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Abstract

By showing the unitarity of the Bargmann transform between the Fourier sym-
metric Sobolev space H consisting of functions f ∈ L2(R) such that ∥ f ∥2H =
∫

R | f (x)|
2(1 + x2)d x +
∫

R | f̂ (ξ)|
2(1 + ξ2)dξ <∞ and the corresponding Fock

space, we find an orthonormal basis of H. This allows us to find the reproducing
kernel of H, which is expected to be useful in e.g. the area of Fourier interpolation.
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Chapter 1

Results

We define the Fourier symmetric Sobolev spaceH to beH = { f : f , f̂ ∈ H1,∥ f ∥2H =
∥ f ∥2H1

+ ∥ f̂ ∥2H1
}, where H1 is the Sobolev space of functions f ∈ L2(R) such that

∥ f ∥2H1
=

∫

R
(1+ ξ2)| f̂ (ξ)|2dξ <∞,

and where f̂ (t) =
∫

R f (x)e−2πi t x d x . Note that the eigenfunctions for the Fourier

transform are given by the scaled Hermite functions e−πx2
Hn(
p

2πx), where Hn
denotes the nth Hermite polynomial.

Lemma 1. H is a reproducing kernel Hilbert space.

Proof. The proof can be found in [1], but is repeated here for the reader’s con-
venience. For any x ∈ R we define Ex : H→ R, Ex( f ) = f (x). Using the Fourier
inversion and the Cauchy–Schwarz inequality we see that

|Ex f |= | f (x)| ≤
∫

R
| f̂ (ξ)|dξ=
∫

R

Æ

1+ ξ2| f̂ (ξ)|
dξ
p

1+ ξ2

≤
p
π∥ f ∥H1

≤
p
π∥ f ∥H.

This proves that Ex is bounded for any x ∈ R, and so H is a reproducing kernel
Hilbert space by the Riesz representation theorem.

Although the space H has occurred in some papers before (see e.g. [1], [2]),
the author did not find the reproducing kernel of this space in the literature. Thus,
this is the topic of this thesis.

Since a reproducing kernel can be expressed via an orthonormal basis, hence-
forth abbreviated ONB, we want to find a suitable ONB of H. We will show that
such a basis consists of scaled Hermite functions. We start with the main observa-
tion of the thesis, i.e. orthogonality of Hermite functions in H. For that, we first
need the following lemma.
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2 Denis Zelent: The reproducing kernel of the Fourier symmetric Sobolev space

Lemma 2. If n> m+ 2, n, m≥ 0, then
∫

R
Hn(
p

2πx)Hm(
p

2πx)e−2πx2
(1+ x2)d x = 0.

Proof. The lemma follows by using Hn(x) = (−1)nex2 dn

d xn e−x2
and n integrations

by parts:
∫

R
Hn(
p

2πx)Hm(
p

2πx)e−2πx2
(1+ x2)d x

=
1
p

2π

∫

R
Hn(x)Hm(x)e

−x2

�

1+
x2

2π

�

d x

=
1
p

2π

∫

R
(−1)n
�

dn

d xn
e−x2
�

Hm(x)

�

1+
x2

2π

�

d x

=
1
p

2π

∫

R

�

dn

d xn
Hm(x)

�

1+
x2

2π

��

e−x2
d x

= 0,

as Hm(x) is a polynomial of degree m, and therefore dn

d xn Hm(x)
�

1+ x2

2π

�

= 0 for
n> m+ 2.

Lemma 3. The Hermite functions Hn(
p

2πx)e−πx2
are pairwise orthogonal in H.

Proof. We will use the fact that the Hermite functions are eigenvalues of the Four-

ier transform: ÛHn(
p

2πx)e−πx2(ξ) = (−i)nHn(
p

2πξ)e−πξ
2
. For any n, m ≥ 0 we

have

〈Hn(
p

2πx)e−πx2
, Hm(
p

2πx)e−πx2
〉H

=

∫

R
Hn(
p

2πx)e−πx2
Hm(
p

2πx)e−πx2(1+ x2)d x

+

∫

R

ÛHn(
p

2πx)e−πx2(ξ) ÛHm(
p

2πx)e−πx2(ξ)(1+ ξ2)dξ

=

∫

R
Hn(
p

2πx)Hm(
p

2πx)e−2πx2
(1+ x2)d x+

+

∫

R
(−i)nHn(

p
2πξ)e−πξ

2
(ξ)(−i)mHm(

p
2πξ)e−πξ

2
(1+ ξ2)dξ

=

∫

R
Hn(
p

2πx)Hm(
p

2πx)e−2πx2
(1+ x2)d x(1+ (−i)nim).

Note that if n, m differ by one, then HnHm is an odd function, and so the in-
tegral is zero. If n, m differ by two, then (1 + (−i)nim) = 0. If n, m differ by
more than two, then the integral is zero by Lemma 2. Thus, if n ̸= m, then
〈Hn(
p

2πx)e−πx2
, Hm(
p

2πx)e−πx2
〉H = 0.
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As a next natural step, we find the norms of Hn(
p

2πx)e−πx2
.

Lemma 4. For every n≥ 0,

∫

R
H2

n(
p

2πx)e−2πx2
(1+ x2)d x = 2n− 3

2 n!
�

n+ 2π+
1
2

�

1
π

.

Thus

∥Hn(
p

2πx)e−πx2
∥2H = 2n− 1

2 n!
�

n+ 2π+
1
2

�

1
π

.

Proof. Notice first, that using again Hn(x) = (−1)nex2 dn

d xn e−x2
and n integrations

by parts we obtain

∫

R
xnHn(

p
2πx)e−2πx2

d x = (2π)−
n+1

2

∫

R
xnHn(x)e

−x2
d x

= (2π)−
n+1

2

∫

R
xn(−1)n

dn

d xn
e−x2

d x

= (2π)−
n+1

2 n!

∫

R
e−x2

d x

= (2π)−
n+1

2 n!
p
π,

∫

R
xn+2Hn(

p
2πx)e−2πx2

d x = (2π)−
n+3

2

∫

R
xn+2Hn(x)e

−x2
d x

= (2π)−
n+3

2

∫

R
xn+2(−1)n

dn

d xn
e−x2

d x

= (2π)−
n+3

2
(n+ 2)!

2!

∫

R
x2e−x2

d x

= (2π)−
n+3

2
(n+ 2)!

2

p
π

2
,

for any m< n
∫

R
xmHn(

p
2πx)e−2πx2

d x = 0.

Combining this with the fact that Hn can be written as

Hn(
p

2πx) = n!
⌊n/2⌋
∑

m=0

(−1)m

m!(n− 2m)!
(2
p

2πx)n−2m,

we have
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∫

R
H2

n(
p

2πx)e−2πx2
(1+ x2)d x

=

∫

R
Hn(
p

2πx)Hn(
p

2πx)e−2πx2
(1+ x2)d x

=

∫

R

�

(2
p

2π)n xn −
n!

(n− 2)!
(2
p

2πx)n−2
�

Hn(
p

2πx)e−2πx2
(1+ x2)d x

= (2
p

2π)n
∫

R
xnHn(

p
2πx)e−2πx2

d x + (2
p

2π)n
∫

R
xn+2Hn(

p
2πx)e−2πx2

d x

−
(2
p

2π)n−2n!
(n− 2)!

∫

R
xnHn(

p
2πx)e−2πx2

d x

= (2
p

2π)n(2π)−
n+1

2 n!
p
π+ (2

p
2π)n(2π)−

n+3
2
(n+ 2)!

2

p
π

2

−
(2
p

2π)n−2n!
(n− 2)!

(2π)−
n+1

2 n!
p
π

= (2
p

2π)n(2π)−
n+3

2 n!
p
π

�

2π+
(n+ 1)(n+ 2)

4
−

n(n− 1)
4

�

= 2n(2π)−
3
2 n!
p
π

�

n+ 2π+
1
2

�

.

Thus, we know already that

�

È

π

2n− 1
2 n!(n+2π+ 1

2)
Hn(
p

2πx)e−πx2
, n≥ 0

�

is an

orthonormal set in H. It remains to show that it is also complete.
The idea of doing so is based on [2]. We link functions from our space to the

space of entire functions by the Bargmann transform:

B : f → F(z) = (B f )(z) =
21/4

π3/2

∫

R
f
�

t
p

2π

�

e2tz−z2−t2/2d t.

If we let Bβ be the space of all entire functions satisfying

||F ||2Bβ =
∫

C
|F(z)|2e−2|z|2
�

2π−
1
2
+ 2|z|2
�β

dA,

where dA denote the Lebesgue area measure on C, then by [2] B is a unitary
linear operator from 1p

π
-weighted L2(R) (meaning || f ||2 = 1

π

∫

R | f (x)|
2d x) onto

B0, and a bounded invertible mapping from H onto B1. We will actually improve
this result by showing that B is also a unitary operator from H onto B1. Proving
that it sends an ONB of B1 to the orthonormal set of Hermite functions mentioned
above will conclude the proof.

Lemma 5. The system of functions {
Ç

2n+1

n!(n+2π+1/2)πzn, n≥ 0} form an ONB of B1.
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Proof. Orthogonality is a trivial computation, while completeness follows by ana-
lyticity of functions in B1 (any f ∈ B1 can be written as f (z) =

∑

n≥0 anzn, and so
〈 f , zm〉B1

= 0 for every m implies that am = 0 for every m). Now,

∥zn∥2B1
=

∫

C
|z|2ne−2|z|2
�

2π−
1
2
+ 2|z|2
�

dA

= 2π

∫ ∞

0

r2n+1e−2r2
�

2π−
1
2
+ 2r2
�

dr

= 2π

∫ ∞

0

(t/2)n+
1
2 e−t(2π−

1
2
+ t)

d t

4
p

t/2

=
2π

4 · 2n

∫ ∞

0

tne−t(2π−
1
2
+ t)d t

=
π

2n+1

��

2π−
1
2

�

n!+ (n+ 1)!
�

=
πn!
2n+1

(n+ 2π+ 1/2),

which concludes the proof.

Lemma 6.

B(Hn(
p

2πx)e−πx2
)(z) =

p
2

π1/4
(2z)n,

and thus

B−1

�√

√ 2n+1

n!(n+ 2π+ 1/2)π
zn

�

=

√

√

√

π

2n− 1
2 n!
�

n+ 2π+ 1
2

�
Hn(
p

2πx)e−πx2
.

Proof. The first part follows by Hn(x) = (−1)nex2 dn

d xn e−x2
and n integrations by

parts:

B(Hn(
p

2πx)e−πx2
)(z) =

21/4

π3/2

∫

R
Hn(x)e

−x2/2e2xz−z2−x2/2d x

=
21/4

π3/2

∫

R

�

(−1)nex2 dn

d xn
e−x2
�

e2xz−z2−x2
d x

=
21/4

π3/2

∫

R
(−1)n
�

dn

d xn
e−x2
�

e2xz−z2
d x

=
21/4

π3/2

∫

R
e−x2
(2z)ne2xz−z2

d x

=
21/4

π3/2
(2z)n
∫

R
e−(x−z)2 d x

=
2n+1/4

π
zn.
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This means that
B−1(zn) =

π

2n+1/4
e−πx2

Hn(
p

2πx),

and thus

B−1

�√

√ 2n+1

n!(n+ 2π+ 1/2)π
zn

�

=

√

√ 2n+1

n!(n+ 2π+ 1/2)π
π

2n+1/4
e−πx2

Hn(
p

2πx)

=

√

√

√

π

2n− 1
2 n!
�

n+ 2π+ 1
2

�
Hn(
p

2πx)e−πx2
.

Theorem 1. The Bargmann transform is a unitary operator from H onto B1. Thus

the system of functions

�

È

π

2n− 1
2 n!(n+2π+ 1

2)
Hn(
p

2πx)e−πx2
, n≥ 0

�

forms an ONB

of H.

Proof. Our lemmas prove that for any n, m≥ 0,
®√

√ 2n+1

n!(n+ 2π+ 1/2)π
zn,

√

√ 2m+1

m!(m+ 2π+ 1/2)π
zm

¸

B1

=

®

B−1

�√

√ 2n+1

n!(n+ 2π+ 1/2)π
zn

�

,B−1

�√

√ 2m+1

m!(m+ 2π+ 1/2)π
zm

�¸

H

.

Since
n
Ç

2n+1

n!(n+2π+1/2)πzn, n≥ 0
o

form an ONB of B1, this proves that B−1 is a

unitary transformation B1 → H. By lemma 6, as a unitary map sends an ONB to

ONB,

�

È

π

2n− 1
2 n!(n+2π+ 1

2)
Hn(
p

2πx)e−πx2
, n≥ 0

�

is an ONB for H.

Remark. Referring to [2], one can easily show that it is the only other case
different than L2(R) → B0 when the Bargmann transform is a unitary oper-
ator between corresponding Bargmann and Schwartz scales. Thus, the methods
of this thesis would not work for the spaces with different powers of x in the
norm (although one could work with norms defined by

∫

R | f (x)|
2(1 + x2)d x +

∫

R | f̂ (ξ)|
2(1+ cξ2)dξ, in which case appropriately scaled Hermite functions will

still be orthogonal, but the norm is no longer Fourier symmetric when c ̸= 1).

Having obtained an ONB we can now turn our attention to finding the repro-
ducing kernel of H.

Theorem 2. The reproducing kernel Kx(y) for H is given by

Kx(y) =
p

2πe−π(x
2+y2)

∫ 1

0

t2π−1/2

p
1− t2

e2π 2x y t−(x2+y2)t2

1−t2 d t.



Chapter 1: Results 7

Proof. Using the ONB of H we find that

Kx(y) =
∞
∑

n=0

Hn(
p

2πx)e−πx2
Hn(
p

2πy)e−πy2
π

2n− 1
2 n!
�

n+ 2π+ 1
2

�

=
p

2πe−π(x
2+y2)

∞
∑

n=0

Hn(
p

2πx)Hn(
p

2πy)
2nn!(n+ 2π+ 1/2)

.

To get the integral representation we will use Mehler’s Hermite polynomial for-
mula [3],

∞
∑

n=0

Hn(
p

2πx)Hn(
p

2πy)
2nn!

tn = (1− t2)−1/2e2π 2x y t−(x2+y2)t2

1−t2 .

Multiplying both sides by t2π−1/2 and then integrating from 0 to 1 gives

∞
∑

n=0

Hn(
p

2πx)Hn(
p

2πy)
2nn!(n+ 2π+ 1/2)

=

∫ 1

0

t2π−1/2

p
1− t2

e2π 2x y t−(x2+y2)t2

1−t2 d t,

which concludes the proof.

The Fourier transform of the kernel can be found in a similar way and is given
below for the sake of completeness.

Theorem 3. The Fourier transform of the reproducing kernel Kx(y) for H is given
by

cKx(y) =
p

2πe−π(x
2+y2)

∫ 1

0

t2π−1/2

p
1+ t2

e2π−2x y ti+(x2+y2)t2

1+t2 d t.

Proof. First, we will again use the facts that

Kx(y) =
p

2πe−π(x
2+y2)

∞
∑

n=0

Hn(
p

2πx)Hn(
p

2πy)
2nn!(n+ 2π+ 1/2)

,

and that
Ûe−πx2 Hn(
p

2πx)(ξ) = (−i)ne−πξ
2
Hn(
p

2πξ).

This gives

cKx(y) =
p

2πe−π(x
2+y2)

∞
∑

n=0

(−i)n
Hn(
p

2πx)Hn(
p

2πy)
2nn!(n+ 2π+ 1/2)

.

Multiplying the Mehler’s Hermite polynomial formula by t2π−1/2 as before, but
now integrating from 0 to −i, we obtain

cKx(y) =
p

2πe−π(x
2+y2)(−i)−2π−1/2

∫ −i

0

t2π−1/2

p
1− t2

e2π 2x y t−(x2+y2)t2

1−t2 d t

=
p

2πe−π(x
2+y2)

∫ 1

0

t2π−1/2

p
1+ t2

e2π−2x y ti+(x2+y2)t2

1+t2 d t,
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where in the last equality we used the change of variable t →−i t.

As mentioned in the abstract, we expect this result to be of relevance in the
area of Fourier interpolation. In a forthcoming paper, inspired by [4], we plan to
use this result to state and prove density theorems for Fourier interpolation for
the Fourier symmetric Sobolev space H and look for other possible applications.
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