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Abstract

The offshore wind farm sector is expanding, and as such, there is a need for reliable
analytical models to profit realize the energy production. This report will use the Python
expansion module PyWake, to simulate and assess the annual energy production (AEP)
for Dudgeon wind farm from a one-, 10- and 20-year data sample. Results are compared
against actual production data from the year 2019-2020, obtained from Equinor. The
wind condition parameters for Dudgeon have been sourced from the open source database
Nora10. Anholt wind farm is used as a test case to compare findings from the simulations.
The study will explore the validity of using Weibull probability density functions as a
representation for wind speed dispersion in PyWake’s Bastankhah Porté-Agel simulation
model, by analyzing the deviation in AEP. Moreover, the Maximum Likelihood Estimation
(MLE) and the Limited memory Broyden-Fletcher-Goldfarb-Shanno-Bounds (L-BFGS-
B) optimization algorithms will be applied to make the Weibull regressions to facilitate
comparisons between different regression tools.

The PyWake module offers a range of scenario based model combinations, that can be
defined to the user specific application. The module consist of three main objects, being
the site, turbine and wake model object. The wind farm model used in this report is
a combination of the uniform Weibull site model and the Bastankhah Porté-Agel wake
deficit model, with the turbine and site parameters being specified to the Dudgeon and
Anholt cases. The wake deficit model is applicable for far wake scenarios only, therefore
disregarding the influence of turbulence intensity and uses a constant wake expansion
factor. The site object employs the uniform Weibull model to simulate AEP in conjunction
with the wake model. It utilizes twelve Weibull probability functions corresponding to
30°wind direction sectors, each defined by specific shape and scale parameters. The site
object also requires a probability of occurrence for each wind sector, which is computed
through a kernel density estimation (KDE). The goodness-of-fit for the Weibull regression
is assessed using the Kolmogorov–Smirnov test. The results are interpreted based on the
KS-stat and p-value, and in relation to the AEP outcomes.

The simulation results reveal that the size of the data sample significantly affects the
accuracy of the simulation. Using a one-year data sample, the L-BFGS-B method yielded
the most accurate results, with a deviation of only 1.47 % from the actual AEP data.
In contrast, with a 20-year data sample, the MLE method showed a smaller deviation
of 0.8367 %. The Kolmogorov-Smirnov (KS) test results showed that larger samples
produced a lower KS statistic, indicating a closer resemblance to the actual wind speed
distribution histogram. Conversely, smaller samples resulted in a statistical resemblance
where the p-value exceeded 0.05, suggesting an acceptable fit under the significance level
used. Additionally, the AEP for each wind direction sector was analyzed individually. The
results indicated varying deviations for all scenarios, and showed to have a correlation with
the KDE regression.

This study clearly shows that using the MLE method with larger data samples is preferable
for obtaining reliable Annual Energy Production predictions. However, for one-year
data samples, the L-BFGS-B method outperforms the alternatives. Further analysis
also revealed that Kernel Density Estimation is not a precise method for dividing the
probability of occurrence across wind directions. The regression results suggest that KDE
does not provide an accurate indication of sector-specific AEP. To enhance the study’s
reliability, additional research focusing on refining the wake expansion and turbulence
intensity parameters is recommended. Such improvements could potentially address some
of the shortcomings identified in the current methodologies.
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Sammendrag

Havvind sektoren er i vekst og det er derfor behov for pålitelige analytiske modeller for
å kunne gevinstrealisere energiproduksjon. Denne rapporten vil bruke Python-modulen
PyWake til å simulere og vurdere den årlige energiproduksjonen (AEP) for Dudgeon
havvindpark fra en ett-, 10- og 20-års datasamling. Resultatene sammenlignes mot
faktiske produksjonsdata fra året 2019-2020, innhentet fra Equinor. Vindkarakteristikker
for Dudgeon har blitt hentet fra den åpne kilden Nora10. Anholt havvindpark brukes
som et testtilfelle for å sammenligne funn fra simuleringene. Studien vil utforske hvor
aktuell Weibull estimeringen er i forhold til en representasjon av vindhastighet i PyWake
sin Bastankhah Porté-Agel simuleringsmodell, ved å analysere avviket i AEP. Videre vil
optimaliseringsalgoritmene MLE- og L-BFGS-B bli brukt til Weibull-regresjonene som
sammenligning av forskjellige regresjonsverktøy.

PyWake-modulen tilbyr et utvalg av scenario-baserte modellkombinasjoner, som kan
defineres til brukerens spesifikke formål. Modulen består av tre hovedobjekter, som
er sted-, turbin- og vakemodel. Vindparkmodellen som brukes i denne rapporten
er en kombinasjon av den uniforme Weibull-site modellen og Bastankhah Porté-Agel
vakemodell, med turbin- og steds parametere som er spesifisert til Dudgeon- og Anholt-
tilfellene. Vakemodellen er kun anvendelig for lange vake tilfeller, og ser derfor
bort fra påvirkningen av turbulensintensitet og bruker en konstant vakeekspansjons
faktor. Stedsobjektet bruker den uniforme Weibull-modellen for å simulere AEP i
samarbeid med vakemodellen. Den bruker form- og skala parametere fra tolv Weibull-
sannsynlighetsfunksjoner fra tolv vindretningssektorer på 30°. Stedsobjektet krever også
en sannsynlighet for forekomst av vindretning for hver vindsektor, som beregnes gjennom en
sannsynlighetsmodell (KDE). Den statistiske passformen for Weibull-regresjonen vurderes
ved hjelp av Kolmogorov–Smirnov-testen (KS test). Resultatene tolkes basert på KS-stat
og p-verdien, og i forhold til AEP-resultatene.

Simuleringsresultatene avslører at størrelsen på datasamlingen har en betydelig påvirkning
på nøyaktigheten av simuleringen. Ved bruk av en datasamling på ett år, ga L-BFGS-
B-metoden de mest nøyaktige resultatene, med et avvik på bare 1,47 % fra de faktiske
AEP-dataene. I motsetning, med en 20-års datasamling, viste MLE-metoden et mindre
avvik på 0,8367 %. KS test resultatene viste at større datasamlinger produserte en
lavere KS-stat, noe som indikerer en nærmere likhet med det faktiske vindhastighets-
distribusjonshistogrammet. På den andre siden resulterte mindre datasamlinger i en
statistisk likhet der p-verdien overskred 0.05, noe som tyder på en akseptabel passform
under det brukte signifikansnivået. Videre ble AEP for hver vindretningssektor analysert
individuelt. Resultatene viste varierende avvik for alle scenarier, og indikerer å ha en
korrelasjon med KDE-regresjonen.

Denne studien viser klart at bruk av MLE metoden med større datasamlinger er å
foretrekke for å oppnå pålitelige årlige energiproduksjonsprognoser. Derimot viser en ettårs
datasamling at L-BFGS-B-metoden overgår alternativene. Ytterligere analyse avslørte
også at KDE ikke er en effektiv metode for å dele sannsynligheten for forekomst på tvers
av vindretninger. Regresjonsresultatene antyder at KDE ikke gir en nøyaktig indikasjon
på sektorspesifikk AEP. For å forbedre studiens pålitelighet anbefales ytterligere forskning
med fokus på utbedring av vakeekspansjonen og turbulensintensitetsparametere. Slike
forbedringer kan potensielt adressere noen av manglene som er identifisert i de nåværende
metodene.
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1 INTRODUCTION

1 Introduction

With the global focus towards a green transition, aiming to reduce carbon emissions and
combat climate change, the offshore wind sector is expanding in unison. The market
potential in wind energy has had an exponential increase the last two decades for both
onshore and offshore [1]. In line with the growth of the offshore wind farm sector, there is
an increasing need for reliable analytical models to realize the energy production potential.

The objective with this thesis is to investigate the viability of using Weibull probability
density functions as a representative wind speed distributions in simulation models. The
properties of Weibull functions closely resemble those of a typical wind speed distribution
histogram and are often used in simulation models to reduce computational load compared
to time series analysis. Given that the Weibull curve is an approximation tool, it is desirable
for the deviation from the production results to be as small as possible.

The report utilizes the Python module PyWake to perform simulations for the Dudgeon
and Anholt wind farms, and compares the results against production data from Dudgeon.
Two Weibull algorithms, Maximum Likelihood Estimation (MLE) and Limited-memory
Broyden-Fletcher-Goldfarb-Shanno Bounds (L-BFGS-B), are used in combination with a
kernel density estimation in Bastankhah Porté-Agel’s wake deficit model. The Kolmogorov-
Smirnov test (KS test) is performed as a goodness-of-fit test for the Weibull regression and
is used in combination with simulation results to conclude the viability of using Weibull-
represented wind speeds.

1



2 THEORY

2 Theory

This section will introduce theory necessary to investigate the impact of wake in wind farms
as well as how annual energy production is calculated, using simulations in the Python
module PyWake. It is important to understand how a small deviation in parameters can
induce relatively large variations in a wind farm’s annual energy production. The section
further explains the physics behind how wakes occurs and develops in addition to the
relevant engineering models used to compute wind data parameters. Information about
the selected wind farm sites and methods used for visual and computational analysing are
also presented.

2.1 Wakes and PyWake

When a wind turbine converts the winds kinetic- into mechanical energy, conservation
of energy results in a reduction of the wind speed downstream of the turbine. The air
downstream of a turbine will have a higher turbulence compared to free stream, and
is referred to as the wind turbine wake. The wake is influenced by the wind turbines
characteristics, such as the blade aerodynamics, number of blades and the rotor diameter.
According to Moskalenko et al. the energy losses due to wake effects in a wind farm are
around 12 % [2]. Which is consistent with other literature, indicating that wake effect
leads to average power losses of 10- to 20 % of the total power. [3, 4, 5]

The wake is divided into three different categories: near wake, intermediate wake and far
wake. In Figure 2.1 the different categories are illustrated. Where the near wake is defined
from the region close to the wind turbine, and two rotor diameter lengths downstream.
Beyond this area is a transition region of two to five times the rotor diameter, referred to
as the intermediate wake, which further leads to the far wake region. In this region the
wake is fully developed, which means that the wake has reached a point where the velocity
and turbulence approaches a Gaussian shape. [6, 4, 7, 2]

Figure 2.1: Schematic of wake. [6]

2



2 THEORY

The wakes influence in an offshore wind farm is visualised in Figure 2.2 where the wake is
observed due to special atmospheric conditions that created these fog wakes at Horns Rev
1 wind farm. [8]

Figure 2.2: Wakes in Horns Rev 1 wind farm, Denmark. [8]

2.1.1 PyWake

PyWake is a Python module developed by the Technical University of Denmark in order
to better understand and predict the physiological behavior of wind farms. The PyWake
module has the purpose of computing and simulating physics behind wind farms by using
different engineering models and commercial plugins. In this report, PyWake is used to
simulate the wake effect on wind turbines and AEP potential from two wind farms. [9]

PyWake offers a range of different modeling tools which can be combined to simulate
most relevant wind farm scenarios and the respective AEP. These engineering models
consisting of objects, such as site-, wind turbine- and wind farm model object. The site
object defines the wind farm layout, with parameters for the number of turbines and their
respective location. The wind turbine object takes in parameters for the turbine height,
rotor diameter, power curve and thrust coefficient curve. Lastly, the wind farm model
object defines which wake deficit models to include in the simulation. [9]

2.1.2 Bastankhah Gaussian deficit

The Bastankhah Gaussian deficit wake model is an analytical wake model proposed to
predict the wind velocity distribution downstream of the wind turbine. The model is valid
in the far wake and was first introduced by Majid Bastankhah and Fernando Porté-Agel
in 2014, and will from now on be referred to as the Bastankhah Porté-Agel model. This
model gives an understanding of the far wake behavior, to improve the accuracy of the
wake predictions in the far wake region and builds further on the Niels Otto Jensen (NOJ)
model. [7, 9]

3



2 THEORY

The NOJ model is one of PyWake’s wake deficit models. It operates on the principles
of momentum conservation and assumes a linear wake distribution in terms of a top hat
velocity deficit profile. It focuses on the far wake downstream from the wind turbine,
where near wake effects are considered negligible. The velocity in the wake, Uw, is defined
in Equation 2.1. U∞ is the free stream wind velocity, ro is the radius of the wake, X is the
distance downstream and k∗ is the wake expansion rate. [10]

Uw = U∞ ·
(
1− 2

3

( ro
ro + k∗X

)2
)

(2.1)

Building on the foundations of the NOJ model, Bastankhah Porté-Agel has a more
parabolic approximation to the far wake deficit, and is more based on a Gaussian profile.
Over a distance, the turbulence intensity in the far wake region will vanish due to turbulent
diffusion of the wake. [4]

Figure 2.3 presents the top hat model proposed by NOJ. Figure 2.4 illustrates the
Bastankhah Porté-Agel wake model. U∞ represents the free stream wind speed. Uw

represents the reduced wind speed within the wake. The figures on the right, shows the
wind speed deficit (U∞−Uw), presenting the Gaussian distribution of reduced wind speeds
of the turbine. Whereas the left figures show the NOJ top hat model. [7]

Figure 2.3: Vertical profiles of mean
velocity (top) and velocity
(bottom) downstream; top hat. [7]

Figure 2.4:
Gaussian distribution for the velocity deficit
in the wake. [7]
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2.1.3 Turbulence intensity

The turbulence intensity (TI) is used as an approximation factor for wind turbulence
used in wind related applications, and is an attempt to quantify the turbulence strength.
Applying the variations of TI to simulation models, helps to further improve the predictions
of power production. Turbulence intensity is calculated using the formula shown in
Equation 2.2,

TI =
σU

U
(2.2)

where, over a given time frame, σU is the standard deviation in wind speed measurements,
and U is the mean wind speed. [11].

2.1.4 Wake expansion

Figure 2.5 illustrates the wind turbines wake expansion downstream. The gray shading
presents the volume in linear downstream condition, with the horizontal wake centre line
being the dashed black line at hub height. The wake expansion width Dw shown as n ·D
in the figure, can be expressed as Dw = D + 2k∗X, where D is the initial wake width, k∗

is the wake expansion factor and X is the downstream distance. [12]

Figure 2.5: Wake expansion. [12]

The wake expansion rate (k∗) in a two-dimensional simulation depends on the variable
chosen to characterize the velocity deficit profile. It can be challenging to evaluate, with
little prior knowledge about the standard deviation in the wake expansion of turbine wake,
such as Bastankhah Porté-Agel’s definition of the expansion rate k∗ = δσ/δX [13]. Other
wake models such as the NOJ model, have through research and applications led to a
recommended value of k∗ = 0.05, but is often criticised for its simplistic approach from
a top hat velocity deficit profile [13]. A more appropriate approach to the Gaussian
velocity profile is to express the wake expansion rate as a function of the turbulence
intensity. Such that k∗ = 0.003678 + 0.3837TI for turbulence intensity values in the
range 0.065 < TI < 0.15 [14].

PyWake utilizes applications from a new analytic model for wind turbine wakes, and
obtains the wake by applying mass and momentum conservation [7]. The standard value
of the wake expansion factor is set to k∗ = 0.0324555, based on a turbulence intensity of
0,075 for most Gaussian wake model examples, but recommends the user to evaluate a new
k∗-value based on the turbine and site variables. [9, 15]
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2.2 Annual Energy Production

Annual energy production is a measurement of the gross total energy produced in the
fraction of a year and is the basis for economic valuation of a wind farm [16]. A wind farm
operation includes seven different loss categories. These include wake loss, availability,
turbine performance, electrical, environmental, curtailment and others [17].

The power in the wind P , is given by equation 2.3 where ρ is the air density, A represents
the wind turbines rotor-area and U as the wind speed. Cp is an expression for the wind
turbines efficiency [18]. From this formula it is clear that a reduction in wind speed will
affect the power produced.

P =
1

2
ρU3ACp (2.3)

Further the AEP can be obtained from equation 2.4 .Since P is dependent on the wind
velocity and varies with time, the power can be expressed as a function of time. Hence
Etot is the energy produced for a given time period. The AEP will therefore be the sum
of all different values of power extracted by the turbine through the year. [18]

Etot =

∫ t2

t1

P (t)dt ≈
N∑
i=1

Pi ·∆ti (2.4)

2.3 Wind direction and wind speed

Time series analysis is a specific way of analyzing a sequence of data points over an interval
of time. It is used to understand the underlying causes of trends or systematic patterns
over time. Using the data visualization, it is possible to see trends and find out why and
how these trends occurs. [19]

The wind is well known as an intermittent energy source with variations regarding direction
and speed. In this report, the North-direction will be referred to as 0°, with the other
directions referred to as in Figure 2.6. The wind characteristics varies with distance from
shore and there are in general higher wind speeds further towards offshore sites, still there
are exceptions depending on the local conditions. [20]

A wind rose diagram gives a simple description of the wind direction and magnitude. An
example of how a wind rose looks is given in Figure 2.6. The colors are labeled to different
wind speeds and the arrows indicates that the wind blows towards the center of the rose.
[21]
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Figure 2.6: Example of wind rose layout. [21]

Histogram is a chart type that presents the frequency distribution of data points across
a range of numerical values. The data are grouped into interval ranges known as bins,
that are arranged in consecutive order along the horizontal x-axis. The height of each bar
extends vertically along the y-axis, representing the number of data points within each bin
[22]. Figure 2.7 illustrates an example of a histogram that uses probability for wind speed.
Each bar covers a wind speed of one m/s, and the height indicates the probability of each
time range. [23]

Figure 2.7: Example of histogram. [23]
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2.4 Site Object

To access the wind energy potential at the locations of Dudgeon and Anholt, the site object
in PyWake provides information for the analysis of the wind characteristics. It includes
measurements of wind speed (WS), wind direction (WD) and turbulence intensity. As
stated in PyWake: "The site object is responsible of calculating the down-wind, cross-
wind and vertical distance between wind turbines" [9].

2.5 Weibull distribution

The Weibull distribution is a commonly used probability model for estimating wind speeds
in a wind farm site in the form of a histogram regression. The Weibull regression is an
asymmetric distribution, skewing towards the bulk of the distribution. By utilizing this
model, it is possible to parameterise a probability density function (pdf) with only two
parameters, shape and scale. The shape and scale parameters are used as inputs in wind
farm simulations. With the wind speed represented as a function of probability instead
of a large number of metric data, the simulation will save computing time and processing
power. In equation 2.5 the scale factor is represented as k, and shape factor as a. The
variable x represents each data iteration. [24, 25]

f(x; k, a) =
k

a
·
(x
a

)(k−1)
·e−(x

a
)k (2.5)

An example of how a Weibull distribution is shown in Figure 2.8 and Figure 2.9. In Figure
2.8 the distribution is plotted versus wind speed under a constant value of a = 1 and
different values of k. As it can be seen by Figure 2.8, a higher value of k leads to a smaller
variation in wind speed. [26]

Figure 2.9 shows a Weibull distribution density versus wind speed under a constant value
of k = 3 and different values of a. The value of a scales the deviation in wind speed. The
deviation is higher with a higher value of a. [26]

Figure 2.8:
Weibull distribution -
different values of k.

Figure 2.9:
Weibull distribution -
different values of a.
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2.5.1 Literature on Weibull

To get an understanding about which results that can be expected from this investigation,
it is necessary to look into literature from previous studies. Wind speed distribution is
frequently characterised through a Weibull distribution, as it is a good approximation
for many cases and used in order to obtain a mathematical function for wind speed
simulation models [25]. Based on results from previous studies, the suitability of the
different algorithm methods varies with the samples data size, format, distribution and
goodness-of-fit test [25]. Least Square Technique (LST), Method of Moments (MOM),
MLE and Limited-memory Broyden-Fletcher-Goldfarb-Shanno Bounds (L-BFGS-B), are
methods proven to be sufficient for estimating the Weibull parameters in wind farm
simulations [25, 27, 28, 29]. MLE has in studies shown as the most efficient method
regarding Weibull estimations for power density [27, 30]. Whereas L-BFGS-B is a gradient
based method, which means the method uses knowledge about the gradient of the wind
farm layout . L-BFGS-B is a method with fast performance, but not the best results
regarding AEP calculations.[31, 32, 33]

There are two functions that characterizes the variation in wind speed in a Weibull
distribution, the probability density function which indicates the probability for which
the wind occurs at a given wind speed. And the cumulative distribution function (cdf),
that gives the cumulative probability of observed wind speeds. [25, 26]. Based on previous
studies it is clear that the best method to estimate the Weibull parameters varies with
different sites and is dependent on each situation. [24, 27, 30, 26, 34, 35]

2.5.2 Approaches to Weibull fitting

In this section the different approaches to Weibull fitting is explained. This thesis will
proceed with the MLE- and the L-BFGS-B method. With the two methods it will be
possible to compare the results and analyze any differences or similarities from both
algorithms.

2.5.3 Maximum likelihood estimation

With the use of MLE the goal is to find the optimal way to fit the Weibull distribution to the
collected data. This method finds the optimal value of the mean in observed measurements
and is defined as where the slope is equal to zero. The method is an important tool for
non-linear modeling, such as for Weibull regression. [36, 37]

Sufficiency, consistency and efficiency are some of the optimal properties the MLE-method
has regarding estimation. MLE is simplified by using the logarithmic of the function since
the peak values are the same for both log-likelihood- and likelihood function. With this
step the derivatives will be easier to perform [38]. By using iterative steps, this method
aims to identify points where the probability distribution makes the observed data most
probable in comparison to the original data sample. [36, 39]
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2.5.4 L-BFGS-B method

L-BFGS-B is a variant of standard BFGS-methods, where the L stands for limited memory
and the B describes that the method includes bounds on the variables. The L-BFGS-B
method is intended to solve for large heavily problems or where the Hessian matrix is
challenging to acquire. Instead the algorithm approximate the matrix such as the required
storage is linear to the number of variables [40]. It is a "quasi-Newton algorithm for solving
large non-linear optimization problems with simple bounds on the variables." [40]. The
methods advantage is not necessary to maintain knowledge about the objective functions
structure. [40]

The method is relevant for use in wind farm simulations for several reasons. Because of
its fast computational time, the Weibull parameters can be obtained efficiently by finding
the values which fits the data according to some objective function. L-BFGS-B is able to
handle constraints naturally and ensure that the solutions are feasible to real conditions, in
example the turbines placement. When performing wind farm simulations, large datasets
with many variables is examined. The method’s memory-efficiency is beneficial in such
cases, allowing for optimization without excessive computational resource requirements.
[28, 41]
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2.6 Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test is used to decide whether two different samples is likely to
exist of the same distribution. It is a non-parametric statistic test, which is useful when
the distribution is not normally distributed . To evaluate whether the distributions are
close to similar, a hypothesis testing is performed. The KS test uses the maximal difference
between the two distributions to decide if the null hypothesis can be discarded or not. The
null hypothesis can be defined as the distribution consist of the same fit. To conclude the
outcome of the KS test, the p-value evaluates the statistical resemblance between the two
samples. A p-value lower than a significance level at 0.05 results in rejection of the null
hypothesis. Which will indicate that the distributions are likely to not originate from the
same sample. A higher p-value indicates a higher statistical probability of two distributions,
originating from the same sample. Additionally a KS-stat value from the test, is the value
of the maximum distance between two points from the same iteration index. The KS-stat
indicates how two distributions deviates from each other, where a low value indicates a
close resemblance and a high value could indicate a poor resemblance. Still, there are
instances where a high KS-stat could originate from outliers from the statistical test, and
should be interpreted carefully. [42, 43, 44, 45]

Figure 2.10 is an example of how the KS test converts the data to a cdf and iterates through
each data point. The maximum difference between the histogram and pdf is presented with
the KS-stat value. [46]

Figure 2.10: Example of KS-test. [46]
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3 Method and Materials

Collected data is presented in the form of a histogram which is compared with a Weibull
distribution. To check whether the Weibull distribution is representative of the real data,
the Kolmogorov-Smirnov test (KS test) is used. Finally, the results from the various
locations are compared to see if there is a large variation in the estimations.

3.1 Wind and production data

The data used in the wind farm simulations for the Dudgeon site was provided by Equinor.
The Anholt weather data was imported from Ørsted’s homepage as an open source data
file [47]. Both companies have open source information about the turbine dimensions for
each location.

The Dudgeon data consist of turbine locations, production data for the period 2019 to
2020 and a time series of weather data from Nora10. The production data is provided
in a filtered and unfiltered version, where the unfiltered data is presented in Table 3.1.
The report will take basis in the unfiltered data version, as the PyWake simulations do
not disregard insufficient operating conditions to the same degree as the filtered data file
from Equinor. Additionally in regards to Weibull fitting and wake deficit models, sub
standard wind speeds and power production, should be included to encompass all scenario
conditions.

Table 3.1: Production data and wind data, Dudgeon

Production data,
Unfiltered Wind data

Source Equinor NORA 10
Variables / Inputs ws, wd, std ws, power ws, wd
Measurement height Hub height 100m
Interval 10 min 3 hours
Time Period 2019 - 2020 2002 - 2022
Total Sample Size 3 518 731 58 400

The Anholt weather data is for the year 2013-2014 and shown in Table 3.2. No production
data or turbine locations from Anholt were obtainable from the wind farm operator. The
relative turbine locations required in the site object were obtained using the plotting tool
"PlotDigitizer" over a turbine layout graphic from literature [48]. Since no production data
were available, the simulations at Anholt will be used as a test case, in order to determine
a trend in Weibull approximations with regards to wind direction and sample size.

Table 3.2: Production data and wind data, Anholt

Production data,
Unfiltered Wind data

Source - Ørsted
Variables / Inputs - ws, wd
Measurement height - 80 m
Interval - 10 min
Time Period - 2013 - 2014
Total Sample Size - 52 560
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3.2 Dudgeon

Figure 3.1 presents a map illustrating the geographical location of the Dudgeon wind farm
in the North Sea, at the east coast of England. The wind farm is situated in North Norfolk,
approximately 32 kilometers north from the shore. Figure 3.2 presents the layout of the
Dudgeon wind farm, providing with a detailed view of how the wind farm is structured. The
nearest neighbouring wind farm Sheringham Shoal is located approximately 10 kilometers
southwest of Dudgeon. [49]

Figure 3.1:
Geographical map, Dudgeon. [50]

Figure 3.2:
Layout of Dudgeon, England.

Table 3.3 provides detailed information from the site of the Dudgeon wind farm. Each of
the 67 Siemens SWT 6.0-154 turbines is located in Dudgeon, and has a diameter of 154
m with a hub height of 103 m. It is producing a total installed capacity of 402 MW, with
each turbine producing 6.0 MW as shown in the table. [49, 51, 52, 53]

Table 3.3: Detailed site information for the Dudgeon wind farm [49, 51, 54, 55, 56]

Site information
Site Dudgeon
Location North Norfolk, England
Wind Turbines Siemens, SWT 6.0-154
Total turbines 67
Diameter [m] 154
Hub height [m] 103
Water depth [m] 18-25
Distance from shore [km] 32
Wind turbine capacity [MW] 6.0
Installed capacity [MW] 402
Owner Equinor 35%, Masdar 35% and China Resources 30%
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3.3 Anholt

Figure 3.3 presents a map illustrating the geographical location of the Anholt wind farm,
east coast of Denmark. The wind farm is situated in Kattegat approximately 15 kilometers
from shore. Figure 3.4 presents the layout of the Anholt wind farm, and how the wind
farm is developed. A greater version of Anholt’s layout is to be found in Appendix A. [57]

Figure 3.3:
Geographical map, Anholt. [58]

Figure 3.4:
Layout of Anholt. [48]

Table 3.4 provides detailed site information from the Anholt wind farm. It is a total of
111 Siemens, SWT 3.6-120 turbine with a diameter of 120 m with a hub height of 81.6 m.
It is a total of 111 turbines with an installed capacity of 400 MW. [57]

Table 3.4: Detailed site information for the Anholt wind farm [57]

Site information
Site Anholt
Location Between Djursland and Anholt, Kattegat outside of Denmark
Wind Turbines Siemens, SWT 3.6-120
Total turbines 111
Diameter [m] 120
Hub height [m] 81.6
Water depth [m] 15-19
Distance from shore [km] 15
Wind turbine capacity [MW] 3.6
Installed capacity [MW] 400
Owner Ørsted 50%, PensionDenmark 30% and PKA 20%
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3.4 Power curve and thrust coefficient

Table 3.5 presents a comparison of power curve and thrust coefficient values for the wind
turbines used at the two locations; Anholt and Dudgeon. At Dudgeon the installed wind
turbine is SWT 6.0-154, it is a Siemens turbine with installed capacity at 6 MW with 154
m rotor diameter. The wind turbine at Anholt is also produced by Siemens, but have an
installed capacity of 3.6 MW and 120 m rotor diameter, hence the name SWT 3.6-120.

Table 3.5: Comparison of power curve and CT values for Dudgeon and Anholt

Wind Speed Power [kW] CT

[m/s] Dudgeon Anholt Dudgeon Anholt
3.0 0 0 0.77 0.0
4.0 220 161 0.77 0.86
5.0 440 351 0.76 0.86
6.0 721 635 0.76 0.86
7.0 1173 1026 0.77 0.86
8.0 1796 1544 0.76 0.86
9.0 2517 2204 0.76 0.86
10.0 3360 2910 0.69 0.80
11.0 4485 3399 0.61 0.61
12.0 5792 3567 0.43 0.42
13.0 6000 3596 0.33 0.32
14.0 6000 3600 0.26 0.25
15.0 6000 3600 0.21 0.20
16.0 6000 3600 0.17 0.17
17.0 6000 3600 0.14 0.14
18.0 6000 3600 0.12 0.12
19.0 6000 3600 0.10 0.10
20.0 6000 3600 0.09 0.09
21.0 6000 3600 0.08 0.08
22.0 6000 3600 0.07 0.07
23.0 6000 3600 0.06 0.06
24.0 6000 3600 0.05 0.05
25.0 6000 3600 0.05 0.05

3.5 Simulations

Since this report focuses on the accuracy of a Weibull simulated AEP, the wind farm model
is defined to only include a wake deficit model. This is due to difficulties obtaining various
information about the two wind farms, and hence one loss category will better maintain
simplicity and continuity throughout the research. The engineering wind farm model used
in this report are based around the Bastankhah Porté-Agel wake deficit model, which is
valid for far wake simulations and rely on a uniform wind distribution. The model has
the option of simulating for both time series data, and Weibull functions. Bastankhah
Porté-Agel simulates wind speeds as a uniform "gust" of wind represented as the mean
wind speed in ten minutes intervals over the entire farm site. Due to the excessive work
needed in order to determine the correct wake expansion factor the report will move on
with PyWake’s standard value of k∗ = 0, 0324555, but with the insight that an estimated
value of k∗ have an expected influence on simulation results. Additionally, the model
disregards the effect from turbulence intensity. Simulations will be performed for the one-,
10- and 20-year time periods for Dudgeon. Anholt will be simulated for one time period
of the year 2013-2014.
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3.5.1 Time series simulation

The time series simulations implements vector variables for turbine location, wind
direction, wind speed, turbulence intensity and time span for each time series data point.
Time series simulations are performed for both Anholt and Dudgeon, where previously
mentioned, Anholt is simulated with ten minute intervals and Dudgeon with three hour
intervals. For comparison purposes, it is performed a simulation for each site over a one-
year period, in order to cross examine the accuracy of Weibull simulations with time series
for both locations.

3.5.2 Histogram and wind rose

All wind speed and direction data are plotted in a histogram chart as a function of
frequency, in order to further determine the spread and probability of occurrence as shown
in Figure 3.5. This is done for twelve sectors, determined by the wind direction. The
sectors are slices of a full circle with 30° intervals, where the first sector (sector 0) ranges
from 345° to 15° shown in Figure 3.6. The sectors are labeled from sector 0 to sector 11.
Each histogram is plotted with 25 bins, with the bin centering being the mean of the bin
edges. The number of bins were chosen to best represent a bin width of 1 m/s, as the
wind data contains very few wind speeds over 25 m/s. The number of bins should be
representative to the range in wind speeds and the number of wind measurements. For
this report, 25 bins is deemed sufficient because of the large data samples, and because a
smaller number of bins also saves computational time of the simulations.

Figure 3.5: Histogram, frequency of wind speed, Dudgeon.
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In Figure 3.6 the wind rose for all cases are shown. In the two upper wind roses represents
Anholt and Dudgeon with the one-year sample. The wind roses at the bottom shows the
wind direction data for 10- and 20-year. As seen in the caption of the figure, the wind
speed is represented with different colors. Blue, orange, green, red and purple corresponds
to 0-5 m/s, 5-10 m/s, 10-15 m/s, 15-20 m/s and 20-25 m/s in respective order.

Anholt, one-year Dudgeon, one-year

Dudgeon, 10 years Dudgeon, 20 years

Figure 3.6: Wind roses, Dudgeon and Anholt for different time periods.

3.5.3 Weibull simulation

The Weibull simulation in the site object, notated as "UniformWeibullSite" and is based
on Porté-Agel’s Gaussian model, is a PyWake module that use pdf’s for sector based wind
speed and wind direction. Functions are parameterized with the use of the statistical
function "scipy.stats" in Python, from the twelve histogram plots. The module uses the
shape and scale factors as input parameters from the Weibull wind speed functions at each
section.
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The Weibull distribution functions are parameterized using the MLE (red curve) and L-
BFGS-B (blue curve) method as shown in Figure 3.7. Both methods are relevant for wind
farm simulations, where MLE is the most commonly used, and L-BFGS-B has advantages
handling large data samples. Both methods are used in order to investigate if there
are sectors where one method is more sufficient. As an extra step, it is performed a
simulation to see if a combination of methods produces a more accurate AEP estimate
when selecting the best statistical curve fit from each sector. Figure 3.8 shows the wind
direction based on a kernel density estimation and is used in a probability of occurrence
vector. The comparison of the data from Anholt and Dudgeon with shape and scale factors
are presented in Table 3.6.

Figure 3.7: Weibull fitting with MLE and L-BFGS-B for each wind sector at Dudgeon
2019-2020.

Table 3.6: Data Comparison Across Different Methods and Time Periods

Sector MLE L-BFGS-B
Anholt 2013-2014 Dudgeon 2019-2020 Anholt 2013-2014 Dudgeon 2019-2020
Shape Scale Shape Scale Shape Scale Shape Scale

Sector 0 2.34333 8.21829 2.26888 9.13542 2.26949 8.32611 2.30066 9.3784
Sector 1 2.41286 8.4352 2.04596 8.85722 2.24203 8.7216 1.79944 9.07404
Sector 2 2.19784 8.70015 2.79665 8.3938 2.0573 8.7098 2.85293 8.82591
Sector 3 2.16608 10.1284 2.61122 9.57484 2.12964 9.93498 3.02497 10.7943
Sector 4 2.01537 8.92557 2.57255 9.44247 1.9831 8.60506 2.76049 10.2253
Sector 5 2.06956 9.47624 2.66318 9.81359 1.88007 9.62261 2.59319 10.2806
Sector 6 2.25841 11.4943 2.42244 9.79248 2.24343 11.8112 2.5377 10.112
Sector 7 2.79586 11.7844 2.34265 11.6089 3.14155 12.3051 2.67872 11.7496
Sector 8 2.64262 10.0508 2.47602 12.0831 2.84553 10.2106 2.6305 12.2679
Sector 9 2.27969 11.241 2.41338 11.9691 2.29903 11.3293 2.26523 12.3041
Sector 10 1.98771 10.9893 2.07526 10.3756 1.91082 11.081 2.33533 9.71771
Sector 11 1.88262 8.64952 2.02158 10.1864 2.00601 8.14514 2.18027 9.45865
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Figure 3.8: KDE wind direction - Dudgeon 2019-2020.

To maintain an anonymous approach of the production data provided by Equinor, all
measurements and comparison are given as a percentage of the total AEP with the
unfiltered data for Dudgeon wind farm. Table 3.7 shows the AEP division for each wind
direction sector from the sourced Equinor data. Additionally the normalized probability
of occurrence from the KDE regression of the open source Nora10 data for one-, 10- and
20-year data samples is presented.

Table 3.7: KDE values compared to wind sector AEP amount.

Amount of production [%] Normalized KDE-values
Sector Unfiltered data Dudgeon one-year Dudgeon 10-year Dudgeon 20-year
Sector 0 5.9283 % 0.0313 0.0335 0.0329
Sector 1 2.6893 % 0.0346 0.0526 0.0544
Sector 2 3.4427 % 0.0478 0.0618 0.0593
Sector 3 4.2717 % 0.0563 0.0628 0.0599
Sector 4 5.0482 % 0.0693 0.0628 0.0638
Sector 5 6.6053 % 0.0865 0.0787 0.0814
Sector 6 8.4898 % 0.1094 0.1022 0.1022
Sector 7 16.7287 % 0.1474 0.1403 0.1358
Sector 8 21.9067 % 0.1613 0.1592 0.1575
Sector 9 11.8990 % 0.1064 0.1075 0.1082
Sector 10 6.8190 % 0.0774 0.0724 0.0756
Sector 11 6.1713 % 0.0724 0.0663 0.0691
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3.6 KS test

In order to evaluate the statistical resemblance between the histogram and the Weibull
regression, the goodness-of-fit KS test is performed. The KS test is a statistic function
built-in python module which takes the different samples as input and computes the
relevant values. The data is iterated through each wind speed in the histogram, where
the center of the bin serves as the reference point between the Weibull regression and
histogram. The foundation in the test is based on developing two hypothesis, beginning
with defining the null hypothesis. In this case, the null hypothesis is defined as: there
is no difference between the compared samples. The alternative hypothesis is defined as:
the compared samples originates most likely from a different distribution. The significance
level is chosen as 95 % in this thesis, similar to previous studies. A p-value lower than 0.05
will hence indicate a rejection of the null hypothesis, accordingly the compared samples
do not follow the same distribution.

3.7 Wind sector analysis

To further determine the accuracy in AEP from Weibull simulations, the wind sectors will
be compared individually with regards to the goodness-of-fit, ratio between simulated and
actual energy production, and sample size. The number of acquisitions at each sector is
shown in Table 3.8.

Table 3.8: Sample Sizes across Different Sectors

Sector Dudgeon 2019-2020 Dudgeon 2012-2022 Dudgeon 2002-2022 Anholt 2013-2014
Sector 0 180 1894 3692 2589
Sector 1 98 1473 3079 3308
Sector 2 150 1824 3370 4110
Sector 3 141 1716 3316 3973
Sector 4 199 1700 3525 3184
Sector 5 239 2206 4581 3766
Sector 6 292 2816 5663 5710
Sector 7 400 3873 7415 6437
Sector 8 507 4633 9093 5988
Sector 9 287 3148 6392 7182
Sector 10 204 2074 4333 4205
Sector 11 223 1867 3941 2108
Total 2 920 29 224 58 400 52 560

Regardless of production, it is also valuable to examine trends from the KS test, and
if or why there are some sectors where Weibull is better suited to estimate wind speed
conditions. This comparison is performed for the one-, 10- and 20-year period in Dudgeon
with the main focus on the sample size, as well as a comparison for the one-year scenario
between Dudgeon and Anholt to also investigate similarities based on location.
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3.8 Source of error and assumptions

Beside the stated disregards from theory, such as the turbulence intensity and wake
expansion factor, there are several potential sources that could lead to errors. It is necessary
to address the assumptions and acknowledge their impact on the results.

The analysed weather data is not collected at each turbine placement and will not include
local wind data at each point in the wind farm. Because of this the simulated results may
vary from the real world situation. Regarding the wind farms positioning, the influence
from neighboring wind farms are not taken into account in this case. From theory it can
be assumed that wakes from neighboring wind farms will have an affect on the inflow
conditions. For instance the Sheringham Shoal wind farm, located southwest of Dudgeon
and Sønderbjerg to the east of Anholt.

Additionally, PyWake’s Bastankhah Porté-Agel method is applicable for far wake scenarios
only. Based on the provided turbine layout information for Dudgeon, for many cases the
turbines will categorise as intermediate- to far wake scenarios. The experience of wake
for each turbine will vary depending on the wind direction, which is why the Bastankhah
Porté-Agel model was chosen as a simplification.

The wind speed used for simulations are measured at a height of 100 meters and 80 meters
for Dudgeon and Anholt respectively. The height is different than the turbine hub height,
which can result in a slight deviation in wind speed. Another topic that can affect the
production data, are maintenance and periods when the wind turbines are inoperative.
None of the simulations include periods where the wind turbine is not operating. In
addition there are not included power regulation during operational considerations. Based
on this the simulation results will deviate from the real production data. It would therefore
be reasonable to assume that the methods that overestimate with regard to AEP will be
the methods that give a result most similar to the actual produced energy.
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4 Results

This section presents the results from the simulations. The results are organized in a
systematic approach beginning with results from three different time periods at Dudgeon.
First introducing results from the total sample, followed by each individual wind sector, and
then the one-year results from the Dudgeon and Anholt simulations respectively. Lastly
the comparison between the different methods is presented regarding AEP.

4.1 Weibull fit to wind data at Dudgeon

The Dudgeon data is processed for three different time periods, a one-, 10- and 20-year
data sample from Nora10. The MLE and L-BFGS-B method are applied to generate a
Weibull distribution. In the first part the distributions depend on total wind speed data
for all sectors. The sample sizes are presented in Table 3.8 in Section 3.7. Further in this
section the plots for different sectors follows for each method.

4.1.1 Full data sample at Dudgeon with MLE method

The estimated Weibull distributions from the MLE method from the one-, 10- and 20-year
time period in Dudgeon is presented in Figure 4.1. The red line represents the Weibull
regression for the 2019-2020 time period. The blue line represents the 10 year period 2012-
2022 and the green line the 20 year period 2002-2022. In addition the shape and scale
parameters for each case is given in Table 4.1 and also values from KS test.

Figure 4.1: Weibull distribution for Dudgeon - MLE.

Table 4.1: MLE statistics for Dudgeon (one-, 10-, and 20 years)

MLE Dudgeon, 1 year Dudgeon, 10 years Dudgeon, 20 years
KS-stat 0.0599 0.0153 0.0160
P-value 0.0117 0.2069 0.0000
Shape 2.2661 2.2231 2.2342
Scale 10.5628 10.8288 10.7934
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4.1.2 Full data sample at Dudgeon with L-BFGS-B method

L-BFGS-B method from the one-, 10- and 20-year time period in Dudgeon is presented in
Figure 4.2. The line color is represented in the same way as the plot for MLE method.
The Weibull parameters and KS-test values from the L-BFGS-B method is seen in Table
4.2.

Figure 4.2: Weibull distribution for Dudgeon - L-BFGS-B.

Table 4.2: L-BFGS-B statistics for Dudgeon (one-, 10-, and 20 years)

L-BFGS-B Dudgeon, 1 year Dudgeon 10 years Dudgeon 20 years
KS-stat 0.0765 0.0246 0.0153
P-value 0.1393 0.2069 0.3132
Shape 2.1803 2.0781 2.0896
Scale 9.4587 9.9600 10.1256
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4.1.3 Wind sectors at Dudgeon with MLE method

Figure 4.3 displays four of the twelve Weibull-curves from the wind sectors. The
colorization of the curves are similar as explained in Figure 4.1 and Figure 4.2. Due
to the variability of wind direction, the sample size for the sectors also varies continuously.
For the MLE method the selected sectors to compare are sector 2, 6, 9 and 11. Sector 9
and 11 is shown to illustrate apparent good fits. Whereas sector 2 and 6 indicates a poor
fit, with the one-year curve showing clear variations from the 10- and 20-year curve. All
the sectors are to be found in Appendix F.

Figure 4.3: Sector 2, 6, 9 and 11 with MLE for different time intervals at Dudgeon.

The p-values for each sector, is presented in Table 4.3. P-values lower than 0.05 are
marked with red and indicates a rejecting of the null hypothesis, while green signifies that
the hypothesis can be retained. The KS-stat values are higher for the results with one-year
data samples compared to the samples with 10-year data, followed by the results from
20-year data with an even lower KS-stat value.

Table 4.3: MLE method KS-stat and p-values for Dudgeon at one-, 10-, and 20 years

Sector Dudgeon 2019-2020 Dudgeon 2012-2022 Dudgeon 2002-2022
KS-stat P-value KS-stat P-value KS-stat-stat P-value

Sector 0 0.0375 0.9539 0.0246 0.2002 0.0196 0.1160
Sector 1 0.0594 0.8587 0.0151 0.8830 0.0162 0.3887
Sector 2 0.0672 0.4859 0.0298 0.0771 0.0251 0.0283
Sector 3 0.1223 0.0270 0.0294 0.1019 0.0335 0.0011
Sector 4 0.0965 0.0457 0.0190 0.4995 0.0212 0.0833
Sector 5 0.0695 0.1895 0.0369 0.0048 0.0265 0.0031
Sector 6 0.0520 0.3951 0.0266 0.0368 0.0302 0.0001
Sector 7 0.0643 0.0700 0.0333 0.0004 0.0283 0.0000
Sector 8 0.0389 0.4178 0.0193 0.0628 0.0170 0.0103
Sector 9 0.0564 0.3094 0.0215 0.1078 0.0144 0.1377
Sector 10 0.0694 0.2675 0.0199 0.3768 0.0166 0.1792
Sector 11 0.0599 0.3862 0.0175 0.6112 0.0153 0.3125
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4.1.4 Wind sectors at Dudgeon with L-BFGS-B method

Figure 4.4 presents the Weibull curves at sector 0, 1, 3 and 8 with the L-BFGS-B method at
Dudgeon for one-, 10- and 20-year data. For this method the best fit seems to be at sector
0 and 8, unlike sector 1 and 3 where the one-year data differs from the longer periods. The
plot of all sectors with L-BFGS-B method are available in Appendix G.

Figure 4.4: Sector 0, 1, 3 and 8 with L-BFGS-B for different time intervals at Dudgeon.

Table 4.4 shows the p-value and KS-stat for Dudgeon with the L-BGFS-B method and are
interpreted in the same way as Table 4.3. The KS-stat is higher for the one-year sample
and decreases for the consecutive sample sizes.

Table 4.4: L-BFGS-B method KS-stat and P-values for Dudgeon at one-, 10-, and 20 years

Sector Dudgeon 2019-2020 Dudgeon 2012-2022 Dudgeon 2002-2022
KS-stat P-value KS-stat P-value KS-stat P-value

Sector 0 0.0368 0.9605 0.0221 0.3110 0.0165 0.2643
Sector 1 0.0480 0.9697 0.0178 0.7341 0.0178 0.2793
Sector 2 0.0767 0.3240 0.0259 0.1702 0.0214 0.0895
Sector 3 0.1169 0.0390 0.0267 0.1707 0.0295 0.0062
Sector 4 0.0780 0.1683 0.0232 0.3135 0.0229 0.0485
Sector 5 0.0514 0.5357 0.0331 0.0154 0.0294 0.0007
Sector 6 0.0590 0.2513 0.0230 0.1001 0.0266 0.0007
Sector 7 0.0506 0.2487 0.0280 0.0044 0.0226 0.0010
Sector 8 0.0323 0.6542 0.0169 0.1419 0.0148 0.0375
Sector 9 0.0405 0.7171 0.0202 0.1502 0.0169 0.0520
Sector 10 0.0850 0.0988 0.0183 0.4877 0.0127 0.4880
Sector 11 0.0765 0.1393 0.0246 0.2069 0.0153 0.3132
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4.2 Dudgeon vs Anholt

The results from the one-year data at Dudgeon and Anholt are given in this section. Both
methods MLE and L-BFGS-B are applied to estimate Weibull parameters. The KS test is
performed for both cases. The results from the Weibull fitting for each wind sector at the
two sites, fail to yield any logical interpretation and is therefore not relevant to include in
this section. The results for each sector are given in Appendix H and Appendix I.

4.2.1 Weibull estimation with MLE method

Figure 4.5 presents the Weibull curves for one-year data at Dudgeon and Anholt for the
MLE method. Dudgeon is represented with the red line and Anholt with the blue line. It
is worth mentioning that the one-year data originates from a different time period for the
two sites, explained in Section 3.7. The Weibull parameters and results from the KS test
of this total data with MLE at Dudgeon and Anholt are given in Table 4.5.

Figure 4.5: Weibull distribution for Dudgeon and Anholt, one-year - MLE.

Table 4.5: MLE Statistics for Anholt and Dudgeon (one-year)

MLE Anholt, one year Dudgeon, one year
KS-stat 0.0110 0.0599
P-value 0.0000 0.0117
Shape 2.1846 2.2661
Scale 10.2190 10.5628
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In Table 4.6 the KS-stat- and p-values with the MLE method for each sector at Dudgeon
and Anholt is presented. The p-values marked green are higher than the significance level
at 0.05, previously described in Section 3.6. Unlike the values below 0.05 which is marked
with red. It is worth mentioning that even though none of the sectors at Anholt has a
p-value higher than 0.05 from the KS test, the KS-stat value is relatively low compared to
the Dudgeon case.

Table 4.6: MLE method KS-stat and P-value for Dudgeon and Anholt, one-year

Sector Anholt 2013-2014 Dudgeon 2019-2020
KS-stat P-value KS-stat P-value

Sector 0 0.0510 0.0000 0.0375 0.9539
Sector 1 0.0326 0.0017 0.0594 0.8587
Sector 2 0.0298 0.0013 0.0672 0.4859
Sector 3 0.0446 0.0000 0.1223 0.0270
Sector 4 0.0498 0.0000 0.0965 0.0457
Sector 5 0.0376 0.0000 0.0695 0.1895
Sector 6 0.0455 0.0000 0.0520 0.3951
Sector 7 0.0556 0.0000 0.0643 0.0700
Sector 8 0.0305 0.0000 0.0389 0.4178
Sector 9 0.0168 0.0348 0.0564 0.3094
Sector 10 0.0305 0.0008 0.0694 0.2675
Sector 11 0.0382 0.0042 0.0599 0.3862
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4.2.2 Weibull estimation with L-BFGS-B method

The L-BFGS-B method is applied to estimate a Weibull curve for the one-year data at
Dudgeon and Anholt in Figure 4.6. The red and blue represent the Weibull curve for
Dudgeon and Anholt respectively. The Weibull fitting for each wind sector is available in
Appendix I. Table 4.7 presents the Weibull shape and scale parameters and values from KS
test with L-BFGS-B for the entire data sample. Whereas Table 4.8 show KS-test values
from each sector.

Figure 4.6: Weibull distribution for Dudgeon and Anholt, one-year - L-BFGS-B.

Table 4.7: L-BFGS-B Statistics for Anholt and Dudgeon (one-year)

L-BFGS-B Anholt, one year Dudgeon, one year
KS-stat 0.0136 0.0765
P-value 0.000 0.1393
Shape 2.0060 2.1803
Scale 8.1451 9.4587

Table 4.8: L-BFGS-B method KS-stat and P-values for Dudgeon and Anholt, one-year

Sector Anholt 2013-2014 Dudgeon 2019-2020
KS-stat P-value KS-stat P-value

Sector 0 0.0400 0.0005 0.0368 0.9605
Sector 1 0.0384 0.0001 0.0480 0.9697
Sector 2 0.0230 0.0257 0.0767 0.3240
Sector 3 0.0372 0.0000 0.1169 0.0390
Sector 4 0.0417 0.0000 0.0780 0.1683
Sector 5 0.0298 0.0024 0.0514 0.5357
Sector 6 0.0352 0.0000 0.0590 0.2513
Sector 7 0.0558 0.0000 0.0506 0.2487
Sector 8 0.0311 0.0000 0.0323 0.6542
Sector 9 0.0191 0.0103 0.0405 0.7171
Sector 10 0.0270 0.0042 0.0850 0.0988
Sector 11 0.0394 0.0028 0.0765 0.1393
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4.3 Combination of MLE and L-BFGS-B at Dudgeon

A combination of the wind sectors with the highest p-value was performed to compare
whether it would lead to more accurate AEP results from the simulation. The best
performing Weibull method from each sector, in regards to the highest p-value was chosen.
The Method for each sector and respective shape, scale, KS-stat and p-value are shown in
Table 4.9. With this combination, the only sector with a p-value lower than 0.05 is sector
3.

Table 4.9: Results of combining MLE and L-BFGS-B methods

Sector Shape Scale KS-stat P-value Method
Sector 0 2.30 9.38 0.037 0.961 L-BFGS-B
Sector 1 1.80 9.07 0.048 0.970 L-BFGS-B
Sector 2 2.80 8.39 0.067 0.486 MLE
Sector 3 3.02 10.79 0.117 0.039 L-BFGS-B
Sector 4 2.76 10.23 0.078 0.168 L-BFGS-B
Sector 5 2.59 10.28 0.051 0.536 L-BFGS-B
Sector 6 2.42 9.79 0.052 0.395 MLE
Sector 7 2.68 11.75 0.051 0.249 L-BFGS-B
Sector 8 2.63 12.27 0.032 0.654 L-BFGS-B
Sector 9 2.27 12.30 0.041 0.717 L-BFGS-B
Sector 10 2.08 10.38 0.069 0.267 MLE
Sector 11 2.02 10.19 0.060 0.386 MLE

29



4 RESULTS

4.4 AEP results

The different methods is compared with respect to the AEP given by data from Equinor.
Table 4.10 shows the AEP simulation result as a percentage of the provided unfiltered
production data, with a one-year data sample.

Table 4.10: AEP with one-year data sample compared to unfiltered production data for
Dudgeon 2019-2020

Unfiltered Data Time Series Weibull MLE Weibull L-BFGS-B Weibull Combination
100.0 % 98.4704 % 97.1224 % 101.4713 % 101.9354 %

Deviation 1.5296 % 2.8776 % 1.4713 % 1.9354 %

AEP from the simulations compared to unfiltered production data for each sector at
Dudgeon are shown in Table 4.11. The results are based on the one-year sample
and are marked with red and green colors to distinguish between underproduction and
overproduction respectively. There are some variance between the production from the
methods at different sectors. Sectors 0, 1, 2 and 8 are estimating underproduction for all
of the methods, with a noticeable difference at sector 0. In addition sector 7, 9 and 10
stands out for time series where it estimates an underproduction. MLE also estimates an
underproduction at sector 7, while L-BFGS-B estimates an underproduction at sector 10
and 11 in addition to the sectors mentioned previously.

Table 4.11: AEP for each sector Dudgeon 2019-2020 with one-year data sample

Sector Time Series [%] Weibull (MLE) [%] Weibull (L-BFGS-B) [%] Weibull (Combination) [%]
0 18.9130 58.3388 56.7668 56.3573
1 4.4147 5.3305 0.9059 0.9059
2 5.4068 16.2664 5.5865 16.1479
3 5.3484 10.0699 39.4945 39.1951
4 1.7534 0.6160 18.9121 18.9121
5 14.1507 15.4208 25.7833 25.7833
6 1.2750 8.7685 15.7868 9.0346
7 2.9555 0.3714 4.6460 4.5237
8 1.9792 11.9929 8.7909 8.7909
9 0.0550 8.7947 10.2432 10.2432
10 14.2004 2.2792 7.7021 2.3518
11 7.1209 8.8714 2.8662 8.8714
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A comparison of the methods with regard to AEP has also been carried out for the 20-year
data sample. The results are presented in Table 4.12 and similar as for the one-year data,
the results are in percentage of the provided unfiltered production data from Equinor.

Table 4.12: AEP compared to unfiltered production data for 20-year data sample in
Dudgeon

Unfiltered Data Time Series Weibull MLE Weibull L-BFGS-B
100.0 % 101.4400 % 100.8367 % 103.2579 %

Deviation 1.4400 % 0.8367 % 3.2579 %

Table 4.13 shows the compared AEP between simulation and unfiltered production data
for each sector for a 20-year data sample from Dudgeon. Numbers marked in red indicates
underproduction, while green indicates overproduction. In most cases the relation between
the production is the same, except sector 7 where the time series simulation is the only
method estimating underproduction.

Table 4.13: Comparison against AEP 20-year - Dudgeon

Sector Time Series [%] Weibull (MLE) [%] Weibull (L-BFGS-B) [%]
0 17.0040 % 54.7919 % 54.1409 %
1 40.1964 % 42.4946 % 44.6288 %
2 28.3856 % 29.2071 % 35.2916 %
3 10.0437 % 13.9688 % 19.6720 %
4 15.8054 % 11.6372 % 7.9294 %
5 12.0409 % 12.3262 % 17.7659 %
6 19.0600 % 22.5825 % 26.3908 %
7 2.5651 % 0.8943 % 3.7233 %
8 8.6691 % 9.4313 % 7.5387 %
9 7.6747 % 7.5178 % 9.1868 %
10 5.0733 % 1.4803 % 1.1286 %
11 1.7200 % 5.1663 % 3.4144 %
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5 Discussion

In this section all the estimations, simulations and reflections regarding the Weibull
regression methods and AEP results of Anholt and Dudgeon, will be discussed.

5.1 Wind data analysis

A good representation of the wind speed distribution is important in order to achieve
accurate simulation result. This section will analyze the overall wind speed representation
from the Weibull regression, and determine property differences between MLE and L-
BFGS-B method.

From the full sample results for the three different cases at Dudgeon, presented in Figure
4.1 and Figure 4.2 the MLE and L-BFGS-B methods provides slightly different results.
The one-year distribution from both simulations visually indicates a higher shape factor
in the Weibull function compared to the functions from the 10- and 20-year samples. A
reason for this could be that the data 2019-2020 period consists of fewer occurrences with
wind speeds above 20 m/s. Figure 4.2 also implies that the L-BFGS-B method favors
observations closer to the mode wind speed, rather than outliers. This can be visually
determined by the function’s steep slope approaching higher wind speeds and high peak
around the 9 m/s point. Which is also indicated by the low scale and high shape factor
from Table 4.2. This does not seem to be a factor for the 10- and 20-year sample, seeing
that a larger data sample naturally evens out the mode wind speed. In comparison, MLE

On the other side, as displayed in Table 3.1 and Table 3.2, the wind data is measured at
100 m and 80 m above sea level respectively for Dudgeon and Anholt. This difference in
height might provide wind measurements that should not be compared against each other.
Nevertheless, these measurements are the closest to the actual hub height at each site,
presented in Table 3.3 and Table 3.4, and was therefore chosen.

5.1.1 Wind sectors

The purpose of evaluating the Weibull regression for each wind direction sector is an effort
to validate PyWake’s implication of the Bastankhah Porté-Agel model. Since PyWake’s
simulation model seeks to recreate wind conditions from a sector division, the wind
distribution in each sector should be a good representation from the measured wind speeds.

The statistical analysis in Table 4.3 and Table 4.4 of the Dudgeon scenarios indicates that
a 10- and 20-year data sample improves the general curve fitting for most sectors, based
on the KS-stat. Whereas the p-value indicates a good similarity between the histogram
and the Weibull regression for the one-year data samples. When examining the statistical
values for the sectors in Anholt, the results in Table 4.6 and Table 4.8 indicates a poor fit
from both methods in regards to KS-stat and p-value for all sectors.

The improvement of the KS-stat value for the 10- and 20-year Dudgeon scenarios, shows
reasons to mainly correlate with sample size, especially when considering the similarities
in the deviation of wind speed and direction from the wind rose diagrams shown in Figure
3.6. On the other hand, the p-values indicates that there is not enough variance between
the regression curve and the histogram to reject the null hypothesis for most sectors with
smaller data samples.
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The correlation between a low p-value from a large sample size, harmonizes well with the
results from the Anholt case. Even though the time span for Anholt is only one year, the
ten minute intervals provides enough quantitative basis to reject the null-hypothesis for
all sectors. On the other hand, it seems like the variation in wind speeds from a one-year
sample is not sufficient enough to form a smooth wind speed deviation matching that of a
typical Weibull regression, hence explaining the poor KS-stat values.

From this, it could be interpreted that it is not so much the sample size that accumulates
a good representation of the wind speed deviation, but rather the time span of the
observations. It appears more reasonable to prioritize a representative dispersion of wind
speeds indicated by a low KS-stat value and large time span sample, before valuing a good
p-value. Additionally it seems appropriate to use three hour intervals for large time span
samples, as it represent the wind speed distribution well, and reduces the computational
load compared to ten minute intervals. The sites data samples size is therefore variable,
which also is the case for the sites wind direction, which can be seen from the wind roses.

From the two sites one-year wind rose in Section 3.5.2, the majority of the wind is coming
from southwest in both cases. Nevertheless the variance in wind direction is greater at
Anholt than for Dudgeon. At Anholt the wind occurs slightly more directly from west
(270°), and also a comprehensive part from southwest (180° - 250°). Even though the
shortest distance to shore for Anholt is towards southwest, and directly towards west gives
a greater distance to shore, there is no extreme difference in wind measurements. But it
is worth mentioning that the amount of wind speeds greater than 15 m/s happens more
often directly from west and south at Anholt. Based on this, it is possible that Anholt
experience lower wind speeds from the directions closer to shore. This concur well with
mentioned theory in Section 2.3, as it in general are lower wind speeds closer to shore.
Nevertheless, the wind characteristics vary with local conditions.

When looking at the wind rose for Dudgeon, the wind is more concentrated against
southwest (225°). This direction is also where the highest wind speeds for Dudgeon are
experienced. From Figure 4.5 and Figure 4.6 the Weibull at Dudgeon is skewed to the
right both for MLE and L-BFGS-B methods. The results are not enough evidence to
make a conclusion whether the distance from shore have a big impact on the wind data
and production, but it seems to be several occurrences of higher wind speeds at Dudgeon
compared to Anholt, which may result in a higher energy production at this site. Though
it is difficult to state if the distance from shore have a big affection on the results in this
case.

5.2 AEP analysis

All the analysis in this section is refereed to the Dudgeon site and based on the comparison
between PyWake simulations and the acquired production data from Equinor. The result
section indicates that the basis for validating the use of Weibull pdf’s to approximate the
wind speed dispersion is different for the total AEP and the AEP from each wind direction
sector.
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5.2.1 Total AEP

The AEP results in the report are used as a means of action in order to validate the use
of Weibull regression, as a representative wind speed dispersion approximation. From the
AEP comparisons in Table 4.11, it is notably the L-BFGS-B method that gives the most
accurate simulation result, when simulating with Weibull functions constructed from a
one-year data sample. Table 4.13 shows the results from the simulations where the curves
are constructed from a 20-year sample size. For this time span, the MLE method proves
to be the overall most accurate simulation method.

When considering the importance of sample size, the AEP results regarding MLE seems to
support the claim from the wind sector analysis in Section 5.1.1, that a low KS-stat value
should be valued above acceptable p-values for more precise simulations. Nevertheless
it is an interesting mention that the simulations from the one-year sample, deviate with
almost 2.9 % for MLE, given that only two sectors are rejected from the null hypothesis.
According to theory, a p-value over 0.05 should indicate a degree of similarity between two
samples, and hence reason to believe that the wind speed distribution is well represented,
even though it is not the case of MLE. Interestingly, L-BFGS-B deviates with 3.26 % for
the 20-year data sample, and is the least accurate result from all scenarios, whereas MLE
only deviates with 0.8367 %. Unlike MLE, L-BFGS-B seems to lean in the favor of a high
p-value above low KS-stat, being that the method performed the best for a smaller sample
size with a deviation of 1.47 %. The effort to combine the two methods for the one-year
data resulted in an AEP deviation of 1.94 %. After the considerations just mentioned, it is
difficult to conclude any optimal combination from the two methods as a definite best fit.
Both methods shows characteristics beneficial for different scenarios. Another simulation
with a combination of curves selected by the lowest KS-stat value would give a better
insight to the theory.

The use of Weibull regression to approximate the total AEP appears reasonable, especially
for the MLE method with a 20-year time period. It is worth mentioning that the total
deviation of 0.8367 % in AEP, is an substantial amount of energy considering Dudgeon’s
installed capacity of 402 MW, but for this report, it is the best performing result. Notably,
the results indicate that it is more appropriate to utilize the L-BFGS-B method instead of
MLE for smaller sample sizes. In order to draw further conclusions in regard to good AEP
estimations, more production data seems necessary.

5.2.2 AEP in each sector

Further analysis showed that even though the total AEP from the simulation result
correlated well with the actual production data, the same can not be determined for
each wind direction sector individually. PyWake’s Bastankhah Porté-Agel model uses
a normalized probability of occurrence vector from the wind direction KDE regression,
in order to simulate the ratio of production dedicated to each sector. This results in the
sector AEP being a product of both the KDE regression and Weibull, essentially adding
another degree of uncertainty.

Table 3.7, show that the probability of occurrence is increasing with every sector
incremental, and peaks at sector 8, before decreasing. The unfiltered production also
follows this trend with the exception of sector 0. From Table 4.11 and 4.13 it is clear that
the AEP in sector 0 is greatly underestimated by all simulations for both sample size cases.
The tables show altercations between over-and underestimating for both methods.
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In Table 3.8 the wind direction sample size from the 2019-2020 data seems to correlate
reasonably well with the production distribution from Equinor. By analyzing the KDE
regression, it is clear that the method cuts out the peaks for sector 0 in favor of a
smoother curve fitting. Hence underestimating the actual probability of instances with
wind directions between 345° and 15°. Another point is that all the sector AEP results for
the 20-year data sample is compared to the one-year production data, and as seen from the
20-year sample distribution in Table 3.8, the wind direction conditions from 2019-2020 does
not correlate with the mean distribution over a longer time period. Considering the poor
estimation for sector 0 from the KDE, it makes sense that it effects the AEP accuracy
for the other sectors simulation. From the one-year production comparison, Table 4.11
shows that the two Weibull methods have clear production deviations for some of the
sectors. The 20-year data sample from Table 4.13 shows more similarities between the two
methods. Both methods show overestimation and underestimations for the same sectors,
where L-BFGS-B generally overestimates more than MLE, and MLE underestimates more
than L-BFGS-B. It is difficult to draw any conclusions regarding Weibull fits from the
KS-stat or p-values due to the inaccuracy from the KDE.

The accuracy from the sector simulations seems to mostly rely on the twelve wind direction
probability parameters from the KDE. The previous assumption of MLE being the most
valid method for large data samples is not contradicted from the sector analysis, but the
analysis suffers from a misrepresentation of the wind sector divisions. The application of
a KDE distribution leads to more uncertainties, and a normalized distribution from the
sample occurrences seem more appropriate.

5.3 Time Series Evaluation

The time series simulation model in PyWake computes the entire time series vector from
the wind direction and wind speed parameters based on the users input data. In this case
the 2019-2020 and 2002-2022 wind data sample from Nora10. Being that the simulation
does not use any approximation tools it should be expected to be a good representation for
the AEP. The results from Section 4.4 show that the simulations perform second best in
regard to deviation, for both sample size cases. The 20-year case has the best result, with
a deviation of 1.44 %. From the AEP data for each sector, the time series simulation can
be seen to follow the same trend as MLE and L-BFGS-B in regards to alternating between
over and underestimations.

The AEP in the 20-year data sample case indicates a poor representation for most wind
sectors. This correlates well with the difference in the spread of datapoints from the
production data and the Nora10 data seen from Table 3.8. From the one-year data sample,
the sector AEP seems to be represented well with the exception of sector 0, 5 and 10
with a deviation of 18.9 %, 14.2 % and 14.2 % respectively. Sector 0 and 10 are also
poorly represented by the Weibull methods, but can be partially explained from the KDE
regression. The results from the time series sectors indicates that the deviation in AEP is
affected by other factors, being that the simulation is independent from the KDE.

This report investigated the time series simulation with the expectation of it being the
most accurate simulation model with the downside of a time demanding computational
time. As an additional mention in regards to simulation time, none of the simulations
suffered from relatively long processing times from PyWake’s script. As to the relevance of
computational time, the topic may seem more relevant for more advanced simulation tools,
but not PyWake. Nevertheless, based on the results from the report, simulations with the
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Weibull model should be prioritized. It is difficult to conclude with a definite reason for
the inaccuracy of the time series simulation, and is something that should be examined
further.

5.4 Further work

As a general mention to the conclusions drawn from the observations in this report , it must
be pointed out that several key factors had to be excluded from the study. As mentioned in
Section 3.5, small adjustments in the wake expansion factor k∗ can have a large impact on
the simulation result. Nevertheless, the wake expansion factor constant from PyWake, did
indeed provide a relatively close approximation to the actual AEP, and gave a good basis
for evaluating the Bastankhah Porté-Agel Weibull simulation. That being said, a more
accurate approach to determine the factor k∗, would improve the quality of the results.

The turbulence intensity is also not considered for any of the simulation, and was a
simplification in order to limit the extent of the study. The PyWake module contain several
models that could include the TI parameter, but seeing as the k∗ factor is a product of
TI, it was deemed sufficient to choose a model that exclude the parameter, in favor of a
constant wake expansion factor. Regardless, the change in wind turbulence is an important
parameter needed in order to better simulate the actual physiological behavior of wind. It
is important to emphasize that further studies should strive to address the influence from
TI.

As discussed, it would be interesting to investigate if a combination of the methods MLE
and L-BFGS-B, with focus on the sectors with lowest KS-stat values instead of p-values
could lead to more accurate estimation regarding AEP. Also as mentioned in Section 2.5.1,
there are several other viable Weibull regression methods that could be interesting to
investigate. Especially in regard to the Weibull curves for the twelve wind sectors, and
difference in sample size.

A further realization from the study, in regards to power production, is the relationship
between the wind turbine power curve and the Weibull regression of the wind speed
histogram, given that there is an non-linear correlation between them. As an example,
there are instance where the Weibull regression underestimates the occurrence of wind
speeds at 20 m/s in favor of a smoother curve in the area of lower wind speeds. This
balances the numerical values in the wind speed histogram, but does not give a correct
correlation to the actual power production, given that the production from a wind speed of
13 m/s is exponentially higher than 5 m/s. Attempting to implementing a Weibull fit for
a wind speed histogram as a function of power density, would be an interesting approach
that could possibly lead to more accurate simulation results.

To further validate the Weibull distribution as a reliable estimation for AEP, future
research should be done with more cases with other wind farm locations. It is possible for
the distributions in other locations further offshore and closer to shore would give some
different results according to the Weibull distributions. It would also be beneficial to look
at locations with similar wind turbine types.
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6 CONCLUSION

6 Conclusion

The goal of this thesis was to investigate whether Weibull estimations is a reasonable
approach for assessing an offshore wind farm’s wind speed conditions and AEP. The
Weibull estimation for wind speed seems to make a good representation to the original
wind data in both cases. A key finding was that the MLE method proved to be the most
accurate optimization algorithm for the 20-year data samples, and L-BFGS-B for the one-
year sample with deviations of 0.8376 % and 1.47 % respectively. The difference in how well
the MLE and L-BFGS-B method performed, indicates the importance of the sample size
for simulating a precise prognosis of AEP. Accurate and long term wind conditions data
are valuable for improving the energy production estimations for the offshore industry.

Even though the overall production prediction were reliable, the AEP from each individual
wind sector did not have a clear correspondence to the 2019-2020 production data. Analysis
indicated that the representation of wind direction from the KDE regression was a partial
reason for the imprecise deviation in AEP. Nevertheless, from the research it is valid to
assume that sectors with more occurring wind speed should prioritize MLE method, and
the same can be said for the L-BFGS-B method for the less occurring sectors.

Since offshore wind farms are intended to remain operational for several years. Weibull
application should be based on long time span data samples, as concluded from the 20
year sample case in this report. For further development and optimization of offshore wind
farms, a closer look at different variations of combination of methods will be beneficial.
By doing so, the methods strength could possibly create a hybrid model more accurate
regarding AEP estimation. This can be done for multiple methods in order to find the
most optimal alternative.
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