
N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r I

KT
 o

g
re

al
fa

g

Ba
ch

el
or
op

pg
av

e

Christian Oxås Nilsen
Ine Sofie Zile Løseth
Jakob Holkestad Molnes
Kacper Lukasz Nowicki

Årets Nyhetsjeger

A quiz system with an accessible game interface
and an AI powered dashboard

Bacheloroppgave i Dataingeniør
Veileder: Anniken Susanne Th. Karlsen
Mai 2024

Christian Oxås Nilsen
Ine Sofie Zile Løseth
Jakob Holkestad Molnes
Kacper Lukasz Nowicki

Årets Nyhetsjeger

A quiz system with an accessible game interface and
an AI powered dashboard

Bacheloroppgave i Dataingeniør
Veileder: Anniken Susanne Th. Karlsen
Mai 2024

Norges teknisk-naturvitenskapelige universitet
Fakultet for informasjonsteknologi og elektroteknikk
Institutt for IKT og realfag

ABSTRACT

0.1 Abstract
Sunnmørsposten (SMP) has set a goal to increase the interest for news among
those under 40 years old. They expect that games are a way to engage readers
and increase readership. Traditionally, many paper newspapers include games
such as crossword and Sudoku. SMP sees that nowadays news can be read on
websites, mobile applications, social media, or other platforms. They want to stay
on top of the trends so they can engage a wider audience.

Sunnmørsposten wanted a quiz system where the questions were based on their
articles and players could compete on leaderboards, to win real-life prizes and
become the ”News Hunter of the Year.”

With this goal in mind, the project aimed to create a fun and engaging user inter-
face for players, and an administration panel where quizzes could be created and
managed. The team also suggested to create questions with the help of artificial
intelligence to streamline the process, and Sunnmørsposten was very receptive to
the idea.

We have delivered a Web based quiz application that can be integrated into Sunn-
mørsposten’s website and mobile app. The GitHub repository includes instructions
on how to setup the server and run the application. The project fulfills all the
requirements from Sunnmørsposten. Quizzes are easy to create with AI, the users
can play quizzes, and the players can see themselves and others on the leader-
boards. Additionally, administrators can manage leaderboards and users.

To achieve this result, we depended on a variety of technologies such as: Go for
application logic, Templ for templating, HTMX for swapping HTML elements,
ChatGPT for generating questions, PostgreSQL for storing data, GitHub for ver-
sion control, and Docker for containerization. We adopted an Agile methodology
to conduct our bachelor’s thesis. The team had regular meetings with the stake-
holder, to ensure that the project did not deviate from their expectations and
requirements.

i

ii

0.2 Sammendrag
Sunnmørsposten (SMP) har satt som mål å øke interessen for nyheter blant de
under 40 år. De forventer at spill er en måte å engasjere lesere og øke lesertall.
Tradisjonelt så har mange papiraviser inkludert spill som kryssord og Sudoku.
SMP ser at nå til dags kan nyheter leses på nettsider, apper, sosiale media og
andre plattformer. De ønsker å holde seg oppdatert på trender slik at de kan
engasjere flere lesere.

Sunnmørsposten ønsket et quiz system med spørsmål basert på deres artikler og
spillerne kan konkurrere om å havne på topplistene, for å vinne premier og bli
”Årets Nyhetsjeger.”

Målet med prosjektet var å lage et gøy og engasjerende brukergrensesnitt for
spillere, og et administrasjonspanel for å lage og administrere quizer. Teamet
foreslo også at spørsmål kunne bli lagd med kunstig intelligens for å effektivisere
prosessen, og Sunnmørsposten var veldig åpne for idéen.

Vi har levert en Web basert quiz applikasjon som kan integreres med Sunnmør-
spostens nettside og mobilapp. Vi inkluderer instruksjoner for hvordan man kan
sette opp serveren og kjøre applikasjonen på GitHub. Prosjektet oppfyller alle
kravene fra Sunnmørsposten. Quizer er enkle å lage med KI, brukerne kan spille
quizer, og spillerne kan se seg selv og andre på topplistene. I tillegg kan adminis-
tratorer administrere topplistene og brukerne.

For å oppnå dette resultatet var vi avhengige an en rekke teknologier. Vi brukte
Go for applikasjonslogikk, Templ for templating, HTMX for å bytte ut HTML
elementer, ChatGPT for å generere spørsmål, PostgreSQL for lagring av data,
GitHub for versjonskontroll, og Docker for containerisering. Vi tok i bruk en Agile
metodikk for gjennomføre bacheloroppgaven. Teamet hadde regelmessige møter
med produkteieren, for å forsikre oss om at prosjektet holdt seg til forventningene
og kravene.

PREFACE

This thesis is part of our education as computer science students at NTNU.
We would like to thank Sunnmørsposten for making this project possible, and a
special thanks to Liv-Jorunn Håker, Dag-Arne Alnes, and Hanna Relling Berg for
a good, collaborative process.

Thanks to all testers from Sunnmørsposten and fellow students who participated
in user testing and gave valuable feedback.
Our sincere appreciation to our supervisor Anniken Susanne Th. Karlsen, who
supported and encouraged us throughout the whole process, giving us feedback
and guidance when we needed it.

Our heartfelt thanks to Arne Styve, our study program manager, for good advice
and guidance.

iii

CONTENTS

Abstract i
0.1 Abstract . i
0.2 Sammendrag . ii

Preface iii

Contents iv

List of Figures ix

List of Tables xi

List of Code xii

Glossary xiii

Acronyms xiv

1 Introduction 1
1.1 Motivation . 1
1.2 Project description . 1
1.3 Stakeholders . 1

1.3.1 History of Digital News 1

2 Theory 3
2.1 Games . 3

2.1.1 Gamification . 3
2.2 Design and User Experience . 5

2.2.1 Wireframes . 5
2.2.2 Accessibility . 6
2.2.3 WCAG Standard . 6

2.3 Software Architecture . 6
2.3.1 Monolith . 6
2.3.2 Model-View-Controller . 7

2.4 Software Development . 7
2.4.1 Version Control . 7
2.4.2 Agile . 8

iv

CONTENTS v

2.4.3 DevOps . 9
2.4.4 Linters and Formatters . 9
2.4.5 Cohesion and Coupling . 9
2.4.6 Refactoring . 10
2.4.7 Code Reviews . 10
2.4.8 Documentation . 10
2.4.9 Software Testing . 10
2.4.10 Conceptual Frameworks for Software Testing 12

2.5 Web Development . 13
2.5.1 HTTP and Network Communication 13
2.5.2 HTML, CSS and JS . 14
2.5.3 Web Frameworks . 14
2.5.4 CSS Frameworks . 15
2.5.5 Server-Side Rendering . 15
2.5.6 REST API . 15

2.6 Programming Paradigms . 15
2.6.1 Imperative Programming 16
2.6.2 Declarative Programming 16
2.6.3 Object-Oriented Programming 16
2.6.4 Functional Programming 16
2.6.5 Multi-paradigm Programming 16

2.7 Database Management System 16
2.7.1 Relational Databases . 17
2.7.2 SQL . 17
2.7.3 Database Normalization 17
2.7.4 Seeding . 17
2.7.5 Schema Migrations . 18

2.8 Security . 18
2.8.1 Cryptography . 18
2.8.2 Authentication . 18
2.8.3 Common Vulnerabilities 18

2.9 Virtualization . 19
2.10 Artificial Intelligence . 19

3 Methods 21
3.1 Team and Project . 21

3.1.1 Project Methodology . 21
3.1.2 Jira . 21
3.1.3 Confluence . 21
3.1.4 Discord . 22

3.2 Design and Prototype . 22
3.2.1 Models and Diagrams . 22
3.2.2 Figma . 22

3.3 Environment and Development 22
3.3.1 Git . 22
3.3.2 GitHub . 23
3.3.3 Code Editor . 23
3.3.4 SSH . 23

vi CONTENTS

3.3.5 WSL . 23
3.3.6 Docker . 24
3.3.7 Adminer . 24
3.3.8 Secret Management . 24

3.4 Solutions . 24
3.4.1 Go . 24
3.4.2 Echo . 24
3.4.3 Air . 24
3.4.4 Templ . 25
3.4.5 HTMX . 25
3.4.6 JavaScript . 25
3.4.7 Tailwind CSS . 25
3.4.8 GNU Make . 25
3.4.9 Shell Scripts . 25
3.4.10 PostgreSQL . 25
3.4.11 MinIO . 26
3.4.12 Caddy . 26
3.4.13 AI . 26

3.5 Quality Assurance . 26
3.5.1 Google Lighthouse . 26
3.5.2 Code Reviews . 27
3.5.3 Sonarlint . 27
3.5.4 Unit Tests . 27
3.5.5 Integration Tests . 27
3.5.6 End-to-end Tests . 27
3.5.7 Usability Testing . 28

4 Results 29
4.1 Administrative Process . 29

4.1.1 Meetings . 29
4.1.2 Project Management . 30
4.1.3 Time Management . 30
4.1.4 CI/CD . 30

4.2 Features . 31
4.2.1 Account Creation . 31
4.2.2 Usernames . 31
4.2.3 Navigation Menu . 31
4.2.4 Play Quizzes . 34
4.2.5 Point System . 39
4.2.6 Guest Users . 40
4.2.7 Public Leaderboard . 40
4.2.8 Completed Quizzes . 41
4.2.9 Profile . 41
4.2.10 Manage Labels . 41
4.2.11 Manage Quizzes . 41
4.2.12 Other Admin Features . 44
4.2.13 Interaction Feedback . 48
4.2.14 Error Handling . 48

CONTENTS vii

4.3 Engineering Results . 49
4.3.1 Architecture . 49
4.3.2 Database . 57
4.3.3 Domain Model . 59
4.3.4 Prototyping . 60
4.3.5 User Interface . 62
4.3.6 HTTP Routes . 63
4.3.7 Object Store . 63
4.3.8 Security Measures . 63

4.4 Theoretical Results . 64
4.4.1 Gamification . 64

4.5 Quality Assurance . 64
4.5.1 Documentation . 64
4.5.2 Code Quality . 64
4.5.3 Unit Testing . 65
4.5.4 Integration Testing . 66
4.5.5 End-to-end Testing . 68
4.5.6 Usability Testing . 69

5 Discussion 71
5.1 Theoretical Discussion . 71

5.1.1 Technology . 71
5.1.2 Development Process . 72
5.1.3 Gamification . 72
5.1.4 Anti-cheating Measures 73
5.1.5 Leaderboard . 73
5.1.6 Design . 74
5.1.7 Security Measures . 74

5.2 Engineering Discussion . 75
5.2.1 Inline Frame . 75
5.2.2 Usernames . 75
5.2.3 Quiz Creation . 76
5.2.4 Play Quiz . 77
5.2.5 Guest Mode . 77
5.2.6 Point System . 78
5.2.7 Limitations of HTMX . 80
5.2.8 Code Quality . 81

5.3 Reflection . 81
5.4 Future Work . 81

5.4.1 Gamification . 81
5.4.2 Notifications . 82
5.4.3 User Authentication and Verification 82
5.4.4 Exclusive Leaderboards 82
5.4.5 Bucket . 83

6 Conclusions 85

References 87

viii CONTENTS

Appendices: 97

A GitHub repository 98

B Diagrams 99

C User Stories 102

LIST OF FIGURES

1.3.1 Percentage of the Norwegian population that uses the medium on
an average day [6]. 2

2.1.1 A division-based leaderboard in Duolingo 4
2.1.2 A Bitmoji avatar in Snapchat . 4
2.4.1 The test pyramid. Source: Test Pyramid by Martin Fowler. . . . 12
2.4.2 The test trophy. Source: The Testing Trophy and Testing Classi-

fications by Kent C. Dodds. 13

3.1.1 Scrum framework by Dr Ian Mitchell. Published under CC0 1.0 . 21

4.1.1 Successful runs of unit and integration test jobs on GitHub actions 31
4.2.1 The navigation menu on a larger screen. 32
4.2.2 The closed navigation menu on a smaller screen. 32
4.2.3 The opened navigation menu on a smaller screen. 33
4.2.4 The admin navigation menu on desktop. 33
4.2.5 The admin navigation menu on mobile. 34
4.2.6 A quiz card for ”Påske Quiz!” 35
4.2.7 A quiz card for ”Påske Quiz!” when the ”play” button is hovered. 36
4.2.8 An answered question that was correct, where 100% of users chose

the first alternative. 37
4.2.9 The result of the quiz, points-wise. Three screenshots at different

times, side-by-side. The circle is filled with a wave animation,
gradually going from the bottom to halfway up, since the player
got half of the possible points. 37

4.2.10 The quiz summary page, showing the results of the quiz. 38
4.2.11 The list of articles that the questions were based on. 38
4.2.12 Final iteration of the point system. 39
4.2.13 The public leaderboard, with six users opted-in for competition. 40
4.2.14 Edit page for labels. 41
4.2.15 The page for editing a quiz. Top part (1/2). 42
4.2.16 The page for editing a quiz. Bottom part (2/2). 43
4.2.17 The modal window for editing a question. 44
4.2.18 The username management page. The adjective table (left) and

noun table (right) displays all combinations for usernames. . . . 45
4.2.19 Searching for a word applies to both tables. The tables display

any words that contain the searched text. 45

ix

https://martinfowler.com/bliki/TestPyramid.html
https://kentcdodds.com/blog/the-testing-trophy-and-testing-classifications
https://kentcdodds.com/blog/the-testing-trophy-and-testing-classifications
https://creativecommons.org/publicdomain/zero/1.0/deed.en

x LIST OF FIGURES

4.2.20 Clicking on the row displays an input for editing the word and a
button to delete it. 46

4.2.21 When a word is changed or deleted, an undo button will show up.
The change is not saved immediately. 46

4.2.22 A word that is marked for deletion. The change is not saved
immediately. 47

4.2.23 To save the changes, press the ”Lagre” button. To reset all changes,
press the ”Nullstill” button. 47

4.2.24 Below each table, there are buttons to change the page to see a
different selection of words. 47

4.2.25 To add a new word to either list, write it in the input field above
the table and click on the (+) button. 48

4.2.26 Error page displayed when a non-admin user tries accessing the
admin dashboard. 49

4.3.1 High level architecture overview. 50
4.3.2 Database schema. 58
4.3.3 Domain model from the perspective of a Nyhetsjeger user. 60
4.3.4 Domain model from the perspective of an administrator. 60
4.3.5 Early wireframes for the application. 61
4.3.6 Early wireframes for the dashboard. 61
4.3.7 High-fidelity designs for parts of the application. 62
4.5.1 A SonarLint rule shown in Visual Studio Code. 65
4.5.2 Bruno test results, from Bruno CLI 68
4.5.3 Bruno test suite . 69

5.1.1 ”quiz2” is active from some time in January, but it ends in February. 74
5.2.1 Second iteration of the point system. The range of points rewarded

is limited to three constants. 78
5.2.2 Third iteration of the point system. The value decrease linearly

until it reaches the minimum (20% of the maximum points) at the
question’s time limit. 79

B.0.1 Use case diagram of the Nyhetsjeger portal. 99
B.0.2 Use case diagram of the player. 100
B.0.3 Use case diagram of the administration. 101

LIST OF TABLES

4.3.1 ”user_question_points” SQL view. The last column is ”points_awarded”. 59
4.3.2 ”user_quizzes” SQL view. The last column is ”answered_within_ac-

tive_time”. 59

xi

LIST OF CODE

3.1 Caddy example config for a reverse proxy 26

4.1 .env file . 53
4.2 Docker file . 54
4.3 Docker Compose file . 57
4.4 Setup and tear down functions for the base integration test suite. 67
4.5 Setup and tear down functions for integration tests. 67
4.6 Users module integration test suite setup. 67

5.1 Example of how ”hx-target-error” can be set up in a button. . . . 80
5.2 Example of setting the response header in Go’s Echo framework . 80

xii

GLOSSARY

architecture The internal structure of an application and how it is modularized.
6, 7, 22, 49

bug An unintended error in the code that causes it to behave unexpectedly or
not as intended. 10, 80

cache A temporary storage for storing frequently accessed data, reducing the
time needed to retrieve it from its original source. 15

client A device or application that requests and receives services or resources
from a server. 13–15, 25, 68

code smell A characteristic of code that can indicate a problem. Violation of
standard coding practices. Not necessarily a bug, but can lead to one. 9, 10

compilation Code compilation is the process of turning human-written code into
code that is executable by the computer. 24, 30

CRUD operation Create, read, update, delete. The four essential operations
for data persistence. 17

framework A set of tools that provides a foundation for application development.
It offers reusable code, libraries, and conventions to streamline development
processes. 14, 15, 25

frontend The visual part of the product. The things the user sees and interacts
with. 14, 63

server A program or device that provides services or resources to clients over a
network. 8, 13–15, 26, 27, 68

standard library A library available by default in a programming language. 63

URL Short for Uniform Resource Locator. It is an address that references a
resource on the Web. 41, 63, 70, 71, 76

UUID Short for Universally Unique Identifier. It consists of 128 bits. 57, 63

xiii

ACRONYMS

AI Artificial Intelligence. 1, 19, 29, 72, 75, 76

API Application Programming Interface. 7, 15, 24–27, 29, 40, 49, 52, 63, 68, 72,
80, 82

CI/CD Continuous integration / Continuous delivery. 9, 10, 23, 30, 53

CLI Command-line interface. x, 27, 53, 68

CSR Client-side Rendering. 15

CSS Cascading Style Sheets. 14, 15, 25, 53, 54, 63, 71

CSV Comma-seperated values. 75

CVCS Centralized Version Control System. 8

DB Database. 1

DBMS Database Management System. 16, 18, 25

DTO Data Transfer Object. 7

DVCS Distributed Version Control System. 7, 8

EU European Union. 6

GUI Graphical User Interface. 27

HTML HyperText Markup Language. 14, 15, 25, 26, 49, 62, 63, 68, 80

HTMX Hypertext markup extensions. 25, 63, 71, 80, 81

HTTP Hypertext Transfer Protocol. 13, 14, 24, 25, 48–50, 63, 68, 75, 80

HTTPS Hypertext Transfer Protocol Secure. 14, 26, 50, 63

IDE Integrated Development Environment. 9, 23

JS JavaScript. 14, 15, 25, 52, 68, 77, 80, 81

xiv

JSON JavaScript Object Notation. 29, 68

LLM Large Language Model. 19, 26

LSP Language Server Protocol. 23

MVC Model-View-Controller. 7, 49

NTNU Norwegian University of Science and Technology. 21, 23, 85

OOP Object-oriented programming. 16

PR Pull Request. 23, 27

REST Representational State Transfer. 11, 15

SDK Software Development Kit. 63, 72

SDLC Software Development Life Cycle. 9, 10

SMP Sunnmøreposten. 1, 29–31, 41, 70, 72–77, 81, 82, 85

SQL Structured Query Language. 17, 18

SSB Statistisk sentralbyrå. 2

SSL Secure Sockets Layer. 14

SSR Server-side Rendering. 15

TCP/IP Transmission Control Protocol/Internet Protocol. 13

TLS Transport Layer Security. 14, 50

UI User Interface. 5, 7

UML Unified Modeling Language. 22

VSCode Visual Studio Code. 23

W3C World Wide Web Consortium. 6

WCAG Web Content Accessibility Guidelines. 6, 62, 74

WSL Windows Subsystem for Linux. 23

CHAPTER

ONE

INTRODUCTION

1.1 Motivation
We found the project interesting, as it provided a challenge regarding Artificial
Intelligence (AI), Databases, graphic design and user experience. An additional
incentive for choosing this project was the liberty to select technologies of our
choice, and the loose, open-ended project requirements, giving the team room for
creativity.

1.2 Project description
The project delivers a Web based quiz system. It includes a quiz side for the
users, where they can play quizzes and compete in leaderboards. For the quiz
administrators, there is a dashboard designed to optimize quiz management. It
features an intuitive user interface and suggests questions utilizing AI, streamlining
the quiz creation process. Administrators can view the leaderboards and get user
contact information, in order to reward the top players. Additionally, the system
can be integrated into other Web based solutions.

1.3 Stakeholders
Sunnmøreposten is a media house founded in 1882 by Olaf Sandvig and Hans
Tybring von Zernichow [1]. In 1997, the online newspaper ”smp.no” was started.
Today, Sunnmøreposten hosts podcasts, games and news through their website,
along with selling physical and digital newspapers. Sunnmøreposten is the largest
media house in Møre og Romsdal with 73 400 unique daily users [2].

1.3.1 History of Digital News
Mass media is a term describing media with widespread exposure, reaching the
vast public [3]. The term has evolved over time, capturing the invention and rise of
technologies. Initially it captured printed media, but throughout the 20th century
technologies such as radio, television and the Internet were included.

1

2 CHAPTER 1. INTRODUCTION

In 1980, The Colombus Dispatch was the first to publish an online version of
their newspaper [4]. Since then, many newspapers have followed suit. In Norway,
the first three major newspapers to go digital was Panorama, Brønnøysunds Avis,
and Dagbladet in March of 1995 [5].

As the world becomes digitized, consumers turn to digital news media [6].
Statistics from Statistisk sentralbyrå show this trend among the Norwegian popu-
lation in recent years, as illustrated in figure 1.3.1.

2016 2017 2018 2019 2020 2021 2022
0

10

20

30

40

50

60

70

80

90

100

Year

Pe
rc
en
ta
ge

of
po

pu
la
tio

n Paper newspaper
Online newspaper

Figure 1.3.1: Percentage of the Norwegian population that uses the medium on
an average day [6].

CHAPTER

TWO

THEORY

2.1 Games
With digital newspapers it is possible to have other games than in traditional
newspapers. If a game becomes popular, it can drive traffic to their website and
attract new readers [7]. An example of this is the viral game Wordle.

Wordle was developed by Josh Wardle and became open to the public in Oc-
tober 2021 [8]. It was then bought by The New York Times in January 2022 and
became available for everyone to play on their website, free and without needing
to sign in. In between this period, the game had about 300 000 daily users [9].
After the acquisition, that number grew to the millions.

The New York Times also offers a variety of other games that poses new
challenges daily. By using this formula of presenting daily challenges, readers can
include these games as part of their daily routine and it has a habit-forming effect
[10].

There are also games from traditional newspapers that can be used in digital
newspapers. One such game is the quiz. According to the Oxford English Dictio-
nary, a quiz can be defined as ”a series of questions asked of competing individuals
or teams, and often divided into rounds” [11]. With digital media, it is possible
to apply more gamification techniques than in traditional newspapers.

2.1.1 Gamification
Gamification is the act of adding game elements to non-game contexts, with the
purpose of enhancing the experience [12]. These enhancements should make an
activity more fun to do, and encourage certain behaviours.

One common system in games is the point system [13]. There exist various
types of point systems that are used for different scenarios based on the context of
the scenario. A few examples would be: reputation, experience, and redeemable
points. The points are rewarded based on their context and can give a sense of
progression, reward, or challenge to earn the highest amount of points.

Badges are a reward for completing non-trivial challenges [14]. Each badge
is rewarded after finishing a specific non-trivial amount of work or special effort.
Badges can be seen as prestigious to receive, therefore they act as incentives.

3

4 CHAPTER 2. THEORY

Leaderboards rank players according to a score. The way the score is calculated
depends on the system used [15]. It can measure the performance of players and
create a competitive spirit of wanting to beat the ones on top or maintaining a top
score. While it seems leaderboards increase the competitiveness of the top players,
they may be a demotivator for players on the low-end of the leaderboards.

Figure 2.1.1: A division-based leaderboard in Duolingo

Avatars are the personification of the player in the digital space [16]. These
can range from simple icons to fully animated models. Since avatars are used to
convey the players identity, allowing for customization and unlocks may incentivize
players to play until they unlock a certain customization.

Figure 2.1.2: A Bitmoji avatar in Snapchat

Streaks are incentives where a player gets rewards for doing an action repet-
itively [17]. This may be daily log-in rewards, or getting a bonus for answering
several questions correct in a row, like in the online game Kahoot [18]. Streaks
may be used to create habits by making a player log in every day, or else they will
lose out on rewards with significant value. It can also be used to reward answering

CHAPTER 2. THEORY 5

questions accurately instead of just quickly, in cases where haste affects the score.
Implementing streaks in the future market may be tough, as new rules and regu-
lations come into place. For example, China banned certain mechanics that could
be potentially predatory in December 2023, such as daily log-in rewards [19].

2.2 Design and User Experience
There are many concepts that are involved in graphic design such as color theory,
composition, hierarchy, balance, scale, and contrast [20].

In the book The Design of Everyday Things, Don Norman discusses several
design principles that are important in general, but which can also be applied
to the design of digital products [21]. His six principles are visibility, feedback,
constraints, mapping, consistency, and affordance.

When it comes to designing User Interfaces for the Web, Jakob Nielsen’s ten
heuristics are well-known and a good rule of thumb [22]. They are:

1. Visibility of System Status

2. Match Between the System and the Real World

3. User Control and Freedom

4. Consistency and Standards

5. Error Prevention

6. Recognition Rather than Recall

7. Flexibility and Efficiency of Use

8. Aesthetic and Minimalist Design

9. Help Users Recognize, Diagnose, and Recover from Errors

10. Help and Documentation

2.2.1 Wireframes

Wireframes are simple sketches of an application that focuses on content layout
and user experience. ”The wireframe usually lacks typographic style, color, or
graphics, since the main focus lies in functionality, behavior, and priority of con-
tent” [23].

They are useful for designers to showcase how the User Interface will look and
function to product owners, users, and other stakeholders, before the application
is made.

6 CHAPTER 2. THEORY

2.2.2 Accessibility
It is always important to design applications so that they are accessible to everyone
regardless of disabilities and other factors, but especially if it has a large and
diverse user base.

It is estimated that up to 1 in 12 men and 1 in 200 women have congenital
red–green color blindness [24]. The choice of colors is therefore important to
consider, so that the application functions the same regardless of color blindness.
In addition to using color to impart information, it is possible to use symbols to
convey the same meaning.

”As of 2015, there were 940 million people with some degree of vision loss. 246
million had low vision and 39 million were blind” [25]. A significant percentage of
the population has some form of visual impairment. Using a color scheme with high
contrast and bright colors can make it easier to see the details of the application.
Larger text size and easily-readable fonts are also important. Other features, such
as ARIA labels [26], can help assistive technologies like screen readers by adding
extra information to the webpage.

The webpage elements, such as buttons and links, must be easy to click and
interact with for those with mobility issues.

Animations should not be excessive for those with vestibular motion disorders.
Some devices have accessibility features for those who prefer reduced motion, but
it is also up to the website to implement it [27].

2.2.3 WCAG Standard
Web Content Accessibility Guidelines (WCAG) is a set of guidelines created by
W3C [28]. Its purpose is to make Web content more accessible. Norway follows the
EU’s Web Accessiblity directive, which requires websites and mobile applications
of public sectors to conform to WCAG 2.1 Level AA.

WCAG 2.1 contains three levels; A with 30 success criteria, AA with 20 success
criteria, and AAA with 28 success criteria [29]. According to Tilsynet for universell
utforming av ikt, Norway’s public sector has to conform to 48 requirements and
the private sector to 35 [30].

These requirements include, amongst others; must have alternative text for
non-text content, the option to display content in either portrait or landscape
mode, and titles and headings must be descriptive of its content [30].

2.3 Software Architecture

2.3.1 Monolith
Monolith is a type of software project architecture where all parts of the code
is run together, as opposed to a microservice architecture, where every service is
run separately [31]. Both approaches have pros and cons, but for this projects a
monolith fits better.

While monoliths can be harder to update as the project grows because of the
interlinked code, a small code change might lead to a large effort to refactor the
code base, for smaller projects where the scope is known, and the boundaries for

CHAPTER 2. THEORY 7

what is needed is understood, monoliths tend to work better [31]. Microservices
can be a burden to keep up with the lack of larger infrastructure needed to support
them.

2.3.2 Model-View-Controller
Model-View-Controller (MVC) is a software architecture pattern in which the
application is divided into three layers (or components), namely the model, the
view and the controller [32]. The layers are isolated and designed to fulfill their
responsibilities.

The model layer is responsible to implement the business logic of the appli-
cation [32]. It defines the application’s data, handles the processing of data, and
sets the business rules. It can also be responsible for the persistence of data, for
example by communicating with a database. This layer is not concerned about the
presentation of application data to the user [32]. It does not implement any inter-
actions with them. Instead it provides an API for other application components,
allowing for data retrieval and manipulation.

The view layer is responsible for the presentation of model data and all user
interactions [32]. It implements all UI logic. This layer does not communicate
directly with the model. Instead, it directs all user input to the controller for
processing. It may be worth mentioning that the view can perform some initial
input validation.

The controller brings the two previous layers together [32]. It is responsible for
processing user input, it interacts with the model, and determines how to respond
to user requests. All views presented to the user are provided by the controller,
while being updated with data coming from the model.

To further decouple the model and view layers, a Data Transfer Object (DTO)
can be used [33]. It is essentially an object carrying data [34] [33]. It ”packs”
parameters or return values, allowing to reduce number of calls or values returned.

By using DTOs, highly specialized views can be created without impacting the
underlying models [33]. For instance, in a quiz application; a special DTO called
”UserAnswer” can hold a ”Question” object as well as ”ChosenAlternative.” This
way, a feedback view can get all the data required in a single data structure.

2.4 Software Development

2.4.1 Version Control
”Version control is the practice of tracking and managing changes to software
code” [35].

Version control is paramount for development, as it keeps track of changes
in source files. It allows developers to view and revert to previous versions of
the project. This is also beneficial when multiple persons contribute to the same
project on different machines, to keep the files synchronized [36].

A Distributed Version Control System (DVCS) is a type of version control
in which the source code and history is mirrored on each users computer. The
approach is similar to a peer-to-peer network [37].

8 CHAPTER 2. THEORY

One such system is Git, which is open-sourced [38]. It was originally created
by Linus Torvalds in 2005, because none of the existing solutions met his needs.
Git is now the most popular version control system.

When introducing changes, Git requires a commit message. These messages
can be standardized using a specification such as Conventional Commits [39]. It
aims to standardize commit messages to be human and machine readable. This
allows for easy human reviews and enables automated tools to generate change
logs and apply semantic version tags for software releases. Following this speci-
fication, commit messages should start with standardised keywords like ”fix:”, or
”refactor:”.

A Centralized Version Control System (CVCS) keeps the source code and version
history on a master server. Each user will need to commit their changes to this
central repository. The main difference between a CVCS and a DVCS is how they
approach storing the repository. CVCS goes for a similar approach to client-server,
unlike DVCS which is similar to peer-to-peer [37].

2.4.2 Agile
Agile software development are methods that follow certain principles in the 2001
Manifesto for Agile Software Development that popularized agile software devel-
opment [40]. The 12 principles can be summarised as follows [40]:

1. Customer satisfaction by early and continuous delivery of valuable software.

2. Welcome changing requirements, even in late development.

3. Deliver working software frequently (weeks rather than months).

4. Close, daily cooperation between business people and developers.

5. Projects are built around motivated individuals, who should be trusted.

6. Face-to-face conversation is the best form of communication (co-location).

7. Working software is the primary measure of progress.

8. Sustainable development, able to maintain a constant pace.

9. Continuous attention to technical excellence and good design.

10. Simplicity—the art of maximizing the amount of work not done—is essential.

11. Best architectures, requirements, and designs emerge from self-organizing
teams.

12. Regularly, the team reflects on how to become more effective, and adjusts
accordingly.

From these principles, agile frameworks such as Scrum and Kanban was devel-
oped to assist developers in their workflow [40].

CHAPTER 2. THEORY 9

2.4.3 DevOps
DevOps is the concept of bringing both development and operations together into
the same team [41]. Traditionally, separate teams would manage each area, one
team would be responsible for both automating building, testing and the automatic
provisioning of the infrastructure needed to run the product.

Another way to say that, is ”Continuous Integration” and ”Continuous Deliv-
ery”, or shortened to CI/CD [41]:

• Continuous Integration is the practise of frequently merging code changes
from developers into a central repository. As changes are merged, automated
builds and tests are run to detect potential issues early in the development
cycle.

• Continuous Delivery is the automated process of delivering software changes
to production-like environments (such as testing). This means code changes
that pass CI testing are automatically packaged and prepared for production
deployment.

Software code quality refers to the code being among other factors maintain-
able, reliable, clear, secure and fit for purpose [42]. Higher quality code is easier
to work with, build upon, diagnose issues and debug.

There are many ways to improve code quality: introducing processes into
the Software Development Life Cycle (SDLC), use of automated tools, and being
mindful of the best practices.

2.4.4 Linters and Formatters
A simple way to improve code quality is to use a linter; an automated tool that
often comes as an IDE plugin [43]. Linters are designed to point out code smells,
common issues and vulnerabilities. They often provide the developer with expla-
nation as to why something is a code smell, the severity level and they may even
suggest solutions.

Code style is personal and can be a debatable topic [44]. Consistent code
style increases the overall code quality. It makes the code more readable and
maintainable. Style can be enforced by an automated formatter tool. It styles the
source code automatically, according to predefined standards and/or preferences.

2.4.5 Cohesion and Coupling
Cohesion and coupling are two terms often used in software design. These are
important concepts to keep in mind when aiming to develop high quality software.

Cohesion refers to the level to which the components inside a class or module
belong together [45]. For instance: in a Web shop application, a module with
functions for product management, such as ”setPrice” or ”setName”, should not
implement functions for printing product information to the user. Such module
would have low degree of cohesion, because it would have more responsibilities
than managing the products.

10 CHAPTER 2. THEORY

Generally, well-designed software will have high degree of cohesion [45]. This
means the code would be divided into modules/classes with well-defined respon-
sibilities and they would stick to said responsibilities. This makes the code easier
to understand and maintain.

Coupling on the other hand refers to the degree to which different modules depend
on each other, and how much they ”know” about each other’s implementation [45].
In practice, it has a significant impact when introducing changes. Modules with
a high degree of coupling will require changes to be made in all modules involved.
By contrast, loosely coupled modules make it possible to change the internals of
a module without the need to modify the modules depending on it.

Ideally, developers strive for low or loose coupling in their modules. This
enhances the code quality by significantly increasing code maintainability.

2.4.6 Refactoring
Refactoring is the practice of changing source code without modifying external
behaviour of the module [46]. It can involve restructuring code, renaming variables
and functions or methods. In many cases, refactoring can resolve code smell [47].
Refactoring often results in simplified code, reduced duplicate code, and use of
best practices.

2.4.7 Code Reviews
Code review is a process in which software developers review each others work
[48]. These reviews can be incorporated into the SDLC, becoming a part of the
day to day work. Code reviews can decrease the chance of bugs making it into
production, thus enhance security and additionally improve overall code quality.
It is especially valuable if developers review code in the area of their expertise.
Additionally, such practice facilitates for easy sharing of knowledge.

2.4.8 Documentation
Documentation of code is an essential part of development. It allows for maintain-
ability and lets other developers understand what pieces of code do, and how it
can be used without needing to analyze the code itself. Documentation syntax and
standardization is dependent on the programming language. Inline documentation
can be used to explain the code in more details, which is helpful for understanding
complex parts of a function.

2.4.9 Software Testing
Software testing is a term used to described various processes used to evaluate the
software product’s fitness for purpose, robustness, and performance [49]. Many
testing strategies can be automated, thereby incorporated into the SDLC via
CI/CD. Testing can help improve the software and prevent bugs from making
it into released versions. It can also alert about regressions in the code, mean-
ing changes won’t break previously working code. For example, by changing the
output of a function to something unexpected.

CHAPTER 2. THEORY 11

There are many strategies for software testing. The strategies especially rele-
vant for this thesis are discussed further in this section.

Unit Testing is the process of testing units of code, which are the smallest func-
tional pieces of the program [50]. Unit testing allows the developers to test parts
of the code in isolation, pinpointing locations of problems.

Unit tests use different strategies to evaluate different test cases. Examples
are logic checks, boundary checks, or error handling [50].

Further, unit tests can be divided into positive and negative tests. Positive test
cases are cases where the tester expects a unit to succeed. Conversely, negative test
cases are cases where the tester expects the unit to fail, by for instance returning
or throwing an error or exception.

Unit tests must ideally be fast [51]. They should not send requests to external
services, communicate with the database, or interact with the file system. These
operations simply take too much time and they test more than just the unit.
However, it is still possible to unit test code that depends on these operations, in
such cases test doubles (mocks/stubs) may be used. Test doubles ”pretend” to be
the external dependencies by acting as the real things. They produce expected
outputs without actually using the network, file system, or other time consuming
operations.

Integration testing is used to verify that different components of the software
product work together as expected [49]. Such testing can evaluate whether bigger
parts of the product, for example the main REST API service and the database,
cooperate as expected.

Functional testing aims to evaluate functionality of a software product based on
the functional requirements [52]. It is usually done by providing the program with
inputs reflecting different use scenarios, and comparing outputs to expected data
[49]. This type of testing is often refereed to as ”black-box testing”, implying that
the implementation details are not relevant [52].

Usability testing, is often refereed to as user testing. Its purpose is to evaluate the
user experience [53]. It can identify flaws in the design, but additionally it can
lead to ideas for improvement or new features.

The process of usability testing involves two parties: the test user, called the
participant, and the test facilitator [53]. The facilitator provides the participant
with tasks to perform on a wireframe or the application. The facilitator will then
observe the participant, noting anything they get stuck on, or if they provide feed-
back. By nature, usability tests cannot be automated.

Exploratory testing is another form of manual testing. In this testing strategy
the tester is free to try things out and attempt to break things in the application
[51] [54]. They are encouraged to test different scenarios, and find problems that
slipped through the existing automated tests.

12 CHAPTER 2. THEORY

2.4.10 Conceptual Frameworks for Software Testing

There are ideas and metaphors around the way programmers structure their test
suites and which types of tests are prioritized. These can act as guidelines for how
much effort should go into the different testing strategies.

The test pyramid is a concept most developers are familiar with. The idea
is that unit tests are at the bottom and form the base of the pyramid, integra-
tion/service tests are in the middle part, and end-to-end tests or manual tests are
the tip [51]. The size of the pyramid’s chunk in a given group reflects the amount
of tests/efforts dedicated to the given test group. The placement in the pyramid
reflects the test speed as well as the cost of running the tests. The higher the test
is, the slower it is to run and the more expensive it is [55]. Here, cost refers to
the computational resources required, but it can also refer to the actual monetary
cost (for example, the cost associated with manual testing).

Figure 2.4.1: The test pyramid. Source: Test Pyramid by Martin Fowler.

Recently, a new way of thinking has been emerging; the test trophy, also
called the test honeycomb [56]. The idea behind the test trophy is that static
tests (such as the compiler or linting) are included as the base, with the top part
being similarly structured to the test pyramid. However, the part representing the
integration tests is now significantly larger in area, implying more efforts towards
these types of tests.

https://martinfowler.com/bliki/TestPyramid.html

CHAPTER 2. THEORY 13

Figure 2.4.2: The test trophy. Source: The Testing Trophy and Testing Classi-
fications by Kent C. Dodds.

The test trophy suggests the developers should focus more on the integration
testing [56]. The differences between the pyramid and the trophy are speculated to
come from blurry definitions of unit and integration testing. Tim Bray points out
in his article Testing in the Twenties [57], in which he criticises the test trophy, that
unit testing is incredibly important in lower level infrastructure, but ”it’s possible
that some of my findings are less true once you get out of the infrastructure space.”

Many integration tests can be replaced by unit tests using test doubles, thus
making them faster and cheaper to run. However, this is a trade-off. During
mocking, real-world cases are not tested [58] [59]. The tests lose credibility and
reliability, because the mocks can obscure real-world interactions.

2.5 Web Development

2.5.1 HTTP and Network Communication
Hypertext Transfer Protocol (HTTP) is an application-layer protocol for trans-
mitting hypermedia documents [60]. The HTTP protocol is the basis of an data
exchange done on the Web.

Clients and servers communicate with requests from the client and response
from the server [61]. These requests are GET, HEAD, POST, PUT, DELETE,
CONNECT, OPTIONS, TRACE and PATCH [62]. HTTP usually relies on an
Transmission Control Protocol/Internet Protocol (TCP/IP) connection to transfer
information, but any reliable transport protocol will work [63].

Another feature of the HTTP protocol is its response codes [64]. They are
informational completion responses that can tell if the request was successful, if
more information is needed, or there was an error. These codes are organized
in every hundred, starting from 100 up to and including 500, with each iteration
being a class of codes for a specific situation.

A problem with HTTP is regarding its security, as it is by itself only able to

https://kentcdodds.com/blog/the-testing-trophy-and-testing-classifications
https://kentcdodds.com/blog/the-testing-trophy-and-testing-classifications

14 CHAPTER 2. THEORY

send the content in plain-text. Hypertext Transfer Protocol Secure (HTTPS) was
created to solve this issue.

HTTPS was created in 1994 by Netscape as ”HTTP over SSL” [65]. Over
time Secure Sockets Layer (SSL) has turned into what is now Transport Layer
Security (TLS). HTTPS allows for privacy and security by using certification,
authentication and end-to-end encryption to secure the connection between the
server and the client.

2.5.2 HTML, CSS and JS
These three are the pillars of Web development, which regards the frontend of the
Web application. ”HTML is the most basic building block for the Web” [66]. It
allows for structuring HTML elements on the page, such as images, paragraphs,
and buttons. CSS describes the webpage’s appearance, such as font size and back-
ground color. JavaScript (JS) describes its behavior, such as changing background
color when clicking on a button.

HTML documents are usually delivered using HTTP from a webserver or by
e-mail. They can be viewed in Web browsers and graphical e-mail clients, amongst
others [67].

”Each web browser uses a layout engine to render web pages, and support for
CSS functionality is not consistent between them. The adoption of new function-
ality in CSS can be hindered by a lack of support in major browsers” [68].

This means that Web developers need to evaluate how to achieve the desired
results while ensuring an optimal experience for the majority of users.

One specific HTML element is the inline frame (iframe). ”The <iframe>
HTML element represents a nested browsing context, embedding another HTML
page into the current one” [69]. For example, it could be used when it is not
effective or possible to have the content be part of the top HTML page itself.

”99% of websites use JavaScript on the client side for webpage behavior” [70].
JS enable webpages to be completely responsive and dynamic. However, some
users elect to disable JS for various reasons, such as network performance issues,
avoiding ads, and improving privacy. Therefore, Web developers must also con-
sider how a webpage functions without JS.

2.5.3 Web Frameworks
One limitation of vanilla HTML is that it is not a programming language. There-
fore, it’s widely popular within Web development to utilize frameworks that can
dynamically render HTML. Frameworks also make it easier for developers to fo-
cus on application-specific features instead of low-level details, by abstracting the
implementation.

”The use of frameworks enhances code organization, scalability, and maintain-
ability” [71]. Many frameworks promotes code reuse and templating, reducing the
amount of necessary code.

Some of the popular Web frameworks of 2024 are: React, Django, Ruby on
Rails, Spring Boot, and Laravel [71]. Certain frameworks also allow for writing
Web applications with other programming languages entirely, without needing to
write HTML, CSS, or JS.

CHAPTER 2. THEORY 15

2.5.4 CSS Frameworks
CSS out of the box makes it possible to apply styles directly on the HTML element
using the ”style” property, or by applying a class and writing CSS for the class.
However, in a large project this becomes a lot of code to keep up with, and the
lack of organization can also cause accidental code duplication.

CSS frameworks, such as Bootstrap and Tailwind CSS, aid in writing more
efficient and organised code. Some frameworks, such as Bootstrap, are compo-
nent based [72].This means they provide ready-made components such as buttons,
alerts, and navigation bars. Other frameworks, like Tailwind CSS, are utility-first
based [73]. They provide a set of low-level utility classes that can be used to apply
specific styling.

2.5.5 Server-Side Rendering
Server-side Rendering (SSR) means to render HTML on the webserver, as opposed
to Client-side Rendering (CSR) which renders HTML in the browser [74]. SSR
relies less on JS being enabled than CSR in order to display the page. A SSR
webpage can still rely on JS on the client-side for interactivity after the initial
page load.

The most significant benefit of SSR is the page load speed. ”By offloading
some of the rendering tasks to the server, you can reduce the amount of work the
user’s browser needs to do, resulting in faster initial load times and a smoother
user experience” [75].

There are also drawbacks to SSR. A webpage still relies on JS on the client-side
to be interactive. Some frameworks can send the JS to the client only when needed
in order to improve performance [74]. However, these technologies are notoriously
complex to program efficiently.

2.5.6 REST API
REST API, also known as RESTful API or REST, is an architectural style de-
signed for the Web [76]. It contains a set of rules for how network-based ap-
plications can share data [77]. The intention is to decouple the client and the
server.

A benefit is that it is simple and standardized [76]. The developer does not
have to worry about how to format the data or the request. Other benefits is that
it is stateless, has great scalability, and allows for caching.

2.6 Programming Paradigms
Programming paradigms are a collective of high-level principles and models which
programming languages build upon [78]. The highest level of paradigms are imper-
ative programming and declarative programming. These then consist of other pro-
gramming paradigms like object-oriented programming and functional program-
ming. Often programming languages cannot be purely defined in a paradigm and
are then what is called a multi-paradigm programming language [79].

16 CHAPTER 2. THEORY

2.6.1 Imperative Programming
The imperative programming paradigm focuses on describing how to get to a
result by running commands which alter the state of the program [78]. It is
important then to understand that since the computer interprets commands, the
order of these commands matter. An example of imperative programming would
be object-oriented programming.

2.6.2 Declarative Programming
The declarative programming paradigm is informally described as, ”what is to
be computed, but not necessarily how it is to be computed. Equivalently, in
the terminology of Kowalski’s equation: algorithm = logic + control, it involves
stating the logic of an algorithm, but not necessarily the control” [80]. An example
of declarative programming would be SQL.

2.6.3 Object-Oriented Programming
Object-oriented programming (OOP) is an imperative programming paradigm
[78]. In OOP languages, a digital model represents an object in the real world
with properties and behaviors. This model consists of multiple objects in the cho-
sen limited domain to model. Further, the object can be categorized into classes
[81].

In recent years, quite a few OOP languages have started including concepts
from functional programming, often called lambda functions [81], making these
languages multi-paradigm languages.

2.6.4 Functional Programming
Functional programming is a subsection of the declarative programming paradigm
in which the program itself consists of gluing together functions [82]. A program-
ming function works quite similarly to a mathematical function, in which it usually
takes in an input and returns a value. Functional programming works by declaring
what you want by gluing functions together.

2.6.5 Multi-paradigm Programming
Multi-paradigm programming language is a programming language that imple-
ments two or more paradigms [79]. The purpose of a language implementing
features from multiple paradigms is so that the programmer has the ability to
choose the best tool for the job. One paradigm might be more efficient than
another paradigm for specific problems.

2.7 Database Management System
A Database Management System (DBMS) is a system for managing the database,
as well as allow users and applications to interact with the database [83]. It

CHAPTER 2. THEORY 17

includes the database itself, user management, as well as the means to manipulate
the data and the database’s structure.

2.7.1 Relational Databases
A relational database uses tables to organize the data [84] [85]. Tables represent
data entities, which are logical groupings of attributes. This way, related data is
grouped together and the attributes are the table’s columns. Each instance of the
entity type is a row in the table, often referred to as a record.

Relational databases use keys to both uniquely identify rows within a table, and
to express relations between different tables (entity types) [84] [85]. A primary key
is simply a unique entity identifier, which can be either a single property (column)
in a table, or it can be constructed from multiple columns, becoming a composite
key [84]. A foreign key is used to ”link” entities together by referring to a different
entity type from a table. Foreign keys can be used to express one-to-one, one-to-
many and many-to-many relationships between entities.

2.7.2 SQL
SQL is a flexible, generally declarative language that provides all the basic CRUD
operations for data and database manipulation [86] [87]. It can be used to structure
more complex queries. It can combine data from multiple tables (join), select data
conditionally, aggregate it, sort it, and group it. When it comes to the database
structuring, it can be used to define constraints, which increases data integrity
and validity.

SQL can be used to implement parts of the application’s business logic, lever-
aging its flexibility, and efficiency [88]. This way the database system is no longer
just a data storage. This approach can impact the maintainability and testability
of the code, but it is still viable in cases where all data comes from SQL sources
and developers are familiar with SQL.

2.7.3 Database Normalization
Generally, relational databases need to be normalized, in order to reduce data
redundancy and increase data integrity [89]. However, in some specific cases, it
may be beneficial to denormalize the database, in effort to increase performance
[90].

A good example of it is Instagram denormalizing the ”like” counters to reduce
resources needed to retrieve this data [91]. A simple ”select” statement for a single
value is vastly more efficient than a ”select” statement that has to count many
rows. This greatly reduced the load on Instagram’s servers, which was previously
an issue when popular celebrities published new posts.

2.7.4 Seeding
Database seeding is the process of adding dummy or initial data to the database
[92]. It is common to populate the database using SQL scripts in the development
environment, or when initially setting up the application.

18 CHAPTER 2. THEORY

2.7.5 Schema Migrations
Database schema can be migrated from one state to another using change based
migrations [93]. The migration files are SQL scripts containing statements to
create new structures or modify existing ones. The scripts need to be executed in
order, and the initial database state needs to be known.

2.8 Security
Several considerations must be made when developing applications for the Web.
Availability over the Internet opens the application up to possible threats, such
as: potentially leaking sensitive information, malicious actors misleading the end-
users, or system downtime.

There are multiple technologies and techniques that are commonly used to
reduce the risk associated with Web applications.

2.8.1 Cryptography
To protect users’ private data when using our app, cryptography becomes an
important concept. It involves the use of asymmetric encryption algorithms where
a pair of keys, one public and one private, are generated [94]. The public key is
freely distributed, while the private key is kept secret. Messages encrypted with
the public key can only be decrypted with the corresponding private key, ensuring
confidentiality and authenticity.

2.8.2 Authentication
Authentication is a fundamental part of ensuring the security of Web applications
[95]. It verifies the identity of users or systems attempting to access resources or
services. Common authentication mechanisms include passwords, biometrics, and
cryptographic tokens.

In the context of Web applications, authentication often involves verifying user
credentials, such as usernames and passwords, before granting access to protected
resources, such as uploading resources [95].

2.8.3 Common Vulnerabilities
One common vulnerability is SQL injection, which is the process of making an
SQL database execute arbitrary code via unsanitized user input [96]. This can
both return data that it is not supposed to, or even ruin a database by forcing it
to drop tables.

One way to counter SQL injection is by using prepared statements. It is SQL
that is prepared in advance, usually with placeholder values [97]. Later, when the
statement is used, the parameter values is passed to the statement and the SQL
is run against the DBMS.

Another vulnerability is cross-site scripting, also known as XSS [98]. It is the
method of injecting client side scripts into websites and making them run on other
peoples computers. This essentially allows outside actors to force actions on other

CHAPTER 2. THEORY 19

computers. Some ways to prevent XSS include: sanitizing input, encode output
data, and restricting which resources can be loaded [99].

2.9 Virtualization
A virtual machine is a virtualization or emulation of a computer system [100].
It gives virtual versions of the CPU, memory, storage and sometimes the GPU.
Sometimes it does that by simply passing through the physical components to the
virtual machine, or by specifically allocating it a smaller section of the component.

Containerization offers a lighter-weight alternative to virtualization [101]. In-
stead of emulating an entire machine, containers package an application along
with its essential dependencies into a portable, self-contained unit. This container
can then run consistently across different systems and environments.

Key characteristics of containers [101]:

• Operating System Sharing: Containers share the host machine’s operat-
ing system kernel. This makes them lightweight and efficient because they
don’t need to include a full operating system.

• Faster Startup Times: Containers eliminate the overhead of booting an
entire operating system, resulting in significantly faster startup speeds com-
pared to virtual machines.

• Enhanced Portability: The consistent packaging approach of contain-
ers ensures they can easily move between environments (development, test,
production) without compatibility headaches.

2.10 Artificial Intelligence
More and more media outlets are starting to embrace AI as one of the tools at
their disposal [102]. It allows them to summarize articles, generate images, or help
writing articles. The main AI tool used in this project is a Large Language Model
(LLM).

An LLM is a type of neural network, specifically a transformer model [103]. It
processes input data in a sequential manner, capturing contextual dependencies
and patterns within the data. These models are trained on vast amounts of text
data generated by users of the Web and published literary material, enabling
them to generate coherent and contextually relevant responses to given prompts
or queries [103]. A notable example of such a model is the LLM, ChatGPT.

20 CHAPTER 2. THEORY

CHAPTER

THREE

METHODS

3.1 Team and Project

3.1.1 Project Methodology
We decided on following the agile development method, as this is the one we
have received training in, and we saw that it fit the project. This also contributed
greatly to the decision of using a SCRUM-like approach. This entails using sprints,
regular with the stakeholder, 5-minutes-maximum stand-up meetings, sprint re-
views, and sprint retrospectives. A benefit was that NTNU provided Jira and
Confluence, which are tools to assist with agile development.

Figure 3.1.1: Scrum framework by Dr Ian Mitchell. Published under CC0 1.0

3.1.2 Jira
We used Jira as an issue tracker and planner. We used it actively to manage
sprints, track tasks and their progress. Additionally, we logged our work time.

3.1.3 Confluence
We chose to use Confluence as a wiki for the project, effectively using is as a
notebook. We actively used it to collaborate on documentation in real time, such

21

https://creativecommons.org/publicdomain/zero/1.0/deed.en

22 CHAPTER 3. METHODS

as meeting notes or sprint retrospectives. It integrates nicely with Jira.

3.1.4 Discord
We used Discord as a communication platform. It allowed us to easily discuss and
notify each other of important matters. We shared resources for developing, and
discussed meeting times. Since most of the team already had experience with the
tool, it was the best choice.

3.2 Design and Prototype
Before starting to make the application itself, we wanted to plan how it would
look.

3.2.1 Models and Diagrams
”Models and diagrams are representations of a real-world application. Models
provide an abstract view of the system, while different diagrams provide concrete
representations of the system” [104].

The team was provided with project specifications by the product owner. A
way to get an easy overview of the requirements was by using making UML models
and diagrams. We created these using LucidChart, Excalidraw, and drawing on
paper.

Use-case diagrams and user stories were made to display how different types of
users would use the system and the functionality that needed to be implemented
to fulfill these requirements.

We also used diagrams to make simple sketches of the system architecture in
order to plan ahead and compare different solutions. We made a database schema
to view different possible solutions and if the logic seemed sound.

3.2.2 Figma
We decided to use Figma as the wireframing tool for our project. We needed a tool
that had good real-time collaboration and at no cost to us [105]. An additional
benefit was being able to use the same tool later on in the development process
for making high-fidelity designs. The team also had experience with the tool from
previous projects, making the design process quicker.

3.3 Environment and Development

3.3.1 Git
For version control, we used Git. It allowed us to work in parallel, utilizing
branching.

For structuring of the commits themselves and their messages, we used Conven-
tional Commits. Additionally, we frequently used emojis in the commit messages,
to give an instant idea of what kind of changes were committed. Use of emojis

CHAPTER 3. METHODS 23

was made easy and encouraged by a Conventional Commits extension we used for
VSCode.

Example commit messages using Conventional Commits and emojis:
”fix: typo quizes to quizzes”

• ”fix:” signifying the commit is a fix

• ” ” - pencil emoji, together with the ”fix:” prefix indicating ”fix typo”

• and the commit message itself, describing the change

3.3.2 GitHub

We used a remote Git repository on GitHub to manage our source code centrally
and synchronize the changes. We used Pull Requests (PRs) to exercise peer code
reviews, further described in section 3.5.2. Additionally we utilized GitHub actions
to automatically run CI/CD pipelines on specific events.

3.3.3 Code Editor

We primarily used Visual Studio Code as our code editor, as we are familiar with
it and it is highly extendable. By the use of plugins relevant for the technologies
used, it is made into an Integrated Development Environment (IDE). Additionally
it connects directly to WSL, allowing us to work in a Linux environment.

Additionally, one of the team members used Neovim as the code editor of
choice. Pairsed with an Language Server Protocol (LSP) and other extensions,
this terminal based text editor can be as effective as VSCode, while staying less
resource intensive.

3.3.4 SSH

We used SSH to securely connect to and execute commands on the server assigned
to us by NTNU. Both manually, in order to setup and tweak the production
environment, and automatically as part of the CI/CD.

3.3.5 WSL

As we had a variety of operating systems on our workstations (one person with
Arch Linux and three with Windows 11), the Windows users utilized Windows
Subsystem for Linux (WSL) in order to unify our development experience. This
vastly simplified choice of utilities and development of shell scripts, as we only
had to make sure these worked on Linux. Developing in a Linux environment also
meant we would be working in an environment most similar to the application’s
production environment. As an added benefit, WSL integrates seamlessly with
VSCode.

24 CHAPTER 3. METHODS

3.3.6 Docker
In order to simplify the deployment and have a consistent production environment
for our application, we used Docker [106]. We used it to build an image and run
the application as a lightweight container. It was an easy choice to make, since
we had earlier experience with it,

Additionally, we used Docker compose to specify and manage any services
needed for the application or the environment. Docker made it easy to run services
and utilities that otherwise would require installation on the host.

3.3.7 Adminer
We used Adminer to inspect and manipulate the database in the development
environment. We were familiar with the tool from earlier projects and had experi-
ence with troubleshooting the database with it. It is simply added to the Docker
compose file, becoming available in the wanted environment.

3.3.8 Secret Management
To avoid hard-coding secrets and configurations, we used environmental variables.
This way the application could get them dynamically from the environment as
needed. We used a ”.env” file to store the values persistently. This file is excluded
from version control.

3.4 Solutions

3.4.1 Go
As the main programming language for the project, we chose Go. We chose it
specifically for its simplicity, static typing, errors as return values (instead of ex-
ception try/catch) and incredibly fast compilation. It is performant, garbage col-
lected and comes with a rich standard library [107]. A module from the standard
library worth mentioning in this section is ”context”. It provides a ”context.Con-
text” type commonly used in Go APIs to send cancellation signals, create deadlines
and store data as key-value pairs in a request context [108].

3.4.2 Echo
We chose to use Echo [109] as a Web framework for its advanced route matching
and flexibility. It supports centralized HTTP error handling, which we leveraged
to to establish common error formats. Additionally, its API is close to Go standard
library’s HTTP module.

3.4.3 Air
In development we used Air [110] to automatically rebuild and restart the ap-
plication as soon as changes in source files were saved. This allowed us to stay
productive and focus on the programming.

CHAPTER 3. METHODS 25

3.4.4 Templ
We used Templ [111] as the templating language. It is built for Go and allows
for the use of Go concepts in its template files. Templ files are used to generate
Go code, making their APIs work directly in our Go modules. Templ is built
with security in mind, and as a preventive measure against JavaScript injections
it limits the use of variables and expressions in certain HTML attributes [112].

3.4.5 HTMX
We used Hypertext markup extensions (HTMX) [113] (which is a JavaScript li-
brary) to easily send HTTP requests from the browser. We utilized its HTML
element targeting and swapping capabilities to simply and effectively replace parts
of the web page with HTML elements returned by the server. This way we avoid
unnecessary full website reloads.

3.4.6 JavaScript
For this project, JavaScript is used as a scripting language for the Web browser.
We use it to implement client sided interactions. On top of the default JS, we
include some additional libraries. These are SortableJS [114] for simple implemen-
tation of draggable elements, and Odometer [115] to animate number transitions.

3.4.7 Tailwind CSS
For styling we used Tailwind CSS. It is a powerful and flexible CSS framework,
developed with mobile-first in mind, making it perfect for our needs [116]. Addi-
tionally, it makes it easy to create responsive designs. With Tailwind, all styling
information is attached directly to the elements. This simplified making changes
and encouraged us to create reusable components.

3.4.8 GNU Make
We use GNU Make [117] as a utility to simplify execution of commands and shell
scripts frequently used in the development environment. These are specified in
the ”makefile.” It allowed us to specify targets like ”live-reload” or ”build”, whilst
hiding all complexity around the actual commands required to achieve these goals.

3.4.9 Shell Scripts
We use shell scripts to automate tasks and simplify more complex commands,
which are not practical to put in the makefile. Bash is used as the scripting
language in all the shell scripts in the project.

3.4.10 PostgreSQL
We chose PostgreSQL as the DBMS for the application, since we were familiar with
it and knew its capabilities. It is performant, robust and feature rich, making it

26 CHAPTER 3. METHODS

flexible and a good choice for any project [118]. We specify PostgreSQL as one of
the services in the Docker compose.

3.4.11 MinIO
We used MinIO as a storage solutions for images. It is compatible with S3, which
is the most common API for object storage [119]. This way we do not rely on
specific implementation, and the object store service can be easily replaced. We
utilized Docker compose to run this service.

3.4.12 Caddy
In production environment we use Caddy [120] Web server as a reverse proxy. It
sets up HTTPS certificates automatically [120] [121], meaning we do not have to
manage them manually. Additionally its configuration is trivial (see code 3.1),
and it is included as a service in the Docker Compose file.

1 example.com {
2 reverse_proxy: 192.168.0.49
3 }

Code 3.1: Caddy example config for a reverse proxy

3.4.13 AI
GitHub Copilot [122] was used as an ”AI pair programmer”. It was mainly used as
a smart auto-complete, to generate: repetitive code, parts of code documentation
and suggest potential solutions.

ChatGPT API was utilized to generate question suggestions for quizzes. As it is
an LLM [123], it is capable of analyzing provided articles and producing relevant
questions.

3.5 Quality Assurance
Ensuring that a project has a high quality is vital for customer and user satisfac-
tion, as well as maintainability of the project.

3.5.1 Google Lighthouse
The team used Lighthouse to measure performance, accessibility and use of best
practices in our application [124]. This tool is built into the developer tools in
Google Chrome, making it easily accessible and simple to run. We used it actively
to measure performance and make sure the HTML elements used are semantic,
and they provide enough information for technologies such as screen readers.

CHAPTER 3. METHODS 27

3.5.2 Code Reviews
Our team used code review practice in combination with approval process for
PRs onto the development branch. This way all changes and features would be
peer reviewed and quality assured before making it onto our stable development
branch. From there, code would soon be merged into the main branch, making it
into production.

3.5.3 Sonarlint
SonarLint is a linter we used to enforce rules regarding code quality. It helped
us to uphold highly maintainable code by analyzing it and pointing out some
potential problems.

3.5.4 Unit Tests
For unit testing, we used Go’s standard library unit testing module and tooling,
because they come directly with the language. The test are placed in the same
modules as the tested code, this way test functions have access to the tested
module’s private members. The test files are placed beside normal module files,
and the filenames end with ”_test.go”, following Go standards [125].

3.5.5 Integration Tests
In order to test the applications integration with external services, such as the
database we could either use mocks or real services. There are advantages and
disadvantages associated with both approaches, discussed earlier in section 2.4.9.
We decided to avoid using mocks and aim for integration testing most closely
resembling real interactions.

To implement integration tests, we utilized Testcontainers, which is a Go pack-
age [126]. It allows us to manage containerized services in a testing environment.
Tests can separately set up resources needed and clean-up when they are done.
Tests are isolated and repeatable.

In order to further simplify the development of integration tests, we utilize
Testify package for Go. It provides a simplified testing API and makes it easy to
create test suites, with setup and tear down functions [127].

3.5.6 End-to-end Tests
We utilized Bruno [128] for end-to-end API testing. We use Bruno CLI to auto-
matically run the tests without need for a GUI.

This testing approach requires the application and all necessary services to be
running in the test environment, making it relatively slow (in comparison to unit
and integration testing).

We do have shell scripts to simplify the running of these tests. Additionally
we have a separate, simple Go Web server with a few utility endpoints. They are
used by the Bruno client to assign user sessions with different roles.

28 CHAPTER 3. METHODS

3.5.7 Usability Testing
For usability testing we had a manual process where a team member (or members)
would give a task to a potential user. The test facilitator(s) would then observe
the user and note anything of interest, such as: user unintentionally clicking a
button multiple times, user being clearly confused or any user comments.

CHAPTER

FOUR

RESULTS

4.1 Administrative Process
The administrative process describes the results regarding collecting information
during the different phases, how the development group structured itself, and how
we managed our work hours.

4.1.1 Meetings
During the project, the team had regular meetings with the stakeholders every
other week. In these meetings, we discussed the project requirements and our
ideas regarding solutions. Meeting notes were written in Confluence.

Since the project description had no requirements for which technologies to
use, we provided a list of our suggestions and the reasons we wanted to use them.
We also asked if it would be preferable if we used the same technologies as they
already used, but they were happy to let us choose and approved our suggestions.

In the information collection phase, we created user stories (see them in ap-
pendix C) based on the project description and additional clarification given during
the early meetings. Some ideas stayed throughout the project, while other ideas
were scrapped as the requirements changed. Some examples of this are discussed
in section 4.4.1.

We got insight into how we could integrate our solution with their existing
website and mobile application. Some limitations were introduced for security
reasons. We could not be given access to their login API, so users needed different
accounts for playing quizzes than reading articles. That creates a higher barrier
of entry, since it’s one more step to do. It was also a challenge figuring out how
to get protected data to our server. Sunnmøreposten’s articles are not public, as
some of them are behind a paywall. In the end, we did not get access to their API
and we were sent a data dump of articles as JSON files to use for AI generation
of questions.

In the design phase, we presented wireframes for the application, for both the
player and the administrator pages. After we got these approved, we created
high-fidelity designs of the application. Sunnmøreposten was particularly helpful
in this process, as their Head of Digital Development also has a background in
graphic design and was able to give very helpful and constructive feedback.

29

30 CHAPTER 4. RESULTS

During the development phase, we performed usability tests with different
demographic groups at Sunnmøreposten. We tested on users with more and less
technological experience of different ages. This process is further elaborated in
section 4.5.6.

The team also had meetings with the advisor every other week. She helped
the group stay on track and gave us some valuable advice on making a use-case
diagram (see appendix B), database schema (see section 4.3.2), and domain model
(see section 4.3.3.

4.1.2 Project Management

The team used agile methodology, with sprints spanning two weeks each. In each
sprint, we had meetings with the advisor and project stakeholder.

At the beginning of each sprint, we planned ahead which features and issues we
wanted completed and how polished they needed to be. In earlier sprints, the goal
was to create prototypes, and later on the goals were to create finished features.

Sprints and issues were tracked in Jira. We connected our issues to user stories,
and each issue could also have sub-tasks. This was helpful if multiple people would
work on the same task, or if it was a large and complex issue.

Features were made on different branches in GitHub. Once a feature was
functional, a pull request would be opened to merge it into the ”dev” branch.
When each iteration of the application was completed, ”dev” was merged into
”main”, which was then deployed to production.

We held stand-up meetings every day before lunch to keep each other updated
on the tasks that were done.

4.1.3 Time Management

The project requirements and expectations were finished within the given time,
but some wished-for features were not prioritized due to the time constraint.

4.1.4 CI/CD

For Continuous integration / Continuous delivery we used GitHub actions. On
every push or pull request to the ”dev” branch, the ”Run unit tests” and ”Run
integration tests” jobs would run to check if the code compiled, and verified that
all the tests passed. On the ”main” branch, the same tests would run, in addition
to a Docker workflow, that published a new Docker image and then pushed it to
the production machine. It did that by using SSH to tunnel into the production
machine and then ran an update script.

CHAPTER 4. RESULTS 31

Figure 4.1.1: Successful runs of unit and integration test jobs on GitHub actions

4.2 Features
The features of the finished project include all the original project requirements.
Other features have been included based on requests from the stakeholder and our
own suggestions that the stakeholder agreed with.

4.2.1 Account Creation

A user can create an account for playing Nyhetsjeger by authenticating using
a Google account. After logging in for the first time, it is possible to choose a
username and whether the user wants to opt-in to leaderboards. If they opt-in,
their username will be visible on leaderboards and administrators can view their
contact information to distribute prizes.

4.2.2 Usernames

The usernames are comprised of a list of adjectives and nouns, where each possible
combination is a username. With SMP having 73 400 unique daily readers [2], we
figured that 90 000 unique combinations was sufficient in the beginning. This could
be achieved using 300 adjectives and 300 nouns.

While the initial list of usernames was generated by the development team, it
is possible for administrators to modify the usernames in the admin dashboard
page. For further detail regarding username administration, see section 4.2.12.

4.2.3 Navigation Menu

In order to navigate between pages in the application, we use a navigation menu
at the top of the page. The main menu is minimized on smaller screens, and can
be expanded with a toggle button. On larger screens, the whole menu is always
displayed.

32 CHAPTER 4. RESULTS

Figure 4.2.1: The navigation menu on a larger screen.

Figure 4.2.2: The closed navigation menu on a smaller screen.

CHAPTER 4. RESULTS 33

Figure 4.2.3: The opened navigation menu on a smaller screen.

On the admin panel, the menu is on the left side on larger screens, and on the
top on smaller screens.

Figure 4.2.4: The admin navigation menu on desktop.

34 CHAPTER 4. RESULTS

Figure 4.2.5: The admin navigation menu on mobile.

4.2.4 Play Quizzes

A quiz can be played by answering the questions that it contains. Points are
given for correct answers and no points are given for an incorrect answer. The
culmination of points are displayed throughout the quiz. After all the questions
are answered, a summary page is shown to the player.

Each quiz preview is represented as a ”card.” These cards include information
about the quiz, such as title, main image, active end (when the quiz will stop being
active), number of questions, possible earned points, and which leaderboards the
quiz applies to.

CHAPTER 4. RESULTS 35

Figure 4.2.6: A quiz card for ”Påske Quiz!”

When the card is hovered, a gradient shadow is displayed behind the card.
When the ”play” button is hovered or focused, the gradient outline on the card
and the gradient color on the button changes color.

36 CHAPTER 4. RESULTS

Figure 4.2.7: A quiz card for ”Påske Quiz!” when the ”play” button is hovered.

Each quiz contains at least one question, ideally more. A question has a time
limit that counts down to zero. The question can still be answered after the time
limit, but the player will be rewarded less points. The point calculation is dis-
cussed further in section 4.2.5. Each question has two to four answer alternatives.
Multiple alternatives can be correct. A progress bar is displayed, showing which
question the player is currently on, out of the total amount of questions.

After answering the question, the user gets feedback via the alternative but-
tons. A check mark or cross is displayed if it is correct or incorrect. Additionally,
the distribution of user answers are also displayed, so users know if their answer
was popular or not.

CHAPTER 4. RESULTS 37

Figure 4.2.8: An answered question that was correct, where 100% of users chose
the first alternative.

After answering all the questions, the player will then see the summary page,
where the quiz results are displayed. The points earned from the questions are
displayed, out of the total amount that could be earned. The player can see all
the questions and their selected answer, and how many of the points they earned
for it. A check mark is shown if the player’s selected answer was correct, and a
cross if it was incorrect.

Figure 4.2.9: The result of the quiz, points-wise. Three screenshots at different
times, side-by-side. The circle is filled with a wave animation, gradually going
from the bottom to halfway up, since the player got half of the possible points.

38 CHAPTER 4. RESULTS

Figure 4.2.10: The quiz summary page, showing the results of the quiz.

If there were any questions based on articles, an additional page linking to these
external articles is displayed.

Figure 4.2.11: The list of articles that the questions were based on.

CHAPTER 4. RESULTS 39

4.2.5 Point System
Players are rewarded with points for correctly answering questions in quizzes.
These points are used to assess the player’s performance and place them in rank-
ings. Throughout the project we iterated upon the point system and adjusted it
to the stakeholder’s desires. This process is described in more detail in section
5.2.6.

In the final implementation of the point system, the points reward is reduced
linearly with time used to answer a question. There is however a grace period, so
it is still possible to achieve full score if the user answers within that time window.
The reward is reduced until it reaches the minimum number of points at the
question’s time limit. This is illustrated in figure 4.2.12, the question configuration
is pointsmax = 100, timelimit = 30. The timegrace = 3 and pointsmin = 1

5
pointsmax.

All time values are in seconds.

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120

time in seconds

po
in
ts

Figure 4.2.12: Final iteration of the point system.

The sloped part of the line in figure 4.2.12 can be expressed with the function
below, with domain [timegrace, timelimit]. Any answer with t (seconds spent on
answering) less than timegrace or greater than timelimit is rewarded with a constant
number of points equal to pointsmax or pointsmin, respectively.

f(t) =
timegrace · pointsmin − pointsmin · t+ pointsmax · t− pointsmax · timelimit

timegrace − timelimit

The function describes a line intersecting two known points, (timegrace, pointsmax)
and (timelimit, pointsmin). Slope formula m = y2−y1

x2−x1
and a line through point

y − y1 = m(x− x1) were used to derive the final function.

This function for point calculation is implemented as a PostgreSQL function, be-
coming a part of the database schema. The function is ”calculate_points_awarded(
start_time, end_time, time_limit, max_points)”. It takes in the specified param-
eters and returns the number of points awarded, rounded to the nearest integer.

40 CHAPTER 4. RESULTS

This function is used directly in ”SELECT” queries and SQL views. This is ex-
plained in more detail in section 4.3.2.

4.2.6 Guest Users
Users can play a quiz in guest mode, but points do not count towards the rank-
ings. In guest mode, no data is stored in the database. Instead, all intermediate
data needed to provide question feedback and the quiz summary is stored in the
browser’s local storage. The guest quiz uses public API endpoints. These end-
points expect additional data to be included with the requests and can render
views identical to the ones used in the normal mode.

4.2.7 Public Leaderboard
The public leaderboards, as opposed to the admin leaderboards which are dis-
cussed further in section 4.2.12, are available for all users to see. It displays the
top 10 players in a defined time period, plus the current user’s position on the
leaderboard. Only players that are opted-in for competitions will be displayed.
Only quizzes that were played during the active time period are given points.

Each quiz can have multiple ”labels” and each ”label” can contain multiple
quizzes. Examples for such labels are ”January 2024”, ”All Year 2024”, or ”Easter
2024.” These labels are used to display different leaderboards, where only the
quizzes for that label contribute to the ranking.

Figure 4.2.13: The public leaderboard, with six users opted-in for competition.

CHAPTER 4. RESULTS 41

4.2.8 Completed Quizzes
A player can see their completed quizzes on a separate page. The quizzes are
displayed similarly to unplayed quizzes, except the button says ”results” instead
of ”play.” Completed quizzes cannot be replayed, but the user can revisit the
summary page containing their results.

4.2.9 Profile
A player can see their account information on the profile page. Here they can get
a new random username, opt-in or opt-out of competitions, log out, or delete their
account.

4.2.10 Manage Labels
During the discussion with Sunnmøreposten, we landed on the solution to cate-
gorize quizzes by label, which functions as a leaderboard. Admins can manage
labels on a separate page, where they can add and remove labels, and select active
status.

Figure 4.2.14: Edit page for labels.

Once a label is active, it can be assigned to a quiz on the quiz edit page. It
will show up for users as a visible leaderboard.

4.2.11 Manage Quizzes
While not an explicit requirement in the project description, being able to manage
quizzes was an important feature. Quiz administrators needed a page where they
could create, edit, and delete quizzes.

When creating a new quiz, some default information is filled in automatically.
It will have the title ”Quiz: Uke 13”, if it is week 13. Every quiz has the same
default thumbnail image, and the active start date is set from the creation of the
quiz to a week in the future.

Admins can add or remove links to articles. When selecting a thumbnail image,
it can be done either with the URL, file upload, or suggestions from the articles.

When creating a question, an article from the list can be selected. The admin
can choose to generate a question based on the article using ChatGPT, or write it
themselves. After the question is generated with ChatGPT, it can still be edited.
When generating questions, we had to be very specific in the prompt about how
we wanted the response to be formatted, to ensure it could be parsed correctly.

42 CHAPTER 4. RESULTS

Each question has a title, two to four alternatives, an optional image, points,
and a time limit. The administrator has the option to change the points and time
limit from the default to a range of predefined values. This is to ensure a general
consistency between quizzes and take away any decision paralysis. The question
alternatives can be randomly shuffled, to avoid any bias in arrangement. In the
list of questions, the questions can be arranged by dragging to a position and drop
it. This was implemented with the help of the library sortable.js.

Each quiz can be added to one or multiple ”labels”, which provides information
on which leaderboard the quiz counts toward. A quiz is not published by default,
and has to be manually published. It needs at least one question before it can be
published. A published quiz will not show up for users until the active time has
started. Publishing or deleting a quiz opens up a confirmation window first.

Figure 4.2.15: The page for editing a quiz. Top part (1/2).

CHAPTER 4. RESULTS 43

Figure 4.2.16: The page for editing a quiz. Bottom part (2/2).

44 CHAPTER 4. RESULTS

Figure 4.2.17: The modal window for editing a question.

4.2.12 Other Admin Features
Administrators have access to specific leaderboards, where they can view any
”label” (whether active or not), such as ”May 2022”. It shows all users that
are opted-in to competitions. By clicking on the username, they can view that
person’s account information, such as username, e-mail, and scores across different
leaderboards.

Administrators can also manage usernames by adding, editing, or removing
words that can be combined to make a username. Each username is unique and

CHAPTER 4. RESULTS 45

consists of an adjective and a noun. They are displayed in two separate tables,
with a select amount of words at a time. They can be browsed using the arrows
below the table. It is also possible to search for words, which applies to both
tables. Any changes must be saved explicitly and any unsaved changes can be
reset. If a deleted word has also been edited, the undo button will first affect
deletion, then the edit.

Figure 4.2.18: The username management page. The adjective table (left) and
noun table (right) displays all combinations for usernames.

Figure 4.2.19: Searching for a word applies to both tables. The tables display
any words that contain the searched text.

46 CHAPTER 4. RESULTS

Figure 4.2.20: Clicking on the row displays an input for editing the word and a
button to delete it.

Figure 4.2.21: When a word is changed or deleted, an undo button will show
up. The change is not saved immediately.

CHAPTER 4. RESULTS 47

Figure 4.2.22: A word that is marked for deletion. The change is not saved
immediately.

Figure 4.2.23: To save the changes, press the ”Lagre” button. To reset all
changes, press the ”Nullstill” button.

Figure 4.2.24: Below each table, there are buttons to change the page to see a
different selection of words.

48 CHAPTER 4. RESULTS

Figure 4.2.25: To add a new word to either list, write it in the input field above
the table and click on the (+) button.

Users with the ”organization admin” role have the ability to make default
users into ”quiz admin”, which gives them access to administrator features, such
as managing quizzes. This can be done by adding their e-mail address to a list. If
the user already exists, they are immediately made into a quiz admin. If the user
does not yet exist, they will get the role as soon as the account is created using
that e-mail address.

4.2.13 Interaction Feedback
When a user interacts with elements, they get visual feedback that the interaction
has been registered, and whether the action was successful or not. When an
element is hovered or focused via keyboard navigation, a different style is applied.
When an element is interacted with and it sends a request to the server, a loading
indicator is displayed nearby while the response is awaited.

If the request fails on the server, an error message is returned to the client.
If the user re-sends the request and it succeeds, the error message is no longer
displayed.

4.2.14 Error Handling
The Echo framework supports centralized error handling. We handle errors locally
as they may occur. Then we either return own custom errors or the ”echo.HTTPEr-
ror” type, which includes HTTP status code and an error message.

In the centralized error handler, these errors are caught and processed. They
result in proper HTTP responses back to the client. Non-”echo.HTTPError” er-
rors turn into ”500 Internal Server Error” responses and the error itself is logged.
Other errors with status codes above 500 are returned with the actual error mes-
sage hidden from the user. The error message is logged instead, to avoid leaking

CHAPTER 4. RESULTS 49

potentially sensitive information. Errors with codes bellow 500, are returned to
the user with with the status code provided and the error message is included.

The response body is slightly different depending on the requested route. In the
context of API calls, the error response is an HTML ”p” tag with red styling, which
is then displayed on the page somewhere. Routes that are meant to respond with
a full page, respond with an error page instead. The page contains information
about what has happened and a ”back to safety” button.

Figure 4.2.26: Error page displayed when a non-admin user tries accessing the
admin dashboard.

4.3 Engineering Results
This section will feature content from the development, prototype and design
phase that is relevant to the engineering of the final version of the project. The
application language is Norwegian, since the target group speaks Norwegian. See
appendix A for the GitHub repository.

4.3.1 Architecture
The application itself is a monolith following Model-View-Controller architecture.

The controller is implemented in the Echo Web framework for Go. It handles
HTTP requests, interacts with the model layer and renders the views.

The views are HTML templates. They are implemented using Templ, they
essentially use Go plus HTML markup.

The model layer defines the domain models and interacts with the database.
The business logic is implemented in this layer. The database is used as a storage

50 CHAPTER 4. RESULTS

mechanism and partly implements the business logic. More complex SQL queries,
constraints, triggers, functions and views are used for this purpose.

The user interacts with the application via their Web browser. However, the
browser does not talk directly with the application. Caddy Web server acts as a
reverse proxy and is responsible for managing TLS certificates needed for HTTPS.

Figure 4.3.1: High level architecture overview.

4.3.1.1 Project Hierarchy

The project layout follows common patters for open source Go projects (which are
specified in Standard Go Project Layout repository on GitHub [129]), as the Go
development team does not provide guidelines for project structure. Key points to
notice are the entry points to binaries being in the ”cmd” directory and modules
written for this project living in the ”internal” directory.

The application’s entry point is in the ”main.go” inside the ”cmd/server/”.
Inside the ”cmd” directory there are two additional directories, ”db_populator”
and ”test_users”. The former is a Go script for database seeding, and is used in
development and testing environments. The latter is a helper Web server used in
end-to-end testing with Bruno (discussed in section 4.5.5).

Inside the ”internal/” directory, there are multiple sub-modules. Among oth-
ers, connection logic to services such as the database or object store (bucket).
There is a ”models/” directory containing all domain models and business logic.
There is also the ”web_server” which contains a router, HTTP handlers for each
endpoint, and other controller logic. The ”web_server” module also contains the
”views/” sub-module, which contains all templates and user-facing logic.

The following is a simplified file tree of the project. Items ending with a ”/”
are directories with content hidden for clarity and readability.

+—— assets/
+—— bruno/
+—— Caddyfile
+—— cmd
| +—— db_populator/
| +—— server

CHAPTER 4. RESULTS 51

| | +—— main.go
| +—— test_users/
+—— data/
+—— db
| +—— db_integration_test_suite.go
| +—— db_populator/
| +—— migrations/
+—— docker-compose.yaml
+—— Dockerfile
+—— example.env
+—— go.mod
+—— go.sum
+—— internal
| +—— auth/
| +—— bucket/
| +—— config/
| +—— database/
| +—— models
| | +—— ai/
| | +—— articles/
| | +—— labels/
| | +—— questions/
| | +—— quizzes/
| | +—— sessions/
| | +—— users
| | +—— access_control/
| | +—— usernames/
| | +—— user_quiz/
| | +—— user_quiz_summary/
| | +—— user_ranking/
| | +—— user_roles/
| | +—— users.go
| +—— utils/
| +—— web_server
| +—— api.go
| +—— middlewares/
| +—— web
| +—— handlers
| | +—— api/
| | +—— auth_handlers.go
| | +—— dashboard_pages_handlers.go
| | +—— error_handler.go
| | +—— public_pages_handlers.go
| | +—— quiz_pages_handlers.go
| | +—— websocket.go
| +—— router/
| +—— views
| +—— components

52 CHAPTER 4. RESULTS

| | +—— dashboard_components/
| | +—— error_dialog.templ
| | +—— error_text.templ
| | +—— icons/
| | +—— layout_components/
| | +—— loading_indicator.templ
| | +—— profile_components/
| | +—— quiz_components/
| | +—— terms_of_service.templ
| | +—— tooltip_button.templ
| | +—— tooltip.templ
| | +—— user_management/
| +—— pages
| +—— dashboard_pages/
| +—— public_pages/
| +—— quiz_pages/
+—— LICENSE
+—— Makefile
+—— README.md
+—— scripts/
+—— tailwind.config.js

4.3.1.2 Environments and Secrets

The application works mainly in two environments: ”dev” for development and
”prod” for production. The main difference is which Docker services are ran. More
on that in section 4.3.1.4.

There is also a key difference in the way the application itself is ran in the two
environments. In production, the application image is ran in a Docker container.
However in development, the application is ran directly on the host via Air utility.
This way it is recompiled and restarted whenever the source files are changed.

Additionally, in development environment the application exposes aWeb socket
endpoint used to detect whether the application is running. In the ”dev mode”,
all webpages include a simple JS script connecting to the said Web socket. The
script refreshes the webpage when the connection is lost, i.e. the server restarts
after a recompilation. This provides a simple solution for auto-refreshing when
the server restarts.

A ”.env” file is used to conveniently set environmental variables required in
the project. These variables include general configuration for the application and
services ran via Docker. Additionally, secrets are set using the environmental
variables. This refers to things such as the database credentials and API keys.
The repository contains an ”example.env” file. Following is a slightly simplified
content of this file.

1 COMPOSE_PROFILES=dev
2 DOMAIN_NAME=localhost
3

CHAPTER 4. RESULTS 53

4 DB_NAME=nyhetsjeger
5 DB_PORT=5432
6 DB_HOST=localhost
7 DB_USER_ROOT=postgres
8 DB_PASSWORD_ROOT=password
9

10 DB_USR_APP=server_user
11 DB_PASSWORD_APP=password
12

13 PORT=8080
14 GOOGLE_REDIRECT_URL=http://localhost:8080/auth/google/callback
15 GOOGLE_CLIENT_ID=
16 GOOGLE_CLIENT_SECRET=
17 SESSION_SECRET=
18 AES_KEY=
19 ALLOWED_FRAME_ANCESTORS=
20

21 BUCKET_USER_ROOT=user
22 BUCKET_PASSWORD_ROOT=password
23 BUCKET_URL=localhost:9000
24 BUCKET_REGION=us-east-1
25 BUCKET_NAME=nyhetsjeger
26 BUCKET_ACCESS_KEY=key
27 BUCKET_SECRET_KEY=secret-key
28 BUCKET_USE_SSL=false
29

30 OPENAI_KEY=SomethingVeryVerySecret

Code 4.1: .env file

”COMPOSE_PROFILES” environmental variable is used to set Docker compose
profile, and by the application to determine whether to run in ”dev” or ”prod”
mode.

The CI/CD setup needs access to secrets in order to publish a docker image to
the registry and to SSH into the server for deployment. These secrets are managed
by GitHub secrets.

4.3.1.3 Application Image

The application can be built into a Docker image using a ”Dockerfile”. The ”Dock-
erfile” specifies a multistage build, resulting in a minimal final image. At each
stage, the files needed for the current stage are explicitly copied into the environ-
ment and then utilities that are needed are ran.

We start by copying all files necessary for Tailwind to build the final CSS file.
The Tailwind CLI is then invoked.

At the second stage, the files needed to compile the Go application are copied
into the environment, and Templ CLI is invoked to generate Go source files from
”.templ” files. Finally the ”go build” command is invoked to build the application.

54 CHAPTER 4. RESULTS

In the last stage, the Go binary, the Tailwind generated CSS file, and the static
assets are copied into the environment.

Following is the content of the ”Dockerfile”.

1 FROM oven/bun:1 AS tailwind-builder
2 WORKDIR /app
3

4 COPY assets/css/styles.css ./assets/css/
5 COPY internal/web_server/web/views

./internal/web_server/web/views/↪→

6 COPY tailwind.config.js ./
7

8 RUN bunx tailwindcss build -i assets/css/styles.css -o
assets/css/tailwind.css↪→

9

10 FROM golang:1.22 AS go-builder
11 WORKDIR /app
12

13 COPY go.mod go.sum ./
14 RUN go mod download
15

16 RUN go install github.com/a-h/templ/cmd/templ@latest
17

18 COPY cmd/ ./cmd/
19 COPY internal/ ./internal/
20

21 RUN templ generate
22 RUN go build -o ./bin/main ./cmd/server/main.go
23

24 FROM golang:1.22
25 WORKDIR /app
26

27 COPY --from=go-builder /app/bin ./
28 COPY assets/ ./assets/
29 COPY --from=tailwind-builder /app/assets/css/tailwind.css

./assets/css/tailwind.css↪→

30

31 EXPOSE 8080
32

33 CMD ["./main"]

Code 4.2: Docker file

4.3.1.4 Docker Compose

Docker compose is used in both the development and production environments.
We use a single Docker compose file, and ”compose profiles” are utilized to specify
which services are needed in which environments.

CHAPTER 4. RESULTS 55

Services such as the database (service name ”db”) are ran in both the devel-
opment and production environments. Contrary, Adminer is available only in the
development environment, and the ”server” service (which is the application im-
age) is active only in production. In the development environment, the application
is ran directly on the host, not via Docker. Additionally, the volumes are defined
in the compose file. This way they are managed by Docker.

Following is the content of our ”docker-compose.yaml” file.

1 version: "3.8"
2 services:
3 db:
4 image: postgres
5 restart: always
6 ports:
7 - ${DB_PORT:-5432}:5432
8 env_file:
9 - .env

10 environment:
11 POSTGRES_USER: ${DB_USER_ROOT}
12 POSTGRES_PASSWORD: ${DB_PASSWORD_ROOT}
13 POSTGRES_DB: ${DB_NAME}
14 TZ: ${TZ:-Europe/Oslo}
15 volumes:
16 - db-data:/var/lib/postgresql/data
17 profiles:
18 - dev
19 - prod
20

21 bucket:
22 image: quay.io/minio/minio
23 restart: always
24 ports:
25 - 9000:9000
26 - 9001:9001
27 env_file:
28 - .env
29 environment:
30 MINIO_ROOT_USER: ${BUCKET_USER_ROOT}
31 MINIO_ROOT_PASSWORD: ${BUCKET_PASSWORD_ROOT}
32 TZ: ${TZ:-Europe/Oslo}
33 volumes:
34 - bucket-data:/data
35 command: server /data --console-address ":9001"
36 healthcheck:
37 test: ["CMD", "mc", "ready", "local"]
38 interval: 5s
39 timeout: 5s
40 retries: 5

56 CHAPTER 4. RESULTS

41 profiles:
42 - dev
43 - prod
44

45 adminer:
46 image: adminer
47 restart: always
48 environment:
49 TZ: ${TZ:-Europe/Oslo}
50 ADMINER_PLUGINS: "enum-types"
51 ADMINER_DESIGN: "dracula"
52 ports:
53 - 8081:8080
54 depends_on:
55 - db
56 profiles:
57 - dev
58

59 server:
60 image: ghcr.io/molnes/nyhetsjeger:main
61 restart: always
62 env_file:
63 - .env
64 ports:
65 - 8080:${PORT:-8080}
66 environment:
67 PORT: ${PORT:-8080}
68 TZ: ${TZ:-Europe/Oslo}
69 depends_on:
70 - db
71 volumes:
72 - ./data/articles:/app/data/articles
73 profiles:
74 - prod
75

76 caddy:
77 image: caddy:latest
78 restart: unless-stopped
79 env_file:
80 - .env
81 environment:
82 DOMAIN_NAME: ${DOMAIN_NAME:-localhost}
83 TZ: ${TZ:-Europe/Oslo}
84 ports:
85 - "80:80"
86 - "443:443"
87 - "443:443/udp"
88 volumes:

CHAPTER 4. RESULTS 57

89 - ./Caddyfile:/etc/caddy/Caddyfile
90 - caddy_data:/data
91 - caddy_config:/config
92 depends_on:
93 - server
94 profiles:
95 - prod
96

97 volumes:
98 db-data:
99 name: nyhetsjeger-postgres-data

100 bucket-data:
101 name: nyhetsjeger-bucket-data
102 caddy_data:
103 caddy_config:

Code 4.3: Docker Compose file

4.3.2 Database

The database is the primary source of data for the application. Since the appli-
cation itself is a stateless RESTful service, all state is persisted in the database.
The data model is designed to reflect all possible application states.

Most unique identifiers are UUIDs. The exceptions for this are entities where
one of the values is inherently unique, and the ”http_sessions” table which is
managed by a third-party session store implementation that we use.

Following is a diagram of the data model (figure 4.3.2). Primary keys are
marked with underline, foreign keys are marked with an asterisk (*). Nullable
and unique properties are not denoted.

58 CHAPTER 4. RESULTS

Figure 4.3.2: Database schema.

All application state is persisted in the database, even intermediate and incom-
plete data. This leads to the existence of some circular relations that are necessary
from the logical standpoint. Let’s consider the two circular occurrences.

First let’s look at the tables ”user_answers”, ”answer_alternatives” and ”ques-
tions”. For the quiz playing functionality, it was significant to know at which time
the question was presented to the user, to calculate the points. The action of a
user viewing a question for the first time is recorded in the ”user_answers” table,
but the properties ”chosen_answer_alternative_id” and ”answered_at” are set
to NULL. This is because the user has not answered the question, only viewed it.
After the user picks an answer, this row is updated and the two properties are no
longer NULL. This is why ”user_answers” must be connected to the ”questions”

CHAPTER 4. RESULTS 59

table, because it will not always be connected to ”questions” via ”answer_alter-
natives”.

Second example is the circlular relationship between the tables ”articles”,
”questions”, ”quizzes” and ”quiz_articles”. The ”quiz_articles” table is only nec-
essary for the many-to-many relation between articles and quizzes, thus it can
be ignored for this example. When creating a quiz, articles can be added to it;
creating a relation between ”quiz” and ”articles”. Then when adding questions to
said quiz, the administrator can choose which article the question is based on from
the list of articles related to the quiz; creating a relation between ”questions” and
”articles”. This way a quiz can be based on multiple articles, even before creating
questions ”using” those articles. At the same time, players are only shown articles
that are connected to the quiz questions. This way, they will not get suggested
articles that are unrelated to the quiz they played.

We use database constraints and triggers to increase data integrity and simplify
queries. All tables that include an ”arrangement” property, have a trigger that
will automatically set the appropriate value upon insertion, incrementing it with
every insertion.

Database views are used to simplify more complex and commonly used ”SE-
LECT” queries. For example there is a ”user_question_points” view, which takes
care of joining multiple tables and displays exactly which questions a user has an-
swered, and how many points they earned. It utilizes the ”calculate_points_awarded(...)”
SQL function mentioned in section 4.2.5. This view is visualized in the table 4.3.1.

user_id question_id quiz_id chosen_answer_id answered_at points...
...

Table 4.3.1: ”user_question_points” SQL view. The last column is
”points_awarded”.

Similarly, ”user_quizzes” is a view summarizing results from the previous one,
aggregating points. It is useful for displaying rankings. This view is visualized in
the table 4.3.2.

user_id quiz_id total_points is_completed finished_at answered...
...

Table 4.3.2: ”user_quizzes” SQL view. The last column is ”an-
swered_within_active_time”.

4.3.3 Domain Model

The team made two domain models that represents the main domains of the
application, from the perspectives of the normal users and the administrators. We
used these to ensure that everyone in the group was on the same page regarding
general structure of our application.

60 CHAPTER 4. RESULTS

Figure 4.3.3: Domain model from the perspective of a Nyhetsjeger user.

Figure 4.3.4: Domain model from the perspective of an administrator.

4.3.4 Prototyping

To develop the graphic part of our application, we used wireframes. The team
made low-fidelity wireframes first, then high-fidelity designs after. Both included
simple navigation between screens, to see how buttons and links would function
and give an idea of the flow of the application.

CHAPTER 4. RESULTS 61

Figure 4.3.5: Early wireframes for the application.

Figure 4.3.6: Early wireframes for the dashboard.

62 CHAPTER 4. RESULTS

Figure 4.3.7: High-fidelity designs for parts of the application.

4.3.5 User Interface
The Web application was made using Go with Templ for generating the HTML
itself, HTMX to swap out components, and Tailwind for styling. The application
was split into two main parts: Nyhetsjeger for normal users, and Dashboard for
the administrators. Both ”sites” have a button for navigating to the other one,
which is only visible to administrators.

The application was designed to be responsive and dynamic. It is responsive to
a variety of devices, such as mobile and desktop. Some components look different
based on the ”state” of the application, such as if there are available quizzes or
not. The team used the feedback from usability testing to make improvements on
the design, which is discussed further in 4.5.6. Cross-browser compatibility was
also taken into consideration, ensuring that any important feature worked on all
major browsers.

The application follows guidelines for accessibility, such as WCAG. For exam-
ple, all text and background colors have a higher contrast ratio than 4.5:1. We
do not present information that depends solely on color. We use semantic HTML
elements. The application was designed with keyboard navigation in mind. Long
sections of navigation, such as the main menu and the username tables, can be
skipped using a ”skip” button. The application was also designed with high-
contrast mode in mind.

CHAPTER 4. RESULTS 63

The technologies used are lightweight compared to other popular Web frame-
works, granting fast performance. Using server-side rendering gives a faster page-
load time. The usage of HTMX allows for only loading the necessary parts of the
application, giving a smooth experience. Tailwind generates a CSS file that only
includes the used styles, making it a lightweight solution. Another optimization is
that uploaded images are automatically converted to JPEG, a compressed image
format.

4.3.6 HTTP Routes
We group together HTTP routes and different sets of middlewares are applied to
those groups. Before a request can get to its appropriate handler, it is processed
by all middlewares applied on the handler’s group. Said middlewares are used
to enforce authentication, enforce user role, or add values to ”context.Context”
associated with the request (see section 3.4.1 for details about ”context.Context”).
A middleware can return early with an HTTP error if needed. For instance, when
the caller does not have the required role.

The request handlers take in query parameters and form data to return re-
sponses containing the status code and HTML. Additional information is some-
times added to the response headers, to tell the frontend where to place compo-
nents on the page or trigger events. This is used when error messages should be
placed on the page elsewhere from the successful response.

All API endpoints and page handlers require authentication, except for guest
users and the authentication endpoints themselves. If the user does not have the
necessary access to view a page, they are shown an error page.

4.3.7 Object Store
We needed a tool to store images uploaded from quiz admins. We solved that
by using the S3-compatible bucket MinIO. The admin can either choose an image
from a provided article, upload from a URL, or provide an image from their local
file system.

To upload the images, we used the SDK provided by MinIO. We generated
a random UUID, got the file type and size, and then uploaded it with the SDK
provided function.

The bucket is hosted on the same server as the Web app itself, with the help
of Docker compose.

4.3.8 Security Measures
To protect against SQL injection, we utilize prepared statements, which is built
into Go’s SQL package. We protect against cross-site scripting by using Templ.
Their security measures are discussed in 3.4.4.

No secrets were hard-coded into the source code or included in the version
control. Instead, they were loaded into the environment from the ”.env” file, and
the application read them using Go standard library’s ”os” module.

The application has working HTTPS using Caddy as a reverse proxy. The
security benefits of HTTPS is discussed in section 2.5.1.

64 CHAPTER 4. RESULTS

4.4 Theoretical Results

Theoretical findings regarding the project from the different phases will be pre-
sented in this section.

4.4.1 Gamification

The leaderboard feature was a requirement in the initial project specification, but
it was up to the team to design it and make it appealing. The stakeholder informed
us that they liked Duolingo’s leaderboard, emphasizing the need for a fun design.

The implementation of leaderboards necessitates a method for measuring player
performance. The leaderboard system is further discussed in 4.2.7. The points
are used both to gauge player performance, but also act as a reward. We ani-
mate the point counter by showing each point ticking up like an odometer (using
the library odometer.js), and animate the results screen by ”filling up” the points
inside a circle.

4.5 Quality Assurance

Quality assurance is important when it comes to the development phase. It dic-
tates how easy the code can be built upon for more features, and detecting and
fixing issues.

4.5.1 Documentation

In the project, all functions have documentation that lives up to the goals described
in 2.4.8.

4.5.2 Code Quality

Code reviews were essential to maintain code quality. To merge changes into the
”dev” branch from other branches, a pull request had to be approved by another
member of the group. If any part of the code was not up to the necessary standard,
a request for changes was made in GitHub.

A tool for upholding maintainability and code quality was Sonarlint. It works
as mentioned in 3.5.3. We regularly had a member of the group go through every
file with Sonarlint to catch issues that we might have initially missed.

CHAPTER 4. RESULTS 65

Figure 4.5.1: A SonarLint rule shown in Visual Studio Code.

Another point of quality assurance regarding the code is the formatter. As
mentioned in 2.4.4, developers may not agree on how to format the code. To
apply a cohesive style of code while developing, a specific formatter was be used
by all team members. The benefit was that the code would be easier to read. The
formatters used in the project were the standard Go formatter and the standard
Templ formatter.

High cohesion and low coupling are also indicative of code quality. To maintain
low coupling, we set layers. We defined which layers each layer could access,
limiting how much a layer needs to know about another layer. As mentioned in
2.4.5, coupling is the degree to which functions depend on each other. We tried
to maintain a structure where each function was independent and did not rely on
knowing about the implementation of other functions.

High cohesion was maintained by making sure each function only had a certain
job. In case a function needed to do multiple jobs, it was refactored into multiple
smaller functions. This also helped to avoid duplicate code.

4.5.3 Unit Testing
Since most of the functionality requires the database to run, the unit tests mostly
test helper functions. We avoided using mock data, because they could show

66 CHAPTER 4. RESULTS

results not reflecting how it actually is implemented. And it would be difficult to
mock, since most of the methods are for inserting or selecting from the database.

Unit testing is implemented using the standard testing library provided by Go.

4.5.4 Integration Testing
The project’s test collection consists mainly of integration tests since the majority
of business logic lives in the database functions, SQL queries, and views. This
limits the usability of unit testing. This is touched upon in section 2.7.2.

Integration testing is implemented using packages Testcontainers and Testify,
as discussed in section 3.5.5. We implemented a base test suite with a PostgreSQL
test container.

The base suite implements functions to be called at suite setup and tear down.
The former is responsible for setting up the test container and establishing the
database connection. The latter closes the database connection and terminates
the container. Code 4.4 shows the implementation of these functions.

1 // Runs once at test suite setup.
2 // Creates test psql container, creates a databse connection

and sets a pointer to it as the struct field.↪→

3 func (s *DbIntegrationTestBaseSuite) SetupSuite() {
4 ctx, ctxCancel :=

context.WithTimeout(context.Background(),
45*time.Second)

↪→

↪→

5 defer ctxCancel()
6

7 psqlContainer, err := newPostgreSQLContainer(ctx)
8 s.Require().NoError(err)
9 s.psqlContainer = psqlContainer

10

11 db, err := database.NewDatabaseConnection(
s.psqlContainer.getDBUrl())↪→

12 s.Require().NoError(err)
13 s.DB = db
14 }
15

16 // Ran when the suite is done. Closes the DB conenction and
terminates the container.↪→

17 func (s *DbIntegrationTestBaseSuite) TearDownSuite() {
18 ctx, ctxCancel :=

context.WithTimeout(context.Background(),
5*time.Second)

↪→

↪→

19 defer ctxCancel()
20

21 s.Require().NoError(s.DB.Close())
22 s.Require().NoError(s.psqlContainer.Terminate(ctx))
23 }

CHAPTER 4. RESULTS 67

Code 4.4: Setup and tear down functions for the base integration test suite.

This suite also implements functions to be called at test setup and tear down
(before each and after each). The former migrates the database schema all the way
up and seeds it with test data. The former brings the schema down, effectively
purging all data. This way each test is independent. Code 4.5 shows both function
implementations.

1 // Runs before each test.
2 // Migrates the database up, runs population (seeding)

function.↪→

3 func (s *DbIntegrationTestBaseSuite) SetupTest() {
4 migrator, err := getMigrator(s.psqlContainer.getDBUrl())
5 s.Require().NoError(err)
6 s.Require().NoError(migrator.Up())
7

8 db_populator.PopulateDbWithTestData(s.DB)
9 }

10

11 // Runs after each test.
12 // Migrates the DB all the way down, removing all data.
13 func (s *DbIntegrationTestBaseSuite) TearDownTest() {
14 migrator, err := getMigrator(s.psqlContainer.getDBUrl())
15 s.Require().NoError(err)
16 s.Require().NoError(migrator.Down())
17 }

Code 4.5: Setup and tear down functions for integration tests.

The base test suite acts as a framework for development of integration tests.
All modules requiring integration testing setup an own test suite. Composition is
used to include the base suite and its behaviour. Code required to setup a test
suite for any module is in code 4.6.

1 type UsersIntegrationTestSuite struct {
2 db_integration_test_suite.DbIntegrationTestBaseSuite
3 }
4

5 // Users module integration test suite entrypoint.
6 func TestUsersIntegrationSuite(t *testing.T) {
7 suite.Run(t, new(UsersIntegrationTestSuite))
8 }

Code 4.6: Users module integration test suite setup.

68 CHAPTER 4. RESULTS

4.5.5 End-to-end Testing

The project also includes some end-to-end tests, implemented as API tests with
Bruno. Since the API endpoints of the application respond with HTML elements
instead of JSON, it is rather cumbersome to verify the response bodies with JS.
For this reason, tests rely on HTTP status codes, and assertions are made on
those.

The Bruno test suite is set up to verify authentication and authorization of
routes in different groups. It checks if endpoints requiring authentication respond
with ”401 Unauthorized” status code if the client does not have a valid session. It
also verifies that routes requiring a special role respond with ”403 Forbidden” if
user associated with the session does not have the required role.

In order to assign valid sessions to the Bruno client, we implemented a helper web
server. This program is separate from the application itself (see 4.3.1.1). The
server has four endpoints. Three of which are used to assign valid HTTP user
sessions with different user roles to the client, and the last endpoint is used as a
shutdown signal.

To simplify the running of tests, we use a shell script. It has three things to
do. Firstly, it starts the helper server, then runs the test suite using Bruno CLI,
and in the end uses cURL to send a shutdown request to the helper server.

Figure 4.5.2: Bruno test results, from Bruno CLI

CHAPTER 4. RESULTS 69

Figure 4.5.3: Bruno test suite

4.5.6 Usability Testing
As mentioned in 2.4.9, usability testing gives feedback on how users interact with
the application; their impression of the design and any feature requests. Bugs can
also be discovered in this process.

When preparing for a usability testing session, a guideline was created with
the things that the team wanted to know. This guideline also included rules for
the group, such as not helping if someone was struggling, in order to observe if
the testers could figure it out themselves.

When doing the usability testing itself, notes were written on the observation
of how the testers used the application, and struggled with or solved tasks.

One of the features requested was making the ”No quizzes” warning text more
humorous and encouraging, such as instead of saying ”You have no active quizzes”
say ”Wow, you have done all the quizzes, good job!”

70 CHAPTER 4. RESULTS

Another improvement was that some of the functionality of the options when
creating a quiz was unclear. Simultaneously, they thought there was too much
explanatory text on the top of the page, about how saving changes worked. To
solve this without cluttering the page, tooltips were added. Clicking or hovering
on it displayed a short explanation of what the input did.

During usability testing, we found bugs such as admins not being able to
correctly upload images with URLs from the SMP network.

Feedback was also received on what was well done, such as easy and intuitive
design, the color choices, and the use of gradients. They found the usernames
funny, and liked the animation on the results page.

CHAPTER

FIVE

DISCUSSION

The goal of this project was to create a quiz application for Web and mobile, where
users could play quizzes and view the leaderboard. This goal has been met. This
chapter will discuss the results and the decisions made during the process leading
to the results.

5.1 Theoretical Discussion

5.1.1 Technology
In the project, it was largely up to the team which technologies we wanted to
implement. In the information collection stage, the team had to gather a list of
advantages and disadvantages for different technologies.

The group chose to go use Go as the main language, for a multitude of reasons.
It has a gentle learning curve, compiles very fast, is fast to develop in, and has
great null safety by forcing developers to handle errors by default. We chose
Templ over Go’s standard templating package, since it supports types and did
not require learning new syntax. We included Air for live reloading, making the
development process much smoother and faster. Echo was used because it had
nice error handling, and at the time, Go’s standard library did not have as good
routing pattern matching as Echo.

HTMX was a nice, lightweight solution. It is elegant in its simplicity, and
is very flexible and versatile, because it can be implemented in many different
technology stacks. We used Tailwind, which is the most popular CSS framework.
It is very easy to create responsive design, which was vital for the team as it
needed to be supported on both Web and mobile.

When it came to choosing a database management system, all the members
of the group had the most experience with PostgreSQL, making it ideal. It had
all the features we would require for the project. We used Docker, because it
provides a consistent environment, which simplifies deployment and reduces the
risk of bugs.

We wanted images for quizzes, since that makes them a bit more interesting
and memorable. We could have pointed to external URLs, but that did not provide
great stability, since it relied on external factors. Instead, we chose to host images
with our own bucket. We chose MinIO for the bucket because of the compatability

71

72 CHAPTER 5. DISCUSSION

with the Amazon S3 API, scaling, and the ease of self-hosting. The SDK allows
us to conntect to any S3 compatible bucket, which lets us avoid vendor lock in. If
the stakeholder prefer to use another bucket that is compatible, it would be easy
to switch.

Creating quizzes is a long process, as we agreed with SMP that the recom-
mended minimum should be five questions. The administrator needs to know
the articles well enough to make questions with two to four alternatives. This is
where generation of questions with AI comes in. It streamlines the process, as the
admin only needs to double check the article if the question is accurate. If the
AI includes any typos or strange sentence structures, it is easy for the admin to
tweak the question. We chose to use ChatGPT, because Sunnmøreposten has the
ChatGPT Enterprise subscription, making it the ideal tool to integrate into the
application.

5.1.2 Development Process
During the development process, we wanted to make a new iteration of the ap-
plication every sprint. In the first sprint, we prioritized having pages to show
to the stakeholder. It looked close to the wireframes, as the high-fidelity design
came later. In this sprint, we did not use the database, but hard-coded sample
data. We implemented the database the following sprint. This was the philosophy
throughout the project; implement features that complemented each other in the
easiest way. Polishing features could be done after meeting with the stakeholder
and getting their input and approval.

5.1.3 Gamification
A feature originally suggested and planned in the early phases was the ”daily
streak” bonus, as it incentivizes daily playing. In the project description, SMP
wanted daily quizzes. However, after further deliberation during the prototype
phase, it was decided that weekly quizzes would be more doable, as the daily news
situation can vary a lot. This made the streak feature impractical, since if it would
be on a weekly basis instead it would lose a lot the intended effect of being habit
forming.

If daily streaks had been implemented, it would be a minor source of points,
where a small multiplier or flat score could be applied to the final score. The
streak bonus would increase by a tiny bit each day, until it reached a maximum
amount that would not cause too unfair of an advantage.

5.1.3.1 Engagement

A goal for our project was to create an engaging platform. If users play the quizzes
a lot, they will be more likely to read the articles. To do this, we used several
gamification and design choices to make the platform as engaging as possible. The
best way to do this was to make playing the quizzes a satisfying experience, and
to encourage competitiveness.

The main gamification components were points and leaderboards. Only al-
lowing ”active” quizzes to count towards the leaderboard also creates a sense of

CHAPTER 5. DISCUSSION 73

urgency, encouraging the users to play every time a new quiz is published. Anima-
tions and gradients were used to make the application more visually interesting
and fun. In section 5.4, we discuss other gamification features that could be
added to increase engagement, as well as a notification system that could serve as
a reminder to play.

5.1.4 Anti-cheating Measures

As with any competitive game system, cheating is always a serious concern, espe-
cially when the prize has monetary value. When designing the implementations
of the application, we always had to keep this in mind.

One of the possible ways of cheating the system was by having the client lie
about the time it took to answer a question, so they could get more points. To
avoid this type of cheating, we stored the timestamp the user first saw the question
and when it was answered. Thus, when the points are calculated based on time,
we trust that it is accurate. All calculations and verification of questions are done
server-side to avoid possible manipulation of data on the client side.

Another possibility is that a user may create multiple accounts, so they can
scout ahead the questions. It is not possible to avoid this problem entirely, but
one solution is to make it harder to create multiple accounts. This is discussed
further in section 5.4.3.

5.1.5 Leaderboard

Since Sunnmøreposten wanted to give out prizes to the users with the most points,
we had to consider a system that would make it fair for all users.

Since quizzes had start and end times, we had to decide whether inactive
quizzes should still be playable or not. After some discussions with Sunnmøre-
posten, we decided to allow users to play the old quizzes, but not receive points.
That way, new users wouldn’t get an advantage over older users (having more
quizzes to play and therefore gain more points), by grouping their responses to
certain months.

We created three main groups of leaderboards ”this month”, ”this year”, and
”all time.” These would automatically be updated to show the current month or
year. But this presented another issue: should quizzes count in the month they
started or ended? Quizzes were not limited and could span multiple months, for
example the last week of a month would span into the next. If it only counted
in one of the months, it would be unclear for the user what happened when they
would see that they received points for playing it in the other month. However, if it
counted for both months, then it could affect leaderboards that should technically
be closed. For example, if a user played a quiz in February, it could also update
the leaderboard for January.

74 CHAPTER 5. DISCUSSION

jan 1.
feb 1. mar 1.

quiz1
quiz2

Figure 5.1.1: ”quiz2” is active from some time in January, but it ends in Febru-
ary.

While discussing the dilemma with SMP, we came up with another solution;
labels.

Labels allowed us to group quizzes arbitrarily, instead of by start and end
times. Leaderboards would then show all points earned by active quizzes based on
the label it belonged to. If the quiz spanned multiple months, it would be up to
the admin which leaderboard(s) they wanted it to be applied to, and this would
be made clear to the user. It also allows custom leaderboards, which could for
example be used for Easter and Christmas season quizzes.

5.1.6 Design
Sunnmøreposten has a large and diverse user base, so universal design and user
experience was very important to keep in mind, both when designing and im-
plementing features. Examples of such considerations was discussed in sections
2.2 and 2.2.2. In Norway it is required of private companies to comply with a
large subset of the WCAG 2.1 Level AA guidelines. In addition, we believe in
inclusiveness and accommodating to different needs.

Since SMP uses blue as their primary color, we thought it would be nice to
stick to a color scheme that does not deviate too far away, while still not identical.
Therefore, we chose to stick with purple as the primary color, a lighter purple as
the secondary color, and blue and pink as tertiary colors.

We included simple animations for things like points and the quiz ”card”. We
wanted to make sure the animations are not distracting, but that they make the
application seem more alive and fun. That creates a more engaging experience for
the users.

When deciding on which icons to use, the most important was that they had
licenses that fit our purposes. Design-wise, we stuck to outline based icons, instead
of icons with fill. We felt that gave a ”cleaner” look.

During development, went with a mobile-first approach for Nyhetsjeger, but
desktop-first for the admin dashboard. This was because a lot of readers use their
mobile phones to read news, but the administrators work on laptops or desktops.

5.1.7 Security Measures
For authentication, we opted to go with Google’s single sign-on, for two main
reasons. We trust Google to have better security than we could do ourselves, and

CHAPTER 5. DISCUSSION 75

the team had experience with this implementation from a previous project and
knew it would fulfill the project’s needs. This way, we did not have to worry about
securing passwords, etc.

5.2 Engineering Discussion
In this section we discuss our engineering results.

5.2.1 Inline Frame
The application is implemented in such a way that it can be included in a differ-
ent website within an iframe (inline frame). We suggested this solution to SMP
after we noticed they already include some third-party services this way. They
were happy with the suggestion and agreed on this being the simplest and most
flexible approach. This way it will work seamlessly for their website and mobile
application, since their app is a wrapper for the Web app.

Our application’s configuration includes ”ALLOWED_FRAME_ANCESTORS”
option, which is used to add values to the HTTP header ”frame-ancestors”. This
is used to allow third party websites to include our application.

5.2.2 Usernames
Giving the administrators the ability to manage usernames gives them flexibility,
so if they get more users in the future, then they can easily add more usernames.
This implementation of usernames does not have great scalability, but with the
improvement of AI, it becomes a trivial issue as they can easily generate more.

In the tables, only 25 words are visible at a time, unless overridden by the user
using query parameters. This is done to make it a more manageable size, and not
load in an unnecessary amount of words. That could overwhelm the user.

We initially contemplated allowing users to create their own usernames. How-
ever, this opened up the possibility of misuse, with bad actors potentially inputting
profanities or other inappropriate words. Looking into a profanity filter for both
Bokmål and Nynorsk did not show any promising results.

An alternative solution was to somehow generate unique usernames from a list
of predefined options. We opted to go with a system similar to BankID on mobile,
where two random words are combined [130].

The initial idea was to generate a list from the database dump of Språkrådet,
available on Nasjonalbibloteket’s website. However, the challenge was that it re-
quired manual review of each word to eliminate any inappropriate words.

The second approach involved using ChatGPT to generate a list of adjectives
and nouns. However, when tasked with generating more than 100 words, it tended
to repeat words or use words from other languages, making it an imperfect solution.

Ultimately, we found that manually writing each word was the most effective
solution, with the help of ChatGPT, online word lists, and dictionaries. Conse-
quently, we created a CSV file containing these words, which was loaded into the
database.

Generated usernames also gives the benefit of anonymization and privacy, as
users might be hesitant to share any personal details. The last factor is the

76 CHAPTER 5. DISCUSSION

possibility to include humorous combinations, such as ”galactic galaxy” or ”dirty
moose.” This can make users more inclined to participate, to get their humorous
username on the leaderboards.

5.2.3 Quiz Creation
There were many discussions and decisions made regarding the quiz creation pro-
cess. The project requirements did not specify it, so it was up to the group to
decide. We wanted to create strict enough guidelines that they could not make
improper quizzes, but still give them enough freedom to allow for creativity.

A quiz must have minimum one question and has no upper limit, but the
recommended amount is between five to ten questions. This recommendation is
conveyed in a tooltip, but it is not a rule. We decided that this amount is ideal
for a person to play during a lunch break. If there are too few questions, it is a
boring quiz. If there are too many questions, it becomes tedious to play.

Each question should have two to four alternatives, which is a very common
amount. We did not want to force a specific amount, so there is a range in options.
We did not do more options, for two main reasons; user experience and limited
screen size. If the users have too many options, it can lead to indecision and takes
longer to read and process. It is ideal if everything on the quiz playing page fits on
the screen at the same time. Too many options means the screen must be scrolled.

The ability to shuffle alternatives was not part of the initial plan, but was
added on early in the development. We decided that the alternatives could not
be displayed randomly for each user, due to the way we implemented the HTMX.
We realised that people would have a bias in where they places the correct al-
ternative(s), so shuffling it randomly in creation was the easiest way to prevent
bias.

Originally, we wanted to scrape articles from an RSS feed to show them as
suggestions. However, due to only being able to use articles from the data dump,
this idea was scrapped. It could be a potential future improvement, but it is not a
lot more convenient than copying the links from the webpage itself. Administrators
will have to double check the content of the articles regardless, which cannot be
done with the RSS feed.

SMP URLs are structured like, ”https://smp.no/category/i/abcdef/article-
title”, where ”abcdef” is the article ID. The URLs are self-healing, so as long
as the path ”/i/abcdef” is included, it will be changed to the default structure.
This means that an endless amount of URLs can link back to the same article.
Therefore, when an admin adds an article to a quiz using its URL, there is the
risk of storing duplicates. To avoid this, we take the part after ”/i” to find the ar-
ticle ID. Then we rebuild the URL to the format ”https://smp.no/i/abcdef”, only
keeping the necessary information. This way we avoid storing duplicate articles
in the database.

Questions can have images, but these are mainly for decoration. We warn
admins that the questions themselves should not be based on images, because
that causes issues with accessibility. Players who rely on screen readers would
be unable to answer, unless we put the answer in the image’s alternative text,
which would also give an unfair advantage. This is not an issue when using AI to
generate the questions, since it does not analyze the images either.

CHAPTER 5. DISCUSSION 77

5.2.4 Play Quiz

The team initially created some wireframes of the ”play quiz” page and presented
them to Sunnmøreposten, but the design changed over time as we got feedback.
One issue was that the timer was not obviously a timer. To fix that issue, we
placed it more centered and made it larger. Additionally, we animate a gradient
background, so it resembles an old fashioned countdown timer. However, the way
it is implemented means that, as of May 2024, it does not have full support in
all major browsers. Firefox users do not see the background animation, only the
time decrementing. The team decided to stick with the implementation regardless,
since the functionality still works and does not detract from the experience.

One concern was that everything shvariablesould fit onto the screen at the
same time, so that users will not be mislead in case not all the alternatives are
visible on the screen. Therefore, the design for mobile is much more compact than
on wider screens.

We display a progress bar, so that players can see which question they are
on and how many total questions are in the quiz. One issue with this was that
the progress bar looks weird if it only has two questions, and if there are a lot of
questions the progress bar becomes too long and will cause scrolling. Therefore,
if the quiz has less than three or more than ten questions, it does not show the
progress bar. Instead, it displays text such as ”Question 1 of 2”.

5.2.5 Guest Mode

Normally, users have to sign in in order to play quizzes. This is required so their
progress can be: saved, associated with the user account and ranked against other
users. To lower the barrier of entry, guest mode has been implemented.

Implementation of the guest mode differs from the default quiz playing mode
due to the fact the latter relies heavily on the application state living in the
database. For instance, in normal mode the time question was presented to the
user is stored in the database (this is also discussed in terms of anti-cheating in
section 5.1.4). Since guest user data is not stored, we decided to use the user
browser’s local storage and a bit of JavaScript. This way any necessary data is
stored on the client, and it can be included with the requests sent to the server.

When deciding which quiz the guest users should be able to play, we considered
the implications it may have on the rankings. If the currently active quizzes were
available without signing in, users would be able to abuse the system. They could
first view a quiz in guest mode and then answer while being signed in, gaining an
unfair advantage.

Initially we considered having one predefined guest quiz, that would not change.
It would showcase the quiz playing process itself, but questions would not necessar-
ily be similar to ones actively being created by the administrators. This led us to
showcase the latest quiz that is no longer active. This way the quiz is ”fresh” and
still relevant, while not exposing the currently active quizzes; preventing cheating.

78 CHAPTER 5. DISCUSSION

5.2.6 Point System
As mentioned in section 4.2.5, the point system was iterated upon and changed
significantly under development.

Initially the points rewarded was a simple set amount of points per correct
answer. The amount of time used by the player for each question was ignored.

Later, the time between when the question was presented to the user and their
answer time was accounted for. Initially, there were three stages with different
score ratios when answering correctly. The user could answer quickly (within the
first 25% of the question’s time limit), in the middle range (within 50% of the
time limit), or slowly (anything slower than previous thresholds). If the user an-
swered quickly, they would be rewarded with 100% of the points for this question,
slower meant 50% of points, and the lowest possible reward would be 25% of the
maximum points. Note that the user is rewarded for answering correctly, even if
they answer after the time limit has passed. Graph in figure 5.2.1 illustrates these
time thresholds and point stages.

All following graphs in this section are representative for a question with the
same configuration of maximum points and time limit; one hundred points and
thirty seconds.

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120

time in seconds

po
in
ts

Figure 5.2.1: Second iteration of the point system. The range of points
rewarded is limited to three constants.

The three stages with predefined ratios turned out to be rather lacking and
resulted in little variations in the user results. We quickly moved on to points
decreasing linearly as the time passes, becoming constant (20% of the maximum
points) after reaching the question’s time limit. This point system allowed user
scores to be more spread out between the maximums and minimums. This resulted
in more variety in user scores, decreasing the likelihood of many users ending up
with the exact same number of points. This is illustrated in figure 5.2.2.

The line can be described as a linear function, intercepting the y axis at the
maximum points value, as well as the minimum points value at time t equal
to the question’s time limit. The function can be expressed within the domain

CHAPTER 5. DISCUSSION 79

[0, timelimit]. Any answer with t greater than timelimit is rewarded with a constant
number of points equal to pointsmin.

f(t) =
pointsmin − pointsmax

timelimit

t+ pointsmax

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120

time in seconds

po
in
ts

Figure 5.2.2: Third iteration of the point system. The value decrease linearly
until it reaches the minimum (20% of the maximum points) at the question’s

time limit.

Linearly reducing the amount of points rewarded has proven to be more in-
teresting and provided more variety in the user results. There was however a
drawback with this approach; it was no longer possible to achieve a perfect score.
This could be frustrating for players and in turn leave a bad impression of the
game. To solve this, a grace period was added. A question answered within the
first few seconds would be rewarded with the maximum points.

The inclusion of a grace period in the reward calculation slightly complicated
the linear function expression, because the line no longer intersects the y axis at
the maximum points value. However, the two intersection points are still known.
The final implementation, it is described in detail in the results section 4.2.5.

As the function for reward calculation evolved over time, so did the way the points
were stored in the database. Initially the rewarded points were stored directly in
the database, alongside the answer picked by the user. The team quickly realised
this approach was not ideal - it denormalized the database unintentionally. This
denormalization led to the database storing redundant data and could lead to
reduced data integrity. Additionally it restricted the point system in such way
that if an administrator updated the maximum points for a question after some
users answered it, the change would not affect them, only new users. This in turn
would be unfair.

All data required to calculate the reward was already stored in the database.
The points can be calculated at any point after a question is answered. For this,

80 CHAPTER 5. DISCUSSION

a PostgreSQL function is defined. This function can be used in SQL queries or
views, simplifying the points retrieval.

5.2.7 Limitations of HTMX
While HTMX has many advantages, such as making it incredibly easy to send
HTTP requests, there are some limitations.

One such issue was error handling. If you want a specific behaviour to occur
on an error, instead of the default HTMX behaviour, you would either need to
write specific JS function, or use an HTMX extension. In our case we chose to
use the response-target extension.

1 <button
2 hx-get="/api/images?id=5"
3 hx-swap="outerHTML"
4 hx-target="image-wrapper"
5 hx-target-error="next .error-text"
6 >Get Image</button>

Code 5.1: Example of how ”hx-target-error” can be set up in a button.

As seen in figure 5.1, ”hx-target-error” allows for handling HTTP codes that
”hx-target” doesn’t support, as ”hx-target” only supports 200 OK. If you only
wanted to handle 4xx error codes, you could do ”hx-target-4*” to only run when
a response is 4xx. If you wanted a specific target in case of HTTP code, such as
404, you can use ”hx-target-404”.

Another issue with HTMX is the inability to change the ”hx-swap” target on
error, such as if you want to target ”innerHTML” instead of ”outerHTML” when
you get error codes. To solve this, one possibility is to set the HTTP response
header to include ”HX-Reswap” as shown below.

1 context.Response().Header().Set("HX-Reswap", "innerHTML")

Code 5.2: Example of setting the response header in Go’s Echo framework

This unfortunately creates coupling between the API handlers and the view,
as the controller now needs to know more about the view implementation, to set
the appropriate swap behaviour.

During development, we also encountered what we believe is a bug. If ”hx-
target” is set to an element inside an ”dialog” element, then the ”hx-target-error”
no longer works as intended. If we target another element outside the ”dialog” in
the HTML, then set ”HX-Retarget” in the HTTP response header to target the
correct element, it works as intended. This was the solution we went with, but it
couples the API handler to the view.

CHAPTER 5. DISCUSSION 81

5.2.8 Code Quality

A notable feature of SonarLint is its measure of cognitive complexity. This metric
quantifies the difficulty a developer might face when reading a function. Dur-
ing development, one issue encountered with cognitive complexity was its generic
nature. As SonarLint supports multiple languages, the thresholds for cognitive
complexity must be tailored to each language.

In the case of Go, error handling increases the cognitive complexity by a varying
amount. This means that handling errors five times in a function could potentially
push the cognitive complexity value over the default limit of 15 by itself.

5.3 Reflection

The team was largely satisfied with the development and the finished product.
It was a great collaborative process, both within the team and together with
Sunnmøreposten. However, there are a few things that we realized could have
been done differently in hindsight.

Due to the issues with HTMX, as discussed in 5.2.7, we should have done error
handling differently. It would have been simpler to not use the ”response targets”
extension, and rather have used a single JavaScript function to catch all errors
and display an alert. This alert could have a fixed position on the page, avoiding
layout shifts and ensuring it is always visible when an error was sent. If there was
a button to dismiss the alert or it disappeared after a certain time, we would not
have to worry about clearing errors on successful requests either. It would have
decoupled the user interface from the server.

5.4 Future Work

5.4.1 Gamification

A potential feature to reward consistent playing is an ”early-bird” bonus, as an
alternative to the ”daily streak” bonus. If a quiz is played within the first 24 hours
of its release, the player will get bonus points.

Avatars was a feature that was considered, but not implemented due to time
constraint. During the prototype phase, discussions arose regarding its potential
inclusion. Several ideas were proposed, such as the use of points or an alternative
currency earned through quiz performance to purchase cosmetics. This could
foster competitiveness and engagement, causing increased activity.

”Achievements” or ”Badges” were considered already during the information
collection phase. These badges could be earned for meeting certain achievements
such as a perfect quiz, get to top 10 on a leaderboard, or for certain point thresh-
olds. These could potentially be implemented together with the avatar system, so
certain cosmetics would be earned by completing different achievements. While
the potential was interesting, it was not prioritized due to the time constraint.

82 CHAPTER 5. DISCUSSION

5.4.2 Notifications
Since Sunnmøreposten expressed a desire for the quiz to be integrated into their
mobile app, a notification system could be interesting. A notification can be sent
whenever a new quiz is available. It can be used to make users aware of new
quizzes being published. An alternative for Web users is to have them opt-in to
receive an e-mail that is sent when quizzes are published.

5.4.3 User Authentication and Verification
In order to read some of the articles at Sunnmøreposten (SMP), users need a sub-
scription that is linked to their Schibsted account. For this reason, in the earliest
stages of the project we assumed we could use Schibsted as the identity provider
for the application. This however was not ideal. Firstly, SMP was not able to
grant us access to use their Schibsted APIs. And secondly, SMP expressed that a
lot of their readers don’t necessarily use their own accounts to read their articles.
Its quite common for people to use an account belonging to a family member.
Thus, they said it would be nice if a different sign in method would be used.

Users can sign in using their Google accounts, this has several benefits. First
of all it is a convenient way of signing in. Most people have a Google account
from before, and our application does not become yet another app you need to
remember a password to. Additionally, we can trust that the e-mail provided is
verified.

Using a trusted third party identity provider also has advantages in terms of se-
curity. We don’t need to worry about securely storing and managing user secrets
(passwords), or implement extra security measures like multi-factor authentica-
tion. We trust Google to do a better job of it, since they are a large organization
with dedicated security teams.

Early in the project the stakeholders expressed desire to get verified mobile phone
numbers of users. This is so they could easily contact users in order to award
them.

For this we considered implementing our own mobile phone verification. This
would require us to use a SMS gateway service, to send verification messages.
However, these services tend to be costly. Briefly we considered implementing a
fake/mock service that would not actually send messages. In the end we decided
that implementing this is out of the project scope.

We proposed to SMP that Vipps could be used as identity provider, instead of
Google. They would provide us with a verified phone number. This has additional
benefit; most people have just one Vipps account, and contrary to Google, it is not
as easy to have multiple accounts. This would counteract cheating options that
were discussed in context of guest mode (section 5.2.5). The stakeholders were
happy with this suggestion, and this stands as a possible future work.

5.4.4 Exclusive Leaderboards
Quizzes belong to different leaderboards based on ”labels” assigned to a quiz. A
possible feature could be ”limited access” labels, in which quizzes belonging to

CHAPTER 5. DISCUSSION 83

certain labels are only accessible to users with specific roles. A use case of this
would be for local competitions such as school quizzes, where students of a class
compete against each other.

5.4.5 Bucket
Currently, old images are kept in the bucket, even after they are no longer used
anywhere. It would be ideal if we had a routine running that removed unused
images, i.e. images that are no longer referenced in the database.

84 CHAPTER 5. DISCUSSION

CHAPTER

SIX

CONCLUSIONS

We have achieved a highly functional quiz application, which is both responsive,
and accessible for persons with disabilities. The application style was designed
with the target group in mind. It also features an administration panel and leader-
boards, fulfilling the initial requirements provided by SMP.

Additional functionality was also added and improved upon. Questions are
created with ChatGPT. SMP can manage predefined usernames. It has support
for multiple leaderboards based on labels, which also open up the possibility for
custom leaderboards independent of months, years, etc.

The regular meetings between the team and the stakeholder were productive
and useful in communicating their expectations and our progress and ideas.

Sunnmøreposten is satisfied with the final product and seems interested in
further development based on the project’s source code.

The group has learnt much from this project. We have become much more
familiar with Go and HTMX, which the group had minimal to no experience with
beforehand. We also used knowledge learnt from the NTNU courses in every
aspect of the project.

There are features that could be implemented in the future, but was not priori-
tized due to the time constraint. Ultimately, the team wanted to deliver a polished
project and is happy with the final state of the product.

85

86 CHAPTER 6. CONCLUSIONS

REFERENCES

[1] Gudleiv Forr et al. Sunnmørsposten i Store norske leksikon. https://snl.
no/Sunnmørsposten. Apr. 10, 2024. (Visited on 05/10/2024).

[2] Hanna Relling Berg. “Her er vår redaksjonelle årsrapport”. In: Sunnmøre-
posten (Feb. 22, 2024). (Visited on 05/01/2024).

[3] Wikipedia contributors. Mass media — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Mass_media&oldid=
1210168945. 2024. (Visited on 02/28/2024).

[4] David Shedden. News Media Timeline (1980). https://www.poynter.
org/archive/2004/new-media-timeline-1980/. Dec. 16, 2004. (Visited
on 04/18/2024).

[5] Wikipedia. Nettavis — Wikipedia. https://no.wikipedia.org/w/index.
php?title=Nettavis&oldid=21301004. 2021.

[6] Statistisk sentralbyrå. 11556: Andel som har brukt tradisjonelle medier og
internettmedier en gjennomsnittsdag, etter medietype, statistikkvariabel og
år. url: https://www.ssb.no/statbank/table/11556/tableViewLayout1/
(visited on 04/18/2024).

[7] Carlo Prato. How can publishers use games and puzzles to increase sub-
scribers? https://www.twipemobile.com/how-can-publishers-use-
games-and-puzzles-to-increase-subscribers/. Oct. 11, 2023. (Visited
on 05/14/2024).

[8] Wikipedia contributors. Wordle — Wikipedia, The Free Encyclopedia. https:
//en.wikipedia.org/w/index.php?title=Wordle&oldid=1218968989.
2024. (Visited on 04/24/2024).

[9] Marc Tracy. The New York Times Buys Wordle. https://www.nytimes.
com/2022/01/31/business/media/new-york-times-wordle.html.
Jan. 31, 2022. (Visited on 04/25/2024).

[10] Jacqueline Zenn. Designing Habit-Forming Games. https://gameanalytics.
com/blog/designing-habit-forming-games/. Mar. 27, 2018. (Visited on
05/10/2024).

[11] Oxford English Dictionary. quiz. https://www.oed.com/dictionary/
quiz_n?tab=meaning_and_use. (Visited on 05/14/2024).

87

https://snl.no/Sunnmørsposten
https://snl.no/Sunnmørsposten
https://en.wikipedia.org/w/index.php?title=Mass_media&oldid=1210168945
https://en.wikipedia.org/w/index.php?title=Mass_media&oldid=1210168945
https://www.poynter.org/archive/2004/new-media-timeline-1980/
https://www.poynter.org/archive/2004/new-media-timeline-1980/
https://no.wikipedia.org/w/index.php?title=Nettavis&oldid=21301004
https://no.wikipedia.org/w/index.php?title=Nettavis&oldid=21301004
https://www.ssb.no/statbank/table/11556/tableViewLayout1/
https://www.twipemobile.com/how-can-publishers-use-games-and-puzzles-to-increase-subscribers/
https://www.twipemobile.com/how-can-publishers-use-games-and-puzzles-to-increase-subscribers/
https://en.wikipedia.org/w/index.php?title=Wordle&oldid=1218968989
https://en.wikipedia.org/w/index.php?title=Wordle&oldid=1218968989
https://www.nytimes.com/2022/01/31/business/media/new-york-times-wordle.html
https://www.nytimes.com/2022/01/31/business/media/new-york-times-wordle.html
https://gameanalytics.com/blog/designing-habit-forming-games/
https://gameanalytics.com/blog/designing-habit-forming-games/
https://www.oed.com/dictionary/quiz_n?tab=meaning_and_use
https://www.oed.com/dictionary/quiz_n?tab=meaning_and_use

88 REFERENCES

[12] Sebastian Detering. “The Lens of Intrinsic Skill Atoms: A Method for
Gameful Design”. In: Human–Computer Interaction (June 15, 2015). (Vis-
ited on 02/08/2024).

[13] Christopher Zichermann Gabe & Cunningham. Gamification by Design:
Implementing Game Mechanics in Web and Mobile Apps. O’Reilly Media,
Inc, 2011. (Visited on 02/08/2024).

[14] Ashton Anderson et al. “Steering user behavior with badges”. In: Proceed-
ings of the 22nd International Conference on World Wide Web. WWW ’13.
Rio de Janeiro, Brazil: Association for Computing Machinery, 2013, pp. 95–
106. isbn: 9781450320351. doi: 10.1145/2488388.2488398. (Visited on
02/08/2024).

[15] Richard N. Landers and Amy K. Landers. “An Empirical Test of the Theory
of Gamified Learning: The Effect of Leaderboards on Time-on-Task and
Academic Performance”. In: Simulation & Gaming 45.6 (2014), pp. 769–
785. doi: 10.1177/1046878114563662. eprint: https://doi.org/10.
1177/1046878114563662. (Visited on 02/08/2024).

[16] Leonard A. Annetta. “The “I’s” Have It: A Framework for Serious Ed-
ucational Game Design”. In: Review of General Psychology 14.2 (2010),
pp. 105–113. doi: 10.1037/a0018985. eprint: https://doi.org/10.
1037/a0018985. (Visited on 02/08/2024).

[17] A. Spanellis and J.T. Harviainen. Transforming Society and Organizations
through Gamification: From the Sustainable Development Goals to Inclusive
Workplaces. Springer International Publishing, 2021. isbn: 9783030682071.
url: https://books.google.no/books?id=STItEAAAQBAJ.

[18] Dominic Macbean. Experimenting with Answer Streaks to Help Make Learn-
ing Awesome. https://medium.com/inside-kahoot/experimenting-
with-answer-streaks-to-help-make-learning-awesome-3b3357e42595.
June 10, 2016. (Visited on 02/08/2024).

[19] Josh Ye. China announces rules to reduce spending on video games. https:
/ / www . reuters . com / world / china / china - issues - draft - rules -
online - game - management - 2023 - 12 - 22/. Dec. 22, 2023. (Visited on
02/08/2024).

[20] Wikipedia contributors. Visual design elements and principles — Wikipedia,
The Free Encyclopedia. https://en.wikipedia.org/w/index.php?
title=Visual_design_elements_and_principles&oldid=1207220517.
2024. (Visited on 02/27/2024).

[21] Sachin Rekhi. Don Norman’s Principles of Interaction Design. https://
medium.com/@sachinrekhi/don-normans-principles-of-interaction-
design-51025a2c0f33. Jan. 23, 2017. (Visited on 02/27/2024).

[22] Jakob Nielsen. 10 Usability Heuristics for User Interface Design. https:
//www.nngroup.com/articles/ten-usability-heuristics/. Jan. 30,
2024. (Visited on 05/14/2024).

[23] Wikipedia contributors. Website wireframe — Wikipedia, The Free Ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Website_
wireframe&oldid=1186560773. 2023. (Visited on 02/05/2024).

https://doi.org/10.1145/2488388.2488398
https://doi.org/10.1177/1046878114563662
https://doi.org/10.1177/1046878114563662
https://doi.org/10.1177/1046878114563662
https://doi.org/10.1037/a0018985
https://doi.org/10.1037/a0018985
https://doi.org/10.1037/a0018985
https://books.google.no/books?id=STItEAAAQBAJ
https://medium.com/inside-kahoot/experimenting-with-answer-streaks-to-help-make-learning-awesome-3b3357e42595
https://medium.com/inside-kahoot/experimenting-with-answer-streaks-to-help-make-learning-awesome-3b3357e42595
https://www.reuters.com/world/china/china-issues-draft-rules-online-game-management-2023-12-22/
https://www.reuters.com/world/china/china-issues-draft-rules-online-game-management-2023-12-22/
https://www.reuters.com/world/china/china-issues-draft-rules-online-game-management-2023-12-22/
https://en.wikipedia.org/w/index.php?title=Visual_design_elements_and_principles&oldid=1207220517
https://en.wikipedia.org/w/index.php?title=Visual_design_elements_and_principles&oldid=1207220517
https://medium.com/@sachinrekhi/don-normans-principles-of-interaction-design-51025a2c0f33
https://medium.com/@sachinrekhi/don-normans-principles-of-interaction-design-51025a2c0f33
https://medium.com/@sachinrekhi/don-normans-principles-of-interaction-design-51025a2c0f33
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://en.wikipedia.org/w/index.php?title=Website_wireframe&oldid=1186560773
https://en.wikipedia.org/w/index.php?title=Website_wireframe&oldid=1186560773

REFERENCES 89

[24] Wikipedia contributors. Congenital red–green color blindness — Wikipedia,
The Free Encyclopedia. https://en.wikipedia.org/w/index.php?
title=Congenital_red%E2%80%93green_color_blindness&oldid=
1214525131. 2024. (Visited on 03/21/2024).

[25] Wikipedia contributors. Visual impairment — Wikipedia, The Free Ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Visual_
impairment&oldid=1214270098. 2024. (Visited on 03/21/2024).

[26] MDN contributors. ARIA - Aaccessibility. https://developer.mozilla.
org/en-US/docs/Web/Accessibility/ARIA. Mar. 15, 2024. (Visited on
03/21/2024).

[27] MDN contributors. prefers-reduced-motion. https://developer.mozilla.
org/en-US/docs/Web/CSS/@media/prefers-reduced-motion. Aug. 21,
2023. (Visited on 03/21/2024).

[28] Wikipedia contributors. Web Content Accessibility Guidelines — Wikipedia,
The Free Encyclopedia. https://en.wikipedia.org/w/index.php?
title=Web_Content_Accessibility_Guidelines&oldid=1217022216.
2024. (Visited on 04/03/2024).

[29] Web Content Accessibility Guidelines. https://wcag.com/blog/web-
content-accessibility-guidelines-wcag-by-the-numbers/. Feb. 24,
2022. (Visited on 04/03/2024).

[30] Tilsynet for universell utforming av ikt. WCAG-standarden. https : / /
www.uutilsynet.no/wcag-standarden/wcag-standarden/86. (Visited
on 04/03/2024).

[31] What’s the Difference Between Monolithic and Microservices Architec-
ture? https://aws.amazon.com/compare/the-difference-between-
monolithic-and-microservices-architecture/. (Visited on 03/21/2024).

[32] GeeksforGeeks. MVC Design Pattern. https://www.geeksforgeeks.org/
mvc-design-pattern/. Feb. 19, 2024. (Visited on 03/21/2024).

[33] baeldung. The DTO Pattern (Data Transfer Object). https : / / www .
baeldung.com/java-dto-pattern. Jan. 8, 2024. (Visited on 03/29/2024).

[34] Martin Fowler. Data Transfer Object. https : / / martinfowler . com /
eaaCatalog/dataTransferObject.html. Jan. 2023. (Visited on 03/29/2024).

[35] Atlassian. What is version control? https://www.atlassian.com/git/
tutorials/what-is-version-control. 2020. (Visited on 01/24/2024).

[36] Wikipedia contributors. Version control — Wikipedia, The Free Encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Version_
control&oldid=1192261201. 2023. (Visited on 01/24/2024).

[37] Gitlab. What is version control? https://about.gitlab.com/topics/
version-control/. 2023. (Visited on 01/24/2024).

[38] Wikipedia contributors. Git — Wikipedia, The Free Encyclopedia. https:
//en.wikipedia.org/w/index.php?title=Git&oldid=1193006801.
2024. (Visited on 01/24/2024).

[39] Conventional Commits. Conventional Commits. https://www.conventionalcommits.
org/en/v1.0.0/. (Visited on 02/08/2024).

https://en.wikipedia.org/w/index.php?title=Congenital_red%E2%80%93green_color_blindness&oldid=1214525131
https://en.wikipedia.org/w/index.php?title=Congenital_red%E2%80%93green_color_blindness&oldid=1214525131
https://en.wikipedia.org/w/index.php?title=Congenital_red%E2%80%93green_color_blindness&oldid=1214525131
https://en.wikipedia.org/w/index.php?title=Visual_impairment&oldid=1214270098
https://en.wikipedia.org/w/index.php?title=Visual_impairment&oldid=1214270098
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
https://developer.mozilla.org/en-US/docs/Web/CSS/@media/prefers-reduced-motion
https://developer.mozilla.org/en-US/docs/Web/CSS/@media/prefers-reduced-motion
https://en.wikipedia.org/w/index.php?title=Web_Content_Accessibility_Guidelines&oldid=1217022216
https://en.wikipedia.org/w/index.php?title=Web_Content_Accessibility_Guidelines&oldid=1217022216
https://wcag.com/blog/web-content-accessibility-guidelines-wcag-by-the-numbers/
https://wcag.com/blog/web-content-accessibility-guidelines-wcag-by-the-numbers/
https://www.uutilsynet.no/wcag-standarden/wcag-standarden/86
https://www.uutilsynet.no/wcag-standarden/wcag-standarden/86
https://aws.amazon.com/compare/the-difference-between-monolithic-and-microservices-architecture/
https://aws.amazon.com/compare/the-difference-between-monolithic-and-microservices-architecture/
https://www.geeksforgeeks.org/mvc-design-pattern/
https://www.geeksforgeeks.org/mvc-design-pattern/
https://www.baeldung.com/java-dto-pattern
https://www.baeldung.com/java-dto-pattern
https://martinfowler.com/eaaCatalog/dataTransferObject.html
https://martinfowler.com/eaaCatalog/dataTransferObject.html
https://www.atlassian.com/git/tutorials/what-is-version-control
https://www.atlassian.com/git/tutorials/what-is-version-control
https://en.wikipedia.org/w/index.php?title=Version_control&oldid=1192261201
https://en.wikipedia.org/w/index.php?title=Version_control&oldid=1192261201
https://about.gitlab.com/topics/version-control/
https://about.gitlab.com/topics/version-control/
https://en.wikipedia.org/w/index.php?title=Git&oldid=1193006801
https://en.wikipedia.org/w/index.php?title=Git&oldid=1193006801
https://www.conventionalcommits.org/en/v1.0.0/
https://www.conventionalcommits.org/en/v1.0.0/

90 REFERENCES

[40] Kent Beck et al. Agile manifesto. https://agilemanifesto.org/. 2001.
(Visited on 03/24/2024).

[41] Wikipedia contributors. DevOps — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=DevOps&oldid=
1216062177. 2024. (Visited on 03/27/2024).

[42] Sonar. code quality developer’s guide. https://www.sonarsource.com/
learn/code-quality/. (Visited on 03/29/2024).

[43] Sonar. linter developer’s guide. https://www.sonarsource.com/learn/
linter/. (Visited on 03/29/2024).

[44] Nicholas C. Zakas. Why Coding Style Matters. https://www.smashingmagazine.
com/2012/10/why-coding-style-matters/. Oct. 25, 2012. (Visited on
05/14/2024).

[45] Ganesh Pagade. Difference Between Cohesion and Coupling. https://
www.baeldung.com/cs/cohesion-vs-coupling. Nov. 9, 2022. (Visited on
03/30/2024).

[46] Ganesh Pagade. Refactoring. https://refactoring.com/. (Visited on
03/30/2024).

[47] Wikipedia contributors. Code refactoring — Wikipedia, The Free Ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Code_
refactoring&oldid=1215784820. 2024. (Visited on 03/30/2024).

[48] Gitlab. What is a code review? https://about.gitlab.com/topics/
version-control/what-is-code-review/. 2023. (Visited on 02/27/2024).

[49] IBM. What is software testing? https://www.ibm.com/topics/software-
testing. 2024. (Visited on 03/30/2024).

[50] AWS. What is Unit Testing? https://aws.amazon.com/what-is/unit-
testing/. (Visited on 03/30/2024).

[51] Ham Vocke. The Practical Test Pyramid. https://martinfowler.com/
articles/practical-test-pyramid.html. Feb. 26, 2018. (Visited on
05/03/2024).

[52] Wikipedia contributors. Functional testing — Wikipedia, The Free Ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Functional_
testing&oldid=1215853964. 2024. (Visited on 03/31/2024).

[53] Kate Moran. Usability Testing 101. https://www.nngroup.com/articles/
usability-testing-101/. Dec. 1, 2019. (Visited on 03/31/2024).

[54] Wikipedia contributors. Exploratory testing — Wikipedia, The Free Ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Exploratory_
testing&oldid=1215212435. 2024. (Visited on 05/03/2024).

[55] Martin Fowler. Test Pyramid. https://martinfowler.com/tags/testing.
html. May 1, 2012. (Visited on 05/02/2024).

[56] Martin Fowler. On the Diverse And Fantastical Shapes of Testing. https:
//martinfowler.com/articles/2021-test-shapes.html. June 2, 2021.
(Visited on 05/03/2024).

https://agilemanifesto.org/
https://en.wikipedia.org/w/index.php?title=DevOps&oldid=1216062177
https://en.wikipedia.org/w/index.php?title=DevOps&oldid=1216062177
https://www.sonarsource.com/learn/code-quality/
https://www.sonarsource.com/learn/code-quality/
https://www.sonarsource.com/learn/linter/
https://www.sonarsource.com/learn/linter/
https://www.smashingmagazine.com/2012/10/why-coding-style-matters/
https://www.smashingmagazine.com/2012/10/why-coding-style-matters/
https://www.baeldung.com/cs/cohesion-vs-coupling
https://www.baeldung.com/cs/cohesion-vs-coupling
https://refactoring.com/
https://en.wikipedia.org/w/index.php?title=Code_refactoring&oldid=1215784820
https://en.wikipedia.org/w/index.php?title=Code_refactoring&oldid=1215784820
https://about.gitlab.com/topics/version-control/what-is-code-review/
https://about.gitlab.com/topics/version-control/what-is-code-review/
https://www.ibm.com/topics/software-testing
https://www.ibm.com/topics/software-testing
https://aws.amazon.com/what-is/unit-testing/
https://aws.amazon.com/what-is/unit-testing/
https://martinfowler.com/articles/practical-test-pyramid.html
https://martinfowler.com/articles/practical-test-pyramid.html
https://en.wikipedia.org/w/index.php?title=Functional_testing&oldid=1215853964
https://en.wikipedia.org/w/index.php?title=Functional_testing&oldid=1215853964
https://www.nngroup.com/articles/usability-testing-101/
https://www.nngroup.com/articles/usability-testing-101/
https://en.wikipedia.org/w/index.php?title=Exploratory_testing&oldid=1215212435
https://en.wikipedia.org/w/index.php?title=Exploratory_testing&oldid=1215212435
https://martinfowler.com/tags/testing.html
https://martinfowler.com/tags/testing.html
https://martinfowler.com/articles/2021-test-shapes.html
https://martinfowler.com/articles/2021-test-shapes.html

REFERENCES 91

[57] Tim Bray. Testing in the Twenties. https://www.tbray.org/ongoing/
When/202x/2021/05/15/Testing-in-2021. May 15, 2021. (Visited on
05/03/2024).

[58] Raunak Jain. Unit Testing Vs Integration Testing – Important Differences.
https://testsigma.com/blog/unit-test-vs-integration-test/.
Mar. 6, 2024. (Visited on 05/03/2024).

[59] Kent C. Dodds. The Merits of Mocking. https://kentcdodds.com/blog/
the-merits-of-mocking. Nov. 5, 2018. (Visited on 05/03/2024).

[60] Mozilla Foundation. HTTP. Oct. 25, 2023. (Visited on 03/03/2024).
[61] Mozilla Foundation. An overview of HTTP. https://developer.mozilla.

org / en - US / docs / Web / HTTP / Overview. Dec. 16, 2023. (Visited on
03/21/2024).

[62] Mozilla Foundation. HTTP request methods. https://developer.mozilla.
org/en-US/docs/Web/HTTP/Methods. Apr. 10, 2023. (Visited on 03/21/2024).

[63] R Fielding et al. RFC 2616 - Hypertext Transfer Protocol – HTTP/1.1.
https : / / www . ietf . org / rfc / rfc2616 . txt. June 1999. (Visited on
03/21/2024).

[64] R Fielding et al. RFC 9110 - HTTP Semantics. https://httpwg.org/
specs/rfc9110.html#overview.of.status.codes. July 2022. (Visited
on 03/24/2024).

[65] Colin Walls. Embedded Software: The Works. Newnes, 2005. isbn: 0-7506-
7954-9.

[66] MDN contributors. HTML: HyperText Markup Language. https://developer.
mozilla.org/en-US/docs/Web/HTML. (Visited on 02/08/2024).

[67] Wikipedia contributors. HTML — Wikipedia, The Free Encyclopedia. https:
//en.wikipedia.org/w/index.php?title=HTML&oldid=1203886289.
2024. (Visited on 02/16/2024).

[68] Wikipedia contributors. CSS — Wikipedia, The Free Encyclopedia. https:
//en.wikipedia.org/w/index.php?title=CSS&oldid=1207061972.
2024. (Visited on 02/16/2024).

[69] MDN contributors. <iframe>: The Inline Frame element. https://developer.
mozilla.org/en-US/docs/Web/HTML/Element/iframe. Feb. 28, 2024.
(Visited on 05/15/2024).

[70] Wikipedia contributors. JavaScript — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=JavaScript&oldid=
1207507795. 2024. (Visited on 02/16/2024).

[71] Anuj Tomar. 10 Best Web Development Frameworks to Use in 2024 [Up-
dated]. https://medium.com/@anuj.t_8752/10-best-web-development-
frameworks-to-use-in-2024-updated-ff988e8f85cb. Dec. 4, 2023.
(Visited on 02/16/2024).

[72] Build fast, responsive sites with Bootstrap. https://getbootstrap.com/.
(Visited on 02/24/2024).

https://www.tbray.org/ongoing/When/202x/2021/05/15/Testing-in-2021
https://www.tbray.org/ongoing/When/202x/2021/05/15/Testing-in-2021
https://testsigma.com/blog/unit-test-vs-integration-test/
https://kentcdodds.com/blog/the-merits-of-mocking
https://kentcdodds.com/blog/the-merits-of-mocking
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://www.ietf.org/rfc/rfc2616.txt
https://httpwg.org/specs/rfc9110.html#overview.of.status.codes
https://httpwg.org/specs/rfc9110.html#overview.of.status.codes
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/HTML
https://en.wikipedia.org/w/index.php?title=HTML&oldid=1203886289
https://en.wikipedia.org/w/index.php?title=HTML&oldid=1203886289
https://en.wikipedia.org/w/index.php?title=CSS&oldid=1207061972
https://en.wikipedia.org/w/index.php?title=CSS&oldid=1207061972
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
https://en.wikipedia.org/w/index.php?title=JavaScript&oldid=1207507795
https://en.wikipedia.org/w/index.php?title=JavaScript&oldid=1207507795
https://medium.com/@anuj.t_8752/10-best-web-development-frameworks-to-use-in-2024-updated-ff988e8f85cb
https://medium.com/@anuj.t_8752/10-best-web-development-frameworks-to-use-in-2024-updated-ff988e8f85cb
https://getbootstrap.com/

92 REFERENCES

[73] Tailwind Labs. Get started with Tailwind CSS. https://tailwindcss.
com/docs/installation. (Visited on 02/24/2024).

[74] Scott Gary. Server Side Rendering in JavaScript – SSR vs CSR Explained.
https : / / www . freecodecamp . org / news / server - side - rendering -
javascript/. (Visited on 03/19/2024).

[75] Cloudinary. Server Side Rendering: Benefits, Use Cases, and Best Prac-
tices. https://cloudinary.com/guides/automatic-image-cropping/
server-side-rendering-benefits-use-cases-and-best-practices.
Nov. 24, 2023. (Visited on 03/19/2024).

[76] IBM. What is a REST API? https://www.ibm.com/topics/rest-apis.
(Visited on 03/21/2024).

[77] Wikipedia contributors. REST — Wikipedia, The Free Encyclopedia. https:
//en.wikipedia.org/w/index.php?title=REST&oldid=1211950882.
2024. (Visited on 03/21/2024).

[78] Kurt Nørman. Overview of the four main programming paradigms. https:
//people.cs.aau.dk/~normark/prog3-03/html/notes/paradigms_
themes-paradigm-overview-section.html. July 2, 2013. (Visited on
02/09/2024).

[79] Mozilla Foundation. Multi-Paradigm Programming Language. https://
web.archive.org/web/20130821052407/https://developer.mozilla.
org/en-US/docs/multiparadigmlanguage.html. June 21, 2013. (Visited
on 03/01/2024).

[80] J W Lloyd. Declarative Programming in Escher. English. WorkingPaper.
Other: CSTR-95-013. Department of Computer Science, University of Bris-
tol, 1995. url: https://web.archive.org/web/20240301213649/https:
//citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=
937eafaca5b54a619d1a51c4d7a3a856ac99c187 (visited on 03/01/2024).

[81] David J. Barnes and Michael Kölling. Objects First with Java. Pearson,
2017. isbn: 978-1-292-15904-1.

[82] J. Hughes. “Why Functional Programming Matters”. In: Computer Journal
32.2 (1989), pp. 98–107. url: https://www.cse.chalmers.se/~rjmh/
Papers/whyfp.html (visited on 03/01/2024).

[83] Wikipedia contributors. Database — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Database&oldid=
1221791353. 2024. (Visited on 05/03/2024).

[84] Wikipedia contributors. Relational database — Wikipedia, The Free Ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Relational_
database&oldid=1217554613. 2024. (Visited on 05/03/2024).

[85] IBM. What is a database management system? https://www.ibm.com/
docs/en/zos-basic-skills?topic=zos-what-is-database-management-
system. (Visited on 05/03/2024).

[86] IBM. Structured Query Language (SQL). https://www.ibm.com/docs/
en/db2/11.5?topic=fundamentals-sql. (Visited on 05/04/2024).

https://tailwindcss.com/docs/installation
https://tailwindcss.com/docs/installation
https://www.freecodecamp.org/news/server-side-rendering-javascript/
https://www.freecodecamp.org/news/server-side-rendering-javascript/
https://cloudinary.com/guides/automatic-image-cropping/server-side-rendering-benefits-use-cases-and-best-practices
https://cloudinary.com/guides/automatic-image-cropping/server-side-rendering-benefits-use-cases-and-best-practices
https://www.ibm.com/topics/rest-apis
https://en.wikipedia.org/w/index.php?title=REST&oldid=1211950882
https://en.wikipedia.org/w/index.php?title=REST&oldid=1211950882
https://people.cs.aau.dk/~normark/prog3-03/html/notes/paradigms_themes-paradigm-overview-section.html
https://people.cs.aau.dk/~normark/prog3-03/html/notes/paradigms_themes-paradigm-overview-section.html
https://people.cs.aau.dk/~normark/prog3-03/html/notes/paradigms_themes-paradigm-overview-section.html
https://web.archive.org/web/20130821052407/https://developer.mozilla.org/en-US/docs/multiparadigmlanguage.html
https://web.archive.org/web/20130821052407/https://developer.mozilla.org/en-US/docs/multiparadigmlanguage.html
https://web.archive.org/web/20130821052407/https://developer.mozilla.org/en-US/docs/multiparadigmlanguage.html
https://web.archive.org/web/20240301213649/https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=937eafaca5b54a619d1a51c4d7a3a856ac99c187
https://web.archive.org/web/20240301213649/https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=937eafaca5b54a619d1a51c4d7a3a856ac99c187
https://web.archive.org/web/20240301213649/https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=937eafaca5b54a619d1a51c4d7a3a856ac99c187
https://www.cse.chalmers.se/~rjmh/Papers/whyfp.html
https://www.cse.chalmers.se/~rjmh/Papers/whyfp.html
https://en.wikipedia.org/w/index.php?title=Database&oldid=1221791353
https://en.wikipedia.org/w/index.php?title=Database&oldid=1221791353
https://en.wikipedia.org/w/index.php?title=Relational_database&oldid=1217554613
https://en.wikipedia.org/w/index.php?title=Relational_database&oldid=1217554613
https://www.ibm.com/docs/en/zos-basic-skills?topic=zos-what-is-database-management-system
https://www.ibm.com/docs/en/zos-basic-skills?topic=zos-what-is-database-management-system
https://www.ibm.com/docs/en/zos-basic-skills?topic=zos-what-is-database-management-system
https://www.ibm.com/docs/en/db2/11.5?topic=fundamentals-sql
https://www.ibm.com/docs/en/db2/11.5?topic=fundamentals-sql

REFERENCES 93

[87] Wikipedia contributors. SQL — Wikipedia, The Free Encyclopedia. https:
//en.wikipedia.org/w/index.php?title=SQL&oldid=1221268124.
2024. (Visited on 05/03/2024).

[88] Martin Fowler. Domain Logic and SQL. https://martinfowler.com/
articles/dblogic.html. Feb. 2003. (Visited on 05/05/2024).

[89] Wikipedia contributors. Database normalization — Wikipedia, The Free
Encyclopedia. https : / / en . wikipedia . org / w / index . php ? title =
Database_normalization&oldid=1220845896. 2024. (Visited on 05/05/2024).

[90] Wikipedia contributors. Denormalization — Wikipedia, The Free Encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Denormalization&
oldid=1041768115. 2021. (Visited on 05/14/2024).

[91] Instagram Engineering. Instagration Pt. 2: Scaling our infrastructure to
multiple data centers. https://instagram-engineering.com/instagration-
pt-2-scaling-our-infrastructure-to-multiple-data-centers-
5745cbad7834. Nov. 11, 215. (Visited on 05/05/2024).

[92] Wikipedia contributors. Database seeding — Wikipedia, The Free Encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Database_
seeding&oldid=1205131562. 2024. (Visited on 05/05/2024).

[93] Prisma contributors. What are database migrations? https://github.
com/prisma/dataguide/blob/23c2469a2813daf0da2e4eb57c10d8bf137beb0b/
content/03-types/02-relational/03-what-are-database-migrations.
mdx#L2. (Visited on 05/14/2024).

[94] Wikipedia contributors. Public-key cryptography — Wikipedia, The Free
Encyclopedia. https : / / en . wikipedia . org / w / index . php ? title =
Public-key_cryptography&oldid=1220802772. 2024. (Visited on 05/01/2024).

[95] Wikipedia contributors. Authentication — Wikipedia, The Free Encyclope-
dia. https://en.wikipedia.org/w/index.php?title=Authentication&
oldid=1216154985. 2024. (Visited on 04/01/2024).

[96] Wikipedia contributors. SQL injection — Wikipedia, The Free Encyclope-
dia. https://en.wikipedia.org/w/index.php?title=SQL_injection&
oldid=1219894917. 2024. (Visited on 04/21/2024).

[97] Using prepared statements. urlhttps://go.dev/doc/database/prepared-statements.
(Visited on 05/10/2024).

[98] Wikipedia contributors. Cross-site scripting — Wikipedia, The Free En-
cyclopedia. https://en.wikipedia.org/w/index.php?title=Cross-
site_scripting&oldid=1216463548. 2024. (Visited on 04/21/2024).

[99] PortSwigger. Cross-site scripting. https://portswigger.net/web-security/
cross-site-scripting. (Visited on 05/14/2024).

[100] Wikipedia contributors. Virtual machine — Wikipedia, The Free Encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Virtual_
machine&oldid=1214952220. 2024. (Visited on 04/01/2024).

[101] Wikipedia contributors. OS-level virtualization — Wikipedia, The Free En-
cyclopedia. https://en.wikipedia.org/w/index.php?title=OS-level_
virtualization&oldid=1211197903. 2024. (Visited on 04/01/2024).

https://en.wikipedia.org/w/index.php?title=SQL&oldid=1221268124
https://en.wikipedia.org/w/index.php?title=SQL&oldid=1221268124
https://martinfowler.com/articles/dblogic.html
https://martinfowler.com/articles/dblogic.html
https://en.wikipedia.org/w/index.php?title=Database_normalization&oldid=1220845896
https://en.wikipedia.org/w/index.php?title=Database_normalization&oldid=1220845896
https://en.wikipedia.org/w/index.php?title=Denormalization&oldid=1041768115
https://en.wikipedia.org/w/index.php?title=Denormalization&oldid=1041768115
https://instagram-engineering.com/instagration-pt-2-scaling-our-infrastructure-to-multiple-data-centers-5745cbad7834
https://instagram-engineering.com/instagration-pt-2-scaling-our-infrastructure-to-multiple-data-centers-5745cbad7834
https://instagram-engineering.com/instagration-pt-2-scaling-our-infrastructure-to-multiple-data-centers-5745cbad7834
https://en.wikipedia.org/w/index.php?title=Database_seeding&oldid=1205131562
https://en.wikipedia.org/w/index.php?title=Database_seeding&oldid=1205131562
https://github.com/prisma/dataguide/blob/23c2469a2813daf0da2e4eb57c10d8bf137beb0b/content/03-types/02-relational/03-what-are-database-migrations.mdx#L2
https://github.com/prisma/dataguide/blob/23c2469a2813daf0da2e4eb57c10d8bf137beb0b/content/03-types/02-relational/03-what-are-database-migrations.mdx#L2
https://github.com/prisma/dataguide/blob/23c2469a2813daf0da2e4eb57c10d8bf137beb0b/content/03-types/02-relational/03-what-are-database-migrations.mdx#L2
https://github.com/prisma/dataguide/blob/23c2469a2813daf0da2e4eb57c10d8bf137beb0b/content/03-types/02-relational/03-what-are-database-migrations.mdx#L2
https://en.wikipedia.org/w/index.php?title=Public-key_cryptography&oldid=1220802772
https://en.wikipedia.org/w/index.php?title=Public-key_cryptography&oldid=1220802772
https://en.wikipedia.org/w/index.php?title=Authentication&oldid=1216154985
https://en.wikipedia.org/w/index.php?title=Authentication&oldid=1216154985
https://en.wikipedia.org/w/index.php?title=SQL_injection&oldid=1219894917
https://en.wikipedia.org/w/index.php?title=SQL_injection&oldid=1219894917
https://en.wikipedia.org/w/index.php?title=Cross-site_scripting&oldid=1216463548
https://en.wikipedia.org/w/index.php?title=Cross-site_scripting&oldid=1216463548
https://portswigger.net/web-security/cross-site-scripting
https://portswigger.net/web-security/cross-site-scripting
https://en.wikipedia.org/w/index.php?title=Virtual_machine&oldid=1214952220
https://en.wikipedia.org/w/index.php?title=Virtual_machine&oldid=1214952220
https://en.wikipedia.org/w/index.php?title=OS-level_virtualization&oldid=1211197903
https://en.wikipedia.org/w/index.php?title=OS-level_virtualization&oldid=1211197903

94 REFERENCES

[102] Ragna Marie Tørdal. Bruk av kunstig intelligens i journalistikk. https://
ndla.no/subject:1:576cc40f-cc74-4418-9721-9b15ffd29cff/topic:
2 : 9cb15fe1 - 6e3d - 4698 - 99c1 - 62165405f278 / topic : 1 : 41abfef8 -
4bc2-468d-a3d6-55c6def45d0d/resource:24560371-eddb-4986-8465-
1e2d579439bb. Dec. 5, 2023. (Visited on 05/14/2024).

[103] Inc. Cloudflare. What is a large language model (LLM)? https://www.
cloudflare . com / learning / ai / what - is - large - language - model/.
(Visited on 04/30/2024).

[104] IBM. UML models and diagrams. https://www.ibm.com/docs/en/
rational-soft-arch/9.7.0?topic=diagrams-uml-models. Sept. 21,
2023. (Visited on 03/27/2024).

[105] Figma. Figma: The Collaborative Interface Design Tool. https://www.
figma.com/. (Visited on 02/07/2024).

[106] Wikipedia contributors. Docker (software) — Wikipedia, The Free Ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Docker_
(software)&oldid=1209712745. 2024. (Visited on 03/03/2024).

[107] Wikipedia contributors. Go (programming language) — Wikipedia, The
Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=
Go _ (programming _ language) &oldid = 1215962053. 2024. (Visited on
04/01/2024).

[108] context package - context - Go Packages. urlhhttps://pkg.go.dev/context.
(Visited on 05/10/2024).

[109] Echo. https://github.com/labstack/echo. (Visited on 05/07/2024).
[110] osmtrek & Contributors. Air - Live reload for Go apps. https://

github.com/cosmtrek/air. (Visited on 02/02/2024).
[111] Adrian Hesketh & Contributors. A HTML templating language for Go that

has great developer tooling. https://github.com/a-h/templ. (Visited on
02/02/2024).

[112] Security. https://templ.guide/security/. (Visited on 05/08/2024).
[113] HTMX contributors. HTMX Documentation. https://htmx.org/docs/.

Apr. 25, 2024. (Visited on 05/05/2024).
[114] SortableJS. https://sortablejs.github.io/Sortable/. (Visited on

05/15/2024).
[115] Odometer. https://github.hubspot.com/odometer/docs/welcome/.

(Visited on 05/15/2024).
[116] Tailwind Labs. Tailwindcss. https : / / tailwindcss . com/. (Visited on

05/15/2024).
[117] Inc Free Software Foundation. GNU make. https : / / www . gnu . org /

software/make/manual/make.html. (Visited on 02/08/2024).
[118] About PostgreSQL. https://www.postgresql.org/about/. (Visited on

04/01/2024).

https://ndla.no/subject:1:576cc40f-cc74-4418-9721-9b15ffd29cff/topic:2:9cb15fe1-6e3d-4698-99c1-62165405f278/topic:1:41abfef8-4bc2-468d-a3d6-55c6def45d0d/resource:24560371-eddb-4986-8465-1e2d579439bb
https://ndla.no/subject:1:576cc40f-cc74-4418-9721-9b15ffd29cff/topic:2:9cb15fe1-6e3d-4698-99c1-62165405f278/topic:1:41abfef8-4bc2-468d-a3d6-55c6def45d0d/resource:24560371-eddb-4986-8465-1e2d579439bb
https://ndla.no/subject:1:576cc40f-cc74-4418-9721-9b15ffd29cff/topic:2:9cb15fe1-6e3d-4698-99c1-62165405f278/topic:1:41abfef8-4bc2-468d-a3d6-55c6def45d0d/resource:24560371-eddb-4986-8465-1e2d579439bb
https://ndla.no/subject:1:576cc40f-cc74-4418-9721-9b15ffd29cff/topic:2:9cb15fe1-6e3d-4698-99c1-62165405f278/topic:1:41abfef8-4bc2-468d-a3d6-55c6def45d0d/resource:24560371-eddb-4986-8465-1e2d579439bb
https://ndla.no/subject:1:576cc40f-cc74-4418-9721-9b15ffd29cff/topic:2:9cb15fe1-6e3d-4698-99c1-62165405f278/topic:1:41abfef8-4bc2-468d-a3d6-55c6def45d0d/resource:24560371-eddb-4986-8465-1e2d579439bb
https://www.cloudflare.com/learning/ai/what-is-large-language-model/
https://www.cloudflare.com/learning/ai/what-is-large-language-model/
https://www.ibm.com/docs/en/rational-soft-arch/9.7.0?topic=diagrams-uml-models
https://www.ibm.com/docs/en/rational-soft-arch/9.7.0?topic=diagrams-uml-models
https://www.figma.com/
https://www.figma.com/
https://en.wikipedia.org/w/index.php?title=Docker_(software)&oldid=1209712745
https://en.wikipedia.org/w/index.php?title=Docker_(software)&oldid=1209712745
https://en.wikipedia.org/w/index.php?title=Go_(programming_language)&oldid=1215962053
https://en.wikipedia.org/w/index.php?title=Go_(programming_language)&oldid=1215962053
https://github.com/labstack/echo
https://github.com/cosmtrek/air
https://github.com/cosmtrek/air
https://github.com/a-h/templ
https://templ.guide/security/
https://htmx.org/docs/
https://sortablejs.github.io/Sortable/
https://github.hubspot.com/odometer/docs/welcome/
https://tailwindcss.com/
https://www.gnu.org/software/make/manual/make.html
https://www.gnu.org/software/make/manual/make.html
https://www.postgresql.org/about/

REFERENCES 95

[119] Wikipedia contributors. MinIO — Wikipedia, The Free Encyclopedia. https:
//en.wikipedia.org/w/index.php?title=MinIO&oldid=1220098394.
2024. (Visited on 05/07/2024).

[120] Caddy - The Ultimate Server with Automatic HTTPS. https://caddyserver.
com/. 2024. (Visited on 05/15/2024).

[121] Wikipedia contributors. Caddy (web server) — Wikipedia, The Free Ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Caddy_(web_
server)&oldid=1202934778. 2024. (Visited on 05/07/2024).

[122] Inc. Github. The world’s most widely adopted AI developer tool. url:
https://github.com/features/copilot (visited on 04/22/2024).

[123] Wikipedia contributors. ChatGPT — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=ChatGPT&oldid=
1219989079. 2024. (Visited on 04/21/2024).

[124] Lauren Farrell. What is Google Lighthouse and How Can it Improve Web-
site UX? https://blog.hubspot.com/website/google-lighthouse.
Dec. 13, 2023. (Visited on 04/11/2024).

[125] Go contributors. Add a test. https://go.dev/doc/tutorial/add-a-test.
Feb. 14, 2023. (Visited on 05/05/2024).

[126] Welcome to Testcontainers for Go! https://golang.testcontainers.
org/. (Visited on 05/05/2024).

[127] Testify - Thou Shalt Write Tests. https : / / github . com / stretchr /
testify. (Visited on 05/05/2024).

[128] Anoop. Re-Inventing the API Client. https://www.usebruno.com/. (Vis-
ited on 02/22/2024).

[129] Standard Go Project Layout. https://github.com/golang-standards/
project-layout. (Visited on 05/08/2024).

[130] Maria Elsness. “Derfor dukker «utro sild» opp i nettbanken din”. In: NRK
(Dec. 6, 2016). url: https://www.nrk.no/livsstil/derfor-dukker-
utro-sild-opp-i-nettbanken-din-1.13254442 (visited on 05/01/2024).

https://en.wikipedia.org/w/index.php?title=MinIO&oldid=1220098394
https://en.wikipedia.org/w/index.php?title=MinIO&oldid=1220098394
https://caddyserver.com/
https://caddyserver.com/
https://en.wikipedia.org/w/index.php?title=Caddy_(web_server)&oldid=1202934778
https://en.wikipedia.org/w/index.php?title=Caddy_(web_server)&oldid=1202934778
https://github.com/features/copilot
https://en.wikipedia.org/w/index.php?title=ChatGPT&oldid=1219989079
https://en.wikipedia.org/w/index.php?title=ChatGPT&oldid=1219989079
https://blog.hubspot.com/website/google-lighthouse
https://go.dev/doc/tutorial/add-a-test
https://golang.testcontainers.org/
https://golang.testcontainers.org/
https://github.com/stretchr/testify
https://github.com/stretchr/testify
https://www.usebruno.com/
https://github.com/golang-standards/project-layout
https://github.com/golang-standards/project-layout
https://www.nrk.no/livsstil/derfor-dukker-_utro-sild_-opp-i-nettbanken-din-1.13254442
https://www.nrk.no/livsstil/derfor-dukker-_utro-sild_-opp-i-nettbanken-din-1.13254442

96 REFERENCES

APPENDICES

97

APPENDIX

A

GITHUB REPOSITORY

All code used in this document are included in the GitHub repository linked below.
Further instructions on how to run the application are given in the readme-file.

• https://github.com/Molnes/Nyhetsjeger

98

https://github.com/Molnes/Nyhetsjeger

APPENDIX

B

DIAGRAMS

Figure B.0.1: Use case diagram of the Nyhetsjeger portal.

99

Figure B.0.2: Use case diagram of the player.

100

Figure B.0.3: Use case diagram of the administration.

101

APPENDIX

C

USER STORIES

• As an admin, I want to generate suggestions for questions based on a list of
articles, because this will speed up the process.

• As an admin, I want to be able to go to the dashboard from the quiz page
and vice versa, because this will make navigation easy.

• As a user, I want to see my progress, so I know how much I have done

• As an admin, I want to be able to upload images to some questions to make
them look more interesting.

• As a user, I want to create a username, for privacy.

• As a user, I want music, so that the experience feel more entertaining.

• As a user, I want to get bonus points multiplier depending on my daily
login streak (concecutive quiz completions), so that I am rewarded for my
eagerness.

• As a user, I want my answers to be timed, so that I am rewarded for being
quick.

• As an admin, I want a warning whenever the amount of questions is outside
of a soft limit, so that I am reminded of the ideal amount of questions.

• As an admin, I want to whitelist articles, so I can specify which articles the
questions should be generated from.

• As a user, I want to report issues I experience, so that they can be fixed.

• As an admin, I want to be able to receive bug reports from users, so that I
am aware of the problems and can fix them.

• As a user, I want to see the distribution of answers, since it is fun to see my
performance compared to others.

• As a user, I want to be able to see the leaderboard, so that I can see if I am
winning.

102

• As a user, I want to be able to see all available quizzes, so that I can par-
ticipate in them.

• As a user, I want to be able to opt in and out of the leaderboards, because
I want to keep my privacy.

• As a user, I want to be able to see my summary after finishing a quiz, so I
know how well I did.

• As a user, I want to see which quizzes I have completed earlier, so that I
know which quizzes I can’t improve my score on.

• As a user, I want to be able to see which answer that is selected, so that I
know which alternative I selected.

• As a user, I want to see the question and alternatives so that I can participate
in the quiz.

• As a user, I want to log in to my Schibsted/SMP account to participate in
the leaderboards and save my progress.

• As a user, I want to see what the prizes are so that I know what I am opting
in on.

• As an admin, I want to see who got the top score and their information this
month so that I can give them their prize.

• As a journalist, I want to create questions for the quiz so that I can use the
quiz in my article.

• As a user, I want to be able to see my points during and at the end of the
quiz, so that I know how well I am doing.

103

	Abstract
	Abstract
	Sammendrag

	Preface
	Contents
	List of Figures
	List of Tables
	List of Code
	Glossary
	Acronyms
	Introduction
	Motivation
	Project description
	Stakeholders
	History of Digital News

	Theory
	Games
	Gamification

	Design and User Experience
	Wireframes
	Accessibility
	WCAG Standard

	Software Architecture
	Monolith
	Model-View-Controller

	Software Development
	Version Control
	Agile
	DevOps
	Linters and Formatters
	Cohesion and Coupling
	Refactoring
	Code Reviews
	Documentation
	Software Testing
	Conceptual Frameworks for Software Testing

	Web Development
	HTTP and Network Communication
	HTML, CSS and JS
	Web Frameworks
	CSS Frameworks
	Server-Side Rendering
	REST API

	Programming Paradigms
	Imperative Programming
	Declarative Programming
	Object-Oriented Programming
	Functional Programming
	Multi-paradigm Programming

	Database Management System
	Relational Databases
	SQL
	Database Normalization
	Seeding
	Schema Migrations

	Security
	Cryptography
	Authentication
	Common Vulnerabilities

	Virtualization
	Artificial Intelligence

	Methods
	Team and Project
	Project Methodology
	Jira
	Confluence
	Discord

	Design and Prototype
	Models and Diagrams
	Figma

	Environment and Development
	Git
	GitHub
	Code Editor
	SSH
	WSL
	Docker
	Adminer
	Secret Management

	Solutions
	Go
	Echo
	Air
	Templ
	HTMX
	JavaScript
	Tailwind CSS
	GNU Make
	Shell Scripts
	PostgreSQL
	MinIO
	Caddy
	AI

	Quality Assurance
	Google Lighthouse
	Code Reviews
	Sonarlint
	Unit Tests
	Integration Tests
	End-to-end Tests
	Usability Testing

	Results
	Administrative Process
	Meetings
	Project Management
	Time Management
	CI/CD

	Features
	Account Creation
	Usernames
	Navigation Menu
	Play Quizzes
	Point System
	Guest Users
	Public Leaderboard
	Completed Quizzes
	Profile
	Manage Labels
	Manage Quizzes
	Other Admin Features
	Interaction Feedback
	Error Handling

	Engineering Results
	Architecture
	Database
	Domain Model
	Prototyping
	User Interface
	HTTP Routes
	Object Store
	Security Measures

	Theoretical Results
	Gamification

	Quality Assurance
	Documentation
	Code Quality
	Unit Testing
	Integration Testing
	End-to-end Testing
	Usability Testing

	Discussion
	Theoretical Discussion
	Technology
	Development Process
	Gamification
	Anti-cheating Measures
	Leaderboard
	Design
	Security Measures

	Engineering Discussion
	Inline Frame
	Usernames
	Quiz Creation
	Play Quiz
	Guest Mode
	Point System
	Limitations of HTMX
	Code Quality

	Reflection
	Future Work
	Gamification
	Notifications
	User Authentication and Verification
	Exclusive Leaderboards
	Bucket

	Conclusions
	References
	Appendices:
	GitHub repository
	Diagrams
	User Stories

