Halvard Bolli @verlien
Dawid Staniszewski
Gisle Brandsgy Furland

Planning tool for guardrail data
capture

Bachelor’s thesis in Computer Science
Supervisor: Saleh Abdel-Afou Alaliyat

May 2024

2
2
=
2

o
o
cC

c
o

~

el
cC
©
]
[}
C
2L
(%4

%]

[
o

2
(%]
o
[

=
C

]
cC

R
o
%
o

z

(%]
29
£9
5 <
0.2
c O
@Y
C ©
[
= 2
O ©
= Z
o
o c
w o

'—
2y
[
@O

-
25
9]
EE
g5
]
28
c
s°
=]
g8}
£
—_
L
=
Y—
o
=
(o}
©
L

@ NTNU

Norwegian University of
Science and Technology

Halvard Bolli @verlien
Dawid Staniszewski
Gisle Brandsey Furland

Planning tool for guardrail data
capture

Bachelor’s thesis in Computer Science
Supervisor: Saleh Abdel-Afou Alaliyat
May 2024

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of ICT and Natural Sciences

@ NTNU

Norwegian University of
Science and Technology

Abstract

1Si has developed a product named inSight, which is an innovative system for discov-
ering faults and deviations in the Norwegian road system. inSight uses a car equipped
with computer-controlled cameras, lasers, infrared lights and a GPS to execute data cap-
ture. The data is then processed by tailored machine learning models to identify faults
or deviations on the captured guardrails. Capture data is also not available continuously.
1Si requested ideas on how a planning tool for the execution of data capture could be
implemented, including continuously reported capture data.

This thesis presents a concept for a planning tool for this capture. The tool is built as
aresponsive web application that can be used by both planners and drivers. It focuses on
how to efficiently plan and execute work orders, organized through projects. Extensive
use of data streaming allows for near real-time updates, notifying drivers of critical
metrics. It is also used to update the position of the vehicle in an interactive map. The
guardrails can also be viewed in this map, along with their status.

The application was developed using iterative methods inspired by the SCRUM
framework. The development was done in weekly iterations, with planning and retro-
spective meetings. In addition, there were also biweekly review meetings, where the
work done was showcased to both the supervisor from NTNU, as well as the client, iSi.
These reviews provided the group important feedback on the work.

The final result may help in maintaining good quality guardrails, ensuring that they
are up to standard. Well maintained guardrails play an important role in reducing the
extent of damage in traffic accidents.

Sammendrag

iSi har utviklet produktet inSight, som er en innovativ lgsning for & avdekke feil og
avvik pa rekkverk i det norske vegsystemet. inSight benytter en bil utstyrt med kamera,
lasere og infrargde lys samt en GPS for a gjennomfgre datafangst. Innhentede data blir
deretter analysert av tilpassede maskinlaringsmodellere for & avdekke feil eller avvik
pa rekkverkene. De innhentede dataene er derimot ikke tilgjengelige kontinuerlig, og
1S1 forespurte ideer til hvordan et planleggingssystem for gjennomfg@ringen av denne
fangsten kunne vere.

I denne oppgaven legges det frem et konsept for et slikt planleggingssystem. Sys-
temet er laget som en responsiv web applikasjon som kan benyttes av bade planleggere
og sjafgrer. Det fokuserer pa a kunne effektivt koordinere arbeidsordre i prosjekter samt
utfgringen av disse. Systemet benytter seg av mekanismer for sanntidsdata for a kunne
gi sjafgrer beskjed om viktig metrikk, samt a oppdatere et interaktivt kart som viser
kjgretgyets posisjon. I det samme kartet vises rekkverkene og des status.

Utviklingen av applikasjonen er gjort ved hjelp av iterative metoder, hvor de brukte
metodene er inspirert av SCRUM rammeverket. Utviklingen ble gjennomfgrt i ukentlige
iterasjoner, med planlegging og retrospektive mgter. Annenhver uke ble det gjort en
gjennomgang av utfgrt arbeid sammen med veileder fra NTNU og oppdragsgiver, iSi.
Disse gjennomgangene gjorde det mulig a fa viktige tilbakemeldinger pa det utfgrte
arbeidet.

Sluttresultatet kan vere til hjelp for vedlikehold av veirekkverk, og bista i & op-
prettholde en god standard. Godt vedlikeholdte veirekkverk er viktig for a redusere
skadeomfanget i trafikkulykker.

il

Preface

This thesis presents the results from a project done in collaboration with 1Si. We were
tasked to develop a planning tool for their product inSight. A major motivation for
choosing this project has been the ability to explore a domain and technologies which
the group had no previous experience with. It also posed as an opportunity to further
garner experience with previously used technologies and methodologies for developing
responsive, full stack web applications. We would like to thank 1Si for this challenging
and exciting task. In our collaboration with them, a number of people have contributed
useful input to shape the direction of the project. We would like to thank Fred Husgy,
Kenneth Sylte and Bgrge Torvik for their input on the work we have presented. We
would also like to thank our supervisor Saleh Abdel-Afou Alaliyat for providing us
with advice and constructive feedback, being a reliable contact throughout the duration
of the project.

iii

Contents

1 Introduction 1
1.1 Background 1
1.2 Projectdescription 1
1.3 Motivation e e e e 2
1.4 Goals e 2
1.5 Scope e 2
1.6 Thesisstructure Lo 2

2 Theory 5
2.1 Standards 5

2.1.1 Well-known text representing geometry 5
2.1.2 Coordinate reference systems 5
2.1.3 EPSG Geodetic Parameter Dataset 5
2.1.4 JSON 5
2.1.5 YAML 6
2.1.6 ProblemDetail 6
217 JSONWebToken 6
2.1.8 OpenAPI Specification 6
2.2 Universaldesign 7
221 WCAG e 7
222 ARIA . . . e 7
2.3 Observerdesignpattern 7
24 HTML e e 7
25 CSS e 7
2.6 JavaScript L 7
2.7 TypeScript e 8
2.8 JSX e 8
29 React e 8
2.10 Solid.js 8
211 Roaddata 8
2.11.1 Stretches 8
2112 Guardrails 9
212 Geoido 9
2.13 Client-server architecture 9
2.14 Server-sent €Ventso e e e e e e 9
2.15 REST 10
2.16 HTTPmethods 10
2.17 Relational Databases 10

v

CONTENTS v

218 SQL . . . e 10
2.19 SMTP e 10
2.20 Versioncontrol 10
221 Testingo e 10
221.1 Unittesting oo vt e 11
2.21.2 Integrationtesting 11
2.21.3 End-to-endtesting 11

2.22 Containerization it 11
2.23 Infrastructureas Codeo 11
2.24 Continuous Integration and Continuous Delivery 11
225 SCRUM . . . o 12
2251 SCRUMMaster. i 12
2252 ProductOwner 12
2.25.3 DevelopmentTeam 12
2254 Sprints 12

3 Method 15
3.1 Workflow 15
3.1.1 Dailystandup 15

3.1.2 SprintPlanning oL oo 15

3.1.3 SprintReview oo 15

3.1.4 Sprint Retrospective 15

315 Loggingwork 16

3.1.6 Communication 16

3.1.7 Commit message convention 16

3.1.8 Code formatting 16

32 Design e e e 16
3.2.1 Designguidelines. 16

322 Diagrams e 18

323 Wireframes L 18

324 Designfeedback 18

3.2.5 Universaldesign 18

33 Testing. o e e e 18
33.1 Usertesting v v v vt i e e 19
332 Unittesting o e e 19

3.3.3 Integrationtesting 19

3.4 Artificial intelligence tools, 19
3.5 Technologies 19
35.1 Solidjso 19

3.5.2 TailwindCSS 19

353 Componentlibrary oo L. 19

354 Maprendering 20

355 SpringBoot 20

35.6 Database 20

3.5.77 Database migrations 20

3.5.8 Geospatial types and transforms 20

359 Containers 21

3.5.10 ObjectStorage 21

Vi

CONTENTS

3.5.11 Documenting APIsandcode 21
35.12 GitHub Actions Lo 21
35.13 Ansible 21
3.5.14 KubernetesandHelm 22
3.5.15 Chrome DevTools 22

3.6 ProjectStructure 22
3.6.1 Modulestructure 22

3.6.2 Clientpackage 23

3.6.3 Application for initializing 23
Results 25
4.1 Usecasediagram e 25
42 ERdiagram 25
4.3 Transforms between vertical coordinate reference systems 26
4.4 Application 27
4.4.1 Authenticationo 27

442 Fileuploads 28

443 Theme 28

444 Usermanagement. 29

4.4.5 Vehicle management 30

4.4.6 Projectmanagement 31

447 Guardrail dataimport, 32

4.4.8 Guardrail geometry directions L. 33

449 Processingcapturelogs 34
4.4.10 Trips and replays of capturelogs 35
4411 Tripnotes o v v v v e e e 37
4.4.12 Vehicleanduserstatus 37
4.4.13 Matching capture data to guardrails 38
4.4.14 Calculating guardrail capture grade 39
4.4.15 Interactive map for viewing guardrails 40
4.4.16 Viewing images captured of guardrails 40
4.4.17 Position updates for users and vehicles 40
4.4.18 Follow mode for in-vehicle viewing 41
4.4.19 Responsivelayouts 41
4.420 State management e e e e 41
4.4.21 Reporting deviations 43
4422 Dashboard 43
4423 Globalsearch 43
4.4.24 Internationalization 43
4.4.25 Inputvalidation L. 45
4426 Errorhandling 45
4427 APldocumentation 46

4.5 Applicationdeployment.o 47
4.6 Map rendering performance 49

CONTENTS

5 Discussion

5.1
5.2
5.3
54
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14

6 Conclusion
Future work

6.1

Preliminary project plan

Planning workflow
Design choices
Technology choices

Client package and data transfer objects

Module structure

Custom APIclientforNVDB.
Comparing capture to guardrails

Map problems

Stateless backend considerations

Ingest performance
Internationalization

Identity considerations

Feedback

6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.1.6
6.1.7
6.1.8

Integrating with the cars system
Guardrail matching improvements
Guardrail direction fixes
Ingest performance
Identity provider integration
Split layout for guardrails
Other layout improvements

User preferences

7 Societal Impact
The importance of guardrail maintenance

7.1

7.2 Ethical aspects

7.3 Contribution to the UN’s Sustainable Development Goals

References

Appendices

A - GitHub repository

B - Impact of guardrail quality on fatal traffic accidents

C - Full size diagrams

D - Map rendering performance profiling

E - Wireframes

F - Video

Vil

51
51
51
51
51
52
52
52
52
53
53
53
54
54
54

55
55
55
55
56
56
56
56
57
57

59
59
60
60

61

ii

iii

iv

vi

vii

List of Figures

2.12.1
2.25.1

3.2.1
322
3.5.1
3.6.1
3.6.2
3.6.3

4.1.1
4.2.1
4.3.1
4.4.1
4.4.2
443
4.4.4
445
4.4.6
4.4.7
4.4.8
449
4.4.10
4.4.11
4.4.12
4.4.13
4.4.14
4.4.15
4.4.16
4.4.17

4.4.18
4.4.19
4.4.20
4.4.21

4.4.22

Car equipped with camerarig 1
Geoidillustration Lo o 9
Sprintcycle 13
Colorpalette e 17
Figma wireframes for Ul used by driversonmobile 18
Recording of rendering 25.000 railings using Canvas renderer in Leaflet 22
Overall project structure v v . 22
Frontend code folder structure 23
Backend code folder structureo oL 23
Finaluse casediagram 25
Final ER diagram 26
Visualization of NN2000 height reference values 27
Authentication workflow o000 28
Toggling of dark theme 29
User overview page o v v i e e e e e 30
Userdetailspage 30
Vehicle overview page 31
Project browsing menu with projects grouped by status 32
Frontend project view with a selectedplan 32
Dialog shown when creating a new projectplan. 33
Comparison of railing geometry directions with road network direction 34
Flow chart displaying the logic used when processing capture logs . . 34
Page for uploading and viewing uploaded capture logs 35
Dialog shown when startinganew trip 36
Indicators displayed in the tripview 36
Trip note markers and selectionof them 37
Button displayed when a user is outside their active trip 37
Diagram displaying how guardrails are matched to captures 38
Diagram displaying the comparison of the cars vector and the roads

VECIOT . . o v v v ottt s e e e e e 39
Merging of segment coverage ranges 39
Guardrail variants based on completiongrade 39
Rendering of guardrails in the map where one is clicked 40
Screenshot from the UI displaying how images of guardrails can be

viewed ... 41
Navigation menu for small or mobile viewports 42

viii

LIST OF FIGURES

4.4.23

4.4.24
4.4.25
4.4.26
4.4.27
4.4.28
45.1

45.2

6.1.1

Responsive layout used to configure the users page with different map
widths
List of deviations displayed after they have been reported in the Ul
Dashboard UI with widgets displaying key information
Frontend UI for global search
Sample validation error displayed in frontend when submitting forms .
API docs rendered using Swagger
GitHub Actions deployment workflow
Diagram showing all resources defined by the Helm chart

Prototype split layout for viewing guardrails and deviations

1X

List of Tables

4.6.1 Guardrail rendering performance comparison . . .

7.1.1 Impact of guardrail quality on fatal traffic accidents

Abbreviations

List of all abbreviations in alphabetic order:

» API Application Programming Interface

* ARIA Accessible Rich Internet Applications
* CI/CD Continuous Integration and Continuous Delivery
* CRS Coordinate Reference System

* CSS Cascading Style Sheets

* DDL Data Definition Language

* DML Data Manipulation Language

* DNS Domain Name System

* DOM Document Object Model

* EPSG European Petroleum Survey Group

* ER Entity Relationship

* FOV Field of view

* GIS Geographic Information System

* GNSS Global Navigation Satellite System

* GPS Global Positioning System

» HTML Hypertext Markup Language

* HTTP Hypertext Transfer Protocol

* IaC Infrastructure as Code

* IDE Integrated Development Environment

JDBC Java Database Connectivity
* JPA Java Persistence API

* JSON JavaScript Object Notation
* JSX JavaScript XML

Xi

Xil

LIST OF TABLES

JTS Java Topology Suite

JWT JSON Web Token

NLOD Norwegian License for Open Government Data
NN1954 Norway Null 1954

NN2000 Norway Null 2000

NPM Node Package Manager

NPRA Norwegian Public Roads Administration

NTNU Norwegian University of Science and Technology
NVDB National Road Database (Nasjonal vegdatabank)
OCI Open Container Initiative

OS Operating System

ORM Object Relational Mapping

PNPM Performant NPM

REST Representational State Transfer

SMTP Simple Mail Transfer Protocol

SQL Structured Query Language

SVG Scalable Vector Graphics

SRID Spatial Reference System Identifier

TLS Transport Layer Security

UI User Interface

UN United Nations

URL Uniform Resource Locator

UTM Universal Transverse Mercator

VoIP Voice over Internet Protocol

WAI Web Accessibility Initiative

WCAG Web Content Accessibility Guidelines

WKT Well-known text

YAML Yet Another Markup Language / YAML Ain’t Markup Language

XML Extensible Markup Language

1. Introduction

This chapter introduces the client, along with their goals and requirements for the
project.

1.1 Background

iSi AS has developed a product named inSight, which introduced a new innovative way
of detecting deviations on guardrails in the Norwegian road network. inSight uses cars
equipped with computer-controlled cameras, lasers, infrared lights and a GPS to power
a digital inspection of guardrails. The car equipment captures data from guardrails,
which is later processed by tailored artificial intelligence and machine learning models
to identify faults and deviations. The equipment on the cars is shown in Figure 1.1.1.
inSight has been developed as an innovation project in collaboration with Arvid Gjerde
AS, The Norwegian Public Roads Administration, NTNU Alesund, Mgre og Romsdal
County Municipality and Innovation Norway.

Figure 1.1.1: Car equipped with camera rig [1]

1.2 Project description

iSi already has systems in place for collecting data from the equipment on cars, but
the information is not available to be presented and made use of continuously. In their
task proposal, 151 requested ideas and suggestions on how to solve this challenge by
transmitting data to a central service. The collected data should then be displayed to
users, allowing drivers to plan their route and register what has already been captured
as well as allowing planners to keep track of ongoing captures.

2 CHAPTER 1. INTRODUCTION

1.3 Motivation

When applying for this project, our primary motivation was to create an interactive and
user-friendly interface that would allow both drivers and planners to efficiently plan
and execute the data capture. The group found that the project both suited our previous
experiences from web and application development while also allowing challenges in a
domain the group had no prior exposure to.

1.4 Goals

Building on the specifications in iSi’s proposal, the following goals for the result of this
project were established:

* Produce an application usable on both mobile and desktop devices by using mod-
ern frontend technology

* Make the interface interactive and user-friendly, suitable for use during both plan-
ning and driving

* Display collected data in a clear and structured manner through the use of filtering
and color-coding

» Update the data in close to real-time to inform users of the current status

In addition to these goals, the group defined some that they wanted to achieve through
the development process:

* Gain further experience with agile development practices

* Learn about how geographic data can be visualized in modern frontend applica-
tions

* Gain experience in working with clients in an iterative method

1.5 Scope

The project had an open-ended scope, where iSi requested input from students on how
a planning tool could be made for inSight. It was noted that it should ideally be possible
to use the solution both on desktops in the office for planners, as well as on mobile on
the drivers’ phones. The open-ended scope of the project allowed the group to decide
how to develop the application, both in terms of design and technology, while adjusting
the product using feedback from iSi. Some of the main tasks mentioned were that the
solution should integrate map data, as well as utilize data from official REST APIs such
as NVDB.

1.6 Thesis structure

Chapter 2 - Theory: Describes various concepts and theoretical background for this
thesis

Chapter 3 - Method: Highlights both the technology and methodology used in this
project

CHAPTER 1. INTRODUCTION 3

Chapter 4 - Results: Presents the results of the project
Chapter 5 - Discussion: Discusses the challenges faced during the project

Chapter 6 - Conclusion: Concludes the work presented and notes work that can fur-
ther improve the results

Chapter 7 - Societal impact: Describes the societal impact of the system and its rela-
tion to UN’s sustainable development goals

CHAPTER 1. INTRODUCTION

2. Theory

This chapter introduces the theoretical background recommended to fully grasp con-
cepts discussed in this thesis. Programming related concepts, technologies, principles
and methodologies which set a baseline for the development of the application are de-
scribed here.

2.1 Standards

This section covers the standards used and adhered to in the application.

2.1.1 Well-known text representing geometry

Well-known text, abbreviated WKT, is a standardized textual representation of geospa-
tial objects. The standard defines how geospatial objects such as Point, LineString and
Polygon can be defined in text [2]. Examples of how different geometries can be repre-
sented in WKT can be seen in Listing 1.

LINESTRING (6.2334 2.00083, 3.4002 4.3002)
POINT (3.3020 3.2002)
POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10))

Listing 1: Example of Line, Point and Polygon geometries in WKT

2.1.2 Coordinate reference systems

Coordinate reference systems (CRS) define how a two-dimensional planar shape relates
to a three-dimensional spherical shape. These relations are used to measure locations
on the surface of Earth as coordinates. Reference systems are typically given a Spatial
Reference System Identifier (SRID) [3].

2.1.3 EPSG Geodetic Parameter Dataset

The EPSG Geodetic Parameter Dataset is a registry containing definitions of coordinate
reference systems, coordinate transformations and other related data. GIS systems use
codes from the EPSG dataset as SRIDs and related CRS data to perform transformations
between reference systems [4].

2.1.4 JSON

JavaScript Object Notation, abbreviated JSON, is a data format which is both easy to
read for humans and easy to process for machines [5]. JSON is inspired by the notation
for object literals in the JavaScript programming language [6]. JSON is built using
collections of name/value pairs and ordered lists of values [5]. Values can either be

5

6 CHAPTER 2. THEORY

strings, numbers, lists or collections of key/value pairs. Listing 2 showcases the JSON
data format with various constructs.

"key": "value",

"number": 1,

"object": {
"key": "value"

+,

"list": [
{

"key": "value"
}
1
}

Listing 2: Example of various constructs in the JSON format

2.1.5 YAML

"Yet Another Markup Language" or "YAML Ain’t a Markup Language" is a human
readable data serialization language optimized for writing files such as configuration
settings [7]. An example of YAML is shown in Listing 3.

key: value

number: 1
object:

key: value
list:

- key: value

Listing 3: Example of code syntax in YAML

2.1.6 Problem Detail

Problem Detail is a proposed standard specification that defines a simple format for
describing the specifics of an encountered problem. The specification defines structures
for problems in both XML and JSON formats [8].

2.1.7 JSON Web Token

JSON Web Tokens, abbreviated JWTs, are JSON-based security tokens that contain a
set of claims that can be signed, encrypted or both. JWTs are Base64 encoded and URL
safe [9].

2.1.8 OpenAPI Specification

The OpenAPI Specification defines a formal standard for describing HTTP APIs. The
format is used to communicate how an API works without requiring source code access,
documentation or inspection of network traffic [10]. OpenAPI definitions can be used
to generate both documentation and client code [10].

CHAPTER 2. THEORY 7

2.2 Universal design

Universal design is the concept of designing products that are usable by all people,
regardless of age, size, ability or disability [11]. This section outlines principles and
guidelines that can be used to ensure accessibility and universal design.

2.2.1 WCAG

Web Content Accessibility Guidelines, abbreviated WCAG, are guidelines for achiev-
ing web accessibility for people with disabilities [12]. The "WCAG 2.2" defines five
main principles. The first principle, Perceivable, states that "information and user inter-
face components must be presentable to users in ways they can perceive." The second
principle, Operable, is that "user interface components and navigation must be opera-
ble." The third principle, Understandable, specifies that "information and the operation
of the user interface must be understandable." The fourth principle, Robust, requires
that "content must be robust enough to be interpreted reliably by a wide variety of user
agents, including assistive technologies." Lastly, the principle of Conformance ensures
that a website or application adheres to the aforementioned standards [13].

2.2.2 ARIA

Accessible Rich Internet Applications, abbreviated ARIA, comprise a set of roles and
attributes designed to enhance the accessibility of web pages for individuals with dis-
abilities. For example, a web browser typically assigns no inherent meaning to an empty
<div> element. However, the addition of an ARIA attribute such as

<div role="progressBar">, informs the browser that this element functions as a
progress bar [14]. The WAI-ARIA specification includes an Authoring Practices Guide
which recommends approaches for developers to help make web application behavior
accessible through utilizing such attributes [15].

2.3 Observer design pattern

The observer design pattern is a pattern that can be used to define a relationship for
one way messaging between different parts of an application. The pattern consists of
two components, publishers and subscribers. A publisher is responsible for notifying
relevant subscribers when certain criteria is met, such as the occurrence of a user input
event [16].

24 HTML

HTML is short for Hypertext Markup Language and is a core building block of the Web.
It is used to define both the structure and meaning of content in web pages [17].

2.5 CSS

Cascading Style Sheets, abbreviated CSS, is another core building block of the Web.
CSS is a stylesheet language that can be used to describe how content of web pages
should be rendered on screen, paper, in speech or on other media [18].

2.6 JavaScript

JavaScript is a general purpose dynamic programming language. The language is
known as the scripting language used in web browsers and allows for instance mod-

8 CHAPTER 2. THEORY

ifying the contents of a web page through APIs. In addition to running on browsers,
it also runs in non-browser environments such as Node.js. The JavaScript language is
multi-paradigm, supporting object-oriented, imperative and declarative styles of pro-
gramming [19].

2.7 TypeScript

TypeScript is a superset of the JavaScript language that introduces additional syntax for
types to the language [20]. TypeScript code does however not run in the browser like
JavaScript, requiring a transpilation step where types are erased [21].

2.8 JSX

JSX is an extension of the JavaScript syntax that allows defining markup in JavaScript
[22]. In contrast to the markup languages it renders to, it supports constructs like loops
and conditions. The syntax extension is often used for defining components that render
to HTML using frameworks [23].

2.9 React

React is a JavaScript framework for building user interfaces for both the web and native
platforms. React uses the JSX syntax extension for defining interfaces in a composable
manner using components [23]. React handles state updates through a Virtual DOM.
State updates are made in the Virtual DOM, which a reconciler like React DOM can use
to compare the difference between the Virtual DOM and the actual DOM and update
accordingly [24].

2.10 Solid.js

Solid.js is a JavaScript framework for building user interfaces in the web. Similar to Re-
act, Solid.js uses the JSX syntax extension for defining interfaces. Solid.js differs from
some of the other frameworks by utilizing signals for updating the interface. Signals are
similar to the Observer design pattern, and allow the framework to only update the parts
of a page that need to be updated. However, the process of establishing subscriptions is
handled by the framework. This approach differs from frameworks like React, where a
Virtual DOM is used. The framework is designed to build high-performing interfaces
[25]. It is also among the top performing frameworks across multiple metrics in the
js-framework-benchmark [26].

2.11 Road data

The Norwegian Public Roads Administrations maintains an open API for accessing
road data, referred to as NVDB. The data is licensed under the Norwegian License for
Open Government Data (NLOD) [27]. The API serves a database that contains infor-
mation about the physical road system in Norway, and various object types attached to
it, such as guardrails along with other metadata. The default SRID used for the Nor-
wegian road data is EPSG SRID 5973, which is a compound CRS that combines UTM
coordinates from SRID 25833 with NN2000 heights from SRID 5941.

2.11.1 Stretches

Roads are divided into systems that start and end at intersections. These systems are
further divided into stretches. A stretch is represented by a series of geographical points,

CHAPTER 2. THEORY 9

forming a line. The direction of the stretch is the same as the order of these points, and
can be either with or against the network.

2.11.2 Guardrails

Guardrails are one of the road object types attached to the road network [27]. A
guardrail is placed along or more stretches, and has a set direction and side position.
The direction may be with or against the stretch. The guardrail is represented in the
same way as a stretch, using a series of geographical points to form a line. In addition,
some guardrails do not have their own geometry, and will then use a subset of the roads
geometry as its representation instead.

2.12 Geoid

Geoid is the shape of the ocean surface under the influence by gravity. Geoid is com-
monly expressed as geoidal height or geoid undulation, in terms of a reference ellipsoid
height. The reference ellipsoid is a shape that estimates the geoid [28]. GPS or GNSS
navigation systems typically measure height in ellipsoid height. Undulation is not stan-
dardized, and different regions use varying mean sea levels as a reference [29]. NN2000
is a common nordic height reference, short for Norway Null 2000. This height reference
superseded the previously used NN1954 [30]. An illustration of the relation between
the geoid and the ellipsoid can be seen in Figure 2.12.1.

Geoid Separation/

N

The Earth'’s Surface / Topography

Figure 2.12.1: Geoid illustration [31]

2.13 Client-server architecture

Client-server architecture refers to a way of structuring a computer network in which
remote devices (clients) request and receive service from a centralized host device
(server). Client devices provide an interface through which requests can be sent to the
server. Upon arrival of a request, the server will respond back to the client, providing
the requested service if possible [32].

2.14 Server-sent events

Server-sent events use a one-way connection to push new data to a web page. Messages
are transmitted over a HTTP connection, where the browser can treat the incoming

10 CHAPTER 2. THEORY

messages as events [33].

2.15 REST

REST, short for Representational State Transfer, is an architectural pattern for web
servers. The core principle of REST is that the server will respond with the repre-
sentation of a resource, which is typically an HTML, XML or JSON document [34].
This representation will include the resource data, metadata and hypermedia that can
be interacted with to achieve the desired state. A resource can be a document, image,
service, non-virtual object, a collection of resources, and so on [35].

2.16 HTTP methods

HTTP methods are a set of standardized commands that indicate a desired action to be
performed for a given resource. There are various different commands, all represented
by different verbs. The verbs typically describe the intention of a request. Commonly
used verbs are POST, GET, PUT, and DELETE, which are typically used to create, read,
update, and delete resources, respectively [36].

2.17 Relational Databases

A relational database is a type of database that organizes data into rows and columns,
which collectively form a table where the data points are related to each other. Re-
lational databases use unique identifiers known as primary keys and foreign keys to
establish different relationships between tables [37]. Relational databases use different
languages to interact with them, where SQL is the most adopted language.

2.18 SQL

SQL, short for Structured Query Language, is a language commonly used to interact
with relational databases. The SQL syntax includes a Data Definition Language (DDL),
a Data Manipulation Language (DML), a Data Query Language (DQL) and a Data
Control Language (DCL) [38]. A DDL is used to define the structure of entities within
the database schema [39]. A DML on the other hand, is used to insert, update or delete
records from the schema [40]. The data inserted into the defined schema can be queried
using a DQL [41].

2.19 SMTP

Simple Mail Transfer Protocol, abbreviated SMTP, is a standard communication proto-
col used to transmit email. While the protocol allows for both sending and receiving
emails, it is typically only used by clients to send email [42].

2.20 Version control

Version control is a system designed to record changes for a file or set of files, enabling
the retrieval of specific versions at a later date [43].

2.21 Testing

Testing in software development is critical for ensuring reliability, functionality and
security of the application. Testing can be done through several strategies, some of
which are covered in this section.

CHAPTER 2. THEORY 11

2.21.1 Unit testing

Unit testing is a methodology in software testing where focus is on individual functions,
methods, or classes, ensuring each unit operates as intended. This is often the first line
of defense before conducting further testing [44].

2.21.2 Integration testing

Integration testing is a software testing methodology used to determine how well indi-
vidually developed components, or modules of a system communicate with each other.
Integration tests ensure higher test coverage by exposing system-level issues such as
broken database schemas or faulty service integration. This testing methodology serves
as a feedback loop throughout development, and can enhance the quality and reliability
of the software [45].

2.21.3 End-to-end testing

End-to-end testing is a software testing methodology that evaluates the functionality and
data flow of an application across multiple subsystems to ensure they work together
from start to finish. Simply testing a single component may not be enough; instead,
performing end-to-end testing verifies the application from start to finish by putting
all its components together. This approach can help ensure that the application meets
overall requirements and functions as intended in a real-world scenario [46].

2.22 Containerization

Containerization is a form of operating system virtualization. It packages everything
needed to run an application or service into a single unit [47]. The Open Container
Initiative, OCI, defines industry standards around the format of these containers. In
addition to defining standards for the format of the containers, the OCI Runtime spec-
ification defines how these images can be run once unpacked to a Runtime filesystem
bundle [48]. Docker is a platform that can be used to build, share and run container
application [49]. containerd is an example of a runtime complying to the OCI Runtime
Specification [50]. It is utilized by Docker as its runtime [51]. It is also included in some
Kubernetes distributions, including K3s [52]. Kubernetes is a platform for managing
containerized workloads, including both declarative configuration and automation [53].

2.23 Infrastructure as Code

Infrastructure as Code, abbreviated [aC, is a descriptive model of computing infrastruc-
ture, and can be used to provision and support infrastructure [54]. Similar to how the
same source code generates the same binary, with [aC, the same source code generally
generates the same environment every time it deploys [55].

2.24 Continuous Integration and Continuous Delivery

Continuous Integration is a practice where the integration of code changes from mul-
tiple contributors in a single software project is automated. It allows developers to
frequently push changes to a central repository, which will trigger builds and tests to
run to verify integrity [56].

Continuous delivery pipelines extend the idea of continuous integration by deploy-
ing all code changes that pass both the test and the build stage. Continuous delivery

12 CHAPTER 2. THEORY

allows for defining at which interval the software should release, based on business
needs [57].

2.25 SCRUM

SCRUM is a framework designed to enhance team collaboration on complex tasks
through the use of short, iterative work cycles known as Sprints. By enabling teams
to complete tasks in small segments, SCRUM promotes better organization and effi-
ciency in tackling complex projects. The SCRUM framework is made up of a SCRUM
team, consisting of a Product Owner, a SCRUM Master and Developers who all follow
specific roles, events, and artifacts defined in the SCRUM Guide [58] [59].

2.25.1 SCRUM Master

The SCRUM Master serves as the facilitator for the development team, ensuring that
the SCRUM framework is followed. The intention of this role is to eliminate roadblocks
and support the team in achieving their goals efficiently [59].

2.25.2 Product Owner

The Product Owner of a SCRUM team represents the interests of the stakeholders and
is responsible for managing the product backlog and prioritizing work [59].

2.25.3 Development Team

The Development Team is a group responsible for delivering a potentially releasable
increments of product at the end of each Sprint. The development team works alongside
the SCRUM Master and Product Owner, and has a crucial role of driving the project’s
progress and ensuring alignment with the stakeholders’ expectations and product vision
[59].

2.25.4 Sprints

A Sprint is a fixed time period containing a number of SCRUM events. These SCRUM
events are structured meetings with the goal of organizing work, gathering feedback,
and improving both the product and the process continuously. A Sprint typically lasts
one to four weeks and aims to reach a specific goal set by the team. Prior to the Sprint, a
common goal is established. Changes made to the Sprint that could endanger the Sprint
goal should be avoided [59]. Figure 2.25.1 illustrates the events within a Sprint that
form a cycle when executing sprints in succession.

CHAPTER 2. THEORY 13

sPRINT CYCLE

Figure 2.25.1: Sprint cycle [60]

2.254.1 Sprint Planning

Sprint Planning is an event that comes at the start of each sprint, with the purpose
to define the work that needs to be done. During planning, the team sets goals for
the Sprint, plans how the goals are going to be achieved, and distributes work to the
members. The backlog of the product is used in this phase to see what work is remaining
and what should be prioritized [59].

2.25.4.2 Daily stand-up

The daily stand-up is a 15-minute event held every day where developers gather to
discuss their daily tasks. This meeting promotes open communication, simplifies com-
plexities, and reduces the need for additional meetings [59].

2.25.4.3 Sprint Review

A Sprint Review is the second to last event of a Sprint. It is a meeting held between the
product owner, the development team, and stakeholders if any. The purpose of a Sprint
Review is to showcase what work has been done, gather feedback and identify the next
steps. It ensures that everyone is up to date and makes it easier to plan future work [59].

2.25.4.4 Sprint Retrospective

A Sprint Retrospective is the final event in a Sprint. The purpose of it is to increase
quality and effectiveness. During a Sprint Retrospective, the team identifies what went
well, what should continue, and what needs to change, regarding individuals, interac-
tions, processes and tools. The most impactful improvements are then expected to be

addressed as soon as possible, and may even be added to the backlog for the next Sprint
[59].

14

CHAPTER 2. THEORY

3. Method

This chapter covers the methods used during the project for work organization and
application development.

3.1 Workflow

The work for the project was organized in one week sprints, using the SCRUM frame-
work as an approach to organizing the work. The project consisted of four phases,
where each of the phases were expected to be executed in parallel. The start of the
project was however mainly used to understand the problem space, and attempt to de-
sign a user interface for the application in dialogue with the client. The four phases that
were defined are Preliminary Report, Design, Development and Thesis.

3.1.1 Daily stand up

Even though daily stand ups are part of the SCRUM framework, the group ignored this
activity. The group found that a planned activity for sharing what was being worked on
and any eventual challenges was unnecessary as both progress and challenges naturally
surfaced in other contexts. It however did not cause too much disturbance to other group
members’ work.

3.1.2 Sprint Planning

To plan activities for upcoming sprints, the group held non-formal meetings to discuss
which tasks should be included. Throughout the project, the group maintained a backlog
consisting of both bugs and unfinished user stories. These were prioritized and sorted
in the backlog by importance in relation to the project, with the planned user stories
inferred through the use case diagram considered most important. Smaller bugs or
tasks would also be included in sprints to increase scope whenever time allowed it. The
created issues did not include estimates.

3.1.3 Sprint Review

During the project, the group organized meetings with the client every two weeks. For
each of these meetings, a document outlining the work done in the previous two sprints
was prepared. This document was presented to the client and supervisor at the meeting,
allowing them to give feedback either during or after it.

3.1.4 Sprint Retrospective

Following the end of each sprint, a retrospective meeting was held. During these meet-
ings the group evaluated the processes and work methodology, reflecting upon the ap-
proach. The retrospective documents were made using a template in Jira, and organized
in a folder in the Jira project pages.

15

16 CHAPTER 3. METHOD

3.1.5 Logging work

At the end of each work session, the hours spent on different tasks were logged. Using
the time tracking feature in Jira, the group added work logs to each issue. To gain an
extra overview in addition to issue work logs, the TimeSheet Tracking for Jira app was
used.

3.1.6 Communication

Communication was a core part in the group’s organizational workflow. To facilitate
this, Discord, a VoIP platform that supports text chat, voice chat, screen sharing, and
file sharing, was used. These features enabled a productive environment while working
digitally.

Email communication and digital meetings over Teams were the main strategy for
communicating with the stakeholders. In addition to these meetings, meeting notes and
Sprint Review documents were shared on Confluence, which allowed for asynchronous
feedback on the presented work.

3.1.7 Commit message convention

To streamline the authoring of commit messages, the group decided to follow version
1 of the Conventional Commits specification. Along with the specification, the group
attached issue identifiers from Jira, allowing the GitHub integration to show which com-
mits are tied to which issues. Combined with environment deployments in GitHub, it
also allowed Jira to display whether or not an issue was published.

3.1.8 Code formatting

The Eclipse and Prettier code formatters were utilized during development. The Eclipse
formatter was used for Java code, whilst Prettier was used for TypeScript, HTML and
CSS code. They were set up to use shared configurations, which their respective editor
extensions integrated into the workflow. The extensions were used to automate the
process of ensuring consistent looking code.

3.2 Design

In the early phases of the project, design was prioritized. Even though it lowered in
priority further down the line, it was an iterative process throughout the whole project.
This section discusses the design process and the guidelines followed during the devel-
opment process.

3.2.1 Design guidelines

A simplistic theme was chosen for the application to balance out the detailed look of
the map. To achieve this, a minimalistic component library was used. These com-
ponents were combined with standardized values for spacing, rounding, shadows and
other styling options. The color scheme consists mainly of a grayscale palette taken
from TailwindCSS and a generated blue one based on iSi’s branding color. The colors
used can be seen in the palette in Figure 3.2.1. As a measure to balance the interface
with the map, it has been important to avoid overloading the application interface with
excessive content. This is also in line with accessibility principles outlined in WCAG 2
about minimizing the amount of content, helping reduce cognitive overload and mini-
mize focus loss among users [61].

CHAPTER 3. METHOD

Brand colors
Brand blue

light base
#0454ad #00347d

Brand blue expanded

50 100 200
#bOd1ff #9cc5ff #73adff
Brand red

light base
#db3548 #af1429

Brand red expanded

50 100 200

#fad2d8 #f8cOc8 #f49ba7?

Other colors

Gray

50 100 200
#fafafa #fAfAf5 #edede7
Success

50 100 200
#ecfdfS #d1faeS #a7f3d0
Warning

50 100 200
i#fefce8 #fefoc3 #fef08a
Error

50 100 200

#fef2f2 #fee2e2 #fecaca

300 400 500 600 700 800 900 950

#4a95ff #217dff #0067f7 #0056cf #0045a6

300 400 500

#ef7787 #eb5267 #e72ed7

(=]
(=]
‘B
©
[=
<:l
(]
Ul
‘B

[=2]
o
o

700

832 #af1429

it

B

d

300 400 500 600 700

#d4d4d8 #alalaa #71717a #52525b

300 400 500 600 700
#6ee7b7 #34d399 #10b981 #059669 #047857

300 400 500

#fde047 #faccl5 #eab308

@
=]
x=)
~
=]
<]

i
@
5
=)
B
™
]
)
S
Q

300 400 500 600 700

#fca5a5 #f87171 #ef4444 #dc2626 #b9lclic

Figure 3.2.1: Color palette

#00347d

#7d0eld

(=]
(=]
°l

#991b1b

#001d45

#4a0811

)
»Q
=

81b

o
o
ol

#064e3b

8 %

g 3
]

©

wu

°l

#7f1d1d

#001129

#31060c

#450a0a

17

18 CHAPTER 3. METHOD

3.2.2 Diagrams

As a tool for understanding the problem space, several diagrams were drafted. To map
which use cases needed to be handled by the application, use case diagramming was
utilized. An ER diagram was also used to plan the structure of data that should be per-
sisted in the database. In addition, other one-off diagrams were made to communicate
ideas related to the problem space. Diagrams were generally made using diagrams.net.

3.2.3 Wireframes

With the use cases and functionality identified, a wireframe was produced. Wireframes
were made to prototype the look, feel and functionality of the application. To make
these wireframes, Figma was used. A component library was added in Figma to help it-
erate on the UIL. The mobile Ul prototyped for drivers can be seen in Figure 3.2.2. Figma
offered a real-time editing experience, allowing a quick and collaborative iteration on
concepts.

MOBILE - DRIVER

Figure 3.2.2: Figma wireframes for UI used by drivers on mobile

3.2.4 Design feedback

To ensure alignment on both design and the application workflow, we collected feed-
back on our wireframes from iSi. This played an important role in the project and
further improved our understanding of the problem the application is trying to solve.

3.2.5 Universal design

The design of the application, while branded with iSi colors, needs to satisfy universal
design requirements. To achieve this, the application was designed with the contrast
ratio of colors in mind, increasing visibility. In addition, to increase the users’ ability
to perceive the interface, well known symbols and colors are utilized for statuses and
recognizable Ul elements. Furthermore, there are labels and error feedback on all forms
in the application to help users avoid and correct mistakes.

3.3 Testing

This section covers the different types of testing done throughout the development pro-
cess.

CHAPTER 3. METHOD 19

3.3.1 User testing

With the development of a feature-rich application, obtaining feedback on the workflow
1s essential. To address this, we established a demo environment where 1Si could evalu-
ate the workflow and performance of the application. This allowed them to identify and
report any potential issues or inefficiencies in it.

3.3.2 Unit testing

To prevent regressions and increase the understanding of the problem, unit tests are
used. Unit tests are authored using JUnit 5, with both negative and positive tests.

3.3.3 Integration testing

As another measure for verifying the understanding of problems, integration tests are
used. Integration tests are authored with idempotency as a goal, to allow re-runs with
predictable results. These tests are written using JUnit 5 in combination with Spring
Boot Test. They verify that defined endpoints work within expectations for both read
and write operations. In addition, there are persistence tests that verify that the defined
entities can successfully be stored in and retrieved from the database.

3.4 Artificial intelligence tools

To explore possible or alternative solutions for programming related tasks, artificial
intelligence tools like ChatGPT and GitHub Copilot were used. Copilot, and its IDE
integration, were used to suggest solutions to problems, as well as to provide potential
ways to complete code. In addition to this, ChatGPT was used to rephrase and spell
check text.

3.5 Technologies

This section covers the various technologies chosen for this project, how they were used
and why.

3.5.1 Solid.js

Solid.js is the UI framework used to develop the frontend application. UI is defined
using the JSX syntax with functional components and renders to HTML in the browser.
The signal primitive is used to trigger re-renders of Ul elements, these signals change
through events and data fetching.

3.5.2 TailwindCSS

To style the application, TailwindCSS was used. TailwindCSS is a utility CSS frame-
work that provides a default set of utilities for design tokens such as font size, font
weight, sizing and colors. The colors were renamed to semantic names, and the 1Si
brand colors were brought in as well. In addition to the built-in variant options like
hover and focus, some extra variants were made that are bound through signals in
Solid.js using Class Variance Authority.

3.5.3 Component library

While TailwindCSS provides utilities for styling the application, a set of reusable com-
ponents were defined and used throughout the application. Some components were
imported from solid-ui, an open-source library of components built using headless UI

20 CHAPTER 3. METHOD

component libraries. solid-ui uses both the Kobalte and Corvu component libraries, and
are as a result adopted in this project. These component libraries are authored following
the WAI-ARIA guidelines [62] [63]. The styles of these components were adjusted to
ensure consistency with the application theme. In addition to imported components, a
number of components were custom made for domain specifics as well as repeated Ul
elements within those, often composing components from the aforementioned libraries.

3.5.4 Map rendering

To render the geographical data in a map, two different libraries were tested during
development. In a meeting with iSi1, Leaflet was suggested as it was the library they were
most familiar with, meaning they could provide help if needed, as well as easily reuse
the results of the project. The other alternative was OpenLayers. While OpenLayers
uses a more object-oriented approach for their API when compared to Leaflet, it does
have more functionality built-in, such as a WebGL renderer and a WKT formatter. iSi
mentioned that they were familiar with this library as well.

3.5.5 Spring Boot

Spring Boot was used to develop the backend application. iSi has backend systems
utilizing Java and Spring Boot already, and the group had previous experience using the
framework, making it a good fit. The Spring Boot web starter was used to develop a
web server using REST as the architectural pattern. Regular HTTP methods with JSON
requests and responses are mainly used, but for real-time data, server-sent events were
utilized. Server-sent events also emits JSON-encoded events. These events also follow
the REST pattern, where each message transmitted is self-contained and independent.
Spring HTTP interfaces were also used to integrate with the read API for NVDB.

3.5.6 Database

Spring Boot offers multiple ways to store data. In this project, PostgreSQL was used
together with the PostGIS extension. The PostGIS extension extends PostgreSQL to
support geospatial types, functions and indices. To communicate with the database
from the backend, the approach was divided. Where data retrieval or data insertion had
more complex requirements, it was opted to use the Spring Data JDBC for native SQL
queries with manual row mapping logic. In simpler cases, Spring Data JPA was used
as an ORM, leveraging its top-down approach for working with database entities as
objects.

3.5.7 Database migrations

In order for the application to work with the database, the schema has to be created.
Spring Data JPA does provide mechanisms for creating and updating this schema based
off entities, but it is not able to correctly identify the intention of a change such as
when renaming a field. To maintain full control over the database schema, Liquibase
was used to define SQL migrations with both DDL and DML to evolve the schema.
The migrations were executed in an ordered fashion, using a naming convention with a
manually assigned sequence number as the prefix and a short descriptive name.

3.5.8 Geospatial types and transforms

The Java Topology Suite, abbreviated JTS, was used for geospatial types in the back-
end. JTS combined with Hibernate Spatial and Spring Data JPA allows entities to have

CHAPTER 3. METHOD 21

properties of geospatial types that get persisted in the database. JTS also provides opera-
tions on geometries such as calculating intersections. Proj4j was used for transforming
points between different reference systems. Proj4j does however not support vertical
transforms.

3.5.9 Containers

To package application artifacts and run dependant technologies, containers are utilized.
For development and testing, Testcontainers was made use of to allow quick verification
of integration with the applications dependencies using temporary containers that are
launched during the application bootstrap phase. To allow working with containers
with durable storage, a docker compose file was set up, eliminating the need to recreate
data between application restarts.

Application artifacts use different technologies for building. Spring Boot applica-
tions utilize Jib as a tool for building container images. The frontend, on the other
hand, utilizes a Dockerfile to configure a NGINX container with static assets produced
by building the application.

3.5.10 Object Storage

To support uploading images and files to a persistent store, an object storage system
was used. MinlO was used, and allows testing locally as well as keeping it similar in
a deployed environment. iSi already uses the object storage service from Amazon, S3,
which MinlOs API is compatible with. This compatibility allows for using the same
code and logic with S3 by changing configuration files.

3.5.11 Documenting APIs and code

The OpenAPI specification was used to document public facing HTTP APIs. HTTP
interfaces in the client package are annotated with metadata that is used to generate
a OpenAPI v3 schema for endpoints. In addition to direct annotations in the client
package, authorization related logic and annotations are added in the implementation.
Internal API surfaces are documented using Javadoc and JSDoc for backend and fron-
tend respectively.

3.5.12 GitHub Actions

GitHub Actions was used to implement a CI/CD pipeline in the project. When code
is pushed to the repository, a workflow run will be triggered to run tests and verify
that building the application works. Deployment is run in a release workflow which
is triggered by a tag being pushed to the repository. This delivery pipeline is not run
as frequently to avoid noise. The workflows re-use actions built by the community for
setting up tool chains such as Gradle, PNPM, kubectl and Helm.

3.5.13 Ansible

The deployment requires a host server to run on. NTNU provided a Ubuntu server
that is used as a demo environment. Ansible playbooks were defined to configure the
server with the necessary components. The playbooks will install or uninstall the K3s
distribution of Kubernetes, along with integrations for ingress, managing certificates,
domain name registration and a dashboard.

22 CHAPTER 3. METHOD

3.5.14 Kubernetes and Helm

Kubernetes is used as a container orchestrator, and runs the application in a demo en-
vironment. Kubernetes resources can be defined using IaC, in the YAML language.
While maintaining raw YAML definitions is possible, in order to safely store them in
version control the secrets have to be removed. To work around this, Helm is used to
group these resources into a reusable package. Using Helm also allows passing values
to the package, which is used to allow having secrets defined externally to the resources
themselves.

3.5.15 Chrome DevTools

Chrome DevTools was used for both debugging and profiling the frontend application.
The profiler can be used to record how much time is spent in specific parts of a web ap-
plication, measured in milliseconds. Figure 3.5.1 showcases a recording from rendering
25.000 railings using the Canvas renderer in Leaflet.

eeeeee

o
o 51
T Te TIFTHT

r T
1 T 1] | [
|| T 11

- I 1 T

[W I1T

§ =] i |

Figure 3.5.1: Recording of rendering 25.000 railings using Canvas renderer in Leaflet

3.6 Project Structure

The project is structured as a monorepository, meaning all projects or modules are part
of the same repository. To structure modules within this repository, modules are cate-
gorized as infrastructure, applications or packages. Each of these have their respective
folders, containing its modules. The structure is illustrated in Figure 3.6.1.

1]

Pp=
backend

l_

F—— frontend
L— init
infrastructure
packages

L— client

N

Figure 3.6.1: Overall project structure

3.6.1 Module structure

In addition to structuring modules in categories, module code is also organized in a
specific way. For frontend code, the organization is inspired by the Bulletproof React

CHAPTER 3. METHOD 23

project, which groups code into features. The organization for backend Java code is
structured similarly, using package namespaces to group related code. Figure 3.6.2
shows how the frontend code is organized, while Figure 3.6.3 shows how the backend
code is organized.

F— components
f— features

\ — projects

|| = api

\ \ }77 components
\ \ L— routes

\ L— vehicles

| - api

\ }77 components
\ L— routes

F— 1ib

L— router

Figure 3.6.2: Frontend code folder structure

L— no.isi.insight.planning
}77 capture
\ [— controller
\ L— service
F— project
\ — controller
\ L— service

L— vehicle
L

Figure 3.6.3: Backend code folder structure

3.6.2 Client package

In order to separate outbound data objects and internals, the public API surface is cov-
ered in a separate package. The package contains Spring HTTP interfaces, which can
be used to create API clients to interact with the backend in external systems. The
HTTP interfaces define which data transfer objects are in the expected response. The
definitions of these data transfer objects are also located within this package. HTTP
interfaces are implemented by the backend application. In addition, the package gen-
erates TypeScript definitions based off the Java classes which can be consumed by the
frontend application.

3.6.3 Application for initializing

In addition to the main backend application, some of the responsibility is split out to a
separate application. This application is responsible for running SQL migrations using
Liquibase, executing both DDL and DML scripts to modify the database schema and
its records. The application is expected to be run and successfully exit prior to starting

24 CHAPTER 3. METHOD

the backend application. The application will exit once the migrations are successfully
applied.

4. Results

In this chapter, the results of the project will be covered. In addition to an overview
of the developed software, results such as diagrams and map rendering performance
findings will be presented.

4.1 Use case diagram

To map the various uses of the system, a use case diagram has been iterated on. Figure
4.1.1 shows the end result of the use case diagram, after a number of iterations. Some of
these use cases are handled by an external system, Vegkart, but are included to provide
an overall view of the system’s use. Additional use cases were added in later stages of
the project. The diagram in full size can be found in Appendix C.

4

i

p.\“

Figure 4.1.1: Final use case diagram

4.2 ER diagram

As a strategy for planning how information should be stored in the database, an entity
relationship diagram was iterated on. The diagram was built iteratively, adding details
to those entities that were certain and reiterating on others. Figure 4.2.1 shows the

25

26 CHAPTER 4. RESULTS

final result of the ER diagram and serves as a close representation of both the database
schema and model classes in code. In addition, a full size version can be found in

Appendix C.

password TEXT

user_account_role ENUM
user_account_role
— = updated_at TIMESTAMP
PLANNER
DRIVER

t_id is used as foreign
s tables but are not

- - vehicle - -
FK | fk_created_by_user_id UUID created_at TIMESTAMP ‘side_of_road road_side i
= by _user] = PK | vehicle_id UUID == = road_direction
FK | fik_updated_by_user_id UUID updated_at TIMESTAMP road_system_reference TEXT WITH
FK | fk_created_by_user_id UUID road_reference TEXT AGAINST
FK | fk_updated_by_user_id UUID er road_category TEXT
ca last_imported_at TIMESTAMP
created_at TIMESTAMP road_side
=
FK | fk_updated_by_user_id UUID
PK | trip_id UUID rip_railing_deviation
“—oq FK | fk_project_plan_id UUID ré put n
FK
started_at TIMESTAMP position POINT details JSON
ended_at TIMESTAMP image_uris JSON
PK | trip_note id UUID
capture_details JSON ‘'segment_index NUMERIC
FK | fk_trip_id UUID
gnss_log TEXT railing_top_coverage NUMRANGE
camera_logs JSON railing_side_coverage NUMRANGE
note TEXT
position POINT
log ref hould probably be
1o afile in S3 or similar storage created_at TIMESTAMP
updated_at TIMESTAMP
Fi 4.2.1: Final di
igure 4.2.1: Final ER diagram
3 T fi betw vertical dinat f
4. ransiorms between vertical cooradinate reierence

systems

The GNSS system reports height in ellipsoid height. It also reports undulation values
that allows finding the Z coordinate of the cars position. However, these undulation
values are not in terms of the vertical CRS used by NVDB. To solve this, a parser
for reading height reference models published by The Norwegian Mapping Authority
is implemented. The parser populates a grid of heights from a binary file in Gravsoft
format, ported from a Python code sample from The Norwegian Mapping Authority
[64]. Using a latitude and longitude pair, the undulation value for the given location
can be found. Subtracting the measured ellipsoid height by the undulation from the
reference model gives the correct height in the reference system represented in the file.
While the parser is generic for files in the same format, it is only used to calculate
NN2000 height using the ellipsoid height from the GNSS. The implementation was
needed due to the lack of support for vertical transformations in Proj4j, which is used
for transforming latitude and longitude values to the correct CRS. A visualization of the
file’s content using code adopted from the The Norwegian Mapping Authority is shown

CHAPTER 4. RESULTS 27

in Figure 4.3.1.

NM2000 height reference model

45

Latitude

25

20

5 10 15 20 5 0
Longitude

Figure 4.3.1: Visualization of NN2000 height reference values [64]

4.4 Application

The software developed is a responsive web application which features authentication,
multiple views for project, vehicle, and user management, as well as an interactive map.
In this section, all features and how they relate to each other is described.

4.4.1 Authentication

The use cases include two user roles, drivers and planners. In order to differentiate be-
tween these roles, authentication and authorization was a requirement. In addition, user
information is intended to be stored as audit data on various entities. To support these
use cases, a user database is set up. The user account table includes hashed passwords,
allowing users to log in using email and password. Successful sign ins will produce
a longer lived refresh token and a shorter lived access token. The tokens can be used
to identify the user, where the access token’s purpose is authorization for endpoints.
Refresh tokens, on the other hand, are meant to be used to retrieve new access tokens.
This allows users to stay logged in unless the refresh token has expired. The tokens are
JWTs and are signed using different secrets based on the type of token. Spring Security
is used to handle authorization and is configured using annotations. The sign in form is
shown in Figure 4.4.1.

4.4.1.1 Password resets

To allow users to change their passwords, a flow for resetting the user password is set up.
The user may from the sign in screen navigate to the forgot password screen, allowing
them to enter their email to receive a code for resetting their password. Confirming this
code will allow the user to define a new password. The steps for resetting passwords
are shown in Figure 4.4.1.

28 CHAPTER 4. RESULTS

Sign in to inSight
E-mail
E-mai
Password

Password

Forgot password?

.s. .S. iSi
' ' < Back ¢ Back

<Back

" : Enter new password

Enter confirmation code o R

Reset your password Please enter a new password
Please enter the confirmation code that was sent to your e-

Please enter the e-mail address you'd like your password mal at dev@emailinvalid

reset code sent to New password

E-mail New password
Confirmation code

E-mail Confirm new password
- Confirmation code

Confirm new password
Send code N
Confirm code
Reset password

Figure 4.4.1: Authentication workflow

4.4.2 File uploads

Certain features include the ability to upload images or files. In order to allow these
uploads, a generic service for uploading files to buckets in MinlO is set up. The service
enables users to upload files such as images which can be referred to in other entities.
Files are stored with randomly generated names, and can be downloaded at a later stage
using a reference. File uploads are handled through the backend to enable re-use of
authorization logic. File uploads are enabled through the frontend using a custom-made
Dropzone component, allowing users to drag and drop files into it or alternatively click
it to select a file in a dialog.

4.4.3 Theme

The application supports changing its theme, while retaining iSi brand colors as accent
colors. There are two themes defined, light and dark, which default to the system theme.
The user can however choose to change this theme in a menu. It is intended that drivers
should be able to use this application actively in the capture process, which implies that
drivers may use this application in different light levels. Changing the theme of the
application changes the shade of regular UI elements as well as inverts colors in the
map. Scenarios where this may be useful include night work and tunnel driving. Figure
4.4.2 shows the different themes.

CHAPTER 4. RESULTS 29

X

Developer D Developer
dev@email.invalid invalid
® Projects B Projects
@ Dashboard @ Dashboard

R Users R Users
& Vehicles & Vehicles
& Capture © Capture

& Settings & Settings

& Dark theme & Dark theme

G Sign out G Sign out

Figure 4.4.2: Toggling of dark theme

4.4.4 User management

The application includes the capability of managing user accounts. Planners can view
and manage user accounts in dedicated pages listing their details as well as providing
options for editing them. The position of each user is also displayed with markers in
a map to the side of the user list. Additionally, a user’s previous trips can be viewed
in a list ordered by recency. The list includes indicators of the trips’ results. Figure
4.4.3 shows how users are listed, as well as the map with position markers. Figure 4.4.4
shows the page for editing users, as well as viewing their previous trips.

30 CHAPTER 4. RESULTS

Y
|S| inSight | © Projects @ Dashboard & Users & Vehicles & Capture & Go to active trip

Users ¥
E
& 2 =)
NO IMAGE NO IMAGE NO IMAGE g e
Romsdal
PLANNER PLANNER PLANNER
Developer Halvard Gisle
© Availa © Available
& dev@emailinvalid & halvard@overlien.no 3 gisle@overlien.no —
&) Y =
PLANNER
5 @ Developer
Dawid & Corolla (UN 32763) ACTIVE
© Available .
© dawid@overlien.no N
Finn
e

Figure 4.4.3: User overview page

=
i insiont | OPicis @ owtboas AUsers @ Vaicos Capur & Gotoscivetip

< Back z ; Sgen +
Developer o _
Name =3

Developer

E-mail

dev@email invalid
Romsdal

Phone number

Phone number

Change password

Role Z

o Planner
Can create nes

w projects, manage users and vehicles

Driver

w rpe i fata n a project 7) ’oj.’.;:*s -

E136test- Trip 1 X

/ls @ Developer
L € Corolla (UN 32763) ACTIVE

Drop profile picture here or click to select

% \en
Update user | -~
ey =

Capture Meters
Start Duration ~ Name remarks captured Deviations Notes
05/13/2024
T E136 test - Trip 1 0 o 0 VA

Figure 4.4.4: User details page

4.4.5 Vehicle management

Similar to managing user accounts, vehicles can be managed in the application. Plan-
ners can view and manage vehicles in dedicated pages for browsing and editing vehicle
details. Vehicles can also be viewed with position markers in the map, to the side of
the list. Editing vehicles and viewing the vehicles’ usage in trips is also possible in a
similar way to how it is done for user management. Figure 4.4.5 highlights how the
vehicles are listed in the application.

CHAPTER 4. RESULTS 31

T —_—
|S| inSight | @ Projects @ Dashboard R\ Users & Vehicles (& Capture earch (Cersk | & Gotoacive trip

Vehicles

vigoy Frnna _
Search Add vehicle
E@3

& &

Transporter Lamborghini
° °
123 UN 377321 123 UN 938211
@ Yes @ Yes

@ Mm-mn-mn @ 3333-3333-3333

16
€2 :
NO IMAGH
YO rndaiznes
4) =)
iSi bilen Corolla EESESSUE 53
° © Unav: © Developer
& Corolla (UN32763) AcTive
123 UN 378321 123 UN 32763 .
@ Yes @ Yes S
@ 313-333-333 @ 444-332-383 Finnan o
View details View details N
75y B

Figure 4.4.5: Vehicle overview page

4.4.6 Project management

The main view in the application is the project view. It is built using a three level
hierarchy consisting of projects, project plans and trips. This system, including its
naming scheme, was agreed upon after discussion with iSi, as this is what they are
currently familiar with. A project consists of one or several project plans, and a project
plan consists of one or several trips. Project plans are multi-day work orders, which
consists of a set of guardrails to capture. Trips are the work trips drivers go on to
capture the guardrails assigned to a project plan.

Projects are categorized by a computed status. The statuses for a project are based
on the current position in terms of their defined duration interval. A project may be
defined without an end-date, but generally if the current date is between the project
duration interval it is considered ongoing. Otherwise, it is either considered previous
or upcoming based on the same interval. These statuses power a grouping mechanism,
where lists of projects can be expanded by their status. Figure 4.4.6 shows how this
grouping mechanism works for browsing projects.

32 CHAPTER 4. RESULTS

Projects

Preferred vehicle

No vehicle selected. W
Search...
Ongoing (0) v
Upcoming (0) 5
Previous (1) 2
E136 demo - 3291 Previous £

™ B74.47 / 94,415.91m
{5 Apr 4 - Apr 20

Figure 4.4.6: Project browsing menu with projects grouped by status

When viewing a project, its related data is displayed using a similar grouping mech-
anism. These groups show the project plans, trips and guardrails. Selecting one or more
plan will cause both the trip and guardrail data to filter using the selected plans. The
project view with this grouping mechanism, as well as with a plan selected to filter, is
highlighted in Figure 4.4.7.

1S insight | @ Projects @ Dashoard R Users

E136 test L e z

May 13
) Ongoing
L}
3,801.99 / 94,415.91 m
Hide completed railings

Plans (1)

May 13 - May 31 4
® & Corolla (UN 32763) 563 rallings
See

Trips (2)
Trip 2 Ma,

& Develope

Trip1 M
@ Develop: @ 3Notes

© 10:37 AM - 12:58 PM

Railings (563)
Deviations (3)

Incorrect he\ght‘ ®

Loose bolt

2]

Loose bolt

®

Figure 4.4.7: Frontend project view with a selected plan

4.4.7 Guardrail data import

The main requirement for the project was the planning aspect. As highlighted by the
use case diagram, NVDB already provides an application where users can filter and find
road objects effectively. This application is called Vegkart. Replicating the functionality
already provided by Vegkart would be redundant, since it already works for this part of
the planning workflow. As a result, it was decided that the planning tool should accept
a reference API URL for a given selection that can be used to import data from NVDB.

CHAPTER 4. RESULTS 33

These API URLs can be found by the planner in the Vegkart interface, allowing for
copy and paste directly to the planning UIl. A custom-made API client made using
Spring HTTP interfaces uses the given reference URL to copy parameters, though with
some overrides such as inkluder=alle to include all data.

Importing can be done both when creating a project plan and when updating it. The
import will use the reference URL to import necessary guardrail data as well as attached
road segments and persist it in the database. When updating a project plan, guardrails
can optionally be re-imported in case of errors and replaces previously stored guardrails
for a plan. Figure 4.4.8 shows the dialog for creating a project plan.

New project plan

Railing import URL

https://nvdbapiles-v3.atlas.vegvesen.no/vegobjekter/5?segmente

Start date End date
B 2024-05-13 B 2024-05-23

Vehicle
test @ Available
123 test 7
(@] Yes

Import and save

Figure 4.4.8: Dialog shown when creating a new project plan

4.4.8 Guardrail geometry directions

Imported guardrail data from NVDB were in some cases observed to have reversed ge-
ometries. One of the goals in the project was to render the driving direction required
to capture a guardrail. However, in some cases, the geometry of the guardrail was op-
posite to the driving direction. This reversion impacted rendering the driving direction
for guardrails since it is inferred by the order of the points in the geometry. To miti-
gate this, an algorithm that compares points in the guardrail geometry with points from
attached road segments has been tested. However, the flipped direction appeared to be
random resulting in geometries not being possible to correct without deeper analysis of
metadata from guardrails and its attachment to road segments. Figure 4.4.9 shows how
guardrail geometries are rendered in the wrong direction when compared to the road
networks direction, where a guardrail on the opposite side of the road is rendered with
arrows pointing in the same direction.

34 CHAPTER 4. RESULTS

. Gr!ttmi

Figure 4.4.9: Comparison of railing geometry directions with road network direction

4.4.9 Processing capture logs

The data capture process produces logs that need to be parsed and processed in order
to allow displaying capture progress. The GNSS and each of the cameras produce their
own separate log files. The condition for considering a meter of a guardrail’s segments
captured is the existence of an image in the correct direction. As a result there is a
need to merge these log files into a format that contains information about all these
parts to proceed with matching the capture to railings. The log files are processed
into an intermediary structure containing information gathered from the different logs.
Figure 4.4.10 shows the logic behind processing these capture logs into the intermediary
structure.

I Append entry to I

processed log

N, deita positive (future)

Create processed '
entry from GNSS ' ‘Camera within
entry \ time delta?
(position. timestamp) |

More GHSS
enfries?

Add to entry
{position, image url)

Input log files
(GNSS & cameras),

No. delta negative (histaric)

No

Save file with
processed log

More camera
entries?

; Yes
Stop

Herate to next

| camera log entry

Figure 4.4.10: Flow chart displaying the logic used when processing capture logs

CHAPTER 4. RESULTS 35

4.49.1 Uploading capture logs

To simplify the process of receiving feedback from iSi, a feature in the web application
that allows for uploading of capture logs is implemented. This feature allows users with
the necessary GPS and camera logs to upload necessary data to simulate a replay. When
uploading a new capture log, users encounter four designated file inputs for submission
of necessary files. This feature was essential for establishing a complete workflow loop
within the application, making it possible for 1Si to test and provide feedback. A page
for uploading and viewing uploaded capture logs is shown in Figure 4.4.11.

LY
lS' inSight | @ Projects (@ Dashboard 2\ Users & Vehicles [Capture Q, Searc r1+K & Goto active trip D

Capture logs

Log identifier

Previous Next

Log identifier Updated at Size GNSS Log

€136 05/13/2024 8:37 AM 32.05 MB

[=

GNSS Log

Top camera

1

Left camera Right camera

&

Left camera Right camera

>

Figure 4.4.11: Page for uploading and viewing uploaded capture logs

4.4.10 Trips and replays of capture logs

Trips and the execution of them are a core part of the capture process. In order to verify
the concept for executing these without integrating with the car, a replay system is
introduced. This replay system is intended to be replaced by an in-car solution, which
can give the driver real-time feedback on critical metrics. Drivers are able to choose
which of the processed capture logs to use as a replay for the trip. The form in the
dialog will default to their set preferred vehicle, which can be selected in the project
overview, displayed when logging in. The driver can optionally change this vehicle
without overriding the preference. The dialog a driver is shown when starting a trip is
shown in Figure 4.4.12.

36 CHAPTER 4. RESULTS

New trip

Vehicle *

test @ Available
123 test

(3] Yes

Capture log

el136
B 04/16/2024 9:40 PM ol

Replay speed

ax

Figure 4.4.12: Dialog shown when starting a new trip

The replay system steps through the processed logs in a configurable speed. The
stepped through log entries are emitted as events. A service managing these replays
subscribes to these events and forwards details from the capture to the frontend using
server-sent events. The forwarded events inform the frontend about the latest position
in the capture, along with additional metrics, such as the GPS signal, and the amount of
images and meters covered. The frontend updates a signal containing the latest capture
details allowing both the map and indicators to re-render with this information. The
indicators in Figure 4.4.13 are those updated by the latest capture details, in addition to
positi