
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f I
CT

 a
nd

 N
at

ur
al

 S
ci

en
ce

s

Ba
ch

el
or

’s
th

es
is

Adrian R. Dahl, Ole T. Aanderaa, Simen H. Veum

Managing Data Retrieval in a Multi-
Tenant Environment

Bachelor’s thesis in Computer Science
Supervisor: Rituka Jaiswal
May 2024

Adrian R. Dahl, Ole T. Aanderaa, Simen H. Veum

Managing Data Retrieval in a Multi-
Tenant Environment

Bachelor’s thesis in Computer Science
Supervisor: Rituka Jaiswal
May 2024

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of ICT and Natural Sciences

Abstract

In an era where data accessibility and management are paramount, FiiZK Digital AS
sought to enhance the integration and accessibility of aquaculture data across various
platforms.

This bachelor thesis describes the development of a full-stack application, designed
to explore and implement multiple methods of data retrieval within a multi-tenant
environment, ensuring that customers can manage and access their data efficiently.

By utilizing a combination of .NET 8, Vue.js, PostgreSQL, and Docker, the group de-
veloped proof-of-concept REST, GraphQL, and Kafka-based solutions to provide three
different, robust, secure and scalable methods of data transfer.

This thesis also includes details about the development process, including challenges,
technological choices and how we used agile project management principles to organ-
ize and effectively develop our final product.

Sammendrag

I en tid hvor datatilgjengelighet og håndtering blir konstant viktigere, har FiiZK Digital
AS forsøkt å forbedre integreringen og tilgjengeligheten av akvakulturdata på tvers
av ulike plattformer.

Denne bacheloroppgaven beskriver utviklingen av en fullstack-applikasjon, designet
for å utforske og implementere flere datainnhentingsmetoder i et multi-tenant-miljø,
for å sikre at kunder kan administrere og få tilgang til dataene sine effektivt.

Ved å bruke en kombinasjon av .NET 8, Vue.js, PostgreSQL og Docker, har gruppen
utviklet proof-of-concept løsninger basert på REST, GraphQL og Kafka for å gi tre
forskjellige, robuste, sikre og skalerbare metoder for å håndtere data.

Denne oppgaven inneholder også detaljer om utviklingsprosessen, inkludert utfordringer
og teknologiske valg, og hvordan vi brukte agile metoder og prinsipper for å organis-
ere og effektivt utvikle sluttproduktet vårt.

i

Preface

About

This project was offered through NTNU along with other projects, where we could
request which projects we wanted for our Bachelor’s thesis, in order of priority.

We requested this project as our first choice because wanted a project where we could
build on our previous experience regarding developing full-stack applications, which
had been relatively surface-level.

The project offered the possibility of using new technologies and exploring different
methods of transferring data.

Date of completion: 21.05.2024

Group Members:
Adrian Rennan Dahl
Simen Haug Veum
Ole Tonning Aanderaa

Thanks

We would like to express our heartfelt gratitude to the following individuals:

• Marius Lundbø and Erik Mauring at FiiZK, our client, for their availability and
valuable feedback during the development of the project.

• Our supervisor, Rituka Jaiswal, for her insightful advice on how to approach our
project, assistance with various challenges, and guidance throughout the report
writing process.

ii

Table of Contents

Abstract i

Sammendrag i

Preface ii

About . ii

Thanks . ii

List of Figures vi

List of Tables viii

Acronyms 1

Terms 1

1 Introduction 3

1.1 Background . 3

1.2 Problem Statement . 3

1.3 Requirements . 3

1.4 Limitations . 4

1.5 Subject Areas . 4

1.6 Document Structure . 4

2 Theory 6

2.1 Programming & Frameworks . 6

2.1.1 Object Oriented Programming . 6

2.1.2 SOLID Principles . 6

2.1.3 .NET . 6

2.1.4 C# . 7

2.1.5 Single page application . 7

2.1.6 Vue . 7

2.1.7 JavaScript . 7

2.1.8 TypeScript . 7

2.1.9 Tailwind CSS . 7

iii

2.2 Data Exchange . 8

2.2.1 REST API . 8

2.2.2 GraphQL . 8

2.2.3 Kafka . 9

2.3 Data Storage and Security . 9

2.3.1 Database . 9

2.3.2 PostgreSQL . 9

2.3.3 Multi-Tenant Environment . 10

2.3.4 Encryption . 10

2.3.5 HTTPS . 10

2.3.6 Bearer Token . 10

2.3.7 GUID . 11

2.4 Tools . 11

2.4.1 Docker . 11

2.4.2 Postman . 11

2.4.3 DBeaver . 11

2.4.4 ChatGPT . 11

2.4.5 GitHub Copilot . 12

2.5 Version Control And Documentation . 12

2.5.1 Git . 12

2.5.2 GitHub . 12

2.5.3 NGINX . 12

2.5.4 Overleaf . 13

2.6 Development Methodologies . 13

2.6.1 SCRUM . 13

2.6.2 Agile Methods . 13

3 Method 14

3.1 Managing the project . 14

3.1.1 Meetings . 14

3.1.2 Project Organization . 14

3.1.3 Dividing Tasks . 15

3.2 Planning and Choosing Technologies . 16

iv

3.2.1 Frameworks . 16

3.2.2 Methods of Data transfer . 17

3.2.3 Milestones . 18

3.2.4 Wireframes . 18

3.3 Development . 18

3.3.1 REST API . 19

3.3.2 GraphQL . 19

3.3.3 Kafka . 19

3.3.4 Applications used . 19

3.3.5 API overview . 20

3.3.6 Project structure . 20

3.4 Running the Project . 23

4 Result 25

4.1 Engineering Results . 25

4.1.1 Demo Video . 25

4.1.2 Frontend . 29

4.1.3 Backend . 33

4.1.4 REST API Solution . 37

4.1.5 GraphQL Solution . 42

4.1.6 Kafka Solution . 48

4.1.7 Containerization . 53

4.1.8 Testing . 56

4.2 Administrative Results . 58

4.2.1 Group Structure . 58

4.2.2 Milestone Result . 59

5 Discussion 60

5.1 Comparing the solutions . 60

5.1.1 Developer Experience . 60

5.1.2 Differences in solutions . 61

5.1.3 Best Use Case . 62

5.2 Administrative Discussion . 62

v

5.3 Unit testing . 63

6 Conclusion 64

6.1 Conclusions . 64

6.2 Further Work . 64

Societal Impact 65

References 65

Appendix 68

A Project Plan 68

List of Figures

1 Example over divided user-stories for a sprint in Jira. 15

2 Example overview over sub-tasks within a user-story in Jira. 15

3 Google search trends for RabbitMQ vs Apache Kafka 17

4 Frontend project structure . 21

5 Backend project structure . 22

6 Root directory README file . 23

7 REST API Use Case Diagram . 26

8 GraphQL Use Case Diagram . 27

9 Kafka Use Case Diagram . 28

10 Architecture diagram of our application 29

11 Customer Page Wireframe . 30

12 Keys Page Wireframe . 30

13 Theme Page Wireframe . 31

14 Login page . 31

15 Register page . 32

16 Navigation bar after login . 32

17 Admin Page when editing a user . 33

18 The modified IdentityUser class. 34

19 Sequence diagram of how a key is created and used. 35

vi

20 Example of what an encrypted key could look like. 35

21 ER diagram for our main database . 36

22 ER diagram for the private databases assigned to a user 36

23 Frontend GUI of the themes overview. 38

24 Frontend GUI for creating a theme. 39

25 Frontend GUI of the REST key overview. 40

26 Frontend GUI for creating a key . 40

27 Frontend GUI for testing a REST key where you can enter a key, see the
themes for the key, and test the accessible endpoints. 41

28 How authorization is done using the AspNetCore Identity library for a
REST API endpoint in the controller, with the accessibility limited to only
ADMIN users. 41

29 Overview of the GraphQL Query Schema. Note: The column with en-
cryptedKey are the queries that can take a key as a parameter. 42

30 Example query of fetching all of the fields for the Organizations class. . 43

31 Example of a partial GraphQL query, where you only fetch the id and
orgNo fields. 43

32 Schema definition of the different fields the objects can return. 44

33 The .Net Entity Framework Core class of Species. 44

34 Overview of the GraphQL mutations. On the right are the parameters. . 45

35 GraphQL create key mutation. 45

36 Frontend GUI equivalent for the GraphQL create key mutation. 46

37 Frontend GUI of the GraphQL key overview. 46

38 Frontend GUI for testing a GraphQL key where you can enter a key, see
the available class tables and fields that key can make a query of, as well
as make a query of your selected fields. 47

39 GraphQL Workaround to authenticate a user. 47

40 Example of body and response when creating a Kafka key using the REST
API endpoint. 48

41 Example of GUI dialog and response when creating a Kafka key for a user
on the frontend Website. 49

42 Frontend Kafka Keys Overview page. 49

43 Example of REST API endpoints for a sensor in the Mock Sensor .Net
Application. 50

44 The Main .Net Applications corresponding REST API endpoints to com-
municate with the Mock Sensor. 50

vii

45 REST API endpoint and its parameters to start a Mock Sensor. 51

46 Logs from the Mock Sensor Docker Container producing messages to the
topic with the userId as the sensor identifier. 51

47 Logs from the main .Net application after a sensor was started and all
the messages are sent at once because the SendHistoricalData parameter
was set to true. 51

48 Two separate frontend sessions connected to the backend through a Web-
Socket, left is watching the live feed, and right requested all of the mes-
sages (up until that point). 52

49 Sequence Diagram of the interaction between the .Net backend, mock
sensor, Kafka Cluster, Database, and frontend website. 52

50 Frontend table displaying the boat-location-updates logs, sorted by most
recent log first. 53

51 The Docker Environment. 54

52 Docker compose using an existing image pulled from docker hub. The
:latest annotation means the most recent image is pulled, and every time
the project is built it checks for a new version and automatically updates. 55

53 Docker compose setup for the main .Net application. 55

54 Dockerfile for the main .Net application and the test project for the unit-
tests. 56

55 URL constants for the main .Net application. mock-sensors:80 is used
for internal docker-communication with the Mock Sensor .Net application. 56

56 Postman collection run results . 57

57 GraphQL AvailableQueries postman tests. 58

List of Tables

1 Initial Project Milestones. 18

2 Group Roles and Responsibilities. 58

3 Project Milestone Result. 59

viii

Acronyms

AES Advanced Encryption Standard. 34

API Application Programming Interface. 7, 8, 11, 13, 17–19, 37, 41, 42, 48, 60, 64

CRUD Create Read Update Delete. 62

GUI Graphical User Interface. 25

IDE Integrated Development Environment. 19

NDA Non-Disclosure Agreement. 4

NTNU Norges Teknisk-Naturvitenskapelige Universitet / Norwegian University of Sci-
ence and Technology. 14

SOLID Single-responsibility, Open-closed, Liskov Substitution, Interface Segregation
and Dependency Inversion principles. 18, 65

Terms

Advanced Encryption Standard A symmetric block cipher chosen by the U.S. gov-
ernment to protect classified information. 34

AspNetCore A framework for building web apps and services with .NET and C#.. 16,
19

AspNetCore.Identity A library that manages user info, authentication and author-
ization, as well as sign-in functionality.. 16, 19

base64 An encoding scheme used to represent binary data in an ASCII string format
using 64 characters. 34

Composition API One of the two API styles used to build Vue 3 components. 16

Confluent.Kafka An enterprise-ready platform that completes Kafka with advanced
capabilities designed to help accelerate application development and connectiv-
ity.. 16, 19

DBeaver A free cross-platform database tool. 19

dependency injection A design pattern where objects are externally passed their
dependencies rather than creating them internally. 51

Docker Desktop An application for running the docker engine, making it possible to
run docker containers locally. 19, 23, 53

Docker Hub A cloud-based repository service for building and shipping Docker con-
tainers. 53

1

EntityFrameWorkCore Entity Framework (EF) Core is a lightweight, extensible, open
source and cross-platform version of the popular Entity Framework data access
technology.. 16

Figma A cloud-based design tool used for interface design, incorporating collabora-
tion, and prototyping features. 18

GraphQL AGraphQuery Language for APIs and a runtime for executing those queries
by using a type system defined for your data. 42, 45

hash A function that converts an input (or ’message’) into a fixed-size string of bytes.
Difficult to decode and often used for password or key storage. 34

Hot Chocolate An open-source GraphQL server for the Microsoft .NET platform. 16,
19, 47

HttpContext Provides HTTP-specific information about an individual HTTP request..
47

Kafka Cluster A system consisting of ZooKeeper, Kafka brokers, producers, con-
sumers, topics, and partitions.. 48

KsqlDB A database purpose-built for stream processing applications, providing real-
time data enrichment and server-side processing. 61

Main .Net Application The main backend application, responsible for authorization,
authentication and all interaction with the frontend, user and the Mock Sensor
application. 50, 62

microservice architecture A design approach to build an application as a suite of
small, independent services modeled around a business domain. 62

Mock Sensor .Net Application A simple and separate .Net application that acts as
a ”sensor” streaming data to a Kafka cluster. 49, 62

MSSQL A Relational Database Management System developed by Microsoft that uses
Structured Query Language (SQL). 16

REST API A protocol for client-server communication that uses HTTP requests to
access and manipulate data. 44

shadcn-vue A bunch of highly customize able components. These are Radix Vue
components styled using Tailwind CSS. 16

Swagger UI A REST API Documentation Tool. 20

theme A collection of REST API endpoints. 28, 37

TypeScript JavaScript with syntax for types. 16

VS Code A popular and versatile code editor developed by Microsoft. 19

Vue.js A javascript framework. 16

Zookeeper A centralized service, often used to compliment kafka by maintaining
and configuration information, naming, providing distributed synchronization,
and providing group services. 48, 53

2

1 Introduction

This chapter will provide an overview of the project that forms the basis of the report.
The chapter outlines the project’s background, the problem statement, requirements,
the scope, and subject areas to help give a clear understanding of the project. In
addition, the organization of the report is detailed at the conclusion of this chapter.

1.1 Background

FiiZK is a group of companies providing equipment and digital services for the aquacul-
ture industry. They have developed multiple software solutions and manage signific-
ant amounts of biological and economic data. However, despite the sophistication of
these tools, the integration and accessibility of data across different platforms remain
a complex issue. FiiZK wants to make this data as available and accessible as possible
for their costumers, so they have reached out to NTNU. They want a proof of concept
that explores various methods of delivering data to their customers.

1.2 Problem Statement

The primary objective is to develop a full-stack application that investigates and eval-
uates various secure data retrieval techniques. The data retrieval methods in question
include REST, GraphQL and Kafka. The application will be containerized using Docker.
A user-friendly graphical interface will make using the application easy and enjoyable
for the end user. Moreover, the application will incorporate functionality to restrict
access to specific data subsets, allowing users to generate and distribute access keys
to third parties.

1.3 Requirements

To complete the project as it is outlined by FiiZK the following requirements needs to
be fulfilled:

Functional Requirements:

• Data Retrieval Methods: The application must support various data retrieval
methods to ensure flexibility and accessibility in how data is delivered to users.

• Graphical User Interface: Develop a user-friendly interface that allows cus-
tomers to manage their data access rights easily.

• Method To Share Subset Of Data: Develop a method that enables customers
to selectively share subsets of their data with third parties.

• Containerization: The application should be containerized and capable of run-
ning in multiple containers to support scalable deployment across different en-
vironments.

Non-Functional Requirements:

3

• Scalability: The architecture must support scalability to accommodate growth
in user numbers and data volume without performance degradation.

• Security: Implement robust security measures to protect data integrity and
privacy, ensuring that users can manage who accesses their data.

• Accessibility: The application should be designed to be accessible, allowing
users to manage data access easily and effectively.

While FiiZK didn’t give any strict technical requirements as to which technologies
to utilize, they mentioned some preferred technologies. These were .NET 7, Vue,
TypeScript, MSSQL and Docker.

1.4 Limitations

There are some limiting factors affecting the project. To avoid signing an NDA, which
would prevent us from publishing our project and findings, we have declined the offer
to work with real datasets from FiiZK’s clients. This is also the preferred option for
FiiZK, as it’s not necessary for us to have access to the data to develop the application.

Because the project is a proof of concept, the focus is on demonstrating feasibility
rather than creating a fully market-ready product. This means some features that we
don’t consider as critical, such as optimization, may not be included within the scope
of this project.

Regarding design and technical solutions for the project we have a high degree of
freedom to choose which technologies we would like to use.

1.5 Subject Areas

This project covers a broad range of subject areas within software and computer
engineering, with a specific focus on data management and software development
methodologies. There are both technical and organizational subject areas which the
project covers.

Some of the Technical subject areas include several data retrieval techniques, such as
REST, GraphQL and Kafka. It also covers containerization and cloud deployment using
Docker, and Software architecture design principles for building full-stack applications.

The organizational subject areas include project management and organization. Using
tools like Jira, Confluence and GitHub enhances the management and tracking of the
project significantly.

1.6 Document Structure

The document is divided into 6 main chapters:

Chapter 1: Introduction - Provides an overview of the project, including the back-
ground, problem statement, requirements, limitations and subject areas.

4

Chapter 2: Theory - Introduces the theoretical framework and materials relevant to
both the development and the solution of the project.

Chapter 3: Method - Describes the scientific and developmental methodologies em-
ployed in the project.

Chapter 4: Result - Details the outcomes of the project and showcases what has
been accomplished.

Chapter 5: Discussion - Discusses the results in the context of the initial problem
statement and reflects on the project’s findings.

Chapter 6: Conclusion - Concludes the thesis, summarizing the project’s thematic
and practical outcomes and discussing the implications of the results and any future
work.

5

2 Theory

2.1 Programming & Frameworks

2.1.1 Object Oriented Programming

Object oriented programming, or OOP is a way of programming ”that organizes soft-
ware design around data, or objects, rather than functions and logic.” [1]

2.1.2 SOLID Principles

The SOLID principle is a set of guidelines for writing maintainable, scalable, and robust
object-oriented software and stands for:

• Single-responsibility Principle

– ”A class should have one and only one reason to change, meaning that a
class should have only one job.” [2]

• Open-closed Principle

– ”Objects or entities should be open for extension but closed for modification.”
[2]

• Liskov Substitution Principle

– ”Let q(x) be a property provable about objects of x of type T. Then q(y)
should be provable for objects y of type S where S is a subtype of T.” [2]

• Interface Segregation Principle

– ”A client should never be forced to implement an interface that it doesn’t
use, or clients shouldn’t be forced to depend on methods they do not use.”
[2]

• Dependency Inversion Principle

– ”Entities must depend on abstractions, not on concretions. It states that
the high-level module must not depend on the low-level module, but they
should depend on abstractions.” [2]

2.1.3 .NET

.Net was introduced in the year 2000 and is a free, open-source application platform
developed and maintained by Microsoft. It primarily uses C# as its programming lan-
guage of choice, but also supports other programming languages like C++ and Visual
Basic. It is used to create a various amount of applications for different platforms,
like web-, desktop-, and mobile applications [3].

As of February 2024, the newest version of .NET is .NET 8.

6

2.1.4 C#

C# (C Sharp) is a modern type-safe object oriented programming language. It is
often used for mobile and web applications and game development. C# has its roots
in the C family of programming languages, and share similarities with C, C++, JavaS-
cript and Java. It is statically typed, meaning types are checked at compile-time,
not at runtime. C# was developed by Microsoft and introduced along side the .NET
Framework [4].

2.1.5 Single page application

A single page application is a web app implementation that loads a single web doc-
ument. It then updates only the part of the document that needs to be updated,
instead of loading a whole new page. Using an SPA can increase performance as it
saves time during rendering because there is less that needs to be rendered at once
[5].

2.1.6 Vue

Vue is a JavaScript framework for developing web applications and user interfaces that
builds on top of standard HTML, CSS and JavaScript. Vue is often used for developing
single page applications (SPA) [6].

2.1.7 JavaScript

JavaScript (JS) is a high-level, dynamically typed and frequently just-in-time compiled
programming language often used in web development. JavaScript also conforms
to the ECMAScript standard, which is a standard for scripting languages, ensuring
interoperability of all web pages covering all web browsers. All web browsers execute
JavaScript via dedicated engines, and JavaScript also supports multiple programming
paradigms. These are event-driven, functional and imperative programming styles.
JavaScript have APIs (application programming interfaces) for regular expressions,
date, text, the Document Object Model (DOM), and data structures [7].

2.1.8 TypeScript

TypeScript is JavaScript with syntax for types. This makes it easier to detect errors
earlier in the editor [8].

2.1.9 Tailwind CSS

Tailwind CSS is a utility-first CSS framework which allows for inline styling. With
predefined classes for styling it makes it easy to style components directly in the
markup. This approach eliminates the need for writing custom CSS by offering pre-
defined classes for virtually any styling feature, from layout and spacing to typography

7

and color. Files using Tailwind CSS maintain the .html extension, as the framework is
implemented within the HTML structure rather than in separate style sheets [9].

2.2 Data Exchange

2.2.1 REST API

REST, or Representational State Transfer is an architectural style for designing net-
worked applications. It relies on a stateless, client-server, cacheable communications
protocol — typically HTTP. In the RESTful model, data and functionality are considered
resources and are accessed using Uniform Resource Identifiers (URIs), typically links
on the web. REST uses a set of operations, mainly HTTP verbs, such as GET, POST,
PUT, DELETE, and PATCH, to manipulate the resources [10].

REST APIs adhere to a set of architectural constraints defined by Roy Fielding in his
2000 dissertation. These constraints include: [11]

• Client-server architecture: REST APIs employ a well-defined client-server model,
where clients (applications) make requests to servers (providers) for resources
(data).

• Stateless communication: Each request-response interaction is independent,
and the server does not maintain any client state between requests.

• Cacheable data: Responses can be cached by intermediaries, such as web prox-
ies, to improve performance and reduce server load.

• Uniform interface: Resources are identified by Uniform Resource Identifiers (URIs)
and manipulated through a standard set of HTTP methods (GET, POST, PUT, DE-
LETE).

• Layered system: The architecture can be layered to support different levels of
functionality, such as security, caching, and load balancing.

2.2.2 GraphQL

GraphQL is a query language for APIs, offering a server-side runtime for executing
queries by using a type system defined for your data. Unlike traditional REST API
approaches, GraphQL allows clients to request only the data they need, making it
an efficient alternative for developing web APIs. Originated by Facebook to address
performance and flexibility issues inherent in conventional REST services, GraphQL
has been open-sourced and adopted by a diverse array of companies and projects
[12].

Some of GraphQL’s key features include precise data fetching, single endpoint, a
strong type system and a real-time data subscription updates.

GrapQL fetches only the data that is queried, allowing the client to fetch exactly the
data it needs. Often times in REST API you over- or underfetch data. Overfetching
results in downloading data that is never used and underfetching means you have to

8

make multiple requests to get all the data that is needed. Comparatively you only
need to send a single request with GraphQL [13].

One benefit is when you have multiple consumers of your API. Each consumer can
request the data they need and nothing more without bloating the response to satisfy
all parties.

2.2.3 Kafka

Apache Kafka is a distributed streaming platform that enables the processing and
management of streams of records in real-time. First developed by LinkedIn to man-
age high volumes of data—exceeding trillions of messages per day—Kafka has evolved
into a widely adopted open-source solution, suitable for various data-intensive enter-
prise environments.

Kafka’s architecture is designed to provide high throughput for both publishing and
subscribing to streams of records, facilitating the storage and processing of these
streams as they occur. It is distinguished by its ability to handle data from multiple
sources and deliver it to multiple consumers simultaneously, effectively moving vast
quantities of data across a distributed network.

Key features include real-time data pipelines for streaming data exchange between
systems and applications. This is crucial for operational monitoring and analytics.
Kafka’s distributed architecture enables effortless scaling for big data workloads. Not-
ably, it’s versatile and valuable for future-proofing applications in data-intensive fields
like IoT and social media [14].

2.3 Data Storage and Security

2.3.1 Database

There are many different variations of databases, but what they all have in common
is that it’s a structured collection of information, or data, stored in a computer sys-
tem. This data is usually managed by what is called a database management system,
or DBMS for short. A database system, often just referenced as “database”, is the
combination of the database, the DBMS and any other application associated with the
two. In modern databases data is mostly modeled in columns and rows in a series of
different tables. This makes data querying and processing more efficient. They also
mostly use SQL (structured query language) when writing and querying data [15].

2.3.2 PostgreSQL

PostgreSQL is a database management system which is used to create and manage
relational databases based on the SQL standard, and is both free and open source
[16]. PostgreSQL is equipped with robust transactional support, characterized by
ACID (atomicity, consistency, isolation, durability) properties, and includes advanced
features like updatable views, materialized views, triggers, and stored procedures.
PostgreSQL started as a project at UC Berkley called the POSTGRES Project all the way

9

back in 1986. Today PostgreSQL is one of the most widespread SQL-based relational
databases in the world. It is compatible with all the major operating systems such as
Linux, macOS and Windows [17].

2.3.3 Multi-Tenant Environment

Multi-Tenant Environment, also known as software multitenancy is a form of software
architecture where multiple tenants are using the same instance which operates on a
server. The system is shared, which allows different tenant groups, each with its own
set of users, to access a similar instance while maintaining their own specific priv-
ileges, data isolation and configuration. The multitenancy approach is distinguished
from multi-instance architectures, where distinct software instances are deployed for
different tenants. Multi-tentant environments is regarded as a cornerstone feature of
cloud computing [18].

2.3.4 Encryption

Encryption is a way of encoding information. The data gets scrambled so only author-
ized parties are able to understand the information. This is a fundamental technique
in cryptography, and the scrambled version of the data is known as ciphertext. The
process of encryption ensures that the information is only accessible to the intended
party who have the appropriate decryption key, which can revert the ciphertext back
to plaintext. Encryption does not prevent the interception of data, but it renders the
data unintelligible to those without the right decryption key to decode it [19].

Encryption usually relies on the use of a pseudo-random key generated by an al-
gorithm. It is theoretically possible to decrypt the message without the key, but an
intelligently designed encryption plan makes this feat practically impossible.

2.3.5 HTTPS

Hypertext Transfer Protocol Secure (HTTPS), is the secure alternative of HTTP. It is
a widely used protocol over the internet to send data between a web browser and a
website, and uses encryption for secure communication. The encryption is important
when users are transmitting sensitive data, like password login information. The en-
cryption protocol is called Transport Layer Security (TLS), formerly known as Secure
Sockets Layer (SSL). The TLS protocol secures communications by using asymmetric
public key infrastructure. This system uses two dissimilar keys to encrypt the commu-
nications between parties. One key is the private key and is controlled by the owner
of the website. The other key is the public key, and it is available to everyone who
interacts with the server [20].

2.3.6 Bearer Token

A Bearer Token is a token used in Bearer authentication which is an HTTP authentic-
ation scheme commonly used with OAuth 2.0. The token is an encrypted string used
for authentication and authorization, and is usually generated by a server in response

10

to a login request. The Bearer token is generally sent via HTTPS over an encrypted
connection [21] [22].

2.3.7 GUID

A GUID is short for Globally Unique Identifier. A GUID is to create a unique value and
is commonly used for when creating ids for class objects, or any other scenario when
an entity needs to be uniquely identified [23].

2.4 Tools

2.4.1 Docker

Docker is a set of ”Platform as a Service (PaaS)” products that employ OS-level virtu-
alization to distribute software in units called containers. These containers are isolated
from each other, each containing its own software, libraries, and configuration files,
yet they can communicate through well-defined channels. As all containers share the
same operating system kernel, they consume fewer resources than traditional virtual
machines. This efficiency allows a single server or virtual machine to run multiple
containers simultaneously, enhancing resource utilization and simplifying application
deployment [24].

2.4.2 Postman

Postman is a software tool used for testing APIs. It started as a browser extension in
2012 [25], and has since evolved into a standalone application that allows developers
to create, share, document and test API endpoints. Postman supports automated
testing which helps validate API performance and reliability. It also offers collaboration
capabilities that aids developers in collaborating efforts [26].

2.4.3 DBeaver

DBeaver is a free open source database management tool released in 2011. It is a
SQL client software application that uses the JDBC application programming inter-
face to connect with relational databases. It also uses proprietary drivers for NoSQL
databases. DBeaver comes with an editor which enhances the user experience by
supporting code completion and syntax highlighting. Its architecture is based on the
eclipse platform which employes a plug-in system that allows users to extend its func-
tionality greatly [27].

2.4.4 ChatGPT

ChatGPT is an advanced chatbot developed by OpenAI, which was founded in 2015
[28].

11

ChaptGPT is based on large language models (LLMs) and was launched on November
30 2022. The technology allows users to tailor conversations by adjusting length,
format, style, level of detail and language, making it highly versatile for various in-
teractive applications. When interacting with ChatGPT each earlier stage of the con-
versation is incorporated, which enhances the relevance of the responses [29].

2.4.5 GitHub Copilot

GitHub Copilot was developed by GitHub (a Microsoft subsidiary) in collaboration with
OpenAI. It is an innovative code completion tool designed to enhance the productivity
in software development. Launched on June 29, 2021, Copilot integrates with popular
integrated development environments (IDEs) like Visual Studio Code, Visual Studio,
Neovim, and JetBrains, providing advanced coding assistance primarily for languages
such as Python, JavaScript, TypeScript, Ruby, and Go. This tool is available by sub-
scription to both individual developers and businesses [30].

2.5 Version Control And Documentation

2.5.1 Git

Git is a distributed version control system that is used by almost 9% of professional
developers. It’s open source, and was first developed by Linus Torvalds in 2005. Git
is designed to track changes in computer files, which helps collaboration among de-
velopers. Git is primarily used in software development and supports coordinated
work efforts, which allows for efficient management of source code. Git’s design pri-
oritizes data integrity, speed and the facilitation of non-linear, distributed workflows,
which enables thousands of parallel branches to operate at the same time across
different systems [31].

2.5.2 GitHub

GitHub is a developer platform based on Git software. It allows developers to store,
create, share and manage their code. Since it’s based on Git software it provides
the distributed version control of Git, but it also gives users access control, software
feature request, bug tracking, continuous integration, task management and wikis.
These features streamline the development process, which allows for more efficient
project management and cooperation among developers [32].

2.5.3 NGINX

NGINX is a high-performance web server and reverse proxy that enhances web ap-
plication efficiency and security. It facilitates rapid content delivery and is optimized
for handling simultaneous connections with minimal resource usage. NGINX supports
multiple web technologies, acting as a mediator between client requests and server
responses. In our Vue.js project, NGINX was employed to serve static files, man-

12

age SSL/TLS termination, and route API calls, streamlining both development and
production environments [33].

2.5.4 Overleaf

Overleaf is an online LaTeX editor with real-time collaboration and version control used
to produce scientific documents [34].

2.6 Development Methodologies

2.6.1 SCRUM

Scrum is a lightweight framework that enhances team collaboration in complex pro-
ject environments. Originating in the early 1990s, it promotes an empirical approach
to problem-solving, emphasizing decision-making based on real-time observations.
Scrum structures work into sprints, typically one month long, to foster regular plan-
ning, execution, and evaluation within a flexible yet disciplined framework.

A Scrum cycle typically consists of:

1. ”A Product Owner orders the work for a complex problem into a Product Backlog.”
[35]

2. ”The Scrum Team turns a selection of the work into an Increment of value during
a Sprint.” [35]

3. ”The Scrum Team and its stakeholders inspect the results and adjust for the next
Sprint.” [35]

4. ”Repeat” [35]

Scrum artifacts, including the Product Backlog, Sprint Backlog, and Increments, come
with commitments that enhance transparency and guide the team toward achieving
specific goals. These elements together create a dynamic environment where teams
can self-manage and adapt to changes rapidly, making Scrum ideal for managing
complex projects effectively.

2.6.2 Agile Methods

Agile methods is a philosophy that centers around continuous incremental improve-
ment through small and frequent releases. This makes for a development strategy
that is very flexible to change and that can continuously improve and adapt [36].

The Agile manifesto outlines four values:

• ”Individuals and interactions over processes and tools” [36]

• ”Working software over comprehensive documentation” [36]

• ”Customer collaboration over contract negotiation” [36]

• ”Responding to change over following a plan” [36]

13

3 Method

3.1 Managing the project

To organize and manage the project we used an agile methods philosophy with a
SCRUM-like approach. Where the the project is divided into week-long sprints. The
sprints start with sprint planning/startup, where we set goals for the week, and tasks
are put into- and distributed from a sprint backlog. There is also an overarching
product backlog with tasks that eventually will be done. The product backlog is con-
tinuously updated and refined throughout the development process.

At the end of the sprint, a sprint retrospective is held, where we discuss what went
well, and what we could have done better. The retrospective is followed by a sprint
review, where everyone talk about and showcase what they did during the sprint.

3.1.1 Meetings

We met with the supervisor assigned to us by NTNU for the project bi-weekly on
Thursdays. During these meetings we discussed our progress regarding the project
as a whole.

The group also met with FiiZK bi-weekly on Fridays, where we presented and discussed
our progress on the product and got feedback, as well as help and tips if needed.

Communication regarding meetings with the supervisor and FiiZK were over email,
and communication between the group members happened through discord on a
private server made for the project.

Originally sprint review and retrospective were on Fridays in a separate meeting, and
the sprint startup on Monday. However, due to the group members often working on
the project also on weekends, the group figured it would be best to just have one big
meeting on Monday where we had all of the sprint-discussions. This meant that the
sprint didn’t end until sprint review and retrospective was completed on Monday, and
then the next sprint started directly afterwards.

3.1.2 Project Organization

To organize the project files and links, Confluence was used as a project ”homepage”.
Confluence stored all of the meeting notes, retrospectives and various documents
related to the project.

We used Jira to organize the sprints and keep track of the backlog, logged hours,
tasks, and user stories.

Jira and Confluence were chosen largely because they were provided free-of-charge
by NTNU.

14

3.1.3 Dividing Tasks

As mentioned in Section 3.1.2, Jira was used to organize the sprints. During the
sprint startup phase, a new sprint was created in Jira, and tasks, or user stories, were
written as “As a [persona], I [want to], [so that].”, from the Atlassian user story
examples [37]. A story is usually divided into one or more sub-tasks.

The group considered having the sprints either 1 week or 2 weeks long, but ultimately
chose to have 1 week sprints. This is to keep us more engaged, as we felt that with
2 weeks sprints it would be easier to procrastinate.

Figure 1: Example over divided user-stories for a sprint in Jira.

Figure 2: Example overview over sub-tasks within a user-story in Jira.

Note regarding Figure 1 and Figure 2:
The screenshot was taken after the product development was over, and report writing

15

was the main focus. The ”nice to have”-phase was added for for additional and less
critical functionality.

3.2 Planning and Choosing Technologies

Before we started the development, we made a preliminary project plan which you can
see in Appendix A. The project plan gave an early overview over the group structure,
initial milestones, risk assessment as well as a general idea of how we would approach
the development process.

The planning process consisted of choosing which frameworks to develop our full-
stack application with, choosing methods of data transfer, designing how the website
would look and making an outline of when we would reach the different milestones.

3.2.1 Frameworks

The frameworks we chose for the application was almost fully decided upon before
our first meeting with FiiZK. In the project description and requirements seen in
Section 1.3, they informed us that their preferred technologies were .Net 7, Vue,
TypeScript, MSSQL and Docker.

The only changes were that we used .Net 8 and PostgreSQL. We chose .Net 8 due to
it being the most recent version of the .Net framework. PostgreSQL was chosen over
MSSQL due to FiiZK informing us that they wanted to transition away from MSSQL to
PostgreSQL.

3.2.1.1 Framework Overview

Backend

• .Net 8

– AspNetCore

– EntityFrameWorkCore

– AspNetCore.Identity - For authentication

– Confluent.Kafka - For Kafka

– Hot Chocolate - For GraphQL

• C#

• PostgreSQL

Frontend

• Vue.js 3

– TypeScript

– Composition API

– Components used from shadcn-vue

16

Containerization

• Docker

3.2.2 Methods of Data transfer

Similarly to how we chose the frameworks as described in Section 3.2.1, the methods
of data transfer were primarily chosen from what was suggested by FiiZK.

We chose to use REST API and GraphQL due to a combination of the suggestion, as
well as the group having worked with REST in previous projects. GraphQL was chosen
as it is often considered as a popular alternative to REST.

In our 3rd meeting with FiiZK, we started discussing a possible 3rd alternative, due
to how quickly we made progress with the REST solution. They suggested an event-
based method of data transfer that would use data-streaming, specifically recom-
mending RabbitMQ or Kafka, rather than the request-response model employed by
REST and GraphQL.

3.2.2.1 RabbitMQ or Kafka?

None of us were familiar with event based data streaming, so we firstly employed the
”google to see what is most relevant”-method. As seen in Figure 3, we found out that
according to google trends, Kafka was the most popular and relevant of the two.

After researching Kafka more, we realized Kafka probably would be excessive for our
use-case, due to its complex architecture and scalability features that exceed our
data volume and processing needs. Despite this, we still chose Kafka over RabbitMQ,
primarily because we got the impression that learning Kafka would also give us insight
into how to use something simpler like RabbitMQ, but not necessarily the other way
around.

Figure 3: Google search trends for RabbitMQ vs Apache Kafka

17

3.2.3 Milestones

The project was set up with different milestones for when we were supposed to be
done with the different parts of the project, like the date for when REST API solution,
GraphQL solution and the undecided 3rd solution which we would do if we saw we had
enough time.

The different solutions would have a 3-week development period, with an additional
3 weeks as a ”buffer” to clean up and finish the project. The remaining weeks would
be spent on project writing.

3.2.3.1 Initial Project Milestones:

Date Milestone
26.01.2024 Set up Github
26.01.2024 Make Wireframes for the frontend
16.02.2024 Complete REST API solution
08.03.2024 Complete GraphQL solution
29.03.2024 Undecided 3rd solution
23.04.2024 Finish Product Development
07.05.2024 Finish first-draft of report
21.05.2024 Finish Report

Table 1: Initial Project Milestones.

3.2.4 Wireframes

The wireframes for the frontend were completed using Figma. It was important to
complete the wireframes quickly, since they would help with the planning process and
make sure our group and FiiZK were on the same page when it came to how they
wanted the product to look and function.

3.3 Development

The development process was planned from easy to hard, in regards to how complex
the solutions would be to implement.

The choice was between developing the REST or the GraphQL solution first. The group
chose REST API due to the groups previous experience using REST API.

As mentioned in Section 3.2.2, the third method of data transfer wasn’t decided upon
until we had already started the development process, and was only chosen after
we were confident the GraphQL solution would be completed close to the milestone
deadline.

The programming was done with the SOLID principles in mind. This was to ease the
development process by ensuring our code is robust, maintainable and scalable.

18

3.3.1 REST API

For the REST API development, we used the AspNetCore library to create the API end-
points. Our backend structure included various layers such as controllers for handling
requests, services for business logic, and models for data representation. AspNet-
Core.Identity was utilized for authentication, ensuring secure user access and data
protection.

3.3.2 GraphQL

We adopted the Hot Chocolate library, a .NET platform for building GraphQL servers.
Hot Chocolate seamlessly integrated with our existing AspNetCore infrastructure, al-
lowing us to develop complex queries and mutations efficiently. This setup enabled a
flexible and powerful API layer that could handle varied client data requests dynam-
ically.

FiiZK also made a request to create a secret field, which users cannot see in the
GraphQL schema, and is only accessed by the administrators of the application. This
was in case a class table contains sensitive information they do not want to share.

3.3.3 Kafka

For event-based data streaming, we utilized Kafka with the Confluent.Kafka library.
While our project does not require the processing of high volumes of data in real-time,
Kafka’s robustness makes it an excellent choice for reliably handling data streams.
This ensures our system’s ability to manage data efficiently, even with lower through-
put, providing a stable foundation for future scalability. Kafka’s architecture allows
us to decouple data streams from system processes, enhancing fault tolerance and
improving the overall reliability of our application’s communication infrastructure.

3.3.4 Applications used

Postman was used to easily test different endpoints without having to interact with
the frontend application. This way we could test the endpoints before we had that part
of the frontend developed, and more quickly test a specific endpoint without having
to go through the frontend. In the end we made a fully working postman collection
that can be run and shows which endpoints are working as intended or not.

VS Code was the IDE of choice for us, because it is versatile and familiar. This was
also the recommended IDE for Vue 3 development. VS code extensions that were
needed were Volar (Vue - Official) for frontend, and C# Dev Kit for backend.

We used DBeaver to have a more in depth look at our database. With this program
we can for example visualize single tables or a whole ER - diagram for our databases.

To containerize the project we used Docker Desktop, which is a program made for
building, running, and managing containerized applications on local machines.

19

3.3.5 API overview

We used Swagger UI and GraphQL’s UI that comes with the HotChocolate library during
development. This made it very easy to get an overview over the different endpoints
and methods, and what schema they use.

3.3.6 Project structure

3.3.6.1 Frontend project structure

The frontend Vue 3 project has a lot of configuration files for vite, prettier, tailwind
and ESlint. The vue components are organized into different folders for each of the
three data retrieval methods.

20

Figure 4: Frontend project structure

3.3.6.2 Backend project structure

The backend folder contains 3 different .NET projects. The main backend, the mock-
sensor and the testing project. The backend.sln solution file has references to all of
these 3 projects. Inside the backend we try to keep everything nice and organized

21

into different subfolders for the different parts of the project.

Figure 5: Backend project structure

22

3.4 Running the Project

For running the project we used docker desktop, which runs all of the different con-
tainers the project consists of.

The README.md file shown in Figure 6 explains how to run the project and will be
discussed further in this chapter. The README file can also be seen in the GitHub
repository found using this link, or seen in the references [38].

Figure 6: Root directory README file

3.4.0.1 Prerequisites

Before initiating the project, ensure the following prerequisites are installed on your
system:

• Docker Desktop: For running containerized applications.

• Node.js: Required for the frontend Vue application.

• .NET 8.0 SDK: Necessary for backend services.

3.4.0.2 Running the Project with Docker

From the root directory of the project, execute the following command to build and
run the project using Docker:

docker-compose up --build

This command builds the Docker images for the frontend, backend, and any services
like Kafka and PostgreSQL, and starts the containers.

23

https://github.com/sh-veum/Bachelor/blob/main/README.md

3.4.0.3 Accessing Application Components

Once the containers are running, you can access the various components of the ap-
plication using the following URLs:

• Main Backend REST API Swagger Documentation: http://localhost:8088/swagger
- Provides an interactive interface for testing and documenting the REST API.

• Backend GraphQL Interface: http://localhost:8088/graphql - Access the GraphQL
playground to execute queries and mutations.

• Frontend Application: http://localhost:8080/ - The main interface for the applic-
ation, built with Vue.

• Mock Sensor Controls: http://localhost:8089/swagger - Provides swagger docs of
the different REST API endpoints for the Mock Sensor.

3.4.0.4 Additional Setup Instructions

For specific setup instructions regarding the frontend and backend components, refer
to their respective README files in the GitHub repository.

3.4.0.5 Database Setup

To update or modify the database schemas:

1. Install dotnet-ef tool: dotnet tool install --global dotnet-ef

2. Run the database update script: python update-databases.py

3.4.0.6 Logging in

To test different user functionalities, use the pre-configured user credentials:

• Admin Access:

– Email: admin@mail.com

– Password: Password!1

• User Access:

– Email: test@mail.com

– Password: TestPassword1!

24

http://localhost:8088/swagger
http://localhost:8088/graphql
http://localhost:8080/
http://localhost:8089/swagger

4 Result

4.1 Engineering Results

The engineering results section contains the result of our development. The backend
subsection contains information that is shared between all solutions, as well as general
information about the the backend architecture.

Each solution has its own subsection that goes more in-depth, with specific results
unique to that solution.

The frontend subsection contains information about how we developed the GUI.

This section also contain information about how we containerized the application in
Docker, and our testing-results.

Here is a small summary of the problem and requirements outlined in Section 1.2 and
Section 1.3:

• Must be a multi-tenant environment of multiple users.

• The solution must offer users various methods of retrieving their data.

• There must be a GUI to manage access to the data.

• A user must be able to share a subset of of their data to third parties.

• The solution should be built as a containerized application.

4.1.1 Demo Video

To showcase the different features of our application, we made a demo-video you can
watch using this link, or see references [39].

4.1.1.1 Use Case Diagram

Three different use case diagrams were developed to visually illustrate the interactions
between the different user roles and the system within the different data retrieval
methods. The use case diagrams features three primary actors: Admin, User and
Third Party.

25

https://youtu.be/o9TnndkU0Yg

Figure 7: REST API Use Case Diagram

26

Figure 8: GraphQL Use Case Diagram

27

Figure 9: Kafka Use Case Diagram

• Admin: After logging in, the Admin has access to four extra functionalities:
”Overview of Users”, ”Change Database of a User”, ”Change role of user” and
”Delete user”. These functions allow the admin to manage all registered users
and modify the database access privileges of any user.

• User: Users begin their interaction with the system through the ”Register” and
”Log in” use case. Once authenticated, they have several actions available for
creating and managing keys. For the REST API solution the user can also create
and manage themes.

• Third Party: This actor represents external users who have the ability to see
what data is provided with a particular key. The ”solution - Test Key” use case
is their sole interaction with the system, allowing them to test and confirm the
data available through their given access key.

The use case diagram helped to further clarify the scope of the project, and it outlined
the necessary actions that each type of user can perform within the application. It be-
came a foundational tool for the development process by providing a high-level view
of the system’s functionality. It also informed the security model, ensuring that ap-
propriate authentication and authorization checks were in place for sensitive functions

28

such as user management and key creation.

4.1.1.2 Architecture Diagram

Similarly to the use-case diagram, an architecture diagram was developed to visually
illustrate the different components in the system, and the interactions between them.

The architecture diagram shows how the main .Net backend acts as the only direct
link between the Webserver, and all the different backend components.

Figure 10: Architecture diagram of our application

4.1.2 Frontend

When designing our frontend solution we first started creating wireframes to get a
visual representation of components and the overall aesthetic of the application before
delving into coding. These wireframes helped guide the development process.

29

Figure 11: Customer Page Wireframe

Figure 12: Keys Page Wireframe

30

Figure 13: Theme Page Wireframe

Through feedback from FiiZK we were able to refine our approach and align the user
interface more closely with their needs and expectations.

The frontend interface is designed to suit the different needs of different user roles
through specialized pages and functionalities. Users are first met with a login page
where they can log in, register an account or continue using the testing pages as a
third party. The page provides a simple and secure entry point for users to access
their dashboard.

Figure 14: Login page

If users don’t have an account and want to register one, they have the ability to do
so at the register page.

31

Figure 15: Register page

The testing pages are accessible to everyone, including third-party users who do not
have to log in to access them. As shown in the pictures above, non-logged in users
can access the testing pages from the navigation bar. The purpose of these pages is
to allow external users to test the access keys they have obtained. This functionality
ensures that third parties can verify what data their keys can retrieve before they
integrate their systems or applications.

Figure 16: Navigation bar after login

As shown from this dropdown menu from the navigation bar, once users log in, they
are provided with a variety of functions related to key management.

The ”Create Key” page is one of the crucial features available only to authenticated
users. Here, users can generate new access keys based on their needs and per-
missions. This page includes intuitive forms to input key parameters and immediate
validation feedback to ensure users understand their input effects. The ability to see
and manage all keys they have created is also provided through a user-friendly inter-
face, allowing for easy tracking and modification of key permissions and details.

32

Figure 17: Admin Page when editing a user

The admin page is a central tool for administrative users to manage the entire system.
Only accessible after admin login, this page allows for comprehensive management
tasks including an ”Overview of Users” where admins can see all registered users,
edit their details, or delete users as necessary. Additionally, admins can modify user
database access privileges through the ”Change Database of a User” functionality.
These tools are designed to ensure that administrators can effectively oversee the
system’s operation and maintain user data security.

4.1.3 Backend

4.1.3.1 Backend overview

The backend system consists of multiple components, as seen in Figure 10. These
include the main .NET 8 application, PostgreSQL databases, a Kafka cluster and a
separate mock sensor .NET application.

User management and authentication is done using the Microsoft AspNetCore Iden-
tity library. The library is an ”Is an API that supports user interface (UI) login func-
tionality.” and ”Manages users, passwords, profile data, roles, claims, tokens, email
confirmation, and more.” [40].

The Identity library comes a with a default IdentityUser class, which we slightly mod-
ified to contain additional information to tie the user to its personal database, and the
keys made by that user, as seen in Figure 18.

Both the Kafka Cluster and mock sensor .Net application has no form of authentic-
ation, this is because all authentication is centralized and handled in the main .Net
application. There was no security implemented to the mock sensor application or the
Kafka Cluster because all of the communication with the frontend goes through the
main .Net application, as seen earlier in Figure 10.

33

Figure 18: The modified IdentityUser class.

4.1.3.2 Similarities between the solutions

As mentioned, the solution must give the user the ability to share a subset of their
data to third parties. We solved this by giving the user the ability to create keys, that
contain the information accessible by anyone using that key.

The user info, as well as the Rest, GraphQL and Kafka keys are stored in the main
database, as seen in Figure 21. We have separate databases for each user containing
only data related to that user, seen in Figure 22.

A core functionality between the solutions is creating the key. The encrypted keys
are made using Advanced Encryption Standard (AES) and converts it into a base64
string. The data that is encrypted is the key objects id and type, either ApiKeys (for
REST), GraphQLApiKeys or KafkaKeys seen in Figure 21.

Once created, the encrypted key is converted to a hash, which is stored in the data-
base, and not the encrypted key itself. This is for security reasons, where even if the
database was compromised, the encrypted key cannot be retrieved.

Because the hash of the the encrypted key is stored, and not the key itself, the key
is lost after its initially created, unless copied and stored somewhere else.

34

Figure 19: Sequence diagram of how a key is created and used.

p5QfXJvrTmMMdDjXa9AZRd90un+LFMQkbsnx811s7AqLyIZvw6c0NCOzS9c
3nOZSYQqcjN/caBlYvjFWtnpHcw==

Figure 20: Example of what an encrypted key could look like.

Every time the key is used for something, the key is decrypted and the key id and
type is found. Then the key object is located in the database, and if found, it checks
if the key is used for something it has access to or not.

A default expiration date of 90 days is also added to the keys. This is common in case
of keys being forgotten and containing information that isn’t meant to be accessible
anymore.

The main database, with an ER-diagram seen in Figure 21, already has two users by
default, an admin user and a normal ”customer” user, their login info can be seen in
paragraph 3.4.0.6.

The ”customer”, or ”user” PostgreSQL databases are populated with dummy data,
consisting of 100 object of both the Species class and the Organization class seen in
Figure 22.

35

Figure 21: ER diagram for our main database

Figure 22: ER diagram for the private databases assigned to a user

36

4.1.4 REST API Solution

In the REST API solution, we implemented functionality for making keys containing
the REST API endpoints, that anyone with access to that key, can use.

To accommodate for scenarios where the application has multiple endpoints, we im-
plemented themes, which are a collection of endpoints. A key can then be created
with one or multiple themes and gain access to the endpoints that those themes con-
tain. This way the user can, for example, make a theme called ”Aquaculture” and
group all the endpoints that fit that theme.

With the rest solution we have created the endpoints that we need for our solution,
these include operations for creating, getting, updating and deleting keys and themes.

4.1.4.1 Theme overview

On the frontend theme page you can create themes, see a list of your created themes,
edit themes, delete themes and deprecate themes. When creating a theme you
choose a name for the theme and which endpoints you want to group with the theme.
The list of endpoints you can choose for a theme is the available data retrieval end-
points that the third party would have access to. Deprecating a theme disables the
theme from being used when creating new keys, but doesn’t delete the theme.

37

Figure 23: Frontend GUI of the themes overview.

38

Figure 24: Frontend GUI for creating a theme.

4.1.4.2 Key overview

General information and disable and deleting actions for each key is shown on the
REST key overview page. This is also where you are able to create a REST key. After
successfully creating a key you get a dialog showing you the encrypted key that was
made.

39

Figure 25: Frontend GUI of the REST key overview.

Figure 26: Frontend GUI for creating a key

4.1.4.3 Testing a REST Key

There is a dedicated page for testing the REST key, where once a key is entered into
the input, we get a list of the themes this key has access to. Clicking on a theme
shows you all the endpoints for that theme, and what schema you can expect to get

40

as a response. Here you can also test the endpoint and get the actual response shown
below.

This page doesn’t require a login to be viewed and is available to everyone since its
meant to be used by third-parties to test their keys.

Figure 27: Frontend GUI for testing a REST key where you can enter a key, see the
themes for the key, and test the accessible endpoints.

4.1.4.4 Authorization

Authorization for an API endpoint was done using the AspNetCore Identity library.

Figure 28: How authorization is done using the AspNetCore Identity library for a REST
API endpoint in the controller, with the accessibility limited to only ADMIN users.

41

4.1.5 GraphQL Solution

The goal of the GraphQL solution is very similar to the REST API solution, since in
practice they are used for similar things: fetching and requesting data. However,
all of the communication with the backend is done through GraphQL queries, and
mutations.

While the REST API solution gives direct access to a whole endpoint, the GraphQL
solution allows the user to be more specific with what data they want to share with
third parties. For example, using GraphQL you can choose to only return one field in
an object containing multiple fields, for example the name field in a Species object.
The solution reflects this by giving the user the same amount of control when creating
the keys.

To make a GraphQL query for a class table, all of the communication is done on the
localhost:8088/graphql/ url. Directly going to the url also gives you an overview of
the Schema Reference, and the Schema Definitions.

The GraphQL query is used for fetching data. A big difference between making a
GraphQL Query and a REST API call is that you have to know beforehand what kind of
information you need, see Figure 30 and Figure 31 for reference. See Figure 29 for an
overview of the the queries and Figure 32 for an example of the schema definitions.

Figure 29: Overview of the GraphQL Query Schema. Note: The column with encryp-
tedKey are the queries that can take a key as a parameter.

42

Figure 30: Example query of fetching all of the fields for the Organizations class.

Figure 31: Example of a partial GraphQL query, where you only fetch the id and orgNo
fields.

As mentioned in Section 3.3.2, FiiZK added a requirement for GraphQL to add a ”secret
column” for GraphQL, for scenarios where the admin didn’t want to share all fields
with a user. As you can see the .Net Entity Framework Core class in Figure 33 and the
GraphQL Schema in Figure 32, the SuperSecretNumber is ignored by GraphQL and
doesn’t show up in the schema, meaning it can’t be retrieved using a GraphQL query.

43

Figure 32: Schema definition of the different fields the objects can return.

Figure 33: The .Net Entity Framework Core class of Species.

4.1.5.1 GraphQL mutations

The mutations are GraphQLs equivalent to the POST, PUT, PATCH or DELETE meth-
ods for REST API. We made GraphQL mutations for creating, deleting and toggling
a GraphQL Key, as seen in Figure 34. We only made the bare minimum mutations
necessary for the GraphQL Key overview page to function similarly to the REST API
key overview page. Meaning there would be no difference in the user experience
interacting with the GUI between the two solutions.

44

Figure 34: Overview of the GraphQL mutations. On the right are the parameters.

4.1.5.2 Creating A GraphQL Key

A GraphQL access key is created using the createGraphQLAccessKey mutation with a
keyName and a list of permissions. The permissions hold onto the class table (query-
Name), and the specific fields of that class table the key can access. Similarly to the
other solutions, the response body is the final access key (encryptedKey), as seen in
Figure 35 for the backend, and Figure 36 for the frontend GUI for creating a key.

The frontend GUI for the GraphQL key overview is similar to all the other key over-
views, except for under Permissions, there is a list of all class tables and fields that
key can access, as seen in Figure 37.

Figure 35: GraphQL create key mutation.

45

Figure 36: Frontend GUI equivalent for the GraphQL create key mutation.

Figure 37: Frontend GUI of the GraphQL key overview.

4.1.5.3 Testing a GraphQL Key

There is a dedicated page for testing the GraphQL key, where once a key is entered
into the input, everything that key has access to, is showed. The user can also make
a query of the selected fields it want to fetch from the database, as seen in Figure 38.
This page doesn’t require a login to be viewed and is available to everyone since its
meant to be used by third-parties to test their keys.

46

Figure 38: Frontend GUI for testing a GraphQL key where you can enter a key, see
the available class tables and fields that key can make a query of, as well as make a
query of your selected fields.

4.1.5.4 Authorization

The AspNetCore Identity library which is used to create the users and authorize the
REST API endpoints, seen earlier in Figure 28, didn’t work with the Hot Chocolate
library used for GraphQL. A workaround was implemented for GraphQL queries and
mutations that should only be accessed by users, where the HttpContext is used to
check if it’s made by an authorized user. The workaround is seen in Figure 39.

Note:
The HotChocolate library comes with its own [Authorize] attribute, but we realised the
workaround that still use the Identity library would be easier and less complicated to
implement, than implementing HotChocolate’s method of authorization.

Figure 39: GraphQL Workaround to authenticate a user.

47

4.1.6 Kafka Solution

Kafka differs from using REST API and GraphQL for data transfer, because it is used for
event-based data streaming. Where a message can be produced and sent to a topic
in a Kafka Cluster, and then a consumer can consume that message by subscribing to
the topic.

To satisfy the requirement of allowing users to share a subset of their data with third
parties, the Kafka keys can contain the different topics accessible by the user.

Kafka works with Zookeeper to form a Kafka Cluster, as seen in the architecture
diagram back in Figure 10. What is relevant to this solution is that Zookeeper manages
the brokers and notifies when topics are created or deleted. Kafka on the other hand
is what manages the data-stream coming into the Kafka Cluster [41].

4.1.6.1 Creating A Kafka Key

For a user to create a key, they would have to specify the key name, and a list of
topics that key would have access to, see Figure 40. The topics would each have the
id of the user that created the key added, meaning you created a key that had access
to the ”water-quality-updates” topic, it would in reality have access to the ”water-
quality-updates-{userId}” topic. The userId is a Globally Unique Identifier (GUID).
Because of this, two users won’t be able to create a key that has access to another
users topics.

Figure 40: Example of body and response when creating a Kafka key using the REST
API endpoint.

A logged in user can also create a key in the frontend website as seen in Figure 41.
And similarly to other solutions, can get an overview of all the created keys, with a
list of the topics they have access to. From the Keys overview page, a user can also
disable and delete the keys, as well as see how many days are left until the keys
expire, see Figure 42 for reference.

48

Figure 41: Example of GUI dialog and response when creating a Kafka key for a user
on the frontend Website.

Figure 42: Frontend Kafka Keys Overview page.

4.1.6.2 Data stream proof of concept example

To give an example where an event based messaging system like Kafka would be used,
we made a ”mock sensor” that would produce a message to a Kafka topic related to
a sensor.

To do this, we made a Mock Sensor .Net Application, which is a separate .Net 8

49

application. The Mock Sensor has two pre-made sensors, that can be created, started
and stopped using REST API calls, seen in Figure 43.

Figure 43: Example of REST API endpoints for a sensor in the Mock Sensor .Net
Application.

The Mock sensor produces messages to the Kafka Cluster, that acts as a middle-man
between the Main .Net Application and the Mock Sensor.

The mock sensor comes with two pre-made sensors, a water quality sensor that pro-
duces messages to the water-quality-updates-{id} topic, and a boat location sensor
that produces to the boat-location-updates-{id} topic.

All of the communication with the frontend goes through the main .Net application,
so to start the mock sensor, the main .Net application has corresponding REST API
endpoints to communicate with the mock sensor, as seen in Figure 44.

Figure 44: The Main .Net Applications corresponding REST API endpoints to commu-
nicate with the Mock Sensor.

Note regarding Figure 43 and Figure 44
The Main .Net Application doesn’t need the id parameter, since it is able to extract it
from the bearer access token of a user, or from the Kafka key, if one is provided in
the body.

When making the REST API call to start a sensor, in addition to selecting the sensor
type to start, you can specify a SessionID which is used to create a private WebSocket
connection with the frontend. You can also choose to enable a SendHistoricalData
boolean parameter which, will notify the consumer in the main .Net application to

50

send all of the messages so far produced to the topic. See Figure 45 and Figure 46.
See Figure 47 for example logs when SendHistoricalData is set to true.

Figure 45: REST API endpoint and its parameters to start a Mock Sensor.

Figure 46: Logs from the Mock Sensor Docker Container producing messages to the
topic with the userId as the sensor identifier.

Figure 47: Logs from the main .Net application after a sensor was started and all the
messages are sent at once because the SendHistoricalData parameter was set to true.

4.1.6.3 Long Term Storage

Every time the backend consumes a message from the water-quality-updates topic
or the boat-quality-updates topic, it stores the message to the users PostgreSQL
database.

To efficiently store the messages and not interrupt the consume-loop, the messages
are offloaded into a separate thread and then processed in a batch every 10 seconds.
Using batch processing improves performance by fetching and disposing of the dependency-
injected database context less frequently. Otherwise it would have to fetch the
database-context and the different dependency injections every message.

After a message is sent for processing, or for any other topic than water-quality-
updates and boat-quality-updates, the consumer just sends the message through a

51

WebSocket. If the SendHistoricalData boolean is false, it sends it to all WebSocket
sessions (identified through the sessionId paremeter) that are currently listening to
that topic, but if SendHistoricalData is true, the messages are only sent to that specific
session.

Figure 48: Two separate frontend sessions connected to the backend through a Web-
Socket, left is watching the live feed, and right requested all of the messages (up until
that point).

Figure 49: Sequence Diagram of the interaction between the .Net backend, mock
sensor, Kafka Cluster, Database, and frontend website.

In Figure 50 you can see how the frontend also can fetch the logs stored in the Post-
greSQL database using the /api/sensor/sensorType/logs endpoint seen in Figure 44.

52

Figure 50: Frontend table displaying the boat-location-updates logs, sorted by most
recent log first.

4.1.7 Containerization

We containerized the application using Docker to ensure multi-platform compatibility.
The project employs multiple containers for both the backend and frontend, utilizing
Docker Compose to construct the multi-container environment. Docker Desktop is
used for management and to get an overview of the environment. A complete view
of the project’s setup is shown in Figure 51.

For containers like PostgreSQL databases, Kafka, Zookeeper and Nginx, existing con-
tainers are pulled from the Docker Hub, see Figure 52 for an example of using an
existing container, and how a PostgreSQL container is made.

To persist data between container builds, which is necessary for the PostgreSQL data-
bases and Kafka Cluster, the data is stored as a volume locally. If this isn’t done, the
data is lost every time the container is destroyed.

53

Figure 51: The Docker Environment.

Here is a clearer overview over the different containers seen in Figure 51 and their
purpose:

Backend:

• netbackend container - Main .Net application

• mock-sensors container - Mock Sensors .Net Application

• postgresTest container - Main PostgreSQL database, user info, keys

• postgresCustomerOne container - User tenant database 1, private data

• postgresCustomerTwo container - User tenant database 2, private data

• kafka container - Manages message queues for real-time data handling and
processing.

• zookeeper container - Coordinates with Kafka to manage cluster state and con-
figurations.

Frontend:

• vuefrontend container - Vite + Vue frontend application

• nginx-app container - Serves and routes traffic to the Vue frontend.

The nginx-app container acts as the the Webserver seen in Figure 10. It serves the
static pages generated by the vuefrontend container, which builds the Vue application
into static pages.

54

Figure 52: Docker compose using an existing image pulled from docker hub. The
:latest annotation means the most recent image is pulled, and every time the project
is built it checks for a new version and automatically updates.

For applications developed locally, like the different .Net applications and the Vue
frontend, a Dockerfile is used to build the container and add it to the docker-compose
file, seen in Figure 53. The Dockerfile is responsible for copying and building the
project. For .Net applications with unit tests, the Dockerfile is also responsible for
running the tests, as seen in Figure 54, where the container will fail building if the
tests fail.

The containers cannot communicate internally between themselves using the normal
localhost route, which is only used to communicate with them externally. The con-
tainers use an internal network which in this case is named ”dev”, as seen in Figure 52
and Figure 53. If they are on the ”dev” network, they can connect to each other using
container-name:port, as seen in Figure 55.

Figure 53: Docker compose setup for the main .Net application.

55

Figure 54: Dockerfile for the main .Net application and the test project for the unit-
tests.

Figure 55: URL constants for the main .Net application. mock-sensors:80 is used for
internal docker-communication with the Mock Sensor .Net application.

Note that the url for the frontend isn’t vuefrontend:80, like the container. This is be-
cause the requests from the frontend website are still made externally from a browser
at localhost:8080.

4.1.8 Testing

We have a postman test collection that tests the most crucial features of the applica-
tion.

The collection is idempotent (running the collection doesn’t change any resources and
yields the same result every single time). This is done by deleting any resource that
is created and only performing update operations on resources that will be deleted at
the end of the collection.

To make the collection dynamic and repeatable we use environment variables to store
values we get from the requests, that we later use.

56

Figure 56: Postman collection run results

57

For most of the requests the testing consists of checking that the status code is 200,
but for GraphQL we also have to check that the desired part of the response body
isn’t null.

Figure 57: GraphQL AvailableQueries postman tests.

4.2 Administrative Results

As mentioned in the Section 3.1 section, we implemented a SCRUM-like approach with
week long sprints, group roles and a milestone plan for the project.

4.2.1 Group Structure

Name Roles
Simen H. Veum Team leader, meeting planner
Adrian R. Dahl Delivery manager
Ole T. Aanderaa Document manager, quality assurance

Table 2: Group Roles and Responsibilities.

58

4.2.2 Milestone Result

Date Milestone
26.01.2024 Set up Github
26.01.2024
05.02.2024 Make Wireframes for the frontend
16.02.2024
17.03.2024 Complete REST API solution
08.03.2024
18.03.2024 Complete GraphQL solution
29.03.2024 Undecided 3rd solution
22.04.2024 Complete Kafka solution
23.04.2024
29.04.2024 Finish Product Development
07.05.2024 Finish first-draft of report
21.05.2024 Finish report

Table 3: Project Milestone Result.

59

5 Discussion

5.1 Comparing the solutions

It is difficult to compare the three solutions, particularly the Kafka solution with the
REST and GraphQL due to Kafka serving a different purpose than the other two.

They all provide ways of data transfer, however Kafka is made for real-time data
streaming whereas REST and GraphQL are protocols used for API communication
between the server and its clients.

Due to these differences, we never focused on comparing the performance between
the three, and focused more on the developer experience, learning curve and ease
of implementation with the frontend and backend systems when comparing the solu-
tions.

Even our GraphQL and REST solutions had some differences that, although you could
use both protocols to complete more-or-less the same tasks, our solutions had some
limitations that caused them to only be usable in certain situations, and locked them
into different use-cases.

5.1.1 Developer Experience

As mentioned in Section 3.3, we already had an idea of the learning-curve and how
difficult the different solutions would be to implement, and due to this we developed
the REST solution first, followed by the GraphQL and Kafka solutions.

5.1.1.1 REST

Although we were new to the .Net framework, we assumed that implementing REST
API to a .Net application wouldn’t be very challenging due to our previous experience,
which is why we chose it first. This was so we would quickly have a good baseline and
proof-of-concept we could work from, and replicate when creating the other solutions.

Regrading authorization and user management, the REST API controllers had a seam-
less integration with the AspNetCore Identity library, meaning we didn’t have to spend
a lot of time creating our own methods of authentication and authorization.

For the frontend, the developer experience was also quick and seamless due to the
straightforward nature of REST API.

5.1.1.2 GraphQL

The GraphQL development experience was more challenging, and the learning curve
was steeper compared to REST API, with a few unfamiliar concepts like how the
GraphQL queries and mutations were made, both in the frontend and backend.

As mentioned in paragraph 4.1.5.4, The AspNetCore Identity library wasn’t directly
compatible with the HotChocolate library we used for GraphQL when it came to autor-
ization. Due to this we had to make a workaround that added a lot more code com-
pared to the REST API authorization, as seen in Figure 39, compared to the simple
[Authorize] attribute for the REST controller in Figure 28.

60

5.1.1.3 Kafka

Kafka was a huge step up from both REST and GraphQL, with a much steeper learning
curve. Kafka had a bunch of new concepts like partitions, topics, brokers, consumers
and producers that had to be understood. Even after completing the project, our
expertise regarding Kafka would probably still be considered surface-level.

Choosing Kafka was, as mentioned a few times, excessive for our use-case, since its
primarily used for scenarios where high throughput and reliable message delivery is
important.

The development was slowed down due to not fully understanding how consumers
and producers worked with .Net, and also a general lack of knowledge regarding the
different new concepts. Because of this, a lot of the development consisted of a
”throwing stuff at the wall and see what sticks”-type approach, with a varying degree
of success. In despite of all this, we still managed to create a solution with the
functionality that we wanted.

REST API was used to handle all the communication with the Kafka consumer and
producer regarding subscribing to- and creating new topics, as well as communicating
with the mock sensor .Net application. REST was used due to our familiarization and
confidence using the protocol compared to GraphQL.

The .Net backend also processes and stores messages consumed form the mock
sensor topics into the users PostgreSQL database. We encountered a problem where
messages were sometimes stored out of order, as seen in Figure 50. In the figure
you can can see the ID is out of order. Luckily, Kafka sends the messages with an
offset value, so the order isn’t completely lost, but if you wanted to fetch and display
the data in the correct order, you would have to do an additional sorting-process that
could become computationally expensive.

If we were to start over we could have looked into using a KsqlDB database, rather
than using a PostgreSQL database for handling and storing the kafka messages.
KsqlDB is built to handle data streaming messages, and would eliminate the prob-
lem of storing messages in the wrong order, while still supporting SQL queries.

5.1.2 Differences in solutions

As mentioned earlier, even though REST API and GraphQL can be used to solve the
same problems, especially the GraphQL solution lacked certain features to be fully
comparable with the REST API solution.

GraphQL shines in regards to control, giving you the ability to choose specifically
what data you want to retrieve, and our implementation still gives you that control
when fetching from tables in the database. However, a GraphQL key cannot perform
mutations or any form of data manipulation, something the REST API key can do
because it simply gives access to the endpoint, and then lets it do its thing.

The Kafka solution is similar in the sense that the keys are created the same way
as REST and GraphQL keys are. However, the Kafka keys give you access to topics
and its corresponding data stream, rather than access to the data in the PostgreSQL
databases.

61

5.1.3 Best Use Case

Although used to solve very similar problems, the GraphQL and REST has, according
to our experience from the project, certain use-cases where one shines over the other.

As mentioned earlier, Kafka was, to put it mildly, overkill for our use case, so we were
never able to fully see its true potential and capabilities. Kafka is meant to handle
thousands of events a second , and dealing with systems far more complex than ours
[42]. Because of this the best use cases will only be based on what we were able to
do with the different technologies, rather than list everything they are good for.

5.1.3.1 REST API

• Easy to understand with a low learning curve.

• Operates well under the HTTP standard, making them a good fit for scenarios
requiring CRUD operations.

5.1.3.2 GraphQL

• Scenarios where control over what data to fetch is important, reducing the chance
of over- and under-fetching.

• Scenarios where the option to make multiple queries or mutations at the same
time is beneficial.

5.1.3.3 Kafka

• Scenarios using inter-service communication in systems that employmicroservice
architecture, like between the sensor started by the Mock Sensor .Net Application
that produces to a topic, which is consumed by the Main .Net Application.

• Scenarios that requires live updates or event-based data transfer, like our sensor
proof-of-concept or a logging system.

5.2 Administrative Discussion

5.2.0.1 SCRUM

Our implementation of a SCRUM-like approach was largely successful. We never im-
plemented standup meetings into our schedule, something that is common doing
every workday when using SCRUM. This was primarily due to other commitments and
the fact we had a different course in parallel with the Bachelor project for the first
few weeks of the semester. By the time the other course ended, and our main focus
was the Bachelors project, we saw no reason to suddenly add the standup meetings.
This was because we felt our approach of a weekly group meeting, and two bi-weekly
meetings with the supervisor and FiiZK, was working fine and we never felt we were
falling behind in our development process.

There was also a brief discussion, during the start of the project, about having the
sprints be two-weeks long, to align with the supervisor and FiiZK meetings, but we
felt sprints that long would make us procrastinate, so we went with week-long sprints
instead.

62

5.2.0.2 Milestones

As seen in Table 3, none of the ”solution”-milestones were completed on time. How-
ever, they all had a proof-of-concept done within the milestone date, and the extra
days (or month for the REST API solution) was just fine-tuning, cleaning code and
making the frontend look pretty.

Different parts of the project was developed in parallel, where someone would start
on the next solution once the proof-of-concept was done on the former, hence the
close completion dates for REST API and GraphQL solutions.

5.3 Unit testing

We have a .NET project for testing, but no unit tests were implemented due to time
constraints. The testing project was made late in the development process, and we
already had a sizeable postman collection that tested most of the REST API endpoints
and GraphQL queries and mutations. Because of this we saw a greater benefit from
refining our postman collection, over implementing unit tests in the testing project.

63

6 Conclusion

This chapter contains the conclusions regarding our initial problem statement, com-
pared to our end result. This chapter also contains recommendations for further work,
in case anyone decides to continue development on the project.

6.1 Conclusions

This project set out to develop a proof-of-concept full-stack application capable of
managing data retrieval in a multi-tenant environment for FiiZK Digital AS.

Throughout this thesis, we have outlined the methodical approach we employed, from
using agile methods and a SCRUM-like approach, to selecting technologies and devel-
oping methods using REST, GraphQL, and Kafka for data transfer.

Our efforts have resulted in a robust application that meets the requirements set by
FiiZK. The application provides a scalable, secure, and user-friendly interface that en-
hances data accessibility and management for multiple users, including the capability
for users to securely manage and and share a subset of their data effectively.

Despite the challenges of adopting new technologies and managing project coordina-
tion, the practical experience gained and the successful development of the application
demonstrate the project’s success.

The application was developed to manage data retrieval in a general sense, giving the
application a broader use-case rather than just for the aquaculture industry.

6.2 Further Work

This section consists of suggestions for further work that can be done to the solutions
or project as a whole.

We realised towards the end that we could add an almost unlimited amount of features
to the project. Because of this we had to put a hard deadline for when we would
stop the development when we went over the planned ”Finish Product Development”
deadline, as detailed in Table 3.

Here are some suggestions that we could implement to further improve our product:

• When creating a new user, also automatically create a new PostgreSQL database
and assign it to the user.

• Add the possibility to include GraphQL mutations to the GraphQL key permis-
sions, to align it better with the REST API solution.

• Return the ApiKey object alongside the encrypted key when creating an key, to
follow best practices. This would allow the frontend to update the list of keys
more easily, compared to having to re-fetch the whole Key list after a key is
created.

• Implement a testing scenario to utilize Kafka’s potential in regards to handling a
high volume of messages per second.

64

Societal Impact

Our project is licensed under the MIT license. This license allows anyone to use,
modify, distribute and commercialize our source code. By contributing to the open-
source community we enable others to learn, or develop other useful systems or
solutions using our code.

We have also written our code using the SOLID principles, as well as structured our
project to be as easy to read and understand as possible, making it easier for others
to use, modify or learn from our code.

We used docker containers to containerize our solution. This way we ensure that the
environment will be the same for anyone running the application, avoiding common
environment issues like different operating systems and installation of packages.

References

[1] Alexander S. Gillis. What is object-oriented programming.
https://www.techtarget.com/searchapparchitecture/definition/
object-oriented-programming-OOP. [Online; accessed 14-May-2024].

[2] Samuel Oloruntoba and Anish Singh Walia. Solid: The first 5 principles of object
oriented design. https://www.digitalocean.com/community/conceptual-articles/
s-o-l-i-d-the-first-five-principles-of-object-oriented-design. [Online; accessed
14-May-2024].

[3] Microsoft contributors. What is .net? https://dotnet.microsoft.com/en-us/learn/
dotnet/what-is-dotnet. [Online; accessed 05-May-2024].

[4] ——. A tour of the c sharp language. https://learn.microsoft.com/en-us/dotnet/
csharp/tour-of-csharp/. [Online; accessed 05-May-2024].

[5] MDN contributors. Spa (single-page application). https://developer.mozilla.org/
en-US/docs/Glossary/SPA. [Online; accessed 18-May-2024].

[6] Vue contributors. Vue - introduction. https://vuejs.org/guide/introduction. [On-
line; accessed 18-May-2024].

[7] Wikipedia contributors. Javascript — Wikipedia, the free encyclopedia. https:
//en.wikipedia.org/wiki/JavaScript. [Online; accessed 05-May-2024].

[8] Typescript contributors. Typescript is javascript with syntax for types. https://
www.typescriptlang.org/. [Online; accessed 18-May-2024].

[9] geeksforgeeks contributors. Introduction to tailwind css. https://www.
geeksforgeeks.org/introduction-to-tailwind-css/. [Online; accessed 18-May-
2024].

[10] Red Hat contributors. What is apache kafka? https://www.redhat.com/en/
topics/api/what-is-a-rest-api. [Online; accessed 05-May-2024].

[11] Roy Thomas Fielding, “Architectural styles and the design of network-based soft-
ware architectures,” Ph.D. dissertation, UNIVERSITY OF CALIFORNIA, IRVINE,
2000.

65

https://www.techtarget.com/searchapparchitecture/definition/object-oriented-programming-OOP
https://www.techtarget.com/searchapparchitecture/definition/object-oriented-programming-OOP
https://www.digitalocean.com/community/conceptual-articles/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://www.digitalocean.com/community/conceptual-articles/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://dotnet.microsoft.com/en-us/learn/dotnet/what-is-dotnet
https://dotnet.microsoft.com/en-us/learn/dotnet/what-is-dotnet
https://learn.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/
https://learn.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/
https://developer.mozilla.org/en-US/docs/Glossary/SPA
https://developer.mozilla.org/en-US/docs/Glossary/SPA
https://vuejs.org/guide/introduction
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/JavaScript
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.geeksforgeeks.org/introduction-to-tailwind-css/
https://www.geeksforgeeks.org/introduction-to-tailwind-css/
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.redhat.com/en/topics/api/what-is-a-rest-api

[12] Red Hat contributors. What is graphql? https://www.redhat.com/en/topics/api/
what-is-graphql. [Online; accessed 05-May-2024].

[13] How To GraphQL. Graphql is the better rest? https://www.howtographql.com/
basics/1-graphql-is-the-better-rest/. [Online; accessed 05-May-2024].

[14] Red Hat contributors. What is apache kafka? https://www.redhat.com/en/
topics/integration/what-is-apache-kafka. [Online; accessed 05-May-2024].

[15] Oracle contributors. What is a database? https://www.oracle.com/database/
what-is-database/#:~:text=A%20database%20is%20an%20organized,
database%20management%20system%20(DBMS). [Online; accessed 05-
May-2024].

[16] Wikipedia contributors. Postgresql — Wikipedia, the free encyclopedia. https:
//en.wikipedia.org/wiki/PostgreSQL. [Online; accessed 05-May-2024].

[17] PostgreSQL contributors. About. https://www.postgresql.org/about/. [Online;
accessed 05-May-2024].

[18] Wikipedia contributors. Multitenancy — Wikipedia, the free encyclopedia. https:
//en.wikipedia.org/wiki/Multitenancy. [Online; accessed 05-May-2024].

[19] ——. Encryption — Wikipedia, the free encyclopedia. https://en.wikipedia.org/
wiki/Encryption. [Online; accessed 05-May-2024].

[20] ——, “Https — Wikipedia, the free encyclopedia,” https://en.wikipedia.org/wiki/
HTTPS, 2024, [Online; accessed 19-April-2024].

[21] Swagger contributors. Bearer authentication. https://swagger.io/docs/
specification/authentication/bearer-authentication/. [Online; accessed 05-
May-2024].

[22] APIDOG contributors. What is bearer token and how it works? https://apidog.
com/articles/what-is-bearer-token/. [Online; accessed 05-May-2024].

[23] Microsoft contributors. Globally unique identifier (guid). https://
learn.microsoft.com/en-us/previous-versions/windows/desktop/automat/
globally-unique-identifier-guid-. [Online; accessed 05-May-2024].

[24] Wikipedia contributors. Docker (software) — Wikipedia, the free encyclope-
dia. https://en.wikipedia.org/wiki/Docker_(software). [Online; accessed 05-
May-2024].

[25] ——. Postman (software) — Wikipedia, the free encyclopedia. https://en.
wikipedia.org/wiki/Postman_(software). [Online; accessed 05-May-2024].

[26] ——. Api platform. https://www.postman.com/api-platform/. [Online; accessed
05-May-2024].

[27] ——. Dbeaver —Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/
DBeaver. [Online; accessed 05-May-2024].

[28] ——. Openai — Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/
OpenAI. [Online; accessed 05-May-2024].

[29] ——. Chatgpt — Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/
ChatGPT. [Online; accessed 05-May-2024].

66

https://www.redhat.com/en/topics/api/what-is-graphql
https://www.redhat.com/en/topics/api/what-is-graphql
https://www.howtographql.com/basics/1-graphql-is-the-better-rest/
https://www.howtographql.com/basics/1-graphql-is-the-better-rest/
https://www.redhat.com/en/topics/integration/what-is-apache-kafka
https://www.redhat.com/en/topics/integration/what-is-apache-kafka
https://www.oracle.com/database/what-is-database/#:~:text=A%20database%20is%20an%20organized,database%20management%20system%20(DBMS).
https://www.oracle.com/database/what-is-database/#:~:text=A%20database%20is%20an%20organized,database%20management%20system%20(DBMS).
https://www.oracle.com/database/what-is-database/#:~:text=A%20database%20is%20an%20organized,database%20management%20system%20(DBMS).
https://en.wikipedia.org/wiki/PostgreSQL
https://en.wikipedia.org/wiki/PostgreSQL
https://www.postgresql.org/about/
https://en.wikipedia.org/wiki/Multitenancy
https://en.wikipedia.org/wiki/Multitenancy
https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/wiki/HTTPS
https://swagger.io/docs/specification/authentication/bearer-authentication/
https://swagger.io/docs/specification/authentication/bearer-authentication/
https://apidog.com/articles/what-is-bearer-token/
https://apidog.com/articles/what-is-bearer-token/
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/automat/globally-unique-identifier-guid-
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/automat/globally-unique-identifier-guid-
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/automat/globally-unique-identifier-guid-
https://en.wikipedia.org/wiki/Docker_(software)
https://en.wikipedia.org/wiki/Postman_(software)
https://en.wikipedia.org/wiki/Postman_(software)
https://www.postman.com/api-platform/
https://en.wikipedia.org/wiki/DBeaver
https://en.wikipedia.org/wiki/DBeaver
https://en.wikipedia.org/wiki/OpenAI
https://en.wikipedia.org/wiki/OpenAI
https://en.wikipedia.org/wiki/ChatGPT
https://en.wikipedia.org/wiki/ChatGPT

[30] ——. Github copilot — Wikipedia, the free encyclopedia. https://en.wikipedia.
org/wiki/GitHub_Copilot. [Online; accessed 05-May-2024].

[31] ——. Git — Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/Git.
[Online; accessed 05-May-2024].

[32] ——. Github — Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/
GitHub. [Online; accessed 05-May-2024].

[33] ——. Nginx — Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/
Nginx. [Online; accessed 05-May-2024].

[34] Overleaf contributors. The secret to better scientific and technical writing. https:
//www.overleaf.com/about/why-latex. [Online; accessed 18-May-2024].

[35] Ken Schwaber and Jeff Sutherland. The 2020 scrum guide. https://scrumguides.
org/scrum-guide.html. [Online; accessed 15-May-2024].

[36] Claire Drumond. What is scrum? https://www.atlassian.com/agile/scrum. [On-
line; accessed 15-May-2024].

[37] Atlassian. User stories in agile project management. https://www.atlassian.com/
agile/project-management/user-stories. [Online; accessed 28-April-2024].

[38] Simen H. Veum, Adrian R. Dahl, Ole T. Aanderaa. Bachelor github repository.
https://github.com/sh-veum/Bachelor. [Online; accessed 18-May-2024].

[39] Simen H. Veum. Demo: Managing data retrieval in a multi-tenant environment.
https://youtu.be/o9TnndkU0Yg. [Online Video; accessed 12-May-2024].

[40] Rick Anderson. (2024) Asp.net core identity. https://learn.microsoft.com/
en-us/aspnet/core/security/authentication/identity?view=aspnetcore-8.0&
tabs=visual-studio. [Online; accessed 05-May-2024].

[41] Joe Carder. How (and why) to use kafka with zookeeper. https://www.openlogic.
com/blog/using-kafka-zookeeper#what-is-zookeeper-01. [Online; accessed
05-May-2024].

[42] Apache Kafka. Apache kafka use cases. https://kafka.apache.org/uses. [Online;
accessed 04-May-2024].

67

https://en.wikipedia.org/wiki/GitHub_Copilot
https://en.wikipedia.org/wiki/GitHub_Copilot
https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/GitHub
https://en.wikipedia.org/wiki/GitHub
https://en.wikipedia.org/wiki/Nginx
https://en.wikipedia.org/wiki/Nginx
https://www.overleaf.com/about/why-latex
https://www.overleaf.com/about/why-latex
https://scrumguides.org/scrum-guide.html
https://scrumguides.org/scrum-guide.html
https://www.atlassian.com/agile/scrum
https://www.atlassian.com/agile/project-management/user-stories
https://www.atlassian.com/agile/project-management/user-stories
https://github.com/sh-veum/Bachelor
https://youtu.be/o9TnndkU0Yg
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-8.0&tabs=visual-studio
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-8.0&tabs=visual-studio
https://learn.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-8.0&tabs=visual-studio
https://www.openlogic.com/blog/using-kafka-zookeeper#what-is-zookeeper-01
https://www.openlogic.com/blog/using-kafka-zookeeper#what-is-zookeeper-01
https://kafka.apache.org/uses

Appendix

A Project Plan

68

Project number: 01

Managing Data Retrieval in a Multi-tenant Environment

Preliminary Project Plan

Version <1.3>

Project number: 01

Revision History
Dato Versjon Beskrivelse Forfatter

<19/01/24> <1.0> Første utkast Adrian R. Dahl, Ole T.
Aanderaa, Simen H.
Veum

<22/01/24> <1.1> Lagt til vedlegg Adrian R. Dahl, Ole T.
Aanderaa, Simen H.
Veum

<26/01/24> <1.2> Lagt til 3-parts avtale og arbeidskontrakt Adrian R. Dahl, Ole T.
Aanderaa, Simen H.
Veum

<22/02/24> <1.3> Rewritten in English and updated Adrian R. Dahl, Ole T.
Aanderaa, Simen H.
Veum

Project number: 01

Table of Contents
1. Objectives and Goals 4

1.1 Orientation 4
1.2 Project Description and Outcome 4

1.2.1 Project Description 4
1.2.2 Outcome Objectives 5

1.3 Impact Objectives 5
1.4 Frameworks 5

2. Organization 5
2.1 Project Group 5
2.2 Supervisor 6
2.3 Client 6

3. Implementation 6
3.1. Main Activities 6
3.2. Milestones 7

4. Monitoring and Quality Assurance 7
4.1 Quality Assurance 7
4.2 Reporting 8

5. Risk Assessment 8
6. Appendices 9

6.1 Schedule 9
6.2 Address List 10
6.3 Agreement Documents 11
6.3.1 Arbeidskontrakt for bachelor-gruppen 11
6.3.2 3-partsavtale 13

Project number: 01

1. Objectives and Goals

1.1 Orientation
This project was offered by NTNU along with other bachelor's projects and was selected after a

discussion within our group where we concluded that this project appeared to be a sufficient challenge

that would allow us to use our existing knowledge and skills, as well as develop them further.

1.2 Project Description and Outcome

1.2.1 Project Description

The objective of this project is to develop a containerized full-stack application to test and evaluate

different methods of secure data retrieval, primarily focusing on REST API and GraphQL with the

option to explore methods like RabbitMQ and Kafka if we have time.

The application will be in a multi-tenant environment1 where each user has their own database that

only they and system admins can access.

Using a graphical user interface, the users will be able to create keys for third parties that can access a

subset of the data in their assigned database. When creating the key, the user will be able to specify

what data the key can access. The third party would be able to insert their key in the application to see

what data they are able to retrieve. An admin is able to see all the users and is able to change which

database a user is linked to.

In the REST API solution, the key will hold information about the API endpoint anyone with that key

can access, for example if the key only had access to “api/all-species”, would return all species in the

database, but nothing else.

1 A multi-tenant environment hosts multiple clients (users) on a single instance.

Project number: 01
In the GraphQL solution the key would be able to specify the fields of a table in the database that the

key can access. For example, if the database has a table named Species with the fields name and id,

the key could limit the access to just the name field for Species.

1.2.2 Outcome Objectives

The end product will be a containerized full-stack application with a user-friendly graphical user

interface where users can manage access to their data. The application will be a proof of concept of a

system that will allow users to create keys that will give access to a subset of their data, which can be

given to third parties. This is so the users can specify the exact data they want to share with third

parties.

1.3 Impact Objectives
The long term goal for the project is to have developed a robust full-stack application for managing

data access that is easy to maintain and expand. The project will allow users to easily and securely

share subsets of their data to third parties.

1.4 Frameworks
Everyone in the group must have access to a computer and the internet, with the necessary software

installed to be able to work on the project.

2. Organization

2.1 Project Group

Simen Haug Veum
Student, Team Leader and Meeting Planner

Adrian Rennan Dahl
Student, Delivery Manager

Ole Tonning Aanderaa
Student, Document Manager and Quality Assurance

Project number: 01

2.2 Supervisor

Rituka Jaiswal
Associate Professor, Department of ICT and Natural Sciences NTNU Ålesund

2.3 Client

Marius Lundbø
Senior Software Developer, FiiZK

3. Implementation

3.1. Main Activities
The entire group will participate in developing the project. We will try to evenly distribute tasks

among the various members of the group. Each member will receive their respective issues to work

on, but other members can assist when necessary.

The backend will be written in a .NET 8 application that accesses multiple PostgreSQL databases.

There will be one main database and multiple user databases. The main database contains information

about all of the users (login info) that is only accessible for the administrators. The user databases will

contain all of the data that the user can access. The .NET 8 application will be responsible for the

communication between the databases.

The frontend will be written in Vue with TypeScript, and will give the user an easy way to create the

keys they will give to third parties. The frontend will also be a testing-ground for the access keys to

ensure they work. The administrators will also be able to use the frontend website to get an overview

of the users and their assigned database.

The application will be containerized using Docker, this ensures that the application will run in the

same environment on different machines. These technologies were chosen primarily because they are

the recommended technologies that FiiZK already uses, and recommended for the project.

Project number: 01

Results will be documented in the final report, which everyone will work on equally. The main focus

at the start is to program the full-stack application to have the product completed as early as possible,

so we can well before the deadline shift the main focus to the report.

3.2. Milestones

Date Milestone

26.01.2024 Deliver Project Plan

26.01.2024 Set up Github

26.01.2024 Make Wireframes for the frontend

09.02.2024 MVP Frontend

09.02.2024 MVP Backend

16.02.2024 Complete REST API Solution

08.03.2024 Complete GraphQL Solution

29.03.2024 Complete undecided 3rd Solution

April 2024 Oral Presentation of the Project in English

23.04.2024 Finished Project Development

07.05.2024 Ask Supervisor for report feedback

21.05.2024 Deliver Bachelor Thesis

4. Monitoring and Quality Assurance

4.1 Quality Assurance
Everyone must ensure that what they deliver is of the highest possible quality. We also have a member

responsible for quality assurance, who has an extra focus on ensuring that the quality of what is

delivered is high.

Project number: 01
Regarding other significant documents and tasks, it is the duty of each member to involve the other

team members. This ensures a broader range of input and helps to achieve the highest quality of work,

as well as a result that the whole group can unite behind and be satisfied with.

4.2 Reporting
We will have meetings with the advisor and client every other week, where we conduct a sprint

review. With the advisor, we will also have a sprint retrospective every other week. In the weeks in

between, the group will have an internal sprint review and retrospective.

5. Risk Assessment
Risk analysis that assesses vulnerabilities in the project.

Harmless Less severe Severe Very severe Catastrophic

Verylikely 5 10 15 20 25

More likely 4 8 12 16 20

Likely 3 6 9 12 15

Less likely 2 4 6 8 10

Unlikely 1 2 3 4 5

Event Probablilty Consequence Risk factor Measurement

Dropout of a group
member

Unlikely Very severe 4 Keep working.

Can’t finish project
in time

Unlikely Catastrophic 5 Set the scope for the
project down to a
manageable size.
Work consistently and
document things
along the way. Start
writing the report in
good time before

Project number: 01

submission.

Bad communication
between group
members

Unlikely Severe 3 Have a meeting and
agree on a solution to
communicate better

The quality of the
finished product is
unsatisfactory.

Less likely Very severe 8 Maintain effective
communication with
both supervisor and
client to discuss the
quality of the product
and understand their
expectations of it.

Group member is ill Less likely Severe 6 Try to work together
online instead of
physical meetings
while they are ill

Insufficient
overview of
deadlines and the
required tasks.

Less likely Less severe 4 Start early with
effective planning and
identifying essential
tasks.

6. Appendices

6.1 Schedule

Project number: 01

6.2 Address List

Navn Firma Telefon (+47) E-post

Simen Haug Veum NTNU 91595359 simenhv@stud.ntnu.no

Adrian Rennan Dahl NTNU 99088579 adrianrd@stud.ntnu.no

Ole Tonning Aanderaa NTNU 92810548 oleton@stud.ntnu.no

Rituka Jaiswal NTNU 40641567 rituka.jaiswal@ntnu.no

Marius Lundbø FiiZK 45233577 marius.lundbo@fiizk.com

Project number: 01
6.3 Agreement Documents

6.3.1 Arbeidskontrakt for bachelor-gruppen

Project number: 01

Project number: 01
6.3.2 3-partsavtale

Project number: 01

Project number: 01

Project number: 01

Project number: 01

Project number: 01

	Abstract
	Sammendrag
	Preface
	About
	Thanks

	List of Figures
	List of Tables
	Acronyms
	Terms
	Introduction
	Background
	Problem Statement
	Requirements
	Limitations
	Subject Areas
	Document Structure

	Theory
	Programming & Frameworks
	Object Oriented Programming
	SOLID Principles
	.NET
	C#
	Single page application
	Vue
	JavaScript
	TypeScript
	Tailwind CSS

	Data Exchange
	REST API
	GraphQL
	Kafka

	Data Storage and Security
	Database
	PostgreSQL
	Multi-Tenant Environment
	Encryption
	HTTPS
	Bearer Token
	GUID

	Tools
	Docker
	Postman
	DBeaver
	ChatGPT
	GitHub Copilot

	Version Control And Documentation
	Git
	GitHub
	NGINX
	Overleaf

	Development Methodologies
	SCRUM
	Agile Methods

	Method
	Managing the project
	Meetings
	Project Organization
	Dividing Tasks

	Planning and Choosing Technologies
	Frameworks
	Methods of Data transfer
	Milestones
	Wireframes

	Development
	REST API
	GraphQL
	Kafka
	Applications used
	API overview
	Project structure

	Running the Project

	Result
	Engineering Results
	Demo Video
	Frontend
	Backend
	REST API Solution
	GraphQL Solution
	Kafka Solution
	Containerization
	Testing

	Administrative Results
	Group Structure
	Milestone Result

	Discussion
	Comparing the solutions
	Developer Experience
	Differences in solutions
	Best Use Case

	Administrative Discussion
	Unit testing

	Conclusion
	Conclusions
	Further Work

	Societal Impact
	References
	Appendix
	Project Plan

