
Department of Electronic Systems

Underwater Wildlife Monitoring Stations

Bachelor’s Thesis

Authors:
Erjok Aguto

Torstein Kristiansen
Henrik Malkenes

Filip Ræder

May 21st, 2024

Thesis Title:

Underwater Wildlife Monitoring Stations

Authors: Project Number:

Erjok Aguto E2414

Torstein Kristiansen

Henrik Malkenes Due Date:

Filip Ræder 21.05.2023

Study Program: Grade:

Bachelor in Electrical Engineering

Field of Study: [X] Open

Automation and Robotics [] Closed

Electronics and Sensor Systems

Internal Supervisor: Department:

Terje Mathiesen Department of Electronic Systems

Client: Contact Person:

Department of Engineering Cybernetics Damiano Varagnolo

damiano.varagnolo@ntnu.no

+47 481 28 922

Abstract:

With our planet ever changing, preserving our ecosystems is a vital part of preserving our health,
and ensuring the sustainability of nature. By being able to monitor the ocean and its wildlife,
scientist get a clearer vision of how the ecosystems are changing, and how we can preserve them.
The Underwater Wildlife Monitoring Stations provide a versatile way of acquiring and transmitting
data that is vital to this cause. By further expanding our knowledge of the ocean and its ecosystems,
preserving them becomes a challenge that we might just be able to overcome.

Sammendrag:

I en verden som stadig er i endring, er det avgjørende å bevare v̊are økosystemer for å opprettholde
god helse og sikre naturens fremtid. Gjennom å overv̊ake havene og deres dyreliv f̊ar forskere
verdifull innsikt i økosystemenes dynamikk og strategier for deres bevaring. Undervannsstas-
joner for overv̊aking gir en effektiv metode for å samle og formidle viktig data til dette form̊alet.
Ved å utdype v̊ar forst̊aelse av havet og dets økosystemer, vil vi være bedre rustet til å bevare
økosystemene.

Keywords: Stikkord:

Underwater technology, Acoustic communic-
ation, ROS2, Real-Time Data collection, 3D
modeling, 3D Printing and Computer Vision

Undervannsteknologi, Akustisk kommunikas-
jon, ROS2, Sanntidsdatainnhenting, 3D mod-
ellering, 3D Printing og Robotsyn

i

Abstract

Our planet is ever changing, and human impact affects ecosystems all around the globe.
To ensure the health of coastal communities, oceanic ecosystems and economies, we need to
keep track of oceans- and coastal areas. By assessing sensor data readings, aswell as monit-
oring wildlife, surveying the oceans will help scientist get a better understanding of how the
ecosystems are changing and how we can positively affect them. (NOS 2024)
The Underwater Wildlife Monitoring Stations, hereby referred to as ’Sensing rigs’, are designed
to monitor and transmit data and image wirelessly through mounted Acoustic Modems. With
each rig having mounted modems, this enables establishing of a network of monitoring sta-
tions. Facilitating data for analysis helps gain insights into the development of ecosystems.
The versatility of the sensing rigs also allows for integration with remotely operated vehicles,
such as ROVs, USVs and AUVs.

This years project is a continuation of earlier bachelors, where the rigs ”demonstrated
successful sensor readings and data processing abilities”. (Knudsen and Brandstorp 2023)
Further development from last years sensing rigs can be summarized to the following:

• Implementation of Camera module for wildlife monitoring

– Expanded the existing enclosure to ensure proper use of camera

– Implemented Computer Vision algorithm

• Mounted an RTC and subsequent module for Real-Time Data Collection

• Upgrading single-board computer and subsequent software implementation

• Optimizing the sesning rigs

• Added autoshutdown feature when battery is low

Throughout the project, the group made sure to document both progress and problems
encountered. This documentation ensured a strong foundation for the thesis as a user guide
for future work. A final test was carried out to demonstrate the system’s progression as well
as its durability under water.

ii

Sammendrag

Planeten v̊ar er i konstant endring, og menneskelig p̊avirkning har store konsekvenser for
økosystemer over hele kloden. For å sikre bærekraftige kystsamfunn, bevare havets økosystemer
og støtte bærekraftig økonomi er det avgjørende å kunne overv̊ake hav- og kystomr̊ader. Ved
å analysere sensordata og bilder kan forskere f̊a en bedre forst̊aelse av hvordan økosystemene
endres, og hva vi kan gjøre for å hjelpe dem. (NOS 2024) Underwater Wildlife Monitoring
Station, som vi herfra vil refere til som ’Sensing rigs’, er designet for å overv̊ake og sende
sensordata og bilder tr̊adløst via de Akustiske Modemene som er montert p̊a riggen. Ved
at hver rig har et slik modem, kan en danne et nettverk av slike overv̊akningsstasjoner, som
sørger for data som igjen kan analyseres slik at en f̊ar mer innsikt i utviklingen av økosystemer
i havet. Allsidigheten til riggene gjør ogs̊a at de kan integreres med andre proejskter, deriblant
fjernstyrte b̊ater og undervannsdroner.

Årets prosjekt er en videreføring av tidligere Bacheloroppgaver, og tar utgangspunkt i
fjor̊arets oppgave der riggene hadde ”vellykkede sensoravlesninger og datah̊andteringsevner”.
(Knudsen and Brandstorp 2023) Gruppens bidrag til videre utvikling av sensorriggene kan
oppsummeres til følgende:

• Implementering av kameramodul for å overv̊ake marint liv

– Utvidet de eksisterende riggene for bruk av kamera

– Implementere robotsynsalgoritme

• Monterte en RTC og RTC-modul i systemet for å sikre sanntidsdatainnhenting

• Oppgraderte til en kraftigere mikrochip computer og tilpasset nødvendig software

• Optimalisering av riggene

• Lagt til autoshutdown funksjon n̊ar batteri er lavt

Underveis i arbeidet av prosjektet sørget gruppen for å dokumentere alt av b̊ade framgang
og problemer som ble støtt p̊a. God dokumentasjon underveis i arbeidet sørget for et godt
grunnlag n̊ar det kom til å skrive selve oppgaven, da det ble formidlet et ønske om at den skulle
fungere som en brukergruide for fremtidig arbeid. Prosjektet ble avsluttet med en siste test,
der robustheten til systemet i realistiske omgivenheter, samt årets progresjon ble demonstrert.

iii

Acknowledgements

We would like to express our gratitude towards those who has provided support, guidance
and assistance during this iteration of the project. Primarily, we thank our client and super-
visor, Damiono Varagnolo for his guidance through our weekly meetings and contributions
through email throughout this project. A huge thanks goes out to the remaining supervisory
staff for their valuable support, feedback and contributions to this project. This thanks goes to
Sivert Knudsen, Behdad Aminian, Ovidijus Cironka, Simon Hagen Hoff and Terje Mathiesen.

Finally, we want to direct our attention towards the department of Electronic Systems for
providing resources and funding, and towards the mechanical workshop for their collaborative
work in designing and manufacturing the camera housing. A special thanks to Ivan Ræder for
helping with- and providing a 3D-printer we could use during the project.

This project would not have been possible without the invaluable contributions of these
individuals and institutions. Thank you all.

Norwegian University of Science and Technology
Trondheim, May 2024

iv

Table of Contents

List of Figures vii

1 Introduction 1

1.1 Background . 1

1.2 Sustainable Development Goals . 1

1.3 Overview . 2

1.4 Prerequisites . 3

1.5 Technical Definitions . 3

1.6 Structure and Literature review . 4

1.7 System and Objectives . 4

2 Electronics 5

2.1 Theory . 6

2.1.1 Sensors . 6

2.1.2 System Integration Components . 9

2.1.3 Raspberry Pi 4 Model B . 13

2.1.4 Khadas VIM3 . 13

2.1.5 Real Time Clock . 14

2.1.6 Camera - Intel RealSense D435 . 15

2.2 Previous Work . 15

2.3 Current state . 16

2.4 Further work . 21

2.4.1 Charging the LiPo battery . 22

3 Enclosure 23

3.1 Theory . 23

3.1.1 Water and electricity . 23

3.1.2 Proofing . 23

3.1.3 Computer-Aided Design . 23

3.1.4 Fusion 360 . 24

3.2 Previous work . 25

3.3 Current state . 25

3.3.1 Camera - Intel RealSense d435 . 25

3.3.2 Enclosure . 25

3.3.3 Convert .stl to .step . 27

v

3.4 Further work . 29

4 Software 29

4.1 Theory . 30

4.1.1 ROS2 . 30

4.1.2 Git and GitHub . 30

4.1.3 Computer vision . 31

4.2 Previous work . 34

4.3 Current state . 34

4.3.1 Computer vision module . 35

4.3.2 Auto Shutdown Module . 38

4.3.3 Implementation through WinSCP . 38

4.3.4 Running multiple ROS2 nodes . 39

4.3.5 Implementation of the VIM3 . 42

4.3.6 Network configuration . 45

4.3.7 Configuring RTC on Raspberry Pi . 47

4.4 Further work . 48

5 Tests 49

5.1 Preliminary testing . 49

5.2 Final tests . 49

5.2.1 Objectives . 49

5.2.2 Execution . 50

5.2.3 Results . 52

6 Discussion 58

6.1 Opportunities identified . 58

6.1.1 Electronics . 58

6.1.2 Enclosure . 58

6.1.3 Software . 59

6.2 Challenges . 59

6.2.1 Electronics . 59

6.2.2 Enclosure . 60

6.2.3 Software . 60

6.3 Further work . 61

6.3.1 Electronics . 61

vi

6.3.2 Enclosure . 61

6.3.3 Software . 62

7 Conclusion 64

Bibliography 65

List of Figures

1 Sustainable Development Goals (Sustainable Development Goals 2024) 1

2 Flow chart of the basic system . 2

3 An illustration of how the system would be deployed 2

4 Circuit Diagram for the rigs using Raspberry Pi . 5

5 Circuit Diagram for the rigs using Khadas VIM . 6

6 Pressure sensor (Pressure Sensor 2024) . 7

7 Temperature sensor (Temperature Sensor 2024 . 7

8 Conductivity probe (Conductivity Kit 2024) . 8

9 Dissolved Oxygen Probe (Dissolved Oxygen Kit 2024) 8

10 Power Sense Module (Power sense module 2024) 9

11 I2C splitter (I2C Bus Splitter 2024) . 9

12 DC-DC Converter Power 2022) . 10

13 ADC (Industries 2024) . 10

14 Ethernet Switch BotBlox 2023) . 11

15 Barrier strip (Mauser Electronics 2024) . 12

16 Battery (Lipo Smart Battery Pack 2024) . 12

17 EvoLogics’ Acoustic Modem . 13

18 Raspberry Pi 4 model B (Raspberry Pi 4 2024) . 13

19 Khadas VIM3 (Khadas VIM3 2024) . 14

20 DS3231 Real Time Clock (DS3231 2015) . 15

21 Camera (D435 Depth Camera 2024 . 15

22 Missing header pin on I2C Splitter . 16

23 Pinout table for PSU, with common ground, NOTE ”Barrier strip*” 16

24 Soldering points . 17

25 Pinout table for RTC . 17

27 Illustration of the WetLink Penetrator with parts 19

28 Pinout table for use with Evologics modem . 19

vii

29 Cable for Ethernet Connection . 20

30 Pinout table for Ethernet connection . 20

31 Charging the battery . 22

32 Holes-tool options . 24

33 Early sketch of camera housing . 26

34 3D-model of the camera housing . 26

35 Insert mesh . 27

36 Prepare tab . 27

37 Generate Face Groups . 28

38 Modify tab . 28

39 Convert Mesh . 29

40 Example of boundingboxes and label. 2024 . 32

43 ROS2 layout . 35

44 WinSCP . 39

46 IP-address for blue-rig final test . 51

48 Submerging the rigs into the pool for final tests . 52

49 Pressure test results . 53

50 Temperature test results . 53

51 Voltage readings . 54

52 Oxygen test results . 55

53 Conductivity test results . 55

54 Close up picture . 56

55 Distance picture . 56

56 Picture to assess detail . 57

57 Computer vision algorithm recognizing faces . 57

58 Computer vision algorithm recognizing more faces 58

viii

1 Introduction

1.1 Background

Underwater ecosystems include a wide variety of habitats, from sand dunes to coral reefs. These
environments play a crucial role in supporting global food security, regulating climate patterns,
and sustaining livelihoods for millions of people worldwide. However, despite their ecological
significance, underwater ecosystems face rising threats from human activities, such as over fishing,
habitat destruction, pollution, and climate change.

Being able to properly monitor these areas serve multiple purposes. It enables scientists to gather
data on key environmental indicators, allowing for a more comprehensive understanding of under-
water ecosystems and their dynamics. By continuously monitoring these parameters, researchers
can detect changes over time, identify trends, and assess the impacts of human activities and
natural events on marine ecosystems.

Monitoring and understanding underwater ecosystems face challenges due to the nature of working
in aquatic environments. Traditional monitoring methods, such as diver surveys and remote sens-
ing, offer valuable insights but are often limited in regards to area and ability to provide real-time
data. This highlights the need for innovative technologies that can overcome these limitations and
provide detailed, continuous monitoring of underwater environments.

Underwater monitoring stations with embedded sensors represent a promising solution to this
challenge. These stations are equipped with an array of sensors capable of measuring various
environmental parameters in real-time. These parameters include but are not limited to: water
temperature, salinity, dissolved oxygen concentrations and pressure.

Moreover, underwater monitoring stations can play a critical role in wildlife conservation. By
tracking the movements and behaviors of marine life, these stations provide valuable insights into
migration patterns, habitat preferences, breeding behaviors, and population dynamics. This data
is crucial for developing effective conservation strategies, creating marine protected areas, and
reducing the impacts of human-caused stressors on vulnerable species.

(NOS 2024)

1.2 Sustainable Development Goals

The United Nations SDGs provide the framework for addressing global challenges. By having these
in mind when developing new technology and planning, we aim to improve the steadily declining
trend of global environmental degradation and social inequality. Having healthy and balanced
ecosystems in oceans and lakes correlate directly to several of these goals.

(a) Zero Hunger (b) Climate Change (c) Life Below Water

Figure 1: Sustainable Development Goals (Sustainable Development Goals 2024)

1

Goal 2: Zero Hunger
Goal 2 is about creating a world free of hunger by 2030. Underwater ecosystems contribute to
fulfilling this goal by supporting fisheries as well as other marine resources and seafood. By
ensuring the health and availability of nutritious seafood, we are one step closer to achieving food
security.

Goal 13: Climate Action
Goal 13 is about taking action against climate change and its impacts. Being able to monitor
underwater ecosystems is crucial for understanding the impacts of climate change. By tracking
changes, one can contribute to climate mitigation and adaptation strategies.

Goal 14: Life below water
Goal 14 is about conserving and sustainably using the oceans, seas and marine resources. Under-
water ecosystems are integral to conserving and sustainably using marine resources. By being able
to monitor these ecosystems, one can directly affect the trajectory of marine life and resources.
(Sustainable Development Goals 2024)

1.3 Overview

The sensing rig consists of two cylinders and a modem mounted on a metal plate. The basic
principle of the system is that the underwater rig will collect sensor data and images. This will
be transferred to the mounted acoustic modem via a SubConn cable. From here, the data is
transmitted with acoustic signals to a modem on the surface where the data can be collected
or further transmitted. The system is powered by a rechargeable battery. While the current
project focuses on data and image collection as well as transmission, there are possibilities for
future expansion, such as creating a network of rigs communicating with each other, to enhance
monitoring and research capabilities in underwater environments.

Sensors

Sensing Rig

Camera

Underwater
Modem

Surface
Modem

Laptop

Figure 2: Flow chart of the basic system

Figure 3: An illustration of how the system would be deployed

2

1.4 Prerequisites

The thesis is targeted at other electrical engineering students. The reader of the thesis is expected
to have a basic understanding of electronics and circuits (i.e Ohm’s Law). Without a basic under-
standing of electronics, diagrams and tables such as the circuit diagram and Pinout tables could
be difficult to comprehend. In depth knowledge of specific fields is not expected of the reader, and
non-trivial concepts that are relevant to the project will be explained in the theory section of each
chapter. The software of the project is written mainly in Python, and the computers are running
a headless Ubuntu-OS. All work is done through a terminal so basic commands for navigating
workspaces should be familiar before reading the software part.

1.5 Technical Definitions

• SDG - Sustainable Development Goal

• ROS - Robot Operating Software

• ROV - Remotely Operated Vehicle

• USV - Unmanned Surface Vehicle

• AUV - Autonomous Underwater Vehicle

• RTC - Real Time Clock

• SSH - Secure Shell, is a protocol to wirelessly access the terminal of another computer with
encrypted traffic

• Yolov8 - You Only Look Once. A computer vision algorithm trained with AI and used for
image recognition.

• CAD - Computer-Aided Design is using computer-based software to design and draw in both
2D and 3D

• I2C - Inter-Integrated Circuit, a serial communication protocol for data transfer through
wires

• Siemens - Unit of electrical conductance.

• LiPo - Lithium Polymer. Describes the type of battery.

• SBC - Single-Board Computer

• RAM - Random-Access Memory

• Rpi - Raspberry Pi

• CPU - Central Processing Unit

• GPU - Graphics Processing Unit

• NPU - Neural Processing Unit

• PA - Project Administration. Folder for all files regarding Bachelor’s project.

• SoC - System on Chip

• NMCLI - Network Manager Command-line Interface

3

1.6 Structure and Literature review

The client wanted the thesis to be structured like a user guide for future users. Therefore, instead
of having main sections for theory, previous work, current state, and future work, we organized
the thesis into chapters. Each chapter has its own subsections for these topics. There are 4 main
chapters all with the same structure:

• Main chapter

– Theory

– Previous Work

– Current State

– Further Work

By writing each chapter independently, the reader will not need to read through all sections to
gain an understanding of a specific topic. This approach makes the thesis more fluid and easier
to navigate for the reader. At the end, the chapters will be tied together, and the conclusion will
describe the entire system.

1.7 System and Objectives

The sensing rigs are composite devices capable of measuring and transferring underwater sensor
data via an acoustic modem. The group took over the project at a stage where the sensing rigs
could successfully read sensor values and establish communication with multiple modems.

The goal of this project is to further develop the sensing rig through implementation of an RTC
module, a submarine camera with computer vision for recognizing marine wildlife and general
upgrades where the group identifies opportunities for improvement. This requires a redesign of the
enclosure and electronics to facilitate for the new devices.

4

2 Electronics

The electronics of the sensing rig play a fundamental role in the development of an underwater
monitoring station. The primary objective in the development of hardware is to accommodate
both a camera and computer vision algorithms. Achieving this will require a thorough selection of
components. The ultimate goal is for the electronic components to collect various types of data,
process it, and then transmit the data to the user via the acoustic modem.
The circuit diagram showcases relevant electrical connections, and can be freely edited for future
additions using the links:

• Circuit Diagram Raspberry Pi

Figure 4: Circuit Diagram for the rigs using Raspberry Pi

5

https://www.canva.com/design/DAGB1HTxBJM/ytd7WlXVoihGww7au1kNCQ/edit?utm_content=DAGB1HTxBJM&utm_campaign=designshare&utm_medium=link2&utm_source=sharebutton

• Circuit Diagram Khadas VIM

Figure 5: Circuit Diagram for the rigs using Khadas VIM

2.1 Theory

Figure 4 and figure 5 helps illustrate how the different sensors interact with each other. In this
section, all the different sensors and components, as well as their use in the project will be briefly
explained. The goal of this section is not just to provide raw facts on each component, but also
provide a foundation for understanding why the components are implemented. In particular, the
components that are new to the sensing rigs in this years project will be studied deeper, to make
for a more comprehensive understanding of each decision made throughout the project.

2.1.1 Sensors

Pressure sensor
The sensor consists of a pressure-sensitive piezoelectric crystal, that deforms in response to changes
in pressure. This deformation generates an electrical signal proportional to the pressure applied.
The pressure sensor can measure pressure up to 30 bar (300m). The pressure sensor detects changes
in pressure both as the rig descends deeper, but also when the oceans currents and tidal patterns
change. Integration of the sensor gives the system deeper insights into the distribution of mon-
itored wildlife, with respect to both depth, currents and tidal flow. (Pressure Sensor 2024)

6

https://www.canva.com/design/DAGCet3feqI/m5ZTdTOR3Gp-qI0yZZmhBQ/edit?utm_content=DAGCet3feqI&utm_campaign=designshare&utm_medium=link2&utm_source=sharebutton

Figure 6: Pressure sensor (Pressure Sensor 2024)

Temperature sensor
The temperature sensor is used to make temperature profiles. As the temperature changes, the
resistance of the thermistor changes accordingly, allowing the sensor to measure the temperature,
and converting it to a 24 bit ADC value. The sensor is accurate to ± 0.1°C. These temperature
profiles helps with understanding marine life habits as shifts in temperature occur. Adding the
sensor to the rig improves the effectiveness of our wildlife monitoring station. (Temperature Sensor
2024

Figure 7: Temperature sensor (Temperature Sensor 2024

Conductivity sensor
The conductivity sensor indicates the waters ability to conduct electricity, by assessing factors
such as salinity and other dissolved solids in the water. The sensor consists of two electrodes
that are submerged in the water. When the current flows between these electrodes, it encounters
resistance due to the ions present in the water, which affects the conductivity. The sensor measures
the electrical impedance or resistance caused by these ions and converts it into a conductivity

7

measurement. Changes in conductivity levels indicate water quality and thus helps with evaluating
habitats for marine life. The sensor has a conductivity range of [10-100,000] µS/cm (Microsiemens
per centimetre). (Conductivity Kit 2024)

Figure 8: Conductivity probe (Conductivity Kit 2024)

Dissolved Oxygen sensor
This sensor detects the amount of oxygen dissolved in the water, vital for supporting aquatic life.
As the rig explores diverse areas, the sensor measures variations in dissolved oxygen levels, offering
insights into water quality and ecosystem health. Low levels of dissolved oxygen can signal poor
water quality and stress on marine organisms. By monitoring dissolved oxygen levels, we can
pinpoint areas with insufficient oxygen supply and implement necessary conservation measures.
(Dissolved Oxygen Kit 2024)

Figure 9: Dissolved Oxygen Probe (Dissolved Oxygen Kit 2024)

Power Sense Module
The Power Sense Module provides analog readings of current and voltage from the battery. It
has a maximum input voltage of 25,2 V and unlike other power sense modules, this PSM from
BlueRobotics will not provide 5V power supply to the circuit. It has an significant accuracy at low
current draw due to the use of a hall effect current sensor. The PSM is excellent for monitoring
the battery condition. (Power sense module 2024)

8

Figure 10: Power Sense Module (Power sense module 2024)

2.1.2 System Integration Components

I2C Bus Splitter
The I2C bus splitter makes it possible to connect multiple I2C devices by sharing the same bus.
It features two different header pin configurations, including DF13- and JST-GH connectors for
great compatibility with various devices. The I2C bus splitter establishes seamless communication
pathways by serving as the intermediary between the different sensors and the SBC. (I2C Bus
Splitter 2024)

Figure 11: I2C splitter (I2C Bus Splitter 2024)

DC-DC Converter
The DC-DC converter works by transforming a high DC voltage down to a low, more managerial
DC voltage. The model in use is the THN 15-2411WIR manufactured by Traco Power which is
used to reduce the battery voltage of 25 V to a more suitable 5 volts DC, that powers both the SBC
and sensors within the system. This converter can accommodate a wide range of input voltages,

9

spanning from 9 volts up to 36 volts DC. Despite this variability, it maintains an efficiency of 89
percent, ensuring minimal energy loss during the conversion process. Additionally, the converter is
equipped with a build-in short circuit protection, safeguarding the system from potential damage
caused by electrical faults. (Power 2022)

Figure 12: DC-DC Converter Power 2022)

Analog-to-Digital Converter
An analog-to-digital converter(ADC) enables digital circuits like SBCs and micro-controllers to
communicate with the real world. The ADC functions by sampling an analogue voltage at one
moment in time and then converting it to a digital code using binary bits to represent the voltage
level. The resolution of the ADC is determined by the number of bits utilized to represent the
voltage. (Analogue to Digital Converter 2024)

The model utilized is the ADS1115, manufactured by Adafruit. With a resolution of 16 bit and a
sample rate of 860 samples per second, this device is great at converting the analog PSM readings
into a digital format. Moreover, it is equipped with four single-ended input channels that can also
function as two differential inputs if required, improving its versatility. Notable features includes
low current consumption, a wide operating voltage range from 2 to 5,5 volts, and compatibility
with the I2C interface, making it compatible with various systems. (Industries 2024)

Figure 13: ADC (Industries 2024)

Ethernet Switch
An Ethernet switch operates as a central networking device that facilitates efficient data transfer
among various devices within a local area network(LAN). A LAN is simply a group of interconnec-
ted devices within the same physical area. The switch operates by directing incoming data to its
intended destination by utilizing the devices’ media access control(MAC) addresses. By analyzing

10

these MAC addresses within each data packet, the switch effectively routes the data, reducing any
network traffic and improving overall efficiency. (Danielson 2024)

The model in use is the Gigablox Switch, manufactured by BotBlox. This 5-port gigabit Ether-
net switch supports data transfer speeds of up to 1 gigabit per second. Its ports are equipped
with Molex picoblade connectors, ensuring a compact size. It can operate on a wide span of input
voltages ranging from 5,1 to 60 volts making it extremely versatile and suitable for various environ-
ments. The device operates as an unmanaged switch, meaning it requires no manual configuration,
simplifying its usage and making it beginner-friendly. With such high data transfer speeds across
its 5 ports, the Gigablox switch efficiently routes data packets between the modem and the SBC,
while also serving as a flexible and scalable connection device for future expansions. (BotBlox
2023)

Figure 14: Ethernet Switch BotBlox 2023)

Barrier Strip
A barrier strip is an insulated strip intended for connecting multiple wires in one location. Fea-
turing screw terminals divided by plastic barriers, the barrier strip facilitates safe and organized
wire interconnection while offering convenience through its easily adjustable screw terminals. The
model utilized is manufactures by Molex and features a high voltage and current rating of 300
volts and 15 amperes, ensuring robustness and durability. Additionally, equipped with 6 positions
for wire connections, it is ideal for powering the interface circuit. (Barrier Strip Terminal Blocks:
A Guide to Electrical Connections 2024)

11

Figure 15: Barrier strip (Mauser Electronics 2024)

Battery
The battery in use is a six-cell LiPo battery manufactured by Tatto Plus. With its six cells, this
battery outputs a voltage of 22,2 volts and has a total capacity of 12000 mAh. Operating within a
wide temperature range from -10 to 40 degrees Celsius, it is suitable for various conditions, with re-
commended charging and discharging temperatures between 0 and 40 degrees Celsius. This smart
battery features several safety and alert functions, including over and under voltage and temper-
ature alert and alarms. Equipped with a Battery Management System (BMS), it autonomously
manage itself, extending battery life and making it ideal for unmanned devices. These features
add to the safety and reliability of the product, making it suitable for the sensing rig. (TATTU
PLUS INTELLIGENT FLIGHT BATTERY 2024)

Figure 16: Battery (Lipo Smart Battery Pack 2024)

Acoustic Modem
An acoustic modem is a device utilized for wireless data transmission underwater. It operates by
converting digital data into acoustic sound waves and transmitting it to a second acoustic modem
which converts the sound waves back into digital data. While acoustic waves typically offer lower
data transmission rates compared to electromagnetic waves, electromagnetic waves are outper-
formed in underwater environments due to acoustic waves’ ability to establish communication over
great distances, overcoming the challenges that affect electromagnetic signals.

12

Figure 17: EvoLogics’ Acoustic Modem

2.1.3 Raspberry Pi 4 Model B

A Raspberry Pi is a type of single-board computer (SBC). Much like a regular PC, this device
is equipped with a processor with an integrated graphics driver, and a random-access memory
(RAM). The Raspberry Pi 4 model B comes equipped with multiple components and ports, making
it a versatile computer with many uses. Some of these components includes Ethernet, ports for
camera, display and audio, SD-card slot for data storage and operating system, USB connectors
and GPIO header (Raspberry Pi 4 Tech Specs 2024). The processor used in this RPi is a Broadcom
BCM2711 Quad Core Cortex-A72 (ARM v8) 64-bit SoC, which, like previously mentioned, features
an integrated GPU (VideoCore VI). Because of the size and the possibilities of the RPi there are
a lot of applications and areas it can be used, such as robotics, automation, learning programming
and a lot more.

Figure 18: Raspberry Pi 4 model B (Raspberry Pi 4 2024)

2.1.4 Khadas VIM3

The Khadas VIM3 is also a type of single-board computer and shares a lot of similarities with the
Raspberry Pi. It uses Amlogic A311D SoC: x4 Cortex A73 performance-cores as well as x2 Cortex
A53 efficiency-cores (VIM3 2024), making it more powerful than the Raspberry Pi. It shares a lot

13

of the same components types as the RPi, in terms of ports and features, as well as taking it even
further, making a much more complex and powerful SBC. The Khadas VIM3 uses an m.2 slot for
the SD-card, enabling high-performance data storing. Another important feature on the Khadas
VIM3 is the implementation of an on-board neural processing unit, which greatly increases the
performance of neural network applications, such as computer vision, machine learning and other
uses of artificial intelligence. This device is well suited for AI applications, robotics, and crypto
mining because of it’s ability to run and solve algorithms very effectively, but it can also be used
for the same things as a RPi, such as a mini-computer and hosting a server.

Figure 19: Khadas VIM3 (Khadas VIM3 2024)

2.1.5 Real Time Clock

A real time clock, or RTC, is a digital clock with a primary function to keep accurate track of
time even when a power supply is turned off or a device is placed in low power mode. RTCs are
used in a variety of applications where they play a critical role in keeping accurate track of the
current time while also providing alarms, timers, and interrupt functions and helping to reduce
power consumption. (Meaney 2024)
The DS3231 is an extremely accurate I2C RTC, with an integrated temperature compensated
crystal oscillator. The chip offers a battery input designated to keeping the time-keeping correct
over long periods where the system is without power. The RTC also offers low power consumption,
making it perfect for use-cases with remote and long-term sensing projects. The DS1307 was briefly
considered due to its lower cost than the DS3231, but ultimately the pros of the DS3231 made it
the clear choice for the long term vision of the project.

14

Figure 20: DS3231 Real Time Clock (DS3231 2015)

2.1.6 Camera - Intel RealSense D435

The Intel RealSense D435 is a depth-sensing camera designed for robotics and augmented reality. It
utilizes stereo vision technology to capture depth information, enabling accurate depth perception
and spatial understanding. The D435 features a pair of infrared cameras along with an RGB
camera, allowing it to capture both color and depth data simultaneously. With its compact form
factor and robust software support, the RealSense D435 is well-suited for integration into other
project, such as the sensing rig. (D435 Depth Camera 2024)

Figure 21: Camera (D435 Depth Camera 2024
)

2.2 Previous Work

Before deciding the goals of the project, getting an overview of the previous work was essential.
The group was introduced to three sensing rigs, supposedly identical, but with some slight differ-
ences. To differentiate between the three rigs, they are referred to according to the colour of the
main bracket; red, blue or black. Along with the sensors and system components, all the rigs were
integrated with Raspberry Pi 4 B’s as SBCs.

Sensors
All three rigs were mounted with the listed sensors from the theory section. The group was also
made aware that the Dissolved Oxygen and the Conductivity sensors were prone to issues. These
issues came into play at a later stage.

System Integration Components
All rigs were mounted with the listed system integration components, but both the red and black
rig were in need of some small modifications. The group was informed that the DC-DC converter
that was mounted on the red rig had a risk of short-circuiting, and therefore needed to be replaced.
In addition to this, two of the I2C Bus Splitters had a missing header pin, the DF13 connector.
The red and black rigs were also equipped with SubConn MCIL8M pigtails for connection with
the acoustic modem used in the project. This modem, from SubNero, is different from the one

15

being used in this years project, which leads to an issue when it comes to connecting the rig to
the modem. The issue in question is that the modem used in this years project, the EvoLogics
modem, need SubConn MCIL8F pigtails to establish a connection.

Figure 22: Missing header pin on I2C Splitter

2.3 Current state

Replacing DC-DC Converter
Two of the three DC-DC converters had already been replaced with the Traco-THN converter.
The reason for the change was an isolated output on the original converter, resulting in both a
floating output voltage as well as a floating ground, which is undesirable for the system. By directly
soldering a common ground on the new DC-DC converter from the barrier strip, this problem is
avoided. The last converter was then replaced, with the following table and images illustrating
how the soldering took place with a common ground. In the following datasheet for the converter,
further information is listed as well as an illustration of the pin locations. Power 2022

Figure 23: Pinout table for PSU, with common ground, NOTE ”Barrier strip*”

16

(a) PSU (b) USB-C

Figure 24: Soldering points

Adding RTC
The DS3231 uses I2C communication, which integrates seamlessly into the existing project. The
RTC connects directly to the I2C-Bus splitter via either a JST-GH connector or a DF13 connector.
In the project, a JST-GH connector was used, with the following pinout table illustrating the
connections. The colour coding used in the table is trivial, but to maintain a sense of continuity
as well as easier understanding, the exact same colour coding was used on all three RTCs.

Figure 25: Pinout table for RTC

17

(a) RTC soldering points (b) JST-GH connector

Connecting to the Acoustic Modem
Due to last years project being compatible with SubNero modems, and not EvoLogics modem, the
cable had to be replaced. An order for new SubConn MCIL8F pigtails was pushed, but due to
delivery time, a testing cable was also produced to be able to do a final test of the system.
The cable was made by soldering and testing the SubConn according to the pinout table in figure
28. Making the SubConn end of the cable will not need to be replicated when the pigtails are
delivered, but the procedure is still briefly explained here. Properly installing the WetLink to the
other end of the cable will need to be replicated when the ordered cables are delivered.

How-to make, along with important things to note when making the SubConn end:

1. Cut the wires quite short to ensure that all wires and cast will be covered by the tube that
will be fitted around the plug and cable jacket.

2. Cut the tube so that it fits tight onto the cable jacket. It should be tight fitting and barely
able to slide into place after soldering.

3. Solder the splices according to the pinout table. You will need to thread a heat shrinking
tube on the wires BEFORE soldering, and then apply heat so that the heat shrinking tubes
are snug.

4. Fill the tube with cast and leave it in an upright position to harden overnight.

Installing the WetLink Penetrator
When installing the WetLink penetrator, you will need to know which tools to use. There are
different bulkhead sizes and plug types according to which cable you are using. Some often used
cables are listed in BlueRobotics’ web page for use with WetLink Penetrators. For example the
testing cable that was made was directly from BlueRobotics, where the correct tools were already
specified. When installing the WetLink on the SubConn MCIl8F pigtail, the correct tool will be a
9.5 Penetrator with a HC plug. This specifies the diameter of the penetrator and how tight the
plug will squeeze on the cable jacket. All info regarding choosing the correct WetLink tools as well
as properly installing the penetrator correctly can be found here: WetLink Penetrator Installation
Guide 2024

18

Figure 27: Illustration of the WetLink Penetrator with parts

Figure 28: Pinout table for use with Evologics modem

Ethernet Connection
To be able to connect to a sensing rig with any computer, a wired Ethernet connection was
established. By installing a cobalt connector, which is connected to the Ethernet switch, on the lid
of the sensing rig, a wired connection between the rig and any pc, laptop or Ethernet switch with
an Ethernet port becomes possible. This solution makes extracting data in remote areas with any
computer easy and accessible. A cable with a cobalt plug on one end and an RJ45 plug on the
other end was made and tested according to the pinout table for Ethernet connection, fig 30.

19

Figure 29: Cable for Ethernet Connection

Figure 30: Pinout table for Ethernet connection

Implementing VIM3
The implementation of VIM3 began by acquiring a micro SD card to expand the internal storage.
With a capacity of 128 GB, this micro SD-card significantly increases the SBC’s storage capacity,
meeting future storage demands. The next step involved redesigning the SBC mount through CAD
and 3D print it to accommodate the VIM3. Following the production of the bracket, the VIM3 was

20

connected to the I2C splitter and power source, completing the implementation process regarding
hardware.

Replacing I2C Bus Splitter
Due to the fragility of the DF13 plugs on the I2C-Bus splitter, there was a need of replacing the
splitter on the RED rig. Here, two of the plugs were removed, and such, there were not enough
plugs for the connectors needed. This was replaced simply by soldering pins onto the board, which
are then connected with Molex plugs.

2.4 Further work

This section covers suggestions for further improvement of the project along with useful things to
note when working with the electronics.

Deficiencies
The group observed multiple deficiencies related to the Atlas sensors. Several Atlas sensors on the
black and red rigs were defective, leaving only the salinity sensor on the red rig and both sensors
on the blue rig operational. The defective sensors were undetectable by the SBC over I2C. For
further work, consider replacing the Atlas sensors with another brand through a design review or
ordering an excess of sensors to reduce the impact of such deficiencies. Note that an order was
placed for a set of Atlas sensors to replace the faulty ones, but they have not been delivered at the
time of this writing.

Another deficiency concerns the RTC battery for the VIM3, which is needed for accurate timekeep-
ing without requiring an internet connection on boot-up. Similarly, an order for the RTC battery
was placed, but it was never received by the group after its delivery to NTNU.

Sensor calibration
For future development, sensor calibration will be essential to verify the accuracy of the trans-
mitted data. Although calibration was not a focus point during this iteration of the project, it
is crucial for achieving the end goal of ensuring the data from the sensing rig is accurate and reliable.

Replace testing SubConn with SubConn MCIL8F pigtails
Using the guide provided by BlueRobotics (WetLink Penetrator Installation Guide 2024), install
WetLink Penetrator 9.5 HC on the pigtail. Connect the wires to Molex plugs (Guide in PA-folder),
using the pinout table for use with EvoLogics modem (fig 28).
NOTE: Colour coding may not be the same, but pin number will still match.

VIM replacement
For greater processing power and utilization of AI applications, it is recommended to equip all
three rigs with the VIM3. If heavy processing is taking place, consider adding a heatsink or fan
to the SBC to enhance the safety and lifespan of the sensing rig. For software integration of the
VIM3, refer to the guide on 4.3.5

Wiring
For more versatility when working with the sensing rigs, using Molex plugs where possible is
advantageous. In addition to this, having pinout tables for all connections where deemed useful
could be a nice improvement to the system.
Furthermore, organising all wires in a more neat way on the main bracket will make the system
easier to understand.

21

2.4.1 Charging the LiPo battery

The battery cells have a working voltage range of about 3,2-4,2V. If the cells reach lower voltages
than 3,2V, they can be permanently damaged, and a higher voltage then 4,2 comes with a risk of
the battery bursting into flames. Lithium batteries are recommended to be stored at about 40%
capacity, with the LiPo cell storage charge being at 3,8V.
When charging the battery, all you need is the battery itself and the ISDT K1 Smart Charger. The
procedure is very simple, but it is VERY important that you never leave the battery unattended
while charging.

1. Connect the balance plug and power plug from the charger to the battery. There will be a
loose plug coming from the charger, but disregard this.

2. Navigate to the configuration menu of the charge cycle by holding in the CH1 button. You
want to set the battery type, target voltage, amount of cells and current.

3. Start charging. When the cells are balanced at the desired voltage, you can stop charging
manually.

(a) Connection between Battery
and charger (b) Configuration menu (c) Battery Cell Voltage

Figure 31: Charging the battery

22

3 Enclosure

One of the main aspects in the development of the sensing rigs was the implementation of cameras.
There is a lot of information that can be obtained and processed in the ocean, but there is a limited
amount that can be obtained through sensors only. The goal of the cameras is to be able to take
pictures when the sensing rigs detect that something is happening, and both process them for us
to see and send them through a computer vision algorithm. There is a lot of applicabilities for a
system like this, but for it to work the cameras need to be waterproofed and be able to see.

Another focus point was continuing the development of last years group on the already existing
enclosure. This includes any changes to the inside of the rigs, either replacement of existing parts
or implementation of new ones. This differs from the camera enclosures, as that was an extension
of the outside of the enclosure itself. The inside of the rigs refers to any add-ons or changes to the
main mounting plate.

3.1 Theory

3.1.1 Water and electricity

The importance of waterproofing electronic hardware comes from the term conductivity. Non-pure
water, which is all natural sources of water, is conductive, meaning it can conduct or carry electrical
current. Though the water itself is not conductive, the free ions in the water is. The two most
common elements in seawater after hydrogen and oxygen, is sodium and chloride (NOAA 2024),
which when combined makes salt (NaCl). Salts are ionic compounds composed of positively- and
negatively charged ions (USGS 2024), which when added to water conducts electricity. This means
that electronics covered in water will connect points together that are not supposed to and conduct
electricity between them, which will cause a short-circuit and damage or destroy the hardware.

3.1.2 Proofing

There are two main needs of proofing for the sensing rigs, the first of which is waterproofing.
Waterproofing is the process of prohibiting flow of liquids into an object or structure. There are
many use-cases for waterproofing and many different methods in doing so. The sensing rigs have
their needs for waterproofing and a specific way of doing it. It is important to use solid materials
and to seal any openings. The most common way to waterproof openings is to use o-rings, which
is a ring-shaped seal made of rubber, and a silicone-based gel. Since the o-ring is flexible, it will
adapt to the tolerances of the object in order to keep it sealed (Sealution 2024). Additionally, the
pressure applied by the water to the object will push the cover into the opening, making sure it’s
completely shut.

For any object that will be in deep water there is also the need of being pressure-resistant, which
means being able to withstand the pressure applied by the water to prevent implosion. Implosion
happens when the pressure applied to an object is greater than what the object is able to withstand,
and thus bursting inwards, or ’exploding’ inwards. To calculate the hydrostatic pressure on an
underwater object, you use the equation P = ρ · g · h, where ρ is the density of the water, g is the
gravitational force on the object and h is how far underneath the surface the object is. Then you
have the amount of pressure the object will have to withstand, which you will need to use when
designing it. It is important to know which area of use the object will have when determining the
materials of it, what type of water it will be submerged in and how deep it will be.

3.1.3 Computer-Aided Design

Computer-Aided Design (CAD) is using computer-based software to design and draw in both 2D
and 3D. CAD programs and applications make it possible to turn blueprints and drawings into
digital prototypes. It is a very important tool when it comes to 3D-modelling in the physical

23

world, as it allows for a very hands-on design process where you have a lot of control when it
comes to designing and making design changes. It can be described as a tool to improve the
design- and manufacturing process for designers and engineers. Some of the benefits to using CAD
includes lower production costs, higher quality design with documentation built into the file, makes
collaboration easier and the software tools increases effectiveness with built-in features to help with
design (Chai 2024).

3.1.4 Fusion 360

Fusion 360 is a three dimensional ’design and make’-software developed by Autodesk (What is
Autodesk Fusion? 2024). Its main functionality is designing and creating 3D-models using com-
puter aided design, or CAD. It is a very effective software for high-precision manipulation of
3D-models, which allows you to create very detailed models. It comes equipped with a lot of tools
which comes in handy when designing parts. Some of those tools includes:

• Create sketch: This tool is what you use to create the shape of the model you are designing.
Creating a sketch happens in two dimensions, allowing you to create a baseline for the model,
which can be manipulated further later on.

• Extrude: In order to get a three dimensional model, you need to add the third dimension
to the previously created sketch. Extrude allows you to do this by selecting the sketch and
changing the value of the missing dimension. Further you can alter any object with extrude
by selecting any side of the object and changing the value of the dimension not present on
that two dimensional surface.

• Revolve: For creating symmetrical circular objects, revolve is an important tool. It allows
you to take a two dimensional plane and wrap it around or revolve it around an axis.

• Holes: This tool is specifically used for creating round holes through or into a model. It is
very useful for creating screw holes and gives you a lot of different options to choose from,
like shown in figure 32.

Figure 32: Holes-tool options

• Shell: This tool is a bit situational, however it is very useful. It is used to remove part of
the inside of a model, making it hollow with a specified thickness for the walls. This tool can
be used in a lot of different ways, so it’s just about being a bit creative with it.

• Move/copy: The move/copy tool is pretty straightforward. It is used to move or copy parts
within the model, such as holes or standalone objects that make up the model. This gives
you quite a lot of flexibility and makes it easy to make changes to the model as you go.

Learning how to use these tools is key to creating and editing parts for any project involving CAD.

24

3.2 Previous work

At the takeover from last years project, the state of the sensing rigs in terms of enclosure was three
waterproof rigs, where two of them were equipped with mounts for a communication modem. The
inside of the enclosures came equipped with a main plate which held all the different components
used in the sensing rigs. These components were mounted to the plate with their own 3D-printed
parts.

Two of the three enclosures were identical to each other, with the last one being slightly older and
missing the brackets for the communication modem, as well as the SubConn cable. The casing
itself is also a bit different in terms of waterproofing, with the feature of additional O-rings missing.
Nonetheless all of the sensing rigs passed the vacuum test at the takeover, meaning they are all
airtight and waterproof.

In terms of the 3D-models that has been used in the project, there were a lot of missing CAD files,
meaning it would be hard to make any changes to the models if that’s needed. The only CAD files
that were accessible at the takeover, was the models created by last years group.

3.3 Current state

3.3.1 Camera - Intel RealSense d435

The cameras used in the sensing rigs, Intel RealSense d435, is connected to the computers via
a USB-C to USB-A 3.0 cable. This cable came with the camera and is specifically designed for
video data transmission. Therefore, it is not recommended to replace this cable with a third-party
cable, as there is no guarantee that it will work well or at all. If the cable needs to be replaced
due to a broken one or any other reason, it needs to have a high transmission speed. The only
third-party brand that is confirmed to be compatible with the Intel RealSense d400-series is the
Newnex USB-C 3.1 cables (USB 3.1 Type-C Cables for Intel® RealSense™ Camera 2024). The
cameras are placed by themselves in the camera housing mounted by a couple of screws.

3.3.2 Enclosure

Camera housing
The biggest change to the sensing rigs’ enclosure is the implementation of the camera housing.
Since the Intel RealSense camera is not waterproof or made for underwater-use by itself, there was
a case of coming up with a solution to accommodate for the underwater-usage. The first option that
was being explored was having a standalone enclosure for the camera, which would be mounted on
the sensing rigs. Difficulties with wiring led to this idea being scrapped, as the USB-C cables loses
capabilities when being cut, leading to slower data transmission. Further brainstorming led to an
idea consisting of expanding the sensing rigs to fit the camera inside with the electronics. This way,
there was no need for waterproofing and cutting the cables, as well as being a more space-efficient
solution. The sketch for the camera housing [figure 33] was based on similar projects, though it
was created before the decision to combine the camera housing and the enclosure.

25

Figure 33: Early sketch of camera housing

The final design was made in collaboration with the mechanical workshop, as they had experience
in similar projects as well. The sketch of the separate housing was redesigned to fit the camera
size and measurements, and then attached to a panel fitting the BlueRobotics O-Ring Flanges.
The camera housing is made to fit with different thicknesses of plexiglass, supporting up to 10mm
thick glass. Currently it is equipped with 3mm, and is not advised going further than 50m below
the water surface. As seen in figure 34, the final iteration includes a back plate that matches the
BlueRobotics O-Ring Flanges, screw-holes for mounting the camera to the plate, holes for wiring
between the camera housing and the rig and a replaceable plexiglass window for the camera.

Figure 34: 3D-model of the camera housing

VIM mount
Another big change, which only included one of the rigs, was replacing the Raspberry Pi 4 with
a Khadas VIM3. For this to be possible, there was some changes and adjustments needed for
the mount and the parts inside the rig. The Khadas VIM3’s mounting screw holes were different
to the Raspberry Pi’s, with the location and size of them differing. Thus the mount would need
to be edited to fit the Khadas VIM3, and the track plate would need to fit the mount. For the
rigs still using the Raspberry Pi, there was an implementation of a Real Time Clock, which also
needed to be mounted. The mount for this device was created from the bottom according to the
specifications of the RTC and fitting the mainplate. This particular mount was attached using
plastic glue, as it is quite a lightweight part which will not need further adjustment. For one of
the rigs, there was a problem with the splitter stand, as it was not possible to flip the I2C-splitter
180 degrees horizontally, which needed to be done to access the USB-A 3.0 port on the Raspberry
Pi. This was changed in the new version of the splitter stand, which adds an identical screw hole
and pit to the other side. Lastly, the mainplate and the already edited parts have been converted

26

from an .stl-file to an editable CAD-file.

3.3.3 Convert .stl to .step

Like mentioned in section 3.2, most of the models used in this project were unavailable as CAD-
files (.step), making it hard to make any changes to the parts. Luckily the 3D-models (.stl) were
accessible, which means there was no need to design new parts as CAD-files. However, there is no
good way to convert an .stl-file to a .step-file. This way of converting models is very flawed, and
leaves the CAD-file in a non-ideal state, where the model is hollow and may be generated with a
varying amount of holes. This can become an issue when 3D-printing the parts, as it may either
print a bugged model or not print at all. Even then, this seems to be the only way to do it, without
having to design a brand new model:

• Step 1 - The first thing you would want to do is importing the 3D-model to Fusion 360. It’s
important that you use the insert tool to get the right measurements.

Figure 35: Insert mesh

Then you just select Insert Mesh and upload the .stl-file that you want to convert.

• Step 2 - The next step you need to do is to generate face groups. The way you do this is
clicking the Prepare tab and scrolling down to and selecting Generate Face Groups.

Figure 36: Prepare tab

You will then get a window to pop up. In this window you need to select Accurate in the
Type tab, then select the model you want to generate face groups for and click OK.

27

Figure 37: Generate Face Groups

• Step 3 - Once you have generated the face groups, the next step would be to converting
the mesh. You can do this by clicking the Modify tab and navigating down to the Convert
Mesh-button.

Figure 38: Modify tab

Once again a window will pop up. In this window you select the Parametric operation and
the Prismatic method and click OK. Note that the Prismatic method is only in the licensed

28

version of Fusion 360, so make sure you have this version. If you don’t have access to this
version, you will need to select the Faceted method, which will not make one solid model,
but a model consisting of many different parts.

Figure 39: Convert Mesh

Now you should have a solid model, but like mentioned earlier, there may be some holes in
the model, which will need to be patched up.

• Step 4 - The way to do this is using the Sketch tool to create a sketch matching the shape
of the hole, then using the Extrude tool to filling it.

3.4 Further work

This section covers some suggestions for further work in terms of the enclosure.

File conversion
In order to create a complete library of all the parts used and previously used, it is necessary to
convert more files into CAD files (.step) to ensure they are easily editable in a CAD program. The
guide in section 3.3.3 outlines the process for converting .stl files to .step files.

Replace the plexiglass
Additionally, to increase the maximum recommended depth beyond the current 50 meters, the
plexiglass on the camera housing will need to be replaced with a thicker variant. The camera
housing supports up to 10mm thick plexiglass, whereas the current plexiglass in use is 3mm thick.
By using 10mm thick plexiglass, the sensing rigs will be able to withstand the pressure at depths
greater than 50 meters.

Implementation of light source
The implementation of lighting for the camera is another consideration. The sensing rigs have
not yet been tested in deep water, so there is no information on how well the camera performs at
greater depths. After conducting tests in the sea, it may be beneficial to decide whether or not to
add external lighting.

Buoyancy
Lastly, the buoyancy of the sensing rigs needs to be addressed. Currently, the rigs either float, end
up upside down, or both. Therefore, adjustments are required to ensure that the sensing rigs sink
and remain upright.

4 Software

Software development is a crucial aspect of the sensing rig’s development. The main focus is on
integrating and configuring both the camera and VIM3. This includes adapting GitHub code/files
to accommodate image transfer and basic computer vision processing for both the Raspberry Pi
and VIM3 and transmitting it through the acoustic modem. This section is formed as a detailed
tutorial covering the complete development process of both the SBC’s and camera software for a
greater understanding.

29

4.1 Theory

The goal of this section is to provide a foundation of knowledge necessary for understanding and
engaging in the software-related development conducted. Detailed reviews of Python and Ubuntu
servers has been considered excessive, but are valuable reading material leading up to this report.
These topics can be found in previous year’s thesis (Knudsen and Brandstorp 2023). The topics
covered in this section are directly relevant to the structure of software where development has
taken place.

4.1.1 ROS2

ROS 2 is the updated iteration of ROS (Robot Operating System), which, despite its name, isn’t a
traditional operating system like Windows or macOS. Instead, it acts more like an extensive suite
of libraries and software tools. It is designed to aid developers in building and operating complex
robotic systems, which often consist of actuators, sensors, and control systems.

Robot systems quickly become intricate, and ROS 2 helps manage this complexity by providing
robust tools for developing components independently and facilitating communication between
them. This communication is achieved through a modular approach where different parts of a
robot’s system are handled by ”nodes” which perform specific tasks.

When starting with ROS 2, the first step is setting up a workspace environment, which involves
organizing a specific directory structure recognized by ROS 2. Users must also source setup files
each time they initiate a new terminal session to correctly configure the environment.

In ROS 2, communication between these nodes can occur through four main mechanisms:

• Topics: Nodes publish data to topics that other nodes can subscribe to. This setup allows
for data, such as continuous temperature readings, to be broadcasted and received, similarly
to using hashtags on social media to follow specific content.

• Services: This method involves a request-and-response interaction similar to TCP/IP pro-
tocols. It’s comparable to making a customer service call where a request is placed and a
response is awaited.

• Actions: Actions blend the characteristics of topics and services. They facilitate ongoing
communication for tasks that need continuous operation, such as moving a robot arm from
point A to B. During such operations, the action server regularly updates the action client
with feedback until the task is completed, while also allowing for the operation to be halted
mid-process if necessary.

• Parameters: These serve as configurable values (comparable to global variables in program-
ming) that can be adjusted across the ROS environment, typically manipulated via services
to alter operational settings like the control signals to actuators.

This structured approach allows for the efficient operation and real-time adjustment of robotic
systems, making ROS 2 a powerful framework for developing sophisticated robots. ROS docu-
mentation 2024

4.1.2 Git and GitHub

Git is a powerful software tool that enables developers to collaborate effectively on projects. It
tracks all modifications made to the project files, clearly documenting what changes were made
and by whom. One of its standout features is the ability to revert to earlier versions of the project,
which enhances control and reduces the risk of errors disrupting the work.

Git operates through a structure called a repository, which logs every change made within it. This
structure supports branching and merging, key features for collaborative work. Think of branching

30

like a road that splits into two separate paths. Developers can diverge from the main project (the
main path) and experiment on a branch without affecting the core project. If errors occur, it’s
easy to revert to the point of divergence and start again.

Meanwhile, other developers can create their own branches and make independent changes. When
these changes prove successful and don’t introduce any problems, branches can be merged. This
merging process is similar to reuniting stray roads into a single road, after which new branches
can again be created. This cycle allows multiple developers to work simultaneously on the same
project without interfering with each other’s work. Once significant changes are finalized on a
branch, merging it back into the main branch makes those updates available to all team members,
facilitating seamless collaboration.

GitHub complements Git by providing an online platform where projects can be stored and shared.
It is an open-source hub that not only hosts projects but also facilitates access to others’ work,
enabling collaborative development across the globe. Developers can ’push’ their local projects and
updates to GitHub, allowing others to ’pull’ these projects onto their own machines for further
development.

4.1.3 Computer vision

YOLOv8

Computer vision is a way for computers to see the world through cameras, using AI or machine
learning to identify the surroundings. The projects uses OpenCV which is a software tool that
helps process the live video from the camera and processing the images that will be run through
the YOLOv8 algorithm. The YOLOv8 algorithm is an easy to use but powerful computer vision
algorithm that uses image recognition to identify specific objects in a camera frame. For example
differentiating a fish from its surroundings.

YOLO stands for ”You Only Look Once” and v8 simply means its version 8. Since the start of
this project a new version has been launched, YOLOv9. This project will only focus on YOLOv8
as this is the algorithm used. To get started with YOLOv8 you need to:

1. Install ultralytics. You can follow their installation guide at Ultralytics Installation 2024.

2. Find a dataset to train YOLOv8 algorithm on. A good place to find datasets is either
on Open Images Dataset V7 2024, or Kaggle, Your Machine Learning and Data Science
Community 2024.

3. Label images. On Open images you can download prelabeled images. It is also possible to
find prelabeled dataset on kaggle, but you need to search more. The images need a bounding
box and a label to each image you want your algorithm to train on. This is because the
YOLOv8 algorithm need to know what in the image it is supposed to locate.

4. Train algorithm. For a full guide on how to do this see Listing 6.

5. Use the algorithm. To see how the algorithm has been implemented in this course please
see chapter 4.3.1

31

Figure 40: Example of boundingboxes and label. 2024

The bounding boxes for training comes in the form of labels in a .txt file. The format of this file is
”class” ”x center (normalized)” ”y center (normalized)” ”Width of the boanding box (normalized)”
”Height of the boanding box (normalized)”. An example of this is as follows ”0 0.525258 0.540021
0.850797 0.461040”. This means that it is class 0 wich might mean salmon, and class 1 might
mean trout for example. X center is 0.525258, Y center is 0.540021, width is 0.850797 and height
is 0.461040. Normalized means it is a ratio of the image. So if the height is the whole image it
would be 1 and if it would have no height, it would be 0.

The file structure is important when training on the given data set. You need a folder containing 3
folders called: test, train and valid as well as a data.yaml file. The 3 folders should look the same
inside. It should have one folder called images and one folder called labels.

(a) Outer folder (b) Inside the 3 folders

The images folder is where the images of your dataset is supposed to be, and the labels folder is
the boanding boxes associated with each image. It is important that the labels and images have
the same name.

32

(a) Images (b) Labels

The dataset should be divided roughly 70-80% training data set and 10-15% each on the validation
and testing data set. The training set is what the algorithm will train on. While training it will
use the validation set to check how well it is performing. And use the results for further training.
The testing data set is used after the training is complete as a test of how well the algorithm is
working.

The code for doing the actual training can be found at Ultralytics Training 2024. When finished
training a model the result is saved as a .pt file which contains the ”weights” of the algorithm.
This means the different parameters that is gathered through the training process. To use the
model you can load the .pt file into a python script.

1 from ultralytics import YOLO

2

3 # Load a model

4 model = YOLO('yolov8n.yaml') # build a new model from YAML

5 model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)

6 model = YOLO('yolov8n.yaml').load('yolov8n.pt') # build from YAML and transfer

weights

7

8 # Train the model

9 results = model.train(data='coco8.yaml', epochs =100, imgsz =640)

Listing 1: Loading and training models

OpenCV

OpenCV (Open computer vision) is the worlds biggest computer vision library. It is open source
and contains over 2500 algorithms aimed at real-time applications. It is meant for cross-platform

33

use and offers support for C++, Python, Java on Linux, MacOS, Windows, iOS and Android. It
is primarily used for video capture, image processing, and displaying or saving processed images.
Four important functions used in the program is:

• cv2.VideoCapture(0)

– Purpose: This function initializes the video capture object for reading video frames.
The parameter 0 indicates that OpenCV should use the default webcam of the system.

• cap.read()

– Purpose: Reads the next frame from the video capture device.

• cv2.rectangle(frame, top left, bottom right, (0, 255, 0), thickness=2)

– Purpose:Draws a rectangle on an image. The parameters include the image/frame, the
top-left and bottom-right coordinates of the rectangle, the color of the rectangle (green
in this case, represented as (0, 255, 0) in BGR format), and the line thickness.

• cv2.imwrite(filename, processed frame)

– Purpose: Saves an image to a specified file.

OpenCV 2024

4.2 Previous work

After last years thesis there were three rigs running the same setup. It was using Ubuntu 22.04.
As well as ROS2 humble. Last years GitHub Repository can be found here: Last years Github
Repository 2023. The thesis explaining everything can be found here: Knudsen and Brandstorp
2023. The rig had a ROS2 node for each sensor: Thermometer, barometer, oxygen and salinity.
As well as a node for measuring voltage from the battery, a node for logging all data, and a node
for packaging and sending the sensor data. The whole setup was able to launch from a launch
script that started all nodes simoultaniously.

4.3 Current state

The system is still running Ubuntu 22.04. It has a ROS2 layout with 11 nodes. These nodes include
running sensors, running camera vision algorithm, sending information, and monitoring battery
level as well as autoshutdown when battery is too low. New nodes from last year is the cv algorithm,
auto shutdown and image client. The whole layout can be found at this years GitHub Repository:
This years Github Repository (Raspberry Pi) 2024, This years Github Repository (VIM3) 2024 .

34

Figure 43: ROS2 layout

For more in depth explanation of the work done from previous years, you should revert to the
bachelor thesis: Knudsen and Brandstorp 2023 as well as the GitHub repository from the same
year: Last years Github Repository 2023. This chapter will focus on the new nodes from this
year starting with the computer vision module called cv algorithm. After that, the rest of the new
ROS 2 nodes will follow, along with a brief explanation of how the RTC software was implemented.
Ending with an explanation of how the new VIM3 was implemented. For a step-by-step tutorial
of setting up a SSH client, check the testing tutorial in the PA-folder.

4.3.1 Computer vision module

The computer vision module consists of a python script running the YOLO algorithm and attatch
boxes to the correct object. The script consists of 3 main functions:

1. get squares

This function extracts the bounding box coordinates of detected objects from the results provided
by the YOLO model.

• It initializes an empty list outlist.

35

• It iterates over each detected object’s bounding box (results[0].boxes.xyxy), extracting the
coordinates (x, y, x2, y2) of the top-left and bottom-right corners.

• These coordinates are stored in outlist as a list of lists, each list representing one detected
object’s bounding box.

1 def get_squares(results):

2 outlist = []

3 print(len(results [0]. boxes.xyxy))

4 for i in range(len(results [0]. boxes.xyxy)):

5 x = results [0]. boxes.xyxy[i][0]. item()

6 y = results [0]. boxes.xyxy[i][1]. item()

7 x2 = results [0]. boxes.xyxy[i][2]. item()

8 y2 = results [0]. boxes.xyxy[i][3]. item()

9 outlist.append ([x, y, x2, y2])

10 return outlist

Listing 2: Getting bounding boxes from YOLO-algorithm

2. highlight objects

This function takes the original video frame and the bounding box coordinates to visually highlight
detected objects.

• It loops through each bounding box in squares.

• It uses cv2.rectangle to draw a green rectangle (RGB: (0, 255, 0)) around the detected objects,
with a thickness of 2 pixels.

1 def highlight_objects(frame , squares):

2 for square in squares:

3 top_left = (int(square [0]), int(square [1]))

4 bottom_right = (int(square [2]), int(square [3]))

5 cv2.rectangle(frame , top_left , bottom_right , (0, 255, 0), thickness =2)

6 return frame

Listing 3: Visually highlight the boanding boxes on image

3. main

This is the main function where the script’s primary operations are orchestrated:

• Initialize YOLO Model: Loads a pre-trained YOLO model from a specified path (model path).

• Webcam Initialization: Attempts to capture video from the default webcam.

• Real-time Processing Loop:

– Continuously reads frames from the webcam.

– If a frame is successfully read, it predicts objects in the frame using the YOLO model
with a confidence threshold of 0.35.

– Extracts bounding box coordinates using get squares and highlights them using high-
light objects.

– Every 10 seconds, saves the processed frame to a specified directory (output dir) and
prints a message to confirm the saved file.

• Cleanup: Releases the webcam after the loop ends (either from an error in reading frames
or manually stopping the loop).

1 def main():

2 # Output directory

3 output_dir = r"C:\Users\Public\Computer_vision_test"

4

5 # Initialize the YOLO model

36

6 model_path = r"C:\Users\Public\Computer_vision_test\yolov8_weights.pt"

7 model = YOLO(model_path)

8

9 # Initialize webcam

10 cap = cv2.VideoCapture (0)

11

12 if not cap.isOpened ():

13 print("Error: Could not open webcam")

14 exit()

15

16 start_time = time.time()

17 save_interval = 10 # seconds

18 frame_count = 0

19

20 while True:

21 ret , frame = cap.read()

22 if not ret:

23 print("Error: Can't receive frame (stream end?). Exiting ...")

24 break

25

26 # Perform detection (assuming direct frame processing is possible)

27 results = model.predict(frame , conf =0.35)

28 squares = get_squares(results)

29 processed_frame = highlight_objects(frame.copy(), squares)

30

31 current_time = time.time()

32 if current_time - start_time >= save_interval:

33 # Save processed frame with detections

34 filename = f"{output_dir }/ output_{frame_count }.jpg"

35 cv2.imwrite(filename , processed_frame)

36 print(f"Saved: {filename}")

37 start_time = current_time

38 frame_count += 1

39

40 # When everything is done , release the capture

41 cap.release ()

Listing 4: Main loop for cv algorithm

Training the Algorithm
The algorithm has been trained on facial recognition in order to use it effectively while imple-
menting. For training the website kaggle.com has been used, since it offers more GPU power for
training. The code that has been run in the kaggle notebook for training is:

1 %pip install ultralytics

2 import ultralytics

3 ultralytics.checks ()

Listing 5: Installing the ultralytics library

1 !yolo task=detect mode=train model='/kaggle/working/faces/face_detection/weights/
best.pt' data='/kaggle/input/face -detection -henrik/Face_detection_B_and_W/data.
yaml' epochs =50 batch =16 imgsz =640 project=faces name=face_detection

Listing 6: Code for training

Change the location of ”model” and ”data” to correct location.

Understanding the training algorithm
An epoch is a complete pass through the entire training dataset. Given that not all data can be
passed through the network at once (especially with very large datasets), the data is divided into
batches. The number of iterations per epoch is equal to the number of batches necessary to process
the entire dataset. So, if you have 1600 training images, and a batch size of 16, it would take 100
iterations to complete one epoch. In general: The more epochs the better result, but the longer
time as well. The batch size determines the number of training samples that are used to calculate
the gradient and update the model’s weights during a single iteration of the training loop. There
is a balance between too small and too large batch sizes. Very large batches might lead to poorer
generalization to unseen data. This is a subject of ongoing research, and empirical results often
guide the choice of an appropriate batch size.

37

4.3.2 Auto Shutdown Module

There has been implemented an auto shutdown node. This is done in order to not discharge the
battery. There are two important functions for this program.

One called init (self): This constructor initializes the node with the name ’BatteryMonitor’
and sets up a subscription to the ’battery data’ topic that expects messages of type Battery. The
subscription triggers the battery callback method whenever a new message is published, with a
Quality of Service (QoS) setting to buffer the last 10 messages. The reference to self.subscription
after its assignment prevents linting tools from flagging it as an unused variable.

The other called battery callback(self, msg): This method is invoked for each Battery message
received. It logs the current battery percentage contained in the message. If the battery percentage
falls below 20%, the method logs a warning about the low battery and executes a system shutdown
command using subprocess.run([’sudo’, ’shutdown’, ’-h’, ’now’]). This command ensures the system
is shut down safely to avoid data loss or hardware damage due to an abrupt power outage.

1 class BatteryMonitor(Node):

2 def __init__(self):

3 super().__init__('BatteryMonitor ')
4 self.subscription = self.create_subscription(

5 Battery , 'battery_data ', self.battery_callback , 10)

6 self.subscription # prevent unused variable warning

7

8 def battery_callback(self , msg):

9 self.get_logger ().info(f'Received battery data: {msg.battery_percent }%')
10 if msg.battery_percent < 20.0:

11 self.get_logger ().info('Battery low , shutting down ...')
12 # Command to shut down the Raspberry Pi safely

13 subprocess.run(['sudo', 'shutdown ', '-h', 'now'])

Listing 7: BatteryMonitor node class for auto shutdown

The auto shutdown needs administration rights to run and will therfore ask for password before
shutting down. This does not work since the program is supposed to happen automatic. To fix this
problem the shutdown call has been added to the sudoers exception list. This is done by opening
the sudo visudo file and then entering shutdown as an exception:

$ sudo visudo
your username ALL=(ALL) NOPASSWD: / sb in /shutdown

In order to make the auto shutdown happen administration rights is needed. This can be achieved
with any sudo call before starting the node, for example sudo apt-get update. After you have
entered the password once the auto shutdown script will run automatically without asking for
password.

4.3.3 Implementation through WinSCP

WinSCP is a program that allows drag and drop of files between the rigs and your PC. It has been
used as a very helpful tool when implementing new things on the SBC’s. Especially the computer
vision algorithm since the rigs are running a headless OS, meaning there is no desktop, only a
terminal. Through WinSCP images has easily been transferred between the SBC and PC.

38

Figure 44: WinSCP

Figure 44 shows the outlay of WinSCP. The blue box will show the file system of your computer
while the red box will show the file system of the rig you are connected to. In order to connect the
rig it first has to be connected to internet, see 4.3.6. Then you fill out information shown inside the
yellow box. File protocol should be SFTP. Host name is the IP address of the rig you are connected
to. Port number should be 22. User name and password is the same as for the login of the rigs. So
for the black and blue rig the username is: ”SUMS” and password would be: ”123456”. For the
red rig the user name is ”khadas” and the password is ”123456”. You can save the information for
each rig as shown in green. When ready you connect by pressing the login shown in black.

4.3.4 Running multiple ROS2 nodes

In order to run multiple ROS2 nodes simoultaniously there are several ways of doing it. Two
different scripts have been made that runs multiple nodes. One runs all the nodes, and the other
runs all the nodes except for the auto shutdown, because this node has not been tested and
calibrated with battery percentage. How these scripts can be run, how the launch files work and
how to run different specific nodes together will now be explained:

In order to run all nodes simoultaniously you can use this command:

$ cd bachelor −2024/
$ source i n s t a l l / setup . bash
$ ros2 launch launch / senso r . launch . py

Remember that in order for the auto shutdown mode to run a sudo command followed by entering
password needs to be ran before starting the nodes. This can be done for example with: sudo apt-get
update

To run all nodes except for the auto shutdown node. This command can be used:

$ cd bachelor −2024/
$ source i n s t a l l / setup . bash
$ ros2 launch launch / senso r . launch . without . shutdown . py

39

To run a specific set of nodes you can use this command:

$ cd bachelor −2024/
$ source i n s t a l l / setup . bash
$ ros2 run packagename node1 &

ros2 run packagename node2 &
wait

A detailed explanation of how the launch files are set up and how to include a new node into the
launch file will follow. The launch file can be found at the github repository under launch: This
years Github Repository (Raspberry Pi) 2024, This years Github Repository (VIM3) 2024

Importing necessary modules for the ROS 2 launch file:

from launch import LaunchDescription

from launch_ros.actions import Node

import random

• LaunchDescription from launch: Used to create a description of the launch, essentially a
script that ROS 2 will execute.

• Node from launch ros.actions: Represents a ROS node, which is a process that performs
computations.

• random: A standard Python library used here to generate random numbers.

Configuration Variables

sample_time = 10.0 # Sample time in seconds (float)

n_sensors = 5 # How many sensors that are in use

transfer_delay = 6.0 # How long transferring data takes in seconds(float)

modem_IP = '192.168.42.195' # IP for the modem

modem_port = 1100 # Port for the modem

precision = 2

These lines define various settings:

• sample time: The interval at which sensors sample data.

• n sensors: Total number of sensors involved in the system.

• transfer delay: Time taken to transfer data, likely used in communication configurations.

• modem IP and modem port: Networking details for modem communication.

• precision: Related to data precision in logging or data handling.

Random Time Generation

Random generator to avoid deadlocks

lower_bounds = [2, 4] # Seconds

upper_bounds = [4, 6] # Seconds

random_bounds = [

random.randrange(lower_bounds[0]*1000, lower_bounds[1]*1000, 200),

random.randrange(upper_bounds[0]*1000, upper_bounds[1]*1000, 200)

]

40

These lines implement a mechanism to generate random timing intervals (in milliseconds) to avoid
potential deadlocks in operations:

• lower bounds and upper bounds define the minimum and maximum intervals.

• random bounds generates random numbers within these specified ranges, converted to milli-
seconds.

Node Configuration and Implementation

def generate_launch_description():

return LaunchDescription([

Node(

package='sensor_oxygen',

namespace='sensors',

executable='oxygen_publisher',

name='oxygen',

parameters=[{'sample_time': sample_time}]

),

Node(

package='sensor_thermometer',

namespace='sensors',

executable='thermometer_publisher',

name='thermometer',

parameters=[{'sample_time': sample_time}]

),

])

Each Node in the launch description represents a ROS node:

• package: The ROS package containing the node’s executable.

• namespace: A ROS namespace under which the node operates, helps in organizing nodes.

• executable: The executable file within the package to run.

• name: A unique identifier for the node in the system.

• parameters: Configuration parameters the node needs, here defining the sample time.

Adding a new node

To add a new node, such as a pressure sensor, append another Node instantiation to the list in the
generate launch description function:

Node(

package='sensor_pressure',

namespace='sensors',

executable='pressure_publisher',

name='pressure',

parameters=[{'sample_time': sample_time}]

),

More information is found at Open Robotics 2024

41

4.3.5 Implementation of the VIM3

To set up the VIM3, several software-related configurations were performed to ensure optimal
performance. Initially, the VIM3 came preinstalled with Ubuntu 22.04, eliminating the need to
flash the Ubuntu OS onto a SD card. The fist step involved logging into the SBC using the default
username and password: ”khadas”. Then, a system update was conducted using an Ethernet cable
for internet connectivity. The following commands will install any new software versions and is
recommended to be executed regularly for system maintenance:

$ sudo apt−get update
$ sudo apt−get upgrade

WiFi connection
To establish a WiFi connection, one can follow the guide provided by Khadas regarding the VIM3
(WiFi 2024). This step by step guide requires Network Manager preinstalled to access the Network
Manager Command-line Interface (NCMLI) commands.

Begin by installing Network Manager if not already done:

$ sudo apt i n s t a l l −y network−manager
$ sudo sys t emct l s t a r t NetworkManager . s e r v i c e

Next, scan for available WiFi networks using nmcli:

$ nmcli d w i f i l i s t

Then, establish a WiFi connection using the following command, replacing ”your ssid” and ”your password”
with your SSID and password:

$ sudo nmcli d w i f i connect y o u r s s i d password your password

It is recommended to use mobile WiFi for simpler connection due to fewer security measures.

Finally, verify WiFi connection by using the following command:

$ ip a

This command will display the SBC’s IP address if the WiFi connection is established. The
command is equivalent to ”IP address show”. If connected, the IP address will show under ”wlan0”
next to ”inet”, otherwise it will display ”ff:ff:ff:ff:ff:ff”. This command is also useful for establishing
a ssh connection.

In order to establish automatic WiFi connections on startup, an additional package is required.
This package is called netplan.io and is a utility for easy configuration of networks on a linux-based
system. First you need to download the package by typing the following command:

$ sudo apt i n s t a l l netp lan . i o

Listing 8: Installation of netplan.io

After the package is downloaded you will find a new directory, /etc/netplan, which you should
navigate to in order to create the configuration file, using the following commands:

$ cd / e tc / netplan
$ sudo nano 50−cloud− i n i t . yaml

Listing 9: Navigating to and creating the network configuration

When the .yaml file has been created you need to follow the steps in section 4.3.6 in order to set
up automatic WiFi connection on startup.

Downloading ROS 2 packages
The next step in this process involves downloading ROS 2 packages. The installation of ROS 2

42

was done by following the guide for installing the Debian packages for ROS 2 Humble Hawksbill
provided by Open Robotics (Ubuntu (Debian packages) 2024). ROS-Base is the utilized version
of ROS, which is the bare bones version containing only the necessary packages for a headless
computer making it suitable for the VIM3.

The steps begin with setting up sources:

$ sudo apt i n s t a l l so f tware−prope r t i e s −common
$ sudo add−apt−r e p o s i t o r y un ive r s e
$ sudo apt update && sudo apt i n s t a l l c u r l −y
$ sudo c u r l −sSL https : // raw . GitHubusercontent . com/ ros / r o s d i s t r o /

↪→ master / ros . key −o / usr / share / keyr ing s / ros−arch ive−keyr ing .
↪→ gpg

Next, add the repository to the sources list:

$ echo ”deb [arch=$ (dpkg −−pr int−a r c h i t e c t u r e) s igned−by=/usr / share
↪→ / keyr ings / ros−arch ive−keyr ing . gpg] http :// packages . ro s . org /
↪→ ros2 /ubuntu $ (. / e t c /os−r e l e a s e && echo $UBUNTU CODENAME)
↪→ main” | sudo tee / e t c / apt / sour c e s . l i s t . d/ ros2 . l i s t > /dev/
↪→ n u l l

After setting up the repositories, update and build the apt repository caches:

$ sudo apt update
$ sudo apt upgrade

Then, download the ROS - Base and development tools:

$ sudo apt i n s t a l l ros−humble−ros−base
$ sudo apt i n s t a l l ros−dev−t o o l s

Finally, source the setup script by replacing ”.bash” with your shell if you’re not using bash.

$ source / opt / ros /humble/ setup . bash

Downloading essential packages and libraries
To run the program on the VIM3, additional package downloads is required. These external lib-
raries are essential for ensuring optimal performance. For using the Atlas Scientific EZO sensors,
the SBC needs to install both python-smbus and I2C-tools. The smbus package facilitates com-
munication between the python3 code and the I2C devices, while the I2C-tools package provides
command-line tools for I2C related operations.

To download these packages, run the following commands:

$ sudo apt−get i n s t a l l python3−smbus
$ sudo apt−get i n s t a l l i2c−t o o l s

The remaining essential packages are downloaded using the Python packet manager (PIP):

$ sudo apt i n s t a l l python3−pip

Next, install Unetpy, a Python package that provides interaction with modems running UnetStack:

$ pip i n s t a l l unetpy

Finally, install Adafruit GPIO, a package that establishes communication with the ADC by util-
izing a specific library formed by their manufacturer:

$ pip i n s t a l l Adafruit−GPIO

43

I2C configurations
To be able to use the I2C-pins on the VIM3, I2C needs to be enabled. This can be done by editing
the device tree overlays’ configuration file and adding an I2C node to fdt overlays.

To edit the configuration file, use the following command:

$ nano / boot /dtb/ amlogic /kVIM3 . dtb . over l ay . env

Then, add the I2C node to the fdt overlays:

$ f d t o v e r l a y s=i2c3

Finally, save and exit the file and reboot the SBC for the changes to take effect.

Fetching the GitHub files
To use the program on the VIM3, adjustments to the GitHub files were necessary. Unlike the
Raspberry Pi, which uses the I2C bus 1, the VIM3 uses I2C bus 3 for I2C communication. Since
the program was designed for the Raspberry Pi, adjustments were made in the program to change
all references from I2C bus 1 to 3, thus making it compatible with the VIM3. These following
instructions for downloading and running the GitHub files can also be found in the README.md
file in the GitHub repository.

Begin by fetching the files from the GitHub repository:

$ g i t c l one https : // GitHub . com/ErjokAguto/SUMS

Next, build all the packages with init.py:

$ python3 i n i t . py

Then, source the setup files:

$. i n s t a l l / setup . bash

Finally, launch all the nodes:

$ ros2 launch launch / senso r . launch . py

Automatic launch
To automatically start the ROS 2 program when booting up the VIM3, utilize the system and
service manager (systemd). The systemd service will launch at startup and run every node in the
SUMS workspace, making the sensing rig collect data the moment it is powered. This following
step-by-step guide will set up automatic launch:

Create a systemd service unit file:

$ sudo nano / e tc / systemd/system/ ros2 SUMS startup . s e r v i c e

Edit the service unit file and insert the following lines. Make sure you insert the correct username
in the file

[Unit]
De s c r ip t i on=ROS2 SUMS automatic launch s e r v i c e .
After=network . t a r g e t

[S e r v i c e]
ExecStart=/bin /bash −c ” source /home/<user>/SUMS/ i n s t a l l / setup . bash &&

↪→ ros2 launch launch / senso r . launch . py”
WorkingDirectory=/home/<user>/SUMS
StandardOutput=s y s l o g
StandardError=s y s l o g

44

S y s l o g I d e n t i f i e r=ros2 SUMS startup
Restart=always
User=<user>

[I n s t a l l]
WantedBy=multi−user . t a r g e t

Listing 10: Editing the service unit file

Save and close the file before enabling and starting the service:

$ sudo sys t emct l enable ros2 SUMS startup . s e r v i c e
$ sudo sys t emct l s t a r t ros2 SUMS startup . s e r v i c e

To verify the status of each running node after the service startup, use the following commands to
display all active ROS2 nodes:

$ ros2 node l i s t

Tuning the RTC
To ensure correct timekeepig, the built-in RTC in the VIM3 required configuring. The RTC needed
to be tuned into the correct timezone.

To change the systems timezone to Europe/Oslo, use the following command:

$ sudo t imeda t e c t l set−t imezone Europe/ Oslo

To verify the changes, use the following command:

$ t imeda t e c t l

4.3.6 Network configuration

It is very important for the Raspberry Pi and Khadas VIM to have a network connection during
development. In order to download, install, update and upgrade the computers, it needs to be
online so it can grab the necessary packs and files. With Ubuntu, setting up and changing the
network configuration is quite easy. The configuration file is a .yaml-file, which you will have to
navigate to. Then you will have to open the 50-cloud-init.yaml-file in the editor, like shown in
listing 11.

$ cd / e tc / netplan
$ l s
50−cloud− i n i t . yaml
$ sudo nano 50−cloud− i n i t . yaml

Listing 11: Navigating to network configuration

The code should look something like in listing 12. In the file there are two sections; one for an
ethernet connection and one for WiFi. To establish an ethernet connection, it is pretty straight
forward, as both the RPi and Khadas VIM has an ethernet port. If you are looking to establish
a WiFi connection you will have to be changed in order to fit the desired network, meaning you
will have to change the ”network name” and ”password” to the network you want to establish a
connection with. If you want the rigs to work on multiple networks, you will have to add multiple
”network name” and ”password” sections. If this is done, the computer will prioritize trying to
connect with the first network, and if it doesn’t work, it will try the next in line.

1 network :
2 r endere r : networkd
3 e t h e r n e t s :
4 eth0 :

45

5 # S t a t i c IP−address f o r e the rne t
6 addre s s e s :
7 − 192 . 168 . 0 . 69/24 # wanted s t a t i c IP−address
8 # Host IP−address f o r e the rne t
9 route s :

10 − to : d e f a u l t
11 v ia : 1 9 2 . 1 6 8 . 0 . 1
12 nameservers :
13 addre s s e s : [8 . 8 . 8 . 8 , 1 . 1 . 1 . 1]
14 ve r s i o n : 2
15 w i f i s :
16 wlan0 :
17 dhcp4 : t rue
18 o p t i o na l : t rue
19 acces s −po in t s :
20 ”<WIFI NAME>” :
21 password : ”<WIFI PASSWORD>”
22 # S t a t i c IP−address f o r WiFi
23 addre s s e s :
24 −192.168.121.50/24 # wanted s t a t i c IP−address
25 nameservers :
26 addre s s e s : [4 . 2 . 2 . 2 , 8 . 8 . 8 . 8]
27 # Host IP−address f o r WiFi
28 route s :
29 − to : d e f a u l t
30 v ia : 192 . 168 . 121 . 99

Listing 12: Inside the network configuration file

It will also be beneficial to set a static IP-address for the computers. Whenever you establish
an internet connection, either via ethernet or WiFi, an IP-address will be given to the device.
However, this IP-address might change every time you connect to the internet, which isn’t ideal
for the development and use of the rigs. This means you would have to log on to the computer
directly and grab the IP-address if you would want to access it. For a sensor rig that is meant
to be sealed shut, it makes it quite difficult to work with it. Setting a static IP-address will
prioritize giving a specific IP-address to the device, which eliminates the problem of not knowing
the IP-address after connecting to a network. To set a static IP-address, you will have to access
the same file as previously, 50-cloud-init.yaml. When you are there, there are sections under both
ethernets and WiFis called addresses, nameservers and routes. The nameservers addresses should
be as shown in listing 12. For the next part you will have to find the routers IP-address. This can
easily be done by navigating to home on the computer, and writing the command for grabbing
the routers IP-address, like shown in listing 13. Note that in order to do this, you will have to be
connected to the network.

$ ip r

Listing 13: Finding host device IP-address

Navigate back to the 50-cloud-init.yaml-file, then change the IP-address under addresses, to the
desired address. This address have to share the first three numbers with the routers IP-address,
for example if the routers IP-address is 192.168.90.1, you will need to set a static IP-address as
192.168.90.x/24, where x can be any number from 1 to 254, but can’t be the same as the routers
IP-address, and 24 is the subnet mask (255.255.255.0), which may also vary based on your provider.

If a mobile hotspot is being used, the host IP-address may change from time to time, so setting
a static IP-address might be moot. It works and is proof of concept, though from a development
point of view, it would be beneficial to be connected to a router when working on the rigs.

46

4.3.7 Configuring RTC on Raspberry Pi

Configuring the RTC on Raspberry Pi proved more challenging than first anticipated. The follow-
ing tutorial from the raspberry pi forums ended up providing a solution to the issues:
RTC-tutorial.

Prerequisites

1. Working internet connection

2. An up to date Ubuntu Server

$ sudo apt−get update
$ sudo apt−get upgrade

Configuring the RTC

• Check the RTC drivers are installed. This should run without an error.

$ sudo modprobe r t c −ds1307

• Create the new RTC interface

$ sudo bash
$ echo ds1307 0x68 > / sys / c l a s s / i2c−adapter / i2c −1/new device
$ e x i t

• Set the correct time to RTC

$ sudo hwclock −r
$ date
$ sudo hwclock −w

• Load RTC drivers at boot up, navigate to the following file and add the following line.

$ cd / e tc /modules−load . d
$ sudo nano modules . conf

1 rtc −1307

Listing 14: Inside the module.conf file

• Create interface and sync the time at boot. Create rtc file and add the following lines:

$ cd / e tc /
$ sudo nano r t c

1 #! / bin /bash
2 #t h i s i s the s c r i p t to be executed at boot to c r e a t e the r t c i n t e r f a c e
3 echo ' ds1307 0x68 ' | sudo tee / sys / c l a s s / i2c−adapter / i2c −1/new device
4 sudo hwclock −s

Listing 15: Inside the rtc file

• Make the script executable by setting correct file permissions

$ sudo chmod 755 r t c
$ sudo chmod +x r t c

47

https://forums.raspberrypi.com/viewtopic.php?t=330201

• Create and enable rtc.service file in system folder

$ cd / e tc / systemd/system/
$ sudo nano r t c . s e r v i c e

1 #t h i s c a l l s the r t c s c r i p t at boot to c r e a t e the r t c i n t e r f a c e new device
2 [Unit]
3 Desc r ip t i on=RTC Clock
4 Before=cloud−i n i t −l o c a l . s e r v i c e
5 Requires=systemd−modules−load . s e r v i c e
6 After=systemd−modules−load . s e r v i c e
7 [Type]
8 Type=oneshot
9 [S e r v i c e]

10 ExecStart=/etc / r t c
11 [I n s t a l l]
12 WantedBy=multi−user . t a r g e t

Listing 16: Inside the rtc.service file

$ sudo sys t emct l s t a r t r t c . s e r v i c e
$ sudo sys t emct l enable r t c . s e r v i c e

If this outputs something like the following, you have succesfully configured the RTC.

” Created symlink / e t c / systemd/ system/ multi−user . t a r g e t . wants/ r t c . s e r v i c e −>
 / e t c / systemd/system/ r t c . s e r v i c e . ”

Final test

• Reboot and check system time and RTC time.

$ reboot
$ date
$ sudo hwclock −r

4.4 Further work

Computer vision
The implemented computer vision algorithm is as of now in a state of proof of concept. This
means it needs a lot of work in the future in order to make it appropriately working for some
specific wildlife monitoring task. The ROS 2 module is working, and the camera recognizes objects
in images that are stored locally every 10 seconds. If there has been some recognition, and if
requested, information from the camera is sent through the modem. The algorithm is trained on
facial recognition in order to better test the data pipeline during integration and development. A
new training of the object recognition algorithm is therefore needed for each wildlife species
that one wishes to be monitored. There is also the need for developing a trigger for the camera to
start, in order to save battery and not have the camera running at all times. Lastly there needs to
be discussed what to do with the data. For example, should it be saved, or only sent through
the modem once there is a pull request for data.

VIM 3
To enhance the performance of the VIM3, it’s essential to effectively utilize the additional pro-
cessing power. Featuring an unused NPU chip, this becomes a huge area of improvement for future
developers given the many applications such a chip can have. Furthermore, considering the avail-
able processing power and a 128 GB SD card, adjustments to the GitHub files/code are necessary
to optimize the performance of the sensing rig.

48

Others
Other things that need work is: Testing and calibrating the battery node and the auto shutdown
node. The auto shutdown node works, but it has only been tested when the Raspberry Pi is
connected through USB and the battery percentage is off. This needs to be tested with the battery
that is going to be used and confirm that the battery percentage is showing correct battery level.

Cleaning up all code. The code from this years thesis has been added on top of last years thesis
and are not written in the same style and may cause confusion for later development. The main
things that needs to be fixed are a set way of implementing nodes. In the setup.py file there are
no standard way of naming nodes. From last years thesis the nodes contain two python scripts.
One containing the actual code and one main file that is running the code from the other script.
In this years thesis all code and execution are written in the same script.

5 Tests

One crucial step in this process involves conducting various tests to verify and document the
performance of the sensing rigs. The main motivation for these tests is to establish proof of
concept, particularly due to the demanding integration of the camera, which introduces both image
processing and transmission over the acoustic modem. Other key motivations includes validation
of performance under various conditions and identification of issues and areas of improvement.

NOTE: A full tutorial on how to perform tests can be found in the PA-folder. The tutorial will
be referred to in this section.

5.1 Preliminary testing

In the early stages of the project, the main focus was getting familiarized with the system. To
gain an understanding of how the system worked, as well as how to navigate the workspace in the
Ubuntu OS. Before testing, ensuring a sealed rig, and starting sensor readings were both necessary
(Section 1.2 and 1.3 of the Testing Tutorial). At this early stage, the group did not have the
experience to connect via SSH, and a camera module was not yet implemented.

Once the sensor were running and the rig was sealed, the test could take place. In communication
with Stefano Bertelli, the pool in Forsøkshallen (D0050) was filled with water, for testing to take
place on the 7th of Feb. The quality of sensor readings were not of major concern for the group for
this test, but rather just identifying that there were in fact readings and how to locate them. What
was already known from previous projects was that the current readings were off, and displayed
only 0.00 mA.

5.2 Final tests

To finalise the project, a field test was planned to evaluate the performance of the rigs in real-world
conditions. For a field test to be conducted, cooperation with another group that was responsible
for communication between modems, was necessary. However, despite the groups best efforts, and
with the aid of supervisor Damiano, an integration of projects with the necessary group did not
materialize.
Due to this, the final test was conducted inside, at the university, with the purpose of highlighting
the progress made during this years project. The test was conducted on Friday 10Th of May in
D0050 (Forsøkshallen).

5.2.1 Objectives

The objective of the final test is to display improvements made to the rigs.

49

(a) The rigs being submerged in the pool
for preliminary testing (b) Results after preliminary testing

• Collect real-time sensor reading - The success-criteria will be determined by proper time
stamping and sensor readings when gathering the data.

• Capture underwater photos at set intervals - The success-criteria will be determined
by distinguishable pictures taken in the pool.

• Use Computer Vision to recognize human faces - The success-criteria will be determ-
ined by green boxes outlining faces when reviewing the images after testing.

• Evaluate waterproofing and durability of rigs - The success-criteria will be determined
by any leaks or damage to any part of the rigs.

• Operate the rigs via SSH - The use of SSH during final tests will verify the functionality.

5.2.2 Execution

1. Connecting the rigs to mobile hotspot
To be able to perform the tests, SSH connection needed to be established. Section 1.1 of the
testing tutorial covers how to set up the network configuration of the rigs. The computer
was connected to the same hotspot, and the rigs were all accessible via laptop.

50

Figure 46: IP-address for blue-rig final test

2. Preparing rigs for submersion into water
Before the rigs could be submerged into the testing pool, a vacuum test was performed.
The vacuum test is covered in detail in section 1.3 of the testing tutorial. Additionally, the
acoustic modems were connected to the rigs for a more realistic approach to the final test.
The modems were not of any use in the final test, but rather to resemble the operational
conditions of the rigs.

(a) Vacuum test performed on black rig (b) All rigs ready for submersion

3. Run ROS2 nodes
When performing the test, the sensor readings and camera needed to begin before submerging
the rigs into water, as the hotspot connection is lost when submerged. Due to this, setting up
sensor interfaces and running ROS2 nodes needed to be done just before the test occurred.
This was done by:

• Navigate to the bachelor-2024 workspace

$ cd bachelor −2024/

51

• Setting up the sensor interfaces:

$ source i n s t a l l / setup . bash

• Run the ROS2 nodes

$ ros2 launch launch / senso r . launch . without . shutdown . py

Note that the launch command is without shutdown module. This is because the battery
percentage module is not fine tuned, and can cause the system to shut down without there
actually being any risk of damaging the battery. By running the nodes the following way,
you will include the auto-shutdown module.

$ ros2 launch launch / senso r . launch . py

4. Perform tests
To validate the objectives for the final tests, different aspects of the rigs had to be tested.

Figure 48: Submerging the rigs into the pool for final tests

• All rigs were submerged underwater to evaluate waterproofing and durability of the rigs.

• The black and blue rigs both took pictures underwater to assess the capability and
quality of underwater photos. A Coke bottle was placed in front of the camera lens at
different distances, to assess the quality both close range and further away. In addition
to this, a hand-watch was placed in front of the camera to see how detailed the pictures
were. Being able to read the time would deem the result good.

• The red rig was used to evaluate the computer vision algorithm to recognize human
faces. This test was not performed underwater. The group members that conducted
the final test were the subjects for this test.

5.2.3 Results

Real-time sensor readings
The implementation of the DS3231 RTC worked as intended, with both rigs using this achieving
real-time collection. The VIM, which has an integrated RTC, did not manage proper time stamp-
ing. The RTC batteries that were ordered, did not arrive in time for testing, which means that
this part of the test went as expected. The following test results are from two minutes of testing,
with intervals of ten seconds. It is important to once again note that the quality of data was not
a focus area for this years project, but rather just collecting any data using the sensors.

52

Figure 49: Pressure test results

The expected average atmospheric pressure is 1013 mBar. The red rig was tested on land and
showed a pressure reading between 1012-1017. According to expected result, this is showing correct
pressure readings.
The blue and the black rig was tested submerged in the testing pool. By using the formula:
P = ρ · g · h The result should be 1013mBar + 49mBar = 1062mBar. From the results it is clear
that the blue rig is measuring too low pressure and the black rig is measuring too high pressure.
This indicates that the calibration of the pressure sensor needs to be addressed.

Figure 50: Temperature test results

The sensor readings from the temperature sensor show that the red rig measures the highest
temperatures, which makes sense as this was done in room temperature, while the water in the
testing pool was slightly cooler. One can also notice that there is a difference between the black
and blue rig, which suggest that these sensors require some form of calibration, as the environments
were practically identical when testing.

53

Figure 51: Voltage readings

The voltage readings show some slight differences, most notably in the red rig. The black and
blue rig demonstrate quite stable voltage readings, while the red rig displays some variation in
voltage, particularly in the initial readings. These fluctuations could be random, but they can
also be caused by a slight difference in the test conditions. As the red rig uses the VIM3, in
comparison to the other two rigs, the red rigs power consumption and regulation could result in
less stable voltage readings. The results may also be due to the testing environment. As the red
rig was tested in an open cylinder above water, while the other two were tested in a vacuum sealed
cylinder underwater.

54

Figure 52: Oxygen test results

The dissolved oxygen results were not as expected. Both the black and red rigs were not expected
to provide any results, as the Atlas sensors on these rigs were facing issues, and I2C connection
could not be established. The blue rig however, managed to establish I2C connection to all sensors,
and should therefore provide some sensor readings. This issue is worth pursuing for further work.

Figure 53: Conductivity test results

Similarly to the dissolved oxygen test, the results from the salinity sensor, measuring conductivity,
was not as expected. The black rig had a malfunctioning salinity sensor, so these readings were
expected, but once again, the blue rig not having any measurements warrants concern. Both the
red and blue rig established I2C connection to the salinity sensor, however only the red rig actually
collected data from the sensor.

55

Capturing underwater photos
In our underwater sensing rig test, we evaluated the capabilities of the system by capturing three
distinct images. The first two images featured a Coke bottle, one taken from a close distance and
the other from a further distance, to assess the rig’s ability to maintain clarity and detail at varying
ranges. The third image captured a hand watch, chosen specifically to evaluate the rig’s precision
in capturing fine details and intricate features underwater. These images provided a comprehensive
assessment of both the resolution and the range of the sensing rig, allowing us to determine its
effectiveness in capturing clear and detailed underwater photographs.

Figure 54: Close up picture

Figure 55: Distance picture

56

Figure 56: Picture to assess detail

Computer vision to recognize faces

To test the computer vision capabilities of our sensing rig, we used an algorithm initially trained
on human faces, with plans to retrain it for detecting fish. The test involved capturing images
above water, where the algorithm was evaluated on its ability to detect objects and highlight
them with a green box. The algorithm successfully identified and marked these faces in the
test images, demonstrating its fundamental object detection capabilities. This above-water test
provided a preliminary validation of the detection framework, showcasing its potential and setting
the groundwork for future training with fish-specific datasets to enhance accuracy and applicability
for underwater detection.

Figure 57: Computer vision algorithm recognizing faces

57

Figure 58: Computer vision algorithm recognizing more faces

6 Discussion

This chapter discusses various aspects of the project, including identified opportunities, challenges
faced and suggestions for further work. By analyzing these areas, we aim to provide a greater
understanding of the project’s progress and potential improvements for future iterations.

6.1 Opportunities identified

Throughout the project, several opportunities to implement ideas that were not initially planned,
but proved beneficial where encountered. This section aims to analyze these ideas, focusing on
why such implementations were performed and their convenience for the project.

6.1.1 Electronics

In terms of electronics, the introduction to the VIM3 was a significant enhancement for improving
the processing capabilities of the sensing rig. The decision to switch from the Raspberry Pi to
the VIM3 on the red rig was made after one incident where the Raspberry Pi stopped working
and required replacement. After a design review, it was concluded that the VIM3 offered superior
performance and accessibility compared to the Raspberry Pi.

Another identified opportunity was the installation of cobalt connectors on all rigs, which facilitated
for data extraction from the sensing rigs without the need for opening them. Additionally, the
sorting and soldering of Ethernet cables was an identified opportunity which improved the overall
manageability of the cables. These adjustments were made to enhance overall reliability and
functionality of the electronic system in the sensing rig

6.1.2 Enclosure

The implementation of the camera required waterproofing in some way or another. There was a
number of different ways being discussed based on the goal of the project, the specifications and
limitations of the rigs. The first decision was figuring out what camera to use. There were generally
two possible directions being discussed; one being a camera developed for underwater-use, where
the camera is encased in steel as a method for waterproofing. In this case there wouldn’t be the
need of making a camera house. The other option was using a standalone camera and developing
a waterproof camera house which the camera will sit in. The front would be a window made of
acrylic or a similar material, such as plexiglasss, allowing the camera to see outside the enclosure.

58

For the underwater camera, the cons outweighed the pros. As these cameras are generally very
expensive and give very little flexibility. The only pro was eliminating the need for creating a
camera housing. Going for the standalone camera gives a lot more flexibility as you can choose
the desired camera based on specifications and use-cases, as well as being easier to use and make
changes to. It’s not necessarily a cheaper option, it just depends on the camera you choose.

After choosing the standalone camera, there was still a decision in how to implement it into the
sensing rigs, in terms of waterproofing. The first idea that was being explored was having an extra
enclosure just for the camera. The early sketches of the enclosure were based on that idea, but
this would have created a couple of challenges. First and foremost, there would have been the
need to mount this extra enclosure on the sensing rigs. This is an easy task in theory, but there
might not have been good way of doing it. Since the sensing rigs already consists of two tubes and
a big communication-modem, a problem might occur when being mounted onto the ROVs. The
second problem would be the wiring; USB-c cables generally have a high data transmission speed,
but they are also quite intricate, meaning cutting the cables could easily lead to the cables losing
a lot of its properties. Another idea was having a rounded glass dome as the camera enclosure,
which would be attached to the rigs, like the BlueRobotics dome. The problem with this would
have been fitting the camera inside and mounting it, as well as the camera would not have 180
degrees vision anyways. Based on this, it was concluded it was better to create a custom housing
to fit the size and specifications of the chosen camera.

There was also the need for changing some of the parts used inside the sensing rigs. However,
before this could be done, access to the editable CAD-files was needed, which was not available.
Therefore there was a case of converting the .stl-files that was available, into .step-files that could
be worked on. A good way to convert the files is yet to be found, but there has been created a
guide in section 3.3.3 on how to do it in a working way. This method imports the .stl-files as a
mesh, which will then be further converted into a solid CAD-model. Like mentioned in the guide,
there might be created some holes in the process, which will need to be patched before 3D-printing.
After the needed models had been converted, they could be edited and changed accordingly. The
Raspberry Pi mount was changed to fit the Khadas Vim3 instead, the track plate was changed to
fit the new Khadas Vim mount, the I2C-splitter stand was changed to allow the board to sit the
other way around, there was created a mount for the I2C and there was made a CAD-file for the
main plate.

6.1.3 Software

A new node has been implemented in the ROS workspace for auto-shutdown. This has been done
in order to not discharge the battery and lose data or damage parts of the rig. The node starts
an auto-shutdown when the battery goes below 20%. Further testing and calibration is though
needed in order to guarantee success.

The plan for computer vision was to implement recognition of marine wildlife, especially fish.
Because we had no access to good training data for fish, and not enough time to do training and
testing for good results. The computer vision has been implemented with facial recognition. This
has made it much easier to implement and to deal with arising problems.

6.2 Challenges

Throughout the project, several challenges were encountered, impacting the progress and func-
tionality of the sensing rigs. This section highlights the main challenges faced and the issues
encountered along the way.

6.2.1 Electronics

The project faced several challenges related to electronics. One of the main issues was the defective
Atlas sensors on the black and red sensing rigs. The functioning Atlas sensors were the conductivity

59

sensor on the red rig and both sensors on the blue rig. The faulty senors could not be detected
over I2C. New Atlas sensors were ordered, but could not be delivered in time for final tests. Due
to this, the group were unable to solve this challenge.
The RTC battery for the VIM3 was ordered, but ultimately was not located after delivery.

While testing the black rig with the faulty Atlas sensors, the Raspberry Pi became faulty itself.
With the RPi being stuck in the boot-up phase. This incident posed the best opportunity to con-
duct a design review to replace the Raspberry Pi with the VIM3, improving the rig’s performance.

Another challenge arose when replacing the acoustic modem from SubNero to EvoLogics. This
required the group to replace the SubConn cable due to the difference in cable connectivity on the
modems. To solve this, the group made testing cables, while also ordering pigtails for future use,
as it is more robust.

6.2.2 Enclosure

The first challenge related to the enclosure was making changes to the existing parts. Like men-
tioned in section 6.1.2, the problem started with the absence of CAD-files, which made it impossible
to make changes to the parts. Luckily, there was no need to completely recreate the parts. In
order to get an editable file you need to convert the .stl-file into a .step-file. A method for this was
developed and there was made a guide for this in section 3.3.3.

Like mentioned in section 6.1.2, the original plan for the camera enclosure was to have a standalone
housing mounted to the rigs, with wiring between them for communication between the camera
and the computer. Because of the intricacy of the USB-c cables this would have likely resulted
in reduced data transmission speed and poor picture quality. There may be workarounds to this,
but the camera housing extension of the original rigs ended up being a better solution as it saves
space and unnecessary waterproofing and wiring.

After the camera enclosure had been produced by the mechanical workshop, the vacuum testing
showed promising results, as the enclosure, while mounted on the sensing rigs, was completely
airtight. After setting everything up with the camera and wiring, another test was conducted, and
the enclosure was no longer airtight. A lot of time was spent making adjustments and vacuum
testing trying to figure out what the problem was. It is hard to say what exactly the problem
was, as multiple things were done before the last test, which ended with good results again. The
things that were done was cleaning inside the camera housing and the plexiglass, applying more
silicone gel, changing screws and applying silicone gel to the vacuum pumps. The changes to the
screws was made because the former screws would not tighten and instead spin around loosely.
The new screws were longer and went deeper into the holes. It is likely that the screw threads were
broken from tightening screws to hard, which happened after opening and closing the enclosure
many times. The longer screws would tighten, since they went further down into where the threads
were not broken. It also seemed like the vacuum pumps were not sitting right in the openings in
the rigs, which is why there was applied silicone gel to the o-rings on the pumps. After this they
looked more attached to the openings. There is a chance that all of these reasons contributed to
the rigs not being airtight, so it is important to remember this in the future to spare unnecessary
time spent trying to figure out what is causing the problem.

Currently the camera housing is equipped with 3mm plexiglass, which according to the simulations
done by the mechanical workshop will be safe from implosion as far as 50m underneath the surface.
The camera housing is created with support of plexiglass up to a thickness of 10mm. Replacing the
glass with thicker glass will result in an increased max depth for the sensing rigs. New simulations
will have to be done if these changes are made.

6.2.3 Software

Throughout the project there has been a lot of delays because of waiting for others. Because of
this the communication has not been fully tested. The ROS2 code ”should” be working, and it

60

runs smoothly, but we had problems with getting a hold of the communications group, so the
communication has not been actually tested with the modem they are supposed to work with. We
have also tried to get hold of training data for recognition of fish. This data came too late and
not prelabeled, resulting in it not being implemented. Therefore the computer vision is still in a
prototype state with facial recognition instead of recognition of marine wildlife.

6.3 Further work

6.3.1 Electronics

In section 2.4, there was made some suggestions for further work. Some of these are quite important
for the continuation of the project, while others are suggestions for quality-of-life changes.

• New sensors:
There may be need for new sensors, specifically the Atlas Scientific sensors since they seem
to be unstable. If it is decided to order new sensors, a design review should be put together
with an overview of the different products and their specifications. This should be used as
help in choosing the best sensors for the Sensing Rigs.

• Replacing Raspberry Pi’s:
It has already been stated that the Khadas VIM3 is a more powerful SBC than the Raspberry
Pi 4. In order to fully utilize the AI applications with the camera module, it will be beneficial
to replace the two remaining Raspberry Pi’s with Khadas VIM3. This will also provide the
Sensing Rigs with the same SBC’s, which makes it easier to develop the rigs further.

• Calibration:
The sensors will need recalibration, as some of the sensor data either isn’t quite right or
is unstable. Recalibrating the sensors ensures that the right values are being recorded and
evaluates the sensors. If any sensor needs to be changed, the new sensors will also need
calibration.

• Replacing SubConn cables:
As mentioned in section 2.4, there is the need of replacing the testing SubConn with SubConn
MCIL8F pigtails, as the testing SubConn only acts as a temporary feature. The procedure
is described in the section mentioned above.

• Wiring:
Sorting wires inside the Sensing Rigs could be beneficial for further development as it will
provide more overview, and decrease risk of short-circuiting and ruining parts. Addition-
ally, using Molex plugs where possible is advantageous as they provide flexibility and secure
connections. Lastly, it would be useful to have pinout tables for all connections where it is
needed, for overview purposes.

6.3.2 Enclosure

In section 3.4, there was made some suggestions on further work. Even though these are sugges-
tions, it is likely that they will have to be done at some point.

• File conversion: The file conversion is pretty straight forward, but can be quite tedious.
There are quite a few files that need converting in order to complete the library of parts.
This is not an urgent task, so it should not overshadow the main tasks in the project or
more important matters, but can be done either while waiting for orders or during some
downtime. The guide in section 3.3.3 could end up making a broken model, with missing
surfaces. Step 4 in the guide focuses on patching up the model if this happens, but it is
quite a flawed process. If a better way to patch the model is found, the guide should be
updated accordingly.

61

• Replacing the plexiglasss: This is another non-urgent task, but this is quite a quick fix and
doesn’t acquire much work. The mechanical workshop did not have any 10mm plexiglasss,
so this will have to be ordered. When the glass arrives, talk to the mechanical workshop and
they will aid in cutting out the plexiglasss to fit the camera housing. DO NOT conduct
any tests deeper than 50m until the 3mm plexiglasss is replaced as the pressure may break
it and fill the rigs with water. After replacing the plexiglasss, the mechanical workshop can
run a simulation which will set a new max recommended depth.

• Implementation of light for the camera: Sadly, there was not conducted any deep water
tests during this project, so the implementation of an external light is still a question-mark.
If deep water tests are conducted by the next group, it is important to assess the pictures
taken by the sensing rigs, and decide whether or not an external light is needed.

• Buoyancy: Currently, the communication modem and the tube including the battery are
the two heaviest objects on the sensing rigs, which means the rigs will turn in the water
and end up upside down. It is currently not known how the communication modem will be
affected by this, but the camera will end up in an 135°off-angle, which is not ideal. To fix this
the center of gravity of the sensing rigs needs to be shifted from the communication modem
to between the tubes of the sensing rigs and maybe even further down. Since the sensing
rigs can be mounted on the BlueROV, the solution may need to be detachable so it does not
interfere with the mounting. For further details, it would be beneficial to contact the team
working on the BlueROV.

6.3.3 Software

For future development the computer vision needs further development. Recommendations for
each of these topic will be listed down below:

• Optimizing battery life
These stations are typically deployed in remote and challenging environments, where access-
ibility for maintenance and battery replacement is limited. Ensuring efficient battery usage
directly impacts the longevity, reliability, and overall effectiveness of the monitoring systems.

• New algorithm:
Work needs to be done in figuring out what classes of wildlife needs to be recognized. For
example: 1. Fish, 2. Crabs, 3. Lobsters etc. Or differentiating between different types of
fish. Then a data collection needs to be done in order to make a dataset to train on. Here,
a biologist or similar should be contacted to help with figuring out distinguishing marks of
different types of wildlife. The two options for collecting data set is either collecting it by
yourself, or getting it from someone who already has it.

– Collecting by yourself will give the best results, as you can use the same camera,
collect videos from the correct depth, and the images will therefore be most similar to
real world conditions. This will take a lot of time as you need to collect enough data
as well as labelling all the data. There is also no guarantee you will get a big enough
dataset needed to get a good algorithm.

– Getting dataset from other will save alot of time and most likely give a much bigger
data sample. The downside is that the dataset might not resemble real world application
for your use. If this approach is used, we recommend contacting SINTEF and asking
for prelabeled data for training. They have a big dataset of salmon from a salmon pen.

• Creating a trigger for video capture:
There needs further development in creating a trigger mechanism for the computer vision
algorithm. The algorithm is very process demanding, and the camera don’t need to run
all the time. It can save a lot of battery only having the camera and the computer vision
algorithm running when needed. In order to do this we recommend creating another ROS 2
node with a motion detector. The camera can be used as the motion detector. This node
should publish to a topic, and the computer vision module can subscribe to this topic and
start running when needed.

62

• Post processing of images:
There needs further work in figuring out what to do with the camera vision module. At
the moment it saves an image every 10 seconds with a bounding box around each object in
the image. Saving this many images takes alot of storage space, and is only done to show a
proof of concept. The low bandwith of the modem also creates challenges. There needs to
be performed more tests with the modem to figure out best way to send information, and if
the images needs to be resized etc. Here is alot of options for further work. The computer
vision algorithm can for example be used only for counting different types of wildlife at all
times, and create a log. It can be used to send images in a set interval etc.

63

7 Conclusion

The development of the standalone underwater monitoring station has progressed significantly,
approaching closely with the overarching goal of providing valuable insight into aquatic environ-
ments. This iteration of the project has seen notable enhancements across all sections, bringing
the rigs significantly closer to fulfilling their ultimate purpose.

Starting with the electronics, the integration of the Intel RealSense camera stands out as a signific-
ant enhancement, endowing all three rigs with vision capabilities and enhancing their observational
capabilities. Furthermore, the implementation of the VIM3 into the red rig has provided greater
processing power and has enabled the utilization of AI applications for future use through its NPU
chip. Additional enhancement include adding a RTC to the Raspberry Pi’s for correct timekeeping.
These enhancements directly increases the rigs capabilities while simultaneously introduce a whole
new field of future development in AI applications.

In terms of enclosure design, the introduction of the water-resistant camera housing is the most
noteworthy enhancement. It effectively protects the camera from water intrusion to a maximum
depth of 50 meters without compromising field of view and minimizing distortion caused by the
glass. Moreover, the conversion of key components from .stl files to CAD models has contributed
to enhanced versatility and customization options for future development on the rigs.

Regarding software development, the implementation of computer vision algorithm has laid a solid
foundation for future work. The utilization of the YOLO algorithm, initially trained on facial re-
cognition, presents the opportunity for effective classification of underwater wildlife. Additionally,
the integration of the VIM3 ensured minimal differences between the three rigs regarding software,
setting the stage for future development with computer vision algorithms and increased processing
power. Further enhancements, such as the configuration of RTC on the Raspberry Pi’s and the
implementation of an auto shutdown module, contribute to the overall robustness of the sensing
rigs software.

Through extensive testing, the group aimed to validate and document the performance of the sens-
ing rigs. Initially, the plan to perform a final field test in real-world conditions did not materialize
due to cooperation issues with the communication group resulting in an unfinished communication
module. However, the group successfully managed to conduct the final tests, validating the pro-
gress made while documenting challenges and deficiencies. These deficiencies vary across the three
rigs. The most significant challenges relates to the defective Atlas sensors on the red and black
rigs, difficulties in submerging the rigs due to their floating nature in water, and an unfinished
communication module.

In conclusion, this iteration of the project has significantly contributed to the overarching goal by
enhancing all sections on the sensing rigs. By structuring the thesis into several sections focusing
on areas where development has taken place, it provides greater understanding and continuity
while serving as a solid foundation for future work. Furthermore, the abundance of step-by-step
guides for implementation amplifies this, while also ensuring scalability and reproducibility. While
challenges remain, the group has made significant progress during this iteration, setting the stage
for huge advancements in underwater monitoring technology.

64

Bibliography

Analogue to Digital Converter (2024). Eleectronics Tutorials. url: https : / / www . electronics -
tutorials.ws/combination/analogue-to-digital-converter.html (visited on 16th Apr. 2024).

Barrier Strip Terminal Blocks: A Guide to Electrical Connections (2024). North Park Group. url:
https://northparkgroup.com/barrier-strip-terminal-blocks/ (visited on 17th Apr. 2024).

BotBlox (2023). GigaBlox. url: https://botblox.io/content/GigaBlox%20DataSheet%20C E%20%
28Oct%202023%29.pdf (visited on 17th Apr. 2024).

Chai, Wesley (2024). CAD (Computer-Aided Design). url: https://www.techtarget.com/whatis/
definition/CAD-computer-aided-design (visited on 19th Mar. 2024).

Conductivity Kit (2024). Atlas Scientific Environmental Robotics. url: https://atlas- scientific.
com/kits/conductivity-k-1-0-kit/ (visited on 5th Apr. 2024).

D435 Depth Camera (2024). Intel RealSense. url: https://www.intelrealsense.com/depth-camera-
d435/ (visited on 20th May 2024).

Danielson, Shawnee (2024). What Is The Ethernet? url: https://robots.net/tech/what- is- the-
ethernet/ (visited on 17th Apr. 2024).

Dissolved Oxygen Kit (2024). Atlas Scientific Environmental Robotics. url: https://atlas-scientific.
com/kits/dissolved-oxygen-kit/ (visited on 5th Apr. 2024).

DS3231 (2015). Maxim Integrated. url: https://www.analog.com/media/en/technical-documentation/
data-sheets/DS3231.pdf (visited on 8th Apr. 2024).

Example of boundingboxes and label. (2024). Google. url: https://storage.googleapis.com/openimages/
web/visualizer/index.html?type=detection&set=train&c=%2Fm%2F0ch cf&id=6b548fb27158b129
(visited on 2024).

I2C Bus Splitter (2024). JM Robotics. url: https://www.jmrobotics.no/p/i2c-bus-splitter (visited
on 8th Apr. 2024).

Industries, Adafruit (2024). Adafruit 4-Channel ADC Breakouts. url: https://cdn-learn.adafruit.
com/downloads/pdf/adafruit-4-channel-adc-breakouts.pdf (visited on 16th Apr. 2024).

Kaggle, Your Machine Learning and Data Science Community (2024). Kaggle. url: https://www.
kaggle.com/ (visited on 2024).

Khadas VIM3 (2024). Armbian. url: https : / / www . armbian . com / khadas - vim3/ (visited on
15th Apr. 2024).

Knudsen, Sivert Berg and Peder Brandstorp (2023). A Standalone Underwater Monitoring Station
for Marine Wildlife Monitoring. Bachelor’s Thesis.

Last years Github Repository (2023). url: https://github.com/Pederbs/SUMS (visited on 2023).
Lipo Smart Battery Pack (2024). Tattu Plus. url: https://genstattu.com/tattu-plus-15c-12000mah-

6s1p-as150-xt150-plug-lipo-battery.html (visited on 19th Apr. 2024).
Mauser Electronics (2024). Molex/Mouser. url: https://no.mouser.com/ProductDetail/538-38770-

0106 (visited on 17th Apr. 2024).
Meaney, David (2024). What is a Real Time Clock. ECS Inc International. url: https://ecsxtal.

com/what-is-a-real-time-clock-rtc/ (visited on 8th Apr. 2024).
NOAA, National Oceanic ’and’ Atmospheric Administration (2024). Sea Water. url: https://www.

noaa.gov/jetstream/ocean/sea-water (visited on 19th Mar. 2024).
NOS, National Ocean Service (2024). Monitoring Oceans and Coasts. url: https://oceanservice.

noaa.gov/observations/monitoring/ (visited on 11th Mar. 2024).
Open Images Dataset V7 (2024). Google. url: https://storage.googleapis.com/openimages/web/

index.html (visited on 2024).
Open Robotics (2024). How to create launch file for ROS2 nodes. url: https://docs.ros.org/en/

foxy/Tutorials/Intermediate/Launch/Creating-Launch-Files.html (visited on 24th May 2024).
OpenCV (2024). Open Source Vision Foundation. url: https://opencv.org/ (visited on 30th Apr.

2024).
Power, Traco (2022). THN 15WIR Datasheet. url: https://docs.rs-online.com/56c5/0900766b816e9099.

pdf (visited on 8th Apr. 2024).
Power sense module (2024). Blue Robotics. url: https://bluerobotics.com/store/comm-control-

power/control/psm-asm-r2-rp/ (visited on 10th Apr. 2024).
Pressure Sensor (2024). Blue Robotics. url: https ://bluerobotics .com/store/sensors - cameras/

sensors/bar30-sensor-r1/ (visited on 5th Apr. 2024).

65

https://www.electronics-tutorials.ws/combination/analogue-to-digital-converter.html
https://www.electronics-tutorials.ws/combination/analogue-to-digital-converter.html
https://northparkgroup.com/barrier-strip-terminal-blocks/
https://botblox.io/content/GigaBlox%20DataSheet%20C_E%20%28Oct%202023%29.pdf
https://botblox.io/content/GigaBlox%20DataSheet%20C_E%20%28Oct%202023%29.pdf
https://www.techtarget.com/whatis/definition/CAD-computer-aided-design
https://www.techtarget.com/whatis/definition/CAD-computer-aided-design
https://atlas-scientific.com/kits/conductivity-k-1-0-kit/
https://atlas-scientific.com/kits/conductivity-k-1-0-kit/
https://www.intelrealsense.com/depth-camera-d435/
https://www.intelrealsense.com/depth-camera-d435/
https://robots.net/tech/what-is-the-ethernet/
https://robots.net/tech/what-is-the-ethernet/
https://atlas-scientific.com/kits/dissolved-oxygen-kit/
https://atlas-scientific.com/kits/dissolved-oxygen-kit/
https://www.analog.com/media/en/technical-documentation/data-sheets/DS3231.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/DS3231.pdf
https://storage.googleapis.com/openimages/web/visualizer/index.html?type=detection&set=train&c=%2Fm%2F0ch_cf&id=6b548fb27158b129
https://storage.googleapis.com/openimages/web/visualizer/index.html?type=detection&set=train&c=%2Fm%2F0ch_cf&id=6b548fb27158b129
https://www.jmrobotics.no/p/i2c-bus-splitter
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-4-channel-adc-breakouts.pdf
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-4-channel-adc-breakouts.pdf
https://www.kaggle.com/
https://www.kaggle.com/
https://www.armbian.com/khadas-vim3/
https://github.com/Pederbs/SUMS
https://genstattu.com/tattu-plus-15c-12000mah-6s1p-as150-xt150-plug-lipo-battery.html
https://genstattu.com/tattu-plus-15c-12000mah-6s1p-as150-xt150-plug-lipo-battery.html
https://no.mouser.com/ProductDetail/538-38770-0106
https://no.mouser.com/ProductDetail/538-38770-0106
https://ecsxtal.com/what-is-a-real-time-clock-rtc/
https://ecsxtal.com/what-is-a-real-time-clock-rtc/
https://www.noaa.gov/jetstream/ocean/sea-water
https://www.noaa.gov/jetstream/ocean/sea-water
https://oceanservice.noaa.gov/observations/monitoring/
https://oceanservice.noaa.gov/observations/monitoring/
https://storage.googleapis.com/openimages/web/index.html
https://storage.googleapis.com/openimages/web/index.html
https://docs.ros.org/en/foxy/Tutorials/Intermediate/Launch/Creating-Launch-Files.html
https://docs.ros.org/en/foxy/Tutorials/Intermediate/Launch/Creating-Launch-Files.html
https://opencv.org/
https://docs.rs-online.com/56c5/0900766b816e9099.pdf
https://docs.rs-online.com/56c5/0900766b816e9099.pdf
https://bluerobotics.com/store/comm-control-power/control/psm-asm-r2-rp/
https://bluerobotics.com/store/comm-control-power/control/psm-asm-r2-rp/
https://bluerobotics.com/store/sensors-cameras/sensors/bar30-sensor-r1/
https://bluerobotics.com/store/sensors-cameras/sensors/bar30-sensor-r1/

Raspberry Pi 4 (2024). Raspberry Pi Foundation. url: https://www.raspberrypi.com/products/
raspberry-pi-4-model-b/ (visited on 15th Apr. 2024).

Raspberry Pi 4 Tech Specs (2024). Raspberry Pi Foundation. url: https://www.raspberrypi.com/
products/raspberry-pi-4-model-b/specifications/ (visited on 15th Apr. 2024).

ROS documentation (2024). Open Robotics. url: https://www.ros.org/ (visited on 2024).
Sealution (2024). What is an O ring: all you need to know. url: https://sealution.eu/knowledgebase/

o-ring/ (visited on 19th Mar. 2024).
Sustainable Development Goals (2024). United Nations. url: https://www.un.org/sustainabledevelopment/

sustainable-development-goals/ (visited on 6th May 2024).
TATTU PLUS INTELLIGENT FLIGHT BATTERY (2024). Tattu Plus. url: https : / /www .

genstattu.com/content/Tattu-Plus.pdf (visited on 19th Apr. 2024).
Temperature Sensor (2024). Blue Robotics. url: https://bluerobotics.com/store/sensors- sonars-

cameras/sensors/celsius-sensor-r1/ (visited on 5th Apr. 2024).
This years Github Repository (Raspberry Pi) (2024). url: https://github.com/herkis/bachelor-2024

(visited on 2024).
This years Github Repository (VIM3) (2024). url: https://github.com/ErjokAguto/SUMS/tree/

main (visited on 2024).
Ubuntu (Debian packages) (2024). Open Robotics. url: https : / / docs . ros . org / en / humble /

Installation/Ubuntu-Install-Debians.html (visited on 26th Apr. 2024).
Ultralytics Installation (2024). Ultralytics Inc. url: https://docs.ultralytics.com/quickstart/ (visited

on 2024).
Ultralytics Training (2024). Ultralytics Inc. url: https : / / docs . ultralytics . com /modes / train /

#tensorboard (visited on 2024).
USB 3.1 Type-C Cables for Intel® RealSense™ Camera (2024). Newnex Technology Corp. url:

https://newnex.com/realsense-3d-camera-connectivity.php (visited on 9th May 2024).
USGS, U.S. Geological Survey’s Water Science School (2024). Conductivity (Electrical Conduct-

ance) and Water. url: https://www.usgs.gov/special - topics/water- science- school/science/
conductivity-electrical-conductance-and-water (visited on 19th Mar. 2024).

VIM3 (2024). Khadas Technology Co. url: https://www.khadas.com/vim3 (visited on 15th Apr.
2024).

WetLink Penetrator Installation Guide (2024). BlueRobotics. url: https://bluerobotics.com/learn/
wetlink-penetrator-installation-guide/ (visited on 1st May 2024).

What is Autodesk Fusion? (2024). Autodesk. url: https://www.autodesk.com/solutions/what-is-
fusion-360 (visited on 20th May 2024).

WiFi (2024). Khadas Technology Co. url: https://khadas.github.io/linux/vim3/Wifi.html (visited
on 26th Apr. 2024).

66

https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://www.ros.org/
https://sealution.eu/knowledgebase/o-ring/
https://sealution.eu/knowledgebase/o-ring/
https://www.un.org/sustainabledevelopment/sustainable-development-goals/
https://www.un.org/sustainabledevelopment/sustainable-development-goals/
https://www.genstattu.com/content/Tattu-Plus.pdf
https://www.genstattu.com/content/Tattu-Plus.pdf
https://bluerobotics.com/store/sensors-sonars-cameras/sensors/celsius-sensor-r1/
https://bluerobotics.com/store/sensors-sonars-cameras/sensors/celsius-sensor-r1/
https://github.com/herkis/bachelor-2024
https://github.com/ErjokAguto/SUMS/tree/main
https://github.com/ErjokAguto/SUMS/tree/main
https://docs.ros.org/en/humble/Installation/Ubuntu-Install-Debians.html
https://docs.ros.org/en/humble/Installation/Ubuntu-Install-Debians.html
https://docs.ultralytics.com/quickstart/
https://docs.ultralytics.com/modes/train/#tensorboard
https://docs.ultralytics.com/modes/train/#tensorboard
https://newnex.com/realsense-3d-camera-connectivity.php
https://www.usgs.gov/special-topics/water-science-school/science/conductivity-electrical-conductance-and-water
https://www.usgs.gov/special-topics/water-science-school/science/conductivity-electrical-conductance-and-water
https://www.khadas.com/vim3
https://bluerobotics.com/learn/wetlink-penetrator-installation-guide/
https://bluerobotics.com/learn/wetlink-penetrator-installation-guide/
https://www.autodesk.com/solutions/what-is-fusion-360
https://www.autodesk.com/solutions/what-is-fusion-360
https://khadas.github.io/linux/vim3/Wifi.html

	List of Figures
	Introduction
	Background
	Sustainable Development Goals
	Overview
	Prerequisites
	Technical Definitions
	Structure and Literature review
	System and Objectives

	Electronics
	Theory
	Sensors
	System Integration Components
	Raspberry Pi 4 Model B
	Khadas VIM3
	Real Time Clock
	Camera - Intel RealSense D435

	Previous Work
	Current state
	Further work
	Charging the LiPo battery

	Enclosure
	Theory
	Water and electricity
	Proofing
	Computer-Aided Design
	Fusion 360

	Previous work
	Current state
	Camera - Intel RealSense d435
	Enclosure
	Convert .stl to .step

	Further work

	Software
	Theory
	ROS2
	Git and GitHub
	Computer vision

	Previous work
	Current state
	Computer vision module
	Auto Shutdown Module
	Implementation through WinSCP
	Running multiple ROS2_nodes
	Implementation of the VIM3
	Network configuration
	Configuring RTC on Raspberry Pi

	Further work

	Tests
	Preliminary testing
	Final tests
	Objectives
	Execution
	Results

	Discussion
	Opportunities identified
	Electronics
	Enclosure
	Software

	Challenges
	Electronics
	Enclosure
	Software

	Further work
	Electronics
	Enclosure
	Software

	Conclusion
	Bibliography

