
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f I
CT

 a
nd

 N
at

ur
al

 S
ci

en
ce

s

Ba
ch

el
or

’s
th

es
is

Halvard Bolli Øverlien
Dawid Staniszewski
Gisle Brandsøy Furland

Planning tool for guardrail data
capture

Bachelor’s thesis in Computer Science
Supervisor: Saleh Abdel-Afou Alaliyat
May 2024

Halvard Bolli Øverlien
Dawid Staniszewski
Gisle Brandsøy Furland

Planning tool for guardrail data
capture

Bachelor’s thesis in Computer Science
Supervisor: Saleh Abdel-Afou Alaliyat
May 2024

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of ICT and Natural Sciences

Abstract

iSi has developed a product named inSight, which is an innovative system for discov-
ering faults and deviations in the Norwegian road system. inSight uses a car equipped
with computer-controlled cameras, lasers, infrared lights and a GPS to execute data cap-
ture. The data is then processed by tailored machine learning models to identify faults
or deviations on the captured guardrails. Capture data is also not available continuously.
iSi requested ideas on how a planning tool for the execution of data capture could be
implemented, including continuously reported capture data.

This thesis presents a concept for a planning tool for this capture. The tool is built as
a responsive web application that can be used by both planners and drivers. It focuses on
how to efficiently plan and execute work orders, organized through projects. Extensive
use of data streaming allows for near real-time updates, notifying drivers of critical
metrics. It is also used to update the position of the vehicle in an interactive map. The
guardrails can also be viewed in this map, along with their status.

The application was developed using iterative methods inspired by the SCRUM
framework. The development was done in weekly iterations, with planning and retro-
spective meetings. In addition, there were also biweekly review meetings, where the
work done was showcased to both the supervisor from NTNU, as well as the client, iSi.
These reviews provided the group important feedback on the work.

The final result may help in maintaining good quality guardrails, ensuring that they
are up to standard. Well maintained guardrails play an important role in reducing the
extent of damage in traffic accidents.

i

Sammendrag

iSi har utviklet produktet inSight, som er en innovativ løsning for å avdekke feil og
avvik på rekkverk i det norske vegsystemet. inSight benytter en bil utstyrt med kamera,
lasere og infrarøde lys samt en GPS for å gjennomføre datafangst. Innhentede data blir
deretter analysert av tilpassede maskinlæringsmodellere for å avdekke feil eller avvik
på rekkverkene. De innhentede dataene er derimot ikke tilgjengelige kontinuerlig, og
iSi forespurte ideer til hvordan et planleggingssystem for gjennomføringen av denne
fangsten kunne være.

I denne oppgaven legges det frem et konsept for et slikt planleggingssystem. Sys-
temet er laget som en responsiv web applikasjon som kan benyttes av både planleggere
og sjåfører. Det fokuserer på å kunne effektivt koordinere arbeidsordre i prosjekter samt
utføringen av disse. Systemet benytter seg av mekanismer for sanntidsdata for å kunne
gi sjåfører beskjed om viktig metrikk, samt å oppdatere et interaktivt kart som viser
kjøretøyets posisjon. I det samme kartet vises rekkverkene og des status.

Utviklingen av applikasjonen er gjort ved hjelp av iterative metoder, hvor de brukte
metodene er inspirert av SCRUM rammeverket. Utviklingen ble gjennomført i ukentlige
iterasjoner, med planlegging og retrospektive møter. Annenhver uke ble det gjort en
gjennomgang av utført arbeid sammen med veileder fra NTNU og oppdragsgiver, iSi.
Disse gjennomgangene gjorde det mulig å få viktige tilbakemeldinger på det utførte
arbeidet.

Sluttresultatet kan være til hjelp for vedlikehold av veirekkverk, og bistå i å op-
prettholde en god standard. Godt vedlikeholdte veirekkverk er viktig for å redusere
skadeomfanget i trafikkulykker.

ii

Preface

This thesis presents the results from a project done in collaboration with iSi. We were
tasked to develop a planning tool for their product inSight. A major motivation for
choosing this project has been the ability to explore a domain and technologies which
the group had no previous experience with. It also posed as an opportunity to further
garner experience with previously used technologies and methodologies for developing
responsive, full stack web applications. We would like to thank iSi for this challenging
and exciting task. In our collaboration with them, a number of people have contributed
useful input to shape the direction of the project. We would like to thank Fred Husøy,
Kenneth Sylte and Børge Torvik for their input on the work we have presented. We
would also like to thank our supervisor Saleh Abdel-Afou Alaliyat for providing us
with advice and constructive feedback, being a reliable contact throughout the duration
of the project.

iii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Project description . 1
1.3 Motivation . 2
1.4 Goals . 2
1.5 Scope . 2
1.6 Thesis structure . 2

2 Theory 5
2.1 Standards . 5

2.1.1 Well-known text representing geometry 5
2.1.2 Coordinate reference systems 5
2.1.3 EPSG Geodetic Parameter Dataset 5
2.1.4 JSON . 5
2.1.5 YAML . 6
2.1.6 Problem Detail . 6
2.1.7 JSON Web Token . 6
2.1.8 OpenAPI Specification . 6

2.2 Universal design . 7
2.2.1 WCAG . 7
2.2.2 ARIA . 7

2.3 Observer design pattern . 7
2.4 HTML . 7
2.5 CSS . 7
2.6 JavaScript . 7
2.7 TypeScript . 8
2.8 JSX . 8
2.9 React . 8
2.10 Solid.js . 8
2.11 Road data . 8

2.11.1 Stretches . 8
2.11.2 Guardrails . 9

2.12 Geoid . 9
2.13 Client-server architecture . 9
2.14 Server-sent events . 9
2.15 REST . 10
2.16 HTTP methods . 10
2.17 Relational Databases . 10

iv

CONTENTS v

2.18 SQL . 10
2.19 SMTP . 10
2.20 Version control . 10
2.21 Testing . 10

2.21.1 Unit testing . 11
2.21.2 Integration testing . 11
2.21.3 End-to-end testing . 11

2.22 Containerization . 11
2.23 Infrastructure as Code . 11
2.24 Continuous Integration and Continuous Delivery 11
2.25 SCRUM . 12

2.25.1 SCRUM Master . 12
2.25.2 Product Owner . 12
2.25.3 Development Team . 12
2.25.4 Sprints . 12

3 Method 15
3.1 Workflow . 15

3.1.1 Daily stand up . 15
3.1.2 Sprint Planning . 15
3.1.3 Sprint Review . 15
3.1.4 Sprint Retrospective . 15
3.1.5 Logging work . 16
3.1.6 Communication . 16
3.1.7 Commit message convention 16
3.1.8 Code formatting . 16

3.2 Design . 16
3.2.1 Design guidelines . 16
3.2.2 Diagrams . 18
3.2.3 Wireframes . 18
3.2.4 Design feedback . 18
3.2.5 Universal design . 18

3.3 Testing . 18
3.3.1 User testing . 19
3.3.2 Unit testing . 19
3.3.3 Integration testing . 19

3.4 Artificial intelligence tools . 19
3.5 Technologies . 19

3.5.1 Solid.js . 19
3.5.2 TailwindCSS . 19
3.5.3 Component library . 19
3.5.4 Map rendering . 20
3.5.5 Spring Boot . 20
3.5.6 Database . 20
3.5.7 Database migrations . 20
3.5.8 Geospatial types and transforms 20
3.5.9 Containers . 21
3.5.10 Object Storage . 21

vi CONTENTS

3.5.11 Documenting APIs and code 21
3.5.12 GitHub Actions . 21
3.5.13 Ansible . 21
3.5.14 Kubernetes and Helm . 22
3.5.15 Chrome DevTools . 22

3.6 Project Structure . 22
3.6.1 Module structure . 22
3.6.2 Client package . 23
3.6.3 Application for initializing . 23

4 Results 25
4.1 Use case diagram . 25
4.2 ER diagram . 25
4.3 Transforms between vertical coordinate reference systems 26
4.4 Application . 27

4.4.1 Authentication . 27
4.4.2 File uploads . 28
4.4.3 Theme . 28
4.4.4 User management . 29
4.4.5 Vehicle management . 30
4.4.6 Project management . 31
4.4.7 Guardrail data import . 32
4.4.8 Guardrail geometry directions 33
4.4.9 Processing capture logs . 34
4.4.10 Trips and replays of capture logs 35
4.4.11 Trip notes . 37
4.4.12 Vehicle and user status . 37
4.4.13 Matching capture data to guardrails 38
4.4.14 Calculating guardrail capture grade 39
4.4.15 Interactive map for viewing guardrails 40
4.4.16 Viewing images captured of guardrails 40
4.4.17 Position updates for users and vehicles 40
4.4.18 Follow mode for in-vehicle viewing 41
4.4.19 Responsive layouts . 41
4.4.20 State management . 41
4.4.21 Reporting deviations . 43
4.4.22 Dashboard . 43
4.4.23 Global search . 43
4.4.24 Internationalization . 43
4.4.25 Input validation . 45
4.4.26 Error handling . 45
4.4.27 API documentation . 46

4.5 Application deployment . 47
4.6 Map rendering performance . 49

CONTENTS vii

5 Discussion 51
5.1 Preliminary project plan . 51
5.2 Planning workflow . 51
5.3 Design choices . 51
5.4 Technology choices . 51
5.5 Client package and data transfer objects 52
5.6 Module structure . 52
5.7 Custom API client for NVDB . 52
5.8 Comparing capture to guardrails . 52
5.9 Map problems . 53
5.10 Stateless backend considerations . 53
5.11 Ingest performance . 53
5.12 Internationalization . 54
5.13 Identity considerations . 54
5.14 Feedback . 54

6 Conclusion 55
6.1 Future work . 55

6.1.1 Integrating with the cars system 55
6.1.2 Guardrail matching improvements 55
6.1.3 Guardrail direction fixes . 56
6.1.4 Ingest performance . 56
6.1.5 Identity provider integration 56
6.1.6 Split layout for guardrails . 56
6.1.7 Other layout improvements . 57
6.1.8 User preferences . 57

7 Societal Impact 59
7.1 The importance of guardrail maintenance 59
7.2 Ethical aspects . 60
7.3 Contribution to the UN’s Sustainable Development Goals 60

References 61

Appendices i

A - GitHub repository ii

B - Impact of guardrail quality on fatal traffic accidents iii

C - Full size diagrams iv

D - Map rendering performance profiling v

E - Wireframes vi

F - Video vii

List of Figures

1.1.1 Car equipped with camera rig . 1

2.12.1 Geoid illustration . 9
2.25.1 Sprint cycle . 13

3.2.1 Color palette . 17
3.2.2 Figma wireframes for UI used by drivers on mobile 18
3.5.1 Recording of rendering 25.000 railings using Canvas renderer in Leaflet 22
3.6.1 Overall project structure . 22
3.6.2 Frontend code folder structure . 23
3.6.3 Backend code folder structure . 23

4.1.1 Final use case diagram . 25
4.2.1 Final ER diagram . 26
4.3.1 Visualization of NN2000 height reference values 27
4.4.1 Authentication workflow . 28
4.4.2 Toggling of dark theme . 29
4.4.3 User overview page . 30
4.4.4 User details page . 30
4.4.5 Vehicle overview page . 31
4.4.6 Project browsing menu with projects grouped by status 32
4.4.7 Frontend project view with a selected plan 32
4.4.8 Dialog shown when creating a new project plan 33
4.4.9 Comparison of railing geometry directions with road network direction 34
4.4.10 Flow chart displaying the logic used when processing capture logs . . 34
4.4.11 Page for uploading and viewing uploaded capture logs 35
4.4.12 Dialog shown when starting a new trip 36
4.4.13 Indicators displayed in the trip view 36
4.4.14 Trip note markers and selection of them 37
4.4.15 Button displayed when a user is outside their active trip 37
4.4.16 Diagram displaying how guardrails are matched to captures 38
4.4.17 Diagram displaying the comparison of the cars vector and the roads

vector . 39
4.4.18 Merging of segment coverage ranges 39
4.4.19 Guardrail variants based on completion grade 39
4.4.20 Rendering of guardrails in the map where one is clicked 40
4.4.21 Screenshot from the UI displaying how images of guardrails can be

viewed . 41
4.4.22 Navigation menu for small or mobile viewports 42

viii

LIST OF FIGURES ix

4.4.23 Responsive layout used to configure the users page with different map
widths . 42

4.4.24 List of deviations displayed after they have been reported in the UI . . 43
4.4.25 Dashboard UI with widgets displaying key information 44
4.4.26 Frontend UI for global search . 44
4.4.27 Sample validation error displayed in frontend when submitting forms . 45
4.4.28 API docs rendered using Swagger . 46
4.5.1 GitHub Actions deployment workflow 47
4.5.2 Diagram showing all resources defined by the Helm chart 48

6.1.1 Prototype split layout for viewing guardrails and deviations 57

List of Tables

4.6.1 Guardrail rendering performance comparison 49

7.1.1 Impact of guardrail quality on fatal traffic accidents 59

x

Abbreviations

List of all abbreviations in alphabetic order:

• API Application Programming Interface

• ARIA Accessible Rich Internet Applications

• CI/CD Continuous Integration and Continuous Delivery

• CRS Coordinate Reference System

• CSS Cascading Style Sheets

• DDL Data Definition Language

• DML Data Manipulation Language

• DNS Domain Name System

• DOM Document Object Model

• EPSG European Petroleum Survey Group

• ER Entity Relationship

• FOV Field of view

• GIS Geographic Information System

• GNSS Global Navigation Satellite System

• GPS Global Positioning System

• HTML Hypertext Markup Language

• HTTP Hypertext Transfer Protocol

• IaC Infrastructure as Code

• IDE Integrated Development Environment

• JDBC Java Database Connectivity

• JPA Java Persistence API

• JSON JavaScript Object Notation

• JSX JavaScript XML

xi

xii LIST OF TABLES

• JTS Java Topology Suite

• JWT JSON Web Token

• NLOD Norwegian License for Open Government Data

• NN1954 Norway Null 1954

• NN2000 Norway Null 2000

• NPM Node Package Manager

• NPRA Norwegian Public Roads Administration

• NTNU Norwegian University of Science and Technology

• NVDB National Road Database (Nasjonal vegdatabank)

• OCI Open Container Initiative

• OS Operating System

• ORM Object Relational Mapping

• PNPM Performant NPM

• REST Representational State Transfer

• SMTP Simple Mail Transfer Protocol

• SQL Structured Query Language

• SVG Scalable Vector Graphics

• SRID Spatial Reference System Identifier

• TLS Transport Layer Security

• UI User Interface

• UN United Nations

• URL Uniform Resource Locator

• UTM Universal Transverse Mercator

• VoIP Voice over Internet Protocol

• WAI Web Accessibility Initiative

• WCAG Web Content Accessibility Guidelines

• WKT Well-known text

• YAML Yet Another Markup Language / YAML Ain’t Markup Language

• XML Extensible Markup Language

1. Introduction

This chapter introduces the client, along with their goals and requirements for the
project.

1.1 Background
iSi AS has developed a product named inSight, which introduced a new innovative way
of detecting deviations on guardrails in the Norwegian road network. inSight uses cars
equipped with computer-controlled cameras, lasers, infrared lights and a GPS to power
a digital inspection of guardrails. The car equipment captures data from guardrails,
which is later processed by tailored artificial intelligence and machine learning models
to identify faults and deviations. The equipment on the cars is shown in Figure 1.1.1.
inSight has been developed as an innovation project in collaboration with Arvid Gjerde
AS, The Norwegian Public Roads Administration, NTNU Ålesund, Møre og Romsdal
County Municipality and Innovation Norway.

Figure 1.1.1: Car equipped with camera rig [1]

1.2 Project description
iSi already has systems in place for collecting data from the equipment on cars, but
the information is not available to be presented and made use of continuously. In their
task proposal, iSi requested ideas and suggestions on how to solve this challenge by
transmitting data to a central service. The collected data should then be displayed to
users, allowing drivers to plan their route and register what has already been captured
as well as allowing planners to keep track of ongoing captures.

1

2 CHAPTER 1. INTRODUCTION

1.3 Motivation
When applying for this project, our primary motivation was to create an interactive and
user-friendly interface that would allow both drivers and planners to efficiently plan
and execute the data capture. The group found that the project both suited our previous
experiences from web and application development while also allowing challenges in a
domain the group had no prior exposure to.

1.4 Goals
Building on the specifications in iSi’s proposal, the following goals for the result of this
project were established:

• Produce an application usable on both mobile and desktop devices by using mod-
ern frontend technology

• Make the interface interactive and user-friendly, suitable for use during both plan-
ning and driving

• Display collected data in a clear and structured manner through the use of filtering
and color-coding

• Update the data in close to real-time to inform users of the current status

In addition to these goals, the group defined some that they wanted to achieve through
the development process:

• Gain further experience with agile development practices

• Learn about how geographic data can be visualized in modern frontend applica-
tions

• Gain experience in working with clients in an iterative method

1.5 Scope
The project had an open-ended scope, where iSi requested input from students on how
a planning tool could be made for inSight. It was noted that it should ideally be possible
to use the solution both on desktops in the office for planners, as well as on mobile on
the drivers’ phones. The open-ended scope of the project allowed the group to decide
how to develop the application, both in terms of design and technology, while adjusting
the product using feedback from iSi. Some of the main tasks mentioned were that the
solution should integrate map data, as well as utilize data from official REST APIs such
as NVDB.

1.6 Thesis structure
Chapter 2 - Theory: Describes various concepts and theoretical background for this
thesis

Chapter 3 - Method: Highlights both the technology and methodology used in this
project

CHAPTER 1. INTRODUCTION 3

Chapter 4 - Results: Presents the results of the project

Chapter 5 - Discussion: Discusses the challenges faced during the project

Chapter 6 - Conclusion: Concludes the work presented and notes work that can fur-
ther improve the results

Chapter 7 - Societal impact: Describes the societal impact of the system and its rela-
tion to UN’s sustainable development goals

4 CHAPTER 1. INTRODUCTION

2. Theory

This chapter introduces the theoretical background recommended to fully grasp con-
cepts discussed in this thesis. Programming related concepts, technologies, principles
and methodologies which set a baseline for the development of the application are de-
scribed here.

2.1 Standards
This section covers the standards used and adhered to in the application.

2.1.1 Well-known text representing geometry
Well-known text, abbreviated WKT, is a standardized textual representation of geospa-
tial objects. The standard defines how geospatial objects such as Point, LineString and
Polygon can be defined in text [2]. Examples of how different geometries can be repre-
sented in WKT can be seen in Listing 1.

LINESTRING (6.2334 2.00083, 3.4002 4.3002)
POINT (3.3020 3.2002)
POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10))

Listing 1: Example of Line, Point and Polygon geometries in WKT

2.1.2 Coordinate reference systems
Coordinate reference systems (CRS) define how a two-dimensional planar shape relates
to a three-dimensional spherical shape. These relations are used to measure locations
on the surface of Earth as coordinates. Reference systems are typically given a Spatial
Reference System Identifier (SRID) [3].

2.1.3 EPSG Geodetic Parameter Dataset
The EPSG Geodetic Parameter Dataset is a registry containing definitions of coordinate
reference systems, coordinate transformations and other related data. GIS systems use
codes from the EPSG dataset as SRIDs and related CRS data to perform transformations
between reference systems [4].

2.1.4 JSON
JavaScript Object Notation, abbreviated JSON, is a data format which is both easy to
read for humans and easy to process for machines [5]. JSON is inspired by the notation
for object literals in the JavaScript programming language [6]. JSON is built using
collections of name/value pairs and ordered lists of values [5]. Values can either be

5

6 CHAPTER 2. THEORY

strings, numbers, lists or collections of key/value pairs. Listing 2 showcases the JSON
data format with various constructs.

{
"key": "value",
"number": 1,
"object": {

"key": "value"
},
"list": [

{
"key": "value"

}
]

}

Listing 2: Example of various constructs in the JSON format

2.1.5 YAML
"Yet Another Markup Language" or "YAML Ain’t a Markup Language" is a human
readable data serialization language optimized for writing files such as configuration
settings [7]. An example of YAML is shown in Listing 3.

key: value
number: 1
object:

key: value
list:

- key: value

Listing 3: Example of code syntax in YAML

2.1.6 Problem Detail
Problem Detail is a proposed standard specification that defines a simple format for
describing the specifics of an encountered problem. The specification defines structures
for problems in both XML and JSON formats [8].

2.1.7 JSON Web Token
JSON Web Tokens, abbreviated JWTs, are JSON-based security tokens that contain a
set of claims that can be signed, encrypted or both. JWTs are Base64 encoded and URL
safe [9].

2.1.8 OpenAPI Specification
The OpenAPI Specification defines a formal standard for describing HTTP APIs. The
format is used to communicate how an API works without requiring source code access,
documentation or inspection of network traffic [10]. OpenAPI definitions can be used
to generate both documentation and client code [10].

CHAPTER 2. THEORY 7

2.2 Universal design
Universal design is the concept of designing products that are usable by all people,
regardless of age, size, ability or disability [11]. This section outlines principles and
guidelines that can be used to ensure accessibility and universal design.

2.2.1 WCAG
Web Content Accessibility Guidelines, abbreviated WCAG, are guidelines for achiev-
ing web accessibility for people with disabilities [12]. The "WCAG 2.2" defines five
main principles. The first principle, Perceivable, states that "information and user inter-
face components must be presentable to users in ways they can perceive." The second
principle, Operable, is that "user interface components and navigation must be opera-
ble." The third principle, Understandable, specifies that "information and the operation
of the user interface must be understandable." The fourth principle, Robust, requires
that "content must be robust enough to be interpreted reliably by a wide variety of user
agents, including assistive technologies." Lastly, the principle of Conformance ensures
that a website or application adheres to the aforementioned standards [13].

2.2.2 ARIA
Accessible Rich Internet Applications, abbreviated ARIA, comprise a set of roles and
attributes designed to enhance the accessibility of web pages for individuals with dis-
abilities. For example, a web browser typically assigns no inherent meaning to an empty
<div> element. However, the addition of an ARIA attribute such as
<div role="progressBar">, informs the browser that this element functions as a
progress bar [14]. The WAI-ARIA specification includes an Authoring Practices Guide
which recommends approaches for developers to help make web application behavior
accessible through utilizing such attributes [15].

2.3 Observer design pattern
The observer design pattern is a pattern that can be used to define a relationship for
one way messaging between different parts of an application. The pattern consists of
two components, publishers and subscribers. A publisher is responsible for notifying
relevant subscribers when certain criteria is met, such as the occurrence of a user input
event [16].

2.4 HTML
HTML is short for Hypertext Markup Language and is a core building block of the Web.
It is used to define both the structure and meaning of content in web pages [17].

2.5 CSS
Cascading Style Sheets, abbreviated CSS, is another core building block of the Web.
CSS is a stylesheet language that can be used to describe how content of web pages
should be rendered on screen, paper, in speech or on other media [18].

2.6 JavaScript
JavaScript is a general purpose dynamic programming language. The language is
known as the scripting language used in web browsers and allows for instance mod-

8 CHAPTER 2. THEORY

ifying the contents of a web page through APIs. In addition to running on browsers,
it also runs in non-browser environments such as Node.js. The JavaScript language is
multi-paradigm, supporting object-oriented, imperative and declarative styles of pro-
gramming [19].

2.7 TypeScript
TypeScript is a superset of the JavaScript language that introduces additional syntax for
types to the language [20]. TypeScript code does however not run in the browser like
JavaScript, requiring a transpilation step where types are erased [21].

2.8 JSX
JSX is an extension of the JavaScript syntax that allows defining markup in JavaScript
[22]. In contrast to the markup languages it renders to, it supports constructs like loops
and conditions. The syntax extension is often used for defining components that render
to HTML using frameworks [23].

2.9 React
React is a JavaScript framework for building user interfaces for both the web and native
platforms. React uses the JSX syntax extension for defining interfaces in a composable
manner using components [23]. React handles state updates through a Virtual DOM.
State updates are made in the Virtual DOM, which a reconciler like React DOM can use
to compare the difference between the Virtual DOM and the actual DOM and update
accordingly [24].

2.10 Solid.js
Solid.js is a JavaScript framework for building user interfaces in the web. Similar to Re-
act, Solid.js uses the JSX syntax extension for defining interfaces. Solid.js differs from
some of the other frameworks by utilizing signals for updating the interface. Signals are
similar to the Observer design pattern, and allow the framework to only update the parts
of a page that need to be updated. However, the process of establishing subscriptions is
handled by the framework. This approach differs from frameworks like React, where a
Virtual DOM is used. The framework is designed to build high-performing interfaces
[25]. It is also among the top performing frameworks across multiple metrics in the
js-framework-benchmark [26].

2.11 Road data
The Norwegian Public Roads Administrations maintains an open API for accessing
road data, referred to as NVDB. The data is licensed under the Norwegian License for
Open Government Data (NLOD) [27]. The API serves a database that contains infor-
mation about the physical road system in Norway, and various object types attached to
it, such as guardrails along with other metadata. The default SRID used for the Nor-
wegian road data is EPSG SRID 5973, which is a compound CRS that combines UTM
coordinates from SRID 25833 with NN2000 heights from SRID 5941.

2.11.1 Stretches
Roads are divided into systems that start and end at intersections. These systems are
further divided into stretches. A stretch is represented by a series of geographical points,

CHAPTER 2. THEORY 9

forming a line. The direction of the stretch is the same as the order of these points, and
can be either with or against the network.

2.11.2 Guardrails
Guardrails are one of the road object types attached to the road network [27]. A
guardrail is placed along or more stretches, and has a set direction and side position.
The direction may be with or against the stretch. The guardrail is represented in the
same way as a stretch, using a series of geographical points to form a line. In addition,
some guardrails do not have their own geometry, and will then use a subset of the roads
geometry as its representation instead.

2.12 Geoid
Geoid is the shape of the ocean surface under the influence by gravity. Geoid is com-
monly expressed as geoidal height or geoid undulation, in terms of a reference ellipsoid
height. The reference ellipsoid is a shape that estimates the geoid [28]. GPS or GNSS
navigation systems typically measure height in ellipsoid height. Undulation is not stan-
dardized, and different regions use varying mean sea levels as a reference [29]. NN2000
is a common nordic height reference, short for Norway Null 2000. This height reference
superseded the previously used NN1954 [30]. An illustration of the relation between
the geoid and the ellipsoid can be seen in Figure 2.12.1.

Figure 2.12.1: Geoid illustration [31]

2.13 Client-server architecture
Client-server architecture refers to a way of structuring a computer network in which
remote devices (clients) request and receive service from a centralized host device
(server). Client devices provide an interface through which requests can be sent to the
server. Upon arrival of a request, the server will respond back to the client, providing
the requested service if possible [32].

2.14 Server-sent events
Server-sent events use a one-way connection to push new data to a web page. Messages
are transmitted over a HTTP connection, where the browser can treat the incoming

10 CHAPTER 2. THEORY

messages as events [33].

2.15 REST
REST, short for Representational State Transfer, is an architectural pattern for web
servers. The core principle of REST is that the server will respond with the repre-
sentation of a resource, which is typically an HTML, XML or JSON document [34].
This representation will include the resource data, metadata and hypermedia that can
be interacted with to achieve the desired state. A resource can be a document, image,
service, non-virtual object, a collection of resources, and so on [35].

2.16 HTTP methods
HTTP methods are a set of standardized commands that indicate a desired action to be
performed for a given resource. There are various different commands, all represented
by different verbs. The verbs typically describe the intention of a request. Commonly
used verbs are POST, GET, PUT, and DELETE, which are typically used to create, read,
update, and delete resources, respectively [36].

2.17 Relational Databases
A relational database is a type of database that organizes data into rows and columns,
which collectively form a table where the data points are related to each other. Re-
lational databases use unique identifiers known as primary keys and foreign keys to
establish different relationships between tables [37]. Relational databases use different
languages to interact with them, where SQL is the most adopted language.

2.18 SQL
SQL, short for Structured Query Language, is a language commonly used to interact
with relational databases. The SQL syntax includes a Data Definition Language (DDL),
a Data Manipulation Language (DML), a Data Query Language (DQL) and a Data
Control Language (DCL) [38]. A DDL is used to define the structure of entities within
the database schema [39]. A DML on the other hand, is used to insert, update or delete
records from the schema [40]. The data inserted into the defined schema can be queried
using a DQL [41].

2.19 SMTP
Simple Mail Transfer Protocol, abbreviated SMTP, is a standard communication proto-
col used to transmit email. While the protocol allows for both sending and receiving
emails, it is typically only used by clients to send email [42].

2.20 Version control
Version control is a system designed to record changes for a file or set of files, enabling
the retrieval of specific versions at a later date [43].

2.21 Testing
Testing in software development is critical for ensuring reliability, functionality and
security of the application. Testing can be done through several strategies, some of
which are covered in this section.

CHAPTER 2. THEORY 11

2.21.1 Unit testing
Unit testing is a methodology in software testing where focus is on individual functions,
methods, or classes, ensuring each unit operates as intended. This is often the first line
of defense before conducting further testing [44].

2.21.2 Integration testing
Integration testing is a software testing methodology used to determine how well indi-
vidually developed components, or modules of a system communicate with each other.
Integration tests ensure higher test coverage by exposing system-level issues such as
broken database schemas or faulty service integration. This testing methodology serves
as a feedback loop throughout development, and can enhance the quality and reliability
of the software [45].

2.21.3 End-to-end testing
End-to-end testing is a software testing methodology that evaluates the functionality and
data flow of an application across multiple subsystems to ensure they work together
from start to finish. Simply testing a single component may not be enough; instead,
performing end-to-end testing verifies the application from start to finish by putting
all its components together. This approach can help ensure that the application meets
overall requirements and functions as intended in a real-world scenario [46].

2.22 Containerization
Containerization is a form of operating system virtualization. It packages everything
needed to run an application or service into a single unit [47]. The Open Container
Initiative, OCI, defines industry standards around the format of these containers. In
addition to defining standards for the format of the containers, the OCI Runtime spec-
ification defines how these images can be run once unpacked to a Runtime filesystem
bundle [48]. Docker is a platform that can be used to build, share and run container
application [49]. containerd is an example of a runtime complying to the OCI Runtime
Specification [50]. It is utilized by Docker as its runtime [51]. It is also included in some
Kubernetes distributions, including K3s [52]. Kubernetes is a platform for managing
containerized workloads, including both declarative configuration and automation [53].

2.23 Infrastructure as Code
Infrastructure as Code, abbreviated IaC, is a descriptive model of computing infrastruc-
ture, and can be used to provision and support infrastructure [54]. Similar to how the
same source code generates the same binary, with IaC, the same source code generally
generates the same environment every time it deploys [55].

2.24 Continuous Integration and Continuous Delivery
Continuous Integration is a practice where the integration of code changes from mul-
tiple contributors in a single software project is automated. It allows developers to
frequently push changes to a central repository, which will trigger builds and tests to
run to verify integrity [56].

Continuous delivery pipelines extend the idea of continuous integration by deploy-
ing all code changes that pass both the test and the build stage. Continuous delivery

12 CHAPTER 2. THEORY

allows for defining at which interval the software should release, based on business
needs [57].

2.25 SCRUM

SCRUM is a framework designed to enhance team collaboration on complex tasks
through the use of short, iterative work cycles known as Sprints. By enabling teams
to complete tasks in small segments, SCRUM promotes better organization and effi-
ciency in tackling complex projects. The SCRUM framework is made up of a SCRUM
team, consisting of a Product Owner, a SCRUM Master and Developers who all follow
specific roles, events, and artifacts defined in the SCRUM Guide [58] [59].

2.25.1 SCRUM Master

The SCRUM Master serves as the facilitator for the development team, ensuring that
the SCRUM framework is followed. The intention of this role is to eliminate roadblocks
and support the team in achieving their goals efficiently [59].

2.25.2 Product Owner

The Product Owner of a SCRUM team represents the interests of the stakeholders and
is responsible for managing the product backlog and prioritizing work [59].

2.25.3 Development Team

The Development Team is a group responsible for delivering a potentially releasable
increments of product at the end of each Sprint. The development team works alongside
the SCRUM Master and Product Owner, and has a crucial role of driving the project’s
progress and ensuring alignment with the stakeholders’ expectations and product vision
[59].

2.25.4 Sprints

A Sprint is a fixed time period containing a number of SCRUM events. These SCRUM
events are structured meetings with the goal of organizing work, gathering feedback,
and improving both the product and the process continuously. A Sprint typically lasts
one to four weeks and aims to reach a specific goal set by the team. Prior to the Sprint, a
common goal is established. Changes made to the Sprint that could endanger the Sprint
goal should be avoided [59]. Figure 2.25.1 illustrates the events within a Sprint that
form a cycle when executing sprints in succession.

CHAPTER 2. THEORY 13

Figure 2.25.1: Sprint cycle [60]

2.25.4.1 Sprint Planning

Sprint Planning is an event that comes at the start of each sprint, with the purpose
to define the work that needs to be done. During planning, the team sets goals for
the Sprint, plans how the goals are going to be achieved, and distributes work to the
members. The backlog of the product is used in this phase to see what work is remaining
and what should be prioritized [59].

2.25.4.2 Daily stand-up

The daily stand-up is a 15-minute event held every day where developers gather to
discuss their daily tasks. This meeting promotes open communication, simplifies com-
plexities, and reduces the need for additional meetings [59].

2.25.4.3 Sprint Review

A Sprint Review is the second to last event of a Sprint. It is a meeting held between the
product owner, the development team, and stakeholders if any. The purpose of a Sprint
Review is to showcase what work has been done, gather feedback and identify the next
steps. It ensures that everyone is up to date and makes it easier to plan future work [59].

2.25.4.4 Sprint Retrospective

A Sprint Retrospective is the final event in a Sprint. The purpose of it is to increase
quality and effectiveness. During a Sprint Retrospective, the team identifies what went
well, what should continue, and what needs to change, regarding individuals, interac-
tions, processes and tools. The most impactful improvements are then expected to be
addressed as soon as possible, and may even be added to the backlog for the next Sprint
[59].

14 CHAPTER 2. THEORY

3. Method

This chapter covers the methods used during the project for work organization and
application development.

3.1 Workflow
The work for the project was organized in one week sprints, using the SCRUM frame-
work as an approach to organizing the work. The project consisted of four phases,
where each of the phases were expected to be executed in parallel. The start of the
project was however mainly used to understand the problem space, and attempt to de-
sign a user interface for the application in dialogue with the client. The four phases that
were defined are Preliminary Report, Design, Development and Thesis.

3.1.1 Daily stand up
Even though daily stand ups are part of the SCRUM framework, the group ignored this
activity. The group found that a planned activity for sharing what was being worked on
and any eventual challenges was unnecessary as both progress and challenges naturally
surfaced in other contexts. It however did not cause too much disturbance to other group
members’ work.

3.1.2 Sprint Planning
To plan activities for upcoming sprints, the group held non-formal meetings to discuss
which tasks should be included. Throughout the project, the group maintained a backlog
consisting of both bugs and unfinished user stories. These were prioritized and sorted
in the backlog by importance in relation to the project, with the planned user stories
inferred through the use case diagram considered most important. Smaller bugs or
tasks would also be included in sprints to increase scope whenever time allowed it. The
created issues did not include estimates.

3.1.3 Sprint Review
During the project, the group organized meetings with the client every two weeks. For
each of these meetings, a document outlining the work done in the previous two sprints
was prepared. This document was presented to the client and supervisor at the meeting,
allowing them to give feedback either during or after it.

3.1.4 Sprint Retrospective
Following the end of each sprint, a retrospective meeting was held. During these meet-
ings the group evaluated the processes and work methodology, reflecting upon the ap-
proach. The retrospective documents were made using a template in Jira, and organized
in a folder in the Jira project pages.

15

16 CHAPTER 3. METHOD

3.1.5 Logging work
At the end of each work session, the hours spent on different tasks were logged. Using
the time tracking feature in Jira, the group added work logs to each issue. To gain an
extra overview in addition to issue work logs, the TimeSheet Tracking for Jira app was
used.

3.1.6 Communication
Communication was a core part in the group’s organizational workflow. To facilitate
this, Discord, a VoIP platform that supports text chat, voice chat, screen sharing, and
file sharing, was used. These features enabled a productive environment while working
digitally.

Email communication and digital meetings over Teams were the main strategy for
communicating with the stakeholders. In addition to these meetings, meeting notes and
Sprint Review documents were shared on Confluence, which allowed for asynchronous
feedback on the presented work.

3.1.7 Commit message convention
To streamline the authoring of commit messages, the group decided to follow version
1 of the Conventional Commits specification. Along with the specification, the group
attached issue identifiers from Jira, allowing the GitHub integration to show which com-
mits are tied to which issues. Combined with environment deployments in GitHub, it
also allowed Jira to display whether or not an issue was published.

3.1.8 Code formatting
The Eclipse and Prettier code formatters were utilized during development. The Eclipse
formatter was used for Java code, whilst Prettier was used for TypeScript, HTML and
CSS code. They were set up to use shared configurations, which their respective editor
extensions integrated into the workflow. The extensions were used to automate the
process of ensuring consistent looking code.

3.2 Design
In the early phases of the project, design was prioritized. Even though it lowered in
priority further down the line, it was an iterative process throughout the whole project.
This section discusses the design process and the guidelines followed during the devel-
opment process.

3.2.1 Design guidelines
A simplistic theme was chosen for the application to balance out the detailed look of
the map. To achieve this, a minimalistic component library was used. These com-
ponents were combined with standardized values for spacing, rounding, shadows and
other styling options. The color scheme consists mainly of a grayscale palette taken
from TailwindCSS and a generated blue one based on iSi’s branding color. The colors
used can be seen in the palette in Figure 3.2.1. As a measure to balance the interface
with the map, it has been important to avoid overloading the application interface with
excessive content. This is also in line with accessibility principles outlined in WCAG 2
about minimizing the amount of content, helping reduce cognitive overload and mini-
mize focus loss among users [61].

CHAPTER 3. METHOD 17

Figure 3.2.1: Color palette

18 CHAPTER 3. METHOD

3.2.2 Diagrams
As a tool for understanding the problem space, several diagrams were drafted. To map
which use cases needed to be handled by the application, use case diagramming was
utilized. An ER diagram was also used to plan the structure of data that should be per-
sisted in the database. In addition, other one-off diagrams were made to communicate
ideas related to the problem space. Diagrams were generally made using diagrams.net.

3.2.3 Wireframes
With the use cases and functionality identified, a wireframe was produced. Wireframes
were made to prototype the look, feel and functionality of the application. To make
these wireframes, Figma was used. A component library was added in Figma to help it-
erate on the UI. The mobile UI prototyped for drivers can be seen in Figure 3.2.2. Figma
offered a real-time editing experience, allowing a quick and collaborative iteration on
concepts.

Figure 3.2.2: Figma wireframes for UI used by drivers on mobile

3.2.4 Design feedback
To ensure alignment on both design and the application workflow, we collected feed-
back on our wireframes from iSi. This played an important role in the project and
further improved our understanding of the problem the application is trying to solve.

3.2.5 Universal design
The design of the application, while branded with iSi colors, needs to satisfy universal
design requirements. To achieve this, the application was designed with the contrast
ratio of colors in mind, increasing visibility. In addition, to increase the users’ ability
to perceive the interface, well known symbols and colors are utilized for statuses and
recognizable UI elements. Furthermore, there are labels and error feedback on all forms
in the application to help users avoid and correct mistakes.

3.3 Testing
This section covers the different types of testing done throughout the development pro-
cess.

CHAPTER 3. METHOD 19

3.3.1 User testing
With the development of a feature-rich application, obtaining feedback on the workflow
is essential. To address this, we established a demo environment where iSi could evalu-
ate the workflow and performance of the application. This allowed them to identify and
report any potential issues or inefficiencies in it.

3.3.2 Unit testing
To prevent regressions and increase the understanding of the problem, unit tests are
used. Unit tests are authored using JUnit 5, with both negative and positive tests.

3.3.3 Integration testing
As another measure for verifying the understanding of problems, integration tests are
used. Integration tests are authored with idempotency as a goal, to allow re-runs with
predictable results. These tests are written using JUnit 5 in combination with Spring
Boot Test. They verify that defined endpoints work within expectations for both read
and write operations. In addition, there are persistence tests that verify that the defined
entities can successfully be stored in and retrieved from the database.

3.4 Artificial intelligence tools
To explore possible or alternative solutions for programming related tasks, artificial
intelligence tools like ChatGPT and GitHub Copilot were used. Copilot, and its IDE
integration, were used to suggest solutions to problems, as well as to provide potential
ways to complete code. In addition to this, ChatGPT was used to rephrase and spell
check text.

3.5 Technologies
This section covers the various technologies chosen for this project, how they were used
and why.

3.5.1 Solid.js
Solid.js is the UI framework used to develop the frontend application. UI is defined
using the JSX syntax with functional components and renders to HTML in the browser.
The signal primitive is used to trigger re-renders of UI elements, these signals change
through events and data fetching.

3.5.2 TailwindCSS
To style the application, TailwindCSS was used. TailwindCSS is a utility CSS frame-
work that provides a default set of utilities for design tokens such as font size, font
weight, sizing and colors. The colors were renamed to semantic names, and the iSi
brand colors were brought in as well. In addition to the built-in variant options like
hover and focus, some extra variants were made that are bound through signals in
Solid.js using Class Variance Authority.

3.5.3 Component library
While TailwindCSS provides utilities for styling the application, a set of reusable com-
ponents were defined and used throughout the application. Some components were
imported from solid-ui, an open-source library of components built using headless UI

20 CHAPTER 3. METHOD

component libraries. solid-ui uses both the Kobalte and Corvu component libraries, and
are as a result adopted in this project. These component libraries are authored following
the WAI-ARIA guidelines [62] [63]. The styles of these components were adjusted to
ensure consistency with the application theme. In addition to imported components, a
number of components were custom made for domain specifics as well as repeated UI
elements within those, often composing components from the aforementioned libraries.

3.5.4 Map rendering
To render the geographical data in a map, two different libraries were tested during
development. In a meeting with iSi, Leaflet was suggested as it was the library they were
most familiar with, meaning they could provide help if needed, as well as easily reuse
the results of the project. The other alternative was OpenLayers. While OpenLayers
uses a more object-oriented approach for their API when compared to Leaflet, it does
have more functionality built-in, such as a WebGL renderer and a WKT formatter. iSi
mentioned that they were familiar with this library as well.

3.5.5 Spring Boot
Spring Boot was used to develop the backend application. iSi has backend systems
utilizing Java and Spring Boot already, and the group had previous experience using the
framework, making it a good fit. The Spring Boot web starter was used to develop a
web server using REST as the architectural pattern. Regular HTTP methods with JSON
requests and responses are mainly used, but for real-time data, server-sent events were
utilized. Server-sent events also emits JSON-encoded events. These events also follow
the REST pattern, where each message transmitted is self-contained and independent.
Spring HTTP interfaces were also used to integrate with the read API for NVDB.

3.5.6 Database
Spring Boot offers multiple ways to store data. In this project, PostgreSQL was used
together with the PostGIS extension. The PostGIS extension extends PostgreSQL to
support geospatial types, functions and indices. To communicate with the database
from the backend, the approach was divided. Where data retrieval or data insertion had
more complex requirements, it was opted to use the Spring Data JDBC for native SQL
queries with manual row mapping logic. In simpler cases, Spring Data JPA was used
as an ORM, leveraging its top-down approach for working with database entities as
objects.

3.5.7 Database migrations
In order for the application to work with the database, the schema has to be created.
Spring Data JPA does provide mechanisms for creating and updating this schema based
off entities, but it is not able to correctly identify the intention of a change such as
when renaming a field. To maintain full control over the database schema, Liquibase
was used to define SQL migrations with both DDL and DML to evolve the schema.
The migrations were executed in an ordered fashion, using a naming convention with a
manually assigned sequence number as the prefix and a short descriptive name.

3.5.8 Geospatial types and transforms
The Java Topology Suite, abbreviated JTS, was used for geospatial types in the back-
end. JTS combined with Hibernate Spatial and Spring Data JPA allows entities to have

CHAPTER 3. METHOD 21

properties of geospatial types that get persisted in the database. JTS also provides opera-
tions on geometries such as calculating intersections. Proj4j was used for transforming
points between different reference systems. Proj4j does however not support vertical
transforms.

3.5.9 Containers
To package application artifacts and run dependant technologies, containers are utilized.
For development and testing, Testcontainers was made use of to allow quick verification
of integration with the applications dependencies using temporary containers that are
launched during the application bootstrap phase. To allow working with containers
with durable storage, a docker compose file was set up, eliminating the need to recreate
data between application restarts.

Application artifacts use different technologies for building. Spring Boot applica-
tions utilize Jib as a tool for building container images. The frontend, on the other
hand, utilizes a Dockerfile to configure a NGINX container with static assets produced
by building the application.

3.5.10 Object Storage
To support uploading images and files to a persistent store, an object storage system
was used. MinIO was used, and allows testing locally as well as keeping it similar in
a deployed environment. iSi already uses the object storage service from Amazon, S3,
which MinIOs API is compatible with. This compatibility allows for using the same
code and logic with S3 by changing configuration files.

3.5.11 Documenting APIs and code
The OpenAPI specification was used to document public facing HTTP APIs. HTTP
interfaces in the client package are annotated with metadata that is used to generate
a OpenAPI v3 schema for endpoints. In addition to direct annotations in the client
package, authorization related logic and annotations are added in the implementation.
Internal API surfaces are documented using Javadoc and JSDoc for backend and fron-
tend respectively.

3.5.12 GitHub Actions
GitHub Actions was used to implement a CI/CD pipeline in the project. When code
is pushed to the repository, a workflow run will be triggered to run tests and verify
that building the application works. Deployment is run in a release workflow which
is triggered by a tag being pushed to the repository. This delivery pipeline is not run
as frequently to avoid noise. The workflows re-use actions built by the community for
setting up tool chains such as Gradle, PNPM, kubectl and Helm.

3.5.13 Ansible
The deployment requires a host server to run on. NTNU provided a Ubuntu server
that is used as a demo environment. Ansible playbooks were defined to configure the
server with the necessary components. The playbooks will install or uninstall the K3s
distribution of Kubernetes, along with integrations for ingress, managing certificates,
domain name registration and a dashboard.

22 CHAPTER 3. METHOD

3.5.14 Kubernetes and Helm
Kubernetes is used as a container orchestrator, and runs the application in a demo en-
vironment. Kubernetes resources can be defined using IaC, in the YAML language.
While maintaining raw YAML definitions is possible, in order to safely store them in
version control the secrets have to be removed. To work around this, Helm is used to
group these resources into a reusable package. Using Helm also allows passing values
to the package, which is used to allow having secrets defined externally to the resources
themselves.

3.5.15 Chrome DevTools
Chrome DevTools was used for both debugging and profiling the frontend application.
The profiler can be used to record how much time is spent in specific parts of a web ap-
plication, measured in milliseconds. Figure 3.5.1 showcases a recording from rendering
25.000 railings using the Canvas renderer in Leaflet.

Figure 3.5.1: Recording of rendering 25.000 railings using Canvas renderer in Leaflet

3.6 Project Structure
The project is structured as a monorepository, meaning all projects or modules are part
of the same repository. To structure modules within this repository, modules are cate-
gorized as infrastructure, applications or packages. Each of these have their respective
folders, containing its modules. The structure is illustrated in Figure 3.6.1.

Figure 3.6.1: Overall project structure

3.6.1 Module structure
In addition to structuring modules in categories, module code is also organized in a
specific way. For frontend code, the organization is inspired by the Bulletproof React

CHAPTER 3. METHOD 23

project, which groups code into features. The organization for backend Java code is
structured similarly, using package namespaces to group related code. Figure 3.6.2
shows how the frontend code is organized, while Figure 3.6.3 shows how the backend
code is organized.

Figure 3.6.2: Frontend code folder structure

Figure 3.6.3: Backend code folder structure

3.6.2 Client package
In order to separate outbound data objects and internals, the public API surface is cov-
ered in a separate package. The package contains Spring HTTP interfaces, which can
be used to create API clients to interact with the backend in external systems. The
HTTP interfaces define which data transfer objects are in the expected response. The
definitions of these data transfer objects are also located within this package. HTTP
interfaces are implemented by the backend application. In addition, the package gen-
erates TypeScript definitions based off the Java classes which can be consumed by the
frontend application.

3.6.3 Application for initializing
In addition to the main backend application, some of the responsibility is split out to a
separate application. This application is responsible for running SQL migrations using
Liquibase, executing both DDL and DML scripts to modify the database schema and
its records. The application is expected to be run and successfully exit prior to starting

24 CHAPTER 3. METHOD

the backend application. The application will exit once the migrations are successfully
applied.

4. Results

In this chapter, the results of the project will be covered. In addition to an overview
of the developed software, results such as diagrams and map rendering performance
findings will be presented.

4.1 Use case diagram
To map the various uses of the system, a use case diagram has been iterated on. Figure
4.1.1 shows the end result of the use case diagram, after a number of iterations. Some of
these use cases are handled by an external system, Vegkart, but are included to provide
an overall view of the system’s use. Additional use cases were added in later stages of
the project. The diagram in full size can be found in Appendix C.

Figure 4.1.1: Final use case diagram

4.2 ER diagram
As a strategy for planning how information should be stored in the database, an entity
relationship diagram was iterated on. The diagram was built iteratively, adding details
to those entities that were certain and reiterating on others. Figure 4.2.1 shows the

25

26 CHAPTER 4. RESULTS

final result of the ER diagram and serves as a close representation of both the database
schema and model classes in code. In addition, a full size version can be found in
Appendix C.

Figure 4.2.1: Final ER diagram

4.3 Transforms between vertical coordinate reference
systems

The GNSS system reports height in ellipsoid height. It also reports undulation values
that allows finding the Z coordinate of the cars position. However, these undulation
values are not in terms of the vertical CRS used by NVDB. To solve this, a parser
for reading height reference models published by The Norwegian Mapping Authority
is implemented. The parser populates a grid of heights from a binary file in Gravsoft
format, ported from a Python code sample from The Norwegian Mapping Authority
[64]. Using a latitude and longitude pair, the undulation value for the given location
can be found. Subtracting the measured ellipsoid height by the undulation from the
reference model gives the correct height in the reference system represented in the file.
While the parser is generic for files in the same format, it is only used to calculate
NN2000 height using the ellipsoid height from the GNSS. The implementation was
needed due to the lack of support for vertical transformations in Proj4j, which is used
for transforming latitude and longitude values to the correct CRS. A visualization of the
file’s content using code adopted from the The Norwegian Mapping Authority is shown

CHAPTER 4. RESULTS 27

in Figure 4.3.1.

Figure 4.3.1: Visualization of NN2000 height reference values [64]

4.4 Application
The software developed is a responsive web application which features authentication,
multiple views for project, vehicle, and user management, as well as an interactive map.
In this section, all features and how they relate to each other is described.

4.4.1 Authentication
The use cases include two user roles, drivers and planners. In order to differentiate be-
tween these roles, authentication and authorization was a requirement. In addition, user
information is intended to be stored as audit data on various entities. To support these
use cases, a user database is set up. The user account table includes hashed passwords,
allowing users to log in using email and password. Successful sign ins will produce
a longer lived refresh token and a shorter lived access token. The tokens can be used
to identify the user, where the access token’s purpose is authorization for endpoints.
Refresh tokens, on the other hand, are meant to be used to retrieve new access tokens.
This allows users to stay logged in unless the refresh token has expired. The tokens are
JWTs and are signed using different secrets based on the type of token. Spring Security
is used to handle authorization and is configured using annotations. The sign in form is
shown in Figure 4.4.1.

4.4.1.1 Password resets

To allow users to change their passwords, a flow for resetting the user password is set up.
The user may from the sign in screen navigate to the forgot password screen, allowing
them to enter their email to receive a code for resetting their password. Confirming this
code will allow the user to define a new password. The steps for resetting passwords
are shown in Figure 4.4.1.

28 CHAPTER 4. RESULTS

Figure 4.4.1: Authentication workflow

4.4.2 File uploads

Certain features include the ability to upload images or files. In order to allow these
uploads, a generic service for uploading files to buckets in MinIO is set up. The service
enables users to upload files such as images which can be referred to in other entities.
Files are stored with randomly generated names, and can be downloaded at a later stage
using a reference. File uploads are handled through the backend to enable re-use of
authorization logic. File uploads are enabled through the frontend using a custom-made
Dropzone component, allowing users to drag and drop files into it or alternatively click
it to select a file in a dialog.

4.4.3 Theme

The application supports changing its theme, while retaining iSi brand colors as accent
colors. There are two themes defined, light and dark, which default to the system theme.
The user can however choose to change this theme in a menu. It is intended that drivers
should be able to use this application actively in the capture process, which implies that
drivers may use this application in different light levels. Changing the theme of the
application changes the shade of regular UI elements as well as inverts colors in the
map. Scenarios where this may be useful include night work and tunnel driving. Figure
4.4.2 shows the different themes.

CHAPTER 4. RESULTS 29

Figure 4.4.2: Toggling of dark theme

4.4.4 User management

The application includes the capability of managing user accounts. Planners can view
and manage user accounts in dedicated pages listing their details as well as providing
options for editing them. The position of each user is also displayed with markers in
a map to the side of the user list. Additionally, a user’s previous trips can be viewed
in a list ordered by recency. The list includes indicators of the trips’ results. Figure
4.4.3 shows how users are listed, as well as the map with position markers. Figure 4.4.4
shows the page for editing users, as well as viewing their previous trips.

30 CHAPTER 4. RESULTS

Figure 4.4.3: User overview page

Figure 4.4.4: User details page

4.4.5 Vehicle management

Similar to managing user accounts, vehicles can be managed in the application. Plan-
ners can view and manage vehicles in dedicated pages for browsing and editing vehicle
details. Vehicles can also be viewed with position markers in the map, to the side of
the list. Editing vehicles and viewing the vehicles’ usage in trips is also possible in a
similar way to how it is done for user management. Figure 4.4.5 highlights how the
vehicles are listed in the application.

CHAPTER 4. RESULTS 31

Figure 4.4.5: Vehicle overview page

4.4.6 Project management

The main view in the application is the project view. It is built using a three level
hierarchy consisting of projects, project plans and trips. This system, including its
naming scheme, was agreed upon after discussion with iSi, as this is what they are
currently familiar with. A project consists of one or several project plans, and a project
plan consists of one or several trips. Project plans are multi-day work orders, which
consists of a set of guardrails to capture. Trips are the work trips drivers go on to
capture the guardrails assigned to a project plan.

Projects are categorized by a computed status. The statuses for a project are based
on the current position in terms of their defined duration interval. A project may be
defined without an end-date, but generally if the current date is between the project
duration interval it is considered ongoing. Otherwise, it is either considered previous
or upcoming based on the same interval. These statuses power a grouping mechanism,
where lists of projects can be expanded by their status. Figure 4.4.6 shows how this
grouping mechanism works for browsing projects.

32 CHAPTER 4. RESULTS

Figure 4.4.6: Project browsing menu with projects grouped by status

When viewing a project, its related data is displayed using a similar grouping mech-
anism. These groups show the project plans, trips and guardrails. Selecting one or more
plan will cause both the trip and guardrail data to filter using the selected plans. The
project view with this grouping mechanism, as well as with a plan selected to filter, is
highlighted in Figure 4.4.7.

Figure 4.4.7: Frontend project view with a selected plan

4.4.7 Guardrail data import
The main requirement for the project was the planning aspect. As highlighted by the
use case diagram, NVDB already provides an application where users can filter and find
road objects effectively. This application is called Vegkart. Replicating the functionality
already provided by Vegkart would be redundant, since it already works for this part of
the planning workflow. As a result, it was decided that the planning tool should accept
a reference API URL for a given selection that can be used to import data from NVDB.

CHAPTER 4. RESULTS 33

These API URLs can be found by the planner in the Vegkart interface, allowing for
copy and paste directly to the planning UI. A custom-made API client made using
Spring HTTP interfaces uses the given reference URL to copy parameters, though with
some overrides such as inkluder=alle to include all data.

Importing can be done both when creating a project plan and when updating it. The
import will use the reference URL to import necessary guardrail data as well as attached
road segments and persist it in the database. When updating a project plan, guardrails
can optionally be re-imported in case of errors and replaces previously stored guardrails
for a plan. Figure 4.4.8 shows the dialog for creating a project plan.

Figure 4.4.8: Dialog shown when creating a new project plan

4.4.8 Guardrail geometry directions

Imported guardrail data from NVDB were in some cases observed to have reversed ge-
ometries. One of the goals in the project was to render the driving direction required
to capture a guardrail. However, in some cases, the geometry of the guardrail was op-
posite to the driving direction. This reversion impacted rendering the driving direction
for guardrails since it is inferred by the order of the points in the geometry. To miti-
gate this, an algorithm that compares points in the guardrail geometry with points from
attached road segments has been tested. However, the flipped direction appeared to be
random resulting in geometries not being possible to correct without deeper analysis of
metadata from guardrails and its attachment to road segments. Figure 4.4.9 shows how
guardrail geometries are rendered in the wrong direction when compared to the road
networks direction, where a guardrail on the opposite side of the road is rendered with
arrows pointing in the same direction.

34 CHAPTER 4. RESULTS

Figure 4.4.9: Comparison of railing geometry directions with road network direction

4.4.9 Processing capture logs

The data capture process produces logs that need to be parsed and processed in order
to allow displaying capture progress. The GNSS and each of the cameras produce their
own separate log files. The condition for considering a meter of a guardrail’s segments
captured is the existence of an image in the correct direction. As a result there is a
need to merge these log files into a format that contains information about all these
parts to proceed with matching the capture to railings. The log files are processed
into an intermediary structure containing information gathered from the different logs.
Figure 4.4.10 shows the logic behind processing these capture logs into the intermediary
structure.

Figure 4.4.10: Flow chart displaying the logic used when processing capture logs

CHAPTER 4. RESULTS 35

4.4.9.1 Uploading capture logs

To simplify the process of receiving feedback from iSi, a feature in the web application
that allows for uploading of capture logs is implemented. This feature allows users with
the necessary GPS and camera logs to upload necessary data to simulate a replay. When
uploading a new capture log, users encounter four designated file inputs for submission
of necessary files. This feature was essential for establishing a complete workflow loop
within the application, making it possible for iSi to test and provide feedback. A page
for uploading and viewing uploaded capture logs is shown in Figure 4.4.11.

Figure 4.4.11: Page for uploading and viewing uploaded capture logs

4.4.10 Trips and replays of capture logs

Trips and the execution of them are a core part of the capture process. In order to verify
the concept for executing these without integrating with the car, a replay system is
introduced. This replay system is intended to be replaced by an in-car solution, which
can give the driver real-time feedback on critical metrics. Drivers are able to choose
which of the processed capture logs to use as a replay for the trip. The form in the
dialog will default to their set preferred vehicle, which can be selected in the project
overview, displayed when logging in. The driver can optionally change this vehicle
without overriding the preference. The dialog a driver is shown when starting a trip is
shown in Figure 4.4.12.

36 CHAPTER 4. RESULTS

Figure 4.4.12: Dialog shown when starting a new trip

The replay system steps through the processed logs in a configurable speed. The
stepped through log entries are emitted as events. A service managing these replays
subscribes to these events and forwards details from the capture to the frontend using
server-sent events. The forwarded events inform the frontend about the latest position
in the capture, along with additional metrics, such as the GPS signal, and the amount of
images and meters covered. The frontend updates a signal containing the latest capture
details allowing both the map and indicators to re-render with this information. The
indicators in Figure 4.4.13 are those updated by the latest capture details, in addition to
position updates to the vehicle marker.

Figure 4.4.13: Indicators displayed in the trip view

In addition to these events being forwarded to subscribed clients, they are also emit-
ted internally. Capture events are emitted at the same rate internally, allowing other
parts of the system to subscribe to changes in position for ongoing replays. There is
also an internal API available for getting the latest capture details. This API makes it
possible to store the latest details from a trip’s capture, making it accessible after a trip
has ended.

CHAPTER 4. RESULTS 37

4.4.11 Trip notes
As part of the trip execution, drivers have the ability to add notes. In cases of events
occurring during a trip, drivers can add a note to it describing the event. Drivers may
also edit and delete notes after creation. Using the latest position from the replay, the
notes are displayed in the map with synced select interactions. This allows the user to
press a note in the map, resulting in it being highlighted in the list or vice versa. Figure
4.4.14 shows the selection of a trip notes marker, with the appropriate list element also
highlighted.

Figure 4.4.14: Trip note markers and selection of them

4.4.12 Vehicle and user status
Both vehicles and users have statuses. These statuses are inferred from their assign-
ment to ongoing events. Vehicles may be assigned to a plan, leading to its availability
changing in that time period. Users, on the other hand, only change their status based
on whether or not they are currently involved in an active trip. When users are on a
trip, a button for navigating to the active trip is shown in the header. This button is only
displayed when the user is not in the current trips view. The button is shown in Figure
4.4.15.

Figure 4.4.15: Button displayed when a user is outside their active trip

38 CHAPTER 4. RESULTS

4.4.13 Matching capture data to guardrails
Capture data has to be matched to the planned set of guardrails. In order to visualize
and track what has been captured, a process for matching captured data to guardrails is
necessary. The application uses log entries in the aforementioned intermediary struc-
ture in a procedure that compares the data to the guardrails previously imported. The
procedure checks whether or not a shape representing the camera’s FOV intersects a
railing using JTS, Figure 4.4.16 highlights how this matching works. This works for
guardrails that have their own geometry, however for those who do not, special pro-
cessing is needed. The procedure returns a match result containing the side of which it
was matched on, which is inferred in two ways. For railings with their own geometry,
the camera FOV side is used. However, for those without own geometry the guardrail
placement metadata is used in combination with the driving direction according to the
nearest road segment.

Figure 4.4.16: Diagram displaying how guardrails are matched to captures

Trigonometry is used to infer the driving direction of the vehicle with respect to the
road segment. The matching process finds two nearby points from the segment, and
uses it as a vector. Using this vector, it will compare the angle of the vector to the angle
of the heading direction of the car as reported by the GNSS system. If these two angles
are within 180 degrees of each other, they are considered to be in the same direction.
Figure 4.4.17 shows how this inference works graphically.

The matching process produces coverage metrics. Matching the railing will yield
two length coverage ranges for the railing, as well as one length coverage range for the
segment. As parts of the railings may be unreachable, progress is measured in terms of
the road segments. These ranges are approximate start and end indexes along the length
of the geometries. For segments a range is generally 1 meter long, with the exception
of starts and ends of geometries. While for a railing the coverage is the start and end
index of the intersecting lines from the camera FOV shape.

A 2D intersection may not be enough to identify railing matches in all scenarios.
The elevation of a car should generally be within a given delta to eliminate poten-
tially matching railings at the wrong elevation when crossing overpasses or bridges.
To mitigate this, the elevation of a car is compared to the nearest segment. Since the
car elevation is measured in ellipsoid height by the GNSS, it is transformed into the
NN2000 vertical CRS used in SRID 5973 using a height reference model provided by
The Norwegian Mapping Authority using the approach outlined in Section 4.3.

CHAPTER 4. RESULTS 39

Figure 4.4.17: Diagram displaying the comparison of the cars vector and the roads
vector

4.4.14 Calculating guardrail capture grade
The capture data produced by the matching process is used to determine the capture
grade of guardrails. Capture grade is measured by the sum of all merged segment cov-
erage ranges compared to the length of the segments attached to a railing. Figure 4.4.18
displays how the ranges are merged. The road segments attached to a railing are the
stretches that are expected to be driven, which is especially the case in scenarios where
the distance to a railing is too large to capture it from the road. The completion grade
is used to set railing status to one of TODO, ERROR or OK as shown in Figure 4.4.19.
The threshold for considering a guardrail captured, or OK, is 95%, where anything less
than 95% but greater than zero is considered ERROR.

Figure 4.4.18: Merging of segment coverage ranges

Figure 4.4.19: Guardrail variants based on completion grade

40 CHAPTER 4. RESULTS

4.4.15 Interactive map for viewing guardrails
To allow both drivers and planners to get an overview of the task at hand, an interactive
map for viewing guardrails to be captured is implemented. The guardrails include hover
effects to emphasize the ability to click them to show a popup where its details are
shown. Figure 4.4.20 shows how the railings are rendered in the frontend, along with
its popup shown on press.

Figure 4.4.20: Rendering of guardrails in the map where one is clicked

4.4.16 Viewing images captured of guardrails
After a capture has been stored, the images from that capture can be viewed in the
frontend application. Due to the lack of actual image data, the previews are placeholders
with the names of the files from the given location instead. The images are divided into
the stretches related to guardrails, and users can use a slider to find images from an
approximate location along that stretch as shown in Figure 4.4.21. This is also shown
in the video in Appendix F.

4.4.17 Position updates for users and vehicles
A service for positions is implemented by listening to capture events. Capture events
emitted by the replay system is subscribed to by a position service, which holds the
latest position for both vehicles and users. These positions are keyed separately for
vehicles and users, allowing defining a subscription to specific keys. The positions
stored in the service are subscribed to using server-sent events in both the vehicle and
driver pages, as well as the dashboard. The state of this service is kept in-memory, not
saved to persistent storage. Various uses of the position updates can be seen in the video
in Appendix F.

CHAPTER 4. RESULTS 41

Figure 4.4.21: Screenshot from the UI displaying how images of guardrails can be
viewed

4.4.18 Follow mode for in-vehicle viewing
Maintaining a good overview of remaining guardrails while driving can be challenging.
To avoid requiring the driver to continuously update the maps center and zoom, a mode
where the map view centers around the cars position is developed. In addition to zoom-
ing, the mode will rotate the map, ensuring the heading direction of the vehicle points
upwards in the map. How this mode works can be seen in the video in Appendix F.

4.4.19 Responsive layouts
To support usage on mobile and tablet devices as well as desktops, layout shifts are
configured with various screen size breakpoints. The breakpoints collapse and expand
content in a number of ways to make content presentable for the current screen size. In
some scenario,s separate presentations are made, such as the mobile navigation menu
shown in Figure 4.4.22.

In addition to layout adjustments for supporting smaller viewports, resizable pan-
els are added to some pages. Both the user and driver pages utilize resizable panels,
allowing planners to customize the layout to increase or decrease size of the map by
dragging a handle between panels. Figure 4.4.23 shows the user page configured with
different layouts using the resizable panel handle. The configured sizes are persisted
locally in the browser, and restored on page load. The behaviour of responsive layouts
is showcased in the video in Appendix F.

4.4.20 State management
The URL and browser storage APIs are used for state in the frontend application. For
both navigation state and filtering options such as hiding guardrails, the browser URL
is used. In addition, preferences such as the preferred vehicle, use browser storage APIs
to allow persisting these preferences across application loads. As a result, a user can
refresh the page and resume with the same settings. An exception to this is form state,
which is intentionally in-memory and not recoverable between refreshes.

42 CHAPTER 4. RESULTS

Figure 4.4.22: Navigation menu for small or mobile viewports

Figure 4.4.23: Responsive layout used to configure the users page with different map
widths

CHAPTER 4. RESULTS 43

4.4.21 Reporting deviations
For iSi to be able to track deviations in the same system, an API has been prepared
for reporting deviations to the application. The API is designed to be simple, with the
goal of illustrating how it can be integrated with the matched railing capture data. The
deviations reported can be expanded in the project details view, as shown in Figure
4.4.24. The stretch in which the deviation was discovered is displayed, along with the
type. These deviations can be clicked to navigate to the capture where the deviation was
identified, the page discussed in Subsection 4.4.16.

Figure 4.4.24: List of deviations displayed after they have been reported in the UI

4.4.22 Dashboard
To allow planners to gain a quick overview of the current work status, a dashboard has
been prototyped. The dashboard displays an aggregate progress for all ongoing projects,
as well as the latest positions of vehicles and active trips. In addition to this, deviations
reported the last week as well as meters captured by day is presented in graphs. Figure
4.4.25 shows the dashboard highlighting these features.

4.4.23 Global search
The number of railings may be large, thus finding a specific railing may be challenging.
In order to simplify the process of finding information with knowledge of identifiers
for either road segments or road railings, users can search in a menu that queries across
multiple entities. The same search menu can be used to search for users, projects and
vehicles. The search is an SQL query that returns a polymorphic JSON structure using
a discriminated union. Figure 4.4.26 shows how results are displayed when searching
using this menu. The results shown can be navigated to using both mouse and keyboard,
where clicking or pressing enter navigates to the selected search result.

4.4.24 Internationalization
Though not a requirement, strategies for internationalization are used. Text values in
the frontend refer to keys in a translation file. To format numeric values, the JavaScript
Intl global object is used, using the configured locale. To format date values, locale-
specific formatters are used in day.js. These functions are exposed through a re-usable
hook.

44 CHAPTER 4. RESULTS

Figure 4.4.25: Dashboard UI with widgets displaying key information

Figure 4.4.26: Frontend UI for global search

CHAPTER 4. RESULTS 45

4.4.25 Input validation
To prevent illegal input data from being stored, multiple approaches are used. Both the
frontend and the backend code utilize input validation. As a measure to provide the user
with quick feedback on the validity of forms, the frontend validates forms using Zod
in combination with error labels located near the user input. An example can be seen
in Figure 4.4.27. In addition to the frontend validation, the backend will also validate
the request from the frontend. As a third measure to validate, database constraints are
utilized. However, in normal use, these constraints are not visible due to the workflow
of the application.

Figure 4.4.27: Sample validation error displayed in frontend when submitting forms

4.4.26 Error handling
The application aims to inform users of why something has failed. While the aforemen-
tioned form validation provides error labels in the forms, errors are also handled in the
backend. Backend errors are formatted using the Problem Detail specification and help
the consumer identify why their request has failed. An example of a Problem Detail
response is shown in Listing 4.

{
"type": "about:blank",
"title": "Bad Request",
"status": 400,
"detail": "Request contains 2 validation error(s)",
"instance": "/api/v1/projects",
"errors": {

"fields": ["name", "referenceCode"],
"reasons": {

"name": [
{

"message": "must not be blank"
}

],
"referenceCode": [

{
"message": "must not be blank"

}
]

}
}

}

Listing 4: Example of Problem Detail response when request validation fails

46 CHAPTER 4. RESULTS

4.4.27 API documentation
The application documents APIs in various ways. For internals, JSDoc is used for fron-
tend code, while Javadoc is used in the backend. In addition to this, API endpoints in the
REST API is documented using OpenAPI v3. The OpenAPI schema can be browsed
using Swagger UI, which is available at /api/swagger-ui.html. Figure 4.4.28 shows
how the defined collections and operations on them are rendered in the documentation.

Figure 4.4.28: API docs rendered using Swagger

CHAPTER 4. RESULTS 47

4.5 Application deployment

As part of the thesis, a server was set up. This server is used as a demo environment
where the application runs. In order to deploy the application a pipeline is set up in
GitHub Actions. Creating a new tag in Git will trigger the pipeline. A Gradle task is
defined to help align versions across the Gradle and PNPM workspaces, the task can
be executed by running ./gradlew updateVersion -DnewVersion="1.0.0". The
pipeline re-uses the CI workflow to run all tests, early exiting or failing the pipeline to
prevent regressions in code covered by tests. The pipeline will publish container images
to the GitHub Container Registry if both the tests and the build succeeds, proceeding
to deploy a new version to the demo environment set up. The steps in the workflow for
deploying new versions is shown in Figure 4.5.1. The environment runs a single node
Kubernetes cluster using the K3s distribution. The cluster is installed and configured
using Ansible. The deployment uses a Helm chart to template the resources, allowing
for re-use across multiple environments in multi-stage deployments. An overview of the
resources that are part of the Helm chart can be seen in Figure 4.5.2. Services are routed
through a NGINX Ingress reverse proxy configured to use certificates issued by Let’s
Encrypt for TLS. These certificates are managed using cert-manager. The application
hostnames are also registered in DNS using ExternalDNS to integrate with the used
provider.

Figure 4.5.1: GitHub Actions deployment workflow

48 CHAPTER 4. RESULTS

Figure 4.5.2: Diagram showing all resources defined by the Helm chart

Using the same containers, the application can be configured to run in other envi-
ronments as well. The containers are set up with configurable environment variables,
which allows configuring the service for alternative deployments, such as using Docker
locally or other container runtimes. Which environment variables, and whether or not
they are required, is noted in the project’s README file.

CHAPTER 4. RESULTS 49

4.6 Map rendering performance
During development of the application, performance problems were identified when
attempting to add directions to guardrails in Leaflet. Initially the map implementation
used Leaflet as a library, but it had no clear API for rendering guardrail directions with-
out introducing third-party extensions. Adding the Leaflet SVG TextPath extension to
allow rendering arrows along the guardrails geometry impacted performance to a unus-
able state for larger sample sizes. To help determine whether or not to continue using
Leaflet for rendering maps, the performance was compared with OpenLayers. Table
4.6.1 shows the results from profiling the performance of the libraries using different
implementations for rendering guardrails. Only the OpenLayers WebGL and Leaflet
SVG TextPath implementations included rendering of guardrail directions. Using these
results, while also considering other conveniences such as the built-in WKT parsing in
OpenLayers ultimately ended with the decision to switch libraries.

Sample size 1000 2500 5000 10.000 25.000 50.000
Leaflet SVG TextPath 1200ms 4000ms – – – –
Leaflet SVG 55ms 120ms 235ms 550ms 1200ms 2400ms
Leaflet Canvas 25ms 60ms 100ms 215ms 500ms 1150ms
OpenLayers Canvas 25ms 38ms 68ms 140ms 385ms 950ms
OpenLayers WebGL 30ms 45ms missing 135ms 275ms 600ms

Table 4.6.1: Guardrail rendering performance comparison

50 CHAPTER 4. RESULTS

5. Discussion

Throughout the development process, some challenges were faced with both the tech-
nologies used and implementations. This chapter covers these challenges and the con-
siderations made facing them.

5.1 Preliminary project plan
At the beginning of the project, a preliminary project plan was written. Since the group
only had a general idea of what iSi was requesting at this point in time, not many
specifics were included in it. As a result, only four generic phases of the project were
defined. However, this didn’t seem to impact the end result, as meetings with iSi helped
garnering a better understanding of the project scope.

5.2 Planning workflow
As stated in Subsection 3.1.2, tasks were not estimated explicitly. As a result, work
would sometimes be unevenly distributed. This happened even though there was a joint
effort made when planning to attempt to balance this workload. This can likely be at-
tributed to the combination of working with an unknown domain and new technologies,
as well as varying levels of experience within the group.

Additionally, user stories and tasks could sometimes lack clear descriptions or crite-
ria causing confusion in the development process. However, the group found that these
details would get solved by internal discussions, and didn’t heavily impact the work or
cause delays.

5.3 Design choices
In the design of the application, in-car use by drivers has been an important consider-
ation. A complex map combined with a cluttered interface could visually overwhelm
the driver, potentially increasing cognitive load and causing distractions. As mentioned
in Subsection 3.2.1, a simplistic style that avoids unnecessary content was important
to ensure a positive user experience and reduce the risk of introducing disturbances.
Drivers may also see themselves in dark environments or environments where light lev-
els change, such as going in and out of tunnels. This resulted in adding a dark theme,
allowing users to change colors to less disturbing ones. However, when integrating
the application with an in-car system, adding automatic transitioning of colors to less
disturbing ones should be considered.

5.4 Technology choices
Technologies chosen in this project have been picked with the scope of the project in
mind. The project required learning about an unknown domain, including geospatial
data which the group had little prior experience with. This impacted the choice of tech-

51

52 CHAPTER 5. DISCUSSION

nologies, ultimately resulting in choosing technologies where prior experience could be
taken advantage of. For the backend, this meant utilizing Spring Boot and Java. The
backend uses a PostGIS database, which extends PostgreSQL with geospatial func-
tionality, allowing building further experience using relational databases for persistent
application data. For the frontend, TypeScript and Solid.js were chosen. The prior
frontend experience was using the React framework, but Solid.js has similar APIs and
utilizes the same JSX syntax for component definitions. Though there are some differ-
ences, the learning experience of the framework hasn’t been considered a time sink.

5.5 Client package and data transfer objects
As described in Subsection 3.6.2, a separate package for API definitions was set up.
This included data transfer objects, and generation of them. This helped in avoiding
mismatching types and properties in these data transfer objects. It also made a clear
surface for developers to read when implementing frontend logic interacting with the
backend due to the lack of implementation detail of APIs. One drawback was that it
required manual generation by executing a Gradle task, a chore that sometimes would
be forgotten.

5.6 Module structure
During development, it has sometimes been unclear whether or not some things should
be divided into separate features. The structure described in Subsection 3.6.1 estab-
lished rough guidelines, but some features such as "trip" and "project" are intercon-
nected. Deciding where to place logic would sometimes be a challenge in these scenar-
ios. It was however decided that this could be refactored at a later stage. Additionally,
boundaries of these features are not well defined as features do not explicitly define
which parts of the features are to be consumed by other features.

5.7 Custom API client for NVDB
The backend is written using Spring Boot 3, which has migrated to the jakarta package
[65]. Due to this migration, errors were encountered when attempting to use the NVDB
API client. The original NVDB API client still uses the javax package, resulting in
incompatibility with Spring Boot 3 [66]. As a result, some time was spent creating a
minimal API client that covers the API surface required by the project. It did however
require us to reinvent some of the logic already provided by their official API client,
such as iterating through pages of results. The lack of knowledge of the APIs nullability
also caused a number of errors when processing the results. Nullability is however not
covered in the official API client either, meaning it would be a problem nevertheless. In
attempts to cover most edge cases, full imports of guardrail data in NVDB were tested.
There were however some problems identified at a later stage due to the data changing.

5.8 Comparing capture to guardrails
A core part of the project was identifying whether or not guardrails were captured. The
process for identifying whether or not a car has captured a guardrail relies on correctly
being able to tell the driving direction in the road system, as well as the side the guardrail
is on. Some imported data were however identified to have the opposite direction.
Strategies for identifying flaws, and correcting them, was a time consuming process
due to the complexity of imported data.

CHAPTER 5. DISCUSSION 53

With the current implementation there also will not be coverage metrics where
guardrails deviate from the roads geometry. These scenarios will cause a lower com-
pletion grade, potentially outside the bounds of considering the guardrail complete. An
alternative approach would be to only match against the road segments a car is expected
to drive, but this would require being able to properly identify the direction of the road
in which a car should drive and take images based off both segment and guardrail meta-
data, essentially ignoring the guardrails own geometry.

5.9 Map problems
One of the goals for the project was to create an efficient way in which drivers could
see guardrails, allowing them to plan their driving route. It was brought up that seeing
the driving direction required to capture a railing would be helpful. In order to accom-
plish this, multiple approaches were prototyped. However, rendering the direction of
the geometries would ultimately end up harming the performance of the map rendering
when utilizing Leaflet to render the map. It was decided to draft a complementing im-
plementation using OpenLayers instead, which includes APIs for rendering geometries
as vectors using WebGL. As highlighted in Section 4.6, rendering performance when
including guardrail direction is significantly better when using the OpenLayers WebGL
integration, especially for larger sample sizes.

There were also other problems that arose using Leaflet. For example, when making
the functionality for having a vehicle move around on the map, it was noticed there was
no simple way of rotating the marker. This resulted in some time being spent making
a workaround approach, which ultimately did not work as intended. Another problem
arose when using the built-in Leaflet popups to show guardrail details. The popups had
non-configurable CSS styling, and attempting to remove said styling interfered with
coordinate transformation calculations. This made the popup show up far away from
the clicked location, at random. When evaluating similar functionality in OpenLayers,
no such problems were identified, so the map renderer was switched.

5.10 Stateless backend considerations
The replay system and its server-sent events use stateful data. The state of a replay
is only present in memory for a backend instance, this state is then lost in cases of
crashes or reboots. A result of the state being lost on restart is also that the backend
container, in its current state, cannot be horizontally scaled to multiple replicas without
introducing potential bugs. If users are to be routed to an instance without the expected
state, users may see differing results in the UI. The replay system is however only meant
as a substitute for integrating with the cars system.

5.11 Ingest performance
Capture tables may see benefit from performance optimizations such as table parti-
tioning. The table for matched railing captures is an ever growing dataset, and could
potentially grow to the point where query performance is degraded. The dataset will
grow linearly with capture interval and railing length as variables. Though problems
have not arisen during testing, due the nature of the ingested data it is to be expected
that this gradually evolves into one as the persisted data grows.

54 CHAPTER 5. DISCUSSION

5.12 Internationalization
Though not a requirement, internationalization strategies are used. The use of a transla-
tion file allowed easy translation of string enum values from the backend, such as project
status, into human readable text. The type of translation keys are inferred and can as a
result give build time errors in cases where a new status is added in the backend, but has
not been translated in the frontend. In addition, the use of locale-specific formatters for
dates and numbers also allowed proper formatting without introducing string manipula-
tion or custom logic. Currently, the implementation does not allow changing the locale,
however only requires configuring a new locale key and adding a translation file for it.

5.13 Identity considerations
Using a identity provider can be beneficial as opposed to implementing custom authen-
tication and authorization logic. Some time during the project has been spent imple-
menting identity management. Identity providers such as Keycloak could have been
used to reduce the time spent on identity tasks as it already provides functionality for
login, password resets and more. However, the custom implementation allowed making
decisions that might not have been possible otherwise. For instance, due to the lack
of ability to define headers in the EventSource browser API, using the Authorization
header with a JWT token does not work without introducing extensions to the API.
To support authorization for these backend endpoints, cookies are used for storing the
users JWT token. Cookies are automatically included in the request from the frontend,
reducing the amount of authentication logic needed in the frontend application. This
is also the case for protecting uploaded static assets, such as images for vehicles or
users. Utilizing the built-in image element in HTML doesn’t allow customizing request
headers. Request parameters could be used as an alternative, but would require custom
processing of those in these scenarios, requiring extra functionality for authorizing such
requests.

5.14 Feedback
By presenting work in review meetings discussed in Subsection 3.1.3, the group re-
ceived feedback throughout the entirety of the project. One alignment which happened
early on was in the naming scheme of entities. There was a difference in the under-
standing of how work orders should be structured, thus some adjustments had to be
made in both the diagrams and the application. Generally, the concepts were similar,
but with a difference in naming. Additionally, the progress calculation was discussed.
It was decided that the progress calculations should be in terms of the guardrails road
segments, since it is the most accurate representation of what can be done. Other than
this, it seemed like iSi were satisfied with the development, with no other significant
adjustments being made.

6. Conclusion

The goal of the project was to develop a planning tool for the capture process in inSight.
Development of the tool was done using iterative methods and a number of technolo-
gies that enable the end result. The result is a responsive web application that allows
for both planning and executing the capture process. The application design focuses on
being minimalist to reduce cognitive overload when used by drivers. The application
integrates with NVDB to import guardrail data for work orders. It utilizes server-sent
events to power a frontend containing an interactive map where the car’s position is
displayed. The guardrails and their coverage are also displayed in the same map, giving
both planners and drivers an overview of the task at hand. The user interface is cus-
tomizable and responsive, allowing users to change both theme and sizes of panels in
the UI. Application components are containerized and can be deployed using container
technologies. The application covers goals defined initially, with all user stories im-
plemented. Though there are some flaws and potential adjustments that can be made,
especially in regards to rendering guardrail directions and capture grade calculations, it
seems the end result satisfies iSi’s initial request.

6.1 Future work
The requirements for the project focuses on the planning aspects of the process for
capturing railing data. As a result, the application lacks some functionality to make
it a complete system for handling the entire data capture process. This section covers
identified work that has to be done to make it a more complete solution.

6.1.1 Integrating with the cars system
The application currently utilizes a replay system for simulating the process of capturing
the data. This system has to be replaced with an in-car system that can give the driver
continuous feedback while also reporting progress to a central service when internet
connectivity is available.

6.1.2 Guardrail matching improvements
Though the approach highlighted in Subsection 4.4.13 works in most cases, there is
work that would make the process more accurate. The matching process uses the GNSS
position as the reference, but this may not be accurate with the placement of the equip-
ment on the car. In addition, the FOV of each camera and the max distance of matching
needs to be aligned with the specifications of the equipment.

Additionally, the matching process may see performance degradation if the number
of railings within a plan is large. The matcher currently uses a linear scan for finding
potential matches, which has worked fine for the problem sizes used in testing. Utilizing
a R-tree structure to index railings may improve performance when identifying potential
matches. A sort-tile recursive R-tree implementation is available in JTS, and could

55

56 CHAPTER 6. CONCLUSION

potentially be used to increase throughput.

6.1.3 Guardrail direction fixes

The application uses arrows to show the driving direction required to capture guardrails.
Though, as mentioned in Section 5.8, the guardrail metadata in NVDB doesn’t appear
to provide us with a good understanding of its direction in terms of the required driving
direction. Guardrail data has a placement along one or more road segments, where each
of these segments are a stretch of the road network. Each of these components have
their own direction, making it confusing to infer the driving direction required. Since
the arrows rotate with the order of points in the geometry, incorrect inference results
in them facing the opposite direction to the one required to successfully capture the
railing.

6.1.4 Ingest performance

As noted in Section 5.11, ingested data is ever growing in a linear fashion. There
are multiple approaches that can improve the performance of ingested data, including
table partitioning. The TimescaleDB extension of Postgres can be adopted in order to
automate table partitioning strategies and implement real-time aggregates of coverage
metrics.

6.1.5 Identity provider integration

As a measure to avoid having to handle the added complexity of managing identities, a
identity provider could be integrated. Though, as noted in Section 5.13, it may not be as
flexible. However, MinIO could be configured to authorize users using a OAuth2 com-
pliant identity provider such as Keycloak. This could eliminate the need for forwarding
requests through the backend as described in 4.4.2 while accomplishing the same.

6.1.6 Split layout for guardrails

It has been discovered that listing guardrails in groups similar to projects may cause too
much content in the left panel. This leaves little space for viewing railings together with
plans and trips. An alternative layout for projects has been prototyped, where railings
and its deviations is placed in a right aligned side menu in addition to the left one. The
prototyped layout can be seen in Figure 6.1.1. This could make the list more usable,
and could potentially include the view discussed in Subsection 4.4.16. It could also
be combined with the resizable panels, allowing users to change the size and possibly
collapsing panels when not needed.

CHAPTER 6. CONCLUSION 57

Figure 6.1.1: Prototype split layout for viewing guardrails and deviations

6.1.7 Other layout improvements
There are also other use cases which could benefit from layout improvements. For
instance, gaining an overview of a user or vehicles involvement in work may not be easy
in a table layout. This may be improved by including schedule calendars or timelines,
where involvement is shown. This is also the case for projects, where grouping by status
may not be sufficient for finding them efficiently.

6.1.8 User preferences
To enhance the accessibility of the application, a page for setting user preferences can
be introduced. User preferences may for example include editing of user details, setting
the language, or choosing an alternative background map.

58 CHAPTER 6. CONCLUSION

7. Societal Impact

This chapters covers ways in which our application may impact society. The main focus
here is on road safety, with some broader effects which stem from it.

7.1 The importance of guardrail maintenance
The purpose of guardrails is to minimize the damages caused by traffic accidents.
Therefore, maintaining them by ensuring that no deviations are present and that they
continue to adhere to the standards set by the Norwegian Public Roads Administration
increases road safety. According to reports by the NPRA’s Accident Analysis Group,
there is a sizeable amount of traffic accidents where done damages could have been less
had the guardrails been of expected quality [67]. Table 7.1.1 shows that 6 percent of
fatal accidents in years 2005 - 2022 had its damage extent affected by guardrail quality.
While the amount of fatal traffic accidents has been decreasing, the impact of guardrail
faults has stayed about the same, with a slight upwards trend in recent years.

Year Amount of fatal
accidents in total Percentage of affected fatal accidents

2005 202 6
2006 228 6
2007 208 3
2008 237 6
2009 186 6
2010 190 5
2011 158 3
2012 139 6
2013 170 8
2014 135 6
2015 102 3
2016 128 6
2017 102 9
2018 100 10
2019 100 11
2020 89 6
2021 76 14
2022 105 5
2005 - 2022 2655 6

Table 7.1.1: Impact of guardrail quality on fatal traffic accidents

An application providing clear overviews for routine maintenance and streamlined

59

60 CHAPTER 7. SOCIETAL IMPACT

tools for planning this maintenance may help bring this percentage down. Proactive
maintenance could help prevent major accidents, meaning less casualties, less vehicle
damages, and less time and resources spent on repairs. There may even be a slight
reduction of cases where roads get closed off due to accidents, causing detours and
complicating transportation.

7.2 Ethical aspects
Real-time position updates of workers raises some ethical concerns. The application
allows for real-time viewing of vehicle positions while captures are ongoing. However,
in its current state these positions are only reported with ongoing captures. To access
this information it is required that users are authenticated with the service. Additionally,
the service is configured to use TLS encryption.

The system contains references to images that could potentially identify people.
When performing data capture, the equipment takes images with the intention of cap-
turing guardrails. However, some captured images may include people, allowing iden-
tification. This raises a privacy concern, but image data is handled externally to this
system, moving it outside of the scope of this project. Furthermore, access to these
references is provided by using the same logic for authorization and encryption as other
data.

7.3 Contribution to the UN’s Sustainable Development
Goals

UN’s goal number 3 is to ensure healthy lives and promote well-being for all at all ages.
As stated in Section 7.1, efficient planning of guardrail maintenance may increase the
effectiveness of guardrails. This could potentially reduce the severity of road accidents,
directly relating to target 3.6 [68], which aims to halve the number of global deaths
and injuries. Additionally this may also impact target 8 in goal 8 [69]. This target is to
protect labour rights and promote safe and secure working environments for all workers.
A significant portion of the population have roads as their main working environment
[70].

Goal 12 in UN’s Sustainable Development Goals aims to ensure sustainable con-
sumption and production patterns. Target 12.2 is to by 2030, achieve sustainable man-
agement and efficient use of natural resources [71]. Through efficient planning and near
real time updates on critical metrics and system status, the system may help reduce the
time it takes for drivers to notice flaws in the capture. This reduces the risk of having to
re-capture segments where faults occurred, ultimately reducing energy consumption by
the vehicle.

References

[1] iSi inSight Digital Rekkverkskontroll - Første Leveranser Gjennomført | iSi AS.
URL: https://isi.no/project/isiinsight_leveranser/ (vis-
ited on 05/10/2024).

[2] Well-Known Text Representation of Geometry. In: Wikipedia. Sept. 27, 2023.
URL: https://en.wikipedia.org/w/index.php?title=Well-
known_text_representation_of_geometry&oldid=1177433825
(visited on 04/08/2024).

[3] Spatial Reference System. In: Wikipedia. Feb. 9, 2024. URL: https://en.
wikipedia.org/w/index.php?title=Spatial_reference_
system&oldid=1205529676 (visited on 04/08/2024).

[4] EPSG Geodetic Parameter Dataset. In: Wikipedia. Jan. 16, 2024. URL: https:
//en.wikipedia.org/w/index.php?title=EPSG_Geodetic_
Parameter_Dataset&oldid=1196127532 (visited on 04/08/2024).

[5] JSON. URL: https://www.json.org/json- en.html (visited on
03/25/2024).

[6] Patrick Charollais. “ECMA-404, 2nd Edition, December 2017”. In: (2017).

[7] YAML Ain’t Markup Language (YAML™) Revision 1.2.2. URL: https://
yaml.org/spec/1.2.2/ (visited on 05/20/2024).

[8] Mark Nottingham, Erik Wilde, and Sanjay Dalal. Problem Details for HTTP
APIs. Request for Comments RFC 9457. Internet Engineering Task Force, July
2023. 16 pp. DOI: 10.17487/RFC9457. URL: https://datatracker.
ietf.org/doc/rfc9457 (visited on 03/25/2024).

[9] Michael B. Jones, John Bradley, and Nat Sakimura. JSON Web Token (JWT).
Request for Comments RFC 7519. Internet Engineering Task Force, May 2015.
30 pp. DOI: 10.17487/RFC7519. URL: https://datatracker.ietf.
org/doc/rfc7519 (visited on 03/25/2024).

[10] OpenAPI Specification v3.1.0 | Introduction, Definitions, & More. URL: https:
//spec.openapis.org/oas/latest.html (visited on 05/02/2024).

[11] About Universal Design. Centre for Excellence in Universal Design. URL: https:
//universaldesign.ie/about- universal- design (visited on
05/02/2024).

[12] W3C Web Accessibility Initiative (WAI). WCAG 2 Overview. Web Accessibil-
ity Initiative (WAI). URL: https://www.w3.org/WAI/standards-
guidelines/wcag/ (visited on 05/02/2024).

[13] Web Content Accessibility Guidelines (WCAG) 2.2. URL: https://www.w3.
org/TR/WCAG22/ (visited on 05/02/2024).

61

https://isi.no/project/isiinsight_leveranser/
https://en.wikipedia.org/w/index.php?title=Well-known_text_representation_of_geometry&oldid=1177433825
https://en.wikipedia.org/w/index.php?title=Well-known_text_representation_of_geometry&oldid=1177433825
https://en.wikipedia.org/w/index.php?title=Spatial_reference_system&oldid=1205529676
https://en.wikipedia.org/w/index.php?title=Spatial_reference_system&oldid=1205529676
https://en.wikipedia.org/w/index.php?title=Spatial_reference_system&oldid=1205529676
https://en.wikipedia.org/w/index.php?title=EPSG_Geodetic_Parameter_Dataset&oldid=1196127532
https://en.wikipedia.org/w/index.php?title=EPSG_Geodetic_Parameter_Dataset&oldid=1196127532
https://en.wikipedia.org/w/index.php?title=EPSG_Geodetic_Parameter_Dataset&oldid=1196127532
https://www.json.org/json-en.html
https://yaml.org/spec/1.2.2/
https://yaml.org/spec/1.2.2/
https://doi.org/10.17487/RFC9457
https://datatracker.ietf.org/doc/rfc9457
https://datatracker.ietf.org/doc/rfc9457
https://doi.org/10.17487/RFC7519
https://datatracker.ietf.org/doc/rfc7519
https://datatracker.ietf.org/doc/rfc7519
https://spec.openapis.org/oas/latest.html
https://spec.openapis.org/oas/latest.html
https://universaldesign.ie/about-universal-design
https://universaldesign.ie/about-universal-design
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/TR/WCAG22/
https://www.w3.org/TR/WCAG22/

62 REFERENCES

[14] ARIA - Accessibility | MDN. Apr. 17, 2024. URL: https://developer.
mozilla.org/en-US/docs/Web/Accessibility/ARIA (visited on
05/02/2024).

[15] W3C Web Accessibility Initiative (WAI). WAI-ARIA Overview. Web Accessibil-
ity Initiative (WAI). URL: https://www.w3.org/WAI/standards-
guidelines/aria/ (visited on 05/09/2024).

[16] Observer. URL: https://refactoring.guru/design-patterns/
observer (visited on 05/02/2024).

[17] HTML: HyperText Markup Language | MDN. Mar. 5, 2024. URL: https :
//developer.mozilla.org/en-US/docs/Web/HTML (visited on
03/19/2024).

[18] CSS: Cascading Style Sheets | MDN. Mar. 5, 2024. URL: https://developer.
mozilla.org/en-US/docs/Web/CSS (visited on 03/19/2024).

[19] JavaScript | MDN. Mar. 5, 2024. URL: https://developer.mozilla.
org/en-US/docs/Web/JavaScript (visited on 03/19/2024).

[20] TypeScript homepage. URL: https://www.typescriptlang.org/ (vis-
ited on 03/19/2024).

[21] TypeScript Handbook - The Basics. URL: https://www.typescriptlang.
org/docs/handbook/2/basic-types.html (visited on 03/19/2024).

[22] JSX Specification Draft. Aug. 4, 2022. URL: https://github.com/facebook/
jsx (visited on 03/19/2024).

[23] React. URL: https://react.dev/ (visited on 03/19/2024).

[24] Virtual DOM and Internals – React. URL: https://legacy.reactjs.
org/docs/faq-internals.html (visited on 03/19/2024).

[25] Solid Docs Home. URL: https : / / docs . solidjs . com/ (visited on
03/19/2024).

[26] JS Framework Benchmark 2024 Chrome 122. URL: https://krausest.
github.io/js-framework-benchmark/2024/table_chrome_
122.0.6261.69.html (visited on 03/19/2024).

[27] Hva er Nasjonal vegdatabank (NVDB). Statens vegvesen. URL: https://
www.vegvesen.no/fag/teknologi/nasjonal-vegdatabank/
hva-er-nasjonal-vegdatabank/ (visited on 04/08/2024).

[28] Earth Ellipsoid. In: Wikipedia. Apr. 14, 2024. URL: https://en.wikipedia.
org/w/index.php?title=Earth_ellipsoid&oldid=1218967848
(visited on 05/20/2024).

[29] Geoid. In: Wikipedia. Apr. 18, 2024. URL: https :/ / en. wikipedia .
org/w/index.php?title=Geoid&oldid=1219635836 (visited on
05/03/2024).

[30] Lars Mæhlum. NN2000. In: Store norske leksikon. Jan. 25, 2023. URL: https:
//snl.no/NN2000 (visited on 05/03/2024).

[31] What Is the Geoid? | Virtual Surveyor. Support Portal. URL: https://support.
virtual-surveyor.com/support/solutions/articles/1000261346-
what-is-the-geoid- (visited on 05/08/2024).

https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
https://www.w3.org/WAI/standards-guidelines/aria/
https://www.w3.org/WAI/standards-guidelines/aria/
https://refactoring.guru/design-patterns/observer
https://refactoring.guru/design-patterns/observer
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://www.typescriptlang.org/
https://www.typescriptlang.org/docs/handbook/2/basic-types.html
https://www.typescriptlang.org/docs/handbook/2/basic-types.html
https://github.com/facebook/jsx
https://github.com/facebook/jsx
https://react.dev/
https://legacy.reactjs.org/docs/faq-internals.html
https://legacy.reactjs.org/docs/faq-internals.html
https://docs.solidjs.com/
https://krausest.github.io/js-framework-benchmark/2024/table_chrome_122.0.6261.69.html
https://krausest.github.io/js-framework-benchmark/2024/table_chrome_122.0.6261.69.html
https://krausest.github.io/js-framework-benchmark/2024/table_chrome_122.0.6261.69.html
https://www.vegvesen.no/fag/teknologi/nasjonal-vegdatabank/hva-er-nasjonal-vegdatabank/
https://www.vegvesen.no/fag/teknologi/nasjonal-vegdatabank/hva-er-nasjonal-vegdatabank/
https://www.vegvesen.no/fag/teknologi/nasjonal-vegdatabank/hva-er-nasjonal-vegdatabank/
https://en.wikipedia.org/w/index.php?title=Earth_ellipsoid&oldid=1218967848
https://en.wikipedia.org/w/index.php?title=Earth_ellipsoid&oldid=1218967848
https://en.wikipedia.org/w/index.php?title=Geoid&oldid=1219635836
https://en.wikipedia.org/w/index.php?title=Geoid&oldid=1219635836
https://snl.no/NN2000
https://snl.no/NN2000
https://support.virtual-surveyor.com/support/solutions/articles/1000261346-what-is-the-geoid-
https://support.virtual-surveyor.com/support/solutions/articles/1000261346-what-is-the-geoid-
https://support.virtual-surveyor.com/support/solutions/articles/1000261346-what-is-the-geoid-

REFERENCES 63

[32] Client-Server Architecture | Definition, Characteristics, & Advantages | Britan-
nica. Apr. 26, 2024. URL: https://www.britannica.com/technology/
client-server-architecture (visited on 05/07/2024).

[33] Server-Sent Events - Web APIs | MDN. Mar. 6, 2024. URL: https://developer.
mozilla.org/en-US/docs/Web/API/Server-sent_events (vis-
ited on 04/01/2024).

[34] REST. In: Wikipedia. May 6, 2024. URL: https://en.wikipedia.org/
w/index.php?title=REST&oldid=1222499122 (visited on 05/07/2024).

[35] What Is REST? REST API Tutorial. Dec. 12, 2023. URL: https://restfulapi.
net/ (visited on 05/07/2024).

[36] HTTP Request Methods - HTTP | MDN. Apr. 10, 2023. URL: https : / /
developer.mozilla.org/en- US/docs/Web/HTTP/Methods
(visited on 04/15/2024).

[37] What is a relational database? | IBM. URL: https://www.ibm.com/
topics/relational-databases (visited on 03/19/2024).

[38] SQL. In: Wikipedia. May 11, 2024. URL: https://en.wikipedia.org/
w/index.php?title=SQL&oldid=1223298674 (visited on 05/20/2024).

[39] Data Definition Language. In: Wikipedia. May 13, 2024. URL: https : / /
en.wikipedia.org/w/index.php?title=Data_definition_
language&oldid=1223657397 (visited on 05/20/2024).

[40] Data Manipulation Language. In: Wikipedia. Dec. 14, 2023. URL: https://
en.wikipedia.org/w/index.php?title=Data_manipulation_
language&oldid=1189909275 (visited on 05/20/2024).

[41] Data Query Language. In: Wikipedia. Dec. 2, 2023. URL: https://en.
wikipedia.org/w/index.php?title=Data_query_language&
oldid=1188028005 (visited on 05/20/2024).

[42] Simple Mail Transfer Protocol. In: Wikipedia. Apr. 23, 2024. URL: https:
//en.wikipedia.org/w/index.php?title=Simple_Mail_
Transfer_Protocol&oldid=1220388312 (visited on 05/03/2024).

[43] Git - About Version Control. URL: https : / / git - scm . com / book /
en/v2/Getting-Started-About-Version-Control (visited on
03/19/2024).

[44] Unit Testing. In: Wikipedia. Mar. 12, 2024. URL: https://en.wikipedia.
org/w/index.php?title=Unit_testing&oldid=1213385244
(visited on 03/19/2024).

[45] Integration Testing - Microsoft Solutions Playbook. URL: https://playbook.
microsoft.com/code-with-engineering/automated-testing/
integration-testing/#why-integration-testing (visited on
03/19/2024).

[46] E2E Testing - Microsoft Solutions Playbook. URL: https://playbook.
microsoft.com/code-with-engineering/automated-testing/
e2e-testing/#resources (visited on 03/19/2024).

https://www.britannica.com/technology/client-server-architecture
https://www.britannica.com/technology/client-server-architecture
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://en.wikipedia.org/w/index.php?title=REST&oldid=1222499122
https://en.wikipedia.org/w/index.php?title=REST&oldid=1222499122
https://restfulapi.net/
https://restfulapi.net/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://www.ibm.com/topics/relational-databases
https://www.ibm.com/topics/relational-databases
https://en.wikipedia.org/w/index.php?title=SQL&oldid=1223298674
https://en.wikipedia.org/w/index.php?title=SQL&oldid=1223298674
https://en.wikipedia.org/w/index.php?title=Data_definition_language&oldid=1223657397
https://en.wikipedia.org/w/index.php?title=Data_definition_language&oldid=1223657397
https://en.wikipedia.org/w/index.php?title=Data_definition_language&oldid=1223657397
https://en.wikipedia.org/w/index.php?title=Data_manipulation_language&oldid=1189909275
https://en.wikipedia.org/w/index.php?title=Data_manipulation_language&oldid=1189909275
https://en.wikipedia.org/w/index.php?title=Data_manipulation_language&oldid=1189909275
https://en.wikipedia.org/w/index.php?title=Data_query_language&oldid=1188028005
https://en.wikipedia.org/w/index.php?title=Data_query_language&oldid=1188028005
https://en.wikipedia.org/w/index.php?title=Data_query_language&oldid=1188028005
https://en.wikipedia.org/w/index.php?title=Simple_Mail_Transfer_Protocol&oldid=1220388312
https://en.wikipedia.org/w/index.php?title=Simple_Mail_Transfer_Protocol&oldid=1220388312
https://en.wikipedia.org/w/index.php?title=Simple_Mail_Transfer_Protocol&oldid=1220388312
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://en.wikipedia.org/w/index.php?title=Unit_testing&oldid=1213385244
https://en.wikipedia.org/w/index.php?title=Unit_testing&oldid=1213385244
https://playbook.microsoft.com/code-with-engineering/automated-testing/integration-testing/#why-integration-testing
https://playbook.microsoft.com/code-with-engineering/automated-testing/integration-testing/#why-integration-testing
https://playbook.microsoft.com/code-with-engineering/automated-testing/integration-testing/#why-integration-testing
https://playbook.microsoft.com/code-with-engineering/automated-testing/e2e-testing/#resources
https://playbook.microsoft.com/code-with-engineering/automated-testing/e2e-testing/#resources
https://playbook.microsoft.com/code-with-engineering/automated-testing/e2e-testing/#resources

64 REFERENCES

[47] IBM Cloud Team. Containers vs. Virtual Machines (VMs): What’s the Differ-
ence? IBM Blog. Apr. 9, 2021. URL: https://www.ibm.com/blog/
containers-vs-vms (visited on 05/07/2024).

[48] About the Open Container Initiative - Open Container Initiative. URL: https:
//opencontainers.org/about/overview/ (visited on 05/10/2024).

[49] Docker: Accelerated Container Application Development. May 10, 2022. URL:
https://www.docker.com/ (visited on 05/10/2024).

[50] Containerd/Containerd: An Open and Reliable Container Runtime. URL: https:
//github.com/containerd/containerd/tree/main (visited on
05/10/2024).

[51] Containerd vs. Docker | Docker. Mar. 27, 2024. URL: https://www.docker.
com/blog/containerd-vs-docker/ (visited on 05/10/2024).

[52] K3s - Lightweight Kubernetes | K3s. May 6, 2024. URL: https://docs.
k3s.io/ (visited on 05/10/2024).

[53] Overview | Kubernetes.io. URL: https://kubernetes.io/docs/concepts/
overview/ (visited on 05/10/2024).

[54] What Is Infrastructure as Code? - IaC Explained - AWS. Amazon Web Services,
Inc. URL: https://aws.amazon.com/what- is/iac/ (visited on
04/15/2024).

[55] mijacobs. What Is Infrastructure as Code (IaC)? - Azure DevOps. Nov. 28, 2022.
URL: https://learn.microsoft.com/en-us/devops/deliver/
what-is-infrastructure-as-code (visited on 04/15/2024).

[56] Atlassian. What Is Continuous Integration. Atlassian. URL: https://www.
atlassian.com/continuous-delivery/continuous-integration
(visited on 04/15/2024).

[57] Atlassian. Continuous Integration vs. Delivery vs. Deployment. Atlassian. URL:
https://www.atlassian.com/continuous-delivery/principles/
continuous-integration-vs-delivery-vs-deployment (vis-
ited on 04/15/2024).

[58] What Is Scrum? | Scrum.Org. URL: https://www.scrum.org/resources/
what-scrum-module (visited on 04/01/2024).

[59] Scrum Guide | Scrum Guides. URL: https://scrumguides.org/scrum-
guide.html (visited on 04/01/2024).

[60] What Is Scrum and How to Get Started. URL: https://www.atlassian.
com/agile/scrum (visited on 05/15/2024).

[61] W3C Web Accessibility Initiative (WAI). Avoid Too Much Content. Web Acces-
sibility Initiative (WAI). May 7, 2024. URL: https://www.w3.org/WAI/
WCAG2/supplemental/patterns/o5p03-manageable-quantity/
(visited on 05/10/2024).

[62] Introduction to Corvu. corvu. URL: https://corvu.dev/docs/ (visited
on 05/09/2024).

[63] Introduction – Kobalte. URL: https://kobalte.dev/docs/core/
overview/introduction (visited on 05/09/2024).

https://www.ibm.com/blog/containers-vs-vms
https://www.ibm.com/blog/containers-vs-vms
https://opencontainers.org/about/overview/
https://opencontainers.org/about/overview/
https://www.docker.com/
https://github.com/containerd/containerd/tree/main
https://github.com/containerd/containerd/tree/main
https://www.docker.com/blog/containerd-vs-docker/
https://www.docker.com/blog/containerd-vs-docker/
https://docs.k3s.io/
https://docs.k3s.io/
https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/overview/
https://aws.amazon.com/what-is/iac/
https://learn.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code
https://learn.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code
https://www.atlassian.com/continuous-delivery/continuous-integration
https://www.atlassian.com/continuous-delivery/continuous-integration
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://www.scrum.org/resources/what-scrum-module
https://www.scrum.org/resources/what-scrum-module
https://scrumguides.org/scrum-guide.html
https://scrumguides.org/scrum-guide.html
https://www.atlassian.com/agile/scrum
https://www.atlassian.com/agile/scrum
https://www.w3.org/WAI/WCAG2/supplemental/patterns/o5p03-manageable-quantity/
https://www.w3.org/WAI/WCAG2/supplemental/patterns/o5p03-manageable-quantity/
https://corvu.dev/docs/
https://kobalte.dev/docs/core/overview/introduction
https://kobalte.dev/docs/core/overview/introduction

REFERENCES 65

[64] Python-kode som les inn bin-filer. Kartverket.no. Feb. 20, 2023. URL: https:
//kartverket.no/api-og-data/separasjonsmodellar/python-
kode-som-les-inn-bin-filer (visited on 05/09/2024).

[65] Preparing for Spring Boot 3.0. Preparing for Spring Boot 3.0. URL: https:
//spring.io/blog/2022/05/24/preparing-for-spring-
boot-3-0 (visited on 04/01/2024).

[66] Manglende Støtte for EE9 · Issue #107 · Nvdb-Vegdata/Nvdb-Api-Client. URL:
https : / / github . com / nvdb - vegdata / nvdb - api - client /
issues/107 (visited on 04/01/2024).

[67] Dybdeanalyser av dødsulykker – UAG. Statens vegvesen. URL: https : / /
www . vegvesen . no / fag / fokusomrader / trafikksikkerhet /
ulykkesdata/analyse-av-dodsulykker-uag/ (visited on 05/15/2024).

[68] Goal 3 | Department of Economic and Social Affairs. URL: https://sdgs.
un.org/goals/goal3#targets_and_indicators (visited on 05/03/2024).

[69] Goal 8 | Department of Economic and Social Affairs. URL: https://sdgs.
un.org/goals/goal8#targets_and_indicators (visited on 05/03/2024).

[70] Almost 29 Transport Workers per 1 000 People in the EU. URL: https://ec.
europa.eu/eurostat/web/products-eurostat-news/-/ddn-
20210923-2 (visited on 05/03/2024).

[71] Goal 12 | Department of Economic and Social Affairs. URL: https://sdgs.
un.org/goals/goal12#targets_and_indicators (visited on
05/03/2024).

https://kartverket.no/api-og-data/separasjonsmodellar/python-kode-som-les-inn-bin-filer
https://kartverket.no/api-og-data/separasjonsmodellar/python-kode-som-les-inn-bin-filer
https://kartverket.no/api-og-data/separasjonsmodellar/python-kode-som-les-inn-bin-filer
https://spring.io/blog/2022/05/24/preparing-for-spring-boot-3-0
https://spring.io/blog/2022/05/24/preparing-for-spring-boot-3-0
https://spring.io/blog/2022/05/24/preparing-for-spring-boot-3-0
https://github.com/nvdb-vegdata/nvdb-api-client/issues/107
https://github.com/nvdb-vegdata/nvdb-api-client/issues/107
https://www.vegvesen.no/fag/fokusomrader/trafikksikkerhet/ulykkesdata/analyse-av-dodsulykker-uag/
https://www.vegvesen.no/fag/fokusomrader/trafikksikkerhet/ulykkesdata/analyse-av-dodsulykker-uag/
https://www.vegvesen.no/fag/fokusomrader/trafikksikkerhet/ulykkesdata/analyse-av-dodsulykker-uag/
https://sdgs.un.org/goals/goal3#targets_and_indicators
https://sdgs.un.org/goals/goal3#targets_and_indicators
https://sdgs.un.org/goals/goal8#targets_and_indicators
https://sdgs.un.org/goals/goal8#targets_and_indicators
https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20210923-2
https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20210923-2
https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20210923-2
https://sdgs.un.org/goals/goal12#targets_and_indicators
https://sdgs.un.org/goals/goal12#targets_and_indicators

66 REFERENCES

Appendices

i

A - GitHub repository

All code and technical documentation referred to in this document is uploaded to a
GitHub repository. Explanations on how to start or deploy the application can be found
in the README-file.

GitHub repository link
https://github.com/triosnok/isi-planning-tool

ii

https://github.com/triosnok/isi-planning-tool

B - Impact of guardrail quality on fatal
traffic accidents

Data compiled from analysis reports of fatal traffic accidents on a national basis pub-
lished by NPRA’s Accident Analysis Group. The table below shows traffic accident
fatality in relation to guardrails.
The reports can be found here:
https://www.vegvesen.no/fag/fokusomrader/trafikksikkerhet/ulykkesdata/
analyse-av-dodsulykker-uag/

Year Amount of fatal
traffic accidents in total

Percentage of fatal traffic accidents
where extent of damage was
affected by guardrail faults

2005 202 6
2006 228 6
2007 208 3
2008 237 6
2009 186 6
2010 190 5
2011 158 3
2012 139 6
2013 170 8
2014 135 6
2015 102 3
2016 128 6
2017 102 9
2018 100 10
2019 100 11
2020 89 6
2021 76 14
2022 105 5
2005 - 2022 2655 6

iii

https://www.vegvesen.no/fag/fokusomrader/trafikksikkerhet/ulykkesdata/analyse-av-dodsulykker-uag/
https://www.vegvesen.no/fag/fokusomrader/trafikksikkerhet/ulykkesdata/analyse-av-dodsulykker-uag/

C - Full size diagrams

Some of the diagrams in this thesis is available in their original format on GitHub.

Note that they may be more ideal to view in dark-mode, to view it you can import it in di-
agrams.net. Some shapes have white color, resulting in them potentially appearing invisible
when viewing in-browser.

ER diagram
https://github.com/triosnok/isi-planning-tool/blob/main/docs/diagrams/
erdiagram.drawio.svg

Use case diagram
https://github.com/triosnok/isi-planning-tool/blob/main/docs/diagrams/
use-cases.drawio.svg

Architecture diagram
https://github.com/triosnok/isi-planning-tool/blob/main/docs/diagrams/
architecture.drawio.svg

Log processing flow chart
https://github.com/triosnok/isi-planning-tool/blob/main/docs/diagrams/
log-processing.drawio.svg

iv

https://github.com/triosnok/isi-planning-tool/blob/main/docs/diagrams/erdiagram.drawio.svg
https://github.com/triosnok/isi-planning-tool/blob/main/docs/diagrams/erdiagram.drawio.svg
https://github.com/triosnok/isi-planning-tool/blob/main/docs/diagrams/use-cases.drawio.svg
https://github.com/triosnok/isi-planning-tool/blob/main/docs/diagrams/use-cases.drawio.svg
https://github.com/triosnok/isi-planning-tool/blob/main/docs/diagrams/architecture.drawio.svg
https://github.com/triosnok/isi-planning-tool/blob/main/docs/diagrams/architecture.drawio.svg
https://github.com/triosnok/isi-planning-tool/blob/main/docs/diagrams/log-processing.drawio.svg
https://github.com/triosnok/isi-planning-tool/blob/main/docs/diagrams/log-processing.drawio.svg

D - Map rendering performance
profiling

Profiling results can be found in a zip file, prefixed by their type and suffixed by sample size.
One of the results is missing for the OpenLayers WebGL is missing, but hasn’t been needed to
draw a conclusion in the decision.

Prefix Implementation
leaflet-direction Leaflet SVG TextPath
leaflet-svg Leaflet SVG
leaflet-canvas Leaflet Canvas
ol-canvas OpenLayers Canvas
ol OpenLayers WebGL

The zip file is available on Google Drive.
https://drive.google.com/file/d/1-v9lw4n9CLRBVBY_LofLnyq7Mx2DwPuA/
view?usp=sharing

v

https://drive.google.com/file/d/1-v9lw4n9CLRBVBY_LofLnyq7Mx2DwPuA/view?usp=sharing
https://drive.google.com/file/d/1-v9lw4n9CLRBVBY_LofLnyq7Mx2DwPuA/view?usp=sharing

E - Wireframes

The Figma wireframes used to prototype the look and feel of the application can be found here:
https://www.figma.com/file/uKKi6cVPcAo7b5SVhel6wD/Planning-tool?
type=design&node-id=0%3A1&mode=design&t=8VdIVfexb8UOyjEv-1

vi

https://www.figma.com/file/uKKi6cVPcAo7b5SVhel6wD/Planning-tool?type=design&node-id=0%3A1&mode=design&t=8VdIVfexb8UOyjEv-1
https://www.figma.com/file/uKKi6cVPcAo7b5SVhel6wD/Planning-tool?type=design&node-id=0%3A1&mode=design&t=8VdIVfexb8UOyjEv-1

F - Video

Some functionality may be hard to replicate without access to appropriate data. To visualize the
results, a video highlighting major features is made. This video can be found on Google Drive.
https://drive.google.com/file/d/1vUZ1JPS3I1SKjbXx-b8k592imTpz0-Pl/
view?usp=drive_link

vii

https://drive.google.com/file/d/1vUZ1JPS3I1SKjbXx-b8k592imTpz0-Pl/view?usp=drive_link
https://drive.google.com/file/d/1vUZ1JPS3I1SKjbXx-b8k592imTpz0-Pl/view?usp=drive_link

	Introduction
	Background
	Project description
	Motivation
	Goals
	Scope
	Thesis structure

	Theory
	Standards
	Well-known text representing geometry
	Coordinate reference systems
	EPSG Geodetic Parameter Dataset
	JSON
	YAML
	Problem Detail
	JSON Web Token
	OpenAPI Specification

	Universal design
	WCAG
	ARIA

	Observer design pattern
	HTML
	CSS
	JavaScript
	TypeScript
	JSX
	React
	Solid.js
	Road data
	Stretches
	Guardrails

	Geoid
	Client-server architecture
	Server-sent events
	REST
	HTTP methods
	Relational Databases
	SQL
	SMTP
	Version control
	Testing
	Unit testing
	Integration testing
	End-to-end testing

	Containerization
	Infrastructure as Code
	Continuous Integration and Continuous Delivery
	SCRUM
	SCRUM Master
	Product Owner
	Development Team
	Sprints

	Method
	Workflow
	Daily stand up
	Sprint Planning
	Sprint Review
	Sprint Retrospective
	Logging work
	Communication
	Commit message convention
	Code formatting

	Design
	Design guidelines
	Diagrams
	Wireframes
	Design feedback
	Universal design

	Testing
	User testing
	Unit testing
	Integration testing

	Artificial intelligence tools
	Technologies
	Solid.js
	TailwindCSS
	Component library
	Map rendering
	Spring Boot
	Database
	Database migrations
	Geospatial types and transforms
	Containers
	Object Storage
	Documenting APIs and code
	GitHub Actions
	Ansible
	Kubernetes and Helm
	Chrome DevTools

	Project Structure
	Module structure
	Client package
	Application for initializing

	Results
	Use case diagram
	ER diagram
	Transforms between vertical coordinate reference systems
	Application
	Authentication
	File uploads
	Theme
	User management
	Vehicle management
	Project management
	Guardrail data import
	Guardrail geometry directions
	Processing capture logs
	Trips and replays of capture logs
	Trip notes
	Vehicle and user status
	Matching capture data to guardrails
	Calculating guardrail capture grade
	Interactive map for viewing guardrails
	Viewing images captured of guardrails
	Position updates for users and vehicles
	Follow mode for in-vehicle viewing
	Responsive layouts
	State management
	Reporting deviations
	Dashboard
	Global search
	Internationalization
	Input validation
	Error handling
	API documentation

	Application deployment
	Map rendering performance

	Discussion
	Preliminary project plan
	Planning workflow
	Design choices
	Technology choices
	Client package and data transfer objects
	Module structure
	Custom API client for NVDB
	Comparing capture to guardrails
	Map problems
	Stateless backend considerations
	Ingest performance
	Internationalization
	Identity considerations
	Feedback

	Conclusion
	Future work
	Integrating with the cars system
	Guardrail matching improvements
	Guardrail direction fixes
	Ingest performance
	Identity provider integration
	Split layout for guardrails
	Other layout improvements
	User preferences

	Societal Impact
	The importance of guardrail maintenance
	Ethical aspects
	Contribution to the UN's Sustainable Development Goals

	References
	Appendices
	A - GitHub repository
	B - Impact of guardrail quality on fatal traffic accidents
	C - Full size diagrams
	D - Map rendering performance profiling
	E - Wireframes
	F - Video

