
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Ba
ch

el
or

’s
th

es
is

Arnaud Duhamel
Ghais Dahdouh
Sergei Johansen

User Collaboration in Specialized
Softwares

Bachelor’s thesis in Programming
Supervisor: Frode Haug
May 2024

Arnaud Duhamel
Ghais Dahdouh
Sergei Johansen

User Collaboration in Specialized
Softwares

Bachelor’s thesis in Programming
Supervisor: Frode Haug
May 2024

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Summary

Norkart AS is a company providing, among other things, products aimed at digitalizing the various pro-
cesses of municipalities. Their software Komtek has this purpose. A part of the Komtek software is
dedicated to handling jobs, where case handlers can go in a job, fill the relevant job fields, and submit
the job. At the time of this thesis, this part of the Komtek software was not adapted to multiple case
handlers working in the same job. Case handlers were not aware that other case handlers were working
on the same job, the work of each case handler were not synchronized among each other, and only the
last submitted version was saved. This created inefficiencies where the same work would needlessly be
done multiple times and other problems.

Multiple features were developed to inform case handlers if many of them are working on the same job,
to ensure that every case handler use the same version of the job, to only allow one case handler at a
time to edit a job and finally, that if many case handlers edit the job at the same time, that the changes
are sent to every case handlers in real-time and that version conflicts are also solved in real-time.

Sammendrag

Norkart AS er et selskap som tilbyr, blant annet, produkter som tar sikte på å digitalisere ulike prosesser
i kommunene. Deres programvare Komtek har dette formålet. En del av Komtek-programvaren er ded-
ikert til å håndtere jobb, der saksbehandlere kan gå inn i en jobb, fylle ut relevante jobbfelter og sende inn
jobben. På tidspunktet for denne avhandlingen var ikke denne delen av Komtek-programvaren tilpas-
set for flere saksbehandlere som jobber med samme jobb. Saksbehandlerne var ikke klar over at an-
dre saksbehandlere jobbet med samme jobb, arbeidet til hver saksbehandler var ikke synkronisert med
hverandre, og bare den siste innsendte versjonen ville bli lagret. Dette skapte ineffektivitet der samme
arbeid unødvendig ville bli gjort flere ganger sammen med andre problemer.

Flere funksjonaliteter ble utviklet for å informere saksbehandlere hvis mange av dem jobber med samme
jobb, for å sikre at hver saksbehandler bruker samme versjon av jobben, for å bare tillate én saksbehand-
ler om gangen å redigere en jobb, og til slutt, hvis mange saksbehandlere redigerer jobben samtidig, at
endringene sendes til hver saksbehandler i sanntid, og at versjonskonflikter også blir løst i sanntid.

i

Preface

We would like to thank our contact person at Norkart, Vebjørn Fonstad
Leiros, who met with us every single week for the duration of the project.

His guidance and feedback was invaluable. We would also like to thank our
supervisor, Frode Haug, for his availability, his diligence, his numerous

feedbacks in the writing of this thesis and helpfulness for the whole
duration of the thesis. Lastly, we woud like to thank Norkart for having

invested time and resources in this thesis.

ii

Contents

List of Figures vi

1 Introduction 1

1.1 Project . 1

1.1.1 Fields . 1

1.1.2 Project limitation . 2

1.1.3 Project description . 2

1.2 Target groups and goals . 2

1.2.1 Target groups . 2

1.2.2 Goals . 2

1.3 Background . 3

1.4 Responsibilities and roles . 3

1.5 Thesis structure . 4

2 Theory 5

2.1 Problem description . 5

2.2 Objectives . 7

3 Requirements 8

3.1 User requirements . 8

3.2 System requirements . 11

4 Design 12

4.1 Inspiration sources . 12

4.2 Technical design . 32

4.3 Graphical user interface (GUI) . 35

4.3.1 Unique GUI Components . 35

4.3.2 Add New Job Dialog . 35

4.3.3 Warning Dialog . 36

4.3.4 Viewer Card . 36

4.3.5 Job Completion Notification . 37

iii

5 Implementation 38

5.1 The 3-tier architecture . 38

5.1.1 Presentation tier . 38

5.1.2 Business logic . 38

5.1.3 Data tier . 39

5.2 Frontend . 39

5.3 Backend . 40

5.4 Domain . 43

5.4.1 Jobs . 43

5.4.2 Users and authorization . 46

5.4.3 Notification system . 46

6 Development process 49

6.1 First team meeting and philosophy . 49

6.2 Meetings . 49

6.3 Collaboration framework . 50

6.4 Issue tracking . 51

6.5 Version control . 51

6.6 Project milestones . 51

6.7 Meeting notes . 53

7 Testing 54

7.1 Requirements . 54

7.2 Design . 55

7.3 Use in CI/CD pipeline . 56

7.4 Test processes . 57

7.5 Implementation . 57

7.6 User Testing . 62

7.7 Refactoring . 62

8 Deployment 63

8.1 Design . 64

8.2 Backend implementation . 65

8.3 Frontend implementation . 66

8.4 Choice of tools . 68

9 Conclusion 69

9.1 Results . 69

9.2 Reasons for our choices of technologies . 70

iv

9.3 Use of artificial intelligence . 71

9.4 Sustainable development assessment . 72

9.5 Critical review . 72

9.6 New projects and further work . 73

9.7 Asessment of the group work . 73

9.8 Project-based work . 74

9.9 Closing statement . 74

Bibliography 75

A Terms and Acronyms 80

B Gantt Diagram / Project Schedule 83

C Open backend issues at the end of the project 85

D Closed backend issues at the end of the project 87

E Open frontend issues at the end of the project 93

F Closed frontend issues at the end of the project 95

G Commit history of the backend repository 99

H Commit history of the frontend repository 111

I Project plan 123

J Project contract 147

K Meeting notes 155

L Feedback and advice from ChatGPT on our thesis report 237

M Hours logg 242

v

List of Figures

3.1 Sequence diagram showcasing where the conflict happens 9

3.2 Use case of multiple users writing to a single job resource. 10

3.3 Job editing without a user list (to the left) and with user list (to the right) 10

4.1 Job list similar to Komtek’s job list . 14

4.2 Image of Google docs showing collaboration features . 15

4.3 Image of Google docs showing a character selection made by another user 15

4.4 Collaboration features of Microsoft Word . 16

4.5 Collaboration features of Collabora Online Development Edition 16

4.6 Cursor and selection indicators of Collabora Online Development Edition 17

4.7 Avatar of connected users to a document, mouse tracking and online meeting features of
Figma Design . 17

4.8 Observing the screen of another user in Figma Design . 17

4.9 Document version history feature of Figma Design . 18

4.10 Making comments in Figma Design . 18

4.11 Sharing documents in Figma Design . 19

4.12 User avatars and element highlighting in JotForm . 19

4.13 Diagram showing the outcome of text collaboration without version conflict solving 23

4.14 Example of a tree representation of a string . 25

4.15 Example of a node path determining its id . 25

4.16 Example of an insertion operation for the LSEQ algorithm . 26

4.17 Example of an inserted character in the tree model of the LSEQ algorithm 26

4.18 Example of a concurrent modification on different indexes with the LSEQ algorithm 27

4.19 Examples of operation broadcasts with the LSEQ algorithm 27

4.20 Outcome of a concurrent insertion at the same index of a string with the LSEQ algorithm . 28

4.21 Six client, one server synchronization network. 30

4.22 A graph made according to the Myers’ algorithm . 31

4.23 Graph operations mapped to string operations for the two most efficient solutions when
going from string ‘CBABA’ to ‘ACABB’ . 32

4.24 Use case displaying the role of the case handler in the system 32

vi

4.25 Domain model . 33

4.26 Data flow of a job update request . 33

4.27 High level architecture overview . 34

4.28 The Add New Job dialog for Norkart is to provide the option to create new jobs directly
through the GUI in a much faster way; hence, a great number of forms available directly to
put in data will result in better interactiveness. 35

4.29 Alert dialog warning the user that the job is currently active and being worked on by a
different user, that is, James Burton. This helps create accountability for collaboration on
the platform. 36

4.30 Viewer card displaying now active users for the job. It thus fosters transparency. Users can
know who is viewing and who is editing the job. 36

4.31 Notification dialogue popping up stating that James Burton completed the task. This en-
sures that all current viewers of the job are updated on the completion of a task. 37

5.1 Illustration of the three-tier architecture . 38

5.2 Program.cs - dependency injection container in action . 41

5.3 IWebSocketService.cs - Websocket service interface. 41

5.4 IWebSocketRepository.cs - Websocket repository interface. 42

5.5 Data flow through the layers of abstractions in the backend 42

5.6 Program.cs - interfaces allow for safer class substitution . 42

5.7 JobController.cs - delete a job by id action. Showcasing the controller and attributes 43

5.8 Backend: WebSocketController.cs - job field is updated. Simplified for an easier under-
standing . 44

5.9 Backend - Process of closing a Websocket connection. Simplified 44

5.10 Backend - Inserting the Websocket service class in the jobs controller. 45

5.11 Backend - Notifying a job completion through Websocket. 45

5.12 Triggering a Websocket broadcast through an HTTP request 45

5.13 UsersController.cs - user endpoint actions . 46

5.14 Server acting as a relay through the use of the Websocket protocol 46

5.15 Backend: WebSocketController.cs - expect userConnected to process. Simplified for an
easier perception . 47

5.16 Backend: WebSocketController.cs - message handling regarding editor permissions 48

7.1 2nd backend test architecture design . 55

7.2 Frontend test architecture design . 56

7.3 Test explorer of Visual Studio . 58

7.4 Test explorer of Visual Studio with failed tests . 58

7.5 Inline test interface of Visual Studio . 59

8.1 Accumulated time of a repetitive task over 5 years . 63

8.2 Backend deployment diagram . 65

vii

8.3 Frontend deployment diagram . 65

8.4 Render new project menu . 66

8.5 First version of the CI/CD pipeline file of the frontend . 67

8.6 Second version of the CI/CD pipeline file of the frontend . 67

8.7 First version of the CI/CD pipeline file of the backend . 68

8.8 Second version of the CI/CD pipeline file of the backend . 68

viii

Chapter 1

Introduction

Software like Teams, Google docs and GitHub have made collaboration among teams much easier than
it used to be.

With those tools, many users can modify in real-time the same document. More precisely, each user’s
version of the document is synchronized with other versions such that all users work with identical
documents. This does not remove the need to handle potential version conflicts among users, but they
are handled immediately, in real-time. With such tools, users can avoid unwillingly overriding each
other’s work.

1.1 Project

1.1.1 Fields

Collaboration features

These tools draw, among others, from the following two fields:

Collaboration features provide information in real-time to users about other users. This allows users to
collaborate with each other effectively and above all, to avoid unwillingly overriding each other’s work.
For example, notifications could be used, warnings, having document statuses being updated in real-
time and knowing when other users are inside a document are all collaboration features.

This is wider than collaborative editing.

Collaborative editing is a feature that allows multiple users to edit the same document in real-time. It is
one collaboration feature among many to address the issue of having multiple users working together
and potentially overriding each other’s work.

conflict solving

In the case where multiple users edit the same document and end up with two different versions, a way
to decide what will be the final version is necessary.

Git is the best example of that. With git, the user can decide what will be the final version for each part
of a file with two different versions. The user can choose the current version, the incoming version, or a
whole new version.

This is something that can be implemented with or without collaboration features. Git does not provide
collaboration features.

1

1.1.2 Project limitation

Our project focused on implementing features related to the fields in the job manager of one of Norkart’s
products called Komtek.

We did not work in Norkart’s systems directly. We created our own web application that recreated the
features that were relevant for the project. That way, this thesis could be public and it reduced complex-
ity.

The web application that we developed also did not reproduce Norkart’s system in all its complexities
because it would have required more work to implement the collaboration features. We prioritized im-
plementing more features with less complexity. Because of that, some features developed would have to
be adapted to be implemented in Norkart’s systems.

1.1.3 Project description

Our project was divided into multiple incremental features, ranging from the easiest to the hardest. They
can be divided in 3 main categories:

• Features to inform users in real-time that multiple users are working on the same job

• Features to prevent users from editing the same job at the same time

• Features to allow users to edit the same job at the same time, including proper version conflict
solving.

1.2 Target groups and goals

1.2.1 Target groups

For the thesis

This thesis is for those interested in the implementation of real-time exchange of data between multiple
users in a web application, and the implementation of version conflict resolution in the case of the
collaborative editing of text.

For the project

The project is for those interested in the implementation of real-time exchange of data between multiple
users in a job manager web application with the Websocket protocol, and the implementation of version
conflict resolution in the case of the collaborative editing of text.

1.2.2 Goals

The goal of the thesis was to find, and implement in a project, ways for users to know in real-time when
many users are in the same job, to prevent users from needlessly completing a job and to synchronize
users’ versions in real-time with appropriate version conflict solving, also in real-time. The last feature
was for the case where collaborative editing was implemented.

Deliverables to Norkart

What Norkart wished to obtain at the end of this project was a prototype that replicates the job handling
processes of the Komtek systems and that includes various collaboration and conflict solving features,
all the way from simple checks to collaborative editing with version conflict solving in real-time.

They also wished, to the extent feasible, for our prototype to be developed with a generic architecture,
so that the features we developed could easily be implemented in other products.

2

Benefits to Norkart

Based on this prototype, Norkart wishes to integrate similar features in the job handler of Komtek and
potentially other systems.

Learning objectives

The learning objectives were the following:

• Learn about web technologies used in the Norwegian industry(React, Dotnet)

• Learn about real-time technologies(WebSocket, Redis)

• Learn about API and frontend testing

• Learn about continuous deployment and integration

• Learn about developing generic architecture designs

• Further develop teamwork skills

• Learn more about writing documentation

• Learn to program and to develop with a sustainable development perspective

These were wider then learning about collaboration features because a job handler prototype had to be
developed, and this required all of the knowledge mentioned above.

1.3 Background

Through studies at NTNU, the team acquired a lot of usefull knowledge that were needed for this thesis.

The backend part of the project being in Dotnet 8, the basic programming course was useful because
it taught the basics of algorithm structure and the programming language C. The object-oriented pro-
gramming course was also useful because it taught the object-oriented programming paradigm and
taught the programming language C++. Although Dotnet is used with C#, a solid basis in C and C++
is helpful to learn both Dotnet and C#. We learned about the notion of programming patterns in the
advanced programming course. We learned about network protocols such as HTTP and HTTPS in the
cybersecurity and computer networks course. we learned about the characteristic of restful APIs in the
cloud technologies course. We also learned how to implement unit tests and to perform Git actions in
the cloud technologies course. The group also learned about HTML, CSS and Javascript in the web tech-
nologies course. We also learned about documentation both in the software development course and in
the cloud technologies course.

What was missing was to learn about the Dotnet framework, about Dotnet web APIs, to learn about the
React framework, to learn how to join a Dotnet API with a React frontend, to learn to implement a test
suite in both a Dotnet API and a React frontend. Git actions needed to be studied more in depth to be
able to have a proper continuous integration and continuous deployment pipeline. We also had to learn
how to use Git actions to run tests. The Websocket protocol also needed to be learned, as well as how to
use it in a web application. Learning all of the above was part of the goals of the thesis.

1.4 Responsibilities and roles

• Arnaud was the group leader and also worked on the backend part of the project.

• Sergei was responsible for the backend part of the project

• Ghais was responsible for the frontend part of the project

3

• Vebjørn Fonstad Leiros was our contact person at Norkart. He was directing our project and
providing us feedback.

• Frode Haug was our thesis supervisor.

1.5 Thesis structure

The introduction above presented the thesis, its context, its logistics and how its project was managed.

Here are the other sections of this thesis:

Theory: this section explores the main issue that forms the basis of this thesis.

Requirements: this section details the requirements of the project.

Design: this section describes the design of the project.

Implementation: this section describes how the project was implemented.

Development process: this section describes the development process that was followed during the
project.

Testing: this section describes the various tests that were implemented in the project.

Deployment: this sections describes how our solution was deployed.

Conclusion: the conclusion includes a discussion of the results achieved in the project in relations to
the different objectives outlined in the introduction, a critic of the thesis, possibilities for future thesis,
an evaluation of the group’s work and a closing statement.

4

Chapter 2

Theory

This chapter gives a thorough presentation of the the problem that lead to this thesis with potential
solutions to address it. It also presents the objectives of the thesis in light of that problem.

2.1 Problem description

The typical use-case that the thesis aimed to address is the following:

Two case handlers see the same unassigned job on the job list. Both of them click on the job. They
do not know that someone has been assigned to the job unless they refresh their page after the job
has been assigned. Because there is no collaboration feature, they do not know that there are two case
handlers working on the same job. Both complete the job. The first case handler submits the completed
job. After, the second case handler also submits the completed job. Completing a job that is already
completed leads to various problems. Among other things, it replaces the previously completed job.

This is undesirable for multiple reasons. In the normal workflow of the Komtek’s job handler, a case
handler normally does not enter a job that is already assigned to another case handler. A case hand-
ler is not supposed to work on a job in which another case handler is already working. However, in a
perspective of flexibility, he has the ability to do so. For example, if the assigned case handler cannot
complete the job himself for any reason, another case handler should be able to easily go into the job
and complete it.

Currently, when a case handler opens a new job, and therefore gets assigned to it, other case handlers
do not receive that information. The data of the job is updated in the server, but this is not sent to other
case handlers. Other case handlers will receive the updated information only when they fetch the list of
jobs from the server. This can be done, for example, by refreshing the job list page.

Case handlers are not expected to refresh the job list page before they open a job. And even there, a case
handler could theoretically click on a new job less then one second after another case handler.

This is an edge case. However, when multiplied with hundreds of users in hundreds of municipalities,
this edge case inevitably happens more frequently. That makes it worth addressing this issue in this
thesis.

The most effective solution would be that when a case handler is assigned to a new job, this information
makes its way to other users right away. Latency here is determinant. The fastest other users are made
aware that a job is now assigned, the less the risk that they open the job thinking it is unassigned.

As a continuation of the typical use-case described above, when a case handler opens a job, he is now
assigned to it. If the same job appears unassigned to another case handler and he clicks on it, he will now
be assigned as case handler. His assignation will override the assignation of the previous case handler.
The case handler that was assigned to the job first would not know that he is no longer assigned unless
he refreshes the job page.

5

Insuring that a job can only be assigned once would already be beneficial, because the second user
opening the job would see that he is not the assigned case handler even if the job was unassigned when
he opened it. This would indirectly alert him that he opened an already assigned job.

However, in the Komtek job handler, who is assigned to a job does not have any impact. As mentioned
above, even after a job is assigned, any case handler can enter the job and complete it. It is like that
because of a flexibility consideration.

What would be more valuable is to know if a case handler is already working inside a job when another
case handler enters the job. Because the problem itself comes from the fact that two or more case hand-
lers complete the same job. And this requires multiple case handlers being in the same job before any
one of them completes it. Otherwise, after the job is completed, it will no longer be in the job list. But
if a case handler entered the job before another case handler completed it, the case handler remaining
inside what is now a completed job will still have the opportunity to complete it.

A potential solution could be that, when a case handler enters a job, he is made aware if another case
handler is already inside the job. The risk of multiple case handlers completing the same job would then
be clear and the case handler entering the job could leave.

The case handler that is already inside the job would gain to also be made aware of the other case hand-
ler entering the job. That way, every case handler involved would have an opportunity to correct the
situation. This is where the whole notion of collaboration comes in. Informing case handlers about
other case handlers’ actions gives them the opportunity to collaborate with each other. But this would
also require a way for the server to send information to case handlers without them asking for it, without
them taking any action. The more information is shared, the better. And the faster it is shared, the better.

The ability for multiple case handlers to coordinate to avoid working on the same job is a form of col-
laboration.

One more step ahead in the process, when two case handlers are in the same job, they both have the
ability to complete the job, even after one of them completes it.

Just like for job assignation, one way to address this is to only allow a job to be completed one time.
This could be done through a check when a job is completed. If a job is already completed, it cannot
be completed again. However, a check when the job is completed would come late in the process. For
example, the first case handler completes the job. At that moment, the other case handler completed
half of the job. He will then keep working to complete the job, only to be told later that the job is already
completed. This is time wasted.

What would be more desirable is for a case handler that is inside a job to be notified immediately when
another case handler completes the same job. This would avoid unnecessary work.

In fact, currently, each case handler inside a job works on their own version of the job. The first com-
pleted version becomes the ‘final’ version. That in and of itself is inefficient. If a case handler filled a
part of the job, another case handler entering the job should not have to refill that same part of the job,
especially given the fact that the other case handler could fill his version with something completely
different.

This is where collaboration to allow multiple case handlers to work on the same job becomes relevant.
By same job, it is rather meant the same version of a job. This requires sending the work made by a case
handler in a job to the server and then to other users in the same job, preferably in real-time. This would
remove the inefficiencies of multiple case handlers each filling the same part of a job as well as removing
the possibility of diverging versions. In this case, it becomes one version for everyone.

The notion of one common version for every case handler would however raise the question of allowing
them to edit the common version at the same time or not. Because in the case of one common version
for every case handler, if many can edit at the same time, there will come a time where the changes of
one case handler will conflict with the changes of another case handler.

On a technical standpoint, there is actually no such thing as a common version. Each case handler has
its own version of the job and each of their versions are synchronized in a way that the content is the
same for each version.

6

It is the synchronization aspect that becomes challenging if multiple case handlers can edit a job at the
same. If two changes interfere with each other, what should be the final result? If a case handler changes
a word, but another case handler removes it completely, should the final version be the modified word,
deleting the word or just the modifications the first case handler made? Those possible outcomes are
the conflict itself. Choosing a final result in a way that always lead to one version for every case handler
and in a way that preserves as much as possible the changes made by each case handler is difficult.

This difficulty can be avoided with locking mechanisms so that only one case handler at a time can edit
a job or a part of the job. But this would remove some flexibility to the process, especially if the case
handler with editing rights stays in the job without working on it.

It is possible to see that, from a relatively short process: opening a job out of a job list and completing it,
a lot of features can be implemented at various steps to handle the possibility of multiple case handlers
opening and working on the same job.

2.2 Objectives

Objectives from a user perspective

From a user perspective, the main objective is to implement various collaboration features that would
make it easier for case handlers to avoid working on the same job and, above all, that would prevent a
job from being completed more then one time.

The last objective would be to implement various collaboration features that would make it easier for
case handlers to work on the same job. Even though this is not the normal process, it is desirable to keep
the process as flexible as possible.

Although part of the second objective, a third objective would be to allow multiple case handlers to edit
a job at the same time, in a way that properly handle conflicting versions.

Objectives from a technical perspective

The most easily achievable objective would be to implement a check when a job is completed to avoid
it being completed more then one time. This is something that would require little effort and eliminate
what is the biggest problem in the process.

The next objective would be to come up with a way to send data about users to the server, to store that
user data in the server’s memory or a cache and have the server communicate that data to other users,
all of that in real-time.

The last objective would be to implement the ability for multiple case handlers to edit the same job. Two
approaches could be explored for that: locking all or part of the job or implementing version conflict
resolution.

7

Chapter 3

Requirements

This chapter discusses the requirements for our project.

The requirements elicitation for the upcoming functionality was continuously conducted through an
iterative analysis of the assignment description and multiple interactions with the client.

The requirements specification is divided in two main sections: user requirements and system require-
ments. They are described in natural language with the use of simple diagrams to facilitate additional
clarity. Some of the requirements contain rationale behind their specification.

3.1 User requirements

We described the problem that we wanted to solve in the theory chapter. Based on the description, we
derived user requirements for our application. The specification of user requirements is written in a
little detailed fashion.

Concurrent job collaboration

Concurrent job collaboration was a large requirement, that consisted of multiple parts that we decided
to describe in more detail.

Conflict solving

The primary objective of this project was to establish a collaborative platform for users to collectively
engage with a singular resource, specifically focusing on job-related tasks. This necessitated the imple-
mentation of robust conflict resolution mechanisms that maintain a seamless user experience.

As mentioned previously, multiple users collaborating on a resource could stumble on conflicts when
writing simultaneously. The diagram 3.1 illustrates the process behind collaboration of two case hand-
lers. There is nothing dangerous that happens when one user does writes at a time. The update is sent to
the collaboration system, validated and then sent further to the other user, updating their user interface.
When two users write simultaneously, which change to preserve?

Imagine the following: User A writes "banana", user B writes "apple", and user C writes "collaboration".
The writes are sent to the system that has to decide which version to send back. This is something that
we had to find out and implement in this project.

The use case diagram 3.2 shows a higher level modeling of the conflict involving more than two users.

8

Figure 3.1: Sequence diagram showcasing where the conflict happens

List of concurrent users

In order to address the problem where users do not know about each other being on the same page, we
decided on implementing a list of users. The list would provide the following functionality:

• Showing collaborators

• Being updated when a user enters or leaves

This requirement alone would make the user experience quite satisfactory for the case handlers. When
they would enter a job and see that someone is already on the page, they could immediately decide
whether to continue on the job, or go and work with another one. The diagrammatic representation of
the problem and a solution to the problem is shown on the diagram 3.3.

Notification system

In order to further enhance the user experience, we decided to have some form of notification system
in the application. The system would make sure that concurrent users are aware of what is going on
beyond editing a job. Users should be notified based on the following events:

• A user leaving the job page

• A user entering the job page

• A user submitting the job

9

Figure 3.2: Use case of multiple users writing to a single job resource.

Figure 3.3: Job editing without a user list (to the left) and with user list (to the right)

Web interface - Komtek replica

As our project aimed to develop a solution compatible with the Komtek system, it was imperative to cre-
ate a partial replica of Komtek comprising two key pages: one housing active and completed jobs, while
the other centers around a specific job. Because Komtek is a web based system, we should implement a
web based interface.

Accessibility

Norkart mentioned that the average case handler age is approximately 50 years old. Considering that,
significant emphasis had to be placed on designing a user interface that prioritizes ease of use and intu-
itive navigation.

API server

Norkart demanded from us including an API server in our project to facilitate seamless integration with
the existing Komtek system. This requirement stems from Komtek’s heavy reliance on backend API serv-
ers in its existing system.

10

Job creation

For testing purposes, we decided to include a job creation functionality to the interface, even though it
was not important for our client.

3.2 System requirements

Persistent storage

One of the requirements we identified was the integration of a persistent storage system. While options
such as a file system or in-memory storage were plausible in theory, we decided to opt for a database to
mimic real-world scenarios. This choice prioritizes data durability, consistency, and availability, essen-
tial for the reliability and functionality of our software. The selection of a specific database is flexible,
with both NoSQL and SQL databases being viable considerations.

Caching mechanism

Since the application involved frequent data changes while multiple users are interacting with a re-
source, the data had to be stored somewhere temporarily before going to the persistent storage. This is
because persistent storage that focuses on availability, durability and consistency is usually not designed
for very frequent writes. Caching of temporary changes should be implemented either in-memory or
with a service like Redis.

Security

Our software would potentially be deployed to a public cloud. We had to take security measures in order
to avoid the disclosure of our application to unwanted users.

Authorization and authentication with JWT

The software must implement a robust authorization mechanism to ensure secure access control to its
resources. The client explicitly wanted us to use the Json Web Token for authentication and authoriza-
tion.

Performance

The application pages should load within 3 seconds to ensure a positive user experience. Regarding con-
current editing of a job page, we should minimize the delay between one user typing and the appearance
of changes on other users’ client.

Stateful connection

Certain connection handling should take place in order to provide real-time communication between
concurrent users. There were multiple technologies to choose from, and the requirement was to re-
search and choose an appropriate solution for the task.

Browser compatibility

Our application should be able to run on all the major browsers supporting their older versions (Chrome,
Safari, Firefox, Edge and IE).

11

Chapter 4

Design

This chapter examines the design aspects of our project. It describes the sources from which we took
inspiration for both the technical and graphic user interface design of the application as well as the
designs that were ultimately implemented.

4.1 Inspiration sources

Section summary

This section outlines the core concepts, methods, technologies and algorithms from which we took in-
spiration to address the problem raised in this thesis.

It presents:

1. An overview of the collaboration features found today

2. The underlying user data on which those features are based

3. The protocols and methods with which this data is exchanged between multiple users

4. In the case of multiple users editing the same text, the architectures and algorithms with which
users’ version are synchronized among each other based on the changes made by each user

5. The algorithm used to extract the insert and delete operations out of the changes made by users
to their versions, something necessary for synchronization

Komtek’s current system architecture

Komtek is a web application. It’s an application that is used through a web browser with an internet
connection.

This contrasts with an on-premises application where the application is hosted and operated on the
user’s local network.

Komtek also has a server-client architecture where the whole application and its data is stored on servers
controlled by Norkart. Users access the application by making requests to that server. This is in contrast
to a peer to peer architecture where there is no central server and where every user’s computer is both a
server and a client.

Komtek’s rendering paradigm

When a request is made by a client to use Komtek, the application is rendered to the user under the
single page application paradigm. Under this paradigm, when the browser makes the first request to
access the application, no HTML is returned. The browser starts with an empty DOM. Then the entire

12

HTML content of the application is loaded at the root of the DOM by Javascript. Inserting a different
route in the navigation bar of the browser does not generate a request to the server. The route is instead
used by the application to decide what content is rendered. In this paradigm, the data needed by the
application is fetched in separate HTTP requests [41].

There are other rendering paradigms such as the static website where the application is a series of HTML
files stored in the server. When a user wants to navigate to a page, a new request is sent to the server and a
corresponding HTML file is returned to the browser. There is also the multi-page application paradigm.
In this paradigm, the web pages returned to the user are dynamic, but they are assembled in the server
with the use of the necessary data and HTML templates. Entering a different route in the navigation bar
creates a request to the server for the new page. There are many more rendering paradigms [41].

Technologies used for Komtek

For the HTML content of the application, React is used. In React, the different elements of an application
are divided into reusable modules called components [81]. The elements of a page are components. An
entire page is a component and, ultimately, the entire application is one big component. React was first
released in 2013 by Facebook [33].

For the required data, the application fetches them from the server through an API. An API is a ‘set of
rules or protocols that enables software applications to communicate with each other to exchange data,
features and functionality’[44].

In terms of technology, the API is written with the Dotnet development platform using C# as the pro-
gramming language.

Dotnet is presented as a ‘free, open source & cross-platform development platform’. Free because it costs
absolutely nothing to use it. Open source because its source code is publicly available and everyone can
contribute to it. Cross platform because it can be used with Windows, Mac and Linux. Lastly, it is a
development platform because it includes programming languages such as F# and C# and libraries [29].

C# is the object-oriented language of Dotnet [29] and it has features that makes it easier to use then C++
to develop web applications such as automatic memory management and integrated concurrency [108].

The API used for Komtek is a REST API. The REST standard was introduced by Roy Thomas Fielding in
2000 in his PhD thesis titled ‘Architectural Styles and the Design of Network-based Software Architec-
tures’ [36]. There are two aspects of a REST API that is relevant to mention for this thesis.

First, it is stateless. This means that the server does not store any information about its users [37]. For
Komtek, this means that the server does not know if a user is inside a particular job or not. One of the
consequences of statelessness is that a REST API works on a request basis. The server only performs
actions such as sending data to a user or storing data in a database after receiving a request from a user.
For Komtek, this means that a user will only know if a job has been completed by another user if he
refreshes the job list.

Second, it is uniform. This means that an identical request will always return the same response. For
Komtek, this means that clicking on the button to complete a job will send a request to the server to
store the completed job in the database, even if the job has already been completed by another user.
This allows case handlers to override each other’s work.

Background

It is the two characteristics mentioned above that are the source of the problem faced by Komtek’s users
that Norkart wanted to address with this thesis.

As part of the project description, it was mentioned that this problem had to be addressed in a way that
is adapted to Komtek’s processes.

In Komtek, processing a job begins with a job list such as this one:

13

Figure 4.1: Job list similar to Komtek’s job list

The job list is the root of the problem. Because it is where a user risks clicking on a job in which another
case handler is already working.

The problem could be solved by removing the use of a job list and have the software distribute jobs auto-
matically to case handlers after they complete a job. However, this would not be adapted to Komtek’s
processes. It was therefore discarded.

Based on that, the natural starting point for developing various real-time features would be the list page.
However, at the start of the project, we were notified that Norkart had implemented an automatic refresh
feature. We therefore did not work on the list page and instead focused our effort on the job page. And
since the project was directed towards collaborative editing, it was more relevant to focus our efforts on
the job page.

The other key aspect to which we had to adapt our solutions is that, in Komtek, collaborative editing
is not something desirable. The normal process is that a job is completed by only one case handler.
Collaborative editing would therefore be in place only to prevent inefficiencies and problems in the case
that multiple case handlers do end up working on the same job.

real-time collaboration features

A non-exhaustive inventory of softwares providing collaboration features to their users have been made.

Google Docs

Google Docs is a known and free collaborative text editor available to everyone with a Google account.
Its collaboration features include, among others, avatars being shown for every user currently inside
the document, collaborative editing, showing the cursor of every user inside the document with the
same color as the color surrounding the user’s avatar, seeing the name of the user when hovering over
his cursor, seeing the selection of characters made by other users, the possibility to focus on another
user’s cursor by clicking on his avatar, a version history, the possibility to leave comments in the text, a
possibility to share documents, a chat feature and even an online meeting feature.

14

Figure 4.2: Image of Google docs showing collaboration features

Figure 4.3: Image of Google docs showing a character selection made by another user

Microsoft Words

In it’s most recent version at the time of this thesis, Microsoft Word offered multiple collaboration fea-
tures. It includes, among others, avatars being shown for every user currently inside the document,
collaborative editing, showing the cursor of every user inside the document with the color being the
same as the color surrounding the user’s avatar, showing the avatar of a user next to his cursor when he
makes a change, seeing the name of the user when hovering over his cursor, the possibility to focus on
another user’s cursor by clicking on his avatar, a version history, the possibility to leave comments in the
text and a possibility to share documents.

15

Figure 4.4: Collaboration features of Microsoft Word

Source: [13]

It is also worth mentioning that, at the time of this thesis, the Microsoft Word editor is the editor used in
other softwares that are part of the Microsoft Office 365 software suite such as Teams and SharePoint.

Collabora Online

Collabora is a consultant company specialized in open source development [109]. One of the technolo-
gies it works with is the LibreOffice suite. LibreOffice is an open source document editing suite estab-
lished in 2010 that originated from the OpenOffice suite [47]. Collabora created the product Collabora
Online, which essentially took LibreOffice to the Cloud [72]. This product contains multiple collabora-
tion features. One version of that product is Collabora Online Development Edition [17].

The collaboration features of the latest version are avatars of users connected to the document along
with a color assigned to them, cursor indicators of the colors assigned to the users, selection indicators,
the name of the users next to the cursor when it makes an action and leaving comments:

Figure 4.5: Collaboration features of Collabora Online Development Edition

16

Figure 4.6: Cursor and selection indicators of Collabora Online Development Edition

Figma Design

Figma Design [38] is an application created by Figma [50] to design prototypes of user interfaces. It
contains multiple collaboration features:

Figure 4.7: Avatar of connected users to a document, mouse tracking and online meeting features of
Figma Design

Source: [59]

Figure 4.8: Observing the screen of another user in Figma Design

Source: [59]

17

Figure 4.9: Document version history feature of Figma Design

Source: [59]

Figure 4.10: Making comments in Figma Design

Source: [59]

18

Figure 4.11: Sharing documents in Figma Design

Source: [59]

Jotform

Jotform is a software company based in San Francisco. It offers, among other products, an online form
builder. The builder offers collaboration features. It shows avatars of users connected to the form and it
highlights the element on which the user is working with the color of its avatar along with showing the
avatar of the user in the top right corner of the element:

Figure 4.12: User avatars and element highlighting in JotForm

Source: [57]

User data used for collaboration features

Without being complete, this list of softwares offering collaboration features show thoroughly what data
can be used to track other users’ activity in an interface:

1. The users that are connected to a document

2. Their usernames

3. The position of their cursor

19

4. The position of their mouse

5. The changes they make to the text

6. The text they select

7. The buttons they click

8. In the case of a form, the element they select

Based on this data, an endless amount of different interfaces with collaboration features can be de-
veloped.

Discussion on the collaboration softwares explored

The team mainly used Google Docs and Microsoft Word through Teams, and one aspect that stood out
is that when a user connects to a document, users that are already inside the document will only see the
avatar of the incoming user appear on their interface, without any other kind of notification. Such that
sometimes we do not notice immediately when another user connects to the document.

Technologies and method used to implement collaboration features

As mentioned above, collaboration features are based on the data generated by the actions of the users.
In order for the features to be collaborative, this user data must make its way to other users. In the
context of a server-client architecture, this user data must make its way from a user to the server, and
from the server to other users. For those features to provide a real-time experience, there must be no
latency in the transmission of data.

We surveyed the following ways and technologies to achieve these two characteristics:

Short polling

Short polling involves automatic and repeated HTTP requests to fetch data from the server.

This solution was implemented by Norkart to keep the job list updated.

This solution has the advantage of being very easy to implement in the context of a rest API because it
is based on the same technology and methods: one time, self-contained get requests made through the
HTTP protocol. The connection lasts only for the duration of the request and all the needed information
is in the request itself.

In a React frontend, this can be very easily achieved with the revalidate on interval method [7] of the
SWR package [95].

This method is valuable in the case that frequent changes by multiple users are expected in an interface.
In the case of Norkart, for example, it is expected that case handlers will often make modifications to the
common job list as they open new jobs and complete them.

However, it becomes ineffective in cases where it is uncertain if multiple users will use the interface. For
example, if only one user is in the document and requests are made every 5 seconds to see if another
user entered the document, a lot of resource is wasted.

With this method, user data is sent to the server through an HTTP request. And the server is no longer
stateless because it now stores data about users. It has to store user data because in this method, the
server does not act as a relay.

Long polling

Long polling involves making an HTTP request to the server and keeping it open until the server sends
a response or until the request times out. The idea is not to have a connection that persists beyond
multiple requests. The idea is rather that a client makes a request and the server waits for the data before
returning a response. This is what keeps the connection open. When a response is either received by the
client or the request times out, the client immediately makes a new request to the server. This cycle is
repeated indefinitely. This allows the client to make HTTP requests that act as listeners [55].

20

Compared to short polling, this method reduces the amount of requests made to the server. However, it
still involves multiple requests.

In this method, the user also sends data to the server through HTTP requests and the server must store
that data because it does not act as a relay.

In the case of both short and long polling, the server cannot act as a relay because the connections
between the client and the server are not persistent.

Server-sent events

Server-sent events [104] is a way for a server to send information to a client through a persistent HTTP
connection.

The standard for this mechanism has been established in the HTML Living Standard, section 9.2: ‘Using
this API [server-sent events] consists of creating an EventSource object and registering an event listener.’
[3]. This EventSource object is created in the client. This is what establishes the connection. This persist-
ent connection can be established by using any version of the HTTP protocol. Connections with HTTP
1.1 and above are persistent by default, not with HTTP 1.0 [HTTP1.1_above_persistent]. With HTTP 1.0,
both the request and the response must set the connection header to ‘keep-alive’ [HTTP1.0_keep_alive].
Those connections are then stored by the server by storing the response objects. The data that needs to
be broadcasted is then sent to the clients through those response objects.

Server-sent events does not establish bidirectional communication between the server and the client.
A separate HTTP request must be made by a client to send data to the server. Only then can the sent
data be broadcasted to other users. It is also important to mention that, with this method, each HTTP
request establishes a separate TCP connection with the server.

This method is more effective then short and long polling because the connection between the server
and the client is persistent. It is only one connection that always remains open.

With this method, and every other below, the server can act as a relay, because the connection is persist-
ent.

Forever Frame

This method is a mix between server-sent events and long polling.

The method creates a hidden iframe element in the client that makes an HTTP request to the server at
the designated endpoint. This connection is meant to never complete. Through this connection, the
server sends scripts to the client that are immediately executed when they are received [55].

It draws on long polling because the way the connection is established is through an HTTP request
that does not complete. It draws on the server-sent events because, in effect, there is only one HTTP
connection made by the client to the server that always stays open and through which the server can
send data to the client at any time. And just like with server-sent events, the client must send data to the
server in separate HTTP requests and each request establishes a separate TCP connection.

Bidirectional communication

The main disadvantage of all the methods mentioned above is the need for multiple and repeated HTTP
requests that each open its own TCP connection, either to send or to receive data, or both.

And in all three methods, there must be a separate request to receive and send data [97].

The Websocket protocol

The Websocket protocol aims to address those disadvantages by providing a single, persistent TCP con-
nection between the client and the server in which data can travel in both directions.

To establish a Websocket connection, the client sends an HTTP request to the server indicating a wish
to establish a Websocket connection. The server will then send an HTTP response saying that it accepts
the Websocket connection. This is the handshake part of the protocol.

Once the handshake is successful, the two-way communication channel over the TCP protocol is es-
tablished. At that point, both the server and the client can send data independently from each other

21

[97].

The protocol has been standardized in 2011 in the RFC 6455 [97].

The HTML living standard also provides a standardized Websocket interface to ‘enable web applications
to maintain bidirectional communications with server-side processes’ [107]. It is also referred to as the
Websocket API [97].

One of the main disadvantages of using of the Websocket protocol is that the application must manage
the connection through the Websocket API. With the HTTP protocol, connections are handled by the
browser and the application only needs to make requests.

Another disadvantage is that the only endpoint available to both send and receive data with a Websocket
connection is the connection object itself. This means that there can only be one listener and sender on
both the client and the server for all of the data that will travel through the connection. This can make
handling the exchange of data between the server and the client more challenging in contrast to using
HTTP requests where the use of URIs allows for a modular management of data communication.

A solution to that could be to establish multiple Websocket connections between the server and the
client, something that would provide more communication endpoints and therefore allow for a more
modular management of data communication. However, each Websocket would establish a separate
TCP connection between the client and the server. And this is not optimal because multiple TCP con-
nections take more computing resources than only one.

Bidirectional streaming with HTTP 2

The HTTP 2 protocol addresses both of those challenges. This version of the HTTP protocol was released
in the RFC 7540 on May 2015 [52].

It allows ‘interleaving of request and response messages on the same connection’ [52]. In this version,
multiple requests and responses can now travel on the same connection. This ‘is achieved by having
each HTTP request/response exchange associated with its own stream [...]. Streams are largely inde-
pendent of each other’ [52]. This architecture is referred to as ‘multiplexing of requests’ [52].

In practice, bidirectional streaming with HTTP 2 is implemented in the same way as server-sent events,
except that the requests must be made with the HTTP 2 protocol.

This way, the client can listen to multiple EventSource objects and send every piece of data to the server
through separate HTTP requests, all on one TCP connection. Because of this single TCP connection,
using HTTP 2 provides the same real-time experience as the Websocket protocol, while also allowing for
a modular management of data communication both by the server and the client.

HTTP 3, released on June 2022 in the RFC 9114, provides an improvement of this multiplexing feature
[51].

Unfortunately, the technology is not widely used. As of April 23, 2024, 35.4% of all websites used HTTP 2
and 29.5% used HTTP 3 [22]. One website may support both protocols.

Version conflict solving

In collaborative editing, each user works on their own version of the text. Through the exchange of text
data in the ways mentioned above, those different versions are synchronized so that changes made by a
user are incorporated in every other version.

In the course of that process, version conflicts may arise if there are multiple possible final versions
resulting from the changes made by multiple users.

Here is an example:

22

Figure 4.13: Diagram showing the outcome of text collaboration without version conflict solving

Source: [21]

Below are some methods to handle those conflicts.

operational transformations

This method is based on the premise that changes to a text document is done through operations. For
pure text, those operations are inserting and deleting characters.

Those operations are then sent to other users working on the same document.

The second core principle of this method is that when a user receives an operation made by another
user, it will be transformed to be adapted to the changes made locally. For example, two users start
with the string ‘abcd’. One user deletes ‘c’ on his local version. The other user deletes ‘d’ on his local
version. This operation is a deletion at index 3. This operation is broadcasted to the other user, but
because the other user deleted ‘c’ on his local version, there is no more character at index 3. Applying
the operation without transformation would have no effect whereas the intention was to remove ‘d’. The
delete operation will therefore be transformed to a deletion at index 2.

Those transformations must meet the following requirements.

First, they must achieve convergence. The transformations must be made in such a way that the version
of each user becomes the same.

This is why, at its core, operational transformations can be summarized by the following equation:

O1′(O2(X)) =O2′(O1(X))

Second, the transformation of an operation should preserve the initial intention of that operation. For
example, two users start with the string ‘hello world’, if one user deletes ‘world’ but the other users
changes the string to ‘hello wooorld’, the final result should be ‘hello oo’ so that the intended changes of
both users are applied.

23

lastly, operations must be performed on a document in the same order for every user. This matters for
convergence because operations are index-based. For example, two users start with the string ‘a’. There
are two operations in the queue: to insert ‘b’ at index 0 and to delete the character at index 0. Doing the
insertion first and the deletion second gives ‘a’ whereas if it is done in the opposite order, the final result
is ‘b’.

This is a drawback of operational transformations. Because of this, extra controls must be put in place
to insure that the changes are applied in the same order for every user. One way to address this issue is
to have a central server maintain a list of operations made on the document. Only one operation made
by a user can be sent to the server at a time. The server must keep a list of every operation made on the
document. This list must be ordered based on the moment the operation is received. And the server
only broadcasts one change at a time to other users [111].

Conflict-free Replicated Data Types

This kind of data types was introduced in July 2011 in a research report titled ‘Conflict-free Replicated
Data Types’ [85].

This system is as the name says: based on special data types. Those types must only be modifiable
through operations. For example, for an integer, it is done through increase and decrease operations.
This is important to note: an operation is always added, even to reduce the value.

Under that method, the operations performed on the data types must have the three following traits
[85]:

1. They must be idempotent. This means that repeating the same operation multiple times must
produce the same result.

2. They must be associative. This means that the same operations grouped in different ways must
produce the same result.

3. They must be commutative. This means the the same operations performed in different orders
must produce the same result.

Let’s take the example of an integer that keeps a count value of an item in inventory in an e-commerce
website, without conflict-free replicated data types.

Three users open the page of the product. It is indicated that there are 2 items left. One of the users
decides to buy one product. The count is then reduced to 1, and this value is broadcasted to other users.
Everyone now see that there is 1 item left. After that, a second user decides to buy the last product. The
count is reduced to 0 and this value is broadcasted to the every user.

The problem will come if, for any reason, a user will buy a product, then another user will buy a product
before receiving the updated count. Both users will reduce their count from 2 to 1, and broadcast that
value. After the broadcasts, the count is at 1, when in fact two items have been sold.

With a conflict-free integer, what determines the value of the count is the set of operations from which
the integer is composed. Every operation performed on the integer is stored in the data type with a
unique id.

The research report above outlines two ways to update a conflict-free replicated data type. The first
one is by broadcasting the entire conflict-free replicated data type after an update. This means that the
conflict-free replicated data types on other clients will receive the entire set of operations of the updated
data type. The two sets of operations will be combined. With this update method, the receiving data type
will now have in its set operations that have already been performed. This is simply addressed by remov-
ing from the set duplicate operation ids. This is how idempotence is achieved. The new operations will
then be performed on the count. The other possible way to update a conflict-free replicated data type is
to broadcast only the new operations. In the case of an integer, its easy to see that the increase and de-
crease operations are both associative and commutative, because additions and subtractions are both
associative and commutative [85][64].

The greatest advantage of conflict-free replicated data types is that the server only needs to relay the
updates to other users for synchronization. It does not need to ensure that only one operation is broad-

24

casted at a time. Multiple operations can be sent at the same time, and it does not need to ensure that
updates are sent in the same order to every user; updates can now be received in different order by
each user. As long as every operation is received, the result will be the same. This is especially suited
for distributed systems, where the order in which operations are received by each node in the network
varies.

When it comes to storing the conflict-free replicated data type on the server, it is the set of operations
that must be stored. When a new client retrieves the set of operations, he will declare a new conflict-free
data type and update it with the retrieved set.

In the case of strings, the implementation is more complex because a string is sequential data: the order
of the characters matter. ‘hello’ is not the same string as ‘olleh’.

There are multiple algorithms that implement conflict-free strings. One of them is the LSEQ algorithm
[67]. It is explained very well in [26]. The explanations of the algorithm below are drawn from this
resource.

In this algorithm, the characters of the string are represented by a tree. The string is obtained out of the
tree through a depth-first search starting from the left, like in this example:

Figure 4.14: Example of a tree representation of a string

Source: [26]

Each character in the string is attributed a unique id based on its position in the tree:

Figure 4.15: Example of a node path determining its id

Source: [26]

In this case, the id of the node would be [3.7.7].

When a character is to be inserted at a specified index of the string, the index will be mapped to character
ids between which the character must be inserted.

For example, in the string above, to insert the letter ‘y’ at index 4, the algorithm would map that index to

25

the space between the letter ‘d’ and ‘w’, meaning the space between id [3.7.7] and [3.8]:

Figure 4.16: Example of an insertion operation for the LSEQ algorithm

Source: [26]

The inserted character can then be given any unique id between [3.7.7] and [3.8] such as [3.7.9] for
example:

Figure 4.17: Example of an inserted character in the tree model of the LSEQ algorithm

Source: [26]

If there are no more numbers available between two characters, for example if the lower bound had id
[3.7.9] and the upper bound had id [3.8], the tree would create a new layer and the id of the inserted
character would be [3.7.9.1]. This is bound to happen because, since ids must be unique, they can also
never be reused. A deleted character will be removed from memory, but his id will not become available
again and if the node of the character in the tree still has sub nodes, the node will also stay in the tree.
There can theoretically be an infinite amount of layers in the tree.

Ids must also be immutable. The unique id of each node in the tree must never change, because the
algorithm relies on this immutability to be consistent and allow for synchronization between versions:
all operations must always lead to only one possible outcome for all versions.

Through this system of unique ids, the algorithm achieves the three requirements of the conflict-free
replicated data types. It achieves idempotence because when merging two sets of operations, duplicate
ids are removed.

How commutativity and associativity is achieved is well demonstrated by the following figure:

26

Figure 4.18: Example of a concurrent modification on different indexes with the LSEQ algorithm

Source: [26]

In this example, one user inserts the letter ‘y’ at index 4 of his copy and another user inserts the letter ‘h’
at index 5 of his copy. These changes are then broadcasted to the other user.

What is sent to the other user is not the index operation. Otherwise, the order of the operations would
matter like it does in operational transformations. Instead, it is the character with the assigned unique
id that is sent to the other user:

Figure 4.19: Examples of operation broadcasts with the LSEQ algorithm

Source: [26]

Because those character ids are unique and immutable, they always end up at the same place in the tree.
Their potential grouping or the order in which they are received will not have any effect on their final
destination in the tree.

There is however one edge case that is worth addressing. It is the case in which two users concurrently
insert characters at the same index. This is addressed by the unique character ids generated by the
algorithm. Those unique ids also distinguish between different trees. So if a change made by another
tree is received at the same time as a local change is made to the same index, the algorithm will be able
to detect that it comes from another tree. And the ids are crafted in such a way that their concurrent
insertion will lead to the same outcome on both trees. Like this:

27

Figure 4.20: Outcome of a concurrent insertion at the same index of a string with the LSEQ algorithm

Source: [26]

The drawback is that the concurrent operations will be interlaced, and that does not respect the in-
tention of the users. In this case, an outcome that would respect the intention of the users would be
something like ‘HI*MOMDAD!’. The convergence principle is however respected.

The conflict-free replicated data type is the most effective algorithm today to provide real-time version
conflict solving.

Differential synchronization

This method was released in 2009 by Neil Fraser from Google [43]. It was released before both oper-
ational transformations and conflict-free replicated data types, but it is worth mentioning it last to be
able to compare it to the two previous approaches.

In this approach, each client keeps a shadow copy of the document. When changes are made to the
main document, a diff operation is made between the shadow copy and the main copy to extract the
least amount of insert and delete operations that are required to go from the shadow document to the
main document.

This series of operations is then sent to the server as a group. This group of operations is called a patch.
This is why the algorithm is also referred to as diff patch algorithm.

The shadow copy of the client is also updated with the changes made on the main copy.

On the server, there is a main document. Also, for each client, a shadow copy that reflects the shadow
copy of the client’s document and a backup copy. This backup copy reflects the last change of the client’s
document that was successfully received by the server. A patch made by the client is sent to the server.
On the server, it is inserted in the shadow copy. After that, there is a check between the shadow copy of
the server and the shadow copy of the client. This is done to verify that the server received the patch of
the client. If the patch is successfully received, it is applied to the backup copy. If there is a difference
between the shadow copy of the client and the server, there is an error, because the two versions must
always be identical after a patch. In that case, all the changes made by the server are rolled back to the
version of the backup copy. The client is made aware by the server that there was a rollback, and he
resends the patch. This operation is repeated until the patch is successfully received and applied by the
server.

This means that the client stores his latest patch in case it needs to be resent. The client is also informed

28

by the server in case that his patch was successfully received and applied. Only then does it flush his
latest patch.

In case the patch is successfully received and applied by the server, the patch is applied to the main copy
of the server. This main copy is the copy that is common to every client. So when the patch is applied
to the main copy of the server, it is highly likely that some changes from other clients are present. The
presence of those changes may nullify the incoming patch.

Here is how this situation is handled:

a. Client Text, Common Shadow and Server Text start out with the same string: ‘Macs had the original
point and click UI.’

b. Client Text is edited (by the user) to say: ‘Macintoshes had the original point and click interface.’
(edits underlined)

c. The Diff in step 1 returns the following two edits:

@@ -1,11 +1,18 @@

Mac

+intoshe

s had th

@@ -35,7 +42,14 @@

ick

-UI

+interface

.

d. Common Shadow is updated to also say: ‘Macintoshes had the original point and click interface.’

e. Meanwhile Server Text has been edited (by another user) to say: ‘Smith & Wesson had the original
point and click UI.’ (edits underlined)

f. In step 4 both edits are patched onto Server Text. The first edit fails since the context has changed too
much to insert ‘intoshe’ anywhere meaningful. The second edit succeeds perfectly since the context
matches.

g. Step 5 results in a Server Text which says: ‘Smith & Wesson had the original point and click interface.’

h. Now the reverse process starts. First the Diff compares Server Text with Common Shadow and
returns the following edit:

@@ -1,15 +1,18 @@

-Macintoshes

+Smith & Wesson

had

i. Finally this patch is applied to Client Text, thus backing out the failed ‘Macs’ → ‘Macintoshes’ edit

and replacing it with ‘Smith & Wesson’. The ‘UI’ → ‘interface’ edit is left untouched. Any changes

which have been made to Client Text in the mean time will be patched around and incorporated into

the next synchronization cycle [43].

This is what an architecture under this algorithm looks like:

29

Figure 4.21: Six client, one server synchronization network.

Source: [43]

This figure omits the backup copies.

Because operations in this algorithm are also index-based, only one patch can be applied at a time.

The way conflicts are handled, as quoted above, can also be quite detrimental to the users’ intention. But
it does have the advantage of ensuring convergence. There is another advantage with algorithm working
with patches; a group of operations. This avoids the kind of operation interlacing that can happen with
conflict-free replicated data types.

Another important disadvantage lies in the fact that the server stores string values on which diff oper-
ations are performed. These diff operations could be avoided if the string operations would be stored
instead like in operational transformations. The use of a shadow version and a backup versions on the
server for every client also makes the algorithm heavy for the server. In operational transformations,
the server sends an acknowledgement to the client when it successfully receives an operation and in
conflict-free replicated data types, a failed send has no impact on the final result because the change
can be sent later, after other changes, and the final result will be the same.

The diff algorithm

This algorithm is used to extract the shortest amount of insert and delete operations to go from string
A to string B. It is required to implement any of the version conflict solving methods mentioned above
because they all work with string operations.

In a web interface using Javascript, when a change is made in a text element, what is returned by the
listener is the new value. A diff operation is then needed to extract the required insert and delete opera-
tions.

The standard algorithm to achieve this is the one developed by Eugene W. Myers [65].

The following algorithm’s rundown is drawn from [24].

It is done by putting the two strings in a table. The starting string is at the top of the table and the final
string is on the left side of the table.

30

Every cell for which the two corresponding characters are equal are marked with a diagonal.

The next step is to draw a graph where the nodes are at the intersection of the cells. The graph starts at
the top left corner of the table.

The table is traversed in turn. At every turn, the tree can add one node by going down or right, except
if the created node is at the top left corner of a marked cell. In that case, another node is immediately
added at the bottom right of the marked cell. The traversing is complete as soon as at least one tree
reaches the bottom right corner of the table. If multiple tree reaches the end at the same turn, they are
all equally valid solutions.

A vertex moving down is an insertion of the character to the left of the vertex behind the character at the
right of the vertex. A vertex moving right is a delete operation of the character above the vertex. A vertex
from the top left to the bottom right of a cell means that the character above the vertex is kept.

Here is an example of going from string ‘CBABA’ to ‘ACABB’:

Figure 4.22: A graph made according to the Myers’ algorithm

Source: [24]

In this graph, there are two valid paths that both reach the bottom right of the table in 5 turns.

They map to the following string operations:

31

Figure 4.23: Graph operations mapped to string operations for the two most efficient solutions when
going from string ‘CBABA’ to ‘ACABB’

Source: [24]

4.2 Technical design

System modeling

Once the core requirement specification was established, we proceeded to model the system.

With the help of UML diagrams we illustrated the system design with various models providing different
perspectives on the system.

Figure 4.24: Use case displaying the role of the case handler in the system

The figure 4.24 shows the role of a case handler within the boundaries of the system.

32

Figure 4.25: Domain model

Figure 4.26: Data flow of a job update request

On 4.26 we visualized the journey of data as it travels through the pipeline, starting from the moment a
user initiates a change and ending at its destination on other users’ web interfaces.

System architecture

The requirement specification was crucial in guiding the architectural decisions for our system. Cer-
tain requirements held considerable importance in shaping our choices. These factors encompassed
security, performance and the essential need for Websocket connections.

Ensuring the responsiveness of our system was paramount for delivering a satisfactory user experience,
particularly to justify the investment in real-time, two-way communication. To optimize performance,
we looked at several factors:

• Network delays

• Locality of system components

• Overhead associated with Websocket connections

• Overhead related to data parsing between the components

To sustain the application’s deployment on the public cloud while iteratively introducing updates to the
live environment. This approach enabled us to evaluate the application’s performance post-deployment
and this would impact our further development decisions.

Due to our desire to keep the application publicly deployed, our client enforced a security mandate
that required the concealment of the application from unauthorized access when the application was
temporarily deployed on the public cloud.

Because of these factors, we chose to implement a layered architecture.

33

Figure 4.27: High level architecture overview

REST API

Our client requested the implementation of an API, making it a mandatory aspect of our project. While
the choice of technology was left to us, we considered various languages and frameworks, including
Go, NodeJS, Python, Java, and more. Ultimately, we opted for the Dotnet technology stack with the C#
language. Several factors influenced this decision:

Integration with Norkart’s Existing Software: Dotnet and C# were already prevalent technologies within
Norkart, facilitating seamless integration with their existing software systems.

Demand in the Norwegian Market: C# holds significant demand in the Norwegian job market, enhan-
cing our employability after graduation.

Prior Familiarity: Our team had some familiarity with C# due to previous coursework, particularly in
game development. Additionally, one team member had prior experience with backend technologies,
easing the learning curve for the Dotnet framework.

Had circumstances been different, Go would have been our alternative choice due to its simplicity and
familiarity.

Websocket API

To enable the collaborative feature in our application, we chose to implement Websocket. While .NET
offers the robust SignalR library, built on top of the Websocket API, we opted to handle the connection
using the base Websocket API provided by the .NET platform for learning purposes.

Websocket messages are sent in plain text. We structured the messages into JSON format for consistency
and ease of parsing.

Persistent storage

Regarding persistent storage, we had the flexibility to choose any database technology. After considering
both SQL and NoSQL options, we selected MongoDB. MongoDB is a document-based database that can
be hosted locally or on the MongoDB cloud platform. To streamline deployment, we opted for the cloud-
based solution.

34

Cache

Caching data enhances the application’s performance and reduces unnecessary requests to persistent
storage during data retrieval. We chose a caching mechanism using simple dictionary-based data struc-
tures provided by the programming language (a singleton class with a dictionary field).

Although we considered using Redis as a standalone cache, we decided against it due to the additional
overhead involved in deploying and managing the cache database.

4.3 Graphical user interface (GUI)

We made a GUI based on the Norkart website but slightly simplified and with a few needed features
customized. For instance, a card ‘viewer’ points out the number of users viewing the same page as the
user which increases interactivity and gives an alert to the user. Moreover, we integrated a feature of
adding new jobs directly through the GUI. This enabled data input in various forms without the need to
access the backend. This improved the process of streamlining, thus affecting efficiency.

We deliberately decided to not use pre-designed templates so that the interface is simple and put more
focus on the functionality behind it. This option allowed much tailoring and a better level of tuning
with our project goals. The GUI is iteratively refined, taking the testers’ feedback into account, in such a
manner that it becomes user-friendly and effective for its purposes.

4.3.1 Unique GUI Components

The following are the components that are developed uniquely for our GUI and have no counterpart in
the existing Norkart client system. The features were designed to give a very efficient, lean, and user-
friendly interface based on the needs of our specific project, thus eliminating all the features that render
the system complex today.

4.3.2 Add New Job Dialog

Figure 4.28: The Add New Job dialog for Norkart is to provide the option to create new jobs directly
through the GUI in a much faster way; hence, a great number of forms available directly to put in data
will result in better interactiveness.

35

4.3.3 Warning Dialog

Figure 4.29: Alert dialog warning the user that the job is currently active and being worked on by a
different user, that is, James Burton. This helps create accountability for collaboration on the platform.

4.3.4 Viewer Card

Figure 4.30: Viewer card displaying now active users for the job. It thus fosters transparency. Users can
know who is viewing and who is editing the job.

36

4.3.5 Job Completion Notification

Figure 4.31: Notification dialogue popping up stating that James Burton completed the task. This en-
sures that all current viewers of the job are updated on the completion of a task.

37

Chapter 5

Implementation

This chapter encapsulates the translation of our design into executable code. Initially, we describe the
project as a whole. Then we discuss the primary components of the project: frontend and backend
implementations. Finally, we explore a domain-specific implementation regarding job handling, au-
thorization, notification systems, and connection management.

5.1 The 3-tier architecture

Our application follows the classic three-tier architecture model, comprising distinct layers for present-
ation, business logic, and data management.

The chief benefit of three-tier architecture is that because each tier runs on its own infrastructure, each
tier can be developed simultaneously by a separate development team. It can also be updated or scaled
as needed without impacting the other tiers [2]. The figure 5.1 shows the idea.

Figure 5.1: Illustration of the three-tier architecture

5.1.1 Presentation tier

It acts as the bridge between the user and the system, providing the interface through which users in-
teract with the application. This is the frontend part of our application. The presentation layer commu-
nicates with the business logic layer to perform operations based on user input.

5.1.2 Business logic

The core business logic resides within the backend API server. A set of functionalities is implemented to
handle tasks, including security enforcement, data validation, management of concurrent user connec-
tions and doing operations on jobs.

The business logic layer handles the interaction with the data access layer, so the presentation layer
indirectly accesses data stored in databases or other storage systems.

38

For example, after the business logic layer processes a user’s request, it retrieves data from the data
access layer and sends it back to the presentation layer to be displayed to the user.

5.1.3 Data tier

In a three-tier architecture, the data tier (also known as the data access layer or database layer) is the
bottom layer responsible for managing the application’s data. This tier handles the storage, retrieval,
and manipulation of data and is typically where the database is [2].

Our data tier is powered by MongoDB, a cloud-based NoSQL database solution.

5.2 Frontend

5.1 Technology Stack

We deliberately designed our frontend technology stack with the same components that are already in
use at Norkart: this is a way to make a product that is not only performant and responsive but is also
harmonized with a proven technology stack both for maintainability and further extensions. This has
been picked because it assures the solution to be valuable to Norkart and to give them the same positive
results.

The best of these technologies is integrated into our application: React, Vite, TypeScript, and Material
UI.

React: We chose to work with React because it provides a dynamic backbone for the user interface.
Its component-based nature enables the creation of reusable user interface components, and therefore
developers can ultimately scale and maintain them easily. In React, we tapped into a massive ecosys-
tem with high quality libraries that enable feature-rich responsive designs with reflected efficiency and
elegance.

• Vite [105]: We arrived at Vite as our build tool because of its truly impressive speed and unpar-
alleled development experience. Vite does away with the normal bundling process while develop-
ing and chooses to spin up the server instantly and change the modules hot. This decision helps
to have a productive and fast development cycle, with rapid feedback and iteration for us.

• TypeScript [99]: We hereby introduce static typing for JavaScript, which helps a lot in reducing
runtime errors and making the quality of the code better. It is really good for documenting the
shape of data and the behavior that comes with it in ways that make the code clear and maintain-
able.

• Material UI [63]: We use Material UI because it has a huge library of built-in components that are
all Google Material Design compatible. This allows for a consistent and intuitive user interface for
easy crafting of polished designs with the modern standards of an interface.

Norkart allowed us to use the technology stack we wanted, although we decided to go for the very same
technologies they are using mainly to ensure that the solution we develop is compatible with their en-
vironment and because the technologies they use have big advantages.

Websockets

We used Websockets to apply the functionality of simultaneous editing which allows us to push the data
from the server to the client in real-time. For learning purposes, we used raw Websockets instead of the
SignalR package, which is the standard and the best practice when having a Dotnet backend.

39

Version conflict solving

At the ending stage of the project, we looked at ways to possibly implement version conflict solving. We
found two packages: the Yjs package [yjs], a conflict-free replicated datatype and the jsdiff package [58],
a package implementing the diff algorithm presented in the design chapter.

When a change is made to the text field, the jsdiff extracts the string operations that lead to the change.
Those operations are applied to the Yjs string variable. The updated Yjs string is then sent through Web-
socket to the server that then relays the change to every other user connected to the job. The received
Yjs string is then applied to the local Yjs string.

A package based on conflict-free replicated datatypes is the best choice because it is the best available
algorithm for version conflict solving so far. After finding this package, we did not explore other options.
Instead, we focused our time on learning how to use the package because this was something new for
us. It was not easy because there was not a lot of community support for it.

For the jsdiff package, it implements the diff algorithm from Eugene W. Myers [65]. Out of our theoretical
research, this algorithm is the standard. Therefore, once we found a package that implements it, we
looked no further.

5.3 Backend

This section describes the structure of the backend part.

Our backend server consists of two types: stateless and stateful. The stateless part is the one that uses
REST principles and the stateful part serves over Websocket connections and keeps track of the socket
connections in memory.

For the backend, as mentioned previously, we used the .NET Core framework for building APIs in C#
specifically. It was possible to use C# without any framework, however, we would have to implement
the networking logic from scratch, and that would lead to significant delays. The .NET API framework
provides a way of implementing simple web-based APIs in a secure, testable and decoupled manner. It
provides the dependency injection container that serves as a central registry for managing dependencies
in an application. Its purpose is to facilitate the decoupling of components by dynamically providing
instances of required objects (dependencies) to the classes that need them.

Project structure

Our backend project was divided into the following directories:

• Controllers

• Services

• Repositories

• Models

• Data

This structure was inspired by the Robert C. Martin’s book Clean Architecture [61]. The clean architec-
ture proposed by Robert is a software architectural pattern that emphasizes separation of concerns and
independence of frameworks and tools. Even though we used the .NET Core framework, the majority of
code is written in pure language constructs with its standard library. The parts where we relied on the
framework were the provided dependency injection container 5.2 that would compose all our classes in
a centralized manner and the endpoint routing mechanism that is abstracted in the .NET Core control-
lers that made us more focused on the business logic of the application.

40

builder.Services.AddScoped<IJobRepository, MongoDBJobRepository>(...);
builder.Services.AddScoped<IUserRepository, MongoDBUserRepository>(...);
builder.Services.AddScoped<IWebSocketRepository, WebSocketRepository>();
builder.Services.AddScoped<IWebSocketService, WebSocketService>();
builder.Services.AddScoped<ICacheService, CacheServiceMock>();
builder.Services.AddScoped<IJobService, JobService>();
builder.Services.AddScoped<IUserService, UserService>();

Figure 5.2: Program.cs - dependency injection container in action

In our API, the use of controllers, services, and repositories did help to organize the code in a way that
promoted testability and maintainability.

Models

This is the place where we defined the domain of our application. Models are business domain entities
such as Job, User, WaterMeter. By defining the models, we clearly state what the application is about.

Controllers

Controllers are the adapter classes that are responsible for handling incoming HTTP requests, interpret-
ing them, and orchestrating the appropriate response. They act as the entry point for the API endpoints,
defining the routes and actions that correspond to different HTTP methods (GET, POST, PUT, DELETE,
etc.). By separating the handling of HTTP requests from business logic, controllers promote separation
of concerns and make the codebase easier to understand and manage [83].

Services

Services contain the majority of the business logic of the application. They encapsulate the core func-
tionality of the API, such as data manipulation, validation, and business rules. By abstracting this logic
into service classes, we achieved modularity and maintainability. Services can be reused across multiple
controllers, promoting code reuse and minimizing duplication. Figure 5.3 shows an example of how a
service interface looks like in our application. Notice that the naming of the interface methods include
the domain specifics.

public interface IWebSocketService {
public Task<List<ConnectedUserDTO>> GetConnectedUsersByJobId(Guid jobId);
public void AddSocket(WebSocket socket, Guid jobId, string userId);
public Task NotifyCurrentUsersAboutNewUser(Guid jobId, string userId, string username);
public Task SendToAllExceptThisSocket(WebSocket socket, Guid jobId, string data);
public Task NotifyEditorsRequestEditPermission(Guid jobId, string userId);
public Task NotifyEditorsDenyEditPermission(Guid jobId);
public Task NotifyAllGrantEditPermission(Guid jobId, string granteeUserId);
public Task SendToAll(Guid jobId, string data);
public Task RemoveSocket(WebSocket socket, Guid jobId);
public Task<bool> IsAllowedToSendMsg(Guid jobId, string userId);

}

Figure 5.3: IWebSocketService.cs - Websocket service interface.

Repositories

Repositories are responsible for interacting with the data layer. They encapsulate database access logic,
abstracting away the details of data storage and retrieval. Figure 5.4 shows a code snippet of a repository
used in our application. The naming of the methods of the repository indicates retrieving from or adding
to some kind of storage.

41

public interface IWebSocketRepository
{

public List<UserConnectionsDTO> GetAllByJobId(Guid id);
public UserConnectionsDTO? GetUserSocketsByUserAndJobId(Guid jobId, string userId);
public string? RemoveSocket(WebSocket socket, Guid jobId);
public void AddSocket(WebSocket socket, Guid jobId, string userId);

}

Figure 5.4: IWebSocketRepository.cs - Websocket repository interface.

Figure 5.5: Data flow through the layers of abstractions in the backend

REST API

In order to retrieve, insert and update data that did not require real-time connectivity, we used a REST
API. We chose the method because it is what Norkart uses. It is quick and simple to implement with the
.NET Web API framework.

Websockets

The main problem that we had to solve was real-time working on a job page by multiple case handlers.
We decided to implement Web Sockets for this, and this approach would allow for pushing data from
the server to the clients in real-time. One alternative was to use long polling, however Web Socket im-
plementation leads to higher performance and less memory usage due to HTTP long polling causing
additional HTTP headers to be included with each request and response [5].

After the project was implemented, we learned about the HTTP 2 standard, which would have been an
even better alternative.

Interfaces instead of classes

In our implementation of the backend, we relied heavily on using classes through interfaces that they
implemented or inherited. It was enforced by the ASP.NET framework, but soon we found out that it had
a good reason to do so. It made us produce a more decoupled and maintainable code. See figure 5.6.

// Instantiates MongoDBUserRepository where IUserRepository is passed as an argument
builder.Services.AddScoped<IUserRepository, MongoDBUserRepository>(...);

// If we decide to switch to a PostgreSQL database in the future,
// we can create a PostgreSQLDBUserRepository that implements IUserRepository.
// We would simply replace MongoDBUserRepository with PostgreSQLDBUserRepository,
// without needing to change any of the classes that use the repository.

Figure 5.6: Program.cs - interfaces allow for safer class substitution

42

5.4 Domain

Having talked about the structure of our backend and frontend implementations, we describe below the
specifics of the domain that comprise jobs, users and connection handling.

5.4.1 Jobs

In this section, we describe the implementation of simple job operations as well as maintaining a tem-
porary job data in a cache while it is being edited.

CRUD

We set up basic actions for dealing with job information in our application: creating new jobs, reading
existing ones, updating job details, and deleting jobs that are no longer needed. These actions make
it easy for users to manage job-related data. Whether they’re adding new job listings, checking out job
details, editing information or getting rid of old entries, these actions help users get things done quickly
and easily.

Even though we defined the actions in the backend, not all of them were accessible to the end users.
Deleting jobs was added only for development purposes. This is indicated by the ‘DevOnly’ attribute
that is placed above the method definition that can be seen in 5.7.

[Route([controller])] // <-- all actions within this class expect endpoint
// <-- starting by the name of this class without the word Controller
// <-- example.com/Jobs

[ApiController]
public class JobsController(...) : ControllerBase
{

[AllowAnonymous] // <-- the action does NOT require an authorization token
[DevOnly] // <-- the action is only accessible in development mode (e.g testing)
[HttpDelete] // <-- expects DELETE HTTP method
[Route("{id:guid}")] // <-- endpoint expects a path argument (e.g example.com/Jobs/123123)
public Task<IActionResult> DeleteAsync([FromBody] Guid id) {...}

// ... snip other methods/actions
}

Figure 5.7: JobController.cs - delete a job by id action. Showcasing the controller and attributes

Job being edited

When a user enters a job page, the job fields are prefilled with up-to-date data from the last write. This
ensures synchronization of the job fields across all users currently on the job page. It happens in the
following steps:

1. An HTTP request is sent to server to get the job by its id

2. The corresponding job controller endpoint action handles the request

3. The job cache is checked first. In case of a cache hit, it sends the data back to the client

4. In case of a cache miss, the request proceeds to retrieve the job data from the persistent storage,
inserts it in the cache and then it sends it back to the client

Before the job data ends up in the persistent storage, a user has to type something in the fields the first
time the job is opened. After a write to a field, a message is sent to the server. The figure 5.8 shows how
the message is handled by the controller.

43

public async Task ProcessWSMessageAsync(...) {
-- snip --

if (isWebSocketRequest) {
async void HandleMessage(...) {

-- snip --
if (message == "meterModel"

|| message == "meterNumber"
|| message == "shouldRegisterNewMeter"
|| message == "isHandledManually"

) {
cache.SetData(...); // Save temporarily to the cache
await webSocketService.SendToAllExceptThisSocket(...);

}

-- snip --
}
-- snip --

}
}

Figure 5.8: Backend: WebSocketController.cs - job field is updated. Simplified for an easier understand-
ing

So the data is stored in the job cache while a job is being edited. Since the cache is just an in-memory
dictionary static field of a class, it has a potential to get accumulated endlessly. It could lead to a couple
of problems.

• When the server is re-started, all data contained in the cache is lost

• Memory is not endless

We solved the first problem by occasionally flushing the data to the persistent storage. It happens when
all users have left a job page.

// Websocket controller class
public async Task ProcessWSMessageAsync(...) {

async void HandleMessage(...) {
-- snip --
case WebSocketMessageType.Close:
await webSocketService.RemoveSocket(ws, jobId);

}
}

// Websocket service class
public async Task RemoveSocket() {

-- snip --
await cache.FlushOne(jobId); // Remove the job data from the cache, and save in the database

}

// cache class
public bool RemoveData(...)
{

-- snip --
JobDataCache.CacheData.Remove(jobId);

}

public async Task FlushOne(...) {
RemoveData(jobIdKey);

}

Figure 5.9: Backend - Process of closing a Websocket connection. Simplified

44

Completed job

When a user completes a job, an HTTP request to that effect is sent to the backend. The jobs controller
then notifies the completion to every other user inside the job through their Websocket connection. This
is done by inserting the Websocket service class in the jobs controller:

// Websocket controller class
public class JobsController(IJobService jobService,

IWebSocketService webSocketManager,
ICacheService<Job> cache) : ControllerBase

-- snip --

Figure 5.10: Backend - Inserting the Websocket service class in the jobs controller.

The Websocket service class is then used to send the completion notification to other users:

[HttpPut]
[Route("{id:guid}")]
public async Task<IActionResult> UpdateAsync([FromRoute] Guid id,

[FromBody] UpdateJobDTO updateJobDTO)
{
-- snip --
/* For when the job is completed */
if (updateJobDTO is { Status: JobStatus.Completed, CompletedBy: not null })
{

-- snip --
var completedUserObject = new
{

jobGotCompleted = "true",
userCompleted = updateJobDTO.CompletedBy

};
var jsonObject = JsonSerializer.Serialize(completedUserObject);

/* a message is sent to all open web socket connections to announce in
real time that the job got completed */
await webSocketManager.SendToAll(id, jsonObject);

return NoContent();
}

}

Figure 5.11: Backend - Notifying a job completion through Websocket.

This process can be modelled as follows:

Figure 5.12: Triggering a Websocket broadcast through an HTTP request

45

5.4.2 Users and authorization

Similarly to jobs, we defined the CRUD-endpoints for management of users. The 5.13 showcases the
summary of user controller endpoints.

Authorization

In addition the CRUD endpoints, there is a login-endpoint that handles incoming credentials and re-
turns a generated JWT token. The token is sent to the client, and it will then be stored as a cookie on
the clients browser. Each subsequent request from the client will then contain the token in the cookie
in order to get access to the endpoints that require the token.

public class UsersController(...) : ControllerBase {
public Task<IActionResult> GetAllAsync()
public Task<IActionResult> GetByIdAsync(...)
public Task<IActionResult> CreateAsync(...)
public Task<IActionResult> UpdateAsync(...)
public async Task<IActionResult> DeleteAsync(...)
public async Task<IActionResult> LoginAsync(...)

}

Figure 5.13: UsersController.cs - user endpoint actions

5.4.3 Notification system

One of the critical parts in our application was the notification system that would provide the necessary
functionality for case handler collaboration on a job resource. In this section, we describe the imple-
mentation of the system.

• Notify users about incoming user

• Notify users about leaving user

• Notify editors about pending editor permission from another user

• Notify user when granted editor permission

For those notifications, data is sent by a user to the server through Websocket and the server then
relays the data, also through Websocket, to other users inside the job. It can be modelled as fol-
lows:

Figure 5.14: Server acting as a relay through the use of the Websocket protocol

• Notify incoming user about users on the page

46

Incoming user

In order to notify other users on a particular page about an incoming user, we expect a Websocket mes-
sage being sent to the server when a new user enters the job page. See 5.15.

The message is sent when the frontend client has established the Websocket connection with the server.

When the user enters the job page, they are also notified about other users that are there from before.

public async Task ProcessWSMessageAsync(...) {
-- snip --

if (isWebSocketRequest) {
async void HandleMessage(...) {

-- snip --
if (message == "usernameConnected") {

await webSocketService.NotifyCurrentUsersAboutNewUser(...);
}

-- snip --
}
-- snip --

}
}

Figure 5.15: Backend: WebSocketController.cs - expect userConnected to process. Simplified for an
easier perception

Leaving user

When a user leaves the page, the Websocket connection is closed. A message of type ‘close’ is sent to
the server, where it is handled. We remove the stored Websocket connection that is associated with the
user from the connection storage, which is just an in-memory dictionary, and then we send a message
to other users that that particular user has left the job page.

On the frontend we implemented the corresponding appearence of a snackbar that we mentioned in
the design chapter.

Editor permission

We implemented a concept called ‘closed job’ where the first user entering a job page will have rights to
edit the job. Other newcomers have only viewing rights. They can only see the job being edited. They
are restricted from editing.

In order to gain editing rights, the viewers may request the access from users that already have editing
rights. In this case, a message containing the editor permission request is sent to editors. See 5.16

47

async void HandleMessage(...) {
-- snip --
if (message == "editPermission") {

await webSocketService.NotifyEditorsRequestEditPermission(...)
}
if (message == "denyPermission") {

await webSocketService.NotifyEditorsDenyEditPermission(...)
}
if (message == "granteeId") { // user id of a user who is being granted the editor rights

await webSocketService.NotifyAllGrantEditPermission(...);
}
-- snip --

}
-- snip --

}

Figure 5.16: Backend: WebSocketController.cs - message handling regarding editor permissions

When the editors receive the editing permission request from the server, a dialogue is opened on their
clients containing two buttons: deny or accept.

In case of acceptance, a message ‘granteeId’ containing user id is sent back to the server and the user
connection is updated allowing the user to edit. Then a message is sent back to every user being on the
job updating their front end clients.

48

Chapter 6

Development process

This chapter describes the process that we put in place for the conduct of the project and the project
management tools that we used.

6.1 First team meeting and philosophy

Our first group meeting took place in the first week of January.

During this meeting, we presented ourselves to each other and took the time to know each other better.

We also discussed our expectations and ambitions for the thesis. That’s when we laid down our main
guiding principle for the project: the 80/20 principle.

The way we understood this principle is that 20% of our efforts would produce an outcome worth 80%,
and to obtain the remaining 20% would required 80% of the effort. In other words, the idea is that there
is a point where a disproportionate amount of effort is required to produce value. And at this point,
the result is no longer worth the effort. Our objective in the course of the thesis was to never cross this
threshold.

Another core philosophy that we laid down during that first meeting was to work with several small short
term objectives that would build on each other throughout the project instead of immediately setting
an ambitious objective. We would also proceed in order of difficulty. The easiest objectives would be set
first. This was chosen as a form of insurance policy. If a more advanced, ambitious or difficult objective
fails, we have something to fall back on.

Those two principles served us well. They made us focused and effective.

Also during that first meeting, we laid down the logistics of our process.

6.2 Meetings

We first decided to have meetings on Mondays to plan the week, another meeting on Wednesdays to
follow-up with the work done, and a meeting on Saturdays to both follow-up on the work done and to
have a retrospective meeting.

Soon after it was decide to combine the Saturday meeting with the Monday meeting. This meeting
would be held on Sundays instead.

It was agreed with our supervisor to have meetings on Tuesdays, as we needed. During the development
part, we met our supervisor almost every week to get guidance on the thesis process. After finishing the
project and moving to writing this report, we met less frequently and only when we had questions about
the writing of this report.

49

It was later agreed with our contact person at Norkart to meet every Thursday at their office. After the
meeting, we could spend the day there to work. Norkart provided us with a meeting room. For the
development of the project, we met almost every week. Sometimes, the whole team was present, some
other times, one team member would join online.

A typical day at Norkart would start with a meeting with our contact person. We would present the work
done in the previous week, get feedback on it, discuss the next step and discuss alternative solutions.
We would then pause for lunch. After lunch, we talked at length about what we understood from the
meeting, how to integrate the feedback into our work and the next steps we would take. Extensive notes
of both meetings would be written down, and then we would work for the rest of the work day.

The meeting on Thursday naturally replaced the meeting that we had planned to have on Wednesdays.
However, at around the middle of the project, we added a meeting on Wednesday evening to prepare
the next day’s meeting with Norkart.

Outside of meetings, the team frequently communicated on the instant-messaging platform Discord.

In our retrospective meetings, we did, in fact, discuss about the process. We did dare to raise issues
such as taking detailed notes to track important information, prioritizing merge requests when they
are opened so that further changes can always be made against the latest versions, encouraging team
members to come to Norkart in person, etc. The meeting notes in appendix attest to that.

Decisions regarding features were all taken as a group, even though responsibilities for the frontend and
backend were divided. Because real-time features required work on both the backend and frontend,
team members working on the real-time aspect of the project became familiar with both the frontend
and the backend. Merge requests were all reviewed by a team member. This made it such that every
team member had an overview of the whole project. And members working on real-time features were
familiar with the codebase of the whole project. There were no silos in the project. The enforcement of
the 80/20 also contributed to this aspect. It allowed us to take the time to have an overview of the whole
project.

In short, by communicating often, daring to take up more uncomfortable issues, and having team mem-
bers have an overview of more then just their areas of responsibilities, we managed to truly work as a
team.

6.3 Collaboration framework

Our meeting logistics described above is closest to the SCRUM collaboration framework. However, we
did not have daily meetings, either at the start or at the end of the day.

We also made the voluntary decision to not have a SCRUM master. However, still on the first meeting
that we had, all of us committed to a proper project management system, and we remained committed
to following it throughout the whole project, along with having proper issue tracking.

Just the existence of a proper process made a huge difference in the quality of the teamwork.

We also had only a partial product backlog. We knew that we had to create a prototype replicating the job
handling part of the Komtek system. So for this part of the project, we clearly knew which tasks had to be
accomplished. However, for the real-time features, it was uncertain which features we would developing
and what it would take to develop them. This is something that we established in close consultation with
Norkart later on in the project, and that will be detailed below.

Following the 80/20 principle, we made sure to not be over ambitious in the course of the project. So we
gave ourselves a good amount of time to implement the various features. Because of that, we managed
to deliver to Norkart what we committed to. And, overall, we managed to deliver our work within the
schedule that we set in the project plan. This will be detailed below.

We had one-week sprints. A period of one week for the sprints was also helpful because it allowed for a
tighter follow-up of the project. We established a sprint backlog every Sunday. At about the middle of the
project, we started updating our sprint backlog after the meeting that we had with Norkart. Updating it

50

freshly after having received feedback from Norkart is something that was helpful for us.

6.4 Issue tracking

To track those sprint backlogs and other issues throughout the project, we created an issue board on our
GitLab projects. We had two GitLab projects. One for the backend and one for the backend. We therefore
had one issue board for each. Issues that were not related to either the backend or the frontend were
inserted in the issue board of the backend. It was the default issue board.

Each issue board had 4 columns. One for the opened issues, but that were not part of a weekly sprint. At
the end of the project, in the backend, out of a total of 118 issues, 17 remained opened without having
been part of a sprint. In the frontend, there are 9 such issues out of a total of 74 issues. This represents a
total of 28 issues out of 192. This is about 15% of all issues. Most of those issues, if not all, are issues that
we decided to leave aside and work on only if we had free time during the project. This demonstrates
our commitment to the 80/20 principle and how we managed to keep our focus on issues that were at
the core of the thesis.

The second column was the ‘in-sprint’ column. This column contained issues that were part of a sprint.
When sprints backlog were created on Sundays, issues were created in this column.

The third column was the ‘status::in-process’ column. Issues were moved in this column when we star-
ted working on them.

The last column was for the closed issues.

We kept the issue board up to date throughout the whole project. However, were did not diligently
move issues from the ‘in-sprint’ column to the ‘status::in-process’ column. More often than not, we
would move them from the ‘in-sprint’ column directly to the closed column when they were done. We
considered an issue done when the associated merge request was merged, after review from another
team member.

We were also not too diligent to close an issue right after it was done. Issue boards were updated every
Sunday in any case. If there were issues related to finished tasks still opened, they would be closed then.

The comment section of the issues was used to keep track of resources used, challenged faced and solu-
tions found.

6.5 Version control

For our version control tool, we used GitLab.

Specific to our project was to have one GitLab project for the backend, and one project for the frontend.
This is because we believed it made it generally easier for us to manage the project in two different
repositories. It might just as well have been just as easy with only one repository for both projects.

As detailed in the testing chapter, each merge request was reviewed by another team member. This is
also one of the reasons why team members managed to keep an overview of the whole project.

6.6 Project milestones

The following milestones were not explicitly planned at the beginning of the project. However, after the
project started, in collaboration with Norkart, we defined 3 different versions. Each version built on each
other and each version contained one or more collaboration features.

We have been fortunate that, throughout the project, Norkart shared our core philosophy of developing
the project through small objectives that would build on each other, starting from the easiest to the

51

hardest, along with the 80/20

Komtek’s job handler replica

Before implementing any ‘version’, we created a replica of the Komtek’s job handler.

This part of the project took about 4 weeks to implement. It was presented to Norkart on February 8.

It was implemented 4 days beyond the planned schedule.

Version 1

After discussion with Norkart, version 1 would include two features. The first feature was to ensure that
a job could only be assigned one time. The second feature was that a job could only be completed one
time.

For this part of the project, 3 weeks were planned. 2 for development and 1 for user testing.

Only 1 week was used to implement the two checks, along with the authentication interface. The version
was presented to Norkart on February 15. Because of that, we were able to get back on our schedule and
even get ahead of schedule.

Version 2

This version included the implementation of real-time collaboration features. This was the version with
the most features. This version built on version 1. The features of version 1 remained in version 2.

This version included the following features:

1. When a user completes a job, every other user in the same job are interrupted by a warning telling
them that the job has just been completed.

2. When a user enters a job, every other user immediately receives a snack bar, non-interrupting
notification telling them that a new user entered the job.

3. The first user to enter a job has editing rights. All the changes that he makes to a field are sent in
real-time to other users in the job. Every other users in the job do not have editing rights.

4. A users card was created. The card displays the username of users that are present in a job. The
user with editing rights is on top. This list is updated in real-time as users enter and leave a job.

5. If a user enters a job and there are already other users in the job, the user entering a job receives a
flow-interrupting notification warning that other users are already in the job.

6. When the user with editing rights had focus on an element in the job page, a colored frame around
this element appears in the job page of other users inside the page.

This version was completed on March 6. It was presented to Norkart on March 7. The version also
included feedback on our user interface provided by our contact person at Norkart on March 1.

At this point in the project, we were ahead of schedule by about two weeks. It was the case partly because
no formal user tests had been arranged.

Version 3

The features to implement in this version were more open-ended.

We had been advised by our supervisor that we should stop developing and focus on writing the thesis
report at the start of April.

So we had 3 weeks to get as much done as possible.

This is the list of features that we set out, in order of priority:

1. The ability for a user without editing right to ask for it. This feature also included version conflict
solving for a text field of the job page because multiple users would be allowed to edit the text field
at the same time.

52

2. Caching of changes made to jobs. That way, a new user entering the job would have in front of
him the same version as the users currently inside the job instead of an empty job.

3. The ability for a user to create a new job.

4. Implement tasks inside a job. The idea of this feature was to change the structure of a job page to
contain multiple subgroups of elements, called tasks. Those tasks would be completed one by one
and when all tasks would be completed, the job would be considered completed. Also included in
this feature was a request from Norkart to look into insuring the type safety of the job object in the
frontend. That is making sure a job object only had fields that belonged to its type.

This list was shared with Norkart on March 14.

Caching of the job data was implemented on March 12.

The ability to create a new job was implemented on March 16.

Version conflict solving of the text field of the job page was implemented on March 17. A Conflict-free
replicated data type was implemented in the frontend.

The ability to request editing right was implemented on March 18.

This gave us time to work on implementing tasks in the job page. However, we felt we did not have
enough time to fully implement the feature. So instead, we implemented dynamic rendering of the
fields of the job page.

Another thorough review was conducted by our contact person at Norkart with a colleague and shared
with us on March 21. All of the shared feedback regarding the user interface was implemented by March
27.

Type safety of the job data object was implemented on March 29.

All those features were built on top of the two previous versions.

We finished developing the product two weeks in advance of what was scheduled. What mainly gave us
extra time was that no formal user tests were conducted.

After that, we commented our code and implemented automated quality assurance tests until April 19.
This put us five days beyond the final development date that we planned.

Overall, following the 80/20 principle, we did not overload ourselves, we did not over-promise and we
managed to stay on schedule.

6.7 Meeting notes

Throughout the whole project. Meetings notes were taken for every team meeting, meeting with our
supervisor and meeting with our contact person at Norkart. The notes we took in our meetings with our
contact person at Norkart were especially thorough, given how important those meetings were for the
project.

Those meeting notes, along with the issues and the commit history of each repository were crucial for
the redaction of the timeline above.

Those meeting notes proved useful as well in the redaction of this thesis. Our contact person at Norkart
advised us to take good notes along the way to make it easier to write this report. We heeded this advice
and it did prove helpful.

53

Chapter 7

Testing

This chapter describes our work related to testing in the course of the project.

At the outset, we did not use test-driven development. However, we did implement testing processes
right at the start of the project, and implemented automated tests at various points throughout the pro-
ject.

One of the things we learned about testing through the course of the project is that testing is a complete
under the umbrella of software development [92][100][88].

7.1 Requirements

The main requirements that we had regarding testing was that we had to integrate testing in the thesis
one way or another. This was a requirement from the faculty.

Norkart also encouraged us to conduct performance testing on the different data transmission protocol
and methods explored in the theory section to support the choice that we made.

Review requirement

We agreed that each merge requests would be both reviewed and tested by another team member.

This is a requirement that we all followed strictly and consistently throughout the whole project.

Automated tests requirements

We set an open-eded objective to implement unit tests, integrated tests and end-to-end tests. As will be
detailed below, we did not manage to implement end-to-end testing, but we did manage to implement
multiple unit tests and some integration tests.

Unfortunately, we confused code coverage for a testing strategy when it is in fact a metric. As a result of
that, we did not get all of the value that we could have got out of the time that we invested in automated
quality assurance testing.

User testing

We planned to conduct user testing, in partnership with Norkart if our prototype had a user interface
that had all of the core features of the user interface of Komtek’s job handler. Otherwise the investment
would not be worth it because it would not be comparable enough.

We did not reach that point in the development of our prototype. But it did not prevent Vebjørn, our
contact person at Norkart to give us frequent feedback in the course of the whole project. He also con-
ducted two thorough review of our user interface in the course of the project, which will be detailed
below.

54

7.2 Design

Backend

We implemented the following testing architecture in the backend project:

Figure 7.1: 2nd backend test architecture design

In this architecture, each type of tests are in their own project. For the unit tests, the project mimics the
same architecture as the main project. For integration tests, due to technical limitations that is detailed
in the implementation part, every tests had to be kept together.

In this architecture, the design of the tests themselves followed an object-oriented approach. A class
was created for each group of tests, for example for each controller. Attributes were created for data that
was used by multiple tests. Each method of the class was one specific test.

Each test followed the 3 following steps:

• Arrange

• Act

• Assert

In the arrange phase, all the necessary variables and mocks are created.

In the act phase, what is to be tested is run. Namely the relevant method of the tested class.

In the assert phase, various assertions are run on the output of the test. These assertions are the tests
themselves. One test method can contain multiple assertions.

For the integration tests, the tests had the same architecture, although it was only one test class. So the
class contained tests for multiple controllers and services.

This project architecture is recommended by the Microsoft community for testing object-oriented web
API in Dotnet [101].

Frontend

55

For the frontend, the various components were tested. Each component had their own separate file, and
each component had a separate test file that contained one or many tests for that component. The test
file had the same name as the file of component itself, with ‘.test’ added at the end.

In one instance, a file containing constant variables was mocked to bypass the call to an environment
variable. This was a technical requirement, but a ‘__mock__’ folder was created next to the relevant file,
and a mocked file with the same name was inserted in the ‘__mock__’ folder.

It looked as follows:

Figure 7.2: Frontend test architecture design

This architecture matches what has been taught in the Cloud Technologies course. This architecture
was also recommended by this ressource: [19]

The tests followed the same ‘arrange, act & assert’ structure as for the backend.

7.3 Use in CI/CD pipeline

Build test

A CI/CD pipeline was setup at the start of the project for both the backend and the frontend. In the
backend, it was running on the development branches before being merged. In the frontend, it was
running on every branch on both versions. The project was built before being deployed. Although this
was most likely not needed. Everytime the pipeline was triggered, a build test was performed.

Implementing the build test in the pipeline was relatively easy, and once implemented, it operated for
the whole duration of the project at every push to any branch, both in the backend and the frontend.

Once the use of the Firebase Authentication service was implemented, a challenge came up. For the
application to be able to use this service, it requires a JSON file that acts as an authentication key. This
file cannot be in the repository because it is a secret. However, it is too big to be inserted as a CI/CD
variable through the GitLab user interface. The solution was to insert en encrypted file in the repository,
insert the decryption phrase as a CI/CD variable through the GitLab user interface, and have the pipeline
decrypt the file [103] before building the application.

Running automated tests

Unit tests were implemented early in the backend. They were run by the CI/CD pipeline in the same
way as the build test.

Tests failed when we made changes to the code. This helped us to insure that the changes we made were
intentional. Testing parts of a software that often change is a good practic [87].

For the frontend, once implemented, automated tests were run in the CI/CD pipeline in the same way
as the build test.

56

7.4 Test processes

Even though we had a CI/CD pipeline that ran automated tests, we all did extensive manual testing
before opening a merge request right from the start of the project. Another team member would do the
same when reviewing a merge request.

This process was the main quality assurance system in place throughout the project. The use of auto-
mated tests never changed that process.

Manual testing became longer as new features were added.

Because we aimed to have a high amount of tests, we thought the best was to implement multiple unit
tests. The implemented unit tests only insured that the controllers returned the appropriate response
code and that the methods of the different services returned the proper type. It did not reduce in any
way our need to do manual testing when new changes were made.

What would have been the right approach would have been to identify a use-case and test it thoroughly.

The most frequent use-case was to log in, click on a job in the job page, fill the form and submit it. When
the real-time features were implemented, each feature was also tested with multiple users.

What would have been better would have been to have a some unit tests for that process, some integ-
rated tests and one end-to-end test. This would have reduced our need for manual testing.

What added to this mistake is that unit tests on the Websocket controller and in the frontend compon-
ents were especially challenging. They took a lot of time, for little value.

At the end of the project, because we favored volume and coverage over use-cases, we had a lot of unit
tests for a lot of the backend and for every component in the frontend, some integrated tests in the
backend and no end-to-end tests.

As a general approach, the priority was to produce the collaboration features. Automated tests were
worked on when we were either on or ahead of schedule. Because of that, most of the tests were imple-
mented at the end of the project. This also reduced the value that we got out of the tests.

However, it definitely had a significant learning value because it made us venture deeper into what is a
complete field of software development.

We did not really assess different tools and technologies in the field. We spent most of our time learning
how it was done. We followed these two resources that were comprehensive and beginner friendly:
[87][18]. We used the design and tools they recommended.

7.5 Implementation

Use of ChatGPT

Because testing was new and challenging, we used ChatGPT tools to generate code. A significant amount
of code for testing is code that has been obtained by ChatGPT, either modified or not.

For the Websocket controller, it was used both for syntax and logic. What was different for the Websocket
controller was that, for effectiveness and limiting the length of the code, one of the tests tested multiple
messages received by the controller. The test acted as a loop where each iteration meant one different
message received. This loop logic was implemented with the help of ChatGPT, but it is not ChatGPT that
gave the idea.

We made sure to understand all of the code produced by ChatGPT.

Tools used for testing in the backend

As recommended by [87], we used the test explorer provided by Visual Studio. Its interface is of very
good quality:

57

Figure 7.3: Test explorer of Visual Studio

The explorer can identify every test and organize them by the folders in which they are located in a
project. Failed tests are also very easy to locate:

Figure 7.4: Test explorer of Visual Studio with failed tests

Another interesting feature that the tests can be run individually:

58

Figure 7.5: Inline test interface of Visual Studio

The Xunit package

All of the packages that we used for testing in the backend were the ones recommended by [87]. We did
not look further, as we were mostly learning something completely new.

The main package for unit testing that was used is the Xunit package [110]. With this package, the user
only needs to insert the attribute ‘[Fact]’ above a test method of the test class for it to be detected by the
test explorer and the ‘dotnet test’ command.

When it comes to the classes containing the unit tests, variables that are used in multiple tests are inser-
ted in the class as attributes and initialized in the constructor. Others are created in each tests.

The FakeItEasy package

This package is used to mock classes for unit testing[34].

This package allows to mock only the required methods of an interface instead of create a full mock
class. The return values of the relevant methods are set in advance and then inserted in the class to be
tested.

A lot of the interfaces that had to be mocked have asynchronous methods. Those methods returned
an object called ‘Task’ or a templated ‘Task’ such as ‘Task<Job>’. ChatGPT was used to find out which
syntax had to be used to return either one. The return value is respectively ‘Task.CompletedTask’ and
‘Task.FromResult(job)’.

As mentioned earlier, the unit testing of the Websocket controller was especially challenging because
one of the tests acted as a loop where different outcomes were tested. Mocking was especially challen-
ging in this case.

For the looping Websocket test we used ChatGPT to find out which object to mock and how to insert it
in the controller.

First, a WebSocket object had to be mocked. Then an object called a WebSocketManager had to be
mocked as well. One method and one attribute from this object had to be mocked: the ‘AcceptWebSock-
etAsync()’, which had to return the mocked WebSocket object and the ‘IsWebSocketRequest’ attribute,
which had to return true.

An HttpContext object [102] then had to be mocked.

The ‘WebSockets’ attribute of the HttpContext class had to be mocked to return the mocked WebSock-
etManager.

Lastly, the http context had to be inserted in an instance of the controller that had to be tested. This
instance could not be a mock because it was the tested class.

ChatGPT provided an example that used an object initializer[71] and assigning the ‘ControllerContext’
attribute.

This setup was common with other unit tests of the Web socket controller. All those 3 objects had to be

59

mocked. However, some unit tests had different configurations.

When it came to the testing part, the Websocket endpoint contains a loop that listens for incoming
messages as long as the connection is opened. So we had to close the connection to end the test.

For the solution to that, ChatGPT pointed to a method from the FakeItEasy package called ‘ReturnsNext-
FromSequence()’ that returned the provided values in sequence such as ‘ReturnsNextFromSequence(Open,Closed)’.

This also had to be done for the different mock messages received by the controller. For that, the ‘Re-
ceiveAsync’ method had to be mocked in sequence.

For that, ChatGPT proposed using the ‘ReturnsLazily()’ method of the FakeItEasy package. We created
a list of message to received. An enumerator for the list was fetched. The enumerator begins before the
first element in the list. Everytime the ‘ReturnsLazily()’ function was invoked, the enumerator would
take a step, and therefore provide the next message in the list.

The last challenge faced when mocking the Websocket controller came from testing a closing Websocket
connection. The ‘WebSocketReceiveResult’ object returned by ‘ReceiveAsync’ method needs to return a
‘WebSocketCloseStatus’. We looked in the source code and found one constructor in which such para-
meter could be directly inserted.

Fluent assertions

Fluent assertions is a package that provides extension methods that allow to run assertions in one line
of code [42]. A multitude of different assertions are offered.

We did not research for other potential assertion frameworks, we instead focused on learning how to use
this framework.

Microsoft.AspNetCore.TestHost & Microsoft.AspNetCore.Mvc.Testing package

The Microsoft.AspNetCore.TestHost package is used to create an in-memory instance of the application
to be tested as well as a test server that will be used to send requests to the tested application [53].

Those are for integration tests.

With those packages, integration tests can be performed with the ‘dotnet test’ command without need-
ing to run the application before running the tests.

The other main advantages of those packages is that the test server can be customized. For example, it
can redirect to another database [53].

The basic class for creating an instance of the main application and of the test server is the ‘WebApplic-
ationFactory’. This class is templated with the class that contains the application that is tested. In our
case, it is the ‘Progam’ class.

Our integration tests are mainly based on those two resources [53][25]. The second resource recommen-
ded using a dedicated database for integration tests in order to provide more predictability to the tests.
This requires customization of the main application for integration testing.

The way to achieve this is to create a new class that inherits the ‘WebApplicationFactory<Program>’
class, and have the class override the ‘ConfigureWebHost’ method.

In our case we created a new collection in our database to which we pointed to for the test instance.

To be able to change the configuration of a class only for test purposes, the ‘builder.ConfigureTestServices()’
method needs to be used. This method comes from the ‘Microsoft.AspNetCore.TestHost’ package.

The test class for the integration tests is implemented in the same way as for unit tests except that the
common attributes differ. There is an application variable, which is the in-memory application server
and the test server. Out of this application variable, an HTTP client is created. It is with this client that
the various endpoints of the application are called. The other step to take in our case is to fetch a bearer
token to access the secured endpoints. At the same time, it is an opportunity to test the token fetching
endpoint.

In implementing the above, ChatGPT was used to help find the proper syntax.

60

Some of the tests called more then only one endpoints. For example, to test the endpoint fetching a
single job, a job id was needed. For that, the endpoint to fetch all the jobs in the database was used, and
then the id of the first job in the list was used to test the endpoint fetching only one job by its id.

For all of the tests, some job data needed to be in the database. To insure that, a helper function calling
the endpoint creating 20 jobs was used. At the end of all the tests, a destructor method was implemented
with the ‘IDisposable’ interface. This method called the endpoint deleting all the jobs in the database.

Integration testing was easier to implement because of the absence of any mocking.

Tools used for testing in the frontend

Jest

Jest is a package that comes with every React project. It is the package that locates tests and runs them
when running the ‘npm run test’ command.

The tests run quite slowly compared to the tests being run in the backend.

We used the Vite as the build tool of the frontend. One testing framework that can be used with Vite is
the Vitest framework [106]. Vitest is reportedly more performant than Jest [35]. This is the tool that we
should have used instead of Jest. But we instead focused on learning how to implement automated tests
and therefore followed the recommendations of the resource that we found on the topic [18].

Because we used Vite, the setup presented in our main resource had to be adapted to the use of Vite. For
that, we used this resource: [6].

The first major challenge was the presence of style files such as css files, svg files and other media files
in the codebase. This was causing errors when running the tests. The solution to this was to use what
is called a module mapper in the Jest configuration file. What it does is that, when Jest encounters a file
that is mapped, it will ignore the file and instead use the module to which it is mapped [6] [4].

The second issue was that, when running tests, a typescript error was returned. The issue came from the
fact that the Typescript configuration file needed to include a typescript file that imported the ‘jest-dom’
module [6].

React Testing Library

This is the library used to implement the tests themselves.

We also took help from ChatGPT for mocking.

Hooks and other function that were used inside a component had to be mocked at the top of the file
with the ‘jest.mock()’ with the path to the hook as parameter and a function that would return an object
containing the mocked values.

To mock a function that had to be inserted in a component as a prop, we learned, through ChatGPT, to
use the ‘jest.fn()’ function. If the mock function had to return a value, we learned to use, also through
ChatGPT, ‘jest.fn().mockReturnValue()’.

The last major challenge we faced with mocking was that, in our file storing constants variables, one
of them was fetching an environment variable. This was causing errors with Jest. We took help from
ChatGPT and this resource: [84]. The solution was to mock the whole file, and remove the use of
the environment variable in the mocked file. The way to implement is solution is to insert a folder
nameed ‘__mocks__’, at the same location in the project as the file that needs to be mocked. Inside the
‘__mocks__’ folder, the mock file must have the same name as the mocked file.

To be able to redirect to this mock file in a test when needed, the ‘jest.mock(<path to the file>);’ function
must be inserted at the top of the test file.

A lot of the unit tests are to ensure that component simply renders. The way to achieve that is to render
the component and assert the presence of an element in the rendered code. There are multiple ways to
query those elements:

1. getByRole - the roles attributed to HTML elements to help screen readers

61

2. getByLabelText

3. getByPlaceholderText

4. getByText

5. getByDisplayValue

6. getByAltText

7. getByTitle

8. getByTestId [20]

The priority of queries follow the same order. Queries methods are prioritized this way because the goal
is to test the component from a user perspective.

It can be argued that we implemented integration tests in the frontend because we unit tested page
components. However, even those tests involved mocking.

7.6 User Testing

As described in the development process chapter, two thorough review were performed by our contact
person at Norkart. The first on March 1 and the second on March 21. The feedback mainly concerned
the user interface, which weere all implemented.

7.7 Refactoring

One major refactoring of the Websocket controller was attempted to make it more readable and less
monolithic. It failed. The changes introduced errors. And most of the errors were not errors that Intelli-
sense could detect.

This experience underscored how important a test suite is to ensure that changes to not introduce un-
intended changes.

62

Chapter 8

Deployment

This chapter describes how our application was deployed, both for the backend and the frontend.

Deployment has been very successful because it has been automated, right at the start of the project.
Right at the beginning of the project, we completed the last step of a project.

Through automation, the deployment has been continuous. As a result, the first deployed version was
very rudimentary. It was basically the shell of a project. However, as the project evolved, so did the
deployed version.

It was also a good opportunity right at the start of the project, because the development of the applic-
ation itself was not yet at full pace. We were still in the period of setting up the project. It would have
been much more difficult and less justifiable to set up automatic deployment later in the project when
the priority was the development of collaboration features.

At the outset, not every process is worth automating. If a process takes more time to automate then the
time saved through the automation, it is not worth it. The table below shows the time a repetitive tasks
takes over a period of 5 years:

Figure 8.1: Accumulated time of a repetitive task over 5 years

Source: [48]

63

Once the automatic deployment had been implement, everytime the main branch in both the backend
and frontend repository would be modified, there would be a deployment of the main branch. There
has only been 1 manual deployment in the course of the project. It was the deployment of the frontend
to Firebase.

In our case, throughout the project 60 merges were made in the backend and 61 merges were made in
the frontend. The amount of deployment is a little bit less because there has been some merges before
done before the automated deployment was implemented. In the backend and the frontend, 5 merges
were not automatically deployed.

There has therefore been around 111 automatic deployments. Manual deployments would have in-
volved, for the backend, pushing the project to a GitHub repository. This would have been done by
running a couple of commands in the terminal. In the frontend, it would have been done by pushing
the project to Firebase. This would have been done by running one command in the terminal. 1 minute
per deployment, both in the backend and frontend, would be a conservative estimate. This would mean
1 hour and 51 minutes. However, it is important to not that, if we did not have automatic deployment,
we would most likely have deployed less often.

Looking at the history data of our Gitlab instances for both the backend and the frontend, it took a total
of approximately 6 hours to set up the automatic deploy of the backend and frontend.

It was therefore not worth it for us to automate the process.

However, it is worth noting that this was our second time implementing an automatic deployment pro-
cess, having done it before only in the Cloud Technologies course. We had to do research and we had to
do debugging as well.

Another aspect to consider is that, an automatic deploy was triggered at every change of the main branch
of each repository. This is not desirable, because if a small change is done, or perhaps even just com-
ments are added, it is not worth to trigger a deploy.

Releases should have been used instead [60]. However, given the fact that we only developed a prototype
over only 4 months, the extra tasks that come with managing releases would not have been worth it. It
would have been too much for the size of our project.

Creating a release is also usually a manual process, although the deployment of a release can be auto-
mated. So implementing a release system would have essentially brought us back to manual deploy-
ment.

And this is another area where we got value out of an automated process. We had the assurance that
the latest version of our main branches was always deployed. Once the automated deployment was
implemented, we did not have to think about it again throughout the whole project.

Overall, even though automating the deployment process did not give a lot of value for this project, it
was a good learning experience and it was a relief to have the assurance that our changes would be
deployed reliably.

8.1 Design

The backend project is deployed to Render [1] through a GitHub repository and Docker.

The deployment takes place as follows:

1. The main branch of the GitLab instance is mirrored to the main branch of a GitHub repository

2. The main branch of the GitHub repository is pushed to Render

3. Render dockerizes the application with the help of the Docker file in the project. The API is then
deployed.

64

Figure 8.2: Backend deployment diagram

The frontend project is deployed to Firebase Hosting [40] through a CI/CD pipeline.

Figure 8.3: Frontend deployment diagram

8.2 Backend implementation

The reason why Render was chosen was because this platform was used in the Cloud Technologies
course. We were already familiar with it.

However to be able to deploy the API to Render, we had to use a GitHub account. So we decided to
mirror the GitLab Backend repository to a GitHub repository. We learned this method in the Cloud
Technologies course. We choosed this method thinking it was going to be easy and quick. It turned to
be more difficult then expected.

We proceeded with a push mirror. This means that the repository performing the mirror operation is the
mirrored repository. In our case, this is the GitLab repository. The GitLab repository pushes the main
branch to the GitHub repository.

In the GitLab interface to mirror a repository, there is an option to ‘keep divergent refs’. Understanding
what this option meant was actually not straightforward. The default mechanism of a mirror operation
is to delete in the mirroring repository all commits that are not part of the mirrored repository. When
divergent refs are kept, if there is a commit in the mirroring repository that is not part of the mirrored
repository, the diverging commit will not be deleted, the mirror operation will instead fail [79]. We did
not chose this option.

The next step was to chose an authentication method to give the GitLab repository access to the GitHub
repository. The simplest was to use the https address of the GitHub repository, the username and pass-
word. However, it turned out that GitHub no longer allows passwords to be used for this. A personal

65

access token must be used [80]. We had never created such token before, so creating it was actually a
challenge. As of the writing of this thesis, it is done by clicking on the profile picture, going to the set-
tings menu, and then to ‘Developper settings’ which is the last option of the vertical navigation bar, then
clicking ‘Personnal access tokens’ . There was two options of tokens: ‘Fine-grained tokens’ and ‘Tokens
(classic)’. We chosed ‘Tokens (classic)’.

Once this was completed, the next step was to create a Render project. When setting up the project,
using a GitHub or GitLab repository is the default option:

Figure 8.4: Render new project menu

Whenever the selected branch of the repository changes, a redeployment is triggered.

However, Render does not natively support C#. So a Docker image has been used [93]. We chosed to have
Render build the image by inserting a Dockerfile in the repository [28]. We used the Dockerfile provided
by this resource [73], changed the Dotnet version to version 8 and adapted the file to our application.

The use of secrets was very easy with Render. Because both files and variables can be inserted as vari-
ables through Render’s user interface. At this point, what was important was that the variable names be
the same in both GitLab and Render.

A MongoDB database was also set up on MongoDB Atlas [62].

A Redis database was also deployed to Render to be used as a cache by the backend. It was setup entirely
by following the instructions of the user interface of Render. The provided link was then used in the
backend to access the database.

8.3 Frontend implementation

To deploy the frontend, it was decided to use Firebase Hosting because one team member had prior
experience with it.

The main task was to push the project to Firebase through the CI/CD pipeline. The push had to be done
only on a merge request to the main branch. For other cases, only the build test was running.

This is the first version of the ‘.gitlab-ci.yml’ file:

66

Figure 8.5: First version of the CI/CD pipeline file of the frontend

The image to use for a React application is Node: [66].

The commands ‘npm install’ and ‘npm run build’ are provided by this resource: [56].

The command ‘firebase deploy only hosting token $FIREBASE_TOKEN’ can be crafted with the help of
the official Firebase documentation: [39].

For the second action, which is the deployment action, the notation ‘only:refs:main’ is used. This trig-
gers the action only when the event involves the main branch, in our case, a merge to the main branch
[gitlab_ci_onlyrefs]. The notation ‘only:changes:src//’ triggers the action only when there is a change to
the content inside the ‘src’ folder [15]. Unfortunately, this notation is deprecated[gitlab_ci_onlyrefs][15].
In this version, when a branch is merged to the main branch, both actions were running as well. But it
was unnecessary to run the first action.

The proper notation is now to use ‘rules:if:’ and ‘rules:changes:’ [16].

As a result, this became the second version of the ‘.gitlab-ci.yml’ file:

Figure 8.6: Second version of the CI/CD pipeline file of the frontend

As can be seen, multiple CI/CD variables were also used [77].

Finding the proper if statements to insure that the first action is triggered at every push to any branch
and not when merging with the main branch, and vice-versa for the second action, proved to be chal-
lenging. Because of that, ChatGPT was used. The mixture of ChatGPT and the official document worked

67

because those rules do achieve the intended result mentioned above.

.gitlab-ci.yml file of the backend

This was the first version of the .gitlab-ci.yml file of the backend:

Figure 8.7: First version of the CI/CD pipeline file of the backend

It was a test that was running at every event, at every push to any branch and also when a branch was
merged with the main branch, which was not necessary.

This was the second version:

Figure 8.8: Second version of the CI/CD pipeline file of the backend

This version includes a decryption of the Firbase credentials file and the use of if statements along with
the use the CI/CD variables. The if statement in the file prevents the action from running when a branch
is merged to the main branch. This file only builds the application and runs automated tests.

8.4 Choice of tools

For the deployment, we did not thoroughly assess various options. This aspect was not an area of fo-
cus in our thesis. What mattered was to have a deployed version that Norkart could easily access. We
therefore went with the tools with which we had prior experience and with which we were comfortable.

The end result was nonetheless an effective and reliable automatic deployment process.

68

Chapter 9

Conclusion

This chapter reviews if our objectives were achieved, summarizes the reasons behind our choices of
technologies and reviews our project critically under various criteria such as the use of artificial intelli-
gence and sustainable development.

9.1 Results

This assesses if the objectives outlined in the project plan were achieved or not.

Deliverables to Norkart

What was to be delivered to Norkart was a prototype of the job handler of the Komtek system in which
there would be various collaboration features to both help case handlers avoid working on the same job
and to help them working on the same job. The prototype would also include a feature of collaborative
editing and a version conflict solving system. We achieved that.

If possible, our prototype would be a generic implementation what could easily be usable by systems
other then the job handler of the Komtek system.

When it comes to the collaboration feature, those objectives were achieved and we provided Norkart
with multiple possible features that they could implement themselves, including collaborative editing
and version conflict solving.

Our prototype did not replicate exactly every feature of the job handler of the Komtek system. It was a
simplified version. It could therefore be argued that we did not fully achieve our objective there.

The project would have also been more generic if it would have used the HTTP 2 protocol with a server-
sent events architecture. One could therefore also argue there that the generic implementation objective
was not fully achieved.

Benefits for Norkart

The value for Norkart in this thesis is to have a demonstration of how various collaboration feature can
be implemented in the context of a Rest API backend and a single-page application in the frontend,
including features of collaborative editing and version conflict solving.

This objective was achieved with the Websocket tool. The demonstration of those features has been
made with Websockets only. One may argue that having presented solutions with only one technology
is a shortcoming, and that it would have been more valuable to demonstrate other technologies such as
long polling and server-sent events with the use of the HTTP 2 protocol.

The fact that our prototype was a simplified version of the job handler of the Komtek system makes
it such that the features that we developed cannot directly be inserted in the Komtek system. Some
changes would have to be made and the final solution would be more complex then what we developed.
Because of that, one could argue that the demonstration was only partially useful to Norkart.

69

Learning objectives

Our learning objectives have been achieved for the most part. When it comes to the core technologies:
Dotnet and React, we definitely know more now then we did before this thesis. In React, we know more
about conditional rendering depending on whether or not a user is authenticated, the use of bearer
tokens for authentication with Firebase, the use of Websockets, dynamic rendering of components and
so on. For Dotnet, we learned about some of its proprietary features such as top-level statements and
attributes above classes, some related packages used for testing, mocking and asserting, asynchronous
programming and so on.

This acquired knowledge was used to build various real-time features using Websockets on top of an
already existing Rest API in the backend and a single-page application in the frontend. It was also used
to develop collaboration features that both help to avoid multiple case handlers working on the same
job and other features to help multiple case handlers working on the same job.

We learned about testing by having both a manual testing process that we strictly followed and by im-
plementing automated quality assurance tests both in the backend and the frontend. Those automated
tests were continuously used inside a CI/CD pipeline that we implemented in both the frontend and
backend project.

Those features and those automated tests were implemented in a prototype that imitated the job hand-
ling part of the Komtek software of Norkart. This prototype was continuously deployed online with the
help of both GitLab mirroring and GitLab actions.

In our implementation of the real-time features, we tried to have an approach that was as generic as
possible. Throughout our project, we showed that collaboration features based on Websockets can be
integrated in an existing Rest API. Using the HTTP 2 protocol with a server-sent events architecture
would have been even more generic because it would have been even easier to implement on existing
Rest APIs and other servers using the HTTP protocol.

Throughout the whole project, we managed to truly work as a team: we communicated often, team
members had an overview of the whole project, team members reviewed the work of other team mem-
bers and we dared to address questions that were uncomfortable. This was a learning experience as
valuable as the technical achievements, if not more.

The whole process has also been documented thoroughly through issue tracking, version control and
notes for every meeting, among other things.

The objective on which we came short was to develop the project through a sustainable development
perspective. Unfortunately, when working on the nuts and bolts of developing a project, the notion of
sustainable development is a concept that appears to be quite far away from daily tasks. In our case, we
worked on a very narrow and specific process. So integrating notions of sustainable development into
our project appeared to be something quite distant.

9.2 Reasons for our choices of technologies

As outlined in the implementation chapter, for both Dotnet and React, the main reason why we picked
those technologies and their related packages is that it is used by Norkart. Norkart gave us a free choice
but we nonetheless decided to go with the technology they use to maximize the value of our thesis for
them.

For the choice of real-time technology, we did a thorough assessment, as shown by the first section of
the design chapter, because this was the core of the thesis. In the end, we went with what we assessed
to be both the standard and the best practice in the industry: Websockets. For learning purposes, we
decided to use raw Websockets instead of the SignalR package which is the standard for Dotnet. We
unfortunately overlooked the HTTP 2 protocol. This shows how it is not as known as Websockets. We
found out about this technology only at the end of the project.

For version conflict solving, we found the Yjs package based on conflict-free replicated data types. Given
that this method is the best so far and that the package was fairly easy to use, we focused our efforts on

70

learning how to use the package instead of looking at other alternatives.

For other design and implementation decision throughout the project, we went with what was the stand-
ard in the industry to avoid as much as possible ‘self-imposed challenges’ and to benefit from a rich
community support. Also, more generally, a lot of what we worked on was new so a lot of our efforts
went to learning these new fields instead of researching the best tools.

9.3 Use of artificial intelligence

Development tool

When we did not know how to implement something or when it only came down to finding the appro-
priate syntax, we would first try to research it through traditional sources online. When this was not
enough to get our answer or we were not able to transfer the general solution to our specific use-case,
we used ChatGPT.

For example, in C#, we did not know at all how to convert an object datatype to a higher datatype such
as an integer or a string. The object datatype in Dotnet is the root of the type hierarchy. We created a
dictionary to store the Json objects that the backend received via Websocket. But because sometimes,
integers, strings or boolean values would be received, the type of the dictionary was set to string for the
keys and object for the values so that any possible type could be stored in the dictionary. But further in
the code, those values needed to be converted in their specific types to be then sent to a cache database.
We were struggling to find resources online. ChatGPT provided a functioning solution. In this case, we
took code produced by ChatGPT. The solution provided by ChatGPT was to convert the data from object
to Json element, and then use the built-in methods of this type to further convert the value in a string or
in an integer.

In the case of Websocket testing in the backend and testing in the frontend, we understood what needed
to be done after watching tutorials on the matter and we had a good overview of the mechanic of the
frameworks that we were using. But we still struggled with the implementation for our specific use-
cases. We also struggled to find resources related to our specific use-case. We then used ChatGPT and
used the code and syntax it provided. Most of the code for the automated tests of the Websocket con-
troller is syntax that was obtained from ChatGPT. In the frontend, some components contained multiple
variables to mock and some of them were not covered in the tutorial that we followed, and because it
was specific to our use-case, finding further information online was difficult, so ChatGPT was used. So
also in the frontend, a lot of the code for for testing is from ChatGPT, especially for mocking.

We could not assess with great confidence if a functioning solution was also a good quality solution.
However, we knew enough to reject solutions that appeared to be overly complicated.

It was overall very useful when traditional sources could not solve our problem.

It did not manage to solve every problem. For example, there was only little information online about
the Yjs package and so ChatGPT was not providing good answers on it. Thankfully, after a good amount
of research, we found the answer in a community forum.

Research tool

We also used it to ask purely theoretical questions. However, we always tried to verify the given inform-
ation online. For example, in one case, we weren’t sure if the code to fetch an environment variable in
Javascript would work in the same way to fetch an environment variable on a computer or in a GitLab
CI/CD pipeline, or if we needed to take any other additional step to insert the GitLab variable in the
CI/CD pipeline. We asked this specific question to ChatGPT. The provided answer was that it worked in
exactly the same way and that no additional step was needed to make it work in the CI/CD pipeline. We
found out it was accurate when we ran the pipeline for the first time after implementing an environment
variable.

Review tool

We used ChatGPT to review our project plan and this report. The reviews gave general advice on the

71

grammar and on the structure. We implemented the advice we found to be relevant. We did the same for
this thesis report. For the structure, we received interesting advice such as supporting our explanations
with flow charts for example. For grammar, we already knew most of the provided advice. For example,
among other things, it advised us to ensure that we consistently use the same verb tense in a paragraph
or section. This is something that we already knew. We no longer have the review of the plan, but the
review for this report is in appendix.

9.4 Sustainable development assessment

Sustainable development is ‘development that meets the needs of the present without compromising
the ability of future generations to meet their own needs’[94].

To assess if something is sustainable, it has to be examined against 3 factors:

1. It’s social impact

2. It’s economic impact

3. It’s environmental impact [94]

Social impact

Komtek’s job handler digitalizes public services. This is done to make them more effective. Making
public services more effective is something that can only be beneficial socially because the government’s
broad mission is to serve the common good. The currently aging population in Norway [32] makes it
even more relevant because it creates worker shortages.

The idea of avoiding case handlers completing the same job multiple times falls into this notion of mak-
ing the process more effective and ultimately, being able to do more with less.

Economic impact

There is the expression that ‘time is money’. When the Suez canal got blocked by a cargo ship in 2021,
the estimated cost was 6.7 American dollars per minute [82]. This illustrates the fact that there is an
economic loss if processes hold up economic transactions. The opposite to that is that there is therefore
an economic benefit to having those processes go as quickly as possible.

In the case of Komtek’s job handler, if a real estate promoter needs to have electricity meters installed in
his building before he can begin to sell apartments, a delay in having them installed could potentially
delay his sales. So the faster this process goes, the better. a case handler that avoids completing an
already completed job can work on another job instead. A gain of effectiveness is a gain of speed. And
there is an economic benefit to having faster processes.

Environmental impact

Internet traffic, such as watching a video, sending an email and sharing pictures has an environmental
impact. Among other things, it has a carbon footprint [45]. Komtek is a web application. It is used
through the internet.

Reducing inefficiencies in the application therefore has a positive environmental impact. The process
that we worked on most certainly does not have a high carbon footprint. However, scaled at the amount
of Kometk users throughout Norway, the improvement that we worked on may actually have a mean-
ingful impact on the environment.

9.5 Critical review

The aspect where the thesis falls short the most is that it used Websocket instead of the HTTP 2 protocol
for the implementation of the real-time collaboration features. Using HTTP 2 would have adapted bet-
ter to a Rest API, it would have been more modular and would have been less complex to implement

72

in the frontend because it would have allowed to have multiple listeners on a single TCP connection.
Because of that single TCP connection, the HTTP 2 protocol provides the same technical advantage as
the Websocket protocol.

The second aspect where our thesis falls short is that our prototype did not reproduce all of the features
of the Komtek’s job handler. Our prototype did not have ‘sub-jobs’ in a job page. Because of that, the
real-time collaboration features that we implemented cannot be inserted in the Komtek system without
additional work and additional changes. Because of that, we also did not conduct formal user tests
because it was not worth the investment of soliciting a customer support specialist at Norkart.

9.6 New projects and further work

A new project would be to reproduce exactly the same project with the use of the HTTP 2 protocol.

Further work would be to integrate in our prototype ‘sub-jobs’ in our job page. Such that the job page
would contain distinct groups of elements. Each group, or ‘sub-job’, would then be completed and when
every sub-job would be completed, the job itself would be considered completed.

Another step would be to have extensive user testing to identify which features works best and improve
the identified features according to the user feedback, at which point the work to integrate those features
in the job handler of Komtek could start.

9.7 Asessment of the group work

Introduction

Overall, our group work has been very effective. We put in place processes right at the start and, above
all, we consistently followed them. Those processes made us effective. The fact that we did not over-
promise and kept reasonable objectives also gave us the time to have proper group work.

Team member contributions

The way the tasks were distributed at the start of the thesis were for the most part followed throughout
the project.

Arnaud took care of the administrative aspects of the thesis and worked on the backend. However, he
also worked with Websockets, and this involved work in both the frontend and the backend. At the end
of the project, he implemented the dynamic rendering of the elements of a job in the frontend. He also
implemented the automated tests, both in the backend and the frontend. At the start of the project, he
set up the automatic deployment and the CI/CD pipeline in both repositories.

Sergei was in charge of the backend. He set up the API in the backend and did multiple refactoring of
the codebase to keep the architecture in accordance with best practices. He set up the Websocket infra-
structure, which involved work in both the backend and the frontend. He also implemented multiple
real-time collaboration features. This also involved work in both the backend and frontend. He also
implemented some features in the frontend such as the authentication feature and requiring a user to
be authenticated before being allowed to enter the main job list page and a job page.

Ghais was in charge of the frontend. He developed all the components of the frontend.

There has been a difference in the amount of hours worked on the thesis between each member, as can
be seen in appendix. However, each team member brought unique contributions and expertise to the
table in such a way that each member had a big impact on the final product. We could not have reached
the final product that we handed in without the contribution of everyone.

Arnaud could give significant time to the thesis. Sergei had prior experience with Dotnet and React and
Ghais has extensive experience with React. Also because of this expertise, Sergei usually reviewed merge
requests of both Ghais and Arnaud. Ghais usually reviewed Sergei’s merge requests in the frontend when

73

it was not about Websockets. Arnaud usually reviewed Sergei’s merge requests in the backend and in the
frontend when it was about Websockets.

9.8 Project-based work

With the structure that we established right at the start and followed consistently throughout, we aimed
to conduct this thesis as much as possible as a development project would be conducted in a work set-
ting. We believe that we succeeded for the most part. We managed to bring together different expertise
and truly rely on each other.

The project had to have enough work for a group of three. Reading the project description for the first
time felt like we had a lot of challenging work ahead of us. However, going at it step by step, objective by
objective, it proved to be definitely manageable. There is always a form of risk when moving forward in a
project, especially when working with something completely new, which was the case for everything that
had to do with real-time collaboration features. What if we try something and it doesn’t work? However,
with our approach of starting with what is easiest and building step by step, we could comfort ourselves
that if we did something that did not work, we had something to fall back on.

9.9 Closing statement

Throughout this project, we believed that we acquired completely new knowledge on real-time collab-
oration in web applications with the use of Websockets. We also acquired new knowledge on version
conflict solving in collaborative editing, including theoretical knowledge about how the main algorithms
in the field work.

This was done while following a process that meets the best practice standard of the industry at the time
of this thesis. Above all, we conducted this project as a real team by communicating often and daring to
raise and welcome uncomfortable issues.

Finally, we believe that we managed to deliver value to Norkart that made their investment in this thesis
worth it even though we do recommend exploring the use of a server-sent events architecture with the
HTTP 2 protocol as a next step in the project.

74

Bibliography

[1] Render. URL: https://render.com/ (visited on 05/06/2024).

[2] 3-tier-architecture. IBM. URL: https://www.ibm.com/topics/three-tier-architecture.

[3] 9.2 Server-sent events. HTML Living Standard. Apr. 2024. URL: https://html.spec.whatwg.org/
multipage/server-sent-events.html.

[4] Ani Alaverdyan. Importing images breaks jest test. Stack Overflow. Feb. 2019. URL: https://stackoverflow.
com/questions/46898638/importing-images-breaks-jest-test (visited on 05/05/2024).

[5] Rasmus Appelqvist and Oliver Örnmyr. ‘Performance comparison of XHR polling, Long polling,
Server sent events and Websockets’. In: 2017. URL: https://api.semanticscholar.org/CorpusID:
198960652.

[6] Teyim Asobo. Effortless Testing Setup for React with Vite, TypeScript, Jest, and React Testing Lib-
rary. Jan. 2024. URL: https : / / dev . to / teyim/ effortless - testing - setup - for - react - with - vite -
typescript-jest-and-react-testing-library-1c48 (visited on 05/05/2024).

[7] Automatic Revalidation. SWR. URL: https://swr.vercel.app/docs/revalidation#revalidate-on-
interval.

[8] await operator - asynchronously await for a task to complete. Microsoft Learn. Jan. 2024. URL:
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/operators/await (visited
on 05/04/2024).

[9] Brené Brown. University of Houston. Graduate College of Social Work. URL: https://www.uh.
edu/socialwork/about/faculty-directory/b-brown/ (visited on 05/09/2024).

[10] Richard Brock. Collabora Online Development Edition 2.0 released. Collabora. Nov. 2016. URL:
https://www.collaboraoffice.com/press- releases/collabora-online-development-edition-2-0-
released/.

[11] Brené Brown. Courage and Vulnerability Part I: Definitions and Myths. 2020. URL: https://brenebrown.
com/resources/courage-and-vulnerability-part-i-definitions-and-myths/ (visited on 05/09/2024).

[12] Brené Brown. Courage Over Comfort. Mar. 2018. URL: https://brenebrown.com/articles/2018/
03/13/courage-comfort-rumbling-shame-accountability-failure-work/ (visited on 05/10/2024).

[13] Microsoft 365 help for small businesses. Best practices for collaborating in Microsoft 365. Youtube.
2024. URL: https://www.youtube.com/watch?v=7by2fPfaezA&list=PLnWjfDdQkUQSZVpTGdy6homDyZ_
RbA5SJ.

[14] CI/CD YAML syntax reference. GitLab. URL: https://docs.gitlab.com/ee/ci/yaml/#onlyrefs--
exceptrefs (visited on 05/07/2024).

[15] CI/CD YAML syntax reference. GitLab. URL: https://docs.gitlab.com/ee/ci/yaml/#onlychanges--
exceptchanges (visited on 05/07/2024).

[16] CI/CD YAML syntax reference. GitLab. URL: https://docs.gitlab.com/ee/ci/yaml/#workflowrules
(visited on 05/07/2024).

[17] CODE. Collabora Online Development Edition. Collabora. URL: https ://www.collaboraoffice .
com/code/.

[18] Codevolution. React Testing Tutorial. Youtube. 2023. URL: https://www.youtube.com/playlist?
list=PLC3y8-rFHvwirqe1KHFCHJ0RqNuN61SJd (visited on 05/03/2024).

75

https://render.com/
https://www.ibm.com/topics/three-tier-architecture
https://html.spec.whatwg.org/multipage/server-sent-events.html
https://html.spec.whatwg.org/multipage/server-sent-events.html
https://stackoverflow.com/questions/46898638/importing-images-breaks-jest-test
https://stackoverflow.com/questions/46898638/importing-images-breaks-jest-test
https://api.semanticscholar.org/CorpusID:198960652
https://api.semanticscholar.org/CorpusID:198960652
https://dev.to/teyim/effortless-testing-setup-for-react-with-vite-typescript-jest-and-react-testing-library-1c48
https://dev.to/teyim/effortless-testing-setup-for-react-with-vite-typescript-jest-and-react-testing-library-1c48
https://swr.vercel.app/docs/revalidation#revalidate-on-interval
https://swr.vercel.app/docs/revalidation#revalidate-on-interval
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/operators/await
https://www.uh.edu/socialwork/about/faculty-directory/b-brown/
https://www.uh.edu/socialwork/about/faculty-directory/b-brown/
https://www.collaboraoffice.com/press-releases/collabora-online-development-edition-2-0-released/
https://www.collaboraoffice.com/press-releases/collabora-online-development-edition-2-0-released/
https://brenebrown.com/resources/courage-and-vulnerability-part-i-definitions-and-myths/
https://brenebrown.com/resources/courage-and-vulnerability-part-i-definitions-and-myths/
https://brenebrown.com/articles/2018/03/13/courage-comfort-rumbling-shame-accountability-failure-work/
https://brenebrown.com/articles/2018/03/13/courage-comfort-rumbling-shame-accountability-failure-work/
https://www.youtube.com/watch?v=7by2fPfaezA&list=PLnWjfDdQkUQSZVpTGdy6homDyZ_RbA5SJ
https://www.youtube.com/watch?v=7by2fPfaezA&list=PLnWjfDdQkUQSZVpTGdy6homDyZ_RbA5SJ
https://docs.gitlab.com/ee/ci/yaml/#onlyrefs--exceptrefs
https://docs.gitlab.com/ee/ci/yaml/#onlyrefs--exceptrefs
https://docs.gitlab.com/ee/ci/yaml/#onlychanges--exceptchanges
https://docs.gitlab.com/ee/ci/yaml/#onlychanges--exceptchanges
https://docs.gitlab.com/ee/ci/yaml/#workflowrules
https://www.collaboraoffice.com/code/
https://www.collaboraoffice.com/code/
https://www.youtube.com/playlist?list=PLC3y8-rFHvwirqe1KHFCHJ0RqNuN61SJd
https://www.youtube.com/playlist?list=PLC3y8-rFHvwirqe1KHFCHJ0RqNuN61SJd

[19] Codevolution. React Testing Tutorial - 13 - Filename Conventions. Youtube. 2023. URL: https://
www.youtube.com/watch?v=YZtNLuwGCMA&list=PLC3y8-rFHvwirqe1KHFCHJ0RqNuN61SJd&
index=14 (visited on 05/02/2024).

[20] Codevolution. React Testing Tutorial - 27 - Priority Order for Queries. Youtube. 2023. URL: https://
www.youtube.com/watch?v=_e0Jhf0lR2w&list=PLC3y8-rFHvwirqe1KHFCHJ0RqNuN61SJd&
index=27.

[21] Szymon Cofalik and Anna Tomanek. How collaborative editing drove CKEditor 5’s architecture.
CKEditor. Nov. 2023. URL: https://ckeditor.com/blog/lessons-learned-from-creating-a-rich-text-
editor-with-real-time-collaboration/.

[22] Comparison of the usage statistics of HTTP/2 vs. HTTP/3 for websites. W3Techs. Web Technologies
Survey. Apr. 2024. URL: https://w3techs.com/technologies/comparison/ce-http2,ce-http3.

[23] CSS. Wikipedia. URL: https://en.wikipedia.org/wiki/CSS.

[24] Adrian Defus. The Myers Diff Algorithm and Kotlin Observable Properties — how to connect them
to make a developer’s life easier. Medium. 2019. URL: https://medium.com/skyrise/the-myers-
diff-algorithm-and-kotlin-observable-properties-69dfb18541b.

[25] Tim Deschryver. How to test your C# Web API. Sept. 2023. URL: https://timdeschryver.dev/blog/
how-to-test-your-csharp-web-api (visited on 05/04/2024).

[26] TL;DR // JavaScript codecasts for working devs. Conflict-Free Replicated Data Types (CRDT) for
Distributed JavaScript Apps. Youtube. 2020. URL: https://www.youtube.com/watch?v=M8-
WFTjZoA0.

[27] DI container. Microsoft. URL: https :// learn .microsoft .com/en- us/dotnet/core/extensions/
dependency-injection.

[28] Docker on Render. Render. URL: https://docs.render.com/docker#docker-builds-on-render.

[29] dotnet. What is .NET? [Pt 1] | .NET for Beginners. Youtube. 2024. URL: https://www.youtube.
com/watch?v=6BcPIvVfVAw#t=18s.

[30] Charles Duhigg. What Google Learned From Its Quest to Build the Perfect Team. New-york Times.
Feb. 2016. URL: https://www.nytimes.com/2016/02/28/magazine/what-google-learned-from-
its-quest-to-build-the-perfect-team.html (visited on 05/09/2024).

[31] Amy Edmondson. Psychological Safety and Learning Behavior in Work Teams. Johnson Graduate
School of Management, Cornell University. June 1999. URL: https://web.mit.edu/curhan/www/
docs/Articles/15341_Readings/Group_Performance/Edmondson%20Psychological%20safety.
pdf (visited on 05/09/2024).

[32] Eldrebølgen skaper stor usikkerhet for helsesektoren. Statistisk sentralbyrå. URL: https://www.ssb.
no/arbeid-og-lonn/sysselsetting/artikler/eldrebolgen-skaper-stor-usikkerhet-for-helsesektoren.

[33] Facebook / React. Releases. GitHub. URL: https://github.com/facebook/react/releases?page=10.

[34] FakeItEasy. The easy mocking library for .NET. URL: https :// fakeiteasy.github . io/ (visited on
05/04/2024).

[35] Tomas Fernandez. Vitest: Replacing Jest on Vite Projects. Apr. 2024. URL: https://semaphoreci .
com/blog/vitest#:~:text=Since%20Jest%20doesn’t%20natively,layers%20of%20complexity%
20and%20configuration.&text=Vitest%2C%20on%20the%20other%20hand,speeding%20up%
20the%20testing%20process. (visited on 05/05/2024).

[36] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software Architec-
tures. University of California - Irvine. 2000. URL: https://ics.uci.edu/~fielding/pubs/dissertation/
top.htm.

[37] Roy Thomas Fielding. CHAPTER 5 - Representational State Transfer (REST). University of Califor-
nia - Irvine. 2000. URL: https://ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#
sec_5_2.

[38] FIGMA DESIGN. Figma. URL: https://www.figma.com/design/.

[39] Firebase CLI reference. Firebase. URL: https://firebase.google.com/docs/cli/ (visited on 05/07/2024).

[40] Firebase Hosting. Firebase. URL: https://firebase.google.com/docs/hosting (visited on 05/06/2024).

76

https://www.youtube.com/watch?v=YZtNLuwGCMA&list=PLC3y8-rFHvwirqe1KHFCHJ0RqNuN61SJd&index=14
https://www.youtube.com/watch?v=YZtNLuwGCMA&list=PLC3y8-rFHvwirqe1KHFCHJ0RqNuN61SJd&index=14
https://www.youtube.com/watch?v=YZtNLuwGCMA&list=PLC3y8-rFHvwirqe1KHFCHJ0RqNuN61SJd&index=14
https://www.youtube.com/watch?v=_e0Jhf0lR2w&list=PLC3y8-rFHvwirqe1KHFCHJ0RqNuN61SJd&index=27
https://www.youtube.com/watch?v=_e0Jhf0lR2w&list=PLC3y8-rFHvwirqe1KHFCHJ0RqNuN61SJd&index=27
https://www.youtube.com/watch?v=_e0Jhf0lR2w&list=PLC3y8-rFHvwirqe1KHFCHJ0RqNuN61SJd&index=27
https://ckeditor.com/blog/lessons-learned-from-creating-a-rich-text-editor-with-real-time-collaboration/
https://ckeditor.com/blog/lessons-learned-from-creating-a-rich-text-editor-with-real-time-collaboration/
https://w3techs.com/technologies/comparison/ce-http2,ce-http3
https://en.wikipedia.org/wiki/CSS
https://medium.com/skyrise/the-myers-diff-algorithm-and-kotlin-observable-properties-69dfb18541b
https://medium.com/skyrise/the-myers-diff-algorithm-and-kotlin-observable-properties-69dfb18541b
https://timdeschryver.dev/blog/how-to-test-your-csharp-web-api
https://timdeschryver.dev/blog/how-to-test-your-csharp-web-api
https://www.youtube.com/watch?v=M8-WFTjZoA0
https://www.youtube.com/watch?v=M8-WFTjZoA0
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://docs.render.com/docker#docker-builds-on-render
https://www.youtube.com/watch?v=6BcPIvVfVAw#t=18s
https://www.youtube.com/watch?v=6BcPIvVfVAw#t=18s
https://www.nytimes.com/2016/02/28/magazine/what-google-learned-from-its-quest-to-build-the-perfect-team.html
https://www.nytimes.com/2016/02/28/magazine/what-google-learned-from-its-quest-to-build-the-perfect-team.html
https://web.mit.edu/curhan/www/docs/Articles/15341_Readings/Group_Performance/Edmondson%20Psychological%20safety.pdf
https://web.mit.edu/curhan/www/docs/Articles/15341_Readings/Group_Performance/Edmondson%20Psychological%20safety.pdf
https://web.mit.edu/curhan/www/docs/Articles/15341_Readings/Group_Performance/Edmondson%20Psychological%20safety.pdf
https://www.ssb.no/arbeid-og-lonn/sysselsetting/artikler/eldrebolgen-skaper-stor-usikkerhet-for-helsesektoren
https://www.ssb.no/arbeid-og-lonn/sysselsetting/artikler/eldrebolgen-skaper-stor-usikkerhet-for-helsesektoren
https://github.com/facebook/react/releases?page=10
https://fakeiteasy.github.io/
https://semaphoreci.com/blog/vitest#:~:text=Since%20Jest%20doesn't%20natively,layers%20of%20complexity%20and%20configuration.&text=Vitest%2C%20on%20the%20other%20hand,speeding%20up%20the%20testing%20process.
https://semaphoreci.com/blog/vitest#:~:text=Since%20Jest%20doesn't%20natively,layers%20of%20complexity%20and%20configuration.&text=Vitest%2C%20on%20the%20other%20hand,speeding%20up%20the%20testing%20process.
https://semaphoreci.com/blog/vitest#:~:text=Since%20Jest%20doesn't%20natively,layers%20of%20complexity%20and%20configuration.&text=Vitest%2C%20on%20the%20other%20hand,speeding%20up%20the%20testing%20process.
https://semaphoreci.com/blog/vitest#:~:text=Since%20Jest%20doesn't%20natively,layers%20of%20complexity%20and%20configuration.&text=Vitest%2C%20on%20the%20other%20hand,speeding%20up%20the%20testing%20process.
https://ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_2
https://ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_2
https://www.figma.com/design/
https://firebase.google.com/docs/cli/
https://firebase.google.com/docs/hosting

[41] Beyond Fireship. 10 Rendering Patterns for Web Apps. Youtube. 2023. URL: https://www.youtube.
com/watch?v=Dkx5ydvtpCA#t=1m50s.

[42] Fluent Assertions. URL: https://fluentassertions.com/ (visited on 05/04/2024).

[43] Neil Fraser. Differential Synchronization. Google. 2009. URL: https://static.googleusercontent.
com/media/research.google.com/no//pubs/archive/35605.pdf.

[44] Michael Goodwin. What is an API (application programming interface)? IBM. Apr. 2024. URL:
https://www.ibm.com/topics/api.

[45] Sarah Griffiths. Why your internet habits are not as clean as you think. BBC. Mar. 2020. URL: https:
//www.bbc.com/news/business-56559073.

[46] Thomas Hamilton. Decision Table Testing (Example). Guru99. Feb. 2024. URL: https : / /www.
guru99.com/decision-table-testing.html (visited on 05/02/2024).

[47] History. Libre Office. The Document Foundation. URL: https://www.documentfoundation.org/
history/.

[48] How long can you work on making a routine task more efficient before you’re spending more time
than you save?(across five years). XKCD. URL: https://imgs.xkcd.com/comics/is_it_worth_
the_time.png.

[49] How to make http2 requests with persistent connection ? (Any language). StackOverflow. URL:
https://stackoverflow.com/questions/37007100/how-to-make-http2-requests-with-persistent-
connection-any-language.

[50] How you design , align , and build matters. Do it together with Figma. Figma. URL: https://www.
figma.com/.

[51] HTTP/3. Internet Engineering Task Force (IETF). May 2022. URL: https://datatracker.ietf.org/
doc/html/rfc9114.

[52] Hypertext Transfer Protocol Version 2 (HTTP/2). Internet Engineering Task Force (IETF). May 2015.
URL: https://datatracker.ietf.org/doc/html/rfc7540.

[53] Integration tests in ASP.NET Core. Microsoft Learn. Feb. 2024. URL: https://learn.microsoft.com/
en-us/aspnet/core/test/integration-tests?view=aspnetcore-8.0 (visited on 05/04/2024).

[54] Introduction. Yjs Docs. URL: https://docs.yjs.dev/.

[55] Introduction to SignalR. Microsoft Learn. URL: https :// learn .microsoft . com/en- us/aspnet/
signalr/overview/getting-started/introduction-to-signalr#transports-and-fallbacks.

[56] Jamsheedsaeed. how to setup a Ci/CD pipeline for React app using gitlab. Medium. Feb. 2023.
URL: https://blog.devops.dev/how- to- setup- a- ci- cd- pipeline- for- react- app- using- gitlab-
9e7729d49732 (visited on 05/06/2024).

[57] Jotform. About Us. Jotform. URL: https://www.jotform.com/about/.

[58] jsdiff. NPM. URL: https://www.npmjs.com/package/diff.

[59] Thomas Labonne. 8 features for better collaboration on Figma. Digidop. Mar. 2023. URL: https:
//www.digidop.fr/en/blog/features-better-collaboration-figma#working-simultaneously.

[60] Black Diamond Learning. GitLab Release Management. Youtube. 2022. URL: https://www.youtube.
com/watch?v=q_QGNwQJH9g (visited on 05/06/2024).

[61] Robert C. Martin. Clean Architecture: A Craftsman’s Guide to Software Structure and Design. 1st.
USA: Prentice Hall Press, 2017. ISBN: 0134494164.

[62] MongoDB Atlas. MongoDB. URL: https://www.mongodb.com/cloud/atlas/register (visited on
05/06/2024).

[63] Move faster with intuitive React UI tools. MUI. URL: https://mui.com/.

[64] Mycelial. An introduction to Conflict-Free Replicated Data Types (CRDTs). Youtube. 2022. URL:
https://www.youtube.com/watch?v=gZP2VUmH05A.

[65] Eugene W. Myers. An O(ND) Difference Algorithm and Its Variations. Department of Computer
Science, University of Arizona, Tucson. URL: http://www.xmailserver.org/diff2.pdf.

[66] Kunal Nalawade. How to Dockerize a React Application – A Step by Step Tutorial. FreeCodeCamp.
July 2023. URL: https://www.freecodecamp.org/news/how-to-dockerize-a-react-application/
(visited on 05/06/2024).

77

https://www.youtube.com/watch?v=Dkx5ydvtpCA#t=1m50s
https://www.youtube.com/watch?v=Dkx5ydvtpCA#t=1m50s
https://fluentassertions.com/
https://static.googleusercontent.com/media/research.google.com/no//pubs/archive/35605.pdf
https://static.googleusercontent.com/media/research.google.com/no//pubs/archive/35605.pdf
https://www.ibm.com/topics/api
https://www.bbc.com/news/business-56559073
https://www.bbc.com/news/business-56559073
https://www.guru99.com/decision-table-testing.html
https://www.guru99.com/decision-table-testing.html
https://www.documentfoundation.org/history/
https://www.documentfoundation.org/history/
https://imgs.xkcd.com/comics/is_it_worth_the_time.png
https://imgs.xkcd.com/comics/is_it_worth_the_time.png
https://stackoverflow.com/questions/37007100/how-to-make-http2-requests-with-persistent-connection-any-language
https://stackoverflow.com/questions/37007100/how-to-make-http2-requests-with-persistent-connection-any-language
https://www.figma.com/
https://www.figma.com/
https://datatracker.ietf.org/doc/html/rfc9114
https://datatracker.ietf.org/doc/html/rfc9114
https://datatracker.ietf.org/doc/html/rfc7540
https://learn.microsoft.com/en-us/aspnet/core/test/integration-tests?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/aspnet/core/test/integration-tests?view=aspnetcore-8.0
https://docs.yjs.dev/
https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/introduction-to-signalr#transports-and-fallbacks
https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-started/introduction-to-signalr#transports-and-fallbacks
https://blog.devops.dev/how-to-setup-a-ci-cd-pipeline-for-react-app-using-gitlab-9e7729d49732
https://blog.devops.dev/how-to-setup-a-ci-cd-pipeline-for-react-app-using-gitlab-9e7729d49732
https://www.jotform.com/about/
https://www.npmjs.com/package/diff
https://www.digidop.fr/en/blog/features-better-collaboration-figma#working-simultaneously
https://www.digidop.fr/en/blog/features-better-collaboration-figma#working-simultaneously
https://www.youtube.com/watch?v=q_QGNwQJH9g
https://www.youtube.com/watch?v=q_QGNwQJH9g
https://www.mongodb.com/cloud/atlas/register
https://mui.com/
https://www.youtube.com/watch?v=gZP2VUmH05A
http://www.xmailserver.org/diff2.pdf
https://www.freecodecamp.org/news/how-to-dockerize-a-react-application/

[67] Brice Nédelec et al. LSEQ: an Adaptive Structure for Sequences in Distributed Collaborative Edit-
ing. HAL. Open Science. 2013. URL: https://hal.science/hal-00921633/document.

[68] neomede. chattp2. GitHub. URL: https://github.com/neomede/chattp2.

[69] Norkart. KOMTEK. Norkart. URL: https://www.norkart.no/offentlig/komtek.

[70] Norkart. Sammen skaper vi smartere samfunn. Norkart. URL: https://www.norkart.no/.

[71] Object and Collection Initializers (C# Programming Guide). Microsoft Learn. Apr. 2024. URL: https:
//learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/object-
and-collection-initializers (visited on 05/04/2024).

[72] Our expertise. Collabora. URL: https://www.collabora.com/about-us/our-expertise.html.

[73] Jaydeep Patil. Containerization of the .NET Core 7 Web API using Docker. Medium. Sept. 2023.
URL: https://medium.com/@jaydeepvpatil225/containerization-of- the-net- core-7-web-api-
using-docker-3abdd543f78a (visited on 05/06/2024).

[74] Persistent Connections. O’REILLY. URL: https : / / www . oreilly. com / library / view / http - the -
definitive/1565925092/ch04s05.html.

[75] Sten Pittet. Exhaustive testing not possible.., Why? LinkedIn. Jan. 2024. URL: https://www.linkedin.
com/pulse/exhaustive-testing-possible-why-rakib-hasan-lq2hc/ (visited on 05/02/2024).

[76] Sten Pittet. What is code coverage? Altassian. URL: https : //www.atlassian . com/continuous -
delivery/software-testing/code-coverage (visited on 05/02/2024).

[77] Predefined CI/CD variables reference. GitLab. URL: https://docs.gitlab.com/ee/ci/variables/
predefined_variables.html (visited on 05/07/2024).

[78] Yamini Priya. What is Testing Pyramid? How Does It Benefit Agile Teams? Testsigma. Apr. 2024.
URL: https://testsigma.com/blog/testing-pyramid/ (visited on 05/02/2024).

[79] Push mirroring. GitLab. URL: https://gitlab.stud.idi.ntnu.no/help/user/project/repository/
mirror/push#keep-divergent-refs (visited on 05/06/2024).

[80] Push mirroring. GitLab. URL: https://gitlab.stud.idi.ntnu.no/help/user/project/repository/
mirror/push#set-up-a-push-mirror-from-gitlab-to-github (visited on 05/06/2024).

[81] React. The library for web and native user interfaces. Meta Open Source. URL: https://react.dev/.

[82] Mary-Ann Russon. The cost of the Suez Canal blockage. BBC. Mar. 2021. URL: https://www.bbc.
com/news/business-56559073.

[83] Separation of concerns. URL: https://nalexn.github.io/separation-of-concerns/.

[84] sfn. Test suite failed to run import.meta.env.VITE_. Stack Overflow. May 2022. URL: https : / /
stackoverflow.com/questions/72128718/test- suite- failed- to- run- import-meta-env-vite (vis-
ited on 05/05/2024).

[85] Marc Shapiro et al. Conflict-free Replicated Data Types. Aug. 2011. URL: https://pages.lip6.fr/
Marc.Shapiro/papers/RR-7687.pdf.

[86] ShowMeYourCode! Mirroring repositories from GitLab to GitHub | pull changes automatically.
Youtube. 2023. URL: https://www.youtube.com/watch?v=E4Y6A1HplWc.

[87] Teddy Smith. Unit Testing in C# 2022: 1. Intro + First Test. Youtube. 2022. URL: https ://www.
youtube.com/watch?v=aq3IbO0RwAQ&list=PL82C6-O4XrHeyeJcI5xrywgpfbrqdkQd4 (visited
on 05/02/2024).

[88] Software Developers, Quality Assurance Analysts, and Testers. Summary. U.S. Bureau of Labor
Statistics. Apr. 2024. URL: https://www.bls.gov/ooh/computer-and- information- technology/
software-developers.htm#tab-1 (visited on 05/01/2024).

[89] Software Developers, Quality Assurance Analysts, and Testers. What they do. U.S. Bureau of Labor
Statistics. Apr. 2024. URL: https://www.bls.gov/ooh/computer-and- information- technology/
software-developers.htm#tab-2 (visited on 05/01/2024).

[90] Software Testing – Use Case Testing. Geeks for Geeks. Jan. 2024. URL: https://www.geeksforgeeks.
org/software-testing-use-case-testing/ (visited on 05/02/2024).

[91] Software Testing Strategies. Geeks for Geeks. Feb. 2023. URL: https://www.geeksforgeeks.org/
software-testing-strategies/ (visited on 05/02/2024).

78

https://hal.science/hal-00921633/document
https://github.com/neomede/chattp2
https://www.norkart.no/offentlig/komtek
https://www.norkart.no/
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/object-and-collection-initializers
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/object-and-collection-initializers
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/object-and-collection-initializers
https://www.collabora.com/about-us/our-expertise.html
https://medium.com/@jaydeepvpatil225/containerization-of-the-net-core-7-web-api-using-docker-3abdd543f78a
https://medium.com/@jaydeepvpatil225/containerization-of-the-net-core-7-web-api-using-docker-3abdd543f78a
https://www.oreilly.com/library/view/http-the-definitive/1565925092/ch04s05.html
https://www.oreilly.com/library/view/http-the-definitive/1565925092/ch04s05.html
https://www.linkedin.com/pulse/exhaustive-testing-possible-why-rakib-hasan-lq2hc/
https://www.linkedin.com/pulse/exhaustive-testing-possible-why-rakib-hasan-lq2hc/
https://www.atlassian.com/continuous-delivery/software-testing/code-coverage
https://www.atlassian.com/continuous-delivery/software-testing/code-coverage
https://docs.gitlab.com/ee/ci/variables/predefined_variables.html
https://docs.gitlab.com/ee/ci/variables/predefined_variables.html
https://testsigma.com/blog/testing-pyramid/
https://gitlab.stud.idi.ntnu.no/help/user/project/repository/mirror/push#keep-divergent-refs
https://gitlab.stud.idi.ntnu.no/help/user/project/repository/mirror/push#keep-divergent-refs
https://gitlab.stud.idi.ntnu.no/help/user/project/repository/mirror/push#set-up-a-push-mirror-from-gitlab-to-github
https://gitlab.stud.idi.ntnu.no/help/user/project/repository/mirror/push#set-up-a-push-mirror-from-gitlab-to-github
https://react.dev/
https://www.bbc.com/news/business-56559073
https://www.bbc.com/news/business-56559073
https://nalexn.github.io/separation-of-concerns/
https://stackoverflow.com/questions/72128718/test-suite-failed-to-run-import-meta-env-vite
https://stackoverflow.com/questions/72128718/test-suite-failed-to-run-import-meta-env-vite
https://pages.lip6.fr/Marc.Shapiro/papers/RR-7687.pdf
https://pages.lip6.fr/Marc.Shapiro/papers/RR-7687.pdf
https://www.youtube.com/watch?v=E4Y6A1HplWc
https://www.youtube.com/watch?v=aq3IbO0RwAQ&list=PL82C6-O4XrHeyeJcI5xrywgpfbrqdkQd4
https://www.youtube.com/watch?v=aq3IbO0RwAQ&list=PL82C6-O4XrHeyeJcI5xrywgpfbrqdkQd4
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm#tab-1
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm#tab-1
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm#tab-2
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm#tab-2
https://www.geeksforgeeks.org/software-testing-use-case-testing/
https://www.geeksforgeeks.org/software-testing-use-case-testing/
https://www.geeksforgeeks.org/software-testing-strategies/
https://www.geeksforgeeks.org/software-testing-strategies/

[92] Coursera Staff. What Is a QA Tester? Skills, Requirements, and Jobs in 2024. Coursera. Mar. 2024.
URL: https://www.coursera.org/articles/qa-tester (visited on 05/01/2024).

[93] Supported Languages. Render. URL: https ://docs . render . com/ language - support#:~ : text=
Render%20natively%20supports%20Node.,Go%2C%20Rust%2C%20and%20Elixir..

[94] Sustainable Development. International Institute for Sustainable Development. URL: https ://
www.iisd.org/mission-and-goals/sustainable-development (visited on 05/12/2024).

[95] SWR. React Hooks for Data Fetching. SWR. URL: https://swr.vercel.app/.

[96] Codium AI Team. Automated Test Suites: Best Practices for Effective Implementation. Guru99. Feb.
2024. URL: https://www.codium.ai/blog/automated-test- suites-best-practices- for-effective-
implementation/ (visited on 05/02/2024).

[97] The WebSocket Protocol. Internet Engineering Task Force (IETF). Dec. 2011. URL: https://datatracker.
ietf.org/doc/html/rfc6455.

[98] Tutorial: Explore ideas using top-level statements to build code as you learn. Microsoft Learn. Nov.
2023. URL: https://learn.microsoft.com/en-us/dotnet/csharp/tutorials/top- level- statements
(visited on 05/04/2024).

[99] TypeScript. URL: https://www.typescriptlang.org/.

[100] Unimicro. Er du opptatt av kvalitet? Finn. Apr. 2024. URL: https://www.finn.no/job/fulltime/ad.
html?finnkode=345084592 (visited on 05/01/2024).

[101] Unit Testing ASP.NET Web API 2. Microsoft Learn. Sept. 2022. URL: https://learn.microsoft.com/
en-us/aspnet/web-api/overview/testing- and-debugging/unit- testing-with- aspnet-web-api
(visited on 05/02/2024).

[102] Use HttpContext in ASP.NET Core. Microsoft Learn. Mar. 2023. URL: https : // learn .microsoft .
com/en- us/aspnet/core/fundamentals/use- http- context?view=aspnetcore- 8.0 (visited on
05/04/2024).

[103] Using secrets in GitHub Actions. GitHub. URL: https://docs.github.com/en/actions/security-
guides/using-secrets-in-github-actions#storing-large-secrets.

[104] Using server-sent events. MDN Web Docs. URL: https://developer.mozilla.org/en-US/docs/Web/
API/Server-sent_events/Using_server-sent_events.

[105] Vite. Next Generation Frontend Tooling. URL: https://vitejs.dev/.

[106] Vitest. Next Generation Testing Framework. URL: https://vitest.dev/ (visited on 05/05/2024).

[107] WebSockets. HTML Living Standard. Jan. 2024. URL: https://websockets.spec.whatwg.org//.

[108] What is .NET? Microsoft. URL: https : / / dotnet .microsoft . com/en - us / learn /dotnet /what -
is - dotnet# : ~ : text = .NET % 20is% 20a %20secure % 2C% 20reliable , concurrency% 20and %
20automatic%20memory%20management..

[109] Who we are. Collabora. URL: https://www.collabora.com/about-us/who-we-are/.

[110] Xunit. Nuget. URL: https://www.nuget.org/packages/xunit (visited on 05/04/2024).

[111] Anto Zagorskii. Operational Transformations as an algorithm for automatic conflict resolution.
Medium. July 2018. URL: https://medium.com/coinmonks/operational-transformations-as-an-
algorithm-for-automatic-conflict-resolution-3bf8920ea447.

79

https://www.coursera.org/articles/qa-tester
https://docs.render.com/language-support#:~:text=Render%20natively%20supports%20Node.,Go%2C%20Rust%2C%20and%20Elixir.
https://docs.render.com/language-support#:~:text=Render%20natively%20supports%20Node.,Go%2C%20Rust%2C%20and%20Elixir.
https://www.iisd.org/mission-and-goals/sustainable-development
https://www.iisd.org/mission-and-goals/sustainable-development
https://swr.vercel.app/
https://www.codium.ai/blog/automated-test-suites-best-practices-for-effective-implementation/
https://www.codium.ai/blog/automated-test-suites-best-practices-for-effective-implementation/
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc6455
https://learn.microsoft.com/en-us/dotnet/csharp/tutorials/top-level-statements
https://www.typescriptlang.org/
https://www.finn.no/job/fulltime/ad.html?finnkode=345084592
https://www.finn.no/job/fulltime/ad.html?finnkode=345084592
https://learn.microsoft.com/en-us/aspnet/web-api/overview/testing-and-debugging/unit-testing-with-aspnet-web-api
https://learn.microsoft.com/en-us/aspnet/web-api/overview/testing-and-debugging/unit-testing-with-aspnet-web-api
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/use-http-context?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/use-http-context?view=aspnetcore-8.0
https://docs.github.com/en/actions/security-guides/using-secrets-in-github-actions#storing-large-secrets
https://docs.github.com/en/actions/security-guides/using-secrets-in-github-actions#storing-large-secrets
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events
https://vitejs.dev/
https://vitest.dev/
https://websockets.spec.whatwg.org//
https://dotnet.microsoft.com/en-us/learn/dotnet/what-is-dotnet#:~:text=.NET%20is%20a%20secure%2C%20reliable,concurrency%20and%20automatic%20memory%20management.
https://dotnet.microsoft.com/en-us/learn/dotnet/what-is-dotnet#:~:text=.NET%20is%20a%20secure%2C%20reliable,concurrency%20and%20automatic%20memory%20management.
https://dotnet.microsoft.com/en-us/learn/dotnet/what-is-dotnet#:~:text=.NET%20is%20a%20secure%2C%20reliable,concurrency%20and%20automatic%20memory%20management.
https://www.collabora.com/about-us/who-we-are/
https://www.nuget.org/packages/xunit
https://medium.com/coinmonks/operational-transformations-as-an-algorithm-for-automatic-conflict-resolution-3bf8920ea447
https://medium.com/coinmonks/operational-transformations-as-an-algorithm-for-automatic-conflict-resolution-3bf8920ea447

Appendix A

Terms and Acronyms

80

Terms & Acronyms

API Application Programming Interface. 3, 10, 13, 20–22, 34, 38, 40–42, 55, 64, 65, 69, 70, 72, 73

CI/CD Continuous Integration / Continuous Deployment. iv, viii, 56, 57, 65–68, 70, 71, 73

Collaboration feature feature that provides information in real time to users about other users.. vi, 1,
16

Collaborative editing feature that allows multiple users to edit the same document at the same time..
1, 14

CRUD abbreviation of operations within the context an API: create, read, update, delete. 43, 46

CSS Cascading Style Sheet. Style sheet language used for specifying the presentation and styling of a
document written in a markup language such as HTML [23]. 3

DOM Document Object Model. A programming interface for web documents.. 12, 13

Git distributed version control system primarily used for tracking changes in files. 1

HTML HyperText Markup Language. The standard markup language used to create and design web
pages.. 3, 12, 13, 21, 22, 61

job A page in the Komtek software that contains several tasks. When all tasks in the job are completed,
the job is completed.. i, vi, vii, 2, 13, 14, 20, 33, 35, 40, 52, 69, 70, 72, 73

Komtek An all in one software solution to handle tasks related to drinking water and sewage, fire pre-
vention, property tax, renovations and invoices for city planning departments ([69]).. i, vi, 2, 3, 5,
6, 10, 12–14, 50, 52, 54, 69, 70, 72, 73

Norkart Norkart AS, a software and data provider with the objective to develop solutions that contribute
to simplify the life of people, the industry, the state and municipalities ([70]).. i, ii, 2–4, 10, 12–14,
20, 34, 35, 50–54, 68–70, 73, 74

React A popular library written in Javascript for making single page applications.. 3, 13, 20, 61, 67, 70,
73

Redis Redis (Remote Dictionary Server) is an open-source, in-memory data structure store used as a
database and a cache. 35

REST Representational State Transfer.An architectural style for designing networked applications, par-
ticularly web services.. 13, 34, 40, 42

TCP Transmission Control Protocol. Used for transmitting data reliably across networks.. 21, 22, 73

UML Unified Modeling Language. A standardized, general-purpose modeling language used in soft-
ware engineering for visualizing, specifying, constructing, and documenting the artifacts of a soft-
ware system. 32

81

URI Uniform Resource Identifier. 22

Websocket A communication protocol that provides full-duplex communication channels over a single,
long-lived connection between clients and servers.. 3, 21, 22, 33, 34, 39, 40, 42, 57, 59, 60, 62, 69,
71–74

82

Appendix B

Gantt Diagram / Project Schedule

83

Appendix C

Open backend issues at the end of the
project

85

Appendix D

Closed backend issues at the end of the
project

87

Appendix E

Open frontend issues at the end of the
project

93

Appendix F

Closed frontend issues at the end of the
project

95

Appendix G

Commit history of the backend
repository

99

Appendix H

Commit history of the frontend
repository

111

Appendix I

Project plan

123

DEPARTMENT OF COMPUTER SCIENCE

PROG2900 - BACHELOR THESIS

Project Plan

Author:
Sergei Johansen

Arnaud Duhamel
Ghais Dahdouh

1st February 2024

1 Project scope

Software like Teams, Google docs and GitHub have made collaboration among teams much easier then
it used to be.

With those tools, users can modify in real time the same document. This actually does not remove the
need to handle potential version conflicts between users, but it is now handled immediately, in real time.
With such tools, users are pretty well equipped to avoid unwillingly overriding each other’s work.

These tools draw, among others, from those two fields:

1.1 Fields

Real time features

Real-time features provide information in real time to users about what other users are doing. This
allows users to collaborate with each other effectively and above all, to avoid overriding each other’s
work.

This is wider then collaborative editing. Collaborative editing is one way among many to address the
issue of having many users working together and potentially overriding each other’s work. For example,
notifications could be used, warnings, having document statuses being updated in real time and know-
ing when other users are inside a document are also features that can be implemented.

Conflict handling

In the case where multiple users work on the same document and end up with two different versions,
there needs a way to decide what will be the final version.

Git is the best example of that. With git, the user can decide what will be the final version for each part of
a file where there are two different versions. The current version, the incoming version, or a whole new
version can be chosen.

This is something that can be implemented with or without real-time features.

1.2 Project limitation

Our project will focus on implementing features related to those fields in one of Norkart’s products called
Komtek.

Our project will be restricted to the part of the Komtek systems that handles tasks.

1.3 Project description

To achieve this, our project includes the following steps, taken from the project description submitted
by Norkart:

• Map out modern user interface solutions that handles various processes in both a synchronus and
asynchronus way.

• Research and document good design practices for collaborative editing in complex systems.

• Develop a design system for collaborative editing in the relevant processes of the Komtek systems
such as processing active tasks, version conflict handling and task handling.

• Research if it’s possible to develop a generic system architecture that makes it possible to use real
time features in many different products.

• Implement a proof-of-concept with a user interface imitating the relevant processes of the Komtek
systems.

1

• Conduct qualitative user tests in partnership with Norkart.

The full project description is in appendix 1.

2 Background and framework

2.1 Background

Here is the typical issue in the task handling part of the Komtek systems faced by Norkart that lead to
this project:

Two case workers will see the same unassigned task. Both of them will click on the task. They do not
know that someone has been assigned to the task unless they refresh their page after the task has been
assigned. Because there is no real-time feedback, they do not know that there is two users working on
the same task. Both will complete the task. The first case worker submits the changes he made to the
task. After, the second case worker also submits his changes to the task. Because he is the last one to
submit the task, his version replaces the version of the first worker. As a result, two case workers spent
time working on the same task, and the work done by one of the case worker is completely lost.

2.2 Objectives

Deliverables to Norkart

What Norkart wishes to obtain at the end of this project is a prototype that will replicate the task handling
processes of the Komtek systems and that will include various real time and conflict handling features
aimed at avoiding users overriding each other’s work.

They would also like that we develop our prototype with a generic architecture that could easily be im-
plemented in many other products.

Benefits to Norkart

Based on this prototype, Norkart will be able to integrate many features that will either reduce or prevent
case workers from overriding each other’s work in the task handling processes of the Komtek systems.
And potentially many other systems.

Learning objectives

The learning objectives are the following:

• Learn about web technologies used in the Norwegian industry(React, .NET)

• Learn about real-time technologies(WebSocket, Firebse Realtime database)

• Learn about API and frontend testing

• Learn about continuous deployment and integration

• Learn about developing generic architecture design

• Learn to conduct literature reviews, and especially to draw actionable insights from the review

• Further develop team work skills

• Learn about writing documentation

• Learn to program and to develop with a sustainable development perspective

2

2.3 Framework

The main framework of our project will be the technologies used by Norkart. This is not something that
was imposed on us, but we made the decision to use the same technologies that Norkart uses: React
and .NET. Both in order to maximize the value of what we will produce for Norkart and because those
technologies are widespread in Norway. For the rela-time technology, WebSockets will be implemented
for the learning opportunity. But the real-time technology used by Norkart is SignalR.

3 Project organizing

3.1 Responsibilities and roles of the group members

• Arnaud is the group leader and will also work on the backend part of the project.

• Sergei is responsible for the backend part of the project

• Ghais is responsible for the frontend part of the project

• Vebjørn Fonstad Leiros is our contact point at Norkart. He is the one directing our project and
providing us feedback.

• Frode Haug is our thesis supervisor at NTNU.

3.2 Processes and group rules

Below are the signed group rules:

3

4

5

4 Planning, following up and reporting

4.1 Project management model

Komtek replica

For this part of the project, the requirements are clear and well known, because it boils down to duplic-
ating what already exists.

For this, a stricter model will be followed and there will be little discussion and changes around the
development of this part of the project.

For this part of the project, a waterfall model will be followed.

A list of tasks will be created in advance and that list will be followed, purely and simply.

Choosing real-time features to implement

For this part of the project, a more scientific method will be used. There will be an existing product
review and a literature review. Based on that, we will make a decision on which feature to implement,
in discussion with Norkart as well. Our reviews may also not exactly give us an answer to our problem,
and in such case we will have to make an hypothesis that this feature would be helpful, and then it will
be implemented. User tests will be able to tell us if it was a good choice or not.

Implementing the real-time features

This part of the development process will follow a more fluid approach. Because most of the features
will be new to the team, it will be more uncertain what we will manage to implement and at what pace.
So for this part of the project, a scrum approach will be followed where we will follow up more tightly
and adjust underway as needed.

And so, in this spirit, we implemented an issue board and we update it weekly, every Sunday, for the
coming week. We have a column for open issues, in-sprint issues, in-process issues and closed issues.
We do not have a scrum master but we have a group leader.

On our Sunday meetings, we have both a retrospective on how the week went and planning the upcom-
ing week. And on Thursdays, we have follow up meetings to see how things are going.

4.2 Plan for status meetings and decision making moments

The meetings for the project are set up as follows: One meeting Sunday to have a retrospective on the
past week and to plan the upcoming week, one meeting on Tuesdays with our supervisor, one meeting
on Thursday with Norkart. We also spend the day working at Norkart’s offices on Thursdays.

We decided to have meetings with our supervisor and Norkart every week so as to maximize the feedback
that we receive during our thesis.

5 Organizing and quality assurance

5.1 Documentation, standards, configuration, tools, etc

For coding with React, Visual Studio Code is used. The latest version of React is used.

For coding with Dotnet, Visual Studio is used. The latest version of Dotnet is used.

For version control, we use the GitLab instance of the department of computer science of NTNU in
Trondheim.

We have two repositories, one for the frontend and one for the backend. Both the frontend and backend
repositories have an issue board. Issues unrelated to the frontend are inserted in the backend board.

6

The backend API is deployed on Render. The frontend is deployed on Firebase.

MongoDB will be used as a permanent database and Firebase real-time Database will be used for the
live features.

5.2 Plan for inspection and testing

Before a merge is made on the main branch, another group member reviews it.

There is currently a pipeline at every commits that tests to see if the application builds successfully.

We will introduce automated tests for both the frontend and the backend. this is something that will
need to be researched.

5.3 Risk analysis at the project level

The following risk standard comes from the bachelor thesis written in 2022 by Sebastian Lindtvedt,
Salvador Bascunan and Dennis Kristiansen at the Norwegian University of Science and Technology
(Lindtvedt et al., 2022).

Likelihood/
severity

Minimal Minor Moderate Significant Critical

Highly likely
Likely
Probable
Unlikely
Highly unlikely

Table 1: Risk standard

The following risk table is inspired from the bachelor thesis written in 2022 by Sebastian Lindtvedt,
Salvador Bascunan and Dennis Kristiansen at the Norwegian University of Science and Technology
(Lindtvedt et al., 2022). The table format is the same.

Risk Description Likelihood/Severity
1 One of the group members getting sick Unlikely/Significant
2 Inadequate communication probable/significant
3 Unequal contribution probable/significant
4 Technical challenges highly likely/moderate
5 Lack of documentation probable/moderate
6 Not delivering what the company asked for likely/critical
7 Spending too much time and energy on irrelevant aspects highly likely/critical
8 Losing source code unlikely/critical
9 Losing documentation unlikely/significant

10 Losing equipment highly unlikely/minor

Table 2: Risks

7

Priority Risk Mitigation
Low 1 Members will keep a healthy lifestyle so as to avoid getting sick. In the case

of someone getting sick, tasks will be re-attributed and if needed, talks will
be held with Norkart and our supervisor to reduce the scope of the project.

High 2 Everyone committed to be available during the day and to not intentionally
ignore each other. We have a designated communication channel on
Discord and we meet two times per week.

High 3 Everyone committed to work equally on the thesis. There is a defined
process in case that this commitment is broken. We also meet twice per
week where members detail what they have worked on.

High 4 This is almost certain to happen. We started working early and the group
produces well so far. This gives us a margin of maneuver and we are also
giving ourselves a good margin of maneuver in our planning.

Medium 5 We will be creating our documentation underway, along with writing the
thesis itself. There is also a recognition that documentation is as important
and necessary as the code itself.

High 6 This is one of the major risks and the most likely to materialize. It definitely
not as easy as it looks to understand and deliver what the company ask for.
It boils down to having frequent meetings with Norkart, preparing
meetings, noting down questions for Norkart throughout the week,
showing them our work, obtaining their approval before starting work on
features and asking for their feedback.

High 7 This is also one of the major risks and the most likely to materialize.
Planning will be key to avoid getting off track. We will discuss during our
team meetings if what we intend to work on is necessary and worth it. It
was outlined early in the project that one of the priority is to follow the
20/80 principle. The idea is that 20% of effort is necessary to achieve an
80% percent quality, but that it takes 80% of effort to achieve the remaining
20% quality. The group agreed early to not try to over achieve and to hold
itself in the area of this 20% of effort.

Low 8 GitLab is used.
Low 9 Overleaf is used for all of our documents. This stores them on the Cloud, a

Google sheet is used for logging hours and our Software documentation will
be stored on the wiki pages of GitLab. Everything will be on the Cloud.

Low 10 Both our source code and our documentation will be on the Cloud. This is
our best protection.

Table 3: Risk mitigation

The following risk mitigation table is inspired from the bachelor thesis written in 2022 by Sebastian
Lindtvedt, Salvador Bascunan and Dennis Kristiansen at the Norwegian University of Science and Tech-
nology (Lindtvedt et al., 2022). The table format is the same.

8

6 Implementation plan

7 Decision making moments

• By January 7: chose the technologies for the project

• By February 4: chose which features to work on for the first development sprint

• By February 18: chose a user test methodology for the features developed in the first sprint

• By February 25: chose which features to work on for the second development sprint

• By March 10: chose a user test methodology for the features developed in the second sprint

• By March 17: chose which feature to work on for the third development sprint

• By March 24: chose a user test methodology for the feature developed in the third sprint

7.1 Gantt chart with milestones

9

10

References

Lindtvedt, Sebastian, Salvador Bascunan and Dennis Kristiansen (2022). Cloud-native solution for build-
ing digital twins. NTNU Open. URL: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3002601.

11

Appendix 1
Project proposal

12

40

Oppgave 41 - Samtidig redigering og konflikthåndtering i komplekse

informasjonssystemer (BPROG) - RESERVERT
Bedrift: Norkart

Kontaktperson: Vebjørn Fonstad Leiros

E-post: vebjorn.fonstad.leiros@norkart.no

Telefon: 46944101

Lokasjon: Lillehammer

RESERVERT

Beskrivelse av oppgaven:

BAKGRUNN:

Norkart er et Norsk teknologiselskap som tilbyr markedsledende løsninger innen

kommunalteknikk, kart- og eiendomsinformasjon til offentlig og privat sektor. KOMTEK er et

totalkonsept for kommunalteknisk forvaltning som dekker fagområdene vann og avløp,

brannforebygging, eiendomsskatt, gebyr og fakturering og renovasjon. KOMTEK benyttes i dag i

over 300 kommer og i flere enn 50 interkommunale selskaper.

Norkarts visjon er «sammen skaper vi smartere samfunn» – og med dette mener vi å skape et

smartere samfunn sammen med våre kunder, våre partnere og alle de menneskene som bruker

løsningene i KOMTEK hver eneste dag.

KOMTEK er en skyløsning basert på .NET-teknologi i Azure, med React som hovedverktøy for

frontend-utvikling.

OPPGAVER OG DELMÅL

KOMTEK-systemene gir for øyeblikket ikke støtte for samtidig redigering av data, og har

begrenset konflikthåndtering hvor "siste endring gjelder" prinsippet anvendes. Med økende

behov for hyppige oppdateringer fra flere brukere distribuert over ulike lokasjoner, ser vi mot

moderne forbrukergrensesnitt som Office 365, Sharepoint og Google Drive for inspirasjon.

Målet med dette prosjektet er å utforske og utvikle løsninger for samtidig redigering tilpasset

KOMTEKs typiske arbeidsprosesser.

- Kartlegge moderne løsninger innenfor brukergrensesnitt som håndterer ulike

arbeidsprosesser (asynkrone vs synkrone)

- Utforske og dokumentere gode designmønster (UX) for samtidig redigering i komplekse

fagsystemer

- Utvikle et designmønster for samtidig redigering på relevante arbeidsprosesser i KOMTEK-

systemene (eksempler: «aktive oppgaver», «konflikthåndtering», «oppgavebehandling»)

13

41

- Utforske om det er mulig å lage en generisk arkitektur / software-design / maskingrensesnitt

som gjør det mulig å bruke i flere fagmoduler/klienter.

- Implementere et proof-of-concept system med webgrensesnitt på en/flere utvalgte reelle

arbeidsprosesser i KOMTEK

- Gjennomføre kvalitative brukertester i samarbeid med Norkart

14

Appendix 2
Project contract

15

16

17

18

19

20

21

22

Appendix J

Project contract

147

Appendix K

Meeting notes

155

Gruppemøte tirsdag 19. Desember 2023

Tilstede: Arnaud, Ghais, Sergei

start tid: 17:00

Vi ble kjent med hverandre i første omgang.

Ghaisd forklarte prosjektet vi skal jobbe på ved hjelp av en liten app. Han skal utarbeide den litt mer å
pushe kode på versjonskontrollplatformen vi skal bruke.

Som prosjektstyringsmetode har vi ikke avtalt en formell prosess. Vi vil spørre Vedbjørn om han fore-
trekker en metode over en annen eller hvis han har noe ønsker der.

Vi vil også spørre Frode hvis det er greit for oss å bruke vanlig Gitlab for versjonskontroll fordi det var
opplevd at NTNU Gjøvik sin Gitlab er vanskelig å bruke når det er mye traffik.

Gruppen avtalte å bruke engelsk som arbeidspråk.

Alle er enige i å ha sakssporing og at det er viktig å ha for å gjennomføre oppgaven.

Arnaud sin gruppe i integrasjonsprosjekt hadde ingen prosjektstyringsmetode og ingen sakssporing. Og
dette gjorde prosjektet veldig vanskelig. Det var en dårlig opplevelse.

Som sakssporings verktøy er det avtalt å bruke Figma. Det skal brukes Figma som prototypings verktøy.
Prototypene skal brukes i sakssporingen.

Sergei foreslo å enten bruke Jira, Azure Devops eller Gitlab for sakssporing. Han foreslo å se over altern-
ativene og å velge det som passer best. Ghaisd foreslo for sin del å ha det enklest mulig og at dette er
Gitlab. Arnaud brukte for sin del Gitlab og opplevde at det gikk bra. Og at det er nyttig å kunne koble
saker til sammenslåingsforespørsler.

For møtter i løpet av oppgaven, det var avtalt å ha et møtte på mandagene for å planlegge uken. Et
møtte på onsdagene for å følge opp, for å se hvordan det går med alle og for å oppdatere hverandre. Og
et møtte på lørdagene for å se over uken som har gått og å prate om ting. Dette er noe fleksibelt, møttene
vil kunne flyttes ved behov.

Det var avtalt følgende roller:

-Arnaud blir gruppeleder og vil ellers fokusere på backenden. -Ghaisd vil ta vare på frontenden i React.
-Sergei vil jobbe på backenden og frontenden ved behov.

Backenden vil være i .NET.

Som forventninger, Arnaud har ikke noe presist mål enn å gjennomføre hele prosjektet. Å gjore alt som
står i oppgavebeskrivelsen. Han har også ikke noe presist mål når det gjelder karakteren. Arnaud også
regner det å jobbe på oppgaven som en fulltidsjobb. Bortsett fra at gruppen skal ha et fag til og at han
skal være student assistant i faget Advansert Programmering. Han vil måtte gi tid til stillingen men skal
ellers fokusere på oppgaven som fulltidsjobb.

Sergei ønsker særlig å lære noe nytt. Ved å legge innsatsen til å lære skal karakteren følge.

Ghaisd, for sin del, ønsker å holde seg til løsningene som er enklest. Å holde alt enklest mulig og å bygge
derfra. Han også ønsker å ta master så han sikter helst for en B eller A for å få opptak.

Bruppen ble enig i ordentlig prosjektstyring og sakssporing, det er en veldig god start på oppgaven.

Som oppgave i feriene ble det foreslått å lage en backen struktur i .NET som kan kobles med applikas-
jonen Ghaisd lagde i React.

Sergei blir opptatt i løpet av feriene og derfor kan ikke garantere at han skal jobbe på det men Arnaud vil
kunne jobbe på det.

slutt: 17:50

156

Veiledningsmøtte onsdag 20. Desember 2023

Tilstede: Frode, Arnaud, Ghais, Sergei

start tid: 15:15

Starten av bacheloroppgaves prosess er i januar. I 31. år ha Frode aldri hatt møter med studenter før
juleferien.

Frode er ledig hver tirsdag og torsdag før lunsj. Før klokka 12.

Han kan gi oss 1 time per uke.

Frode skal ikke være rådgiver om programvaret eller teknologien. Han kan egentlig ikke noe om Norkart
sine programvarer.

Han skal hjelpe oss med rapporten og planleggingen. Men ikke om teknologien selv.

Vi skal få 2 timerslynkurs 10. januar fra Tom om programvareutvikling.

Vi fortalte at Ghaisd jobber i Lillehammer og at han skal delta digitalt. Frode svarte at det går fint men at
vi bør prøve å møte fysisk mest mulig og at det er ikke corona lenger.

Vi har planlagt å ha møter digitalt men vi skal se hvordan det går og om noe bør endres underveis.

Vi spurte om det er greit å bruke vanlig Gitlab for prosjektet. Han fortalte oss å bruke idi sin Gitlab. Det
skal vi gjøre.

Vi spurte om hva vi bør fokusere på: dokumentasjon, utvikling, etc. Frode svarte at Tom skal fortelle om
alt dette her.

I Januar vil vi måtte lage en prosjektplan. Vi vil se på koden til selskapet og det de ønsker og så videre og
lage en prosjektplan. Fordi oppgavebeskrivelsen er ikke ferdige spesifikasjoner. Vi vil måtte utvide det.

Når faglærerne ser på en oppgaveforslag, de anslår om det er en oppgave som passer for 3 eller 4 stykker.
De bare vurderer ut av forslaget.

Så hvis det er litt lite, studentene må finne en måte å utvide den selv her og der. Ellers blir det ikke A eller
B for å si det sånn.

Nest møte med Frode er 11. januar klokka 11:00.

slutt: 15: 50

157

Gruppmøtte torsdag 4. Januar 2024

Tilstede: Arnaud og Ghais

start tid: 13:00

For kunstig intelligens, den beste måten skulle være at, hvis det kopieres kode, og klart legge som refer-
anse i oppgaven og å legge samtalen ved rapporten. Ellers skal det være nok med å beskrive hvordan vi
har brukt det, som utviklingsverktøy og sånn.

Planen nå er å begynne fra bunen av og å utvikle derfra. Derfor skal vi lage grunnleggende kode i både
React og .NET i hver sin repo og å bygge opp derfra.

For oss vil det være best for å holde orden i oppgaven vår at vi har to Git repo: en for frontenden og en
for backenden.

Da er planen til neste lørdag å ha grunnleggende, hello world kode i REACT i front-end repo og å ha en
grunnleggende, hello world, API i .NET i backend repoet.

Det er også planlagt å undersøke for mulige samtidig redigering og konflikt håndtering trekk på nett og
andre mulige produkter som gjør det å se hva de gjør og se hva som er nyttig.

Det var også gjentatt at Ghaisd skal være ansvarlig for frontenden, og Arnaud og Sergei backenden.

Neste revidering og planleggingsmøtte blir neste lørdag klokka 7 pm.

slutt: 13: 30

158

Møtte med Norkkart torsdag 4. Januar 2024

Tilstede: Vebjørn, Arnaud, Ghais, Sergei(på nett)

start tid: 10:00

Meningen med oppgaven for Norkart er at vi skal finne en løsning til samtidig redigering og konflikthånd-
tering som har verdi og som gir en god brukeropplevelse.

Det er mange løsninger som er kjent og som kan brukes. Men meningen med oppgaven vår er å finne
på noe som er brukervennlig og verdiful.

Google docs er til inspirasjon fordi den viser i samtid hver som redigerer. Den viser hvor andre brukerne
redigere med navnet ved siden av markøren. I tillegg til å vise endringene i samtid. Dette var noe kulle
punkter som kunne være til inspirasjon for oss.

Komtek er en løsning som brukes for å løse kommunal oppgaver. Det er oppgaver hvor en saksbehandler
går gjennom. En typisk oppgave er bytting av en vannmåler.

En rørlegger vil bytte vannmåleren og etter det sendes en sak til kommunen for behandling. Saksbe-
handleren åpner saken og går over for å sikre at byttingen er ordentlig dokumentert. Det er bare veri-
fisering altså.

Det kan også være andre oppgaver.

En oppgave i KOMTEK er tildelt automatisk til den første brukere som åpner oppgaven. Men det er
mulig for en bruker å frigi oppgaven. Da er den første neste brukeren som åpner oppgaven som får den
tildelt.

Rørleggere også bruker Komtek. Det er de to brukergruppere: rørleggere og saksbehandlere.

Saksbehandlere er brukere som er typisk sånn cirka 50 år gammel og har ikke mye teknologiske erfaring
eller evner. Og de følger fremgangsmåten ganske slavisk.

For rørleggere er det mer variert med flere unge rørleggere. De også bruker mye mmobil i feltet. Det
derfor også kunne være en mulighet for oss å utvikle noe som er egnet for mobil. Da må vi se om om-
fanget til oppgaven og veivalgene vi skal ta.

Det er også noen sikkerhetskrav knyttet til produktene. Det er også GDPR regler man må følge hvis man
bruker personlig informasjon.

Derfor er det beste for oss som bachelor gruppe å bygge opp noe som er mest eksternt mulig for å unngå
mulige krav om konfidentialitet og å måtte skjulle noen informasjon i rapporten vår.

Det er også viktig for oss å vite at opplysningene som beskriver en oppgave faller ikke inn i vår bachel-
oroppgave. Det som faller inn er opplysningene som brukes for å løse oppgaven.

Når det gjelder samtidig redigering, det som er viktig at vi får med er å se at oppgaven er åpen av mange
saksbehandlere, og se i sanntid redigeringen til andre brukere og å håndtere konfliktene som oppstår.

Vi har frihet til å lage den oppgaveløser selv som vi ønsker det. Vi har frihet til å bygge opp brukerinter-
facen vi ønsker eller mener er best.

Vi bør også se på både backend og frontend løsninger.

Altså, for oppgaven, for å ha noen som er mer fullstendig, bør vi ha en backend infrastruktur, et trekk
om samtidig redigering og et trekk om konflikthåndtering, og en bruker interface.

Første fasen i prosjektetet vårt er å kartlegge mulige løsninger. Det er uansett det man gjør i første
måneden av oppgaven: forskning. Så vi bør bruke mye tid på å vurdere og å gjøre veivalg tidlig. Vi
bør designe litt og lage noen små prototyper for å prøve ut ting og å vise frem, men vi bør først og fremst
forske og rapportere resultatene våre. Hoveddelen er forskning.

Vi ble anbefalt å bruke MaterialUI for å designe og å lage prototyper. Eller å bruke det for frontenden.

Det som skal gi mest verdi til Norkart er å programmere i .NET for backenden og REACT.js for fron-

159

tenden.

Hvis vi fokuserer bare på samtidig redigering og konflikthåndtering så er oppgaven tynn for oss. Så vi kan
godt ta for oss å lage en hel oppgavesystem. Med en backend, samtidig redigering og konflikthåndtering
trekk og en frontend del. Det beste er å utvikle noe som kommer til å ligne KOMTEK.

Rørleggerne også bruker en annen platform som heter Entreprenørdialog. I denne platformen er det
også aktuelt med samtidig redigering og konflikt håndtering. Så det er egentlig best at vi utvikler noe
som er uavhengig av en platform. Eller som kan lett brukes av mange forskjellige platformer. Det er
derfor det er tenkt om en API til backenden.

Men i tillegg til samtidig redigering og konfliktehåndtering kunne også Entreprenørdialog ha mulighet
til å planlegge oppgaver. Å ha en scheduler.

Entreprenørdialog har også en fleksibel format som gjør at man kan utvikler maler til mange forskjellige
oppgaver. Det brukes en JSON format til det.

Altså, det er tenkt om en API til backenden for oppgavebehandling. Et system for samtidig redigering og
konflikthåndtering. Dette også innebærer et bruker system. Som business to business bruker Norkart
Azure Active Directory. Eller Microsoft bruker systemet. Man kan bare bruke Microsoft kontoer for å
bruke teknologiene til Norkart som er business to business. For business to consumer så er det helt
åpent. Det kan være Discord, GitHub, Google og så videre. Creativity app engang. Det er noen løsninger
hvor det kan legges til flere bruker systemer enn det som er gitt allerede. Vi bør i hvertfall bruke et
eksternt brukersystem og ikke lage vår egen. Fordi da er sikkerhet og alt tatt vare på.

Bør vi ha en endringshistorie brukerne kan se på? Dette kan være litt for mye fordi det er ikke samme
frihet i KOMTEK enn i Google Docs. Fordig Google Docs har egentlig bare en input felt. Det er hele
dokumentet. I komtek er det flere input felter. Fordi hver skjema felt er sin egen felt med sin egen
historie. Derfor kan det bli mye å holde oversikt over alle endringene.

Kanskje er det ikke viktig å ha så nøye kontroll over historien. Det vi ønsker og vår jobb å finne ut av er
å finne hva i dette gir verdi, kanskje først begynne med det som er enklest, og å utvikle trinnvis på det.
Det er egentlig veldig lurt.

Fordi det kan være kort vei til verdi og det kan også være en lang vei med mye arbeid for lite verdi. Vi må
på en måte finne en balansegang i det. Og helst først sikte for det som gir mest verdi ut av minst arbeid
mulig. Og bygge derfra.

Er det meningen at, i utgangspunktet skal det ikke være samtidig redigering? Er det meningen at det
skal være bare en saksbehandler for hver oppgave? Svaret til det er ja. Så det kunne være en ide å låse
oppgaver, eller å gi varsler, og så videre. Det er noe å utforske der.

Bør vi ha to repoer i Gitlab? En for backenden og en for frontenden? Vi ble anbefalt å bare ha ett repo
fordi det er det som er lettest for kontinuerlig integrering. Men det er ganske opp til oss å styre det som
vi ønsker det.

Sist ba vi om generelle råd for oppgaven. Vi ble anbefalt å dokumentere alt vi gjør. Bare med det skal vi
går et langt stykke fram. Dokumenter, dokumenter og dokumenter alt. Vi bør også ikke nøle om å skrive
om det som var feil eller det vi sleit med fordi det er også noe verdiful å skrive om i rapporten. Vi bør
også forkalre hvorfor det var feil.

Vi bør også jobbe jevnt og trutt. Vi bør begynne å jobbe fra dag 1 og vi bør særlig skrive underveis. Vi bør
egentlig jobbe på rapporten samtidig som vi jobber på programvaret.

Vedbjørn spurte om det vi skal gjøre i oppgaven nest. Det blir sikkert en gruppekontrakt og etter det
skal vi jobbe på en prosjektplan. Vi skal også ha lynskurs om prosjektstyring 10. januar. Vi hadde et litte
møtte før jul men der ble vi ikke fortalt mye om prosessen. Vi skal møtte vår veileder 11. Januar etter
lynkurset. Altså, 10. og 11. januar skal vi sikkert få bedre oversikt over oppgavene fremover. Det vet vi
ikke helt enda.

Som regn praktisk skal det sikkert gå greit å kunne møtte hos Norkart hver onsdag. Vi skal få et grup-
perom, men med ingen utstyr. Og det går helt fint for oss. Det skal også ordnes kantina for oss.

Vi skal ha et møtte med Vedbjørn om uken. Den skal vare opp til 1 time. Møttet skal også være på

160

onsdagene.

Det beste for Vebjørn er at vi samler spørsmålene våre og stille dem på møttene. Hvis vi har et spørsmål
går det greit å spørre med en gang men hvis det er mange så blir det for tungvint og da bør vi samle dem
å stille dem på møttene.

Altså, oppgavene fremover for oss er å begynne å se etter mulige løsninger og mulige trekk angående
samtidig redigering og konflikt håndtering.

slutt: 11: 00

161

Gruppmøtte lørdag 6. Januar 2024

Tilstede: Arnaud og Ghais

start tid: 19:05

Dette møttet var dedikert til tilbakemelding angående siste uken.

Tilkbakemeldingen var positivt overalt. Vi er egentlig kanskje kommet lengre enn vi bør så tildig i prosessen.
Så det er bra.

Møtet vi hadde med Norkart siste onsdag var veldig bra. Det var en god kjemi mellom gruppemedle-
mene og selskapet.

God arbeid var allerede gjort. Arnaud har pusha en veldig grunnleggende .NET, hello world API og Ghais
også har pusha en veldig grunnleggende, hello world React applikasjon.

I morgen så skal vi slå det sammen med main grennen i Gitlab og planlegge uka videre.

ChatGPT var brukt for å gi ideer om planlegging og løsninger. Kanskje var det for mye her.

Det som er viktig å si er at Ghaisd er en erfaren React utvikler. Han kan rammeverket godt og derfor
bruker han ChatGPT mye i hverdagen.

Arnaud må lære seg .NET fra bunnen av. Også React. Så han skal sikkert lære mer ut av strukturerte
tutorialer.

Sergei var ikke med på møttet og hadde ikke anledgning til å jobbe med gruppen onsdag og i løpet av
uken. Vi satser på at det hadde bare med den ene uken å gjøre.

Ideen å satse på per nå er å ha en database som håndterer samtidig redigering og konflikt løsing. Det er
det som er enklest og det er det vi satser på nå. Det er noe som skal diskuteres med Vedbjørn fra Norkart.
Fordi nå bruker Norkart en Azure database som er egnet til samtidig redigering. Vi bare får se om det
er kompatibel med det de gjør nå og at det er ok for dem å betale. Firebase er gratis. I hvert fall for oss.
Kanskje er det ikke for bedrifter eller etter et viss bruksnivå.

Vi møttes i morgen for å legge planen for uken. Vi møttes i morgen klokka 19:00.

slutt: 19:20

162

Gruppmøtte søndag 7. Januar 2024

Tilstede: Arnaud og Ghais

start: 19:00

I dette møttet så planla vi uken som kommer.

For frontend prosjektet var det planlagt 3 oppgaver: lage grunnleggende React kode, utrulle applikas-
jonen til Firebase og tilkoble appen til backend delen.

For backend serveren var det planlagt 2 oppgaver: utrulle applikasjonen til render og tilkoble backenden
til databasen.

Til neste uken skal det sendes melding til Vebjørn for å se om det er mulig å komme tirsdag i stedet for
onsdag fordi det er lynkurs på campus vhor vi bør delta. Hvis ikke holder vi det til onsdag og Arnaud vil
bli med digitalt. Det er fortsatt planen å møttes på Norkart hver onsdag.

Ellers møttes vi på torsdag med Frode. Klokka 11 på den 11. Januar 2024.

Sergei er litt usikker om han vil være med på onsdagene på Norkart på grunn av mangel på utstyr og
ekstra skjermer der.

Nå skal det som var gjort bli verifisert og merget.

Det var også avtalt at den som verifiser også merger.

slutt: 19:39

163

Lynkurs i prosjektstyring 10. Januar 2024

start tid: 12:00

For bacheloroppgaven er det i utgangspunktet ansvaret vårt i det hele.

Neste innlevering er en prosjektplan.

Rapportant vil handle om å dele det vi har lært over hele oppgaven. Det blir ikke en rpport hvor vi
beskriver det vi har gjort hver dag.

For prosjektplanen så skal vi bruke en mal som var brukt i mange år. Det er ikke tvang til det men det er
et godt utgangspunkt.

Ikke klipp og limm.

NTNU open har mange forskjellige bacheloroppgave.

Vi skal lever avtaler på papir til Line.

Det er to nye ting for oppgaven: kunstig intelligens og bærekraft. NTNU skal prøve å ruste oss til disse to
i verden.

Det er mange kilder vi må forholde oss til. Vi bør lese emnebeskrivelsen. Sånn er det. Det er bare til oss
å ta det beste av alt.

Vi bør begynne tidlig på rapporten. Vi bør dokumentere våre veilvag underveis.

Dette er ikke konsulentoppdrag. Vi må prioritere læringsutbyttene. Dette innebærer rapporten.

Det er vurderingskriterier som følges men ikke slavisk. Det er helheten som ses på til slutt.

Vi kan være ambisiøse men vi bør være realistiske. C er en god karakter ved NTNU. Gjennomsittlig
karakter for bacheloroppgaven er C. 43% får C.

Vi har nesten ingenting i timeplanen.

Vi bør derfor lage en timeplan.

Veileder får ikke sensurere vår arbeid.

Vi må skape får eget eierskap til bacheloroppgaven. Det må drøftes og avklares med oppdragsgiver.

Møter med oppdragsgiver må avtales på forhånd. De er opptatte folk. Vi bør bruke muligeter fra opp-
dragsgivere om opplæring og alt.

Vi må plannlegge. Vi har ikke noe gode unnskyldninger for å ikke planlegge. Planleggingsprosessene er
uunngåelige. Selv om det kan fravikes fra planen etterhvert.

Bakgrunnen for et prosjekt plan er for å legge ned en kontekst.

Vi trenger ikke å ha noen teori inføring som helst i det vi produserer.

Effektmål er hva oppdragsgiver ønsker ut av vår arbeid. Resultatmål er det vi skal levere.

Våre objektiver må være konkrete. Det må være målbar.

Rammer kan være lovgivning. Det er restriksjoner vi må forholde oss til.

Problemområde er beskrivelse av problemstillingen. Problemstillingen beskrives der i sin helhet. Avgrens-
ning er der vi skriver om det vi ikke skal jobbe på.

Det er ikke noe fasit på det men mellom 10 til 12 sider kan være noe godt.

Vi bør sette opp rutiner og grupperegler. Vi må sette opp kontrakt og legge den som vedlegg.

Hvordan skal vi føre timer.

Vi må ha beslutningsmøter og statusmøter.

164

Vi bør legge mye innsats på plannlegging. Arbeidet avhenger mye på grunnlaget som legges med planen.
Og å skrive rapporten om oppgaven. Dette er viktig ting.

Det er også eksempler av prosjekplaner i undervisningsmateriells.

Det er mange prosjektplaner på NTNU open. Vi kan lese mange av dem.

Vi må legge en plan for testing og kvalitetsikring. Vi må ha det i prosjektet.

Vi må kartlegge og vi må begrunne det vi gjør. Vi bør gjøre det underveis.

Vi må ha risiko analyse. Ikke fordypt, med hovedtrekk.

Som neste oppgave er det for oss å undertegne grupperegler, avatale mellom oppdragsgivere, studenter
og NTNU. Kanskje en avtale om konfidensialitet.

Vi kan ikke bruke kunstig intelligens for å skrive rapporten. Vi kan bruke det til språkvask.

Vi må fortelle om det vi har brukt det til.

Vi må henvise hvor vi har brukt kunstig intelligens i arbeidet.

Vi må også ha bærekraft.

slutt: 14: 00

165

Gruppmøtte onsdag 10. Januar 2024

Tilstede: Arnaud, Ghais og Sergei

start tid: 19:00

Arnaud viste det han har gjort siste dagene med utrulling.

Så

Spørsmål å tille :

- Vise det vi har gjort så langt.

Arnaud viste det han gjorde så langt med utrullingen. I Render, GitHub og Gitlab.

- Er det greit å ha møter på torsdag hos Norkart? Ikke nødvendigvis alltid med Vedbjørn men i hvert fall
for å jobbe på oppgaven? Det er det som passer best egentlig med andre fag og seminarer.

Ja dette går fint. Arnaud skal spørre Vedbjørn i en epost i dag.

- Er det normalt at jeg må kjøre kommandoen "npm install –save-dev vite" hver gang jeg laster ned React
prosjektet? Hvis ja, så kan hello world prosjektet merges.

Ja det er noe normalt. Sergei skal se over det og skal merge det uansett.

- Skal vi også ha en kontinuerlig deployment av React prosjektet?

Det er noe Sergei vil jobbe på. I utgangspunktet så skal vi utrulle frontenden på Firebase. Etter det skal
databasen tilkobles til backenden. Da er vår utviklingsmiljø i gang.

- Jeg tenkte å undersøke for å ha pipeline tester. Vi må ha noen testinger og vi må legge en plan for det
uansett. Går det greit?

Dette er et helt felt i seg selv og vi bør ikke gå inn i det. Kanskje kan vi ha for nå bare build: å sikre at
prosjektet vårt bygges og bare det.

- På hvilket språk vi vil skrive? Vi kan egentlig velge å ha det på engelsk eller norsk. Det er opp til oss.

Da bytter vi til engelsk for alt. Vi hadde det på Norsk siden 4. januar 2024. Nå skal vi bytte til engelsk.

- Tom snakket om å ha SkyHigh ressurs og at vi kan søke om det. Jeg tenkte vi kunne kanskje bruke det
hvis det er nødvendig for å kjøre pipeline tester? Det er en per gruppe som søker for det.

Det trenger vi ikke. Hvis det blir nødvendig så kan vi se.

- Vi må lage gruppe kontrakt med innleveringsfrist 31. januar. Jeg kan jobbe på det ut av det som forrige
grupper har allerede gjort før.

Dette var snakket om og gruppen vet nå om 31. januar fristen. Arnaud skal jobbe på grupperegler.

Gruppereglene kan også kobles til risikoanalysen. For å forutse vha som skje hvis en uhell skjer.

- Vi må begynne på å lage en prosjektplan som skal også innleveres senest 31. januar. Fordeling av
oppgaver? Sergei tenkte å lage gant chart (vi må ha det) og timeføring.

Vi skal dele arbeid rundt prosjektplanen neste søndag.

- Vi må velge en utviklingsmetode: Scrum, fossefall eller noe annet.

Det skal være en blanding av scrum og kanbal for utviklingen og for brukertesting så skal vi ha noe som
ligner mer forskningsmetoden.

- Vi må også signere en avtale med Norkart om oppgaven og prosjektet.

Det skal Arnaud sende til Norkart, også når det gjelder møttene.

- Vi må lage dokumentasjon. Hva med å bruke wiki sidene til GitLab?

Det kan vi bruke. Dette er for dokumentasjonen til programvaret.

166

Vi vil også måtte ha timeføring.

- Vi ble anbefalt å lese en bacheloroppgave hver, har vi lyst til det?

Ja det kan vi gjøre.

Saker som er knyttet frontenden skal være i frontenden repository. All resten skal være i backenden
repository.

Arnaud kan lage som tags.

slutt: 19:50

167

Meeting with supervisor 11 January 2024

Present: Frode, Arnaud, Ghais, Sergei

start time: 11:00

The thesis is not so well described by Norkart, we should detail it with Norrkart.

Make good group rules now, when everything is going fine.

We will also sign a project contract.

The first 2 points in the project plan should be we written so that it can be directly put in the final report.

We should also have best specs description as possible because it will also be in the final report. It should
be done in partnership with Norkart.

We should have hours writing. It will be attached to the final report.

The supervisor wants status reports. It is 1 to 2 pages. We don’t need meeting minutes. It is attached to
the final report though.

Development method. We will most likely use scrum. If we do scrum, we should also have good specs
description nonetheless. Scrum should not be used to loose on the work.

We definitely should have a project leader. Which is different then a scrum leader.

If we don’t need to meet, send a message the day before. It will be thursdays at 11:00 for now. If he should
look at documents, we should send it at least 24 hours before.

We can do the defense in english.

The project plan is something that we should follow. We should switch point 1 with point 2 in the tem-
plate. If we do a good job in the plan, the report will be easy to write.

2 scope: this is what should attract the attention of the reader. This is what should see the thesis to the
reader.

Fagområde is what the thesis will be about. We have to explain that. We have to sell and describe what
we will do. Effektmål is what Norkart gets out of it. Resultatmål is what is done at the end. Læringsmål
is what we will have learned out of the project.

Bakgrunn is why Norkart came up with this thesis for us.

We should work on the project plan now, but not just work on that.

Begrensning is what we couldn’t do. Avgrensning is what we will not do.

end time: 15: 50

168

Group meeting 14 January 2024

Present: Arnaud, Ghais, Sergei

starting time: 19:00

- Retrospective. How did the week go? Arnaud: - There was a bit of issues during the weekend so Arnaud
Will be more available during the weekend - Would like to be working more with Sergei on campus. Is
available most days of the week. - Would like to all meet on thursdays at Norkart.

Sergei: - Seminars will be on mondays. - The week started yesterday for the bachelor. Now he can fully
dedicate to the bachelor thesis. Happy to announce that now can focus full time on thesis. - Looked into
C. - Text channel for links would be nice to have. - Channel for ressources and for links. He can do that.

Ghais: - It was a bit bad that we couldn’t meet in Lillehammer. But weekly meetings from now on is
good news. - Meeting with Frode was good, we will not be asking him technologie related questions.
Just academic questions - There was this bug related to the use of the frontend with backend with two
different urls and making it work together, but it got fixed. - Went through some previous thesis and
we could definitely use them. It was a good week. - Even if we didn’t meet in Lillehammer we met on
wednesday so that was good.

Arnaud and Sergei will meetup tomorrow. Sergei will let Arnaud know for the time.

For the group rules, it was went through and modified. The group rules file contains all of the rules. The
file rules_summary contains a summary of those rules from ChatGPT. It is mentionned in the document
that it is a ChatGPT summary. And Frode will be consulted on it because Arnaud is a bit nervous about
using the summary.

It is ok with Ghais if Frode disapproves the ChatGPT summary.

Should we have a scrum master? No. Let’s not do that. That would create unnecessary work. Let’s chose
a development method and get on with it instead. We will have retrospective meetings and planning
meetings anyway.

Fo the Signing of the project contract and the declaration of confidentiality, Arnaud is waiting for feed-
back from Vebjørn. And we will move from there.

Sergei plans to come to Norkart on Thursday so we will most likely be able to sign the contract and
declaration of confidentiality.

The database was not set up. Arnaud will do this task. After that, the team proceeded to plan the tasks
for the week. Issues were created live.

Arnaud will also make a continuous deployment system for the frontend.

Arnaud Will try to look at some pipeline tests, if it’s feasible without too much issues. So that we can test
the end points of the API.

This is not high on the priority list and not much energy should be put into that, but it sure is good to
have. It would be about looking at tests for endpoints and for websocket connection.

For the big picture strategy, we will now create a backend with a real time database. This will be presen-
ted to Norkart. After that, other backend solutions can be implemented. To expand because we have to
map the possible solutions here. This will also depend on what Norkart wants. But for now, it is a real
time database.

At the same time, we will work on the frontend as well. For the front end, we can implement many
possible solutions and also what Norkart wants as well.

We can also have user tests most definitely. We should have user tests for that matter.

Other tests should also be technical and specific. This could also be looked up. How should APIs be
tested and how should frontend solutions be tested.

Should we also have some functionality on the job itself? Like locking the job, giving an alert, having a
new setup on hover, a different color if it is in use, etc.

169

For the meeting with Norkart, we will ask if we should test some real time solution at the job list level.
Before entering the job. About showing a warning, and perhaps the name of the person inside the job.
And then ask about Firebase real time database and CosmosDB.

Lastly, Arnaud found in the thesis "Cloud-native solution for building digital twins" that there is some
information about realtime update of information. So this is a potential source of information.

slutt: 20:44

170

Meeting with supervisor 16 January 2024

Present: Arnaud, Ghais, Sergei & Frode

start time: 11:00

Use AI to validate, and not to rewrite.

Be more concrete. Instead of reasonable time, say the actual time.

Instead of the intentional ignoring rule, use online activity rule: for example everyone must be active on
discord atleast 3 times a week.

Rewrite the rule about written and oral warnings

The next meeting with Frode will be next tuesday at 10 am.

stop time: 11:15

171

meeting with Norkart 18 January 2024

Present: Arnaud, Ghais, Sergei & Vebjørn

starting time: 10:00

We first reported a bit to Vebjørn what we have done so far. We showed him the job list that was created.

In reaction to that, Vebjørn told us that now it’s planning time, and we should not code anything before
we have a plan in place. We can code now, but we should not lock ourselves in what we coded and we
should be cleear over the fact that what we have coded so far could be thrown out of the window.

So right now, we should focus on making the plan.

So right now, we should think about what we want to solve and what we want to work on. We have
a job solver right now in which we need to handle collaborative editing. We can either make a whole
solution or just work on the collaborative editing part. This is up to us. But in any case it will be about
collaborative editing.

Komtek can be a template and a starting point for specs: We need a user login system, a job solver with
a job list page, a page inside the job, a button to submit the job and a collaborative editing features. We
need to have that. For the collaborative editing, it is up to us to solve the issue and find out about it.

The idea would be that we will have one main solution, or one main development environment, which
would be this replica of Komtek, and then we will be free to develop features related to collaborative
editing. And there, we will have the opportunity to build small or bigger features and have them user
tested.

Arnaud asked and mentioned that, between creating a Komtek duplicate, it would be more valuable to
develop a solution that could potentially be integrated directly in Komtek. That would be more valuable.
Vebjørn told us that doing that would involve confidentiality and so it would not be benefecial to us. So
it is actually better to create a working duplicate.

It would also be positive to have solutions for which we conclude that are not feasable or do not provide
a good user experience. This would be as valuable to Norkart as a solution that works. It would still be
instructive.

Norkart will like that we give them demonstrations of the features that we develop, and then we can
receive feedback on the spot from Vebjørn for improvements and/or proceed with some user feedbacks
from their customer support team.

Hopefully, in the best scenario, the solution that we would develop would be generic and easily transfer-
rable between applications. We will look into that for sure and hopefully, by nature, it should be easily
transferable because it will boil down to establishing a connection to the API that will handle the real-
time data that will be of value.

Right now, the technology used by Norkart for collaborative editing is SignalR because it’s the most con-
venient to use with DOTNET.

For the database, it is up to us really to use the database that we would like the use. The type of data that
is used by Komtek is very relational. It is basically strings. And that would make it pretty well suited for
a relational SQL database.

Norkart would also like if the solution could be decoupled from the database choice, so that it would be
easy to change database for a customer.

But at the end of the day, it is up to us to find out. So a real time database or a SQL database would be
fine for Norkart.

Vebjørn could most likely get us an Azure ressource if we need to because right now there are mainly
two choices for a realtime database: Firebase and Azure Cosmos DB. But we should not lock ourselves
on one specific database to be as flexible as possible for customers.

For the collaborative editing feature that we will create, we will essentially be free to explore each and
every processes of Komtek. We will stand pretty free to work on whatever we would like.

172

Vebjørn also told us that many interfaces actually access the Komtek solutions, there are users and other
APIs. If we could figure out a way to track all of these different interfaces, when they enter a job, that
would be good.

We should look at design but we should not spend too much time on it. It should be given as much
weight as the weight it had in our studies, which is not a lot. But yes it would be good to get some good
design practices and implement those.

Otherwise the main task will be to develop features handling collaborative editing.

So what should we be working on right now? Right now, we should work on the project plan. For now.
Describe what we would like to work on and we can also send it to Norkart and get feedback on it. And
if we can make a solution that works on many software, it is a good thing.

When it comes to rules regarding collaborative editing, we should start small, and expand from there. So
our first feature should be as simple as possible. And so for now, the simplest feature is to give a warning
to user entering a job if there is already someone in the job. That’s the simplest thing we can work on for
now.

And then it goes down to what is useful information to give a user in the collaborative editing. Who can
decide to save the task. This could also be possible features to develop.

Our features should not be chatty solutions. It should be one warning, nothing continuous with back
and forth messaging.

We should also use version numbers for the features that we develop.

It was asked if preventing access to a job except to the person to whom it is assigned would be something
worth exploring. We were told that everyone should still have access to all of the jobs, even if they are
assigned. But inform and/or restrict.

In the task solver, there is a possibility to upload files. But this is not something in which we should get
involved. This should be left as is, unmodified.

When it comes to feedback from Vebjørn, if we would like to have him give us feedback, we should
provide him some sketches and screenshots. Vebjørn is not so interested in looking at our source code.
He doesn’t really want to do code review so much.

But he definitely wants to see our demos. And we can show him along the way.

We should make some objectives, with many demos. And show it underway. This would make our
development a bit more as a waterafall model. And in a bachelor thesis with milestones and plan, it is a
bit unavoidable but we do have the possibility to change the plan underway, especially in the context of
an agile development method.

We will have to do some research on the solutions. But actually, it matters more to have user acceptance
then to have a research based solution.

We will mainly ask academic questions to Frode, but We should not be scared to ask Frode about solu-
tions and more technical questions as well.

We asked if it would be a possible solution to not have a backend or an API at all for that matter. And
have everything move between the real time database and the user interface. They use SignalR to deliver
status messages. The task solver should have an API. This is something that we are asked to have.

Norkart has been working on a collaborative editing in Komtek and it will be deployed soon. Someone
inside a job will receive a notification when another user submits. And so we should not work on that
feature ourselves.

Vebjørn reiterated that We should only develop one software, but if what we create could work on other
products would be best. This is something to have it at the back of our head. Creating a little library or
something like that.

Norkart uses SignalR. It is the simplest solution.

Arnaud asked if it would just be ok to just go for the technology that Norkart uses right now: SignalR

173

and so on. The answer is that, when it comes to the technology choices, we can pick our battles and not
every choice has to be researched and justified thoroughly.

When we will make a choice choose, we will justify the choice, and see how deep we want to reasearch
and defend the choice.

-In the thesis description, when it comes to the products that already exist out there, do you want us to
deliver anything to you? Same thing for best design practices?

The answer to that is no. But this is something that we will include in our thesis.

-When it comes to the more technical part, would you like to have anything at the job level? Or would
you like us to do some research before and then submit you anything? How would you like to go at it?

Yes, this is something that we are free to explore.

-Anything new with the contract?

Vebjørn did not receive anything about the contracts. He asked us for the deadline and I told him the
deadline is January 31. It should be fixed and arranged by then.

This was a very productive meeting that greatly clarified the meeting for us.

Is the lack of collaborative editing actually an issue? Yes. The main issue is that two case workers will see
a job that is not assigned to anyone. Both will click on it. Both will work on it. And then one will submit
before the other. The other user will not know something was submitted, and he will submit himself,
and his submission will override the other case worker’s submission. And then someone worked litteraly
for nothing. This is a real issue.

end time: 11:08

174

Group meeting 18 January 2024

Present: Arnaud, Ghais, Sergei

starting time: 12:00

For this meeting we kind of debriefed the meeting that we had with Norkart.

We are asked to work on solutions tailored to Komtek. And so we should have a Komtek replica. Not an
exact replica, but something that mocks Kommtek’s processes. This is not a choice.

We have to have an API. This is a request from Norkart.

And so now, the plan is the following:

Once the Komtek replica will be done, the main project will be to implement and test collaborative
editing features. And user test them. We should keep track of all of our version. And the final product
that we would submit would include all of the versions that we worked on.

When it comes to the set up of the Komtek replica, our choices of technology is not so important. This
does not matter too much. What matters most is the collaborative editing feature that we will work on.

However, it would be good to have something that could be turned into something generic. Some sort
of library that could be used out of the box. Same thing for the databases. But we are quite free there.

And so, no problem for Sergei to work on Websockets to create the connection between the backend and
the frontend. Whatever works best and is the most convenient.

And so now the architecture would look as the following:

Every piece of data that will be modified in real time will go through the api. It will be placed in a real
time database and changes will be handled in that database. On submission, the job will be sent to
persistent storage, or sent wherever else it needs to go in the software.

There will be a technology that ensures that the backend speaks to the short term database in real time
and a technology that ensures there will be real time communication between the frontend and the API.

The choice of an API was the right one, because the only thing that will be in the backend will be data.
The backend will not send back any React content.

end time: 15:10

175

Group meeting 21 January 2024

Present: Arnaud, Ghais, Sergei

starting time: 15:05

Sergei worked on Web Sockets for the week. He will be finishing that soon. He will push it tonight.

Ghaisd had some hickups with the API but it was fixed today.

Arnaud has been working on the project plan. The process was good for the week. He asked if we should
have a development deployment. This would be nice to have and it would be useful, it would also give
us extra points. But it is not necessary. Which is not a problem, as long as we don’t merge something
into main without being sure that it works.

Gant Chart and risk analysis. Sergei will provide it tomorrow.

For the next steps of this week. We will work on creating the backend api. And so we will create the
endpoints for the job pages themselves.

We will also connect this API to a SQL database as well. Not a real time database, just a normal database.
It will be Firestore.

The database itself doesn’t matter. It’s not important.

Ghais will try to recreate Komtek, but not completely. It will not be the full database.

So, the gameplan for the databases are one that will be used for real time editing and the other for more
permanent storage. The first one will be firebase real time database and the other will be Firestore.

When we will connect, we will first see if there is data in the real time database. If there is, it will be taken
there. If there is not, it will be taken from the main database.

And then, when there will be no more users in a job, what is in the real time database will be moved to
the permanent database.

In Komtek, to submit a job, you click on a button. When that button is clicked, it is moved to anothe
column in Komtek and then it stays there for 14 days as still visible. After that, it disappears.

When a job is in that column, or that list, it can no longer be modified.

On the frontend, we will start working on a navigation bar and on the jobs page.

The "submitted" column will also come but later.

end time: 15:55

176

Supervisor meeting 23 January 2024

Present: Frode, Arnaud, Ghais, Sergei

start time: 10:00

We should have a Gant chart for the whole semester and at the end of the thesis we should have a new
one explaining what we did. And if it is different from the original plan we should write and explain why
it is different.

It will be our job to have enough features to impress Norkart and make them satisfied with our work.
That’s on us.

We should have a good volume of features to present.

Our thesis is somewhat restrained and so it will be on use to kind of expand and bring in a good volume
of features to present Norkart.

We should be working on the implementation of new features up to Mars/April. Because after that we
will be working on writing the thesis and we will no longer be developing.

Ok so, as a general commentary, we should reduce the length of the whole plan and we should write it
with line spacing of 1.

This should not be more then 5 to 6 pages long.

And we should switch the section 1 and 2 of the plan. Our section 2 will become section 1. We should do
this right now otherwise we will have to change the writing again for the main thesis.

We should not have any pictures or diagrams inside our project plan. This is not common to have it
here.

Our content in the project scope is also too technical. This is not something that we should talk about.

When it comes to the fields, it should be real time features and conflict handling.

So this is whaat it will be summarized to.

And we can have a short introduction that should not be more then 25% of the page.

So our section 1, project scope, that should be 2.5 pages. The section 2, background and framework.

At the end of the day, our thesis is not meant to be read by people without IT knowledge. This will be
read by our supervisor, the department and an evaluator. It is isn’t meant to be read by someone without
IT knowledge.

For the risk analysis, we should also use a color code for the various risks and especially mention how
we plan to address thoses risks.

end time: 10: 30

177

meeting with Norkart 25 January 2024

Present: Arnaud, Ghais, Sergei & Vebjørn

starting time: 10:00

We thought of coming and present what we were thinking of working on before even starting to work on
it. So as to get approval and then start working on it. That’s ok.

-What did you implement again regarding the issue? A warning to users inside a job when another user
saves his changes to the job?

Right now. What is happening in real time is that the list get’s refreshed. And it gets refreshed automat-
ically. So that when a new job is added or deleted, it is upated automatically. However, this is done by
having http calls to the api every 5 seconds, which is not the most effective. This would be best done
with WebSockets or SignalR. That’s all.

-Are you currently implementing any other features regarding this issue? Do you want us to work on it
or not?

We can work on what we want it’s no problem. It should be basic. It should not be anything complicated.
But it should be in real time. That’s the idea. And we should try to make it simple.

How deep should we go?

It is not the idea that we will create something that will be integrated in Komtek right now. The idea is
that what we will do will pave the way for Norkart.

-Do you plan to work on any other such feature?

Right now, Norkart is working on the possibility of deleting a job. But it works on the same principle,
which is that there is a call made every 5 seconds or so to update the list. WebSocket is a better way of
handling that.

-Would you be interested in presentations on existing products and on good design practices?

We can share what we found during the meetings, but we should mainly keep our findings for the bach-
elor thesis itself. This is where we should put our findings. And share a summary in the meetings.

-Do you want us to develop a design system? So that the the design of our features is coherent?

We should have little of a design system. In fact, we can use Norkart’s own design system. It is public
and it is accessible. They have a library for that. The library is not accessible to the public, but the design
system itself is. And we should use that.

The url to the design system is https://toitsu.norkart.no/.

There is also the url https://brandpad.io/norkart. This one describes the Norkart logo, along with other
design information. This is something we can use.

In any case, if we use Material UI, Norkart can translate it to their own design system.

-What is meant with synchronous and asynchronous?

For asynchronous, the synchronizing between the different versions is delayed. Kind of like in Git. For
synchronous, the different versions are synchronized in real time.

For that, we can try the Incremental Static Regeneration (ISR) system. This is something that we could
look into.

-Is it ok if we use WebSockets?

Yes no problem. For Norkart, it’s ok. But we will have to justify our choice anyway in the thesis.

-For the design, are we allowed to use color? Should we use color?

We don’t really need to start thinking about adding colors and what not. This is not something that
Norkart requires us to go into.

178

-Would you like us to present you sketches of our implementations? Higher fidelity prototypes?

Yes we should present them sketches. We don’t need to show the lower fidelity sketches. But we should
show the higher fidelity sketches that we make.

If we make domain diagrams we should also show it to Norkart.

-For user tests, would you take charge of that completely and provide us feedback? Or would you provide
us raw results that we would have to analyse ourselves?

For the user tests, we will all do it together. So we would be involved in them ourselves. This is something
that we would participate in. But then we would have to be careful, as developers, in our presentation,
to not give the answers to what we want. To not be leading. And we should not provide too much
directions.

For us, when we save a job, we should not think more about it. This is where our process stops. We don’t
need to bother more with what happens to the job after it is saved.

-Is there specific features that you would like us to develop and/or work on?

V1

For version 1 , we could have the following:

When two users are inside a job, if one of them saves and/or submits a job, when the other user will try
to save and/or submit his changes, he will not be able to save and he will receive a warning message that
will interrupt his workflow and tell him that someone else saved the job. And that he can either stay on
the job and have it refreshed, or he can just go back to the list page.

To implement this, we should use e tags. We, the team, decided to use numbers representing certain
statuses. 1 for new job, 2 for in progress/assigned jobs, 3 for completed jobs.

Another option is that if someone is inside the job already, another user that enters the job after cannot
update it at all.

Another possibility in the version one would be that, if someone in inside the job, and someone else
enters the job, the first user receives a notification that someone entered the job. The notification will
not break his flow. It will not interrupt whatever he is doing.

The user entering the job, however, will receive a warning that will interrupt his flow and offer him to
not enter the job or enter anyway.

V2

For version 2, we could highlight in real time which element is modified by another user inside the job.
So, if I am in a job and someone else is modifying a textbox, the textbox will be highlighted. And this
would be done for each user that is inside a textbox. This could also be done on other elements. It would
basically highlight the element that a user edits actively.

We are proposed to have automatic updates. But another solution will be to use WebSockets. That will
create a two-way, real-time communication.

-Would you rather have few thoroughly implemented features, or many different features that are more
on the prototype side?

The most developed it is, the easier it is to follow, to replicate and then to implement for Norkart. But it
is up to us ultimately to see how far we want to go. And how much we want to develop our solution.

For testing, we should see what is worth testing. The best tests are integration tests. We should also have
a unit test logic.

We should also ask Frode about how much testing we should have really. He will be able to guide us. But
it is a balancing act for sure. To have the right amount of testing. It’s not good to overdo it either.

For the contract, we will receive an email about it containing what they wish us to sign. They will most
likely ask us to sign their own contract as well. On top of the NTNU contract. Vebjørn already received a

179

contract, and he sent it back because of some of its provisions. He is working for us here.

Sergei asked if it would be ok for us to use caching. So, caching can actually be counterproductive to
have if the data is stored in there for a long time. If we use the entity framework, it already has cache
built in. The caching is under the hood and automatic.

For now, we will stick with only using MongoDB directly, without using the entity framework. The entity
framework is kind of the standard framework for interacting with SQL databases in Dotnet.

We don’t need to overcomplicate anything either. We could also use an interface that uses MongoDB. In
any case SQL handles the caching automatically.

Norkart would like to go over our project plan. So Arnaud sent it to Vebjørn and he will go over it and
give us feedback on it.

From now on, for the next meetings, we should send an agenda to Vebjørn, along with our written ques-
tions, along with any sketches and or other documents that we would like him to go through.

For logistics. There is one bus at 8:15 and another at 9:15. But then we would arrive at 10:00 am at the
bus station. It is ok for Vebjørn that we arrive at 10:15. That is ok. He books the room from 10:00 to 11:30
even if we finish the meeting at 11:00 in case we overflow.

And we could also take some local busses to go to Norkart with our own ticket.

We then asked Vebjørn about testing APIs.

We were talked about X unit to test APIs. There is also the library fluent insertions for testing. We should
look at this one. Because it makes the tests more readable. And it gives better output as well. Docker is
also good to use for integration tests but this is something that we should look into ourselves.

But we should prioritize integration tests.

To do load testing on APIs, there is a library to do that kind of tests. We should look at videos from Nick
Chapsas. There is good information from him. But we should not use everything from him because he
is no longer a career developper and what he presents is always the newest. And this may not be the best
to use in an industry context because it does not have a lot of support and it may have compatibility
issues as well. So we should be critical.

We also have to look at sustainable development.

Rate limiting is a good start for sustainable development. SQL requests are actually not so costly. What
is costly is to go from JSON to Dotnet. We shouldn’t focus on performance too much in the start as
well. This is a trap to avoid that could give us problems in our development. We should develop first.
Performance should not stop us from developing the whole application. We should focus on making
something that works first. And we should also not use too much time and energy to optimize, because
in the end it does not have so much value.

But optimizing is part of sustainable development.

end time: 11:08

180

Group meeting 25 January 2024

Present: Arnaud, Ghais, Sergei

starting time: 12:00

At this point, we have a water meter endpoint. And the water meter controller has an enpoint that takes
one job with one id. It was proposed and agreed to move it to the job endpoint. Because for now, we will
have only one job type. That’s the only thing we need.

And at this point, our job page only has the minimal field type that are used in the different jobs in the
actual Komtek software.

So for now, there is a text field, a radio type button, a select menu and a checkbox. Because this is what
is used. So for now, our job page is actually very simple.

It was discussed if we need job ids at all, or not, becaue there is the meter number that is unique. But in
the end it is best practice to have an id field no matter what. Even if there are orther uther attributes to
the class.

So right now, the feature that we can work on as version 1 is that if a user saves his job, and another
user tries to save a job after that, he will receive a notification that the job has been saved. And he will
have the choice to either stay in the job, in which case the page will be refreshed or he will have the
opportunity to go back to the jobs page. In which case his jobs list will be updated.

To have that, we will implement the 3 following job statuses: new which will be the number 1, in progress
that will have the number 2 and completed which will be number 3.

We will have a post method to add dumy data to the database. This is not something that will be used
by the frontend.

When the data will be updated, a put method will be used. This is what will update the data. And this is
what will change the data.

Arnaud needs to learn about Dotnet. He cannot do anything right now and that’s not good. And he
will learn about testing. Arnaud will handle everything about testing. We need to have that one way or
another in the thesis. So Arnaud can take care of that.

So we will have a put request. If the job is opened for the first time, the status is changed to 2. That is a
job in progress. And then, when the job is saved, it is changed to 3. And at that time, If the user tries to
save, he will get a notification telling him that someone already saved.

end time: 15:55

181

Group meeting 28 January 2024

Present: Arnaud, Ghais, Sergei

starting time: 21:30

Retrospective:

- Ghais: it went well, we had our plan and we followed it. It’s great tha Vebjørn accepted to delay the
meeting from about 15 minutes and all and that we don’t have to wait any longer to meet. And that we
can wake up later. It was good that we asked. The worst thing was that he could have said no. It was also
the first time that we met all 3 at Norkart.

- Sergei: we managed to set up the server. That’s good. Not sure tht we did everything that we planned
to. He watched a lot of videos about backend and dotnet.

- Arnaud: was not able to follow along last week because of a lack of knowledge about Dotnet. Will
work to fix that. It would be good to have the sunday meetings at a different time to make sure it always
happens at this time.

The group decided on sunday at 11:00 am. From 11:00 am to 11:45.

It is good to have space between meetings. To avoid having too many meetings close to each other.

For this week, the goal is to finish the baseline application on which we will develop things. This should
be done this thursday. Because there is a bug to fix in the backend. The post and put methods do not
work right now. Otherwise Ghais is done creating the jobs page and this is ready for review and to merge.
Sergei will look at this.

We will also start on the documentation. Because it is better to document underway.

It will be good to document this baseline application.

And then, we will start working on a feature that prevents a user from submitting a job if the job is already
submitted.

The project plan is pretty much done. The deadline to submit it is January 31. Arnaud will put in there
the Gantt chart, send it to Frode for the last review and then submit it to the faculty.

We are still waiting on Norkart for the thesis contract.

The deadline for both the plan and the contract is february 1.

end time: 10:25

182

Supervisor meeting 30 January 2024

Present: Frode, Arnaud, Ghais, Sergei

start time: 10:00

- What do we do if we don’t have an answer from Norkart within the deadline?

This is something that we will have to take up to Tom because he is the one in charge of that.

We mentioned that Norkart wanted to have an extra agreement with us on top of the agreement with
NTNU and he mentioned that this is up to us to handle that as we want to. And that NTNU will not
involve itself in it.

- Project plan:

We are too long. We have too much content, and we repeat ourselves. And he did outline some changes
that we should make in specific sections.

We should have decision points as well.

end time: 10: 30

183

meeting with Norkart 01 February 2024

Present: Arnaud, Ghais, Sergei & Vebjørn

starting time: 10:15

We received in our inbox an email inviting us to register in Huma. This is the Human Ressources solution
of Norkart. This is something in which we should register and all of our contracts with Norkart will be
there. This was not a scam. And all of our data will deleted in June.

We presented the solution that we built so far, the latest version. And it was good. The feedback was
good. But we were told to implement inlogging both in the frontend and in the backend. In the frontend
we should have an external service that arranges inlogging. And we need to implement bear token in
the backend as well.

We were told to get started on innlogging early, before we lose track of it. This is important for security.

We presented Redis durign the presentation. That this is a possible architecture that we could use with
WebSocket. It reminded Vebjørn about what is called event grid. This is a queue service for Azure. This
is somemthing that we could look at later.

We will also need inlogging because we will need to use user information. Because one possible solution
is to allow multiple connection from one user, but not allow many connected users.

And one possible feature is to synchronize the different connections of the same user. Just for the mul-
tiple connections of one user, not between multiple users.

We were also told that we should look in the performance costs and the bandwidth use, especially in a
cloud context because there are high costs associated to that.

Some case handlers, more on the younger type, can have up to 10 windows open at the same time. If all
of that is WebSocket connections that are consuming a lot of energy, that could be a problem. So this is
something that we should look into. So we could try both techniques here: one WebSocket cconnection
that sends a little bit of data and triggers a get request, or have the WebSocket connection send all of
the data. To have the WebSocket provide all of the necessary data. We should look at what is the most
efficient. We should look at what is more performant and use less traffic.

We will need to look at innlogging in relations to websockets as well. Because we want only authen-
ticated and authorized users to be able to open WebSockets connection. So this is something to fix as
well.

We will need to use JavaWebtokens, and Bear token. Or let’s try both.

There is also an issue of organizing jobs here. In the current solution, we have a job. And our job pretty
much only have one task. But, in the current solution, one job actually has more then one task inside.
And, some other solutions of Norkart interact with only the tasks themselves, whereas some other solu-
tions interact with the whole job. This is something that we could look at. At this interaction between
jobs and tasks. And especially, if we could build a solution that could be generic to both jobs and tasks.

For now, our case manager solution can only work on the jobs. It is up to us for now. And perhaps later
we could work on making it work on both jobs and tasks in a generic way.

Our focus should remain on the conflict handling and collaborative editing. The structure of jobs and
tasks is not the main focus. But it is something good to keep in mind and potentially develop in a generic
perspective.

We will use warnings in what is version 1. If a user enters a job in which someone already is, he will get
a dialog box telling him that someone is inside the job, does he really want to proceed? Yes or no? This
will be in itself a very effective feature that will solve a lot of problems. Because at the outset it is not the
goal to have many case handlers on one job. The goal is actually to avoid that.

And we will need innlogging for that because Vebjørn wants to have the names of the users that are
inside the job to appear in the dialog box, something like "John Doe is in the job right now, do you really
want to go inside that job"?

184

We will also have locking. There will be one user at a time that will be allowed to modify a job. And we
will need to handle that in real time. We will also need to handle warnings in real time. The agenda for
this meeting details this pretty well with diagrams.

We will not have just a check. We already need real time implementation.

To summarize, when it comes to cybersecurity, we need to use inlogging, bear tokens and/or JavaWeb-
tokens. We should also have up to date dependencies and handle our secrets. For inlogging, we should
use FireAuth. We should also use a white list system for connections. Everyone is blocked out except
chosen addresses. We also need to use those tokens in the backend because we need verification on
boths ends. One in the backend and one in the frontend. Because this is a cybersecurity best practice.
So we need to implement that.

We were also recommended by Vebjørn to read one bachelor thesis that is graded A, one graded B and
one graded C. So that we get an idea of the what is required and what is a good thesis. The thesis we were
given by Tom were ones that he considered good, most likely A thesis.

Version 1 Plan

Verification before submitting a task

This was agreed to by Vebjørn. It changes the priority of the versions but at the end of the day it did not
prevent a case handler from working for nothing because he would only know if the job is saved when
he submits his own job.

- Simplest simultaneity architecture The simplest architecture was shown and it was explained that the
only part of the structure that would need to be with WebSocket was the part that sends the data in real
time to the clients. And that can be inserted in the controller of a post request. So the incoming data
can still remain with https. This is the easiest because this is what would require the least amount of
changes.

- With Redis buffer This is something that we do not need to go into, at least for now. For now, we can
keep it as simple as possible.

What does Norkart want? For now, the simplest solution will be prefered. We will not use any form of
buffer for now. Perhaps later.

- Locking workflow proposal We will implement it.

- Alerts workflow proposal This is also something we will implement.

Which implementation does Norkart want first? Locking or alerts? It will be both.

Vebjørn will also look at having our product hosted on their Azure ressources. And see if we could use
their Azure product for the grid, if we ever decide to implement that.

end time: 11:30

185

team meeting 01 February 2024

Present: Arnaud, Ghais, Sergei

starting time: 10:15

We discussed following the meeting that we had with Vebjørn.

We especially looked at the issues to open in light of the meeting. We did it the same day, while it was
fresh in our memories, instead of doing it on Sunday.

So, we decided to add innloging, both on the frontend and the backend. So we opened new issues
relating to that in the frontend, such as creating a sign up page and a 404 not found page. In the backend,
pretty much everything relate to software security was included as upcoming issues.

end time: 11:30

186

team meeting 04 February 2024

Present: Arnaud, Ghais, Sergei

starting time: 11:00 am

Retrospective:

Ghais: Last week was good but confusing. We did not follow 80/20 because we were asked to implement
a good bunch of features. But we can still manage to implement it we have good time.

Sergei: Excited for the future of the project. Sergei worked on WebSockets. WebSocket is implemented.
Was reading a lot about dotnet. Ready to merge and we could look into using SignalR because using
WebSocket is quite verbose.

Arnaud: How about we look at merge requests right away and then return to other tasks. This is Ok
with others. Sergei mentioned to use notifications. This will make it god faster. Ghais also suggested to
dedicate time everyday to take a look and see if there is a merge request waiting.

Issues were added last wednesday after the meeting with Vebjørn. Should we add anything more? No.
let’s stick with what we have now.

For stand up:

Ghais: there is a bug right now in the development branch of Ghais, he doesn’t manage to connect to the
backend. Sergei will take a look at it. But it does not impact the logic of what he is doing. So Ghais did
all of the login and registering page. He also did the error page. What is missing now is the avatar and
managing the logged in state. This is what Ghais will work on this week. We will also need to connect
the frontend to the firebase authentication database. Sergei will take a look at it and if Arnaud is done
before he can also take a look at it. Ghais would like to have this for thursday. Arnaud as well to be able
to show it to Vebjørn.

Ghais also suggested having a stand up meetig on wednesday to prepare for the meeting with Vebjørn
on thursday. We will have a meeting about it at 8 pm on wednesday.

Ghais implemented username. It was discused was to wether or not we should have it at all. And we
should have it because this will be needed for error messages and warnings to return the name of other
users. The username field was changed to full name in the frontend.

Sergei worked on WebSockets and managed to implement the full setup. He will need our collaboration
more this week for building on it so be available on Discord a bit more often. The next step for Sergei
will be to integrate WebSocket in the backend. Right now it is just the initial set up. He also made
documentation for it. It is in the readme page but he will move it to the wiki pages. And he will be
writing more documentation about it this week.

Arnaud worked on implementing user authentication with Firebase. And now 4 methods are imple-
mented. Create a user, get all users, get a user by id and delete a user. Only the put method needs to be
added and then this part of the infrastructure can be merged. The use of tokens is not implemented yet.
Arnaud also implement that this week.

We will keep track of the different versions of what we will impelement. On the frontend, when login,
registration and avatars will be implemented, we will be done with version 0.

end time: 11:45

187

Supervisor meeting 6 February 2024

Present: Frode, Arnaud, Ghais, Sergei

start time: 11:01

The meeting started with Frode telling me that we did not hand in the project plan. And that he was
not seeing the project plan on Black Board. And that Arnaud was not in the group. It was just Ghais and
Sergei and the project plan was not handed in.

Arnaud told Frode that he handed it in. And he showed the hand in to Frode.

The issue was that he was not in the bachelor group. So he sent a message to Tom, the course coordinator
and the issue was resolved. Arnaud was put in the bachelor group and the documents were handed in
appropriately. Both the project contract and the project plan.

The main purpose of the meeting was to get a bit of a briefing on writing the main bachelor thesis.

It is good that Frode is our supervisor because he is also the one giving the crash course on writing the
thesis.

And so he gave us a plan on how the thesis should be written and what each part should contain.

He gave us his plan from 2023.

And he told us that it was not updated for 2024. But the changes for 2024 is the use of artificial intelli-
gence. It has to be mentioned how it was used. And we need to have sustainable development as well.
We will need to have it in our conclusion.

end time: 11:10

188

team meeting Wednesday 07 February 2024

Present: Arnaud, Ghais, Sergei

starting time: 08:00 pm

stand up meeting to prepare meeting with Vebjørn.

So, we updated each other from the work that we have done so far.

Ghais started by showing what he did. All of the login page is done. He also showed the warning message
and the snack bar. What Ghais had in mind was to have warning given to users that are entering jobs for
which they are not assigned. And snack bar warnings would be received by the assignee when someone
else is entering his job.

Arnaud proposed that the interrupting warning would come to anyone who enters a job in which someone
already is. And that the snack bar warning would come up to users in a job when another user enters
the job.

So what would happen to assignees? Because Ghais was thinking that if someone clicks "continue" on
the warning, he would become the assignee. Arnaud was thinking that the assignee will be chosen at the
first click, and that’s it, it will never change and anyone can finish the job anyway.

Arnaud showed what he did which was the management of users, and the management of tokens. To
be able to get the token, and then to use it in the requests where it is requuired. So for now, every path
relating to the jobs require a token, and everything related to users require a token except for creating a
user and getting the token, which is basically what is used for loging in.

Ghais mentioned using endpoints in the singular, because right now they are all in the plural. For ex-
ample, "/Users". But it was looked up and the best practice is to have it in the plural.

Sergei showed websockets. What is implemented right now is that after a connection is initiated, a
message sent by a user is sent right back to him, and not other users. Sergei wanted to implement
websockets in the first place because it doesn’t require much code on the frontend, wehreas for SignalR,
you have to download a package on both the frontend and backend. But it turns out it is a lot of code
in the backend, and you have to download packages anyways. So we will try SignalR and decide from
there.

For testing, at least testing the backend, we just need a framework that can make http requests and then
we test the endpoints, and assert the result obtained with what was expected. And then those scripts
can be triggered either manually or automatically. So it will actually be easy to integrate in the pipeline.
There are most likely cshapr frameworks for that.

For tomorrow, we will show Vebjørn what we did. Ghais can show the frontend, arnaud the users and
Sergei the websockets.

end time: 11:45

189

meeting with Norkart 08 February 2024

Present: Arnaud, Ghais, Sergei & Vebjørn

starting time: 10:15

We did not send Vebjørn an agenda today. Because we were just gonna show him stuff. He asked us to
send him one anyway, and describe what the meeting will be about. We told him that was received and
we will send him an agenda, and the day before. On Wednesdays.

So for the users part, we should not do anything through the backend. We should do everything between
the frontend and Firebase. This is a change that will need to be made.

It turns out we also do not need to create a sign up functionality. Just a login functionality is enough.

But if we use usernames, we will need to match the username in MongoDB with the username in Fire-
base.

As such, the only thing remaining data that MongoDB will need is the username and the Firebase ID.
This will need to be stored.

Usernames will need to be used in the app, because Vebjørn wants to have the names of users in the
warning.

We will take down Swagger for the deployed version. We will only have Swagger for the development
version.

We should also take down the frontend for now as long as we do not have the login interface implemen-
ted.

Vebjørn asked why we are not using SignalR. He was just asking. Sergei mentioned that it is to avoid
using dependencies. Vebjørn answered at the outset SignalR is a maintained package and so it was
determined safe. But that the idea of not uselessly incorporating packages is good.

We were also asked about handling errors and so on. And for WebSockets, this is something that we have
to implement ourselves.

Arnaud mentioned that it was more work to implement websockets. Sergei mentioned that it is not, the
initial set up is more work but after that it is fairly easy.

For loging in, what will be important here is that the frontend directly communicates with Firebase to
login users, that is to fetch the token. And then this token is to be used to access protected web pages
and to make the calls to the backend.

We can be redirected for login to the different services such as Google and Microsoft.

We can also use our own pages. What matters is the the call to Firebase be made directly from the
frontend.

There was discussion about the different versions to implement.

It came out the following:

For version 1, what we implement is a check on the submit button. Jobs will now have a status. When
a job is submitted, we will check to see if the status is submitted. If it is not submitted, the request is
accepted, and the job is submitted and saved to the database. If the job is already submitted, the new
submission is refused, and the user is proposed to be sent to the submitted job, or to go back to the job
list. In the dialog, we will need to have the username. So that the message tells the user "The job was
already submitted by John Doe". We will also need the usernames when we will use websockets.

This solves the issue of versioning. There is only on submitted version. And so now you cannot have
multiple users submitting many versions. The job will be submitted one time, and not more.

Vebjørn acknowledged that this is not a good user experience because we can still have many users
working on one job at the same time and have his work be wasted in the end when he tries to submit.
But this is our version 1.

190

So there will be no WebSockets for version 1. We will only use it for version 2.

For version 2, we will have what we will call the owner of a job. The owner of a job will be the user that
have the right to edit a job. The owner will be the first user to enter a job. It will not matter who is the
assigned user to the job. The owner of the job will always be the first user to enter the job at any time.

And then we have a queue of connections. The oldest in the queue will always be the ones to have the
right to edit the job.

end time: 11:22

191

team meeting Thursday 08 February 2024

Present: Arnaud, Ghais, Sergei

starting time: 12:30 pm

We talked and clarified that version 1 will not include WebSockets. It will only be the verification at the
submit button.

In the jobs data structure, we will add a field for submitted by. This will be a string.

And in the submitted list, instead of the column "assigned to", we will have "submitted by".

And the error dialog when a submitted job is refused because it was already submitted, we will also have
the username in there.

So now, for version 0, we need login, protected pages on the front end, menu and avatars for when a user
is logged in.

In the backend, everything is there but some changes need to be made. We will now only have login,
create users and delete users. And we will use only the Firebase userID.

WebSockets will come later.

end time: 13:00

192

team meeting Thursday 11 February 2024

Present: Arnaud, Ghais, Sergei

starting time: 11:00 pm

Ghais: There was some confusion as to what needed to be done. Login should have been prioritized and
not WebSockets. But it was a good week because the work was done. So it went well in the end.

Sergei: We had an idea of what was version 1, and then suddenly login became important. We should
have documented things and had a better of what needed to be done. But he is satisfied with himself
and satisified with us.

Arnaud: There was some confusion as to what was version 1. And I was also confused about it. But
now there is a good common understanding of what needs to be done. And that’s good. But it was good
because in the end the job got done. And so that’s great. It was productive and the job got done.

For the upcoming version 1, we will implement a check in the put method. The method will check if
the job is already submitted, no matter what it receives. If it is not already submitted, the changes are
accepted, if not an error message is returned.

We will also work on documentation of the versions on both the frontend and the backend. And creating
sketches.

We will meet again on wednesday to see how things are and if we are done we will present that to Vebjørn
as version 1. If not we will tell him we are not done yet and we will still show him what we have done so
far.

end time: 11:45

193

team meeting Wednesday 14 February 2024

Present: Arnaud, Ghais, Sergei

starting time: 8:00 pm

Arnaud mentioned that he implemented the necessary code to dynamically insert username data fetched
from the database inside the web interface. He also inserted the token header in the put requests. And
he created a "completed by" for the completed jobs.

What was missing was the submit conflict dialog box. Ghais implemented it on the spot.

It also turned out that when you enter the url of a specific job, it sends you to the login page and then
redirects you to the main list page. What happens is that the protector redirects to the login page if he
does not see a user being connected right away, and then when he sees it, redirects from the login page
to the main list page. The solution for this is to have the frontend wait a bit before rendering, so that it
has the chance to fetch the user credentials before.

An issue was created about this.

There was a syntax bug in the frontend that Ghais solved on the spot as well.

We also mentioned what we did during the week. Arnaud mentioned having worked the unit testing,
nothing on tuesday and worked on the frontend on wednesday.

Sergei only worked on the documentation today.

Ghais worked on the documentation of the frontend as well.

end time: 9:00 pm

194

meeting with Norkart 08 February 2024

Present: Arnaud, Ghais, Sergei & Vebjørn

starting time: 10:15 am

We showed Vebjørn the prototype of version 1. The version 1 has the check to make sure only one
assignee every gets assigned to a job. And it also has a check to only allow one submission of a job.

We were also told that it might be possible to store usernames directly in FireAuth, instead of using
MongDB for it.

Because we mentionned to Vebjørn that we still use some endpoints of the API to make operations on
users and on jobs. This is something that we should perhaps avoid, and so we got the information that
FireAuth might allow to store usernames. This is something we will look into.

In the Backend, we then showed him that some endpoints are only open and avilable in development
environments, and that it returns 404 not found when the urls are used in the deployed version.

And we also showed him that other endpoints that are to be used have the attribute [Authorize]. Vebjørn
then mentioned that it is possible to implement a white list system. Requiring authorization by default
and having to explicitly authorize in the controllers. He showed it to us on the spot, and this system was
also implemented the same day. The attribute to allow the use of the endpoint without authorization is
[AllowAnonymous].

It was also pointed out to us that the endpoint to fetch a user token was completely open. We were asked
why we even have it. It is because the API is used to fetch a token when we need it. And so it should be
set to [DevOnly].

We were advised that it is possible to fetch a token directly in the console of the browser, and so we could
avoid using the endpoint altogether.

In the end it was a compromise, the best is to not have those endpoints at all but it is an acceptable
solution to put them as [DevOnly] and still allowing us to manipulate the databases from the backend.

One last thing about version 1 was that it would be nice for the user that was completing a job, but got
interrupted by the completion of the job by another user to have his work saved somewhere or at least
still accessible.

This is something that will be completely addressed in version 2 because there users that are not the
owner of a job will not have the right to edit it and they will see the changes of the owner live.

This was the feedback on version 1.

For version 2, there will be the owner of the job, which the user that has the right to edit a job. This
is something that will be flexible and may be called to change, but for now it will be the first user that
enters a job.

Other users that subsequently enter the job will be called viewers. They will not have the right to edit
the job. For them, it is thought to show them input fields that are "read only". Read only input fields can
still be selected and they are not obscured. Users see them as a normal element and can interact with
them as a normal element with the only exception that it cannot be edited.

It is also asked that the element edited by the owner of the job will also be highlighted in a different color
then the main color. So that viewers can follow along. Or another form of visual cue. It could also be a
form of highlighting the changes made by the owner in real time.

Vebjørn also wants for viewers to see the changes made by the owner in real time.

And then there will be the warnings, everyone in the job will receive a notification when someone enters
the job. There will be an interruption notification when the owner submits the job. There will also be a
list of people inside the job updated in real time.

And lastly, this is something that was not talked about in the meeting, but was asked before, but a user
that enters a job in which there are already other users will receive an interrupting notification as well

195

telling him there are other users in the job and asking him if he wants to proceed or not.

The idea of having multiple tasks in the same job also came up. This is something that we can implement
if we want to challenge ourselves, but it is not something that Vebjørn requires for the thesis. If we want,
we can not implement it at all.

It was proposed a 3 week plan: 50% of the implementation in the first week, presentation and feedback
on that 50% in the second week, the other 50% the second week, and lastly, some user tests in the 3rd
week. Vebjørn agreed to that.

Specifications for version 2:

For version 2, we will have what we will call the owner of a job. The owner of a job will be the user that
have the right to edit a job. The owner will be the first user to enter a job (this can change in the future).
This information does not need to be saved for a long time. But this is something that we will need to
track: who is the owner of a job. A job assignee has no correlation with the owner of that job. The owner
of the job will always be the first user to enter the job at any time. Only the owner can complete the job.

And then we have a queue of connections. The oldest in the queue will always be the ones to have the
right to edit the job and then submit it.

These are the relevant terms: The owner: the one that has the right to edit a job and submit it. There is
only one owner for each job at every one time. At least for version 2. This may change in another version.
Every other users in the job are viewers. Viewers: the other users inside the job that are not the owner.
They can see the editing of the owner in real time, but they cannot edit the job.

Viewers get an interrupting notification when the owner submits the job.

A WebSocket manager can be inserted inside a controller, so a WebSocket can react to HTTP requests
inside the API.

This is good because there are other Norkart services that make requests to Komtek, and they do it in
HTTP, and so the WebSockets need to be able to react to that.

How do we handle those external requests? Do we let them make the changes, and then impose them
on the users inside the job? Or is it refused? On the ground that there is another user inside the job? We
could try both avenues. But the priority is to accept those requests.

end time: 11:15 am

196

team meeting Wednesday 15 February 2024

Present: Arnaud, Ghais, Sergei

starting time: 12:00 pm

For the documentation, we will start from version 1, because the versions should start from what we
created. The baseline does not really matter. It is more noise. It is not so relevent. So we will start from
version 1 and describe what was added to it to handle multiple users in one job.

We talked about what was to be done in the rest of the week.

For the WebSockets, it is possible to incorporate a WebSocket manager inside a controller. And such, it
is possible to have a WebSocket manager react to HTTP requests.

The plan for the WebSocket connection in the case of job completion, will be that the requests will still
proceed via HTTP, but their effect will be broadcasted to every user connected to the web socket. This is
the most straightforward and easy way to implement web sockets in our current case.

And this will protect us against connection failure, because when entering a job, a user will still fetch the
job page.

It was required of us to create a list of who is connected inside a job. We talked about this together and it
was decided to have a list with all of the names of the different users. In a rectangle shape and with the
owner of the job on the top of the list. To implement this in the frontend, what is required is a stateful
list, the owner of the job is kept as the first one and everyone else follows after. This list will be updated
according to who enter and leave a job.

Everytime a new user will connect itself to the job, every other user will receive a snack bar notification
telling them who connected to the job, in addition to getting their name on the list. We will not have
notifications for when a user leaves a job. But the list will be changed accordingly.

When the job is completed, it will also display the flow interrupting notification. This will take place.

We talked extensively about the fact that a job can include multiple tasks, and in the current Komtek
system, every task can be submitted separately, and each task has a case handler, on top of having a case
handler for the whole job.

This is something that we can implement if we want to. But we don’t need to, for the whole bachelor.
This is not something that we are asked to do. An issue for it was created, and it is something that we
could work on if we are ahead and have time. But this will involve more work for sure. The issue is for
Sergei to move the data properties inside a job right now into a separate Object called Tasks, and a job
would essentially be a list of tasks.

But for now the priority is collaborative editing and WebSockets.

It was also mentioned that work on the thesis itself will need to start, and that Arnaud can do it. But then
he will be working less on the development itself.

It was also discussed that at some point users will be able to ask to become the owner of a job, or that
with collaborative editing, the owner of the job will be allowed to decide who can edit a job and who
cannot.

It was also talked about having a focus color around the element in which the owner of the job is editing.
This will be something for a later version.

When locked, the job’s elements will be set to read only. They will remain selectables and not darkened,
but they will not be editable.

It was talked about having input checks on both the frontend and backend. This is something necessary
for safety. This is something that we have to have.

Many other issues were added to the issue boards at this point as well for next Sunday.

The plan would be to do at least 50% of the implementation before next thursday, the other 50% the next
week. And then on the third week arrange user tests with Vebjørn and other Norkart workers. And we

197

could already start the work on version 3 while seting up user tests. So the work on version 2 would be
spread over 3 weeks.

We could also have a designer of Norkart look at what we developped and get feedback. But for that we
need to have something worth showing.

If the plan is to put a WebSocket manager inside a controller, this may be implemented fairly quickly.
And then we could jump in the frontend and help Ghais with it. Then things may be done already next
week, we show Vebjørn, get feedback, make changes, and then show again to Vebjørn and have user
tests.

Because in the Backend, it will most likely be only seting up WebSockets that is needed.

end time: 13:00

198

team meeting 18 February 2024

Present: Arnaud, Ghais, Sergei

starting time: 11:00 am

Retrospective:

Arnaud: It’s great that we got version 1 done before the meeting with Vebjørn. This was productive. He
also looked at the merge requests regarding the tests and he merged it. It was a bit overwhelming so it
may be better to talk about it beforehand. The team agreed.

Ghais: It’s great that we have a plan for the next 3 weeks and hopefully we can get more components
done in this week as well.

Sergei: It’s great that we have a plan as well, and that we have clarity about what we needs to be done.

And then we did stand up and Arnaud showed the changes in the backend. Now it’s two projects: one
being the backend itself and the other one being the test project. All the tests of the application will be
moved to the test project. Tests will be placed in classes. And it will be faster to run as well. So that tests
can now be run by the pipeline everytime we push to any branch.

Arnaud will work on the thesis this week. Because in the backend we only need to setup the WebSockets.
Arnaud will start writing the main thesis.

Ghais showed that he made the viewers card. Arnaud suggested of having its size change according to
the amount of people inside a job. Ghais will git it a minimum height and then it will expand dynamic-
ally.

There was also the idea of giving a sign for the owner of a job. Like a different icon or something. Arnaud
proposed having another header above the viewers header called "Owner" and have the username of
the owner written under.

For the meeting with Frode, Arnaud thought of asking him about sustainable development. What do we
put in there? Or how can we incorporate that to the project?

end time: 11:30

199

Supervisor meeting 20 February 2024

Present: Frode, Arnaud, Ghais, Sergei

start time: 11:00

Today we wanted to have a bit of a briefing on sustainability. How is it expected to incorporate it in the
project and what are the requirements around that otherwise.

Frode told us that sustainability is about living in a way that future generations will also be able to live
their life.

That it involves economic, environmental and a sosial aspect.

There is nothing that we specifically have to implement with a sustainability perspective. It will be some-
thing in the last paragraph where we will describe the economical, social and environmental benefits of
our project.

But we should not stretch the thinking too far out. Like, how software makes people save time and
therefore they feel better because they feel more free. But we could say that it digitalizes processes, and
therefore makes it more effective. And quicker service is a sosial improvement.

For testing, we will have to implement tests and describe in the report how we tested things. This is
something that we will have to implement itself.

How many pages should be the thesis. There is always many attachements and appendices to a thesis.
But for the most part it is usually between 50 and 100 pages. But it is not the quantity that makes the
quality. A math PhD thesis can be only 20 pages. But 20 pages of math, that’s intense.

Ghais also asked what counts more in the final grade: the project or the thesis itself? At the outset, it is
the report. Both are linked, but it is basically the thesis report that is the basis for the final grade.

end time: 11: 15

200

Group meeting 21 February 2024

Present: Arnaud, Ghais, Sergei

starting time: 19:30

Arnaud worked on the thesis and is done with the introduction. He sent it to Frode right away for feeback
to it next week. We will also ask Frode to show him what we have implemented so far. But we will do so
next week. Because for now it is enough with the review of the introduction of our thesis.

Ghais worked a bit on the focus color when the owner of the job is inside a text field. This is a bit difficult
to work with because when the user clicks out of the field, it leaves focus. It may be a better solution to
simply put in place a normal border around the field when the owner is inside the field.

Ghais is also working on the loading page for the frontend client.

Otherwise, there is not so much to show Vebjørn tomorrow. It may be best to talk to him about our
implementation plan.

Sergei worked on securing links of the frontend client. Before, when the link of a job was entered in the
url bar, it was immediately going to the login page because it took a couple of seconds for the client to
fetch the user information. And when it had fetched the information, it redirected to the main list page
because it was now in the login page. Now, there is a little delay before rendering the page, which allows
the client to properly render the job page.

end time: 19:50

201

meeting with Norkart 22 February 2024

Present: Arnaud, Ghais, Sergei & Vebjørn

starting time: 10:08

We explained to Vebjørn that, for the submission button, there will be a Web Socket manager in the
controller that will react to the post requests and broadcast the changes. So, the submission button will
always work with an http request. It will not use Web Sockets. So the web sockets work in only one
direction.

For the rest of the data that we will look at in real time, it will be using the Web Socket both to send and
to receive. It will be used in both directions.

Vebjørn told us that this seems to be in the right direction.

Vebjørn asked us if we planned to show our work to Frode, and we will, especially to know if what we do
is complete enough for a bachelor’s degree. Frode has many years of experience so it will be useful.

Ghais also created the card to be able to show the owner of a job and the viewers.

We got a copy of the fully signed project contract and we gave it to Vebjørn. Vebjørn will upload it in
Huma.

end time: 10:47

202

Group meeting 22 February 2024

Present: Arnaud, Ghais, Sergei

starting time: 12:00

For the number of users inside a job, Web Sockets are needed.

Ghais made changes to the frontend and he will be able to open a merge request, it will not conflict with
what Sergei is currently doing with the Web Sockets because he is working in the backend.

For now, Sergei is working on the set up for Web Sockets, he will create a merge request and then we will
share tasks related to Web Sockets. So for now, Arnaud can do some research on Redis or he can further
work on unit tests.

end time: 12:15

203

Group meeting 25 February 2024

Present: Arnaud, Ghais, Sergei

starting time: 11:00

Retrospective:

Ghais: It was not so much action this week like previous weeks, but sometimes you need to relax. We
decided to show Frode our client. So we can get experts opinion about it. Only 2 weeks left for version 2.

Sergei: Was a good week for Sergei, managed to set up web socket. People on the same job see the same
changes. Version 2 can be done in less then that, one week.

Arnaud: Merged requests.

Stand up:

Ghais: Ghais will start refactoring the frontend. Especially the job page. It is getting bigger and bigger.
Ghais looked at the merge request of Sergei. Ghais added a bunch of small features. Ghais uses features.
Never approve a merge request without testing it first.

Ghais will also continue refactoring.

Sergei: Yeah it is definitely a good thing because one time, Arnaud saw an error and spotted. Sergei
finished initial job set-up for the websocket. And he connected the frontend to the backend. We will
also debug the login. This week, he will make the wireframe and finish the websockets by thursday.

Arnaud: Arnaud worked on the thesis the first half of the week and the second half of the week worked
on testing. Arnaud finished the testing of the controllers and will now do the testing of the services. After
that, Arnaud will do the testing of the requests to the API in the frontend. It will be mock requests. This
may be better because this will be consts. It will not change, but the components will change so it may
not be best to test them right now.

There was also an issue with the WebSocket connection. The websocket connection was trying to con-
nect to a local host, instead of the deployed version. Sergei did some live debugging with the rest of the
group.

Two bugs were solved and the changes were pushed.

Issues for the coming week were also created. For Web Sockets, it will be about creating and tracker who
is the owner of a job. Sergei will work on that.

end time: 11:30

204

Supervisor meeting 27 February 2024

Present: Frode, Arnaud, Ghais, Sergei

start time: 11:00

For the thesis, we have a good plan. This is good.

We need a summary in both languages, Norwegian and English.

We also went through the introduction that we wrote and Frode gave us good feedback.

We should be developing meaningfully until the beginning of April. And then we will be focusing on
wrapping up the development and writing the thesis itself.

We showed Frode what we worked on so far. And explained to him the features that we are working on.
Everything was good. But he did suggest to also have the list be updated in real time.

end time: 11:20

205

Group meeting 28 February 2024

Present: Arnaud, Ghais, Sergei

starting time: 20:00

Retrospective:

Ghais: Has been refactoring the job page so that each component are in their own files and the compon-
ents are called with only one line. Ghais also made small tweaks and improvements to the design.

Sergei: did coworking with Arnaud for the whole day. Sergei changed the setup from a middleware to
a controller. Connection handling has also been implemented. That being which connection receives
which data. The current connections are stored in-memory with variables. A later improvement would
be to use Redis.

Ghais what happened with the viewers logic. All can type for now and make changes to a job, but only
the owner has its changes broadcasted to other users. The list of users connected is updated everytime
there is a new connection and every time there is a disconnection. It is updated with an HTTP request.

Arnaud raised the issue of asking Vebjørn should be connection based. Or if it should remain user based.
That is that, on the view cards, users appear once, even if they have many windows open. The owner has
the right to edit in all of its windows, not just one. This is something that Arnaud will ask to Vebjørn.

Arnaud will also ask Vebjørn if its ok if the list is updated with http requests. Maybe it is.

Ghais pointed that the snackbar openeing when one user open another window as a bug. This is a bug
based on a business logic that is user based.

Ghais also saw a bug that when a third user is in the list, the view header also appears above the second
user.

It was also talked about during the meeting to meet Vebjørn tomorrow in the afternoon so that we have
time to tweak and test version 2 before meeting him. Arnaud sent him an email asking him to meet at
13:30.

Arnaud will work on locking the page for viewers and the alert when there are already users in one page.

Arnaud did mention to Sergei to let Vebjørn know if he does not come to Norkart. Sergei may also let
Ghais know to make sure Vebjørn gets the message.

end time: 20:20

206

meeting with Norkart 29 February 2024

Present: Arnaud, Ghais, Sergei & Vebjørn

starting time: 13:30

We showed Vebjørn all the features that were ready to be shown: the live submission, the snackbar alert,
the locking, the dynamic user list, the warning if a user is already in the job, the live changes to the job,
the change of ownership, etc.

We gave the link to Vebjørn of our deployed version. He will look at it, test it himself and give us proper
feedback in a document. Then we will implement that.

What came to his mind was what do we work on next. We could have conflict handling of differing
versions, asking ownership of a job, or asking the right to edit. Expand the complexity of the job handler
with tasks. And Vebjørn would like for a user in the task to know which users are in the job as well as the
users in the same task, and users in the job to see which users are in the different tasks.

It is kind of up to us to decide how we will increase the complexity. We asked what would give the
most value to Norkart. It would be tasks, because it would make our prototype resemble more Norkart’s
software. We could also increase complexity by having different types of tasks and more input fields.
And have something that looks more like what Norkart uses.

We also discussed with Norkart about using some form of cache to be able to store the changes made to
a job underway, without it being submitted. Or to have a dialog box saying that there are changes from
before that have not been submitted, do you want those changes? If yes, you get them, if not, you get a
blank page.

We also forgot to implement the use of highlighted borders for input fields in which the owner is.

We explained to vebjørn that the updates of the users list is done through http calls, triggered by a Web
Socket message, was that ok? We could also do everything through the web socket. For him, it is ok, it
made no difference. But it may be something worth discussing for us in our thesis.

Vebjørn tried the website himself in front of us and his first impression of the stepper was that the 2
other buttons were disabled because of the grey color. So their color should change.

Vebjørn was also asked if it was ok that we had a business logic based on users with websockets instead
of connections. Instead of having each connection in the user list, the user appears one time, no matter
how many windows he is using. And the owner has the right to edit a job in all of its windows. For
Vebjørn, this is ok, but this then raises the question about about conflict handling. Because Vebjørn also
tested that if the same user connects from multiple computers, both sessions have the right to edit a job.

We also asked Vebjørn if he was interested in have user tests. So, he will first test our product. He will
first do that. To test it on Norkart workers, we should have an interface that looks more like Komtek.

But we thought of first finishing up version 2 to next week, fixing bugs and integrating Vebjørn’s feedback,
then move on to version 3.

Vebjørn asked us if it was too little of a thesis. We raised the question with Frode and we were told that
having collaborative editing with conflict handling would be complex enough. So then it could be a mix
of both tasks and conflict handling.

And even in his feedback, Vebjørn will also raise up issues that will most likely increase complexity of
the thesis.

end time: 14:30

207

meeting with Norkart 3 March 2024

Present: Arnaud, Ghais, Sergei

starting time: 11:00

Retrospective:

Ghais: this week way over exceeded expectations. So good job.

Sergei: it turns out that if we try, we do more then we think we can and if we continue like this, we can
do a lot. There is something called quick implementation or something like that. Which is to implement
features quickly and then to refactor.

Arnaud: was nervous at the beginning of the week because it was the 2nd week of version 2 but it worked
out well and it was great.

We went through the feedback that Vebjørn gave us. A lot of the feedback was minor UI changes that
Ghais will implement.

The last feedback was a bit bigger, it was proposing to add multiple user types. One that creates job, and
another one that completes jobs. To make it look more like Komtek.

This is a discussion that we will have next week with Vebjørn. What do we do next.

Ghais will implement the feedback on the frontend and will also add the borders around the elements
changed by the owner of the job.

In the meantime, for this week, Arnaud will work on the testing of the API calls on the frontend. And
documentation of the use of web sockets for version 2 in the backend.

Sergei will work on testing the websocket controller, documenting WebSockets for version 2 in the fron-
tend and on implementing data transfer objects and the repository structure.

Sergei mentioned the idea of disconnecting a WebSocket that is inactive for certain amount of time. This
will be discussed with Vebjørn but it will not be worked on this week.

end time: 11:36

208

meeting with Norkart 6 March 2024

Present: Arnaud, Ghais, Sergei

starting time: 20:15

Sergei did not work on the thesis at all.

Ghais implemented a bunch of the feedback of Vebjørn, but not all. He is still working on it. Ghais will
open a merge request tonight to have his changes so far merged for tomorrow and be able to show them
to Vebjørn.

Ghais also wondered if Sergei could look at the username not appearing sometimes at login. Sergei will
do that and see if he can get it done tonight.

Arnaud did the documentation of version 2 in the backend. He worked on the borders around the ele-
ments that the owner is focusing on.

And Arnaud also almost finished a video series on testing in the frontend and asked what he should be
testing. Ghais thinks it is not worth testing the frontend at all because things will change. Arnaud did not
do integration and end to end testing in the backend, should he do taht instead of testing the frontend?
Yes. So Arnaud will move to that.

The plan for tomorrow would be to discuss what to work on with Vebjørn for version 3, then focus on
only that for the next 3 weeks, then move to the thesis. And wrapping up the coding, but no more new
features. And if we are done in 2 weeks, work on something else for the last week after having talked with
Vebjørn.

Sergei will not come to Norkart tomorrow. And Ghais will have a workshop that he will attend between
12:00 and 14:00. Arnaud will go there anyway.

Same thing for the Ramadan, Ghais will do more home office then, but we will be able to go to Norkart
anyway.

end time: 20:30

209

meeting with Norkart 07 March 2024

Present: Arnaud, Ghais, Sergei & Vebjørn

starting time: 10:15

We implemented all of the feedback that Vebjørn gave us in his previous test. And we showed him that.

When showing him, he also mentioned that we could change the error message at failed login to "verify
that username and password is correct" and for the stepper, to have a hover effect on it. Changes were
actually implemented during the meeting. The hover effect was not implemented but rather some color
was added to the words.

And then Vebjørn asked us if we implemented some of his idea at the bottom of the document.

And that’s when the meeting when to its core: what should we be working on?

Because now we have 3 weeks. After that, we should be moving to writing the thesis, and be done with
the development.

First we talked about the possibility of creating jobs.

In Komtek, there is different Graphic User Interface for different user types. To make it simpler for us,
we could stick to one user interface, and insert in it the possibility to create jobs.

The idea here is to make our interface look more like Komtek, so that it would make sense to proceed
with some proper user tests.

And then this led to the task feature. Another possible idea to make it look more like Komtek would be to
add some tasks in the jobs. That a job would now be a container in which tasks are. And that a job could
contain multiple different tasks. And that each task has a set of fixed fields that would be validated. And
taks would be displayed as an accordion menu in the job. The idea here is that a job could now contain
an unknown amount of tasks. And in such case, we would need to make the frontend dynamic. And the
Web Socket handling as well. We would need to make it dynamic as well. That would be a challenge.
And right now, in Komtek, the input fields are not validated in the Komtek backend, so for every task,
the frontend could create a new field and send it to the backend and it would be accepted. So this is also
something that we could implement. Lastly, we could have type config. This is something that we could
also implement. So that the fields for every tasks and their parameters are properly controlled.

And then Ghais about the asking for ownership feature. This is something that is up to us, but if we
implement conflict handling, this may not be needed.

Part of our bachelor thesis is to handle conflict and to have proper collaborative editing. And so this is
also something that we should include in our development.

But then it was mentioned that we could have jobs that are open for editing by everyone and some jobs
would still follow the owner logic.

We could also have a version logg. This is also a feature that we could implement.

The idea would be for us to increase the complexity of our project to have enough to write about in the
report. So this is something that we should be looking at and see what has the most value for us in this
aspect. Vebjørn recommended us to make a priority list as well. Where we weight what matters most to
each of us and decided with that.

Vebrjøn would like to have everything: tasks and dynamic handling in the frontend and the web sockets,
collaborative editing and conflict handling and version logg and version logg.

And so finally, this is all the possible features that we could implement for version 3:

- Collaborative editing (ask for ownership) - Tasks vs jobs - Create jobs - Version logg - Type config

end time: 11:30

210

meeting with Norkart 07 March 2024

Present: Arnaud, Ghais, Sergei

starting time: 12:10

We discussed that we needed to chose what we will work on, because we have little time, and we will not
manage to implement everything. We need to take it one step at a time.

So, we have three weeks on us to get as much done as possible. And in that timeframe, take feedback
from Vebjørn and implement his proposed changes.

And so we discussed and decided to prioritize the following features, in order of priority.

1: ask for ownership 2: implement caching (last version applies) 3: create a job 4: implement tasks

We also created issues in the issue boards about that.

end time: 12:40

211

team meeting Sunday 10 March 2024

Present: Arnaud, Ghais, Sergei

starting time: 11:00 pm

Retrospective:

Ghais: Last week went alright. We did way more then needed, so Ghais feels that we are more relaxed.
He likes where we are and what we are implementing. We have a few weeks left for implementing stuff.

Sergei: Was focusing on other subjects more. Sergei was happy with the progress we made and he feels
like we have plenty of timme. No stress.

Arnaud: Happy where we are. Everything that we set to do was done and this is great. Not sure we have
so much time if we want to implement both collaborative editing and tasks.

Stand up:

Ghais: Request editing was put in the viewer’s list so that it is easy to see. There is a merge request
coming soon. Started with the job form. Not sure everything can be done in time.

Arnaud: implemented the isLocked variable. So it can now be linked to the frontend. This variable is
what indicates if a job uses collaborative editing or not. If the job is locked, the owner logic applies, if
it is not locked, it uses collaborative editing for everyone. For the rest of the week, worked on learning
about Redis and caching.

Sergei: this week he only did refactoring. To have a good shape in the code. Because it felt to Sergei that
it was more chaotic.

Plan for the week:

Ghais: will work on the form for the job, this will need to be linked to the post method in the backend.
And the button to ask for ownership, he will also need someone to connect it to the backend.

Sergei: will take care of linking the new frontend features to the backend, will review merge requests and
do some testing.

Arnaud: will work on caching and conflict handling.

We will switch to remote meetings with Vebjørn for the rest of the thesis. Except the last meeting where
we could go there and show our final product.

Let’s cancel the meetings on wednesday night. And from now own let’s meet 15 minutes earlier before
the meeting with Vebjørn.

And lastly we will not work on tasks because it will not add much value to our thesis and it will be a lot
of work. So we will focus on collaborative editing.

end time: 11:22

212

Supervisor meeting 12 March 2024

Present: Frode, Arnaud, Ghais, Sergei

start time: 11:00

We essentially asked Frode at what time we should start writing the thesis report. And we were told that
most start in the last month and keep developing until then.

But it is good to start early. And write underway.

Frode also asked us if we had enough to be developing because we were quite focused on the report.

Yes we do have enough but we that we planned to be done at the start of April.

And so we told Frode that we told Norkart that we had to be done with the development at the start of
april and that, after that, there would be no more development of new functionalities.

end time: 11: 05

213

meeting with Norkart 14 March 2024

Present: Arnaud, Ghais, Sergei & Vebjørn

starting time: 10:00

Cache was showed to Vebjørn.

We told him that we would be working on conflict handling and instead of tasks because this is what
would give most value to the bachelor and would be more in line with the bachelor thesis description.

Vebjørn mentionned that it is good that we focus on what relates the most to the bachelor thesis descrip-
tion. And that the idea behind implementing tasks is to have something that ressembles more reality. So
that the solution created can be more realistic, usable and testable.

And so it would be valuable and pretty exciting for Norkart to be able to have the real-time features and
the conflict handling in an environment that is more like Komtek.

We also showed Vebjørn the work that was done on caching.

And we explained that we found a framework, Yjs, to solve conflict handling in React. And that we will
now implement it in the frontend.

That we thought we needed caching to be able to handle conflict but that in the end it can all be handled
in the frontend. And that in fact it affects caching because what needs to be cached at this point is the
final result after the changes, and not just the change, which is what it is right now.

We also showed him a priority list of what we have planned for the last weeks of development:

1: ask for ownership 2: implement caching (last version applies) 3: create a job 4: implement tasks

This is something that Vebjørn supported.

Vebjørn asked us what we thought of the process that we had for the thesis. And Arnaud mentioned that
it was the best group work process that he had in all of his bachelor.

We will meet next week, and we will not meet for the easter vacation and then we can meet the week
after.

Vebjørn will also be available to meet during the writing of the report. And will also go over it to make
sure that we do not write any confidential information.

Vebjørn will also test what we have developped so far and he will ask for the input of a colleague. He will
also send us a form to ask us how what we developed is expected to behave. And test it against that. And
then he will send us feedback in a document like he did last time.

We also showed him the changes that are being worked on in the front end. That is to create a job and
to be able to ask for ownership of a job.

end time: 10:36

214

meeting with Norkart 14 March 2024

Present: Arnaud, Ghais, Sergei

starting time: 10:00

Stand up:

Ghais: worked on creating a new job. He also proposed incorporating different a new type of jobs if we
find time to do it. It would be to install a new water meter. Ghais also mentionned that pages are loading
too slow in the frontend, especially when loading a job page because the page is locked for many seconds
before it unlocks. This is how Arnaud implemented it: a job is locked until the frontend receives from
the backend the information that the user is the owner of the job and can therefore edit the job.

Arnaud: implemented caching and looked up conflcit handling. Found a framework called Yjs that can
be used with React to resolve version conflicts in the front end only. It turns out that caching is not even
needed to be able to handle conflicts and that the conflict handling is all done in the front end. Now it
is about implementing the solution in what we have developped and adapt the caching to store only the
resolved value.

Sergei: Sergei deleted the web socket data that was being sent on close because it was creating error
messages in the console because when the data was sent, the web socket was already closed. It turns
out that there is also a delay locally for pages to load and so this would be something to look into. Sergei
will work more on the thesis from today to sunday and have some implementations done. He usually
works on the thesis from thursdays and on. Arnaud mentioned it would be better to do the opposit and
work on the thesis at the start of the week so that more could be shown to Vebjørn.

Some more issues were made related to asking for ownership of a job and linking the job creation on
the frontend to the backend. For now, the button to ask for ownership has been removed until it will be
ready in the backend as well. An Issue related to the performance of the client has also been created but
will be tackled later if there is enough time.

We will also start writing notes for the report and the documentation. We will be able to meet Vebjørn
around April 10, and then we can meet up and ask him about documentation.

end time: 10:36

215

team meeting Wednesday 17 March 2024

Present: Arnaud, Ghais, Sergei

starting time: 11:00 am

Retrospective:

Sergei: it was a good week. Nothing extraordinary. He had been working since thursday. Got over-
confident at some point that implementing requesting ownership feature would be easy, but stumbled
on a bug that is now difficult to solve. Then it becomes frustrating when it does not go according to
expectations.

Ghais: We are almost finished with the thesis basically. It was good to have many meetings and dead-
lines. And then there will be documentation to work on and to rework. We will use ChatGPT to give us
feedback on the report, not to write anything for us.

Sergei was wondering if Vebjørn could look at our code to give us feedback. He will because he wants to.
And he will most likely give us what are the most obvious recommendations.

Ghais is also almost done with the edit request dialog.

Sergei showed us the tenuous bug he is working on. It happens that when a user first enters a job, and
another after that enters the same job, ownership is allocated normally. But then when the other user
reenters the job first and the other comes back in the job, he takes the ownership right away. It may have
to do with the socket sorting in the backend.

We will also need to change the viewers card for version 3 to no longer have viewers. Because everyone
will be an editor. But we will also need to keep the old card because some jobs will be open for all to edit
and some others will not. We still need locked jobs to be able to request ownership.

For Arnaud, the week involved a lot of work and was difficult because although he found a framework
for conflict handling. The documentation and the resources around the framework was a bit thin and so
he kind of had to figure it out himself. And that was painfull. But it worked out in the end and that feels
pretty good.

Ghais showed the request ownership dialog.

Arnaud showed the conflict handling branch. He forgot to point the server to the local server. And Sergei
came with idea of having a .env file so that when we run the code locally, it points to a local server or not.
But that for production, it always point to the backend server and that we never have to worry about
forgeting to point to the right server.

Arnaud also explained the setup and how it works. And explained the bugs that he had to overcome.
Ghais mentioned that it will require some refactoring for the job page. Some of the conflict handling
could be placed in hooks. The file is getting a big too big here.

The feature was not tested with 3 users in one job. Arnaud tested it live during the meeting and it worked.

Ghais mentioned some other small changes to the frontend. Sergei will finish up on requesting owner-
ship and link it to the frontend and then our thesis is pretty much done. Sergei will also refactor. Arnaud
proposed working on testing the websocket controller but Sergei will want to refactor first.

After that we will be able to work on some automated tests and move to writing the thesis report.

Ghais mentioned that it was key to start with small objectives.

We will meet Frode tuesday to show him what we did so far.

end time: 12:00

216

Supervisor meeting 19 March 2024

Present: Frode, Arnaud, Sergei

start time: 10:00

We met Frode and showed him the latest that we have done. And now we can create a new job and ask
for editing rights. And the conflict handling that we implemented.

He then told us that it was too little. That we should develop more. It is not about spending a lot of time
on developing something that should tak a short time. It’s about working regularly on it.

We told him that we could implement dynamic fields to be able to handle an amount of fields that we
do not know about.

We also asked if we should comment the code. And we should comment it.

end time: 10: 05

217

meeting with Norkart 21 Mars 2024

Present: Arnaud, Ghais, Sergei & Vebjørn

starting time: 10:00

Arnaud apologized to Vebjørn for not giving him any agenda for the meeting and not sending him any
messages the day before. He completely forgot.

Arnaud showed the recently added features to the program. It is the job adding and asking for ownership
and conflict handling.

Vebjørn noticed how slow it was and mentioned that. He refered to the fact that anything that takes
more then 100 miliseconds is experienced as slow by users.

The caching made our solution slower in the end because it is a free solution and it creates another
http request. Locally it is faster. And for the conflict handling, it is slowed down on purpose so that
conflict handling can be shown. But it can now be reduced. Now that it has been shown. On a pure user
standpoint, the best is to have changes and conflicts managed as fast as possible to avoid having to wait
for anything.

We mentionned that Frode told us to develop more in the coming week. And so we decided to try to
handle the fields of a job dynamically. And Vebjørn asked us if we could also enforce a certain object
structure as well, that would be great for him.

Other then that, Vebjørn conducted some testing of our current solution with a colleague.

This is the feedback that he gave us.

If we could implement a feature that asks the user if he wants to save the job in the main database when
he leaves a job, that would be good. Right now, it is saved in cache. But by definition, cache is temporary
and so it will disappear at one point or another. And especially now there is nothing that says what
happens with the data when a job is left. So being offered the option to store the job data in the main
database when leaving a job would clarify a lot of things.

It would be good to have a hover effect over the different elemenets of the stepper, to be sure the user
knows that it is clickeable.

It was also recommended to have next to each stepper elements the number of jobs that are in each of
the stepper element. In paranthesis.

It was also recommended to have a color code for each user so that we could know who is editing.

It would be good to have a search bar to be able to search for jobs.

It was also recommended to make the overall system faster.

We will not meet next week because it is the easter vacations. We will meet the week after.

end time: 10:50

218

Group meeting 21 March 2024

Present: Arnaud, Ghais, Sergei

starting time: 9:45

Stand up:

Ghais waited for refactoring because there had many merging. But did do some refactoring. There is a
merge request pending for some small changes

Sergei finished refactoring, finished the transfering of ownership feature and tested the feature when a
user asks for editing when there are 2 other users that already ahve editing rights. In this case, it is the
first one that clicks to either accept or reject the request have the last word.

Arnaud merged the different merge requests made by Sergei but nothing else. Worked on entrepreneur-
ship instead.

It was decided to implement dynamic fields in the frontend because we were told by Frode we should
develop more.

There will also be implemented dynamic jobs in the backend.

Vebjørn also suggested some feedback and some of it will be implemented. Some of it won’t. Like a job
searching feature or being able to save a job in the main database instead of the cache. Those will not
be implemented. But they will nontheless be part of the final report.

Issues were made as well for the rest of the week.

end time: 10:00

219

Group meeting 24 Mars 2024

Present: Arnaud, Sergei

starting time: 11:00

Retrospective:

Sergei: It went well but not much was done.

Arnaud: Was uncomfortable in the beginning on being able to implement dynamic fields for the job.
Because had no clue at all where to start. But now feels better because a roadmap has been found.

Stand-up:

Sergei: was done with the request editing. Nothing new was added. Was worried about the long if
chains. Got educated on that. Found a resource that maybe there should be a programming pattern
used. It’s basically making a class for each of the functions and just have one block. It would be better
for performance. Shrinks the code. The idea is to use hashmaps. If chains are sequential. A Hashmap is
instant. Thinking about implementing that this week.

Arnaud: Added documentation on version 3 in the front end and reduced the time for the transmission
of web socket data for the water meter from 5 seconds to 2 seconds. Also started the work on making the
job page fields dynamic.

Plan for the week:

Arnaud will continue with making the job fields dynamic in the frontend.

Sergei will work on making jobs dynamic in the backend and will remove some if statements and replace
it with a hashmap in the websocket controller.

end time: 11:30

220

Group meeting 28 March 2024

Present: Arnaud, Ghais

starting time: 10:00 am

Stand up:

Ghais: Changed the hover cursor over the stepper steps. Now, it becomes a pointed arrow. So now
people know they can click on it. Also implemented the number of jobs next to each step.

Also refactored the useSWR package with Arnaud during the meeting.

Arnaud: Refactored the front end for dynamic rendering. And worked on some changes recommended
by Ghais. And fixed a bug that was not saving the meter number type when the job was being saved. But
my fix is not great, I should look at something else.

But it will need to be fixed further.

There are still some small tasks to do in the frontend. After that the development will pretty much be
done.

end time: 10:45

221

Group meeting 1 April 2024

Present: Arnaud, Sergei, Ghais

starting time: 11:30 am

Retrospective:

Sergei: Not much work. Nothing practical. Nice celebration.

Ghais: Did the last tasks and Arnaud reviewed the merge requests. We are done now with the develop-
ment now.

Arnaud: Went well. Did the last tasks and reviewed Ghais’ merge requests. That went well and was
productive. It could have been something Arnaud did earlier in the thesis as well.

Stand up:

Sergei: will have a merge request for refactoring

Arnaud: refactored the frontend, merged Ghais’ merge requests and started commenting the code in the
frontend.

Ghais: made the final changes to the frontend requested by Vebjørn

ChatGPT will be used to give feedback to what we write. Will not use ChatGPT to write any text.

Development is now done. It will be commenting the code, testing and documentation

fixing some bugs if we find them.

We will meet Frode at 1pm on thursday.

I will send a message to Vebjørn to meet him online at 10am on thursday. We will show him the last
features that we implemented and that will be it. And then telling him that we will now write the thesis.

end time: 12:00

222

meeting with Norkart 04 April 2024

Present: Arnaud, Ghais & Vebjørn

starting time: 10:00

We implemented typesafety and also implemented optionnal job fields.

What is important is that every potential job field has its own component that is rendered if the jobfield
is ever present.

We will meet at Norkart next thursday and after that meetings will take place on a request basis. The as-
sumption is that the meeting takes place. So we need to tell Vebjørn in advance, preferably on mondays
or tuesdays if we do not plan to meet at Norkart.

A zip file of both the frontend and the backend has been sent to Norkart.

end time: 10:15

223

Supervisor meeting 4 April 2024

Present: Frode, Arnaud, Ghais, Sergei

start time: 13:00

We can now start writing the thesis.

Frode is a bit worried we didn’t do enough but yes, it is good that we start working on the report now.

Frode will read our thesis 2 times before handing in.

The last time is usually about 1 week before handing in.

The dates are around April 25 and around May 10.

Tips for us? The first and last part are quite important. The middle part is more customized to our
project.

Can we write about what we could have worked on? Yes there is a whole section for that.

Can we use ChatGPT to give us feedback on our text? Yes. It’s also good to use our own brain for that as
well.

Do we log our hours? Yes.

end time: 13:05

224

team meeting 07 April 2024

Present: Arnaud, Ghais, Sergei

starting time: 12:30

Retrospective:

Ghais: last week was good, we met Frode and he gave us two deadlines. One at the end of April and the
other one week before the deadline.

Sergei: Good week, in terms of transition from practical to writing. Hard because he wants to code more.
Wanted to do more. Never truly done with coding. Writing is a whole new job. Completely different.
Transition is kind of hard.

Arnaud: Got a bit nervous when asked questions that were not answered. April 2, asked if can reassign
websocket testing to himself and integration test to Sergei. No answer there. April 2, asked if we are done
with refactoring? No answer there. But it was addressed today.

One day delay is ok.

Stand up: did refactoring. Tried refactoring in the backend. But it did not work. It introduced bugs so it
was rolled back. It was not worth it. It would have looked better.

Now we are done with refactoring. Because before refactoring code, you should have tests in place.
Because refactoring can introduce bugs without knowing it. And so we are done with refactoring.

Ghais: did final coding with Arnaud. And looked at the merge requests. Did some GPT research. Could
review what we write. Not make any changes but get feedback from ChatGPT.

Arnaud: worked on commenting and testing.

Plan for the week:

Arnaud: work on commenting the code in the backend. Make unit tests in the frontend. Make integra-
tion tests in both the front and backend, andn try to do one end-to-end test.

Sergei: work on the implementation part of the thesis.

Ghais: work on the frontend design part of the frontend.

For the meetings, we will not need to meet Frode this week, but just to know from him the dats at which
we should submit him the thesis for review.

For the meeting with Vebjørn, we will ask to postpone it to thursday April 18. We will ask him for feedback
on the code, but won’t make any changes unless its about solving a bug.

end time: 12:30

225

meeting with Norkart 14 April 2024

Present: Arnaud, Ghais, Sergei

starting time: 12:00

Retrospective:

Ghais: Retrospectives may not be so relevant anymore. Because it is mainly about the report at this
point.

Arnaud: Had to prepare a test case for a work interview this week and so its why he was working late this
week. It was not great. Is back to normal schedule. Sergei merged comments first and then worked on
other changes. That was good.

Sergei: Not much to say. Happy to start writing the thesis. Has been reading a lot lately. Not too much
stressed. Everything is getting done.

It will be good to have meetings on Sundays. To preserve the group atmosphere, and to meet after
meeting Vebjørn.

Stand-up:

Ghais: Started with the report on the frontend.

Arnaud: Finished the unit tests on the frontend and commented the backend. Started working on integ-
ration tests.

Sergei: Review Arnaud’s merge requests. Made user testing on his own and found a bug. The list was
not updated when somebody left the job. Because message was not sent in proper format. Writing the
report. Read about how to write. Made the report going.

Plan for the week:

Arnaud: will work a bit on integrated tests and then will move to the report because this is what is most
important now. Integrated tests in the front-end and end to end testing have been dropped.

Comments for functions in the backend will be modified by Sergei.

The cache in the backend will be turned off.

Arnaud will send a message to Vebjørn that we are going to Norkart on thursday.

end time: 10:36

226

meeting with Norkart 18 April 2024

Present: Arnaud, Ghais, Sergei & Vebjørn

starting time: 10:05

Vebjørn did not have time to look at the code.

Arnaud asked him about some of what he wrote about Komtek.

Komtek really is a series of multiple software. There are apps for people working in the field. And there
are purely web applications as well in the environnment.

The software that we work on is a software that is on the cloud and is used by case handlers in offices in
a town hall. This is a purely web application.

And so Arnaud wrote that the part of Komtek that is worked on is a web application, it uses React on the
frontend, it has an API for the backend, in Dotnet and it is a Rest API. Yes that’s right.

Sergei asked about specifications. And if there are more specifications that we should include in there.
Those specifications are kind of mentioned throughout all the meetings that we had with Vebjørn before.
We have them in our notes. But safety, not having the API out in the open, using bearer tokens, etc.

Bearer tokens? Why not sessions? Because of distributed systems. It is more effective to use bearer
tokens in distributed systems then to fetch session information all the time.

There was also a thing, we were working on the theory part and we found out about HTTP2. A protocol
that essentially allows to achieve the same result as Web Sockets. And that this is presented as more
effective then web sockets. This was mentioned to Vebjørn as a possible alternative that may be better
then what we actually developed.

We sent the codebase to Vebjørn a couple of weeks ago. Since then, we added tests in the backend and
comments. So this is something that we could send as well.

end time: 11:00

227

Group meeting 21 March 2024

Present: Arnaud, Ghais, Sergei

starting time: 12:00

Stand up:

Ghais completed the front end design part.

Sergei has been writing about the requirements section. It is not completely done. Still in progress.

Arnaud has been writing about the theori part.

Sergei will continue writing about the requirements part and start writing about the design of the backend
part.

Arnaud will keep writing about the theori part this week, the testing part and the working process part.

Ghais will review what we wrote and provide feedback, also feed from ChatGPT. But we will only take
the feedback. We will not have ChatGPT write anything.

We will meet with Frode this week and tell him, not have him read but tell him what we are writing about
and see if it is in the right direction or not.

end time: 12:15

228

Supervisor meeting 23 April 2024

Present: Frode, Arnaud, Sergei

start time: 11:00

Asked Frode if it was right to put an inventory of real time features and of real time technologies in the
theory part. Yes it is.

Asked if it was ok to have screenshots of other products in the theory part. Yes it’s ok, but screenshots of
what we made should go in the design part.

Frode asked if we had use cases for our requirements. Yes we do and we also have specific requirements
that were provided by Norkart such as having login and password.

Asked what is the difference between implementation and design. Implementation is more about the
tools used to implement the project.

Design is more about architecture

Asked if it is ok if we submit the thesis for review later then the end of April. Yes no problem but then
maybe he won’t be able to look at it two times. Asked if it we should submit for review a thin version
rather then not at all. He said it’s better to have a complete draft, so that the review can be useful.

There was issues with the wifi connection today.

end time: 11:10

229

Group meeting 29 April 2024

Present: Arnaud, Sergei, Ghais

starting time: 12:45 am

Stand up:

Arnaud finished the theori part which was the most difficult and consuming because of the theori and
the concepts. research paper also had to be read and so on. So this was difficult. The other parts will be
easier because they are more about reporting what we did.

Sergei finished the requirements part and is on his way to finish the backend design part. After that he
will work on the implementation of the bakcend.

Ghais removed the branches in his repository and had the thesis reviewed by a gpt specialized in review-
ing thesis. And provided the feedback that Arnaud will incorporate.

Arnaud can write about the testing, sergei will finish backend design and start on backend implement-
ation. Ghais will write about the GUI in frontend design and about frontend implementation.

We will not meet Frode tomorrow but we will send him tomorrow the thesis for review and before that
the feedback from gpt will be incorporated in the text.

end time: 10:45

230

Group meeting 5 May 2024

Present: Arnaud, Ghais, Sergei

starting time: 12:00

Arnaud mainly worked on the testing part of the thesis. Hopes to get it done today and then work on the
deployment part.

Also went through the feedback from Frode. Will move what was written in the theory part in the design
and implementation part. And will rewrite the theori part by focusing on the problem, and explaining
the problem.

So the plan for the week will be to write about deployment and hopefully about the working process.

Sergei made a plan for the implementation part and will write more this week. There was many exams
and deadlines last week so could not do much.

Ghais worked on the implementation part of the frontend and the GUI design. Ghais knows someone
that could go through our thesis before submission. Which is good because Frode recommended us to
do that. Will also look with Vebjørn when to look at the thesis. Vebjørn will go through the thesis one
time. So it may be best to wait until the thesis is a bit more complete.

Tomorrow meeting with Frode. Will ask about what I should write in theory part before making any
changes.

end time: 12:15

231

Supervisor meeting 6 May 2024

Present: Frode, Arnaud

start time: 13:00

So I asked about the theori part of the thesis. The main issue with this part is that it is too technical. It
goes too deep in technicalities. And it is too long for what it should be. Normally, this part is between 2
and 6 pages.

What it should talk about is what the reader should know to understand the problem addressed by the
thesis.

What are the typical problems and the typical solutions. But it should not be technically heavy.

The rest should be moved to the design part. Both the GUI and the technical design part.

For the requirements, it should be based on a use-case. We should see at previous bachelor thesis to get
an idea of what it does.

In the design part, more detail should be given about the solution, the various alternatives and the
choices that we made, and why we made the choices that we made.

The implementation part should explain how our codebase is built. It could show code examples but
not too much. And more details can be given on specific part. Some people put their whole codebase in
appendix. We can do that if we don’t have too much code. And we put only our code in there.

We have to send him what we have for the 2nd review on May 13. Because he is gone on May 15. And
our meeting will be online then.

He also mentioned that we should get a Norwegian to check our Norwegian summary.

end time: 13:12

232

team meeting Sunday 12 May 2024

Present: Arnaud, Ghais, Sergei

starting time: 12:00 pm

Ghais: Went through the thesis and provided some feedback;

1. Explain what Discord is

2. Reduce the meeting section in the process chapter. If Frode or Ghais’ contact person says it is too
long and not necessary, Arnaud will reduce it.

3. In the process chapter, change the name of the theory section

4. Remove the Golang example.

5. Mention Norkart in the acknowledgement section

Sergei: Has been working on the implementation part, will write more in the coming days. Moved the
requirements part of the testing chapter to requirements. Arnaud would prefer to keep it in the testing
chapter, so that everything about testing is in the testing chapter.

Also either did or planned to do changes in the theory section. Will let Arnaud know.

Arnaud: Has been writing the thesis and will finish the conclusion today.

We will have a meeting after receiving Frode’s second review to decide who works on what.

We will provide Ghais’ contact person that will review our thesis a Word document of the pdf and a clone
of our Overleaf project.

Arnaud will contact Frode and ask at what time max can we send him the draft monday.

end time: 12:30

233

Supervisor meeting 15 May 2024

Present: Frode, Arnaud, Ghais, Sergei

start time: 12:45

In the design, we have a lot of technical material. We should have more specifically about user interface
design and using screeshots. We should show our solution.

One thing that we could do would be to have GUI design as a full chapter.

In the development process, we don’t need to write too much about milestones. We don’t need to write
too much about meeting discussion. For testing, we should shorten as well.

Same thing for artificial intelligence. We should be shorter on that as well.

Our chapters should have an introduction each.

How many pages should we have? There are no hard ranges. But something between 50 and 90 is good.

For the presentation, we were thinking of having a video presentation. Is that ok? Or should we have a
live presentation? It is better with a live presentation.

Our chapters are imbalanced. There should be more in Design and Implementation then in testing for
example.

We will not meet Frode again before handing in.

end time: 13: 15

234

Team meeting 14 May 2024

Present: Arnaud, Ghais, Sergei

starting time: 13:15

Arnaud will shorten the testing and development process section.

Sergei will finish the implementation and design of the backend.

Ghais will create a GUI design chapter with screenshots.

Ideally we will keep the thesis under 90 pages.

We will also add an introduction in each of the chapters we worked on.

end time: 13:45

235

Team meeting 18 May 2024

Present: Arnaud, Ghais, Sergei

starting time: 19:00

We went through the thesis together and made some small modifications and additions.

We added introductions at each chapter, among other things.

Sergei will make an entity diagram. Arnaud will add the hours logg at the appendices.

Arnaud will add to the implementation the message when the job is completed through http and then a
message is sent through websocket to other users.

Arnaud will also add websocket flow diagram to the implementation section. It will show data being
sent to multiple users.

Arnaud will also review the conclusion for grammar. After that, it can be handed in.

Arnaud will take care of handing in.

Sergei will let Arnaud know when he finishes the entity diagram.

We will meet on June 1 to talk about the presentation.

end time: 20:30

236

Appendix L

Feedback and advice from ChatGPT on
our thesis report

237

Specific Feedback on Grammar and Writing Style
with Examples

1. Terminology Consistency: Define and use terms such as ”collaborative
editing” consistently throughout the document.
Example: Define ’collaborative editing’ the first time it appears and differ-
entiate it consistently from ’real-time editing’ throughout the document.

2. Active Voice Usage: Convert passive constructions to active voice to
enhance clarity and directness.
Example: Change ’The project was directed by us’ to ’We directed the
project’.

3. Verb Tense Consistency: Ensure verb tenses are consistent within each
section to improve readability.
Example: If you begin describing your methodology in the past tense,
continue using past tense throughout that section without switching to
present tense.

4. Sentence Structure: Simplify complex sentences to make the text easier
to read and understand.
Example: Instead of ’The server, which processes data, sends it to users
after filtering through complex algorithms’, use ’The server processes data
and, after filtering, sends it to users.’

5. Precision in Descriptions: Be specific in your descriptions, especially
when discussing technical details.
Example: Instead of ’We used .NET for backend development’, specify ’We
utilized .NET Core 3.1 to leverage its support for real-time web functions
through SignalR.’

6. Article and Preposition Usage: Correct the use of articles and prepo-
sitions, which are often minor but impact the professional quality of writ-
ing.
Example: Change ’We implemented features in software’ to ’We imple-
mented features in the software system.’

7. Avoid Redundancy: Reduce unnecessary repetition of words and phrases.
Example: Instead of ’We asked users to give their feedback and users
responded to our queries’, use ’We requested feedback from users, who
responded promptly.’

8. Punctuation Accuracy: Ensure punctuation marks are used correctly
to avoid confusion and enhance readability.
Example: Replace ’We developed a system, that integrates seamlessly’
with ’We developed a system that integrates seamlessly.’

1

9. Transitions Between Sections: Use transitions to ensure a logical flow
of ideas from one section to the next.
Example: After concluding the methodology section, transition to the
results section with ’Following our detailed methodology, we now present
the system’s performance results.’

10. Refining the Abstract and Conclusion: Ensure that the abstract and
conclusion sections succinctly summarize the thesis and reflect the signif-
icance of your findings.
Example: In the abstract, succinctly summarize the problem, your ap-
proach, and the main findings, such as ’Our research addresses the imple-
mentation of real-time collaborative editing in municipal job management
systems, enhancing operational efficiency by 30

2

Specific Feedback on Bachelor Thesis Content with
Examples

1. Scope and Clarity: The thesis ambitiously covers a broad range of
features. Focus more on critical components like conflict resolution mech-
anisms.
Example: Instead of covering multiple collaboration features broadly, deeply
analyze the conflict resolution mechanisms in Google Docs and their ap-
plicability to the Komtek system.

2. Literature Review: Expand the comparison of existing technologies.
Example: Detail the response times and user experiences of real-time col-
laboration features in Google Docs vs. Microsoft Word, discussing their
applicability to municipal job management systems.

3. Technical Choices: Justify the selection of .NET and C# more robustly.
Example: Explain the choice of .NET by discussing specific libraries that
support real-time data processing unavailable in Node.js or Python.

4. System Architecture and Data Flow: Elaborate on these aspects
with more detailed diagrams or examples.
Example: Provide a detailed diagram illustrating the data flow when two
users edit the same document simultaneously, explaining how data conflicts
are managed.

5. Results and Analysis: Clarify the presentation of results with more
quantifiable data.
Example: Show a graph comparing the time it takes for changes to be-
come visible to all users before and after implementing the new real-time
features.

6. User Testing and Feedback: Describe the user testing process in more
detail.
Example: Describe how user feedback was collected through surveys after
testing sessions and how this feedback led to specific improvements in the
GUI layout.

7. Discussion of Limitations: Address scalability and potential system
limitations.
Example: Analyze how the system would perform under the load of 100
simultaneous users and suggest potential infrastructure improvements.

8. Integration of Diagrams and Visuals: Ensure all visuals are clearly
integrated and labeled.
Example: Refer to Figure 2.4 directly in your text when discussing the
influence of user interface design on real-time collaboration and ensure all
figures are clearly labeled.

1

9. Citations and References: Enhance citation practices.
Example: Provide citations for each technical claim, such as ’WebSocket
provides lower latency compared to HTTP polling’, from reliable sources.

10. Conclusions and Recommendations for Future Work: Strengthen
your conclusions.
Example: Summarize the effectiveness of different conflict resolution strate-
gies and propose areas for further research, like adapting these strategies
for mobile platforms.

2

Appendix M

Hours logg

242

243

	List of Figures
	Introduction
	Project
	Fields
	Project limitation
	Project description

	Target groups and goals
	Target groups
	Goals

	Background
	Responsibilities and roles
	Thesis structure

	Theory
	Problem description
	Objectives

	Requirements
	User requirements
	System requirements

	Design
	Inspiration sources
	Technical design
	Graphical user interface (GUI)
	Unique GUI Components
	Add New Job Dialog
	Warning Dialog
	Viewer Card
	Job Completion Notification

	Implementation
	The 3-tier architecture
	Presentation tier
	Business logic
	Data tier

	Frontend
	Backend
	Domain
	Jobs
	Users and authorization
	Notification system

	Development process
	First team meeting and philosophy
	Meetings
	Collaboration framework
	Issue tracking
	Version control
	Project milestones
	Meeting notes

	Testing
	Requirements
	Design
	Use in CI/CD pipeline
	Test processes
	Implementation
	User Testing
	Refactoring

	Deployment
	Design
	Backend implementation
	Frontend implementation
	Choice of tools

	Conclusion
	Results
	Reasons for our choices of technologies
	Use of artificial intelligence
	Sustainable development assessment
	Critical review
	New projects and further work
	Asessment of the group work
	Project-based work
	Closing statement

	Bibliography
	Terms and Acronyms
	Gantt Diagram / Project Schedule
	Open backend issues at the end of the project
	Closed backend issues at the end of the project
	Open frontend issues at the end of the project
	Closed frontend issues at the end of the project
	Commit history of the backend repository
	Commit history of the frontend repository
	Project plan
	Project contract
	Meeting notes
	Feedback and advice from ChatGPT on our thesis report
	Hours logg

