statement handling will be presented, along with im-
plementation details and alterations required to adapt the matching function to
also be able to handle constitutive statements. Before that, the introduction of
new NLP techniques to the matching function will be presented, including their
use cases and limitations.

6.2.3 New NLP Technique Implementations

Coreference resolution

As discussed previously the 1.7.0 release of Stanza introduced Coreference res-
olution, in this section the implementation of this Coreference resolution model
into the IG2NLP software will be presented and discussed.

In testing the Stanza Coreference resolution model had some issues in de-
tecting spans across sentences, as in an entity that does not end in the sentence
it starts in, further the scoping of the entity Coreferences was inaccurate com-
pared to the manual annotation of the same entity. The first problem resulted in
the pipeline stopping, and is an error in the implementation, to mitigate this the
IG2NLP software has configurable batch sizing, which allows limiting the pipeline
to running a single sentence or statement at a time, which prevents spans crossing
sentences. Another problem is that the solution treats the entire batch of docu-
ments as a shared document, and detects entities across statements. This cross-
statement coreferencing may not be beneficial in all cases, for example when
batch-processing datasets from different domains. To prevent this the batch size
can be adjusted to one, or the datasets can be annotated separately. Finally, the
scoping of entities was not always accurate to the scoping of the same entities in
the manually annotated statements, the basic implementation works by finding
the longest reference of an entity. To increase the accuracy of the entity scope the
matching function updates the scope itself by using its own longest Coreference
detection. This works by looking at words with the same Coreference "chain" or
id and taking the longest component contents from that chain as the full entity
name to use when replacing for example pronouns with their respective entities.
Say an entity is "John Doe", and it is referred to in a statement as "John", "he",
"John D.", and "John Doe", then the longest reference is "John Doe", which would
be used in eventual replacements and semantic annotations if enabled.

The use-case of coreference resolution in the matching function lies in better
detection of Attributes and Constituted Entities, and in replacing pronouns such
as "him/her", "it" and "they" with the specific entity they refer to.
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In the same spirit, this can be used to add a shared "Entity" semantic annota-
tion to each instance of an entity in a statement. E.g. if an Attribute component
is "A(Member States)" and the Attribute is later referred to as "they", then "they"
can be supplemented with the Attribute component e.g.:

"... they ..."

is supplemented with the Attribute component contents resulting in:

"... A([Member States]) they ..."

Additionally, if semantic annotations are enabled both instances can be annot-
ated with the semantic annotation "[Entity=Member States]". This makes it clear
that both Attribute components refer to the same entity.

In the following subsection, more information on semantic annotations and
their implementation in the software will be presented.



Chapter 6: IG2NLP 69

Semantic Annotation

Semantic annotations of the IG Extended and IG Logico are used to encapsulate
extra information into components. This extra information can contain informa-
tion such as the specific Entity name as described above, information about the
context of a constraint, and if an entity is singular or plural.

The IG2NLP currently has three different semantic annotations supported. The
method described above of annotating the Entity based on Coreference resolu-
tion. In addition to this, NER is used to look for date or law entities. These two
entities are then matched to the semantic annotations "[ctx=tmp]" (temporal
context) and "[act=law]". This can help add additional context. The temporal
context is however a very general ctx annotation, and it may be possible and
beneficial to look into developing this further to be more specific such as differ-
entiating between a point in time (tim), a time frame (tfr) and frequency (fr) as
described in the context taxonomy of the IG 2.0 Codebook[8]. The final semantic
annotation currently supported is the number annotation, signalling whether an
entity is singular, or plural with the semantic annotation "[number=sing]" or
"number=plur" based on universal morphological features (UFeats) from the
Stanza POS-tagger.

These semantic annotations are all parameterized using environment vari-
ables, a .env file for the IG2NLP program or as variables in the JSON request
body of the API. This makes it possible to enable or disable various semantic an-
notations according to user needs, For example in some use cases, the "number"
annotation may not be valuable, while for others such as simulation or modeling
it may be useful.

In the future, it may be worth researching methods to extend the semantic
annotation support of the matching function to cover more different semantic
annotations. For example annotating whether an entity is animate, or inanimate,
could also help distinguish between regulative and constitutive statements. Such
changes would, however, require testing to gauge their efficacy and usefulness.

Everything leading up to this point has been focused on describing the hand-
ling of regulative statements, there are, however, also constitutive statements that
need separate handling. In the following subsection, the handling of constitutive
statements will be introduced, starting with how the matching function was ad-
apted to handle constitutive components. Followed by a discussion of similarities,
differences, limitations, and future improvement possibilities.
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6.2.4 Constitutive Statement Handling

Constitutive statements are a vital part of the IG to define elements of institutional
statements or to give background information for statements. For example, defin-
ing what specifically is meant when referring to a student. For example defining
that students in the context means students admitted to a certain educational in-
stitution at the current time, or students in a certain field, within an age range,
etc.

There are two primary challenges to automating the annotation of constitutive
statements. First, distinguishing constitutive and regulative statements requires
context information, or a set of criteria and data to distinguish between the two
types. Second, constitutive statements have their own set of components that are
separate from regulative statements, in addition to some overlapping components.

The overlap between regulative and constitutive functions is both in the shared
components (Activation Conditions, Execution Constraints, and the Or Else) and
components with similar structure or purpose. The Attribute and Constituted En-
tity for example serve the same purpose in their respective forms of statements,
the same for Modals and Deontics, however, there are subtle differences. A Modal
does not signify that there is a consequence for not following the rule or norm,
while a consequence is often defined or implied in regulative statements connec-
ted to the Deontic.

As described above there is a lot of overlap between the two statement types,
so the first task when adding constitutive statement handling was to look into ways
of adapting the old matching function to handle constitutive components. For
the initial implementation, a simple one-to-one conversion was used. Where the
functions for the shared functions were utilized, Deontics were instead matched as
Modals, Aim components as Constitutive Functions, and Objects were primarily
converted to Constituting Properties. However, this initial implementation was
not accurate in all cases, and alterations needed to be made to better encapsulate
constitutive components. The obl dependency for example was used to detect
Constituting Properties instead of Execution Constraints in several cases. Several
other minor alterations were also made to increase the accuracy of the constitutive
statement handling.
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After adaption of the matching function, the next challenge lies in detecting
whether a statement or a part of a statement is constitutive. This remains an un-
solved problem, however, there are several possible ways of solving the problem.

In the meantime the API implementation returns both a constitutive and a reg-
ulative match for each input statement, and the IG2NLP software has a parameter
for deciding whether to annotate a dataset as constitutive or as regulative. These
are stop-gap solutions, however, and a detection mechanism would help improve
the usefulness and usability of the software solution. Some potential methods for
detecting whether a statement is constitutive include the following:

• Looking at the detected entity (Attribute or Constituted Entity) and checking
if the entity is an animate (regulative) or an inanimate object (constitutive).
• A basic dictionary-based approach for Modals and Deontics, as Modals are

generally permissive in nature, which can be reflected in the wording used.
• Identifying the nature of the Constitutive Function or Aim may also give

insight into whether the statement or section is constitutive.
• With the advent of new highly capable LLMs it may be possible to train a

LLM for the task of statement type detection. Through giving contextual
information and basic steps for the task. This may result in problems with
reproducibility and accuracy, however.
• With a large training dataset a model can be developed to distinguish between

regulative and constitutive statements, however overfitting to the dataset,
and generalizing to statements from different domains may be a problem.

As presented above there are many potential methods of solving this prob-
lem. In the meantime manually separating the statements is required. In the sub-
sequent section, more details on the complete software will be presented, includ-
ing the main application, the REST API, the test suite, and other tooling.
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6.3 Software and Tooling

Throughout the Thesis work, several programs have been developed. This includes
the automated annotation software in the form of a Command Line Interface (CLI)
application, a REST API, an updated interface to the IG Parser and integration of
IG2NLP into the IG Parser, tooling to help in the development of the matching
function, and a test suite for evaluating the annotations. In this section, these
different programs will be presented, along with their use cases, implementation
details, and other relevant details.

6.3.1 Installation and Requirements

The main IG2NLP software stack consists of Python 3 programs. They have all
been tested on Python 3.11 and have requirements specified in a "requirements.txt"
file provided with the programs. To install the requirements the pip package in-
staller can be used with the command "pip install -r requirements.txt". If the sys-
tem has a GPU with Cuda support then Pytorch with Cuda needs to be installed.3

Additionally, "useGPU" needs to be enabled through configuration of the software.
Further details on the software will be provided in subsequent sections on the
various parts of the software stacks, and instructions are available in the project
repository.

The IG2NLP main program and API are primarily restricted in terms of parallel
execution and memory. As the Stanza pipeline scales with core count the pipeline
runs faster with more cores, or with GPU processing as GPUs are especially suited
for parallel execution. Running the accurate models for the Stanza pipeline which
are enabled by default requires a lot of memory. When testing on a fresh Ubuntu
server installation the system used around 13 gigabytes of RAM when running
the API on the CPU. Based on this it is recommended to have at least 16 gigabytes
of RAM for the software. This requirement decreases if a GPU is used for the
pipeline, and increases if the batch size is increased. Further, it is possible to use
faster models for the Stanza pipeline using configuration options of the software,
which would lessen both the execution time and the memory requirements at the
cost of accuracy.

The IG Parser prototype can be downloaded from the GitHub repository.4 Run-
ning the IG Parser prototype requires Golang and has been tested on Golang 1.21.
Building the program can be done using the command "go build -o ig-parser.exe
./web", alternatively the program can be run using the command "go run ./web/-
main.go" from the root folder.

In addition to the methods outlined above, there are docker container setups
for both the IG2NLP REST API and the frontend that can be run using docker.
Instructions for using the docker environments are provided in the respective re-
positories with the dockerfiles.

3Pytorch local installation instructions: https://pytorch.org/get-started/locally/
4IG Parser prototype https://github.com/Kjaerandsen/IG-Parser-prot-vis



Chapter 6: IG2NLP 73

6.3.2 IG2NLP

The main IG2NLP application is a Python CLI application that takes the input
of a structured JSON document of base statements. This set of base statements
is annotated through automation to either regulative or constitutive statements
based on an input parameter. The basic inner workings of the system can be seen
in the diagram below (figure 6.4):

Data Ingestion

NLP Pipeline
Processing

Data Conversion

Matching
Function

Program
string output

Figure 6.4: IG2NLP program diagram

Firstly the input JSON data is read from the specified file, then the Stanza
NLP pipeline is run on each statement. After the NLP pipeline, the resulting data
is used to populate a list of custom Word class instances, with the containing text,
dependencies from dependency parsing, Coreference resolution data, POS-tags,
uFeats, etc. Finally, the matching function is run on this data and the output is
written to a specified JSON file.
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To facilitate a wider set of use cases several parameters can be used to para-
meterize the annotation. This includes:

1. a Constitutive or Regulative statement toggle.
2. Enabling or disabling Coreference resolution.
3. Enabling semantic annotations and toggling specific semantic annotations.
4. Changing the models used for the NLP pipeline, from accurate to default,

to fast presets.
5. Other parameters not related to annotations directly such as input, and out-

put files, the batch size used in the NLP pipeline, whether to use CPU or GPU
processing, and using cached pipeline results.

6.3.3 API

Following the development of the IG2NLP software, a REST API was developed
to allow for integration into other software such as the IG Parser. To facilitate
proper integration into other software applications the API was developed with
versioning and parameters to enable a consistent implementation that can support
several use cases and to ensure backward compatibility. The API also supports
configuration on the hosting side to choose which models to use, and whether to
enable GPU processing. This way the software can be tailored to different needs
and backgrounds. A hosted instance using faster models may have less accuracy,
however the processing time is drastically reduced.

This is a trade-off that may be worth considering if the API were to be made
available publicly. For end users of the API, the JSON data format supports per-
statement matching parameters. This allows end-users to enable various forms
of semantic annotation and if enabled at the host side toggling of Coreference
resolution.

To use the API a new JSON data structure was created for the task. The main
principles behind the format are a focus on maintainability and future-proofing.
As this is a developing field with frequent new releases of different NLP technique
implementations. Therefore, several choices in the data structure were made to
allow for iterations to the underlying technology, whilst maintaining backwards-
compatibility through parameterization and versioning of the API. Requests are
performed as HTTP POST requests to the /ig2nlp endpoint. An example of a re-
quest can be seen below (code listing 6.1):

1 [{
2 "stmtId": "1",
3 "origStmt": "word",
4 "apiVersion": 0.1,
5 "matchingParams": {
6 "coref":true,
7 "semantic":true,
8 "semanticNumber":true
9 }

10 }]
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Code Listing 6.1: API JSON request format

The JSON data above also allows for several additional statements to be added
to the same request. Each statement can have a different "apiVersion" parameter,
and different matching parameters that change the resulting annotations accord-
ingly. As the current implementation of the annotator does not have a method for
distinguishing between a regulative and a constitutive statement the API returns
both a version of the input text annotated as regulative and as constitutive. The
response JSON data format can be seen below (code listing 6.2):

1 [{
2 "apiVersion": 0.1,
3 "commentConst": "",
4 "commentReg": "",
5 "encodedStmtConst": "F(word).",
6 "encodedStmtReg": "I(word).",
7 "matchingParams": {
8 "coref": true,
9 "semantic": true,

10 "semanticNumber": true
11 },
12 "origStmt": "Attribute.",
13 "stmtId": "1"
14 }]

Code Listing 6.2: API JSON response format

In addition to the two annotations of the input text, the output also includes
comments from the matching function and the parameters and API version used
for each statement. The comments can include information to suggest further
manual inspection of the statement annotations, such as explaining that core-
ference resolution was used to replace a word with an entity, or an indication
of multiple conflicting logical operators, where manually verifying the scoping is
suggested.
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6.3.4 Frontend

Following the user interface prototype work in the preceding pilot project (Section
5.3) several alterations and additions have been made to the repository. To keep
the prototype up to date, and ready for integration it has been updated several
times to include changes in the main IG Parser repository. Further, several bug
fixes, and new features have been implemented. These features include the option
to toggle the new editor interface. Toggling the interface is implemented as a
simple button that toggles the new visualizations for symbols, and the new input
options as can be seen below (figure 6.5):

Figure 6.5: Text editor window with the advanced UI toggled on and off respect-
ively.
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Further, the IG2NLP automated annotation software was integrated into the IG
Parser using the API described above. Through clicking the "IG2NLP Automation
Interface" a modal is opened which allows the user to select options for the IG2NLP
automation, and send a request for automated annotation. This modal can be seen
in the figure below (figure 6.6):

Figure 6.6: IG2NLP Automation frontend modal.

The resulting annotation is subsequently used to fill the editor window, and
any comments from the api are displayed above the editor. These comments give
additional information surrounding the annotation, such as whether an entity has
been injected to replace a pronoun, or if there are different types of logical op-
erators in a component. The comments serve as additional information for hu-
man coders and give a starting point for fine-tuning the annotations. For example,
with a comment on the logical operators, the implication is that the human coder
should look at the scoping of the logical operators to verify or correct the scope.
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6.3.5 Development Tools

In addition to the main software, several tools have been developed to aid in the
development process. This includes visualization tools, a basic cache implement-
ation for the NLP pipeline data, and other tools to view the results of the various
NLP models.

When developing the matching function the process of updating, running the
NLP pipeline, the matching function, and checking the results a bottleneck became
apparent. At each start of the program, the NLP pipeline needs to be initialized
and then accessed to process each statement, in batch or sequentially. To speed up
this process a basic caching program was developed. The cache works by running
each statement through the pipeline, converting the format to the custom Word
format used by the software, and then saving this data to a JSON document. This
JSON document can then be retrieved by the IG2NLP program to skip the pipeline
initialization and execution steps. Thereby saving most of the execution time, and
allowing for more rapid iterations and testing. In the future, this caching solution
can potentially be implemented for the API as well, so that a user can request the
same statement with different parameters, without requiring the server to re-run
the pipeline on the statement.

Another step in the matching function development is pattern recognition,
finding and recognizing where various dependencies, POS-tags or named entities
correspond with elements of the IG. To help in researching, and testing several
additional smaller programs were made. Firstly in visualization, the Spacy Dis-
placy visualizer was used to visualize the parse trees from the dependency pars-
ing method. This was implemented in two different programs; parseTrees.py for
batch processing of a data set, and dependencyParsing.py for free input single
statement visualization. Further programs to compare the different named entity
recognition models were made, and pipelineData.py creates a text file from a
dataset with relevant data from the dependency parsing, POS-tags, uFeats and
NER. This file can be used to look for patterns in the statements to discover new
opportunities for the automated annotation software to utilize.



Chapter 6: IG2NLP 79

6.3.6 Testbed

The final part of the software stack is the test suite, a set of tools for semi-automated
testing of the annotations. The test suite goes through a JSON dataset consist-
ing of manually annotated and statements annotated through automation, and
compares the annotations at different levels to evaluate the accuracy of the an-
notations compared to the manually annotated control data. The basic workflow
includes the steps as outlined in the diagram below (figure 6.7):

Data Ingestion

Component
Extraction

Direct Com-
parison

Partial Matching

Statistical output

Figure 6.7: Testing diagram

Data ingestion takes a set of statements as outlined above with their annota-
tions. Component extraction works with a combination of regular expressions and
a custom extraction method for picking up the entire component text. As part of
this workflow pre-processing is used to remove ids from components and semantic
annotations are currently not evaluated using this solution. After the components
are extracted a separate program can be used to compare the component lists
from the manual and the automated annotations. This is done through a process
with several steps of granularity that will be described in the next chapter.

To perform some basic load testing on the API a simple program was also
made, the program works by selecting a small batch of statements at random
from a dataset, and sending a request to the API with those statements. Through
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running this program over time some basic performance and requirement testing
can be performed.

More details on the test-suite and the specifics of the testing methodology will
be presented together with results in the next chapter.



Chapter 7

Testing and Evaluation

In this chapter the testing of the IG2NLP artifact will be described in detail, start-
ing with the testing methodology, and the reasoning behind each decision in the
development of the so-called "test bed". Followed by testing of the artifact at differ-
ent levels of complexity and a discussion of the performance and its implications
to the wider field of institutional grammar research.

7.1 Testing Methodology

To perform tests on the performance of the automated annotation solution a
so-called "test bed" has been developed. This consists of comparisons between
statements annotated through automation, and their manually annotated coun-
terparts. At the most basic level, there is the option of directly comparing the two
texts character by character, however, there are coding styles and formatting that
may cause this most basic method to suffer in terms of accuracy and quality of the
evaluation.

To mitigate this the first step taken was the pre-processing step as outlined
in the previous chapter. The next step lies in scoping the comparison. Instead of
comparing character by character a method of comparing components at several
levels is adopted. This can be divided into two primary parts, firstly counting true
positives, false positives and false negatives. However, there are intricacies in the
annotation of institutional statements that make this method lackluster in some
areas. For example, in the test dataset, there are several partial matches of various
degrees and "types". This partial match should not be counted as a direct mistake
in many cases. Examples of partial matches covered are incorrect scoping of com-
ponents and incorrect component typing. This partial match is the second level
of testing where another category is added of matches that are partially correct,
which includes clear examples of potential areas of improvement in a consistent
format. Examples of partial positives and their criteria will be provided below
followed by an introduction and explanation of the testing methodology.

An example of partial matches includes components with properties, i.e. an At-
tribute in the IG can have an Attribute Property connected, such as in the manually
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annotated version:

"the A,p(acting) A(Manager)"

In such cases, a partial positive could be the same section annotated as:

"the A(acting Manager)"

The opposite of this can also happen, where a component is split into a com-
ponent and a property, instead of annotated as a single component due to context,
in such cases that would also be counted as a partial positive. I.e.:

Manual: "A(acting Manager)" and Automated: "A,p(acting) A(Manager)"

Another common occurrence in testing is difficulty in differentiating between
different component types in certain situations. For example, differentiating between
an Activation Condition and an Execution Constraint often relies on the context
within the sentence and is difficult using the NLP techniques that the IG2NLP
solution bases its annotations on. Such occurrences are also covered in the partial
positive category of the test bed. This partial matching based on incorrect com-
ponent annotation was limited to component pairs of Activation Conditions (Cac),
Execution Constraints (Cex) and Objects (Bdir and Bind) or Constituting Proper-
ties (P). This is because these components are closely related and can be hard to
distinguish between.

Further for the initial testing logical operators were ignored, however in the
future it might be worth looking into methods of more accurately covering logical
operators and testing such solutions. A limitation of the software now is the in-
ability to distinguish between the logical "and/or" ([OR]; inclusive or) and the
"either or" ([XOR]; exclusive or), and in the scoping or encapsulation of logical
operators within components.

Additional edge cases that were manually handled, such as with missing de-
terminers (a, or the for example), cases with a third level of properties (P,p,p),
where this was adjusted to a second-degree property instead (P,p), and division of
components linked by a logical "and" where the manual and automated annota-
tions differed for example if the manually annotated version is:

A(a) and A,p(property) A(b)."

In this case if the automated annotation is:

A(a [and] property b)"

Then the automated annotation would be manually altered to the following:

A(a) and A(property b)"
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This form maintains the same exact meaning in the language, but allows
matching both attributes from the manual annotation to the automated annota-
tion, with the first being a true positive, and the second being a partial positive
because of the combination of the Attribute and the property in the same com-
ponent.

Finally, when testing components without considering nested components, the
inferred components within a nested component are ignored. See the section on
nesting and inference for more detail on component inference (section 7.2.5).

To help in the evaluation of the solution a set of tools were created that helped
automate the evaluation process. The tooling worked in a simple two-step process,
first, the dataset was parsed to extract all relevant components and extra data such
as semantic annotations. Following this, a three-step comparison is performed
component by component. This process works as follows:

1. The components are directly compared, where both the content and the
component type need to be direct matches, this is used to detect true posit-
ives. Where the components are equal except for nesting, i.e. the manually
annotated version detects a component as nested, while the statement an-
notated through automation does not, the match is counted as a partial
positive.

2. After direct comparisons the component contents are compared across com-
ponent types, i.e. if an Execution Constraint is annotated as an Activation
Condition component then a partial positive match is counted.

3. Finally, scoping is handled, where the solution looks for partial content
matches for the partial positive counter and tries to group all components
that partially match another component. This can for example be as dis-
cussed above where an Attribute and an Attribute Property component are
annotated as a single Attribute component. These matches detected through
automation are then appended to an output list of partial positive matches
where they can be manually reviewed. After manually reviewing the pool
of automated partial matches the rest of the components can be counted as
either false positives, or false negatives, depending on whether they origin-
ate from the manually -, or the statement annotated through automation.

The steps outlined above match component contents based on the text content of
the component, but ignores square brackets ([]), parentheses (()), logical operat-
ors (and, or, xor), commas (,) and two articles (a and the). This is done to sim-
plify the automated comparison, and reduce the amount of manual intervention
required. Because of these exclusions the testing does not test logical operator
handling. The basic input structure for the testing program consists of a JSON
document with a list of statements, including their base text, names (an identifier
for the statement), the manually annotated statement, and the IG2NLP annotated
statement as seen below (code listing 7.1):
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1 [
2 {
3 "name": "Name",
4 "baseTx": "relevant union legislation",
5 "manuTx": "Bdir,p(relevant) Bdir(Union legislation) ...",
6 "autoTx": "Bdir(relevant Union legislation) ..."
7 }
8 ]

Code Listing 7.1: Dataset JSON format

This dataset consisting of such statements in JSON format is then processed
to extract components in the basic format (code listing 7.2):

1 {
2 "Content": "relevant Union legislation",
3 "Nested": false,
4 "componentType": "Bdir"
5 }

Code Listing 7.2: Testing component JSON format

These components are organized by component type(A, A,p, ...), and their
source(manually annotated or annotated through automation). In the future, this
component object can be extended to include information such as suffixes and
semantic annotations for more thorough comparisons.

Finally, after all components for each statement in the dataset have been ex-
tracted, this data can be read and the components from the manually and IG2NLP
annotated statements can be compared. As explained above the comparison is
done at two levels, resulting in a count of True Positives, Partial Positives, False
Positives, False Negatives, and a total per statement. Direct matches are added
to the True Positives counter and removed from the component list, subsequently
partial positive matches are added to a list as can be seen in the JSON excerpt
below (code listing 7.3):



Chapter 7: Testing and Evaluation 85

1 "partialMatches": [{
2 "manuTxComponents": [{
3 "Content": "Union legislation",
4 "Nested": false,
5 "componentType": "Bdir"
6 },{
7 "Content": "relevant",
8 "Nested": false,
9 "componentType": "Bdir,p"

10 }],
11 "autoTxComponents": [{
12 "Content": "relevant Union legislation",
13 "Nested": false,
14 "componentType": "Bdir"
15 }]
16 }]

Code Listing 7.3: Testing partialMatches component matching JSON format

Finally, all components not matched directly or partially, are added to the "ex-
traComponents" for the two annotations. Where these can be manually checked,
and the extra components annotated by IG2NLP are counted as False Positives and
the other extra components are counted as False Negatives.

With all the examples shown here of JSON data, there can be additional items,
i.e. more than one component, or more than one partial component match per
statement.

This testing process was performed at two levels, one where nesting was ig-
nored completely, and one where the detection of nested components was also
evaluated. The introduction of nested statements adds several layers of complex-
ity to the solution. It does not only need to be able to detect and scope com-
ponents, but then also go through each component with support for nesting and
detect whether or not the component should be nested, and accurately annotate
the components inside such nested components as well. To evaluate this properly
all cases of nested components in the datasets were compared, to first see whether
they were detected as nested, subsequently if they were properly scoped, and fi-
nally the accuracy of the internal component detection and annotation was evalu-
ated. The way this comparison works is that if a component is annotated as nested
in the manually annotated version and not in the automated annotation then the
components inside the nested component of the manually annotated component
are all counted as false negatives. If, on the other hand, the manually annotated
statement has a false positive nested components, then all components within that
nested component will be counted as false positives, and if both have annotated
the component as nested, then the internal components can also be compared the
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same way as all other components are compared. The total amount of regulat-
ive statements in the initial testing was 53, and for constitutive statements, there
were 19 in total spread across two datasets from two different domains (climate
regulation and cybersecurity). The number of statements used is lower than the
total amount of statements in the dataset due to the exclusion of statements with
both regulative and constitutive sections and certain complex structures. The jus-
tification to these excluded statements as well as more detail will be presented in
a later section (Section 7.2.3)

The following section will go over several rounds of testing performed, the
results, and the implications of the results. Including a discussion of results at the
various levels of testing, and an initial discussion on some of the strengths and
limitations of the automated annotation.
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7.2 Testing Results

This section goes over the testing results, starting with testing without nesting,
followed by testing with nesting, and a discussion of excluded statements, the
reasoning behind their exclusion, and how they relate to the limitations of the
software. Finally, a discussion of the strengths and limitations of the software will
take place. The sections below refer to components by their respective IG Script
symbols, refer to the table in section 2.1 on page 8 for the component names. A
figure showing how many of each component occurred in the training data set
used for testing can be seen below (figure 7.1):
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Figure 7.1: Component counts in training data
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7.2.1 Testing Without Nesting

In the testing data the presence of nested component structures was limited to
eight regulative statements and one constitutive statement, and one additional
regulative statement had a false positive nested component. This section will ex-
pand on the previous section by testing these statements and discussing the per-
formance of nested component handling.

Regulative statements

Symbol TP PP FP FN Total count
A 86.21% 8.62% 3.45% 1.72% 58
A,p 68.75% 12.50% 6.25% 12.50% 16
I 65.00% 18.33% 10.00% 6.67% 60
D 92.45% 0.00% 3.77% 3.77% 53
Bdir 50.88% 36.84% 7.02% 5.26% 57
Bdir,p 18.18% 77.27% 0.00% 4.55% 22
Bind 22.22% 66.67% 0.00% 11.11% 9
Bind,p 0.00% 100.00% 0.00% 0.00% 1
Cac 80.00% 15.00% 0.00% 5.00% 19
Cex 46.67% 42.22% 4.44% 6.67% 45
O N/A N/A N/A N/A N/A

Table 7.1: Regulative statement component metrics without nesting

As you can see in the table above (table 7.1) there are certain components with
fairly high accuracy in detection and scoping. The Aim, Deontic and Activation
Condition components all have True Positive rates of 80% or more. This means
that the automated annotation of these components are reliable and fairly accur-
ate on the datasets used in this testing. This in part supports the general usability
of general-purpose NLP techniques for the detection of general components that
commonly mirrors actors, deontic signals and conditions in natural language. For
other components such as the Attribute Property and the Aim the true positive
rates are lower. However, when including the partial positive metric the total ac-
curacy is above 80%. This also applies to Objects and the Execution Constraint
components. However, the true positive rate for these components are consider-
ably lower. This indicates a combination of difficulty in scoping or component
typing, and provides less confidence in the annotation. As such the object and Ac-
tivation Condition annotations should be seen more as suggestions than as strict
annotations as differentiating between these components offers challenges, and
the scoping is also challenging in many areas. These difficulties will be described
in further detail in the discussion section of this chapter (section 7.2.5). The next
table below (table 7.2) shows the statistics for constitutive statements without
nesting:
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Constitutive statements

Symbol TP PP FP FN Total count
E 50.00% 22.73% 9.09% 18.18% 22
E,p 27.27% 45.45% 0.00% 27.27% 11
F 54.17% 16.67% 20.83% 8.33% 24
M 100% 0.00% 0.00% 0.00% 13
P 31.25% 37.50% 15.63% 15.63% 32
P,p 0.00% 71.43% 21.43% 7.14% 14
Cac 33.33% 66.67% 0.00% 0.00% 3
Cex 33.33% 33.33% 16.67% 16.67% 12
O N/A N/A N/A N/A N/A

Table 7.2: Constitutive statement component metrics without nesting

In this table the results for the Modal component have 100% accuracy.1 However,
for the other components the accuracy is lower than for their regulative counter-
parts. The Constituted Entity and Constitutive Function components have around
50% true positive rates, for the Constitutive Function component this is mainly
due to scoping of the component. With more work on the scoping function, this ac-
curacy could be improved further. In the case of Constituted Entities, the problem
is in the detection mechanism based on dependency parsing. This method seems
to fail in the context of constitutive statements due to overlap with the Constitut-
ing Properties, this failure will be discussed more in the discussion section (section
7.2.5). For the rest of the constitutive components, there is more overlap in the
detection than there is for regulative statements, and the annotations are less ac-
curate. This can be a result of different requirements for constitutive statements
where the method for automated annotation fails. Notably, constitutive statements
have a more general applicability than regulative statements, lowering the syn-
tactic specificity of the individual components. Another practical constraint in the
context of this thesis is the limited amount of constitutive statements available in
the development process and for evaluation compared to regulative statements.

In the next subsection the testing will be expanded to include nested compon-
ent structures and the effects of this will be discussed.

1This is of limited surprise, given the focal scoping of modal signals and their similarity to de-
ontics on the regulative side.
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7.2.2 Testing With Nesting

The total amount of statements of the test set that exhibited nesting features was
nine statements. One of these statements is a constitutive statement and the other
eight are regulative statements.2 In addition to these eight regulative statements
there is a regulative statement where an Activation Condition was falsely detected
as nested by the automated solution.

Out of these statements, there are a total of twelve components that are nes-
ted. Out of these twelve nested components the automated solution properly de-
tected and encapsulated seven of these components, five of them were false neg-
atives, and an additional false positive was detected. If we count the false positive
in the total this gives a true positive rate of 53.8%, a false negative rate of 38.4%
and a false positive rate of 7.69%. However, this only takes the main component
into account, the handling of nested components also deals with internal com-
ponent annotations which brings further components to annotate, and further
complexities.

Reflecting the multi-stage parsing of nested statements (an initial parsing that
only identifies the first-order components, such as Attributes, Aims, etc., followed
by a deep parsing within all those components, the results presented here take
a differentiated approach to clearly dissect classification performance on general
identification vs. nesting. The first table (table 7.3) below hence highlights the
results for the same set of statements without taking nesting into account. The
second table (table 7.4) includes the consideration of nesting, increasing the total
number of components across statements, inadvertently affecting the results:

Symbol TP PP FP FN Total count
A 84.62% 7.69% 7.69% 0.00% 13
A,p 60.00% 20.00% 20.00% 0.00% 5
I 50.00% 0.00% 25.00% 25.00% 12
D 100% 0.00% 0.00% 0.00% 9
Bdir 55.56% 44.44% 0.00% 0.00% 9
Bdir,p 33.33% 66.67% 0.00% 0.00% 4
Bind 66.67% 33.33% 0.00% 0.00% 3
Cac 66.67% 33.33% 0.00% 0.00% 6
Cex 20.00% 60.00% 0.00% 20.00% 5
E 100.00% 0.00% 0.00% 0.00% 1
F 100% 0.00% 0.00% 0.00% 1
M 100% 0.00% 0.00% 0.00% 1
P 0.00% 100% 0.00% 0.00% 1
P,p 0.00% 50.00% 0.00% 50.00% 2

Table 7.3: Testing of statements without accounting for nesting

2Overall, the more limited number of statements reflects the special nature of nesting that does
not occur in all institutional statements.
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The table above has omitted components that were not present in the state-
ments tested. These numbers serve as a baseline to compare the results in the next
table (table 7.4). The following table shows the same statements, but with nesting
of components enabled to gauge how this affects the accuracy of the annotation.

Symbol TP PP FP FN Total count
A 66.67% 11.11% 11.11% 11.11% 27
A,p 50.00% 25.00% 12.50% 12.50% 8
I 45.83% 8.33% 12.50% 33.33% 24
D 72.72% 0.00% 27.27% 9.09% 11
Bdir 39.13% 26.09% 8.70% 26.09% 23
Bdir,p 33.33% 66.67% 0.00% 0.00% 11
Bind 40.00% 40.00% 0.00% 20.00% 5
Cac 55.56% 22.22% 11.11% 11.11% 9
Cex 36.36% 45.45% 0.00% 18.18% 11
E 100.00% 0.00% 0.00% 0.00% 2
F 50.00% 50.00% 0.00% 0.00% 2
M 100% 0.00% 0.00% 0.00% 1
P 0.00% 100% 0.00% 0.00% 2
P,p 0.00% 66.67% 0.00% 33.33% 3

Table 7.4: Testing of statements accounting for nesting

Looking at the results in this second table the first thing to note is that the addi-
tion of nesting adds several layers of complexity. This includes the total matches
counted, which increased from 72 to 139. The addition of nesting resulted in
nearly double the amount of matches. Further, there are many challenges to deal
with in nested components, first in detecting that a component should be nested,
then in internally annotating components, and inference of components. Inference
of components is the process of including an Attribute and or Aim component in a
nested statement from outside the direct statement text, for example when annot-
ating a section of a statement as a nested statement the Attribute may be inferred
from the base statement, see the subsequent relevant section for more detail (sec-
tion 7.2.5). In the end the addition of nesting reduced the accuracy for most of
the components, some more than others. For example, the Aim and Attribute com-
ponents are often inferred from context in nested components, which results in
new false negatives because the automated solution is currently unable to infer
components in this manner. These difficulties and potential solutions will be dis-
cussed more in the discussion section (section 7.2.5). Before this more in-depth
discussion, the next sections go over exclusions from the testing dataset, as well
as the results achieved on another dataset not used in the development process.3

3Note that this work uses off-the-shelf models without training requirement. The use of a second
dataset, however, allows us to test for any possible biases introduced during the conceptual mapping
from NLP techniques to IG concept.
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7.2.3 Exclusions

Certain statements were excluded from the testing above due to being complex
cases where the direct comparison of the manual and automated statements was
not possible. This was primarily caused by complex cases where the manual an-
notation of the statements was done by rewriting the statement text entirely.4 Ad-
ditionally, statements that consisted of both regulative and constitutive sections
(hybrid statements) were filtered out. An example of this is the first example in
the IG Parser:

Cac{Once E(policy) F(comes into force)} A,p(relevant) A(regulators) D(must)
I(monitor [AND] enforce) Bdir(compliance).

In this case, manual intervention is necessary to detect that the internal com-
ponents of the Activation Condition are constitutive. Manually fixing this could
be done through generating both a constitutive and a regulative annotation and
manually handling this (using the API both a regulative and constitutive annota-
tion is generated), or in the future, with a statement type detection mechanism,
this problem could be solved.

7.2.4 Validation testing

To validate the results of the testing an additional dataset was acquired and used
to evaluate the results. This dataset was unseen during the development of the
solution and serves as a test for the validity of the solution and how the methods
apply to other datasets, while controlling for unintentional biases during develop-
ment. The validation dataset consisted of 81 regulative and 27 constitutive state-
ments. The same pre-processing procedures as outlined earlier (section 5.1) were
followed for the dataset. Further, duplicate statements were removed, and paren-
theses in the base texts were removed. Finally, primarily for the second category
as defined in the next subsection the Attribute component and in one case the
Deontic component was inferred from outside the statement text. In such cases,
the base text did not contain the component text. This also affected one of the
statements in the third category. For these statements, the component text which
was inferred from outside the statement was added in manually before testing.
Illustrating this using an example, consider the base text below:

Any funds used to support in-state renewable electricity generation facilities
pursuant to this section shall be expended in accordance with the provisions of this

chapter.

This statement text corresponds to the following manually annotated variant:

4This is permissible practice in IG coding, e.g., to compensate or correct for stylistic features of
the language in which institutions are expressed.
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A([Commission]) Bdir(Any funds) Bdir,p(used to support in-state renewable
electricity [...]

For this statement, and similar statements the Attribute text was added to the
start of the sentence. The adjusted statement hence reads:

Commission Any funds used to support in-state renewable electricity [...]

Regulative statements

Looking at the testing results, the statements can be roughly divided into three
categories, firstly basic statements consisting of a single full sentence, secondly
sentences consisting of a phrase with an external Attribute inserted or inferred
and finally statements consisting of multiple sentences, or colons and semicolons.
The first category contains 56 out of the 81 statements (69%), the second category
contains 17 (21%) and the third contains 8 (10%). For these three categories,
the performance of the solution varies. The first category is handled well by the
solution and the results for this can be seen in the table below (table 7.5):

Symbol TP PP FP FN Total count
A 80.70% 15.79% 3.51% 0.00% 57
A,p 0.00% 16.67% 50.00% 33.33% 22
I 79.37% 4.76% 12.70% 3.17% 63
D 98.04% 0.00% 1.96% 0.00% 51
Bdir 27.59% 67.24% 5.17% 0.00% 58
Bdir,p 10.53% 81.58% 5.26% 2.63% 38
Bind 0.00% 100% 0.00% 0.00% 10
Bind,p 0.00% 100.00% 0.00% 0.00% 1
Cac 50.00% 50.00% 0.00% 0.00% 16
Cex 50.00% 50.00% 0.00% 0.00% 28

Table 7.5: Verification regulative statistics category one

In these statements, the Attribute, Aim and Deontic components all have true
positive rates around or above 80%. Further, the false positive and false negative
rates are rather low, with the exception of the Attribute Property component. The
performance in these statements is rather high due to their similarity in structure
to the dataset used for development.

Moving on to the second category the solution struggles as the statements are
phrases and not full sentences. An example of this "phrase structure" is the state-
ment below:

Commission Any funds used to support in-state renewable electricity [...]
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Here the "Commission" is added from outside the phrase and not naturally in-
tegrated into the sentence. This causes a couple of problems, first, there are issues
where the root of the statement does not correspond with the Aim component,
second, there are component overlaps of the Aim component, the Attribute and
the Direct Object. Handling such phrases may be possible, but the current imple-
mentation is built for fully formatted sentences. See the table below for compon-
ent matching statistics for these statements (table 7.6):

Symbol TP PP FP FN Total count
A 10.71% 17.86% 39.29% 32.14% 28
A,p 0.00% 0.00% 100% 0.00% 6
I 3.85% 46.15% 34.62% 15.38% 26
D 70.59% 5.88% 0.00% 23.53% 17
Bdir 11.76% 23.53% 0.00% 64.71% 17
Bdir,p 10.00% 70.00% 0.00% 20.00% 10
Bind 0.00% 80.00% 0.00% 20.00% 5
Bind,p 0.00% 100.00% 0.00% 0.00% 1
Cac 50.00% 0.00% 50.00% 0.00% 2
Cex 60.00% 20.00% 0.00% 20.00% 15

Table 7.6: Verification regulative statistics category two

In these specific cases, the dependency parser often detects the inserted "Com-
mission" word as a separate sentence, which gives a separate parse tree and gives
an Aim component annotation. Where this behaviour is not present, the root hand-
ling still does not correspond with the proper aim in all cases. This limitation of
root handling can potentially be mitigated in the future by checking whether the
root is a verb, and if not, then looking for a verb connected to the original root. This
way a new root can be generated, and the discovery of the Attribute component
could be simplified, see the figure showing the basic dependency-based match-
ing for reference (figure 5.1). In this figure, the root of the tree is the Aim and a
verb, which is what the matching function expects. The other problem with these
statements is the structure. Since the statements are not fully formed sentences,
the current solution struggles to classify those properly. In the future, it may be
possible to write a version of the matching function for such phrases. However,
at this initial stage, this may be overfitting to this dataset, which uses a specific
phrase structure which is not a natural sentence construction. Another avenue
to improve the annotation of these statements would be to improve the Attrib-
ute detection mechanism, given that central a problem in these statements is that
Direct Object components are detected as Attributes due to the sentence depend-
encies and structure, while with an updated NER model or another approach, this
could be mitigated. This mitigation would work by giving additional information
to classify the component as either an Attribute component or a Direct Object. A
final note is the Aim component, where in this set of statements the true positive
rate is low, this is due to additional context added in the manually annotated ver-
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sions of these components. Where the manually annotated version may be "I(be
expended [expend])" while the automated solution annotates the same phrase as
"I(be expended)". These matches are then counted as partial matches. For more
discussion on this and other limitations see the subsequent section (section 7.2.5).

Finally, for longer statements which either consist of several sentences, or that
are bound by semi-colons the IG2NLP program struggles to properly encapsulate
everything in the same way the manual annotation does. This is primarily an is-
sue of properly scoping very long Activation Condition and Execution Constraint
components. Where these statements either have such components starting in the
first sentence of the statement and spanning across multiple following sentences,
or where such components contain semicolons. In the cases of semicolons, the
manual annotation replaces the semicolons with the logical "and", and extends
the component to cover the rest of the text. See the table below for component
matching statistics for these statements (table 7.7):

Symbol TP PP FP FN Total count
A 30.43% 0.00% 65.22% 4.35% 23
A,p 0.00% 0.00% 100% 0.00% 10
I 23.33% 3.33% 73.33% 0.00% 30
D 41.67% 0.00% 58.33% 0.00% 12
Bdir 33.33% 55.56% 11.11% 0.00% 9
Bdir,p .00% 25.00% 50.00% 25.00% 4
Bind 0.00% 100% 0.00% 0.00% 3
Bind,p 0.00% 100.00% 0.00% 0.00% 2
Cac 25.00% 50.00% 25.00% 0.00% 8
Cex 0.00% 40.00% 60.00% 0.00% 5

Table 7.7: Verification regulative statistics category three

As can be seen in the table above these statements display relatively frequent
false positives, an aspect that is due to the scoping issue. Phrases that should be
contained within an Activation Condition or Execution Constraint are instead an-
notated as either a separate statement in the case of multi-sentence annotations
or simply merged with other components in cases where semicolons are present.
In the future, it may be possible to add handling for lists of phrases bound by
semicolons, but there is a potential risk for overfitting in corresponding rule for-
mulation. Hence, a larger dataset of annotated statements would be necessary to
base and validate the rules on. For cases where a component spans across multiple
sentences, this may be possible to automate, but the current solution treats each
sentence in the input as a separate statement, which causes a lot of false positive
components in this case.

Finally, when combining all three categories of regulative statements the com-
bined accuracy can be seen in the table below (table 7.8):
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Symbol TP PP FP FN Total count
A 51.85% 12.96% 25.93% 9.26% 108
A,p 0.00% 4.54% 86.36% 9.09% 22
I 48.74% 13.44% 32.77% 5.04% 119
D 83.75% 1.25% 10% 5.00% 80
Bdir 25.00% 57.14% 4.76% 13.10% 84
Bdir,p 12.82% 75.00% 7.69% 7.69% 52
Bind 0.00% 94.44% 0.00% 5.56% 18
Bind,p 0.00% 100.00% 0.00% 0.00% 4
Cac 42.31% 46.15% 11.54% 0.00% 26
Cex 47.92% 39.58% 6.25% 6.25% 48

Table 7.8: Verification regulative statistics all categories

As can be seen in the table above the Attribute, Attribute Property, and Aim
components accuracy suffers due to the false positives in the third category of
statements. The Direct Object, Aim and Attribute components also suffer due to
the second category of statements, where there are problems in the detection of
the Aim and distinguishing between the Attribute and Direct Object components.

The following subsection goes over the results for the constitutive statements
of this dataset and will be followed by a subsection testing the annotations of
nested components in the dataset.
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Constitutive statements

Symbol TP PP FP FN Total count
E 25.00% 34.38% 15.63% 25.00% 32
E,p 16.67% 75.00% 0.00% 8.33% 12
F 21.43% 26.19% 38.10% 14.29% 42
M 76.92% 0.00% 15.38% 7.69% 13
P 3.57% 53.57% 7.14% 35.71% 28
P,p 0.00% 85.71% 0.00% 14.29% 7
Cac 0.00% 66.67% 33.33% 0.00% 3
Cex 22.22% 66.67% 11.11% 0.00% 9

Table 7.9: Constitutive validation dataset statement component metrics without
nesting

As can be seen in the table above (table 7.9) the component accuracy for con-
stitutive statements in the validation dataset is lower than in the dataset used in
development. With the exception of the Modal component, all components have
a sub 30% true positive rate, which indicates problems in scoping and detection
of components. The lower accuracy can be explained in three ways, firstly the de-
velopment relied on a small dataset of constitutive statements. The size of the de-
velopment dataset gives fewer points of data to base the rule creation on, and less
variance which can lead to conceptual overfitting in rule development. The second
aspect lies in limitations of the method used to automate the annotation which
includes problems in differentiating between component types in some cases and
limitations of the models used. Finally, the dataset contained sentence structures
that the employed dependency parser struggled with due to the stylistic specificit-
ies of the input statement. This caused the root of the dependency parse tree not to
centre on the Constitutive Function component in the affected statements, which
caused false positive Constitutive Function component detection, and false negat-
ive Constituted Entity detection, among other side-effects. This may be due to the
specific formatting of the base text which in many cases consists of phrases that
have been substantively modified in the encoding process. The structure of some
of the input sentences is in several cases more reminiscent of phrases than full
sentences which the IG2NLP program was developed for. An illustrative example
is the statement text below:

"[environmental and public benefits] including improved air quality"
In this statement, the root of the dependency parse tree is "benefits", which

is a noun. This is contrary to the statements in the training data where the root
generally was a verb and corresponded with the Aim or Constitutive Function
of the statement. This behaviour is the same as described above when talking
about the second category of "phrase" statements. In the case of the statement
above "including" is the Constitutive function, and is detected as a verb, while
the root of the parse tree is "benefits" which is therefore annotated erroneously
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as the Constitutive Function. Another problem is in scoping of longer components
where it can be challenging to fully encapsulate everything accurately, while trying
to distinguish between the main component and its properties. More discussion
on the limitations and possible additions to IG2NLP are subject to the next section
(section 7.2.5).

Nested components

Only a subset of the validation dataset was fully annotated with nested compon-
ents. This included five statements. This subsection will compare the results of the
automated annotations with these statements to gauge how well the detection and
accuracy of the nested component detection works. Out of these five statements,
there were a total of seven nested components. Out of these six components, two
were detected by the automated solution with accurate scoping, and four were not
detected. This gives an accuracy of 2/7% on detection, and a false negative rate
of 5/7% which is lower than on the development dataset. Further, one of these
two matches had the wrong component type, where an Execution Constraint was
annotated as an Activation Condition. This lower accuracy is partly due to a limit-
ation of the detection mechanism which relies on finding an Attribute component
and an Aim component, and in four of the seven nested statements the Attribute
was inferred through context which the solution is currently unable to do.

In the first table (table 7.10) below you can see the results for these statements
when not taking nesting into account, in the second table (table 7.11) nesting is
also tested, which increases the total amount of components in the statements
and changes the results:

Symbol TP PP FP FN Total count
A 80.00% 20.00% 0.00% 0.00% 5
I 100% 0.00% 0.00% 0.00% 5
D 100% 0.00% 0.00% 0.00% 4
Bdir 60.00% 40.00% 0.00% 0.00% 5
Bdir,p 25.00% 75.00% 0.00% 0.00% 4
Cex 0.00% 100% 0.00% 0.00% 3

Table 7.10: Testing of statements accounting for nesting on the validation dataset

Because of the low amount of statements the amount of total manually annot-
ated components is low, and the amount of different component types covered in
these statements is also low. In the next table nested component structures are also
counted, which due to only two out of seven nested components being detected
will cause a large amount of extra false negatives. This is because of the compon-
ents which are annotated within the nested components. The updated results can
be seen in the table below (table 7.11):
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Symbol TP PP FP FN Total count
A 41.67% 16.67% 0.00% 41.67% 12
A,p 0.00% 0.00% 0.00% 100% 1
I 50.00% 8.33% 0.00% 41.67% 12
D 100% 0.00% 0.00% 0.00% 4
Bdir 42.29% 42.29% 0.00% 14.28% 14
Bdir,p 11.11% 44.44% 0.00% 44.44% 9
Cex 22.22% 33.33% 0.00% 44.44% 9

Table 7.11: Testing of statements accounting for nesting on the validation dataset

Reviewing the numbers in the table above, a reduction in the true positive rate
of the Attribute and Aim is apparent. This is due to the necessary presence of an
Attribute and an Aim component in a nested regulative statement. Further, the
total component count shows an increase, and the amount of false negatives has
a drastic increase due to these nested components and their internal components.
To increase the detection rate of nested components a method to handle Attribute
inference could be an option, this problem of nesting an inference is discussed in
more detail in a later subsection (section 7.2.5). Before that, the following section
presents a discussion of the results of this testing and some of the limitations to
the IG2NLP software, before going into detail on limitations to the automated
annotations and potential ways to mitigate them in the future.



100 Jonas K.@NTNU: IG2NLP - Automated NLP Based Annotation

7.2.5 Discussion and Limitations

In this subsection, the results of the testing will be discussed. Starting with a gen-
eral overview of the results, followed by a discussion of the strengths and weak-
nesses of the solution. Finally, an in-depth discussion of some of the specific lim-
itations of the solution, and how they are addressed or can be addressed in the
future.

From the numbers shown in the preceding sub-chapters, it is apparent that
the performance of IG2NLP is better for regulative statements than it is for con-
stitutive statements. This is based on a combination of issues. Firstly the sample
size of constitutive statements was around a third the size of the sample size of
regulative statements. With more data to base the automated annotations on a
wider range of possible sentence structures and word combinations was present.
This meant that the solution could be tested more thoroughly, and could be made
to adapt to a wider set of statement structures. Additionally, for constitutive state-
ments, a recurring issue was in dependency overlap between Constituted Entities
and Constitutive Properties. Where the structural overlap led to incorrect annota-
tions in both directions, causing lower annotation accuracy for both of these com-
ponents. This limitation, and several others will be discussed in further detail in
a subsequent paragraph. The results of the automated constitutive annotations
should currently be viewed as more of a suggestion than an accurate annotation.
However, with more training data and by introducing further tools for the purpose
of cross-validation or refined multi-stage detection it might be possible to achieve
higher performance. At the same time, these results and metrics provide a sound
baseline performance on which future solutions can build and relate to.

For regulative statements, the accuracy of Attributes, Deontics, Execution Con-
straints, and Activation Conditions are all rather high with around 80% true pos-
itive rates on the training data set. However, there are still improvements to be
made in extending the support for nesting to cover all relevant components. There
is also currently a limitation to the annotation of Attribute components, where in
some cases Direct Objects are incorrectly annotated as Attributes, either because
of similar dependency structures or as a side effect of the solution not handling
component inference, which will be presented and discussed in further detail in
a subsequent paragraph. This issue was more apparent in the validation data set
with the second category of "phrase" statements. Further, execution Constraint
components also have some overlap with other component types which will need
to be addressed to improve the accuracy of the annotations. Additionally, Indirect
Object occurrences were limited in the dataset used to develop the solution, so to
improve the Indirect Object annotation accuracy more training data is necessary.

With the validation data set some of the strengths and limitations of the solu-
tion became apparent. Firstly, statements consisting of a single sentence without
the use of semicolons, or multiple sentences the solution handled well, with per-
formance comparable to the performance on the data set used in development.
Secondly, with smaller statements consisting of phrases with the Attribute com-
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ponent included from outside the statement, the solution struggled with the At-
tribute, Aim and Direct Object components. This was in some cases due to the root
node of the dependency parse tree not corresponding with the Aim component,
and in other cases due to difficulties in differentiating Attributes and Direct Ob-
jects and the sentence structure. This caused an increase in false positives and false
negatives for these components. These difficulties could potentially be remedied
in the future with a traversal mechanism for the root, and an NER model for de-
tecting whether a component should be an Attribute or a Direct Object. For this
challenge, it may also be possible to use an LLM. Finally, the third issue was with
longer statements consisting of multiple sentences, or an Execution Constraint or
Activation Condition containing one or more semi-colons. In this case, the solution
struggled with the additional sentences or parts after the colons, where the solu-
tion handles these as separate statements. This behaviour causes a lot of extra false
positives. The two primary limitations discussed indicate that the solution may be
overfit to full-sentence statements. This overfitting is partly due to the method of
dependency parsing used, where the main matching is based on dependency pars-
ing and with the introduction of other mechanisms to detect certain components
the performance can potentially be increased for a wider range of statements. An-
other reason is the datasets used which consisted mostly of statements consisting
of statements with a single fully formed sentence, and the size of the dataset used
in the development. Because of the relatively low number of statements used in
the development process, there are potential edge cases, such as these statement
types mentioned where the solution may struggle. A final limitation to note is
scoping of components where there is currently a bug in scoping of components
where for one of the statements of the validation dataset there was an extra open-
ing bracket which needed to be manually removed in order to make the statement
valid. However, this could be automatically detected by running the automated
annotations through the IG Parser where an error message would indicate this,
and signal the requirement of manual review.

To improve the performance of the model more data to be used in the devel-
opment process would help to find patterns, and edge cases and to test the rules
created. Further, with more data, it may be possible to test more specific match-
ing function rules, such as testing the use of a dictionary-based approach for cer-
tain component types, especially for components with recurring terms and limited
stylistic variation. A dictionary-based approach could for example be helpful for
detecting Deontic components throughout a statement, by looking for keywords
such as "shall" and "must". This may also be a way to help distinguish Activation
Condition and Execution Constraint components with keywords such as "before"
and "after" which can used to indicate that the component is an Activation Con-
dition.

Further, when looking at nested components the solution is fairly accurate
concerning the nested components that are in fact detected, both in scoping and
internal annotation. However, there are limitations in the detection rate, and in
cases where the Attribute and Aim or Constituted Entity and Constitutive Function
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components are inferred outside the direct component text which the automated
solution does not currently handle. This limitation will be discussed more in a
following subsection (section 7.2.5). Another problem is in statements consisting
of nested parts that are regulative or constitutive in a constitutive or regulative
statement respectively. This case necessitates a method for detecting whether the
component contents are regulative or constitutive which is currently an unsolved
issue. However, it may be possible to develop a way to detect whether a statement
is regulative or constitutive through the use of an LLM or through an algorithm
using a combination of keywords, and NER or a classification technique.

Reviewing the test process itself, the current process is semi-automated with
automated component extraction from annotated statements and automated com-
ponent comparisons. However, there is a lot of manual work necessary to validate
and correct the automated component pairing for the partial positive metric and
the automation struggles when dealing with nested components. For nested com-
ponent structures manual review was necessary in most cases.

In the following subsections, various limitations of the automated annotations
will be presented along with potential solutions or mitigation strategies.
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Execution Constraints and overlapping components

Execution Constraints throughout the data set have proven themselves difficult to
accurately annotate due to an overlap in dependencies from dependency parsing
with other component types. This includes Activation Conditions, Objects, both
direct and indirect, and for constitutive statements the Constituting Properties.
The primary mechanism used for the detection of Execution Constraints used is the
oblique nominal (obl) dependency. The Universal Dependencies website defines
the obl as a relation used for "a nominal (noun, pronoun, noun phrase) function-
ing as a non-core (oblique) argument or adjunct."[60]. While this dependency
generally corresponds with the Execution Constraint in the form of detecting the
condition, there are also several cases where the software annotates a Constitut-
ing Property (P) or an Object as an Execution Constraint. For example in a part of
a statement from the EU climate regulation dataset:

Manual: Bdir(recommendations) to that Bind(Member State)
Automated: Bdir(recommendations) Cex(to that Member State)

In the example given above the automated annotation differs from the manual
in that the Indirect Object(Bind) is annotated as part of an Execution Constraint
(Cex). Another example of the same behaviour can be seen below:

with the Bdir(State of the Energy Union report) Bdir,p(prepared in the respective
calendar year in accordance with Article 35 of Regulation (EU) 2018/1999), to the

Bind(European Parliament) and to the Bind(Council).

Cex(with the State of the Energy Union report prepared in the respective calendar
year in accordance with Article 35 of Regulation (EU) 2018/1999), Cex(to the

European Parliament [AND] to the Council).

Here the first example shows the manual annotation, which annotates the
statement text as a combination of Objects, while the automated annotation an-
notates the text as Execution Constraints.

Further, another challenge is that the components Activation Condition and
Execution Constraint have a lot of overlap in detection using dependency pars-
ing. Currently, there is one primary mechanism for the detection of Activation
Conditions, which also overlaps with Execution Constraints, which is the adverbial
clause modifier (advcl) dependency. The adverbial clause dependency is described
on the Universal Dependencies website as "a clause which modifies a verb or other
predicate (adjective, etc.), as a modifier not as a core complement. This includes
things such as a temporal clause, consequence, conditional clause, purpose clause,
etc."[61]. This aligns perfectly with conditions of the IG, however, there is some
overlap in this dependency, where the condition in some cases suggests an Activ-
ation Condition, and in other cases suggests an Execution Constraint. To detect
when an advcl dependency is connected to an Execution Constraint component
the obl dependency is looked for within the scope of the detected component, if
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two obl dependencies or more are detected, then it is annotated as an Execution
Constraint instead of as an Activation Condition. Using this mechanism has proven
quite reliable, however there are cases where this is inadequate. For example in
the CyberSecurityAct17 statement below:

A(ENISA) D(should) I(support) Bdir(Member States [AND] Union institutions)
Cex(in identifying emerging cybersecurity risks and preventing incidents)

In this statement, the manual annotation can be seen above. The only differ-
ence between the manual and automated annotation is the last component, where
the automated solution annotates it as an Activation Condition (Cac) instead of
the correct Execution Constraint (Cex). To mitigate such cases in the future the
use of LLMs may be fruitful. By prompting a LLM with information on the dif-
ference between the two component types and asking which is more likely the
performance may be improved. Although, this will require testing to verify, and
evaluate the solution’s efficacy. As the models used for the various NLP methods
used in the software are in active development the detection and distinction of
the various components may also improve in the future through more accurate
underlying data from these models, or through the development of new models.
These methods for improvement of the solution also apply to the other overlaps,
such as with Object component overlaps like previously discussed.

Aim handling

The Aim (I) component shows the action of the statement. Detecting the Aim of
a statement at the most basic level can be performed through using the root of
the dependency parse tree, where the root is generally a verb, and corresponds
with the Aim of the statement. However, in some cases, the Aim consists of sev-
eral words or is nested within another component which adds complexity to the
requirements of an annotation solution. In several cases in the datasets, there are
multi-word Aim components that are annotated as an Aim and a Direct Object
by the automation solution, while the manually annotated version encapsulates
both into the Aim component. This can be seen in the two examples below with
the manually annotated version shown first, then the version annotated through
automation:

I(receive payments) | I(receive) Bdir(payments [...]

I(make use) | I(make) Bdir(use)

Another issue is in the tense of the Aim. Where in several of the manual an-
notations in the dataset the tense of the verb in the Aim component is changed.
For example, in one statement the base text is:

"Those activities are to be carried out"
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In this case, the manually annotated Aim component is "I([carry out])". To
handle such cases it may be possible to use the universal features (uFeats) from the
Stanza POS-tagger to change the verb tense. In the case of "carried out" the word
"carried" has the lemma "carry" and the uFeats includes "Tense=Past" showing that
the word is in the past tense.

However, changing the tense of the verb can alter the relationship between At-
tributes and Objects in some cases so testing this is crucial. Potentially integration
with an LLM can be used to verify the tense change in such cases. For the other
scoping issue mentioned earlier, this may be preventable through a more clever
matching function, however in that case more data is necessary to base the new
rules on to prevent overfitting and false positives.

Property handling

Another challenge for the solution lies in handling component properties. Say the
two words "competent" and "authority". Depending on the context the first word
may be deemed an Attribute and the the words would then be annotated:

A,p(Competent) A(authorities)

This is the case for the NisDirective 11 statement. However, if this is the only
reference of a (second word) in the statement, then it may be more accurate to
annotate the whole phrase as a single Attribute component:

A(competent authority)

This is the case for NisDirective5 where a single competent authority is annot-
ated as an Attribute.

This distinction between the main component and its properties is mostly
based on contextual information and is therefore challenging to automate. For
now, the distinction between a property of a component and the primary com-
ponent is mainly handled by looking at relevant dependencies and checking the
length of the potential property. If the potential property consists of a single word,
then it is included in the component it is connected to, if it is longer than a single
word, then it is annotated separately as a Property.

Another relevant example of logical operators and the challenge in handling
them can be found at the start of the JointCyberUnit7 statement:

"Member States and relevant EU institutions, bodies and agencies"

In this statement, there is a list of Attribute components logically linked with
the logical "AND". In this case, the automated annotation gives the result:

A(Member States [AND] relevant EU institutions [AND] bodies [AND] agencies)
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However, the "relevant" is annotated in the manually annotated version as
a Property. This necessitates splitting "Member States" and the other Attributes,
giving the annotation:

A(Member States) A1,p(relevant) A1(EU institutions), A1(bodies) and
A1(agencies)

It is worth noting that all the Attributes are logical "AND" linked in the second
example as well, and all the "A1" attributes could be contained in a single attribute
"block" using the "[AND]". The following annotation is logically equivalent to the
previous:

A(Member States) A1,p(relevant) A1(EU institutions [AND] bodies [AND]
agencies)

In this statement, the automated annotation is inaccurate as the Attribute
Property is not handled properly. This is a limitation in both logical operator
handling and Property handling. To fix this inaccuracy improvements in Property
handling will need to be made to consistently distinguish Properties and their con-
nected Components, and the logical operator handling will need to take such "in-
ternal" Property occurrences into account. To improve the detection of properties
an accurate NER model may be helpful to detect whether the property is actually
a property or part of the entity itself, otherwise looking at the wider statement
may give insight to solve the issue or an LLM could be prompted for verification.
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Nesting and inference

Several components of the IG 2.0 support nesting. A basic requirement for a com-
ponent with nesting is the presence of an Attribute (A) and an Aim (I) compon-
ent internally for regulative statements, or a Constituted Entity (E) and a Con-
stitutive Function (F) for constitutive statements. The IG2NLP software uses a
simple mechanism to detect nesting within components and annotate such com-
ponents accurately.

The basic flow of nested component handling can be seen below:

1. Component detection.
2. Component scoping.
3. Matching function runs on the component contents.
4. Check for component pair of Attribute (A) and Aim (I), or Constituted Entity

(E) and Constitutive Function (F).

For a visualization of the nested component handling please refer to the graphic
in section 6.3 on page 65. After this workflow, if the component pair is found the
component is annotated with curly brackets and the result of the matching func-
tion on the internal text is kept. If the component pair is not found the component
is annotated with parentheses and the internal text is kept.

This method works for several basic cases of nested structures in statements,
however, the solution is limited in a few ways. Firstly, the components where nest-
ing is supported in IG2NLP are limited to a subset of the full set of components
with nesting support. This subset includes Activation Conditions (Cac), Execution
Constraints (Cex), Direct Objects (Bdir), and the Or Else (O). Further, there are
statements where the nested structures of a statement, such as an Activation Con-
dition are constitutive, while the main statement is regulative, or the opposite.

Take the first example from the IG Parser as an example:

Cac{Once E(policy) F(comes into force)} A,p(relevant) A(regulators) D(must)
I(monitor [AND] enforce) Bdir(compliance).

Here the top-level statement is regulative, while the first Activation Condi-
tion contains a nested constitutive statement. Such cases would require a method
for detecting whether a statement is regulative or constitutive to handle. Such
a method is currently not developed, and these cases would then incorrectly be
annotated as regulative or constitutive throughout.

Finally, there is the challenge of component inference for nested components.
In several cases throughout the datasets, there are nested structures where the
Attribute and Aim components in a nested component structure are inferred from
context, i.e.:

Where the Commission finds, after due consideration of the collective progress
assessed in accordance with Article 6(1) [...]
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Cac{Where the A(Commission) I(finds), Cac{A(Commission) I([considers]) after
due consideration of the Bdir(collective progress) Bdir,p(assessed in accordance

with Article 6(1))} [...]

This example shows that the Attribute is repeated within the second Activation
Condition (Cac) component through inference, and the Aim (I) is retrieved from
within the component text.

Handling such cases is no trivial matter, as the inclusion of external compon-
ents to make a structure a valid nested structure can cause false positives. Where
the absence of an Attribute (A) and an Aim (I) or a Constituted Entity (E) and a
Constitutive Function (F) is incorrectly circumvented through incorrect inference.
The challenge would then lie in finding a consistent factor that indicates that a
component should be nested with component inference.

Another aspect to consider is the training data used in the development of
IG2NLP, as the data had a limited amount of certain structures such as no occur-
rences of the Or Else (O) component, Attribute Properties (A,p) with nesting, Con-
stituted Entity Properties (E,p) with nesting, etc. Developing rules for annotating
such components as nested would introduce the risk of false positives and inaccur-
ate annotations. Therefore, the components with support for nested annotations
in the solution were limited to a subset, while the Or Else (O) component was
included in this subset. This is because the Or Else (O) is always nested, and there
is therefore a smaller risk of incorrect annotation.

All in all, there are several challenges in nested statement structure handling.
Distinguishing between regulative and constitutive statements would help in cases
where nested structures are not of the same type as the base statement. For in-
ference, a method of consistently detecting where inference is both possible, and
accurate would need to be developed, and finally, the list of supported compon-
ents for nesting can be broadened in the future if enough relevant data can be
collected to base the annotations on.
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Distinguishing Constituted Entities (E) and Constituting Properties (P) and
Attributes (A) and Direct Objects (Bdir)

One problem in constitutive statements is handling Constituted Entities and Con-
stituting Properties. There are several cases where there are overlapping depend-
encies and structures between the two in the datasets. For example, in Article 1.1
the start of the statement is:

"This Regulation establishes a framework for the [...]"

Looking at the dependency parse tree for this statement (figure 7.2):

Figure 7.2: Article 1.1 Component conflict example

In the figure above the VERB "establishes" is the root of the dependency parse
tree. Using the basic matching rules this should be annotated as the Constituted
Function (F) component, a Nominal Subject (nsubj) dependency to the root of a
sentence is handled as a Constituted Entity (E) component, and the Object (obj)
dependency is treated as a Constituting Properties component (P). If annotated
using the regular rules of the matching function this statement would then be
annotated as:

"This E(Regulation) F(establishes) a P(framework) P,p(for the[...]"

However, the manually annotated statement has the Constituted Entity and
the Constituting Property swapped around:

"This P(Regulation) F(establishes) a E(framework) E,p(for the[...]"

In this example the matching function is unable to detect this edge case, and
as such the annotation is wrong. Further this can be seen in the subsequent state-
ments Article 1.2 and Article 1.3 respectively:

"This Regulation sets out a [...]"
"This Regulation applies to [...]"

In the case above both statements start with the same format of a nsubj de-
pendency connected to the root of the dependency parse tree. They also both have
the word Regulation, however in the manually annotated version of these state-
ments the first "Regulation" is annotated as a Constituting Properties (P), and the
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second as a Constituted Entity (E) component. For manual review the difference in
annotation can be detected by looking at the wider context within the statement,
however, this is challenging to automate. This example also displays a weakness
of simple matching-based rules, where both reliance on dependency parse tree
data, and dictionary-based approaches would result in similar errors.

In the future, such cases may be handled better using NER models for example,
or other methods to try to extract more information to base the annotations. For
regulative statements, the same problem occurs with the Attribute (A) and Direct
Object (Bdir) components. This was more of an issue in the validation dataset
statements that consisted of phrases. In this case, a method for recognition of the
animacy of entities (Attributes are generally animate objects) may help distinguish
such edge cases, or potentially an NER model could solve this issue.



Chapter 8

Conclusion and Discussion

This thesis presents work using NLP techniques to automate the annotation of
institutional statements of the IG using the IG Script notation. The purpose of the
thesis is to answer the following research questions (with the first question being
augmented with additional subquestions):

1. To what degree can NLP tools be used to automate the annotation process
of institutional statements to the IG Script notation?

1.1. Which NLP techniques could be used to help automate parts of the IG an-
notation process?

1.2. What are the current trends in the relevant papers on unstructured text
processing with NLP?

2. How accurate is automated parsing of text into IG Script notation using the
solution?

The first chapter introduced the thesis, the underlying motivation and research
questions, as well as showcasing an outline of the rest of the thesis. This was fol-
lowed by a second chapter introducing the IG, the types of institutional statements
and the IG Script notation.

The first research question was answered in parts throughout the thesis. The
sub-questions to this research question were primarily answered in the related
work (section 2.3) and literature review (chapter 3), and are reflected in the fol-
lowing. A promising avenue highlighted in earlier work was the automated an-
notation of the earlier IG 1.0 that explored the potential of dependency parsing
and mentions of NER for the extraction of institutional statement information.
The literature review went into detail on NLP and introduced research and devel-
opments of NLP in several sectors. This included relevant techniques such as NER,
dependency-parsing, POS-tagging, coreference resolution, relation extraction and
various other techniques. These techniques were then discussed in relation to their
potential for automation of the annotation process. Through this literature review,
a more general overview of potential NLP techniques was presented.

Following the literature review is the NLP chapter which narrowed down the
relevant NLP techniques (chapter 4), presented the Stanza toolkit which was used

111



112 Jonas K.@NTNU: IG2NLP - Automated NLP Based Annotation

and presented a discussion on LLMs and their potential for the annotation task.
After the toolkit and relevant techniques were presented the fifth chapter in-

troduced the pilot projects performed leading up to this thesis (chapter 5). This
chapter introduced two pilot projects, one using dependency parsing and pos-
tagging to automate the annotation process and the other introducing an updated
user interface for the IG Parser annotation tool. Through the development of these
prototypes, the use of dependency parsing and POS-tagging for automated an-
notation was tested. The results of this testing achieved good results for the At-
tribute, Deontic and Aim components: However, there were several limitations in
the scoping of components, the amount of components covered by the solution
and the handling of nesting.

The prototypes were iteratively developed as part of the thesis, increment-
ally exploring additional NLP techniques to be embedded in the IG2NLP software
(chapter 6). This development included the introduction of further NLP tech-
niques to base the annotations on, the development of an API and a subsequent
prototype integrating the API into the IG Parser, and extra tooling for visualiza-
tion, caching and testing of the solution.

Through the review of the related work and exploration using an initial proto-
type, the potential of dependency parsing and POS-tagging for automated annota-
tion was supported. This addressed part of the first sub-research question "Which
NLP techniques could be used to help automate parts of the IG annotation pro-
cess?". This research question was further answered through the literature review
introducing further potentially relevant techniques, followed by the NLP chapter
and development chapters narrowing down the relevant techniques. In the end,
the techniques used were dependency parsing, POS-tags, uFeats, NER and core-
ference resolution. In the future the introduction of LLMs and some form of RE
could also have potential. The second sub-question: "What are the current trends
in the relevant papers on unstructured text processing with NLP?", was answered
in the literature review. Where the most prominent techniques were RE and NER,
many papers used the BERT model for tasks ranging from NER to causality de-
tection and more. Further, there was a mix of machine learning based methods
and manual mapping approaches. The field of NLP is active and spans many dif-
ferent domains, which in the review included the medical domain, cybersecurity,
the judicial domain and others.

Looking at the first research question "To what degree can NLP tools be used
to automate the annotation process of institutional statements to the IG Script
notation?", this was partly answered through the sub-questions as outlined above.
Further, the development section expanded on this with new NLP techniques and
through supporting additional features of the IG. This updated feature set in-
cluded handling of both constitutive and regulative statements, support for all the
components of the IG Script notation, basic semantic annotations and extended
nested statement handling. Through this development, the potential for automa-
tion of the annotation of institutional statements is exemplified. This shows that
there is potential for supporting most of the annotation process. However, there



Chapter 8: Conclusion and Discussion 113

are some limitations to what is currently handled, this includes automating At-
tribute and Aim or Constituted Entity and Constitutive Function inference (sec-
tion 7.2.5), handling more cases of nested statements, handling hybrid statements
consisting of both constitutive and regulative sections, handling of more semantic
annotations and certain statement structures.

These limitations are presented and discussed more in relation to the second
literature question: "How accurate is automated parsing of text into IG Script nota-
tion using the solution?". Through the testing and evaluation chapter (chapter 7)
the limitations of the software and the accuracy of the automated annotation are
presented and discussed in detail. This also includes potential ways to address
the shortcomings of the solution and other future work. The testing compared
the automated annotations with a manual control set through four key metrics.
First, the true positive rate which contained all components that were annotated
accurately by the automated solution both in component type and in compon-
ent content. The second category of partial positives contained components that
were partially correct, either in scope, component type, or nesting. This would for
example contain components where the automated solution annotated both the
main component and its properties under the same component, while the manual
annotation differentiated between the two. Finally, the third and fourth metrics
were false positives and false negatives, which were the components not picked
up by the true or partial positive metrics.

The automated parsing test results showed good accuracy on regulative state-
ments for the Aim, Attribute and Activation condition components in the devel-
opment data set. Where these components all had a true positive rate of 80% or
above. Further, when including the partial positive rate the Aim, Direct Object and
Execution Constraint also had detection rates at or above 80%. On the validation
data set the results were quite a bit lower for the Aim, Attribute and Activation
Condition components. This is due to a few reasons. First, the Activation condi-
tions had more partial positives due to cases where the component was falsely
detected as Execution constraints, signalling a need for a better method to dif-
ferentiate between the two. The other main reason is due to a subset of these
statements which the IG2NLP software struggled with. This was due to very long
Activation condition components spanning multiple sentences or with internal
semicolons, which the solution annotated as separate statements or was unable to
scope properly. The second subset consisted of smaller highly edited statements
where the Attribute was simply placed at the start of the statement. For these
"phrase" statements the Attribute component was not properly integrated into the
statement text, which caused issues in the dependency parsing based matching
function used. When excluding these statement types mentioned the results on
the two datasets were more comparable.

In addition to regulative statements, constitutive statements were also tested.
For the constitutive statements, the performance was worse than for regulative
statements, which is caused primarily by two factors. Firstly difficulty in differ-
entiating between component types using dependency parsing, and second in the
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amount of data available in the development phase of the solution. Due to a low
amount of data to base the rules on the accuracy was also lower. The accuracy for
Constituted Entities for example had a true positive rate of 50% in the develop-
ment dataset, and 25% in the validation dataset. However, the Modal component
detection rate was high with a True Positive rate of 100% in the development
dataset, and 76.92% in the validation dataset. It is also worth noting that similar
limitations to those described above in the regulative statements of the validation
dataset also affected the constitutive statements.

Finally, looking at nested components in the development dataset seven out
of twelve nested components were detected, and a single false positive was detec-
ted. In the validation dataset, two out of seven nested components were detected.
Further, when introducing nesting the accuracy of the component detection is re-
duced because of the components nested within other components. This nesting
adds another layer of complexity as each nested statement has its own compon-
ents. For each case of nesting which is not detected all the internal components
are then counted as false negatives, and for all false positive cases of nesting the
internal components are counted as false positives. The results show that there are
improvements to be made in the detection of nested components. This is primar-
ily a limitation of inference, meaning for nested components where the Attribute
and/or Aim, or the Constituted Entity and/or Constitutive Function are inferred
from outside the direct component text. This inference process is currently not
automated and is the primary cause of the false negatives. However, the intro-
duction of automated inference has the potential of introducing additional false
positives.

Some key takeaways from the exploration can be summed up as follows:

1. The methods used provide a good baseline to build on with further work
and the introduction of additional techniques.

2. A limitation is the amount of data used to develop the rules of the matching
function. With more data additional edge cases could be discovered, and
additional patterns could emerge.

3. Constitutive statements need further work to increase annotation accuracy.
4. To further increase the detection rate of nested components a method for

handling component inference is necessary.
5. A method for detecting whether a statement, or part of a statement is reg-

ulative or constitutive is necessary for hybrid statements.

Future work would include finding ways to address the limitations of the solu-
tion and to build further on it. Firstly, by obtaining more quality data additional
rules could be created and more patterns could emerge. Secondly, the introduction
of a dictionary based approach to distinguish between or detect certain component
types could have merit as a solution. Thirdly, as mentioned above a method needs
to be developed to distinguish between constitutive and regulative components,
this could be through looking at keywords for deontics and modals, looking at the
animacy of the entity(ies) in the statement, or through the use of an LLM. Fourth
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the handling of component inference is necessary to increase nested component
detection rates. Fifth, the introduction of further NLP techniques can be tested to
see whether they can help increase the performance of the solution, this could
for example be a form of RE or other relevant techniques. Finally, testing differ-
ent models could be beneficial to see whether the performance can be increased
through newly developed models, or domain-specific models for example.

8.1 Conclusion

The focus of this thesis was to test the potential of using NLP techniques for sup-
porting the annotation of institutional statements of the IG 2.0 with the IG Script
notation through automation. This goal was met by researching NLP techniques
and through the development of IG2NLP, an automated annotation software for
institutional statements. The annotations are based on a manual mapping of the
output of NLP techniques to components of the IG using a custom "matching func-
tion". The NLP techniques used are NER, dependency parsing, POS-tagging, uFeats
and coreference resolution. This thesis shows the potential of various NLP tech-
niques for this task of automated annotation, and is supported by comparing the
automated annotations with a manual control using a developed testing method-
ology.

The results show good performance for regulative statements, lower perform-
ance for constitutive statements and handling of nesting. However, these limita-
tions are known and there are several potential ways to address them.

Through testing on the development dataset and a second validation dataset,
certain limitations to the solution were discovered. These include limitations in
the underlying methodology of basing the matching on dependency parsing and
handling of certain statement structures. Another limitation is the size of the de-
velopment dataset, where with more data further patterns could be discovered
and handled. Further, the scoping of components could be improved to increase
the true positive rate, and additional methods to distinguish between compon-
ent types could help reduce false positives and partial positives. The detection
of nested components could potentially be improved by developing a method
for component inference of the Attribute and/or Aim or the Constituted Entity
and/or Constitutive Function components. These components are often inferred
from context in nested statements, and are not always directly part of the com-
ponent contents originally. Finally, a method for distinguishing between regulative
and constitutive statements would help the usefulness of the software and allow
for handling hybrid statements containing both regulative and constitutive parts.
However, beyond focusing on the results presented as part of this work, the ex-
ploratory nature a) provided a baseline for future exploration by drawing on the
metrics developed as part of this work, and b) by building on the detailed docu-
mentation of the challenges in the encoding in order to arrive at solutions leading
to higher accuracy.

As indicated before, future work would be to obtain more data to create and
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refine rules for the matching function, the introduction of further NLP techniques,
a dictionary based approach for certain component types or potentially the use of
LLMs to expand the feature set, and potentially testing other models for the NLP
techniques used.

All in all, the results show promise for applying NLP techniques to automate
institutional statement annotation. Furthermore, the field of NLP is active, and
new and updated methods and models could improve these results further in the
future. There are limitations to the approach, but with more data and potentially
through introducing further techniques these limitations can potentially be ad-
dressed. At the same time, recognizing the emerging role and relevance of LLMs,
this thesis can serve as a starting point to provide a testbed for comparative stud-
ies that span across different branches of NLP techniques and their application to
automate the encoding of institutional language.
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