
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Ba
ch

el
or

’s
th

es
is

Daniel Evensen
Jostein Lind Aanby
Vebjørn Myklebust

Bridging the Gap Between Software
Security and Development using
CodeQL

Bachelor’s thesis in Computer Science
Supervisor: Donn Morrison
May 2024

Daniel Evensen
Jostein Lind Aanby
Vebjørn Myklebust

Bridging the Gap Between Software
Security and Development using
CodeQL

Bachelor’s thesis in Computer Science
Supervisor: Donn Morrison
May 2024

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract
This thesis evaluates the application of CodeQL as a static analysis tool

to enhance cybersecurity practices, focusing on the knowledge gap identi-

fied by third-year computer science students at the Norwegian University

of Science and Technology (NTNU). This gap highlights areas where the

existing curriculum could be improved. The method involved using Cod-

eQL on pre-existing applications, rather than implementing it in active

development. This included phases of reviewing CodeQL documentation,

environment setup, application on target repositories, and reflecting on

the results.

Challenges in transitioning from theoretical learning to practical applica-

tion revealed steep learning curves, and significant knowledge gaps in both

vulnerability detection and CodeQL usage. Although no definitive vulner-

abilities were identified, using CodeQL significantly enhanced the team’s

understanding of the tool and broader cybersecurity concepts. The study

advocates for integrating tools like CodeQL into IT curricula to foster a

security-first mindset among new developers. It emphasizes the import-

ance of embedding security early in education to prepare for real-world

challenges. This approach aims to reduce future vulnerabilities and en-

hance software security by integrating practical tools into software devel-

opment education.

i

Sammendrag
Denne oppgaven evaluerer bruken av CodeQL som et statisk analyse-

verktøy for å styrke cybersikkerhetpraksiser, med fokus på kunnskaps-

mangelen observert av tredjeårs dataingeniørstudenter ved Norges Teknisk-

Naturvitenskapelige Universitet (NTNU). Denne mangelen påpeker om-

råder hvor den eksisterende læreplanen kan forbedres. Metoden inkluderte

bruk av CodeQL på eksisterende applikasjoner, i stedet for å implementere

det i en utviklingsprosess. Dette inkluderte faser for å gjennomgå CodeQL-

dokumentasjon, oppsett av programmeringsmiljø, anvendelsen på kode-

basen som ble undersøkt, og refleksjon av resultatene.

Utfordringene med overgangen fra teoretisk læring til praktisk anvendelse

avdekket en bratt læringskurve og betydelige kunnskapsmangler i både

sårbarhetdeteksjon og bruk av CodeQL. Selv om ingen definitive sårbar-

heter ble identifisert, forbedret bruken av CodeQL teamets forståelse av

både verktøyet, og bredere cybersikkerhetskonsepter. Studien anbefaler

integrering av verktøy som CodeQL i IT-læreplaner for å fremme en ”sik-

kerhet først” tankegang blant nye utviklere. Den understreker viktigheten

av å integrere sikkerhet tidlig i utdannelsen for å forberede studenter på

utfordringer i arbeidslivet. Denne tilnærmingen har som mål å redusere

fremtidige sårbarheter og forbedre programvaresikkerheten.

ii

Preface
This thesis marks the conclusion of a three-year Bachelor’s program in

Computer Science at the Norwegian University of Science and Technology

(NTNU).

The original assignment to conduct a penetration test was requested by

Donn Morrison, on behalf of the Department of Computer Science (IDI).

During the course of the project the focus shifted towards the connection

between software security and development, which aligned more with our

goals and interests.

We would like to thank our supervisor, Donn Morrison, for his guidance

and support throughout the project.

Trondheim, May 21th 2024

Daniel Evensen Jostein Lind Aanby Vebjørn Myklebust

iii

Assignment Details
The description of the original thesis was ”Open-ended Pentest Project”.

Through discussions with the supervisor the team decided to use CodeQL

to conduct a penetration test. The initial thesis statement became ”Applic-

ation of Static Analysis Tools on Open-Source Repositories”. During learn-

ing and applying CodeQL on the targets, the team realised a gap in their

cybersecurity knowledge and changed the thesis statement to ”Bridging

the Gap Between Software Security and Development using CodeQL”.

iv

Contents

Abstract i

Sammendrag ii

Preface iii

Assignment Details iv

Contents v

Figures viii

Acronyms x

1 Introduction 1

1.1 Relevance . 1

1.2 Purpose . 2

1.3 Goals . 3

1.3.1 Effect Goals . 3

1.3.2 Result Goals . 3

1.4 Scope . 3

1.5 Structure . 4

2 Theory 5

2.1 Static Code Analysis . 5

2.2 CodeQL . 6

2.3 MITRE . 9

2.4 OWASP Top Ten . 10

2.5 Importance of Security Knowledge for Software Developers . 11

2.6 Vulnerabilities . 11

2.7 CTF . 14

2.8 GPT-4 . 14

3 Method 15

3.1 Work and Role Distribution . 15

3.2 Choice of Technology and Methodology 15

3.2.1 CodeQL . 15

3.2.2 GPT-4 . 15

3.2.3 Threat Modeling Frameworks 16

v

Contents vi

3.2.4 Methodological Approach 16

3.2.5 Administrative Strategy 16

3.3 Choosing Targets . 17

3.3.1 Open Hospital . 17

3.3.2 DHIS2 . 17

3.4 Research and Implementation of CodeQL 18

3.4.1 Review of Documentation 18

3.4.2 Using CodeQL CTF . 18

3.4.3 Setup of CodeQL Environment 19

3.4.4 Applying CodeQL on Target Repositories 19

3.4.5 Learning with CodeQL . 20

3.4.6 Identifying Knowledge Gaps 20

3.4.7 Surveying Cybersecurity Knowledge 20

4 Results 22

4.1 Scientific Results . 22

4.1.1 Vulnerabilities Investigated 25

4.1.2 Identifying Challenges 34

4.1.3 Learning with CodeQL . 39

4.1.4 Learning to Use Custom Queries 39

4.1.5 Survey results . 43

4.2 Administrative results . 46

4.2.1 Time Accounting . 46

5 Discussion 48

5.1 Scientific . 48

5.1.1 Methodology . 48

5.1.2 CodeQL use in Development versus Pentesting 49

5.1.3 Vulnerability Findings . 50

5.1.4 CodeQL as an Educational Tool 50

5.1.5 Survey . 52

5.1.6 Improvement of Education 53

5.1.7 Improvement of Documentation 53

5.2 Administrative . 54

5.3 Summary . 54

6 Conclusion and Future Work 56

7 Societal Impact 58

7.1 Environmental Impact . 58

7.2 Health Impact . 58

7.3 Economic Impact . 59

7.4 Societal Impact . 59

Contents vii

7.5 Ethical Considerations . 59

7.6 Conclusion . 60

Bibliography 61

Figures
2.1 Basic query structure in CodeQL (‘CodeQL Documentation’,

2024). 7

2.2 Predicate in CodeQL(‘CodeQL Documentation’, 2024). 7

2.3 Class in CodeQL (‘CodeQL Documentation’, 2024). 8

4.1 Command for creating the CodeQL database from Openhos-

pital’s Application Programming Interface (API) repository. . . 23

4.2 Results of a query formatted to HTML with ”csvtotable”. 23

4.3 Script used for running a query against a predefined database,

with formatted results. 24

4.4 Standard scan results for DHIS2. 24

4.5 Standard scan result for Open Hospital. 25

4.6 Query detecting SQL sinks tainted by user input, from the

standard package of CodeQL queries (‘CWE coverage for Java’,

n.d.). 26

4.7 Customized query detecting SQL sinks tainted by user input. . 26

4.8 Customized query detecting SQL sinks tainted by user input. . 27

4.9 Customized query detecting SQL sinks tainted by user input. . 28

4.10Log Injection standard query (‘CWE coverage for Java’, n.d.). 29

4.11Refined log injection query narrowing down possible false pos-

itives. 30

4.12Potential HTTP Response Splitting vulnerability in the DHIS2

codebase. 30

4.13Query created for finding user controlled serialization calls. . . 32

4.14Potential ReDoS vulnerability in the DHIS2 codebase. 33

4.15Potential regex . 33

4.16Potential CSRF vulnerability in the DHIS2 codebase 34

4.17Query used to solve the ”Crown the rightful heir” puzzle from

CodeQL tutorials. 35

4.18Query used to solve a section of the ”Go and don’t return”

CTF challenge. 36

4.19GPT-4 summarization example, reducing the developer manual

to essential elements. 40

4.20GPT-4’s role in explaining complex logic and its implications

for cybersecurity. 41

4.21GPT-4 assisting in debugging and refining CodeQL command

syntax. 42

viii

Figures ix

4.22Example of an incorrect suggestion provided by GPT-4. 43

4.23Answer distribution across year of study. Question asks ”What

year of study are you in?” and answers reads 1st grade, 2nd

grade and 3rd grade. 44

4.24Answer distribution across line of study. Question asks ”What

line of study are you in?” and answers reads Computer Sci-

ence, Digital Business Development and Information Manage-

ment. 44

4.25Answer distribution to question about rating general cyberse-

curity knowledge. 45

4.26Answer distribution to question about how often security prac-

tices are kept in mind during a development process. 45

4.27Answer distribution to question about rating SAST-tool know-

ledge. 46

4.28Answer distribution to question about rating static code ana-

lysis knowledge. 46

Acronyms
API Application Programming Interface.

AST Abstract Syntax Tree.

bqrs binary query result set.

CI/CD Continuous Integration and Continuous

Delivery.

CLI Command-Line Interface.

CR carriage return.

CSRF Cross-Site Request Forgery.

csv comma-separated values.

CTF Capture The Flag.

CVE Common Vulnerabilities and Exposures.

CWE Common Weakness Enumeration.

DAST Dynamic Application Security Testing.

DHIS2 District Health Information System 2.

DOM Document Object Model.

DoS Denial of Service.

EMR Electronic Medical System.

GDPR General Data Protection Regulation.

GPT Generative Pre-trained Transformer.

HIS Health Information System.

HISP Health Information Systems Programme.

HMIS Health Management Information System.

HTML HyperText Markup Language.

HTTP Hypertext Transfer Protocol.

IoT Internet of Things.

IT Information Technology.

LF line feed.

MITRE ATT&CK MITRE Adversarial Tactics, Techniques,

and Common Knowledge.

NTNU Norwegian University of Science and

Technology.

OOP Object-oriented Programming.

OWASP Open Web Application Security Project.

ReDoS Regular expression Denial of Service.

regex Regular expression.

x

Figures xi

SAST Static Application Security Testing.

SDG Sustainable Development Goals.

SQL Structured Query Language.

SSRF Server-Side Request Forgery.

UiO University of Oslo.

URL Uniform Resource Locator.

VS Code Visual Studio Code.

XSS Cross-Site Scripting.

1. Introduction
Threat actors and cybersecurity professionals are engaged in a constant

tug-of-war, evolving and adapting in response to each other. While cy-

bersecurity safeguards continuously improve, cyber threats are becoming

increasingly sophisticated (Burt, 2020). Despite the critical threat cyber

attacks pose to our increasingly digitized society, cybersecurity courses

remain an optional discipline in many software engineering programs. This

undermines the concept of ”Security by design”, which advocates for im-

plementing security measures throughout the development process rather

than merely an afterthought (Hansen and Kern, 2024).

This disconnect not only jeopardizes the security of digital solutions, but

also creates a gap between software developers and dedicated cybersecur-

ity teams. Bridging this gap is essential, not only to enhance the security of

software but also to foster a more integrated approach where developers

are proactive participants in cybersecurity efforts. For software developers

with minimal or no cybersecurity knowledge, learning and effectively ap-

plying security tools and concepts might seem daunting.

This thesis posits that appropriate tools and educational approaches can

significantly aid in this learning process. CodeQL, as one such tool, offers a

promising pathway for new software engineers to bridge the gap between

theoretical security knowledge and practical security application. This in

turn underscores the vital role of integrated security education in software

engineering curricula.

1.1 Relevance

The relevance of this thesis is supported by the dramatic increase in dis-

covered vulnerabilities, which have risen by over 400 percent from 2016

to 2023 (‘Statistics Results’, 2024). This surge indicates an urgent need

for software development practices to integrate robust security measures

from the ground up. Cybersecurity is frequently absent from mandat-

ory coursework in many computer science degree programs (‘NTNU Cur-

riculum’, 2024). As a result, graduates often enter the workforce without

a comprehensive understanding of secure coding practices. This lack of

integration means that new developers are ill-equipped to address the

complexities of modern cybersecurity threats, perpetuating a cycle of vul-

nerable software and increased risk.

1

Chapter 1: Introduction 2

The consequences of insecure code can be severe, with an estimated av-

erage cost of $4.45 million USD per data breach in 2023 (‘Cost of a data

breach report 2023’, 2023). Vulnerabilities can also compromise personal

privacy, potentially leading to identity theft and significant legal liabilit-

ies. Data breaches not only harm individuals but also erode public trust in

digital services.

To effectively leverage security tools, comprehensive and accessible doc-

umentation is crucial. It facilitates easier adoption of the tool, helps users

understand and utilize the tool’s full capabilities, and reduces the learning

curve associated with complex technologies.

While GitHub provides extensive documentation, Capture The Flags (CTFs),

and a variety of blog posts designed to teach users how to use CodeQL for

detecting vulnerabilities, these resources are often geared toward those

who are already familiar with security practices.

This thesis positions CodeQL uniquely as both a static analysis tool, and an

educational resource. Through hands-on experience, it offers a practical

framework that enables developers to identify and mitigate vulnerabilities.

Through the operational nature of how CodeQL works, it can also enhance

their understanding of secure coding practices.

1.2 Purpose

The primary objective of this thesis is to evaluate the effectiveness of

CodeQL as a means to enhance security knowledge among software de-

velopers, particularly those with limited exposure to cybersecurity. This

study conducts an in-depth exploration of CodeQL, examining both its cap-

abilities and the challenges it presents to novices in the field.

A significant aspect of this research is to identify gaps in cybersecurity

knowledge that can be addressed through educational initiatives. By ap-

plying CodeQL, this thesis aims to pinpoint areas of confusion that new

developers encounter, which can inform educational strategies to better

integrate security into software engineering curricula.

Ultimately, this thesis seeks to demystify the process of adopting CodeQL

as both a security tool and an educational resource. By clearly outlining

how CodeQL can be used to both secure code and enhance understanding

of software security, this work aims to fill educational gaps and raise se-

curity awareness among software developers, thereby making a significant

contribution to the field of cybersecurity education.

Chapter 1: Introduction 3

1.3 Goals

1.3.1 Effect Goals

• Bridge knowledge gaps in security practices for software developers.
• Lower the bar for developers to use CodeQL actively in development.
• Make software developers more aware of possible vulnerabilities in
their code during and after development.

1.3.2 Result Goals

• To find security vulnerabilities which a third-party could exploit with
evil intent.

• Suggest improvement of education and documentation relating to se-
cure software development.

• Identify the challenges for software developers to implement security
tools effectively.

1.4 Scope

This thesis focuses on the utilization of CodeQL as a Static Application Se-

curity Testing (SAST) and learning tool for software developers with limited

cybersecurity knowledge. The scope is confined to the cybersecurity and

software development knowledge obtained through the computer science

curriculum at NTNU, from the perspective of third-year students. CodeQL

is applied not only to identify vulnerabilities but also as a continuous edu-

cational tool to enhance software security practices. In this study, CodeQL

is primarily applied to Java REST applications. Although Java serves as the

primary context, the insights and methodologies developed are intended

to be adaptable across various programming environments.

Initially, the project aimed to employ CodeQL for penetration testing. How-

ever, upon identifying the knowledge gap in cybersecurity within the team,

the focus was adjusted to use CodeQL as an educational tool as well as

a traditional SAST tool. This shift expanded the scope beyond simple vul-

nerability detection to include an educational component aimed at under-

standing security issues.

This research did not integrate CodeQL into ongoing software development

processes. Instead, it involved analyzing pre-existing, complete Java REST

applications. Importantly, the insights gained from employing CodeQL on

these applications are applicable to integrating the tool within development

environments.

Chapter 1: Introduction 4

1.5 Structure

Chapter 2 presents an introduction to CodeQL and necessary theory. Chapters 3

and 4 detail the methodology and results of learning and applying CodeQL.

Chapter 5 evaluates the effectiveness of using CodeQL as a learning tool to

bridge the cybersecurity knowledge gap among developers. The findings

and their implications for software development education are discussed

in Chapter 6, which concludes the paper. The societal impact of this thesis

is discussed in Chapter 7.

2. Theory
To understand this thesis, it is essential to grasp the underlying concepts

and theories. This chapter provides an overview of software security prac-

tices and methodologies, including the foundational knowledge necessary

to comprehend and apply these principles.

2.1 Static Code Analysis

Analysis is an integral part of the quality assessment for a system or ap-

plication, especially considering security and potential vulnerabilities.

Static code analysis is defined as the analysis of source code without ex-

ecuting the application (Dewhurst, 2020). This is commonly done through

SAST tools. These tools work by analyzing the codebase to identify po-

tential vulnerabilities based on predefined rules and criteria. It is usually

done during code review, or continuously during development by adding it

to the Continuous Integration and Continuous Delivery (CI/CD) pipeline.

This allows analysts and developers to address them before it is added to

production, enabling correction before any faults can be exploited.

SAST tools can be applied manually and automatically. Some of the lim-

itations of the automatic appliance, like accuracy and codebase-specific

issues, can be handled by performing them manually.

Fixing vulnerabilities early in the development cycle can significantly re-

duce the cost compared to doing it in production (Hossain, 2018). Being

able to incorporate it for automatic scanning in the CI/CD is also an upside,

which will stop the integration process if any vulnerabilities are detected.

Due to the analysis being static, it is able to cover 100% of the source-

code, including the configuration files (Gillis, 2020). In comparison, Dy-

namic Application Security Testing (DAST) only covers the execution of a

program, limiting its effectiveness.

SAST does come with downsides. The resulting output does not always

provide context for the vulnerability, which can create a challenge in ad-

dressing the issue. It can also produce a large amount of false positives.

5

Chapter 2: Theory 6

Taint Analysis

Taint analysis is a technique used to track the flow of sensitive data through

a program where the variables are affected, or ”tainted”. This provides an

overview of the different variables that are directly or indirectly affected

by unsanitized user input. (Dewhurst, 2020)

Data Flow Analysis

Data flow analysis collects information on the dynamic flow of the data.

This can provide insight into where data is improperly handled. The results

can be represented in a data flow graph, where the path of the data is

displayed and available for further analysis. (Dewhurst, 2020)

2.2 CodeQL

CodeQL is a semantic code analysis engine used for static code analysis.

It lets a user query code as if it were data (‘CodeQL’, n.d.).

It is a declarative, object-oriented logic programming language designed

to query complex, potentially recursive data structures within a relational

data model (Avgustinov et al., 2016). It was initially developed by Semmle,

which has been a part of GitHub since 2019 (Friedman, 2019).

CodeQL is tailored for static code analysis, allowing developers to identify

vulnerabilities and bugs across various programming languages. It com-

piles into a variant of Datalog, which is a declarative logic programming

language. In Datalog, you specify what you want to achieve rather than

how to achieve it, meaning you declare the desired results, and the system

determines how to compute them. This allows CodeQL to perform logical

operations and handle recursive predicates efficiently, making it easier to

write complex queries without procedural details (‘What is Datalog’, n.d.).

Query Structure

CodeQL has a similar syntax to Structured Query Language (SQL), with

some differences.

Chapter 2: Theory 7

1 /**
2 * Query metadata
3 */
4

5 import /* ... CodeQL libraries or modules ... */
6

7 /* .. Optional, define CodeQL classes and predicates ... */
8

9 from /* ... variable declariations ... */
10 where /* ... logical formula ... */
11 select /* ... expressions ... */

Figure 2.1: Basic query structure in CodeQL (‘CodeQL Documentation’, 2024).

When familiar with the structure of SQL queries, one can instantly spot the

differences in the structure used for CodeQL queries as seen in Figure 2.1.

In CodeQL, the keywords are ordered differently: from, where, and then

select. The from keyword specifies the data sources, where filters the

data based on conditions, and select determines the data to be returned.

Additionally, CodeQL includes metadata information in its queries, which

helps distinguish between different queries and dictates how to display

the results (‘Metadata for CodeQL queries’, n.d.). CodeQL also allows the

definition of classes and predicates to be used within the query, providing

a way to encapsulate logic and improve query organization.

Predicates are fundamental units in CodeQL that represent logical condi-

tions or properties (Avgustinov et al., 2016). An example of this is the

”isSmall()” predicate in Figure 2.2 used to define an integer between 1

and 9.

1 predicate isSmall(int i) {
2 i in [1 .. 9]
3 }

Figure 2.2: Predicate in CodeQL(‘CodeQL Documentation’, 2024).

CodeQL utilizes classes to define sets of values with similar properties.

These classes can havemethods and properties, similar to traditional Object-

oriented Programming (OOP). Subclassing and inheritance are supported,

where classes represent logical implications, and subclasses denotes a

subset relationship (Avgustinov et al., 2016). Abstract classes are used

to create templates that other classes can implement. These do not dir-

ectly correspond to data but define a contract for subclasses to implement

specific methods or predicates.

Chapter 2: Theory 8

The class in Figure 2.3 represents integers between 1 and 10, and adds a

method to square them. This is then used in the query.

1 class SmallInt extends int {
2 SmallInt() { this in [1..10] }
3 int square() { result = this*this }
4 }
5

6 from SmallInt x, SmallInt y, SmallInt z
7 where x.square() + y.square() = z.square()
8 select x, y, z

Figure 2.3: Class in CodeQL (‘CodeQL Documentation’, 2024).

CodeQL allows for multi-valued expressions, which means that predicates

can return multiple values. This enables complex queries that mimic func-

tion calls in traditional programming. Similar to OOP, it supports method

overriding and dynamic method dispatch, enabling polymorphic behavior

by selecting methods at runtime according to the most specific type of the

object involved. (Avgustinov et al., 2016)

Data Flow

Data flow analysis identifies the potential values a variable can take on at

various points in a program and tracks how those values move through

the code.

In CodeQL, data flow analysis is done by constructing a data flow graph.

Unlike an Abstract Syntax Tree (AST), which represents the program’s syn-

tax, the data flow graph models the way data moves during runtime. AST

nodes represent syntactic elements such as statements or expressions,

showing how the code is structured. In contrast, nodes in the data flow

graph represent semantic elements that carry values at runtime, reflecting

how data flows through the program.

CodeQL supports both local and global data flow analysis. Local data flow

considers only the data flow within a single function, making it efficient and

precise. Global data flow, on the other hand, considers data flow between

functions and through object properties, providing a comprehensive view

of data movement across the entire program.

By constructing and analyzing the data flow graph, CodeQL can effectively

track how data moves through a program, helping identify vulnerabilities

and bugs that other static analysis tools might miss.

(‘About dataflow analysis’, n.d.)

Chapter 2: Theory 9

Practical Implementations of Queries

The practical implementation of queries starts by creating a CodeQL data-

base from the target code. This database can be used to run queries

against, essentially querying the actual target code itself. A typical query

specifies a set of conditions to be validated against the created database,

like identifying unused variables, detecting potential buffer overflows, or

uncovering cross-site scripting vulnerabilities. The CodeQL engine optim-

izes the execution plan for these queries to efficiently process large data-

sets, which often encompass entire codebases, ensuring comprehensive

analysis and accurate results. (Avgustinov et al., 2016)

Standard query suites

Included in the CodeQL language packages are a suite of community writ-

ten queries hosted by GitHub. These queries are classified by the corres-

ponding Common Weakness Enumerations (CWEs) items the query ad-

dresses. (‘CodeQL Documentation’, 2024)

2.3 MITRE

The MITRE Corporation is a not-for-profit organization which is well-known

for its contribution to cybersecurity through the development of frame-

works and systems (contributors, 2024).

MITRE ATT&CK

The MITRE Adversarial Tactics, Techniques, and Common Knowledge (MITRE

ATT&CK) framework is a comprehensive knowledge base that provides

detailed information about the tactics and techniques used by cyber ad-

versaries during various stages of the attack lifecycle (Matke, 2023).

The MITRE ATT&CK framework is displayed in several matrices, each of

which focuses on a specific platform or environment (‘ATT&CK Matrix for

Enterprise’, 2024).

Each tactic and technique contain information on methods attackers use

for accomplishing their goals, as well as suggestions for mitigations. It is

a helpful tool for enterprises when it comes to making their products safe

from attacks. It is particularly valuable for improving incident response

and threat-hunting capabilities.

Chapter 2: Theory 10

CWE

CWE is a community-developed list found on MITRE’s websites, and con-

tains common weaknesses in software and hardware. Having an updated

list of common weaknesses helps system developers know which weak-

nesses might lead to vulnerabilities, allowing them to eliminate these pos-

sible vulnerabilities before deployment, making the development process

easier and cheaper. (‘About CWE’, 2024)

CVE

Common Vulnerabilities and Exposures (CVE) is a standardized identifier

for a known security vulnerability in software or hardware. Each CVE entry

provides a reference number, a brief description of the vulnerability, and

any relevant information to help users and organizations protect their sys-

tems from potential exploits (‘CVE’, n.d.).

2.4 OWASP Top Ten

Open Web Application Security Project (OWASP) Top Ten lists the most

critical security vulnerabilities found in web applications. It is made using

data from a number of contributors around the world. The data is then

normalized and analyzed, creating an overview of the top security risks

and vulnerabilities. Eight are taken from the data analysis, and two are

taken from a survey given to contributors. The most updated list (OWASP

Top Ten 2021) is:

1. Broken Access Control

2. Cryptographic Failures

3. Injection

4. Insecure Design

5. Security Misconfiguration

6. Vulnerable and Outdated Components

7. Identification and Authentication Failures

8. Software and Data Integrity Failures

9. Security Logging and Monitoring Failures

10. Server-Side Request Forgery (SSRF)

It is an essential part of the required knowledge when developing a se-

cure system or application, as well as a component of testing systems and

finding vulnerabilities.

OWASPs Top Ten is not a sufficient list or resource on its own. However, it is

a good reference for coding, reviews, tool support and penetration testing.

Chapter 2: Theory 11

It provides valuable insights and gives a starting point when approaching

a penetration test or risk assessment.

(‘OWASP Top Ten’, 2023)

2.5 Importance of Security Knowledge for Soft-

ware Developers

Companies have a responsibility to protect the data collected from their

users. In recent years, this responsibility has led lawmakers to formalize

laws related to data protection, one of these being General Data Protec-

tion Regulation (GDPR). GDPR aims to enhance personal data security and

standardize data protection laws across Europe, ensuring that individuals

have greater control over their personal information (Wolford, 2024). For

developers, being well-versed in the security and data protection require-

ments stipulated by GDPR is crucial for the responsible development of

modern products and services.

Security by design

Security by design is an approach to software development aimed at cre-

ating systems that are as free of vulnerabilities as possible. This involves

continuous testing, authentication safeguards, and adherence to best pro-

gramming practices. Emphasizing security from the start counters the

common tendency to treat security as an afterthought.

This approach is particularly crucial in the rapidly developing Internet of

Things (IoT) environment, where almost any device can be networked and

must be secure by default.

For developers, understanding and implementing security by design prin-

ciples is essential. Integrating these principles ensures the development

of secure, compliant, and trustworthy products.

(Hansen and Kern, 2024)

2.6 Vulnerabilities

This section discusses various types of software vulnerabilities, explaining

their mechanisms, potential impacts and mitigations.

Log Injection

Log injection occurs when unvalidated user input is written to log files,

allowing attackers to forge log entries or inject malicious content. This can

Chapter 2: Theory 12

lead to false log events, Cross-Site Scripting (XSS) attacks, and command

execution. For example, an attacker can submit a specially crafted string

to insert arbitrary log entries or even execute commands if the log file is

accessible and processed by the application. To prevent this, user input

should be validated and sanitized before logging. (‘Log Injection’, n.d.)

SQL Injection

SQL injection is an attack method where the attacker attempts to insert, or

inject, harmful SQL statements as user input from the client to the applic-

ation. These statements can allow the attacker to read sensitive data from

the database, modify database data, and execute administrative opera-

tions on the database. Effective countermeasures include using prepared

statements and parameterized queries, as well as sanitizing all user inputs.

(‘SQL Injection’, n.d.)

HTTP Response Splitting

Hypertext Transfer Protocol (HTTP) response splitting occurs when un-

trusted data, often from an HTTP request, is included in an HTTP response

header without proper validation. If the data contains carriage return (CR)

and line feed (LF) characters, it can split the response, allowing attackers

to control headers and create additional responses. This can lead to attacks

such as cross-user defacement, cache poisoning, XSS, and page hijack-

ing. To mitigate, input should be sanitized to prevent CR and LF characters

from being included in response headers. (‘HTTP response splitting’, n.d.)

Unsafe Deserialization

Unsafe deserialization is an attack where untrusted data is deserialized,

potentially leading to application abuse, Denial of Service (DoS), or arbit-

rary code execution. Attackers can exploit this by sending malicious serial-

ized data to manipulate the logic of the application. To prevent this, valid-

ation and sanitization of all serialized data is required, as well as avoiding

deserializing data from untrusted sources. (‘Unsafe Deserialization’, n.d.)

Path Injection

A path injection attack, also called path traversal, is a security vulnerability

that occurs when an application takes user input to access file system dir-

ectories and does not properly sanitize the input. This can allow attackers

to access files and directories stored outside the intended directory root.

To do this the attacker utilizes path traversal, like dot-dot-slash (../) se-

quences, or absolute file paths in inputs to navigate the file system to

Chapter 2: Theory 13

restricted areas. This makes it possible to access arbitrary files and direct-

ories stored in file systems, including application source code or configur-

ation and critical system files.

To protect against this, it is important to avoid passing user inputs directly

to the file system’s API where possible. If not possible, the recommended

method is using whitelisted inputs. (‘Path Traversal’, n.d.)

ReDoS and Regex Injection

Regular expression Denial of Service (ReDoS) is a type of DoS attack where

a Regular expression (regex) takes an excessively long time to compute,

which can freeze the application. This can significantly disrupt system op-

erations when exploited. Regex injection is the act of inserting a malicious

regex pattern into an application, potentially causing a ReDoS. When it

comes to handling regex related vulnerabilities, the safest approach is

usually to adopt a whitelisting instead of blacklisting. (‘ReDos’, n.d.)

CSRF

Cross-Site Request Forgery (CSRF) is an attack where an authenticated

user is manipulated into performing actions they did not intend on a web

application. By leveraging social engineering techniques, such as sending

a deceptive link via email or chat, an attacker can trick users into executing

actions chosen by the attacker. For regular users, this can result in state-

changing activities like transferring money or updating account details. If

the victim is an administrator, a CSRF attack can potentially compromise

the entire web application. (‘CSRF’, n.d.)

SSRF

SSRF is a vulnerability where an attacker exploits server functionality to

access or modify internal resources. By supplying or modifying a Uniform

Resource Locator (URL) that the server processes, the attacker can select

URLs that allow them to read server configurations like relevant metadata,

connect to internal services like HTTP-enabled databases, or send POST

requests to internal services not meant to be publicly accessible. (‘SSRF’,

n.d.)

XSS

XSS is a web security vulnerability that allows attackers to inject malicious

scripts into web pages. XSS attacks exploit the way browsers process Hy-

perText Markup Language (HTML) and JavaScript, enabling attackers to

bypass access controls and perform unauthorized actions on behalf of the

Chapter 2: Theory 14

user. These attacks can lead to data theft, session hijacking, and other

malicious activities. XSS vulnerabilities arise when a web application in-

cludes user input directly in web pages without proper validation or es-

caping. There are three main types of XSS attacks: Reflected, Stored, and

Document Object Model (DOM)-Based. Effective defense against XSS is

validating and sanitizing all user inputs. (‘Cross Site Scripting’, n.d.)

2.7 CTF

CTFs are computer security competitions where teams or individuals tackle

various challenges. They are popular for starting cybersecurity careers

due to their team-building and competitive nature. (‘Capture The Flag 101

Overview’, 2024).

2.8 GPT-4

Generative Pre-trained Transformer (GPT)-4 is a multimodal languagemodel

created by OpenAI, capable of generating text from both text and graphic

inputs. Essentially, GPT-4 can understand and produce human-like text,

making it useful for a variety of applications (Lutkevich, 2023).

3. Method
Research methods are systematic techniques used to conduct and evaluate

studies, ensuring the reliability and validity of findings. The case study

research method is a detailed investigation of a specific instance within a

real-world context.

In this project, this involves the application of CodeQL as a SAST tool and

educational resource. This approach allowed for an in-depth exploration

of the practical challenges and learning outcomes associated with using

security tools in software development.

3.1 Work and Role Distribution

The team, consisting of three third-year Computer Science students, es-

tablished a collaboration agreement during the pre-project phase, which

assigned specific roles including team-leader, document manager, and

quality assurance manager. The distribution of the project workload was

flexible. A Trello board was used to manage and track tasks, allowing for

dynamic adjustments and balanced contributions from all team members.

3.2 Choice of Technology and Methodology

This section explains the selection of technologies and methodologies used

in this study.

3.2.1 CodeQL

CodeQL was chosen due to its advanced capabilities in conducting static

application security testing and its adaptability across various program-

ming environments. Its ability to transform entire codebases into query-

able databases allows for deep security analyses, making it particularly ef-

fective in identifying complex vulnerabilities and enhancing security aware-

ness among developers.

3.2.2 GPT-4

GPT-4 was chosen as a supplementary tool due to its efficiency in pro-

cessing extensive documentation and gathering relevant information. Ad-

15

Chapter 3: Method 16

ditionally, it was selected for its capability to clarify the logic behind Cod-

eQL queries and provide assistance in debugging commands.

3.2.3 Threat Modeling Frameworks

Threat modeling frameworks such as OWASP Top Ten, MITRE CWE and

MITRE ATT&CK were chosen to guide and structure the analysis process.

OWASP Top Ten provides a foundational overview of the most critical web

application risks, directly informing the security checks implemented via

CodeQL. Additionally, MITRE CWE and MITRE ATT&CK offers detailed in-

sights into various technical components and attack techniques, enhancing

the understanding of potential vulnerabilities and the methods by which

they can be exploited.

3.2.4 Methodological Approach

The methodology of this project was intentionally designed to be open

and exploratory to maximize learning opportunities and identify a broad

range of knowledge gaps. This approach allowed the team to experiment

with various aspects of CodeQL in real-world scenarios, thereby not only

identifying but also attempting to understand possible vulnerabilities.

3.2.5 Administrative Strategy

To structure the project, it was split into three different phases, each rep-

resenting a different type of activity.

Research

The first part of this project consisted of a research phase, where the

team spent time researching the choice of technology, CodeQL, as well as

learning how to use it.

Implementation

The second part of this project consisted of an implementation phase,

where the team used the acquired knowledge and applied it in a real-world

scenario, getting to know the target codebases. This phase ran in tandem

with the documentation phase, and mostly consisted of writing CodeQL

queries against targets while documenting the process and results.

Documentation

The final part consisted of the documentation phase, where results were

documented as well as writing the final report.

Chapter 3: Method 17

Meetings

Meetings with supervisor were chosen to be scheduled on demand rather

than with a set frequency to avoid unnecessary meetings.

Internal team meetings and discussions were scheduled on a much higher

frequency. The team had daily stand-ups, presenting individual work and

results, as well as the plan for the day. Every week started with the team

discussing the plan for the coming week, and every week ended with a re-

cap meeting. This was done to ensure a clear understanding of the results’

implications.

3.3 Choosing Targets

The selection of targets for this study focused on open-source health ap-

plications, recognizing their critical importance in managing sensitive health

information. The need for high security standards to protect patient privacy

and data integrity made these applications suitable choices. Additionally,

the applications being open-source made it easy to access for analysis.

After reviewing various open-source health applications, the team decided

to conduct static analysis on two specific targets: Open Hospital and Dis-

trict Health Information System 2 (DHIS2).

3.3.1 Open Hospital

Open Hospital, developed by Informatici Senza Frontiere, aims to provide

a free and open-source software solution for automating health centers,

particularly in developing countries. The project’s website describes its

mission as offering ”a cost-effective and flexible software platform for Elec-

tronic Medical System (EMR)/Health Information System (HIS) adoption”

(‘About Open Hospital’, 2024). The decision to choose Open Hospital as a

target was influenced by its low incidence of CVE reports during prelimin-

ary research and an initial review of the source code.

3.3.2 DHIS2

DHIS2 is a web-based, open-source software managed by the Health In-

formation Systems Programme (HISP) centre at the University of Oslo

(UiO) and serves as a Health Management Information System (HMIS). It

is employed in over 100 countries, with a particular emphasis on support-

ing low- and middle-income nations (‘About DHIS2’, n.d.). The decision to

include DHIS2 as a secondary target was driven by a desire to broaden the

Chapter 3: Method 18

scope of the study, allowing for a comparative analysis between different

applications.

3.4 Research and Implementation of CodeQL

This section details the systematic approach to research and implement

CodeQL in the case study. This involves a comprehensive review of the

CodeQL documentation, practical experience through CodeQLs CTFs, and

a survey to identify knowledge gaps.

3.4.1 Review of Documentation

The first phase involved a thorough review of the official CodeQL docu-

mentation; segmented into Background Information, Guides, Tools, and

Reference Docs (‘CodeQL Documentation’, 2024).

The ’Background Information’ section provided a fundamental overview of

CodeQL’s purpose and applications. It introduced core concepts essential

for beginners, facilitating an initial understanding of the tool’s capabilities

and its role in software security.

The documentation’s sections on ’CodeQL Tools’ and ’CodeQL Reference

Docs’ provided comprehensive resources for advanced query management

and syntax references. Utilized throughout the project, these resources

were used for setting up the CodeQL environment and adjusting queries

during the implementation phase. The ’CodeQL for Visual Studio’ section

detailed the setup process, involving downloading the extension and ac-

cessing a CodeQL database to write and run queries.

The ’CodeQL Guides’ section delved into the technical specifics of writing

and structuring queries, as well as some important features like data flow

analysis and defining results of a query. Each guide featured practical ex-

ercises. This section also included a series of puzzles that used a training

database called ’People’. Each puzzle came with instructions, constraints,

and clues to help craft queries to identify the correct person.

3.4.2 Using CodeQL CTF

The CodeQL CTF challenges are based on real, discovered vulnerabilities in

code. Each challenge includes a pre-configured CodeQL database reflecting

the state of a codebase before a known vulnerability was addressed, along

with detailed instructions on how to set up and begin the challenge. The

challenge is then to discover the same vulnerability using CodeQL. The

challenges are split into several steps, each having multiple questions.

Chapter 3: Method 19

The instructions guided participants through the process of discovering

the vulnerabilities, starting with broad queries and incrementally refining

them based on provided hints and guidance. The CTFs provided practical

experience in applying CodeQL to real-world code scenarios.

3.4.3 Setup of CodeQL Environment

To execute queries, it is necessary to first create a CodeQL database.

For this specific project this involved cloning the target repository locally

and integrating the build command for the project within a single CodeQL

Command-Line Interface (CLI) command to generate the database. The

CLI was installed using a package manager. Both the Visual Studio Code

(VS Code) CodeQL extension and the CodeQL CLI were utilized to write

and execute queries against this database.

While using the CLI provides unformatted results, the VS Code extension

includes a viewer that enables interaction with query results. To replicate

the functionality of the VS Code extension, specifically the ability to run

custom queries against a database and receive formatted results, simple

shell scripts were developed.

3.4.4 Applying CodeQL on Target Repositories

After establishing the CodeQL databases and setting up the environment,

the next phase involved running queries against the target repositories.

The team employed OWASP to outline a framework for what vulnerabilities

to look for. Initial efforts were concentrated on writing completely custom

queries. After getting more familiar with CodeQL, the standard scan was

used as a starting point instead of writing queries completely from scratch.

The scan generated a categorized list of potential vulnerabilities, enabling

further investigation at the source code locations of the results.

Two distinct methodologies were adopted to address the results based on

the vulnerability category. For categories with few results, direct source

code examination was performed to assess if the generated warnings were

false positives. This involved reading the source code and documentation,

alongside gaining an understanding of the specific vulnerability to distin-

guishing between safe and unsafe Java code implementations.

For categories yielding numerous results, a manual code audit of all results

would be impractical; thus, the team opted to refine the original queries to

reduce noise. The refinement process began by isolating the query from

the standard GitHub CodeQL repository and running it separately within

the CodeQL environment. The results were then grouped and analyzed fo-

Chapter 3: Method 20

cusing on either the sinks or the sources. If a result was identified as a false

positive—often due to the standard query’s inability to recognize custom

security measures—a new segment of CodeQL code was crafted to ex-

clude such secure implementations from subsequent results. This process

of refining the query was done repeatedly, each cycle aiming to diminish

the number of results until all potential issues within the category were

examined.

3.4.5 Learning with CodeQL

To get a comprehensive understanding of the security vulnerabilities in-

vestigated, the OWASP and MITRE frameworks was used. The CWE num-

bers provided in the metadata of standard CodeQL queries and the naming

of the vulnerability categories served as a springboard for further research

through OWASP and MITRE.

Whenever a standard scan flagged a potential security issue, the team

referred to the corresponding CWE entry within the MITRE database. This

approach provided detailed descriptions of each vulnerability, including

common examples of unsafe implementations and guidelines for secure

coding practices. OWASP resources were similarly employed for practical

and theoretical information on the respective vulnerability categories.

MITRE ATT&CK served as a learning platform, facilitating comprehensive

exploration of potential attack vectors.

3.4.6 Identifying Knowledge Gaps

During the project, a systematic approach was implemented to identify

knowledge gaps. The process to uncover these gaps involved a combin-

ation of discussion within the team and documentation of challenges en-

countered by team members while using the tool.

3.4.7 Surveying Cybersecurity Knowledge

To understand the prevalence of cybersecurity knowledge gaps among

computer science students, a survey was conducted targeting this demo-

graphic. The survey was designed to gauge the respondents’ self-assessed

knowledge in several key areas: general cybersecurity, static code ana-

lysis, and the use of SAST tools. Additionally, participants were asked to

evaluate how frequently they consider security practices during their soft-

ware development processes, with responses ranging from one to ten.

This allowed for a quantification of knowledge gaps and identification of

trends in security practices, providing a broader context to the findings

Chapter 3: Method 21

from the hands-on work with CodeQL.

4. Results
This section presents the outcomes of the project, divided into scientific

and administrative results. The scientific results focus on technical find-

ings, while the administrative results cover managerial aspects.

4.1 Scientific Results

As detailed in Chapter 3.4, the approach was exploratory, aiming to com-

prehensively understand the application of CodeQL in identifying security

vulnerabilities. The scientific results encompass the team’s proficiency in

CodeQL, the queries created during implementation, and the cybersecurity

learning outcomes and challenges encountered.

CodeQL CLI

In the exploration of CodeQL’s capabilities for integrating into software

development, the CLI was integral. Its versatility allows integration across

different environments, making it particularly useful for CI/CD pipelines.

This adaptability ensures that CodeQL can be effectively employed by de-

velopers in various stages of the software development lifecycle.

Throughout the project, the CodeQL CLI was employed for several tasks.

Specifically to create the CodeQL database, run suites of queries, run spe-

cific queries and decode the results from these queries:

codeql database create The command used to create a database from

source code. The command takes arguments of output and build loc-

ations, language(s), build commands, and more.

codeql database analyze Command to run a suite of queries. If not spe-

cified it will run the standard pack of CodeQL queries provided by

Github.

codeql query run This command runs one single query and provides the

results in a binary query result set (bqrs) file. It takes the arguments;

path to query, path to database and path to output bqrs file.

codeql bqrs decode The decode command was used to interpret the res-

ulting bqrs file to a human readable format like comma-separated

values (csv).

22

Chapter 4: Results 23

Figure 4.1 shows an example of using the command to create the database

for Open Hospital’s API repository:

1 codeql database create --language=java --source-root=../openhospital-api
2 --command="mvn clean install -DskipTests=true" ./dbs/api-db

Figure 4.1: Command for creating the CodeQL database from Openhospital’s API

repository.

The CodeQL CLI is absent of the results viewer that the VS Code extension

has. This was mitigated by using third party CLI tools like ”csvtotable” that

could format the csv file to HTML, which provided a more functional result

viewing experience.

Figure 4.2: Results of a query formatted to HTML with ”csvtotable”.

Shell scripts were used to automate the process of running, interpreting

and formatting the results of queries. Figure 4.3 is an example of a shell

script taking an argument for the query file and running it against a pre-

defined database. The results are decoded from binary and formatted into

HTML so the results of a query can be viewed in a browser, very similar to

the VS Code CodeQL extension.

Chapter 4: Results 24

1 #!/bin/sh
2

3 # The first argument is the filname of the query
4 QUERY_FILE="$1"
5 # The second argument is the database name
6 DATABASE_NAME="core-db"
7

8 # Construct the full paths
9 QUERY_FULL_PATH="queries/%QUERY_FILE"

10 DATABASE_FULL_PATH="dbs/$DATABASE_NAME"
11

12 codeql query run "$QUERY_FULL_PATH" --database="$DATABASE_FULL_PATH"
13 -- output="query_results.bqrs"
14 codeql bqrs decode --format=csv
15 --output=results/query_results.csv --entities=url query_results.bqrs
16 echo "Results:"
17 tail +2 ./results/query_results.csv | wc -l
18 csvtotable results/query_results.csv results/results.html -o
19 open results/results.html

Figure 4.3: Script used for running a query against a predefined database, with

formatted results.

Standard Scan

Using the command to run the standard query suite provides a categorized

list of possible vulnerabilities. It also shows the code locations where these

warnings were generated. Figure 4.4 and Figure 4.5 shows the results of

running the standard scan against the targets.

Figure 4.4: Standard scan results for DHIS2.

Chapter 4: Results 25

Figure 4.5: Standard scan result for Open Hospital.

The scan results for DHIS2, as shown in Figure 4.4, highlights various

security warnings across multiple components of the application. Each lis-

ted vulnerability includes a reference to the specific part of the codebase,

allowing developers to quickly locate and assess the potential risks.

These automated scans are particularly valuable as they enable continuous

monitoring of the codebase, ensuring that any new code changes are eval-

uated against the same rigorous security standards. The standard query

suite is actively maintained by Github, which ensures that the security cov-

erage of the standard scan is constantly evolving along with the security

landscape.

As a result of scanning the targets, numerous types of vulnerabilities the

team lacked knowledge on were displayed. Therefore, a large bulk of the

results gained was knowledge about the encountered vulnerabilities, in-

cluding examples of good and bad implementations.

4.1.1 Vulnerabilities Investigated

SQL Injection

When running the standard scan on DHIS2, warnings were issued in 40

locations as seen in Figure 4.4. In the suite of queries, the predefined

query in Figure 4.6 generated the warnings.

Chapter 4: Results 26

1 /**
2 * @name Query built from user-controlled sources
3 * @description Building a SQL or Java Persistence query from user-controlled sources
4 * is vulnerable to insertion of malicious code by the user.
5 * @kind path-problem
6 * @problem.severity error
7 * @security-severity 8.8
8 * @precision high
9 * @id java/sql-injection

10 * @tags security
11 * external/cwe/cwe-089
12 * external/cwe/cwe-564
13 */
14

15 import java
16 import semmle.code.java.dataflow.FlowSources
17 import semmle.code.java.security.SqlInjectionQuery
18 import QueryInjectionFlow::PathGraph
19

20 from
21 QueryInjectionSink query, QueryInjectionFlow::PathNode source, QueryInjectionFlow::PathNode sink
22 where queryIsTaintedBy(query, source, sink)
23 select query, source, sink, "This query depends on a $@.", source.getNode(), "user-provided value"

Figure 4.6: Query detecting SQL sinks tainted by user input, from the standard

package of CodeQL queries (‘CWE coverage for Java’, n.d.).

Running this single query against DHIS2 produces 278 individual results.

Similarly the first iteration of the team’s custom query, shown in Figure 4.7

produces 286 results.

1 module PossibleSqlInjectionConfig implements DataFlow::ConfigSig {
2 predicate isSource(DataFlow::Node source) {
3 source instanceof RemoteFlowSource
4 }
5

6 predicate isSink(DataFlow::Node sink) {
7 sink instanceof QueryInjectionSink
8 }
9 }

10

11 module PossibleSqlInjectionTaint = TaintTracking::Global<PossibleSqlInjectionConfig>;
12

13 from DataFlow::Node source, DataFlow::Node sink
14 where PossibleSqlInjectionTaint::flow(source, sink)
15 select sink, source

Figure 4.7: Customized query detecting SQL sinks tainted by user input.

Chapter 4: Results 27

The custom query tracks tainted data flowing from user controlled input

to arguments in a SQL-statement execution. The end nodes of this flow

is captured by the predefined classes ”RemoteFlowSource” and ”QueryIn-

jectionSink”. To remove these false positives the query was extended as

shown in Figure 4.8.

1 class QueryParams extends RefType {
2 QueryParams() {
3 /**
4 *Param logic to go here
5 */
6 }
7 }
8

9 class QueryParamsInstanceExpr extends Expr {
10 QueryParamsInstanceExpr() {
11 this.getType() instanceof QueryParams
12 }
13 }
14

15 module PossibleSqlInjectionConfig implements DataFlow::ConfigSig {
16 predicate isSource(DataFlow::Node source) {
17 source instanceof RemoteFlowSource
18 }
19

20 predicate isSink(DataFlow::Node sink) {
21 sink instanceof QueryInjectionSink
22 }
23 }
24

25 module PossibleSqlInjectionTaint = TaintTracking::Global<PossibleSqlInjectionConfig>;
26

27 from DataFlow::Node source, DataFlow::Node sink
28 where PossibleSqlInjectionTaint::flow(source, sink)
29 select sink, source

Figure 4.8: Customized query detecting SQL sinks tainted by user input.

By using the predicate ”isBarrier()” in the data flow module, the results are

restricted to dataflow paths not flowing through the node in the predicate.

The class ”QueryParams” will hold the logic for what is deemed a safe

implementation and should thereby be excluded from the results. Doing

this essentially boils down to the logic: Find all instances of an SQL query

being executed, where an argument can be controlled by a remote user,

and where the tainted data does not flow through a node that is an instance

of ”QueryParams”. An example of a false positive that was removed is

instances of SQL arguments being parameterized. From reading source

code in DHIS2 with the help of the results from the query in Figure 4.7, a

Chapter 4: Results 28

class called ”DataQueryParams” was found, in which the arguments of a

SQL query is parameterized, thereby making it safe from SQL injections. To

exclude this false-positive from the results, the following logic was added.

1 class QueryParams extends RefType {
2 QueryParams() {
3 this.hasQualifiedName("org.hisp.dhis.analytics", "DataQueryParams")
4 or exists(RefType r | r.hasQualifiedName("org.hisp.dhis.analytics", "DataQueryParams")
5 | this.hasSupertype(r))
6 or this.hasQualifiedName("org.hisp.dhis.analytics.outlier.data", "OutlierQueryParams")
7 }
8 }

Figure 4.9: Customized query detecting SQL sinks tainted by user input.

This class now captures the following logic: This is a reference type that has

the package ”org.hisp.dhis.analytics” and is of class ”DataQueryParams”.

Or there exists a reference type that has the package ”org.hisp.dhis.ana-

lytics” and is of class ”DataQueryParams” and this is a subclass of this

reference type. This means that if an intermediary node in the data flow

corresponds to the defined class, i.e the tainted data is parameterized, it

is not included in the results.

Log Injection

The standard log injection query seen in Figure 4.10, ran on DHIS2s, gave

nearly 300 results.

Chapter 4: Results 29

1 /**
2 * name Log Injection
3 * description Building log entries from user-controlled data may allow
4 * insertion of forged log entries by malicious users.
5 * kind path-problem
6 * problem.severity error
7 * security-severity 7.8
8 * precision medium
9 * id java/log-injection

10 * tags security
11 * external/cwe/cwe-117
12 */
13

14 import java
15 import semmle.code.java.security.LogInjectionQuery
16 import LogInjectionFlow::PathGraph
17

18 from LogInjectionFlow::PathNode source, LogInjectionFlow::PathNode sink
19 where LogInjectionFlow::flowPath(source, sink)
20 select sink.getNode(), source, sink, "This log entry depends on a $@.", source.getNode(),
21 "user-provided value"

Figure 4.10: Log Injection standard query (‘CWE coverage for Java’, n.d.).

The standard query was used as a starting point for expanding the query.

To try and remove possible false positives, as seen in Figure 4.11, all res-

ults surrounded in try-catch blocks were removed. Furthermore, all res-

ults using expressions such as ”sql”, ”msg”, ”format()”, ”logstring” and

”tostring” were removed. Reducing the number of results down to 70.

Chapter 4: Results 30

1 import java
2 import semmle.code.java.security.LogInjectionQuery
3 import LogInjectionFlow::PathGraph
4 import semmle.code.java.dataflow.DataFlow
5

6 from LogInjectionFlow::PathNode source, LogInjectionFlow::PathNode sink
7 where
8 LogInjectionFlow::flowPath(source, sink) and not
9 (

10 exists(Expr sinkExpr |
11 sinkExpr = sink.getNode().asExpr() and
12 (
13 // Check if the sink expression is directly inside the try block
14 sinkExpr.getEnclosingStmt().getEnclosingStmt*() instanceof TryStmt or
15 // Check if the sink expression is inside any of the catch clauses
16 exists(CatchClause cc |
17 cc.getParent() = sinkExpr.getEnclosingStmt().getEnclosingStmt*()
18)
19)
20)
21) and not (
22 exists(Expr sinkExpr |
23 sinkExpr = sink.getNode().asExpr() and
24 (
25 sinkExpr.toString().toLowerCase().matches("%sql") or
26 sinkExpr.toString().toLowerCase().matches("%msg") or
27 sinkExpr.toString().toLowerCase().matches("%format(...)") or
28 sinkExpr.toString().toLowerCase().matches("%logstring") or
29 sinkExpr.toString().toLowerCase().matches("%tostring(...)") or
30 sinkExpr.toString().toLowerCase().matches("%...+...")
31)
32))
33 select sink.getNode(), source, sink, "This log entry depends on a $@.", source.getNode(),
34 "user-provided value", sink.getNode().asExpr(), "expression"

Figure 4.11: Refined log injection query narrowing down possible false positives.

HTTP Response Splitting

As a result from the scan, a potential HTTP Response Splitting vulnerability

was found as seen in Figure 4.12.

1 if (StringUtils.isEmpty(eventCriteria.getAttachment())) {
2 response.addHeader(
3 "Content-Disposition", "attachment; filename=" +
4 eventCriteria.getAttachment());
5 }

Figure 4.12: Potential HTTP Response Splitting vulnerability in the DHIS2 code-

base.

Chapter 4: Results 31

The potential vulnerability here is that ”criteria.getAttachment()” is dir-

ectly concatenated into the filename parameter of the ”Content-Disposition”

header. If an attacker can control the value of ”criteria.getAttachment()”,

they could potentially inject malicious values that include characters like

\n or \r, causing the HTTP response to be split and additional headers or

content to be added.

After research on this issue, this proves to be an example of a false posit-

ive, and in turn a demonstration of a CodeQL limitation. This is due to its

inability to detect security measures handled in external packages. In this

instance, DHIS2 uses Tomcat, which already has a built in protection from

these kinds of attacks (‘False positive: HTTP Response Splitting’, 2024).

Unsafe Deserialization

The query seen in Figure 4.13 was created from scratch to try and find

user controlled serialization. The logic captures user controlled input that

flows to a serialization call. The query did not produce any results.

Chapter 4: Results 32

1 predicate isOOSMethod(Method serialization) {
2 serialization.hasName("writeBoolean")
3 or serialization.hasName("writeByte")
4 or serialization.hasName("writeChar")
5 or serialization.hasName("writeDouble")
6 or serialization.hasName("writeFloat")
7 or serialization.hasName("writeInt")
8 or serialization.hasName("writeLong")
9 or serialization.hasName("writeShort")

10 or serialization.hasName("writeUTF")
11 and serialization.getDeclaringType().hasQualifiedName("java.io", "ObjectOutputStream")
12 }
13

14 predicate isCalledFromTest(MethodCall call) {
15 call.getLocation().getFile().getAbsolutePath().regexpMatch(".*[\\\\/]src[\\\\/]test[\\\\/]java.*")
16 }
17

18 class SerializationWriteCall extends MethodCall {
19 SerializationWriteCall() {
20 not isCalledFromTest(this)
21 and exists(Method serialization
22 this.getMethod() = serialization
23 isOOSMethod(serialization))
24 }
25 }
26

27 module UserInputToWriteConfig implements DataFlow::ConfigSig {
28 predicate isSource(DataFlow::Node source) {
29 source instanceof UserInput
30 }
31

32 predicate isSink(DataFlow::Node sink) {
33 sink.asExpr() instanceof SerializationWriteCall
34 }
35 }
36

37

38 module UserInputToWrite = DataFlow::Global<UserInputToWriteConfig>;
39

40 from DataFlow::Node src, DataFlow::Node sink
41 where UserInputToWrite::flow(src,sink)
42 select src, sink

Figure 4.13: Query created for finding user controlled serialization calls.

ReDoS

In DHIS2 the standard scan highlighted a potential ReDoS vulnerability as

seen in Figure 4.14.

Chapter 4: Results 33

1 /**
2 * regex to detect delimiter, ignores spaces, allows delimiter in comment,
3 * allows an equals-sign
4 */
5 public static final Pattern delimP =
6 Pattern.compile(
7 "^\\s*+(--)?\\s*+delimiter\\s*+=?\\s*+([^\\s]+)+\\s*+.*+$",
8 Pattern.CASE_INSENSITIVE);

Figure 4.14: Potential ReDoS vulnerability in the DHIS2 codebase.

However, the inputs that are used in this regex do not seem to cause any

problems, as they are not user-provided values, as well as it being used

in a limited context.

It is worth noting that Java versions 9 and above have some mitigation

against ReDoS, but they are not perfect and complex regex can still be

affected (‘Inefficient Regex Documentation’, 2024).

Regex Injection

The standard scan highlights the code in Figure 4.1.1 from DHIS2 as a

possible regex injection vulnerability.

1 for (String name : names) {
2 if (name.toUpperCase().equals(name) && name.indexOf('_') < 0) {
3 // assume it is a code
4 checksByName.values().stream()
5 .filter(check -> check.getCode().equals(name))
6 .map(DataIntegrityCheck::getName)
7 .forEach(expanded::add);
8 } else if (name.contains("*")) {
9 String pattern =

10 name.toLowerCase()
11 .replace('-', '_') // make uniform
12 .replaceAll("[^*_a-z0-9]+", "") // sanitise against regex attacks
13 .replace("*", ".*"); // expand regex wildcard match
14 for (DataIntegrityCheck check : checksByName.values()) {
15 if (check.getName().matches(pattern)) {
16 expanded.add(check.getName());
17 }
18 }
19 } else {
20 expanded.add(name.toLowerCase().replace('-', '_'));
21 }
22 }

Figure 4.15: Potential regex

injection vulnerability in the DHIS2 codebase.

Chapter 4: Results 34

This function attempts to sanitize the input by removing characters that do

not match the pattern [^*_a-z0-9]+, which aims to prevent the inclusion
of regex special characters that might lead to complex or unsafe regex

patterns.

Although this approach attempts to limit the potential for regex injection

by sanitizing input, it relies on a blacklist approach rather than a whitelist

approach. The existing sanitization is effective in most cases but may not

completely mitigate the risk if not all dangerous characters or combinations

are accounted for.

Disabled CSRF Protection

The scan reveals that CSRF protection is disabled in the config file as seen

in Figure 4.16. However, in the context of DHIS2, this configuration can be

justified because the platform integrates strong authentication measures

via OAuth2. This security protocol ensures that only authorized clients can

access resources and perform sensitive operations.

1 @Bean
2 protected SecurityFilterChain filterChain(HttpSecurity http) throws Exception {
3 http.csrf().disable();
4

5 http.requestCache().requestCache(requestCache);
6

7 configureMatchers(http);
8 configureFormLogin(http);
9 configureCspFilter(http, dhisConfig, configurationService);

10 configureCorsFilter(http);
11 configureMobileAuthFilter(http);
12 configureApiTokenAuthorizationFilter(http);
13 configureOAuthTokenFilters(http);
14

15 setHttpHeaders(http);
16

17 return http.build();
18 }

Figure 4.16: Potential CSRF vulnerability in the DHIS2 codebase

4.1.2 Identifying Challenges

In alignment with the method framework outlined in Chapter 3.4, this

section presents the specific challenges encountered during the practical

implementation of CodeQL.

Chapter 4: Results 35

Research to CTF transition

Transitioning from theoretical learning to practical CTF challenges high-

lighted multiple challenges. These challenges revealed a steep learning

curve and considerable knowledge gaps in both vulnerability detection and

CodeQL application. According to the GitHub-provided CTF challenge de-

scriptions, these activities are intended to enhance vulnerability hunting

skills and facilitate rapid acquisition of CodeQL knowledge (‘Capture The

Flag’, 2024).

The team found the practical application via CTF challenges demanding

due to the advanced use of CodeQL and a pronounced gap in practical

security analysis skills. Figures 4.17 and 4.18 illustrate the disparity in

query complexity between a tutorial puzzle query and a CTF challenge

query:

1 import tutorial
2

3 Person relativeOf(Person p) { parentOf*(result) = parentOf*(p) }
4

5 predicate hasCriminalRecord(Person p) {
6 p = "Hester" or
7 p = "Hugh" or
8 p = "Charlie"
9 }

10

11 from Person p
12 where
13 not p.isDeceased() and
14 p = relativeOf("King Basil") and
15 not hasCriminalRecord(p)
16 select p

Figure 4.17: Query used to solve the ”Crown the rightful heir” puzzle from CodeQL

tutorials.

Chapter 4: Results 36

1 import go
2 import semmle.go.dataflow.DataFlow
3

4

5 module IsReqAuthToEqTestConfig implements DataFlow::ConfigSig {
6 predicate isSource(DataFlow::Node source) {
7 exists(DataFlow::CallNode cn |
8 source = cn.getResult() and
9 cn.getTarget().hasQualifiedName(_, "isReqAuthenticated")

10)
11 }
12

13 predicate isSink(DataFlow::Node sink) {
14 exists(DataFlow::EqualityTestNode etn |
15 sink = etn.getAnOperand())}
16 }
17

18 module IsRecAuthToEqTest = DataFlow::Global<IsReqAuthToEqTestConfig>;
19

20 predicate returnStmtInThenBlock(BlockStmt block) {
21 exists(Stmt stmt |
22 block.getAChildStmt() = stmt |
23 stmt instanceof ReturnStmt)
24 }
25

26 from DataFlow::Node source, DataFlow::Node sink, IfStmt ifs, EqualityTestExpr expr, Ident errn
27 where IsRecAuthToEqTest::flow(source, sink)
28 and expr.getAnOperand() = sink.asExpr()
29 and not returnStmtInThenBlock(ifs.getThen())
30 and ifs.getCond() = expr
31 and expr.getAnOperand() = errn
32 and errn.getName() = "ErrNone"
33 select source, sink, ifs

Figure 4.18: Query used to solve a section of the ”Go and don’t return” CTF

challenge.

The complexity of the queries used in the CTF challenges, employing library

classes such as ”IfStmt” and ”ReturnStmt”, reflects a significant leap from

only working on strings in the tutorial puzzles. This transition tested the

team’s understanding of CodeQL and highlighted deficiencies in the ability

to detect vulnerabilities.

Application to Targets

The initial approach of applying CodeQL to the targets was to develop cus-

tom queries, with guidance primarily derived from the OWASP Top Ten list.

This approach quickly revealed the limitations of the team’s capabilities in

formulating effective queries from scratch. The custom queries often res-

Chapter 4: Results 37

ulted in ambiguous outcomes, where it was unclear whether their lack of

results was due to the absence of vulnerabilities or the inadequacy of the

queries themselves.

As the team transitioned to using GitHub’s pre-written standard queries,

the attempts to modify these queries to uncover novel vulnerabilities were

unsuccessful. This led to the modifications of the standard queries being

restricted to reducing the noise in the results, focusing on eliminating false

positives rather than extending the detection capabilities to new vulner-

abilities within the targets.

In every instance where the results of the custom queries were compared

to those of the standard scans, they did not uncover any additional res-

ults. This can be seen in the results from the queries shown in Figure 4.6

and Figure 4.7. The efforts were confined to adjusting the sensitivity and

specificity of existing queries, which, while valuable for understanding the

mechanics of CodeQL, did not extend the scope of vulnerability detec-

tion as originally hoped. This limitation highlighted a significant gap in the

team’s practical skills and emphasized the competence needed to develop

effective security queries beyond the standard queries.

Lack of Cyber Competence

While the team had a foundational understanding of software security

principles, applying these principles to effectively identify vulnerabilities

in practical scenarios proved challenging. The initial encounters with real-

world applications highlighted significant knowledge gaps, particularly in

the areas of static analysis and the nuances of common software vulner-

abilities. Substantial difficulties in dealing with specific types of vulnerabil-

ities were encountered, for example when examining ReDoS attacks. Due

to limited familiarity with this vulnerability, significant time was invested

to discern whether this was a legitimate threat or a false positive.

The team faced considerable challenges in effectively utilizing CodeQL to

identify and manage data sanitization points between sources of tainted

data and potential sinks. For example, early attempts at tracking taint

propagation often failed to correctly identify or account for data sanitiza-

tion practices within the data flow, leading to numerous false positives or

possibly overlooked vulnerabilities. A particular difficulty was understand-

ing how to incorporate intermediary nodes within queries. In the initial

attempts, such as the one shown in Figure 4.7, the aim was to track taint

flow through specific classes without considering intermediary sanitization

points.

The project also exposed a significant gap in understanding of the security

Chapter 4: Results 38

mechanisms employed within the analyzed applications. The lack of deep

knowledge about specific security implementations, such as authentication

checks, encryption methods, and error handling procedures, frequently

impeded the team’s ability to accurately assess security vulnerabilities.

This often resulted in unnecessary investigations into what appeared to

be security flaws, but were in fact safe practices due to other security

measures.

An example of this can be seen in Section 4.1.1, where it was noted that

CSRF protection was disabled. The initial assessment considered this a

potential vulnerability, prompting a detailed examination of the associated

risks. However, DHIS2 employs OAuth2 for its authentication processes,

which mitigates CSRF risks in its context. The lack of familiarity with how

OAuth2’s token-based authentication effectively circumvents CSRF attacks

led to misdirected efforts.

Lack of Repository Understanding

The complexity and extensive scale of the DHIS2 codebase posed sub-

stantial challenges. Team members, despite having experience with Java

and RESTful applications, spent considerable time understanding the spe-

cific implementations within DHIS2. This lack of deep contextual repository

understanding significantly slowed down the vulnerability assessment pro-

cess, highlighting the importance of familiarity with the target repositories.

Adaptations

To navigate the challenges encountered during the project, significant ad-

aptations were necessary, primarily revolving around the utilization of

CodeQL. As detailed in Section ??, writing queries from scratch proved

ineffective.

Recognizing these limitations, the team shifted focus towards leveraging

GitHub’s pre-written standard queries. This pivot aimed not at enhancing

the specificity but at reducing the noise of the results provided by these

standard queries. An example of this adaptation is found in Figure 4.9.

The modified query did not uncover additional vulnerabilities beyond those

identified by the standard scans. Instead, they were fine-tuned to decrease

the incidence of false positives.

Additionally, the reliance on established resources like CWE from MITRE

and OWASP was intensified. These resources became instrumental in in-

terpreting the vulnerability warnings generated by the standard queries,

thereby enhancing the team’s learning and understanding of each identi-

fied issue. This approach allowed for a better comprehension of the vul-

Chapter 4: Results 39

nerabilities, assessment of their impact, and understanding of the security

mechanisms at play, which in turn informed the query refinement process.

4.1.3 Learning with CodeQL

The outcomes of the standard scans were systematically categorized by

vulnerability classes. To determine the validity of these results, a compre-

hensive understanding of each vulnerability was essential. Utilizing OWASP

and MITRE as resources facilitated the learning of various security issues.

The detailed examples provided by OWASP on safe and unsafe implement-

ations improved comprehension, even for vulnerabilities that were previ-

ously unfamiliar to the team.

The process of refining queries in CodeQL necessitated a deep engagement

with the behavior patterns within the code. The learning outcomes came

from identifying harmful behavior to be flagged, and recognizing safe im-

plementations to be excluded. Each iteration of reviewing and adjusting

queries sharpened the understanding of how vulnerabilities manifest in

real-world applications, and the security measures necessary to mitigate

them.

4.1.4 Learning to Use Custom Queries

Custom queries in CodeQL allow for the development of tailored security

assessments specific to the unique aspects of a target codebase. Learning

to create and refine custom queries was one of the outcomes from the

application of CodeQL.

Initially, executing a CodeQL query generates a wide range of results, often

including false positives. This initial output provides a basis for refining the

queries to improve the accuracy.

The refinement process involves an evaluation of the query results, identi-

fying those leading to consistent false positives. For instance, a query

might initially flag many data paths as security risks, which, upon ana-

lysis, are found to have effective custom sanitization routines. The query

is adjusted manually to exclude such secure implementations. An example

of this is seen in Section 4.1.1. This iterative process of refining and re-

evaluating helps reduce irrelevant findings and enhances the focus on true

vulnerabilities. Custom queries can also be compiled into a custom pack

that can be ran together with the standard scan.

Chapter 4: Results 40

Using GPT-4

The usage of GPT-4 into this project, as outlined in Chapter 3.2.2, signific-

antly facilitated both information gathering and deeper learning about Cod-

eQL’s application. For example, GPT-4 was used to condense the DHIS2

developers manual as seen in Figure 4.19, to make it easier to find inform-

ation relevant to a specific query.

Figure 4.19: GPT-4 summarization example, reducing the developer manual to

essential elements.

Figure 4.20 captures a discussion where GPT-4 was queried to explain a

code-snippet and discuss the implications of certain security mechanisms.

This interaction not only clarified advanced topics but also aided in visual-

izing how these concepts apply within CodeQL tasks.

Chapter 4: Results 41

Figure 4.20: GPT-4’s role in explaining complex logic and its implications for cy-

bersecurity.

Moreover, GPT-4 was helpful in debugging and refining CodeQL commands

as seen in Figure 4.21. Here the method ”getCatchClause()” can not be

resolved for the class ”TryStmt”, the real method is called ”getACatch-

Clause()”.

Chapter 4: Results 42

Figure 4.21: GPT-4 assisting in debugging and refining CodeQL command syntax.

GPT-4 occasionally provided misleading or incorrect information. An illus-

trative example is depicted in Figure 4.22, where GPT-4 suggests a method

not applicable to the context of the query.

Chapter 4: Results 43

Figure 4.22: Example of an incorrect suggestion provided by GPT-4.

4.1.5 Survey results

A survey to gather additional data about the current state of cyberse-

curity knowledge within different Information Technology (IT) educations

was sent out, as outlined in Chapter 3.4.7, and recieved 62 answers. Fig-

ures 4.23 and 4.24 show how the answers to this survey is distributed

across year of study and line of study, with the distribution among years

of study being very even, and line of study more leaned towards computer

science and digital business development.

Chapter 4: Results 44

Figure 4.23: Answer distribution across year of study. Question asks ”What year

of study are you in?” and answers reads 1st grade, 2nd grade and 3rd grade.

Figure 4.24: Answer distribution across line of study. Question asks ”What line of

study are you in?” and answers reads Computer Science, Digital Business Devel-

opment and Information Management.

Figures 4.25 and 4.26 indicate the lack of cybersecurity knowledge the

team encountered. This is shown by under 50% of students rating their

knowledge on cybersecurity above a 5. The lack of knowledge is made

even more apparent when considering the trend in the answer distribution

of the question in Figure 4.26. Over 50% answered 5 or under, and 23% do

not keep security practices in mind at all during development, answering

with a 1.

Chapter 4: Results 45

Figure 4.25: Answer distribution to question about rating general cybersecurity

knowledge.

Figure 4.26: Answer distribution to question about how often security practices

are kept in mind during a development process.

Figures 4.27 and 4.28 figures illustrate the general lack of knowledge on

SAST tools.

Chapter 4: Results 46

Figure 4.27: Answer distribution to question about rating SAST-tool knowledge.

Figure 4.28: Answer distribution to question about rating static code analysis

knowledge.

4.2 Administrative results

The following section outlines the results of the administrative effort. It

provides a clear overview of the administrative work that supported this

project’s plan.

4.2.1 Time Accounting

Due to the exploratory nature of this research, the project was divided

into research, implementation, and documentation phases. This division

facilitated time management, with Trello used for tracking tasks and mile-

stones. Additionally, a Gantt chart provided an overview of major mile-

stones. There were no discrepancies in the plan.

Chapter 4: Results 47

Research

Through this phase, the team managed to decide on a topic of research, as

well as picking out repositories which could be used in the implementation

phase. Approximately 450-550 hours was spent in total during this phase,

attributed both to research, as well as other administrative tasks.

Implementation

The implementation phase resulted in the team being able to explore the

codebases of the target repositories, and relate the takeaways from this

towards the documentation phase. Approximately 550-600 hours went to

this phase.

Documentation

From the moment the team started solely focusing on the documentation

phase, significant progress was made. Setting aside time to solely focus on

this phase ended up being an integral part of this project. Approximately

480 hours were allotted to this phase.

Meetings

The consistent and frequent internal teammeetings resulted in the process

becoming more fluent. Being able to know where the other team members

are at with their work, as well as what they are working on, makes it

easier to plan for what to do. Furthermore, it made it easier to comply

with internal deadlines.

There were a total of six meetings with the supervisor. Meetings consisted

of a presentation about the current project status, as well as a discussion

around the research topic.

5. Discussion

5.1 Scientific

This section examines our scientific results within the context of the thesis.

We assess the impact of applying CodeQL on the targets and the edu-

cational implications. The discussion unifies our findings to suggest im-

provements in CodeQL documentation, as well as in software engineering

education.

5.1.1 Methodology

Here we discuss the strengths and weaknesses of our systematic ap-

proach of employing CodeQL, evaluating how our methodological choices

impacted the depth and thoroughness of the vulnerability analysis and

learning outcomes.

Systematic Application of CodeQL

As detailed in Chapter 3.2, we characterize our approach of employing

CodeQL by its open-ended and exploratory nature. This type of approach

helped us uncover a broad range of issues and knowledge gaps in domains

like cybersecurity, static analysis tools, and CodeQL’s functionalities.

It also facilitated broad learning outcomes, encompassing a general un-

derstanding of software security, the capabilities and use of SAST tools like

CodeQL, and vulnerability detection. The broad scope of our exploration

enhanced our general cybersecurity knowledge, but at the expense of de-

veloping deep, specialized expertise in any single area. This breadth over

depth approach inevitably impacted the effectiveness of our vulnerability

assessments.

Target Selection

Choosing complex targets like DHIS2, along with our limited repository

knowledge, significantly hindered our query development. Having to focus

extensively on understanding the codebase rather than applying CodeQL

was a misstep.

The choice of targets impacted the efficacy of our vulnerability analysis.

For instance, while the scan on DHIS2 did result in several warnings, the

48

Chapter 5: Discussion 49

ones investigated were benign. Open Hospital yielded only one warning,

highlighting a possible mismatch between the chosen target and the types

of vulnerabilities CodeQL is most effective at detecting. This highlights

CodeQL’s limitations as a penetration testing tool for computer science

students with limited cybersecurity expertise.

Efficacy of the Learning Modules

The documentation was crucial for our foundational learning, offering es-

sential insights into CodeQL’s concepts and syntax. This theoretical ground-

ing was vital as we began exploring the tool’s capabilities. The shift from

theoretical knowledge to practical application was done through CTF chal-

lenges, which provided a hands-on opportunity to apply what we had

learned. These exercises were important in developing our query-writing

skills. However, they also exposed the limits of our learning, particularly

when it came to the complexities of real-world vulnerabilities. The learning

modules succeeded in teaching us CodeQL, but did not sufficiently prepare

us to identify novel vulnerabilities outside of the standard scans, highlight-

ing a significant gap in our ability to leverage the tool for advanced security

analysis.

Use of GPT-4

GPT-4 was a valuable tool in our project, helping us quickly understand

and apply complex security concepts, as well as summarizing lengthy doc-

uments. This was essential for connecting theoretical knowledge with prac-

tical security applications. However, we had to be cautious as GPT-4 oc-

casionally provided incorrect information, specifically for writing CodeQL

queries. As a result of this, answers provided by GPT-4 was always verified

by other sources while researching.

5.1.2 CodeQL use in Development versus Pentesting

CodeQL offers use to both developers and penetration testers, but its ap-

plication can yield different outcomes depending on the context. In our

study, we primarily utilized CodeQL for penetration testing. This approach

did not yield significant results. We attribute this to our lack of experience

with penetration testing and a limited understanding of complex security

mechanisms.

In the project, while we did not integrate CodeQL within a development

environment, the process of setting up and running queries on pre-existing

applications provided us with valuable insights. We learned that even without

integration into development, running CodeQL’s standard queries could

Chapter 5: Discussion 50

highlight potential security issues. By only using two commands show-

cased in Chapter 4.1, ”database create”, and ”database analyze”, you can

already get results from the standard scan.

A developer in a CI/CD environment could encounter these CodeQL warn-

ings when they push changes to the repository, prompting them to review

and reconsider their implementations. This aspect of CodeQL usage not

only aids in catching security flaws but also fosters a continual learning

process for developers, enhancing their ability to think critically about se-

curity as an integral part of their coding practice.

5.1.3 Vulnerability Findings

Our CodeQL analysis did not identify any definite vulnerabilities. This high-

lighted the complexities of vulnerability detection and the challenges en-

countered during its application.

Challenges Impacting Detection

The main factor contributing to the non-detection of vulnerabilities was

the foundational gap in our understanding of complex security mechan-

isms and static analysis techniques. This deficiency was exacerbated by

our limited experience with CodeQL’s advanced functionalities. These chal-

lenges highlight the need for in-depth knowledge of both the tool and the

security landscape it is employed in.

Educational Gaps

The absence of detected vulnerabilities in our project should not only be

interpreted as an indication of security in the targets. More importantly,

it reflects the limitations on the effectiveness of our CodeQL application.

These limitations do not solely reflect the team’s own lacking knowledge,

but our education as a whole. With this thesis being the conclusion of our

three year education in computer science we question the lack of cyberse-

curity knowledge integrated in the three year education span. Specifically

we believe that the lack of software security, and secure development

practices in our education exacerbated these results and should be ad-

dressed at a higher level than the individual student.

5.1.4 CodeQL as an Educational Tool

Using CodeQL revealed the educational potential of the tool. Using the

standard scan generates a categorized file of potential security issues that

Chapter 5: Discussion 51

prompted further investigation and learning to confirm whether these were

genuine threats.

Bridging Theoretical and Practical Knowledge

Throughout the project, CodeQL served as a vital tool in applying theoret-

ical security concepts practically.

For example, during our analysis of the DHIS2 codebase, we utilized Cod-

eQL to trace how user input was processed and potentially misused. The

tool highlighted several points in the application where user input was

tainting arguments used in a SQL expression, posing a risk of SQL injec-

tion attacks. This practical application allowed us to learn and investigate

data flow in an application, and the concept of taint tracking.

The process of iteratively refining our queries based on the initial results,

enhanced our understanding of both the tool’s capabilities and the vul-

nerabilities. Each iteration provided deeper insights into safe and possibly

unsafe implementations in the code.

Insights Gained from Specific Vulnerabilities

The automatic scanning feature of CodeQL introduced us to a variety of

vulnerabilities, enriching our theoretical understanding and prompting fur-

ther research into each potential issue. For example, during our analysis of

log injection vulnerabilities, CodeQL identified several suspicious logging

practices. Although, none were exploitable in the code specific context,

which led us to delve deeper into understanding what makes a logging

practice secure versus insecure. We compared these findings against both

secure and insecure code examples found in external resources, enhancing

our practical understanding of the vulnerability.

The structured presentation of results by CodeQL, categorized by vulner-

ability types that correspond to common weaknesses in OWASP Top Ten

and the CWE list from MITRE, significantly aided this learning process.

This categorization not only made the results more accessible, but also

provided clear starting points for further research into each vulnerability

type.

Practical Application and Learning Facilitation

The low barrier to entry for running the standard CodeQL queries on any

given repository underscores its utility as a learning tool. Even users with

minimal experience can initiate scans and get immediate feedback on po-

tential security issues, which can also be used as a springboard for learn-

Chapter 5: Discussion 52

ing. Furthermore, the necessity to refine queries to reduce noise inherently

required a deep dive into understanding each flagged vulnerability. This

not only forced the team to learn about the vulnerabilities but also to think

critically about their manifestation in code.

Our experience with CodeQL highlighted its strength not only as a secur-

ity tool but also as an educational tool. This dual capability of CodeQL

emphasizes the importance of integrating such tools into regular develop-

ment practices.

5.1.5 Survey

The survey conducted among IT students at Norwegian University of Sci-

ence and Technology (NTNU) offered insights into the current state of cy-

bersecurity knowledge and the integration of security practices in software

development for our fellow students. The findings help to contextualize the

challenges in embedding robust cybersecurity measures within the soft-

ware development lifecycle.

The survey uncovered self-assessed cybersecurity knowledge among stu-

dents, with many indicating only moderate understanding and a significant

portion acknowledging minimal knowledge. This suggests potential incon-

sistencies in the integration of cybersecurity education across IT curricula,

which may leave some graduates unprepared for security challenges in

their careers.

Responses also show limited familiarity with static code analysis and SAST

tools, which are important for secure software development. This gap high-

lights a critical area for educational enhancement to improve the security

competence of future software developers.

The distribution of responses regarding security considerations during de-

velopment leans towards infrequent consideration. This highlights a dan-

gerous implication of security measures being employed after the fact,

even though as the use of CodeQL shows, measures can in fact be integ-

rated throughout developments and into deployment.

The variability in cybersecurity awareness and the infrequent application

of security practices advocate for a structured inclusion of cybersecur-

ity topics within IT programs. Strengthening the curriculum with practical

tools like SAST could narrow the existing knowledge gap and cultivate a

generation more versed in security.

When interpreting the survey results, it is worth noting that many re-

sponses came from first- and second-year students, potentially skewing

the data negatively. However, this thesis emphasizes the need to integrate

Chapter 5: Discussion 53

cybersecurity practices throughout the education span. Thus, we believe

self-assessed cybersecurity awareness should be higher regardless of the

year of study.

The survey’s scope, limited to IT students at NTNU, and the modest num-

ber of respondents, may not fully represent the global state of cybersecur-

ity knowledge among all software developers. Nevertheless, as students

of NTNU ourselves, the survey’s results align with our own observed de-

ficiencies in security education, making the findings of the survey more

credible within the context of our thesis.

5.1.6 Improvement of Education

The experience documented in this thesis has highlighted significant gaps

in the cybersecurity knowledge of computer science students, particularly

evident in the integration and effective utilization of tools like CodeQL.

This underscores the urgent need for IT curricula to adapt and evolve by

embedding practical security tools training within their programs. As our

familiarity with CodeQL increased over time, it became evident that early

integration of such tools in educational settings could significantly enhance

learning outcomes and improve the security practices among developers.

This thesis advocates for a curriculum that intertwines development con-

cepts with corresponding security concerns, ensuring that cybersecurity

becomes an integral part of the learning process. Such an approach not

only equips students with the theoretical knowledge of security concepts

but also the practical skills necessary to apply these concepts in real-world

scenarios.

Incorporating rigorous cybersecurity training into the curriculummay com-

plicate the learning process and increase its difficulty. However, this chal-

lenge is outweighed by the necessity for developers to have a deep un-

derstanding of security measures.

By integrating security into the core curriculum, educational institutions

can equip future developers with the ability to create more secure and

robust software. This emphasizes the educators’ crucial role in preparing

a workforce proficient in both development and cybersecurity.

5.1.7 Improvement of Documentation

The challenges faced by new users of CodeQL, as noted in this research,

suggest that while the existing documentation is extensive, it could be

improved to better cater to novices in cybersecurity. This thesis proposes

that documentation should be extended to gradually guide new users from

Chapter 5: Discussion 54

basic to complex cyber concepts, incorporating comprehensive examples

that illustrate common vulnerabilities and how to detect them. Enhance-

ments could include visual aids, step-by-step tutorials, and a more intuitive

organizing that allows users to easily navigate through information. Such

improvements could make a significant difference in demystifying the ini-

tial learning phase of using CodeQL, thereby making it more accessible to

a broader audience.

5.2 Administrative

The decision to schedule meetings with our supervisor on an as-needed

basis proved effective. During periods where intensive work was required,

scheduling a meeting would have been counterproductive. Meetings were

scheduled when there was significant work to present or specific questions

to address.

Internal communication was maintained through daily stand-ups, which

were highly effective in keeping everyone informed. These meetings made

it easy for everyone to stay on the same page and seek help when needed.

Good communication ensured that any scheduling issues were minor in-

conveniences rather than major disruptions.

Utilizing Trello to track tasks across all phases provided a structured way to

monitor progress and ensure accountability. This made working in parallel

easier.

Setting more specific deadlines could have provided additional structure.

However, this being an exploratory project made it challenging to establish

fixed deadlines.

5.3 Summary

This discussion has explored our application of CodeQL during this project,

highlighting both the successes and limitations encountered. The findings

illuminate significant insights into the integration of theoretical knowledge

and practical security tool utilization.

Our experience has underscored the necessity of a robust understand-

ing of security tools and their effective application in real-world scenarios.

Despite the absence of detected vulnerabilities, the project provided an

understanding of the complexities involved in automated vulnerability de-

tection and the importance of comprehensive security training.

Chapter 5: Discussion 55

The insights gained align with the overarching goals of this thesis, em-

phasizing the critical need for enhancing cybersecurity education within

software development curricula. Our findings advocate for an educational

approach that balances theoretical understanding with practical tool pro-

ficiency, highlighting the essential role of static analysis tools like CodeQL

in contemporary cybersecurity practices.

The project’s outcome contribute to a broader understanding of how early

and continuous integration of security practices and tools into the software

development lifecycle can significantly enhance the security posture of

developed applications. This aligns with the thesis’s objective to bridge the

gap between software development and operational security, confirming

the need for educational reforms that incorporate practical security tool

training alongside traditional computer science education.

6. Conclusion and Future

Work
This study investigated the potential of CodeQL to bridge the observed cy-

bersecurity knowledge gap among software developers with minimal ex-

perience. Set against the backdrop of increasing digital threats, this re-

search aimed to provide ways to enhance the cybersecurity competence

of developers, thereby strengthening the integrity of software solutions.

Utilizing a mixed-method approach that emphasized individual experiment-

ation throughout the research and implementation phases, the case study

resulted in substantial individual learning in cybersecurity and proficiency

in CodeQL. Furthermore, it revealed significant knowledge gaps among the

participants, highlighting the critical need for integrating tools like CodeQL

into the software development lifecycle to enhance software security and

educational growth simultaneously.

The research successfully demonstrated that CodeQL can be used as an

educational tool that help new developers understand and implement cy-

bersecurity practices effectively. While the project did not uncover con-

crete security vulnerabilities and therefore not meeting the result goal of

uncovering real vulnerabilities in the targets. The efforts, however, led

to a comprehensive understanding of the challenges associated with im-

plementing CodeQL in a real-world development setting. This insight has

fulfilled all the other goals as outlined in Section 1.3

The steep learning curve encountered when starting with CodeQL suggests

the need for more structured educational materials to support beginners

in cybersecurity. Future research could explore a broader range of SAST

tools and other cybersecurity tools, as well as their impact on improving

security awareness for software developers. Additionally, there is a sig-

nificant opportunity to integrate these tools into software development

curricula, potentially through both traditional university courses and free

online resources.

Integrating tools like CodeQL into educational settings could profoundly

transform software development practices by embedding essential secur-

ity measures within the development lifecycle. This approach not only pre-

pares developers to handle emerging security threats but also enhances

56

Chapter 6: Conclusion and Future Work 57

their overall programming knowledge.

This research journey has revealed the transformative potential of integ-

rating SAST tools like CodeQL into the toolkit of software developers. By

systematically applying CodeQL, we enhanced our capability to understand

software vulnerabilities and comprehension of software security principles.

This integration of security practices into software development training

aligns with the thesis’ goals, confirming that educational gaps in cyberse-

curity among developers can be effectively bridged through strategic tool

integration.

Educators and industry leaders should consider the strategic incorporation

of tools like CodeQL in curriculum designs and development practices to

prepare the next generation of software developers for the security chal-

lenges of the future.

7. Societal Impact
In an era marked by increasing emphasis on sustainability, it is crucial to

understand the societal implications of emerging research. This chapter

delves into the potential impacts of this thesis on society, focusing on how

enhanced cybersecurity practices can strengthen digital infrastructure. We

will explore how integrating robust security measures from the outset of

software development not only mitigates the need for subsequent cor-

rections but also significantly enhances public trust in digital services. By

doing so, this research contributes to a broader understanding of how pro-

active cybersecurity practises can safeguard essential digital assets and

support sustainable development.

7.1 Environmental Impact

Integrating advanced security practices like CodeQL within the software

development lifecycle significantly streamlines the process of securing code,

reducing the need for frequent updates and patches. This proactive se-

curity implementation not only lessens server load but also curtails en-

ergy consumption, aligning with the sustainability goals of minimizing the

carbon footprint of digital operations. Moreover, CodeQL’s alignment with

GitHub’s green initiatives furthers our contribution to Sustainable Devel-

opment Goals (SDG) 13: Climate Action, by promoting more sustainable

and energy-efficient software development practices across the industry

(Julien, 2023; Brescia, 2021).

7.2 Health Impact

Integrating security measures in the development of health-related soft-

ware ensures the safety of critical devices like diabetic sensors and pace-

makers. By improving cybersecurity knowledge among developers, we re-

duce risks of malfunctions that could endanger lives, aligning with SDG 3:

Good Health and Well-being. The 2017 recall of pacemakers due to secur-

ity flaws underscores the necessity for secure software, highlighting our

thesis’s role in enhancing public health by advocating for robust cyberse-

curity protocols (hern, 2017).

58

Chapter 7: Societal Impact 59

7.3 Economic Impact

Enhancing cybersecurity knowledge among developers can lead to signi-

ficant economic savings by preventing costly data breaches, estimated at

an average of $4.45 million USD per incident in 2023 (‘Cost of a data

breach report 2023’, 2023). This proactive approach supports SDG 8: De-

cent Work and Economic Growth, by mitigating financial losses and en-

abling more sustainable economic allocations.

7.4 Societal Impact

By enhancing the cybersecurity proficiency of software developers, we

bolster public trust in digital services. This improvement in cybersecur-

ity measures helps protect sensitive information and fosters greater con-

sumer confidence in digital platforms, addressing SDG 16: Peace, Justice,

and Strong Institutions.

7.5 Ethical Considerations

Software developers bear significant ethical responsibilities. They serve

as the custodians of user data, tasked with creating robust and secure

software from the start, rather than patching the software only after vul-

nerabilities are exploited.

Society’s reliance on the internet means vast amounts of sensitive data,

such as banking details, social security numbers, and personal passwords,

are constantly being transferred and stored online. This reality imposes a

substantial ethical duty on developers to protect such information from un-

authorized access. Developers must have a comprehensive understanding

of cybersecurity to effectively implement the necessary safeguards, en-

suring the security of personal data.

Incorporating tools like CodeQL into the software development process

supports these ethical considerations. By enabling developers to identify

and fix vulnerabilities before software release, CodeQLminimizes the chances

of security breaches. This proactive stance not only bolsters the security

of digital services but also strengthens user trust, firmly anchoring these

services in ethical practices that prioritize the safety and integrity of user

data.

Chapter 7: Societal Impact 60

7.6 Conclusion

Our research enhances the capabilities of developers to identify and mitig-

ate security vulnerabilities early in the development process, contributing

to several key areas of sustainability and societal well-being. By reducing

server loads and energy consumption, our work supports environmental

sustainability (SDG 13: Climate Action) and aids in building a resilient

digital infrastructure (SDG 9: Industry, Innovation, and Infrastructure).

Furthermore, by securing critical health infrastructure, we enhance public

health and safety (SDG 3: Good Health and Well-being), and by mitigating

financial losses from data breaches, we promote economic stability (SDG

8: Decent Work and Economic Growth).

Additionally, our efforts in bolstering cybersecurity knowledge and prac-

tices help to protect sensitive information, thereby fostering greater pub-

lic trust in digital services and addressing ethical considerations critical

to today’s digital era. This supports SDG 16: Peace, Justice, and Strong

Institutions.

In summary, this chapter consolidates the significant impacts of our thesis

across environmental, health, economic, societal, and ethical dimensions,

underscoring how integrating advanced cybersecurity practices like Cod-

eQL can enhance both the security of our digital world, and thereby society

as a whole.

Bibliography
About cwe. (2024). MITRE. Retrieved April 29, 2024, from https://cwe.

mitre.org/about/index.html

About dataflow analysis. (n.d.). GitHub. Retrieved May 18, 2024, from

https://codeql.github.com/docs/writing-codeql-queries/about-

data-flow-analysis/

About DHIS2. (n.d.). DHIS2. Retrieved April 16, 2024, from https://dhis2.

org/about/

About open hospital. (2024). Open Hospital. Retrieved April 16, 2024, from

https://www.open-hospital.org/about-open-hospital/]

Att&ck matrix for enterprise. (2024). MITRE. Retrieved May 18, 2024, from

https://attack.mitre.org/

Avgustinov, P., de Moor, O., Jones, M. P., & Schäfer, M. (2016). Ql: Object-

oriented queries on relational data. ECOOP. Retrieved May 1, 2024,

from https://drops.dagstuhl.de/storage/00lipics/ lipics-vol056-

ecoop2016/LIPIcs.ECOOP.2016.2/LIPIcs.ECOOP.2016.2.pdf

Brescia, E. (2021, April 22). Environmental sustainability at github. The

GitHub Blog. Retrieved May 9, 2024, from https://github.blog/

2021-04-22-environmental-sustainability-github/

Burt, T. (2020). Microsoft report shows increasing sophistication of cyber

threats. Microsoft. Retrieved April 30, 2024, from https://blogs.

microsoft . com/on - the - issues / 2020 / 09 / 29 /microsoft - digital -

defense-report-cyber-threats/

Capture the flag 101 overview. (2024). CTF101. Retrieved May 18, 2024,

from https://ctf101.org/

CodeQL. (n.d.). Github. Retrieved April 18, 2024, from https://codeql.

github.com/

Codeql documentation [Accessed: 2024-04-16]. (2024). GitHub.

contributors, W. (2024). Mitre corporation. Retrieved May 18, 2024, from

https://en.wikipedia.org/w/index.php?title=Mitre_Corporation&

oldid=1224660973

Cost of a data breach report 2023. (2023). IBM. Retrieved April 29, 2024,

from https://www.ibm.com/reports/data-breach

Cross site scripting. (n.d.). OWASP. Retrieved May 16, 2024, from https:

//owasp.org/www-community/attacks/xss/

Csrf. (n.d.). OWASP. Retrieved May 16, 2024, from https://owasp.org/

www-community/attacks/csrf

Cve. (n.d.). MITRE. Retrieved May 18, 2024, from https://cve.mitre.org/

61

https://cwe.mitre.org/about/index.html
https://cwe.mitre.org/about/index.html
https://codeql.github.com/docs/writing-codeql-queries/about-data-flow-analysis/
https://codeql.github.com/docs/writing-codeql-queries/about-data-flow-analysis/
https://dhis2.org/about/
https://dhis2.org/about/
https://www.open-hospital.org/about-open-hospital/]
https://attack.mitre.org/
https://drops.dagstuhl.de/storage/00lipics/lipics-vol056-ecoop2016/LIPIcs.ECOOP.2016.2/LIPIcs.ECOOP.2016.2.pdf
https://drops.dagstuhl.de/storage/00lipics/lipics-vol056-ecoop2016/LIPIcs.ECOOP.2016.2/LIPIcs.ECOOP.2016.2.pdf
https://github.blog/2021-04-22-environmental-sustainability-github/
https://github.blog/2021-04-22-environmental-sustainability-github/
https://blogs.microsoft.com/on-the-issues/2020/09/29/microsoft-digital-defense-report-cyber-threats/
https://blogs.microsoft.com/on-the-issues/2020/09/29/microsoft-digital-defense-report-cyber-threats/
https://blogs.microsoft.com/on-the-issues/2020/09/29/microsoft-digital-defense-report-cyber-threats/
https://ctf101.org/
https://codeql.github.com/
https://codeql.github.com/
https://en.wikipedia.org/w/index.php?title=Mitre_Corporation&oldid=1224660973
https://en.wikipedia.org/w/index.php?title=Mitre_Corporation&oldid=1224660973
https://www.ibm.com/reports/data-breach
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/csrf
https://owasp.org/www-community/attacks/csrf
https://cve.mitre.org/

Bibliography 62

CWE coverage for Java and Kotlin. (n.d.). Github. Retrieved April 30, 2024,

from https://codeql.github.com/codeql-query-help/java-cwe/

Dewhurst, R. (2020). Static code analysis. https : / / owasp . org /www-

community/controls/Static_Code_Analysis#

False positive: HTTP Response Splitting. (2024). Github. Retrieved April

30, 2024, from https://github.com/github/codeql/issues/15056

Friedman, N. (2019). Semmle to GitHub. Github. Retrieved May 7, 2024,

from https://github.blog/2019-09-18-github-welcomes-semmle/

Gillis, A. S. (2020). What is static analysis (static code analysis? Retrieved

May 13, 2024, from https://www.techtarget.com/whatis/definition/

static-analysis-static-code-analysis

Github security lab: Capture the flag. (2024). Github. Retrieved April 18,

2024, from https://securitylab.github.com/ctf/

Hansen, R., & Kern, C. (2024, April). Tackling cybersecurity vulnerabilities

through secure by design. Retrieved May 11, 2024, from https:

//blog.google/technology/safety-security/tackling-cybersecurity-

vulnerabilities-through-secure-by-design/

hern, A. (2017). Hacking risk leads to recall of 500,000 pacemakers due

to patient death fears [newspaper]. The Guardian: Technology.

Retrieved May 10, 2024, from https : / /www. theguardian . com/

technology/2017/aug/31/hacking-risk-recall-pacemakers-patient-

death-fears-fda-firmware-update

Hossain, S. (2018). Rework and reuse effects in software economy. Com-

puter Research. Retrieved May 7, 2024, from https://computerresearch.

org/index.php/computer/article/view/1780/1764

HTTP response splitting. (n.d.). Github. Retrieved April 30, 2024, from

https://codeql.github.com/codeql-query-help/java/java-http-

response-splitting/

Inefficient Regex Documentation. (2024). Github. Retrieved April 30, 2024,

from https://codeql.github.com/codeql-query-help/java/java-

redos/

Julien. (2023, June 28). Software development for sustainable develop-

ment: Unlocking the potential of the environmental sector. Bocasay.

Retrieved May 9, 2024, from https://www.bocasay.com/software-

development-environmental-sector/

Log injection. (n.d.). OWASP. Retrieved April 30, 2024, from https : / /

owasp.org/www-community/attacks/Log_Injection

Lutkevich, B. (2023).What is gpt-4? everything you need to know | techtar-

get. Retrieved April 25, 2024, from https://www.techtarget.com/

whatis/definition/GPT-4

Matke, M. (2023). Understanding cybersecurity frameworks: Stride, owasp

top 10, and mitre att&ck. Retrieved April 18, 2024, from https:

https://codeql.github.com/codeql-query-help/java-cwe/
https://owasp.org/www-community/controls/Static_Code_Analysis#
https://owasp.org/www-community/controls/Static_Code_Analysis#
https://github.com/github/codeql/issues/15056
https://github.blog/2019-09-18-github-welcomes-semmle/
https://www.techtarget.com/whatis/definition/static-analysis-static-code-analysis
https://www.techtarget.com/whatis/definition/static-analysis-static-code-analysis
https://securitylab.github.com/ctf/
https://blog.google/technology/safety-security/tackling-cybersecurity-vulnerabilities-through-secure-by-design/
https://blog.google/technology/safety-security/tackling-cybersecurity-vulnerabilities-through-secure-by-design/
https://blog.google/technology/safety-security/tackling-cybersecurity-vulnerabilities-through-secure-by-design/
https://www.theguardian.com/technology/2017/aug/31/hacking-risk-recall-pacemakers-patient-death-fears-fda-firmware-update
https://www.theguardian.com/technology/2017/aug/31/hacking-risk-recall-pacemakers-patient-death-fears-fda-firmware-update
https://www.theguardian.com/technology/2017/aug/31/hacking-risk-recall-pacemakers-patient-death-fears-fda-firmware-update
https://computerresearch.org/index.php/computer/article/view/1780/1764
https://computerresearch.org/index.php/computer/article/view/1780/1764
https://codeql.github.com/codeql-query-help/java/java-http-response-splitting/
https://codeql.github.com/codeql-query-help/java/java-http-response-splitting/
https://codeql.github.com/codeql-query-help/java/java-redos/
https://codeql.github.com/codeql-query-help/java/java-redos/
https://www.bocasay.com/software-development-environmental-sector/
https://www.bocasay.com/software-development-environmental-sector/
https://owasp.org/www-community/attacks/Log_Injection
https://owasp.org/www-community/attacks/Log_Injection
https://www.techtarget.com/whatis/definition/GPT-4
https://www.techtarget.com/whatis/definition/GPT-4
https://medium.com/@mangeshmatke/understanding-cybersecurity-frameworks-stride-owasp-top-10-and-mitre-att-ck-8803a2b0cfa5
https://medium.com/@mangeshmatke/understanding-cybersecurity-frameworks-stride-owasp-top-10-and-mitre-att-ck-8803a2b0cfa5

Chapter 7: Societal Impact 63

//medium.com/@mangeshmatke/understanding-cybersecurity-

frameworks-stride-owasp-top-10-and-mitre-att-ck-8803a2b0cfa5

Metadata for CodeQL queries. (n.d.). Github. Retrieved May 7, 2024, from

https://codeql.github.com/docs/writing-codeql-queries/metadata-

for-codeql-queries/

Ntnu curriculum. (2024). NTNU. Retrieved May 18, 2024, from www.ntnu.

no/studier/studieplan#programmeCode=BIDATA&year=2021

Owasp top ten. (2023). OWASP. Retrieved April 18, 2024, from https:

//owasp.org/www-project-top-ten/

Path Traversal. (n.d.). OWASP. Retrieved April 30, 2024, from https://

owasp.org/www-community/attacks/Path_Traversal

Redos. (n.d.). OWASP. Retrieved April 30, 2024, from https: / /owasp .

org /www-community /attacks /Regular_expression_Denial _of_

Service_-_ReDoS

Sql injection. (n.d.). OWASP. Retrieved May 6, 2024, from https://owasp.

org/www-community/attacks/SQL_Injection

Ssrf. (n.d.). OWASP. Retrieved May 5, 2024, from https://owasp.org/

www-community/attacks/Server_Side_Request_Forgery

Statistics results. (2024). NIST. Retrieved April 25, 2024, from https://

nvd.nist.gov/vuln/search/statistics?form_type=Basic&results_

type=statistics&search_type=all&isCpeNameSearch=false

Unsafe deserialization. (n.d.). OWASP. Retrieved May 16, 2024, from https:

//owasp.org/www-community/vulnerabilities/Deserialization_of_

untrusted_data

What is datalog. (n.d.). Oxford Semantic Technologies. Retrieved May 18,

2024, from https : / /www . oxfordsemantic . tech / faqs /what - is -

datalog

Wolford, B. (2024, April).What is gdpr? Retrieved May 4, 2024, from https:

//gdpr.eu/what-is-gdpr/

https://medium.com/@mangeshmatke/understanding-cybersecurity-frameworks-stride-owasp-top-10-and-mitre-att-ck-8803a2b0cfa5
https://medium.com/@mangeshmatke/understanding-cybersecurity-frameworks-stride-owasp-top-10-and-mitre-att-ck-8803a2b0cfa5
https://medium.com/@mangeshmatke/understanding-cybersecurity-frameworks-stride-owasp-top-10-and-mitre-att-ck-8803a2b0cfa5
https://medium.com/@mangeshmatke/understanding-cybersecurity-frameworks-stride-owasp-top-10-and-mitre-att-ck-8803a2b0cfa5
https://medium.com/@mangeshmatke/understanding-cybersecurity-frameworks-stride-owasp-top-10-and-mitre-att-ck-8803a2b0cfa5
https://codeql.github.com/docs/writing-codeql-queries/metadata-for-codeql-queries/
https://codeql.github.com/docs/writing-codeql-queries/metadata-for-codeql-queries/
www.ntnu.no/studier/studieplan#programmeCode=BIDATA&year=2021
www.ntnu.no/studier/studieplan#programmeCode=BIDATA&year=2021
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-community/attacks/Path_Traversal
https://owasp.org/www-community/attacks/Path_Traversal
https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS
https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS
https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS
https://owasp.org/www-community/attacks/SQL_Injection
https://owasp.org/www-community/attacks/SQL_Injection
https://owasp.org/www-community/attacks/Server_Side_Request_Forgery
https://owasp.org/www-community/attacks/Server_Side_Request_Forgery
https://nvd.nist.gov/vuln/search/statistics?form_type=Basic&results_type=statistics&search_type=all&isCpeNameSearch=false
https://nvd.nist.gov/vuln/search/statistics?form_type=Basic&results_type=statistics&search_type=all&isCpeNameSearch=false
https://nvd.nist.gov/vuln/search/statistics?form_type=Basic&results_type=statistics&search_type=all&isCpeNameSearch=false
https://owasp.org/www-community/vulnerabilities/Deserialization_of_untrusted_data
https://owasp.org/www-community/vulnerabilities/Deserialization_of_untrusted_data
https://owasp.org/www-community/vulnerabilities/Deserialization_of_untrusted_data
https://www.oxfordsemantic.tech/faqs/what-is-datalog
https://www.oxfordsemantic.tech/faqs/what-is-datalog
https://gdpr.eu/what-is-gdpr/
https://gdpr.eu/what-is-gdpr/

	Abstract
	Sammendrag
	Preface
	Assignment Details
	Contents
	Figures
	Acronyms
	Introduction
	Relevance
	Purpose
	Goals
	Effect Goals
	Result Goals

	Scope
	Structure

	Theory
	Static Code Analysis
	CodeQL
	MITRE
	OWASP Top Ten
	Importance of Security Knowledge for Software Developers
	Vulnerabilities
	CTF
	GPT-4

	Method
	Work and Role Distribution
	Choice of Technology and Methodology
	CodeQL
	GPT-4
	Threat Modeling Frameworks
	Methodological Approach
	Administrative Strategy

	Choosing Targets
	Open Hospital
	DHIS2

	Research and Implementation of CodeQL
	Review of Documentation
	Using CodeQL CTF
	Setup of CodeQL Environment
	Applying CodeQL on Target Repositories
	Learning with CodeQL
	Identifying Knowledge Gaps
	Surveying Cybersecurity Knowledge

	Results
	Scientific Results
	Vulnerabilities Investigated
	Identifying Challenges
	Learning with CodeQL
	Learning to Use Custom Queries
	Survey results

	Administrative results
	Time Accounting

	Discussion
	Scientific
	Methodology
	CodeQL use in Development versus Pentesting
	Vulnerability Findings
	CodeQL as an Educational Tool
	Survey
	Improvement of Education
	Improvement of Documentation

	Administrative
	Summary

	Conclusion and Future Work
	Societal Impact
	Environmental Impact
	Health Impact
	Economic Impact
	Societal Impact
	Ethical Considerations
	Conclusion

	Bibliography

		2024-05-20T11:51:51-0700
	Agreement certified by Adobe Acrobat Sign

