
N
TN

U
N

or
ge

s 
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e 

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g 
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r d

at
at

ek
no

lo
gi

 o
g 

in
fo

rm
at

ik
k

Ba
ch

el
or
op

pg
av

e

Christian Ryddheim Dahlin

Adblock for podcasts

Bacheloroppgave i Bachelor Ingeniørfag, Data
Veileder: Donn Morrison
Mai 2024





Christian Ryddheim Dahlin

Adblock for podcasts

Bacheloroppgave i Bachelor Ingeniørfag, Data
Veileder: Donn Morrison
Mai 2024

Norges teknisk-naturvitenskapelige universitet
Fakultet for informasjonsteknologi og elektroteknikk
Institutt for datateknologi og informatikk





Abstract
As people spend more time on digital services, advertisement in digital

media becomes more lucrative for advertisers [4]. Advertisement can take

away from the consumer experience by adding unwanted breaks and dis-

tractions, or by consisting of inappropriate content. This has lead to the

development of adblockers.

The predominant form of adblocking is through adblockers for Web browsers

[8]. Another type of adblocking include targeting sponsored segments in

video via crowdsourcing [56], and using machine learning to detect ad-

vertisements in audio shows promising results [78] [38] [9]. However,

Adblock Radio develop by Storelli [67] still stands out almost 10 years

later as possibly the only complete solution to an audio adblocker by not

only detecting, but also removing advertisement in live radio. Storelli ac-

complished this via a rather complex combination of machine learning,

fingerprinting of audio segments and crowdsourcing [65] [66].

With advertisement technology advancing through the development of

technologies such as programmatic advertisement [7] and dynamic ad-

vertisement insertion (DAI) [57] [70], adblockers have the possibility of

playing a large part in the future of enjoyment of consuming digital media.

This project aims to investigate how an adblocker solution can be seam-

lessly integrated with the podcast listening experience, and research the

state of the art of audio-based adblocking. In the end, a proxy-based adb-

locker targeting DAI by comparing two audio files fetched with different IP-

addresses was implemented and integrated with an existing open-source

podcast application.

i





Sammendrag
Ettersom mennesker bruker mer tid på digitale tjenester blir reklame i di-

gitale media mer ettertraktet for annonsører [4]. Annonser kan redusere

brukeropplevelsen ved å være uønskede pauser eller distraksjoner, eller

ved å bestå av upassende innhold. Dette har ført til utviklingen av adb-

lockers.

Adblocking blir først og fremst brukt gjennom nettlesere [8]. Andre former

for adblocking er gjennom å fjerne sponsor deler av video ved bruk av

nettdugnad [56], og bruk av maskinlæring til å detektere annonser i lyd

viser lovende resultater [78] [38] [9]. Allikevel er Adblock Radio utviklet

av Storelli [67] fortsatt unik nesten 10 år senere ved å muligens være den

eneste fulle implementasjonen av en lydbasert adblocker ved å både opp-

dage og fjerne reklame i direkte radio. Storelli oppnådde dette ved en re-

lativt avansert kombinasjon av maskinlæring, generering av fingeravtrykk

for ulike deler av lyd og nettdugnad [65] [66].

Med eksempler på utvikling i reklameteknologi som programmatisk an-

nonsering [7] og dynamic advertisement insertion (DAI) [57] [70], har

adblockere muligheten til å spille en stor rolle i fremtiden av brukerglede

ved bruk av digitale tjenester. Dette prosjektet søker å undersøke hvordan

en adblocker kan sømløst integreres med podcast-lytting, og undersøke

det fremste innenfor lydbasert adblocking. I løpet av prosjektet ble en

proxy-basert adblocker rettet mot DAI ved å sammenligne to filer hen-

tet med ulike IP-adresser implementert og integrert med en eksisterende

open-source podcast tjeneste.

iii





Preface
This project was chosen because I believe adblockers play a large part

in the enjoyment of consuming digital media, and will continue to do so

in the future. I was interested in learning more about how adblocking is

done, the challenges associated with it, as well as getting an overview of

the state of the art.

Much work within audio-based adblocking and advertisement detection is

done through machine learning. I was interested in finding out if a more

naive, direct approach to the problem with less complexity could be imple-

mented. I ended up looking at using a Tor to get audio-files of the same

episode from different countries, thereby getting different dynamically in-

serted ads, and comparing these audio-files to strip the different parts.

This was combined with a HTTP(S) proxy to manage requests between

the app and podcast-servers.

I would like to thank my supervisor Donn Morrsion, without whose help,

advise and kindness this project could not have been completed.

Christian Ryddheim Dahlin

30.05.24, Trondheim

v





Assignment Details
The original assignment details are available in Appendix A.

The chosen solution was without any form of user interface beyond output

in the terminal, and because of shortage of time user surveys were not

performed. Therefore, the sentence underscored in the assignment details

can be ignored.

For further details, see the vision document in Appendix C and the require-

ments documentation in Appendix D.

vii





Contents

Abstract i

Sammendrag iii

Preface v

Assignment Details vii

Contents ix

Figures xiii

Tables xv

1 Introduction 1

1.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Acronyms and abbreviations . . . . . . . . . . . . . . . . . . . . 3

2 Theory and Related Work 5

2.1 Adblocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Machine learning . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Advertisement filter lists . . . . . . . . . . . . . . . . . . 5

2.1.3 Crowdsourcing . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Dynamic ad insertion . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 HTTPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.2 HTTP CONNECT . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.3 MITM proxy . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Tor network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Virtual private network . . . . . . . . . . . . . . . . . . . . . . . 11

3 Method 13

3.1 Choice of Development . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Development plan . . . . . . . . . . . . . . . . . . . . . . 13

3.1.2 Development method . . . . . . . . . . . . . . . . . . . . 13

3.2 Choice of Technology . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Git . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.2 AntennaPod . . . . . . . . . . . . . . . . . . . . . . . . . 14

ix



Contents x

3.2.3 Waydroid . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.4 mitmproxy . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.5 Tor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.6 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Research method . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.1 Research process . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Design theorisation . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.1 Removing advertisement . . . . . . . . . . . . . . . . . . 16

3.4.2 Integration with the podcast application . . . . . . . . . 18

3.4.3 Fetching a second audio file . . . . . . . . . . . . . . . . 18

3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5.1 Proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5.2 Removing advertisement . . . . . . . . . . . . . . . . . . 23

3.6 Evaluation and optimisation . . . . . . . . . . . . . . . . . . . . 25

3.6.1 Self developed proxy . . . . . . . . . . . . . . . . . . . . 25

3.6.2 Extension to mitmproxy . . . . . . . . . . . . . . . . . . 26

3.6.3 Advertisement removal algorithm . . . . . . . . . . . . . 27

3.6.4 Usability tests . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Results 31

4.1 Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Delta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.2 Functional demands . . . . . . . . . . . . . . . . . . . . . 33

4.1.3 Non-functional demands . . . . . . . . . . . . . . . . . . 34

4.1.4 Usability tests . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Administrative results . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Time management . . . . . . . . . . . . . . . . . . . . . 40

4.2.2 Development method . . . . . . . . . . . . . . . . . . . . 40

5 Discussion 41

5.1 Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.1 Sources of error . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.2 Delta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.3 The threshold . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1.4 Functional demands . . . . . . . . . . . . . . . . . . . . . 42

5.1.5 Non-functional demands . . . . . . . . . . . . . . . . . . 44

5.1.6 Usability tests . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Administrative results . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.1 Time management . . . . . . . . . . . . . . . . . . . . . 45

5.2.2 Development method . . . . . . . . . . . . . . . . . . . . 46

6 Conclusion and Future Work 47

6.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . 47



Contents xi

6.1.1 What is the state-of-the-art of audio adblocking? . . . . 47

6.1.2 What adblocking architectures can be seamlessly integ-

rated into the podcast listening experience? . . . . . . . 48

6.1.3 How can audio adblocking adapt to the advancements

in advertisement technology? . . . . . . . . . . . . . . . 49

6.2 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2.1 Tor network . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2.2 Implement full adblocker . . . . . . . . . . . . . . . . . . 50

6.2.3 Threading . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2.4 Selecting shows . . . . . . . . . . . . . . . . . . . . . . . 50

6.2.5 Pre-processing of episodes . . . . . . . . . . . . . . . . . 50

6.2.6 Add silence to cuts . . . . . . . . . . . . . . . . . . . . . 50

6.2.7 The route and stripped dictionary . . . . . . . . . . . . . 50

Societal Impact 53

Bibliography 55

Appendix A Assignment Details i

Appendix B Pre-Project Plan iii

Appendix C Vision Document xvii

Appendix D Requirements Documentation xxvii

Appendix E Project Manual xxxiii

Appendix F System Documentation lvii

Appendix G Usability Test Template lxxi

Appendix H Usability Test Responses lxxix

Appendix I AI Declaration xci





Figures

2.1 Default direct HTTP communication. UA is the client and O is

the server [22]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 HTTP communication via proxies. A, B and C are proxies [22]. 7

2.3 MITM proxy. Created from [42]. . . . . . . . . . . . . . . . . . 10

2.4 The Tor network [33]. . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Internet communication without using a VPN [46]. . . . . . . . 12

2.6 Internet communication using a VPN. Created from [46]. . . . 12

3.1 Research process flowchart. Created from [15] and [63]. . . . 15

3.2 The architecture of the system. . . . . . . . . . . . . . . . . . . 19

3.3 The route of a episode. The last (bottom) value is the URL

that led to the episode. . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Caching on a response. The first response is handled, advert-

isements are removed, and the response is sent. The second

response fetches the processed episode from the cache, no

processing needed. . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Caching on a request. Here, AntennaPod issued three requests.

No request to a podcast server is actually made as the episode

is fetched from the cache. . . . . . . . . . . . . . . . . . . . . . 22

4.1 The advertisement removal algorithm for different values of

delta. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 The advertisement removal used with Tor on AntennaPod for

two different values of delta. . . . . . . . . . . . . . . . . . . . . 33

4.3 Results from installation and set-up. Here, 1 is Very easy and

5 is Very difficult. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Results from what part(s) of installation and set-up were chal-

lenging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5 Results from running the adblocker. Here, 1 is Very easy and

5 is Very difficult. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.6 Results from using the port option. Here, 1 is Very easy and

5 is Very difficult. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.7 Results from using the add-on option. Here, 1 is Very easy

and 5 is Very difficult. . . . . . . . . . . . . . . . . . . . . . . . 37

4.8 Results from the loading time. Here, 1 is Very acceptable and

5 is Very unacceptable. . . . . . . . . . . . . . . . . . . . . . . 38

xiii



Figures xiv

4.9 Results from the ”cut” sound. Here, 1 is Very acceptable and

5 is Very unacceptable. . . . . . . . . . . . . . . . . . . . . . . 38

4.10Results from integration with AntennaPod. Here, 1 is Very

good and 5 is Very bad. . . . . . . . . . . . . . . . . . . . . . . 39

4.11Results from what part(s) of the adblocker that should be

improved. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



Tables
4.1 The advertisement removal algorithm for different values of

delta sorted by file size in bytes. Time is in seconds. . . . . . . 32

xv





1. Introduction

As people spend more time on digital services, advertisement in digital

media becomes more lucrative for advertisers [4]. Advertisements can

take away from the consumer experience by adding unwanted breaks and

distractions, or by consisting of inappropriate content. This has lead to the

development of adblockers.

The predominant form of adblocking is through adblockers for Web browsers,

having millions of users [8]. These adblockers target advertisements on

websites through filter lists. Another type of adblocking include targeting

sponsored segments in video via crowdsourcing [56], and using machine

learning to detect advertisements in audio shows promising results [78]

[38] [9]. However, Adblock Radio develop by Storelli [67] still stands out

as possibly the only complete solution to an audio adblocker by not only

detecting, but also removing advertisement in live radio. Storelli accom-

plished this via a rather complex combination of machine learning, finger-

printing of audio segments and crowdsourcing [65] [66].

As spending on digital advertisement continues to increase [20] [4], ad-

vertisement technology has gotten more advanced with the development

of technologies such as programmatic advertisement, i.e. buying and selling

advertisements in real time [7], and dynamic advertisement insertion (DAI)

making it possible to provide updated, relevant advertisements based on

parameters such as IP geolocation [57] [70]. An estimate for the U.S.

from 2023 shows podcasts being one of the fastest growing digital chan-

nels, and podcast advertisement revenue growing more than twice as fast

as total internet advertisement revenue in 2022. In the same year, DAI

was estimated to represent 92% of the generated advertisement revenue

from podcasts [5].

Facing these advancements in advertisement technology, adblockers have

the possibility of playing a large part in the future of enjoyment of con-

suming digital media. This project aims to investigate how an adblocker

solution can be seamlessly integrated with the podcast listening experi-

ence, and research the state of the art of audio-based adblocking. In the

end, a proxy-based adblocker targeting DAI by comparing two audio files

fetched with different IP-addresses was implemented and integrated with

the podcast application AntennaPod [10].

1



Chapter 1: Introduction 2

1.1 Research questions

• What is the state-of-the-art of audio-based adblocking?

• What adblocking architectures can be seamlessly integrated into the

podcast listening experience?

• How can audio adblocking adapt to the advancements in advertise-

ment technology?

1.2 Thesis structure

Chapter 1: Introduction

Introduces the background for the project and the research questions the

thesis aims to answer.

Chapter 2: Theory and Related Work

Theoretical background for the project, including related work. Describes

the technical elements required for understanding the project and the res-

ults from it.

Chapter 3: Method

Details the methods used in research, development and execution of the

project.

Chapter 4: Results

Presents the results achieved from the project.

Chapter 5: Discussion

Discussion of the results and the process of the project.

Chapter 6: Conclusion and Further Work

Presents conclusions that can be drawn from the results and discussion,

and what further work should focus on.

Societal Impact

Discusses the different societal impacts of the project, including the ethic,

environmental and economic aspects of the project.



Chapter 1: Introduction 3

1.3 Acronyms and abbreviations

• DAI: Dynamic ad insertion

• VPN: Virtual private network

• ISP: Internet service provider

• Tor: The onion router

• HTTP: Hypertext Transfer Protocol

• HTTPS: Hypertext Transfer Protocol Secure

• TLS: Transport Layer Security

• CA: Certificate authority

• MITM: Man in the middle





2. Theory and Related

Work

2.1 Adblocking

Adblocking, particularly audio-based adblocking, is a small field of study.

The agents in this field are often small groups or individuals making open

source and/or free adblockers [75] [65] [23] [56].

2.1.1 Machine learning

A related, more developed field of study is audio classification. The work in

this field primarily consists of training a machine learning algorithm to clas-

sify audio based on features extracted from the audio stream. Commonly,

these features are based on comparing energy over time [61] [28] [48],

but can also be speech [9] [17] or ”fingerprinting” of audio segments [16]

[65]. With several approaches achieving accuracy in the 90% range [77],

audio classification by machine learning is viable for use in advertisement

detection [78] [38] [9] [65].

2.1.2 Advertisement filter lists

Adblockers for Web browsers with millions of users [52] [6] [30] are

primarily dependent on filter lists for their functionality [51] [74] [29].

Filter lists are lists with rules and criteria that determine the behaviour of

the adblocker, i.e. what content and sites to block [14]. When a website

is loaded the given adblocker scans for content stemming from entries in

its filter lists and blocks this content from appearing.

2.1.3 Crowdsourcing

Crowdsourcing is the method of distributing a workload on a decentralised

group of people [27]. The contributors can be volunteers or paid for their

work, but are typically not directly affiliated with the body organising the

crowdsourcing. Filter lists used by adblockers are maintained and updated

through crowdsourcing [8] by users submitting content they think should

be blocked on a forum [21], and ”authors” of the filter list reviewing the

submission by either adding it to the list or discarding it.

5



Chapter 2: Theory and Related Work 6

Similarly, an adblocker for Web-browsers targeting advertisements in videos

on YouTube developed by Ramachandran [56] is primarily dependent on

crowdsourcing by users submitting timestamps for sponsored segments.

When starting a video, Sponsorblock checks the database for submitted

timestamps for that video and if they exist, use them to skip the sponsored

segment when it is reached. To eliminate poor or malicious submissions

users have the option to vote on submissions used in the video they are

watching [54].

2.2 Dynamic ad insertion

Dynamic ad insertion (DAI) is a technology that allows for greater flex-

ibility and adaptability in advertising in podcasts and other digital media.

Standard, so called ”static” or ”baked-in” advertisements are embedded in

the audio file and cannot be changed unless the audio file is replaced [70].

This is disadvantageous as the selected advertisements will continue to

be played throughout the episodes lifetime. Static advertisement does not

allow for customisation of which advertisement to play for which user, but

provides the same advertisements for everyone, and provides no overview

of how the different advertisements perform. To keep episodes of a show

updated with relevant advertisements using static advertisements would

be unreasonably time consuming.

Using DAI, podcast creators mark insertion points in episodes where ad-

vertisements can be placed and the company hosting the podcast, or an

advertisement company working with the hosting company, use the inser-

tion points to place advertisements. The advertisements are selected and

personalised based on parameters, e.g. the time of day, the user agent

and the IP-address of the user. DAI ensures that listeners always get up-

dated, relevant advertisements even when listening to old episodes, and

companies providing DAI can give an overview of how the inserted ad-

vertisements are performing, i.e. the number of times a specific ad was

delivered [57].

An estimate shows the share of total podcast advertisement revenue gen-

erated from DAI in the U.S. increased from 48% in 2019 to 92% in 2022

[5].

2.3 Proxy

The Hypertext Transfer Protocol (HTTP) is fundamental to communication

on the Web. By default, communication between a client and a server



Chapter 2: Theory and Related Work 7

is direct, but HTTP allows for the use of different intermediaries to form

a chain of communication between a client and a server [22]. One such

intermediary is a proxy.

A proxy is an agent that sits between a client and a server, and can do any-

thing from blindly forwarding to modifying and filtering messages. Prox-

ies can be used to increase security by hiding or masking IP-addresses,

increase performance via caching, regulate accessibility by placing or by-

passing firewalls, or otherwise get a desired behaviour by modifying com-

munication. Such modification could also be used maliciously, e.g. ac-

cessing and modifying communication without the client and/or server

knowing. With plain HTTP communication, a proxy is able to view all data

passing between the client and the server.

request >
UA ======================================= O

< response

Figure 2.1: Default direct HTTP communication. UA is the client and O is the server

[22].

> > > >
UA =========== A =========== B =========== C =========== O

< < < <

Figure 2.2: HTTP communication via proxies. A, B and C are proxies [22].

2.3.1 HTTPS

Hypertext Transfer Protocol Secure (HTTPS), or HTTP over TLS, is HTTP

with encryption and the use of digital certificates, making the communica-

tion secure. Whilst HTTP communication is cleartext, making it vulnerable

to eavesdropping and tampering, HTTPS encrypts data using Transport

Layer Security (TLS) to ensure three properties [59] [60]:

• Authentication: The server is always authenticated, the client is op-

tionally authenticated



Chapter 2: Theory and Related Work 8

• Confidentiality: Data sent over the channel is only visible to the end-

points, i.e. the client and the server

• Integrity: Data sent over the channel cannot be modified without de-

tection

TLS handshake

HTTPS communication is established by the client and server performing

a TLS handshake. The client initiates the handshake by sending a Client

Hello message to the server, containing among other things information

about which TLS version it supports and a list of which cryptographic cipher

suites it prefers. Using the information provided by the client, the server

selects the parameters for the communication and sends this back to the

client in a Server Hello. The Server Hello also contains the server’s digital

certificate. By verifying the server’s digital certificate, the client will trust

the server and continue establishing the TLS communication. The client

uses the public key of the server provided in the digital certificate to en-

crypt a random message which it sends to the server, and the client and

the server use this random message to compute a secret key to be used in

subsequent communication. Finally, the client and server each send a Fin-

ished message encrypted with the secret key to its counterpart to indicate

that its part of the handshake is complete [60] [2].

HTTPS communication between the client and server is now established.

Digital certificates and certificate authorities

A digital certificate is a certificate issued by a trusted third-party known

as a certificate authority (CA) that binds the ownership of a web server to

a set of cryptographic keys and authenticates the server. When a server

sends its digital certificate to a client, the client verifies it by checking that

it is issued and signed by a trusted CA, that it has not expired or been

revoked, and that the certificate is indeed issued to the web server it is

attempting to connect to, and not some other server [26] [3].

2.3.2 HTTP CONNECT

TLS ensures that the client is communicating with a authenticated server

and that no intermediary can view or modify the data without detection.

This means proxying HTTPS communication cannot be done as easily as

with plain HTTP. The HTTP CONNECT method is intended for use with

proxies to get around this difficulty [22]. The client sends a request to the

proxy with only the host and port number of the desired server prefixed

with the CONNECT keyword:



Chapter 2: Theory and Related Work 9

CONNECT server.example.com:443 HTTP 1/1

Host: server.example.com

If the proxy responds successfully, all parties in the chain of communica-

tion - the client, the server, and any given number of proxies - switches

to tunnel communication. A tunnel is an end-to-end virtual connection, in

which the client and the server can perform a TLS handshake and estab-

lish HTTPS communication. The data will pass through the proxies, but the

proxies can neither read or modify it: Its confidentiality and integrity, as

well as the authentication of the server, is ensured by TLS.

2.3.3 MITM proxy

A man in the middle (MITM) attack is an attack where an intermediary in-

tercepts communication between two parties without said parties knowing

[19]. This attack can be utilised to create a proxy which is able to alter

HTTPS communication, unlike a proxy using the HTTP CONNECT method.

Such a proxy is called a MITM proxy, and works by splitting the ori-

ginal connection into two separate ones: One between the client and the

proxy, and one between the proxy and the server. When the client sends

a CONNECT-request to the proxy to initiate the creation of a tunnel, the

proxy responds successfully without actually contacting the server. The

client initiates the TLS handshake believing it is communicating with the

server through a tunnel, when it is actually communicating with the proxy.

The proxy extracts enough information from the TLS handshake with the

client to be able to start a separate TLS handshake with the server, which

believes it is communicating with the client based on the information passed

by the proxy.

At this point, digital certificates (see 2.3.1) create a line of defence, as

the client expects a valid server-certificate from the proxy. To combat this

the proxy generates certificates issued with its own CA implementation

and uses information provided in the actual server’s certificate received

through the TLS handshake with the server to fill out the generated digital

certificate and send it to the client.

Consequently, the prerequisite for this entire operation is that the client

trusts the CA implementation of the proxy. The proxy can use details from

the server’s certificate to fill out its own, but as it is not a trusted CA the

client will not trust it. To get around this, the CA certificate of the proxy has

to be installed on the client as a trusted CA by some previous interfering.



Chapter 2: Theory and Related Work 10

With the proxy’s CA implementation trusted by the client, the proxy uses

information from one side of the handshake to finish the opposite one and

establish HTTPS communication both ways, with an important adjustment:

The proxy can view and modify all data [42].

MITM proxy ServerClient

1: CONNECT

2: 200 Established

3: Initiate TLS handshake
4: Initiate TLS handhsake 
using information from 3

5: Finish TLS handshake 
using information from 4

6: Finish TLS handshake

7: Request 8: Request

9: Response10: Response

Figure 2.3: MITM proxy. Created from [42].

2.4 Tor network

The onion router (Tor) project is a project working for the right to privacy

and freedom in technology [34]. The main part of the project is the Tor

network, and a Web browser using the Tor network called the Tor Browser.

The Tor network is an overlay network consisting of thousands of servers

hosted by volunteers, called relays, between which a Transmission Control

Protocol (TCP) connection encrypted by TLS is established. The connection

is called a channel, and through these channels messages can be trans-

mitted. When connecting to the network, a client chooses a sequence of

minimum three relays called a path and opens a channel to the first relay in

it. Through this channel the client creates a cryptographic structure called

a circuit in which each relay knows about its predecessor and successor,

but no other relay in the circuit. The client negotiates a separate set of

cryptographic keys with each relay, so that when the client exchanges a

message with any relay on the circuit, each relay adds (or removes) one

layer of encryption. When a circuit is established, communication is secure

and anonymised [39].

To get a resource from the Web, the client tells the last relay of the cir-

cuit, called an exit node, to establish a TCP connection with a server. In

doing so, the internet service provider (ISP) or anyone else watching the

connection will not be able to track the internet activity. The website the

exit node connects to, and all associated services and surveillance, will see



Chapter 2: Theory and Related Work 11

the public IP-address of the exit node, and not of the client [33]. Because

data will pass through several relays that might be located in different

countries [69], and each channel implements encryption, using the Tor

network is generally slower compared to other browsers and performance

will vary [35] [68]. The Tor network also only consists of about 6000 relays

with over 1 million daily users, which means performance will also depend

on the strain on the network at a given time, e.g. how many users that

are connected to it and what it is being used for, as large downloads and

uploads will strain the network to a higher degree compared to loading a

website.

Figure 2.4: The Tor network [33].

2.5 Virtual private network

A virtual private network (VPN) creates a secure connection between a

client and a network by establishing an encrypted connection to a remote

server, and rerouting all data through it. The encryption protects against

tracking of internet activity, and the IP-address of the client is masked by

using the IP-address of the remote server to make connections, protecting

against location tracking [44]. Because of the extra layer of encryption and

that data is rerouted through a server which might be located far from the

client and might handle a lot of data, using a VPN can decrease internet

speed.

To use a VPN one has to choose a VPN provider which hosts the remote

server the data is relayed through, which makes it possible for the VPN

provider to gather data on the connections made to their servers. Addi-



Chapter 2: Theory and Related Work 12

tionally, many VPN providers require users to create a user profile on their

services to access the servers, and many VPN services are blocked behind

paywalls. A VPN connection resembles a connection made using the Tor

network in that it reroutes traffic, provides encryption and masks the local

IP-address of the client, but is significantly different in that it is generally

proprietary and cannot grant anonymity as the VPN provider has access

to the remote servers and (if required) ones user profile. Tor also provides

security through encryption and privacy by hiding the local IP-address, but

is additionally free, decentralised and anonymised.

Figure 2.5: Internet communication without using a VPN [46].

VPN

Figure 2.6: Internet communication using a VPN. Created from [46].



3. Method

3.1 Choice of Development

3.1.1 Development plan

A Gantt chart was used for time management and visualisation of activities

and milestones. The first iteration was made in the planning phase of the

project and can be seen in Appendix B. The Gantt chart was continuously

updated throughout the project, and the updated version can be seen in

Appendix E.

3.1.2 Development method

The project was executed by one person, and no particular development

method was fully implemented. Beginning with code development in April

each week served as a sort of sprint, drawing inspiration from the devel-

opment method Scrum [62]. At the end of each week, a review of the

week was performed by writing a summary and evaluation of the work

performed. This served as a Sprint Review and Sprint Retrospective in

one, where I was able to review what went well and what could have been

better, and plan for what to do in the following week in terms of both ad-

ministration and development. After each review and retrospective, the

Gantt chart was updated if needed. Although useful, it was less effective

compared to my experience of doing it with a team, as there was no other

input than my own. The weekly reviews can be seen in the time chart in

Appendix E.

For code development, an issue board was used in addition to the Gantt

chart to track code development tasks. The issue board can be seen in the

projects repository, available in Appendix F.

3.2 Choice of Technology

3.2.1 Git

For storage of code and version control, Git [24] through GitHub [25]

was used. This allowed for safe cloud-based storage and protection of a

main branch, with development taking place on separate branches. One

of the main advantages of GitHub is the practice of code reviews and pull

13



Chapter 3: Method 14

requests. When development on a branch is completed a pull request is

created, meaning the changes made on the branch have to be reviewed

and approved before the branch is merged into the main branch, updat-

ing the actual codebase of the project. When done correctly, this practice

ensures code quality and protects the development from errors.

As the project was executed by one person this practice was impossible to

implement correctly. All code was reviewed by the same person that wrote

it, taking away much of the intended effect of the practice. To mitigate this

disadvantage it was attempted to have as much time as possible passing

between a pull request and a review, to combat the ”blindness” occurring

from looking at the same work for an extended period of time.

3.2.2 AntennaPod

The Assignment Details states that the selected approach was to have a

focus on seamless integration with an existing open-source podcast applic-

ation. This application was chosen to be AntennaPod as it is highly rated

and widely used [71] [10], which makes it more rewarding to develop to-

wards even though the developed product most likely will not be widely

used. AntennaPod also supports setting a proxy within the application,

which allows for easier and safer integration compared to an intercepting

proxy unknown to the application.

3.2.3 Waydroid

AntennaPod is an application for Android devices with no web player avail-

able [11]. The application was accessed through Waydroid, an emulator

for a Android device on GNU/Linux systems [76], as I did not have ac-

cess to an Android device. Using Waydroid was further beneficial in that it

meant having the whole system on one device.

3.2.4 mitmproxy

mitmproxy is set of tools that provides an intercepting proxy capable of

accessing HTTPS communication by being a MITM proxy [43] [42]. In this

project mitmproxy was used through its Python API and the command line

version called mitmdump.

3.2.5 Tor

To fetch a second audio file with a different IP-address, a Tor SOCKS5

proxy is used. SOCKS5 is an internet protocol used by Tor to route data

through the Tor network [37].



Chapter 3: Method 15

3.2.6 Python

The development was done in Python 3 because I have prior experience

with it and because it has artificial intelligence libraries available [53] [72]

[47]. Although artificial intelligence ended up not being used, it was con-

sidered as an approach in the beginning of the project, and when it be-

came clear it would not constitute the main part of the approach, was

considered being used in parts or as an addition to the advertisement re-

moval algorithm.

3.3 Research method

With only one project member the time available for making changes dur-

ing development is limited. In an attempt to combat this, a significant

portion of the project time frame was devoted to research and design the-

orisation before starting development. The hope was that with thorough

research and prioritising the iterative segment between literature review

and design theorisation, one could make educated choices and avoid meet-

ing dead ends in development, instead of relying on the development pro-

cess being iterative. Drawing inspiration from Design Science Research

[15], the research process in Figure 3.1 was implemented.

Experience and 
motivation

Literature review Design theorisation Implementation
Evaluation and 

optimisation
Documentation

Figure 3.1: Research process flowchart. Created from [15] and [63].

3.3.1 Research process

Experience and motivation

Identification of the problem, i.e. the motivation for a solution. Through

experience, discussion with the supervisor and initial research, the prob-

lem domain that formed the basis for the literature review and the research

questions in Section 1.1 was established.

Literature review

Research of relevant work in the problem domain through academic works

and other publications. Investigation of solutions that have been attemp-

ted to gain an understanding of successful and unsuccessful approaches.



Chapter 3: Method 16

See Section 2.1 for more details. The literature review also explored so-

cietal impacts of the problem domain and previous solutions, see Societal

Impact for findings.

Design theorisation

Using information from the previous stages, the objectives of a solution

was defined. Design theorisation began, and an iterative process between

literature review and design theorisation was made: As a design was the-

orised, the domain of the literature review was narrowed down and more

carefully researched, which further informed the design theorisation. See

Section 3.4 for details.

Implementation

Design theorisation informed the vision document in Appendix C and the

requirements documentation in Appendix D. From the theorised designs

an approach was selected and developed. See Section 3.5 for details.

Evaluation and optimisation

At stages in implementation where a piece of functionality was developed

to a point where it allowed for testing, evaluation and optimisation of said

functionality was performed, and at the end of the stage usability tests

were performed. See Section 3.6.

Documentation

The documentation stage began during design theorisation by creating

the vision document in Appendix C and the requirements documentation in

Appendix D, and was continuously worked on through the other appendices

and finally this report.

3.4 Design theorisation

3.4.1 Removing advertisement

Machine learning

As described in Section 2.1, using machine learning for audio classification

and advertisement detection shows promising results. Using it, either as

a complete or partial solution to detect and remove advertisement, would

be beneficial: There was previous work which might be incorporated into,

or at least guide, my own solution. Training of the machine learning model

would require a dataset, which would have to be created as no relevant



Chapter 3: Method 17

dataset was found from the literature review. Furthermore, optimising a

machine learning model requires considerable amounts of adjustment and

testing, e.g. of features and the hyperparameters. Seeing as the aim of

this project was not only advertisement removal but also integration with

an existing podcast application, it was feared that with only one project

member a machine learning approach might be too time consuming.

Moreover, as machine learning already was attempted and successful in

detecting advertisements, it would be interesting to see if a more naive

and lightweight approach could be applied.

Crowdsourcing

Section 2.1 shows crowdsourcing being used to target ads on websites

and, more interestingly, target advertisements in video. Crowdsourcing

on its base level is logically less complex compared to machine learning

by gathering timestamps for advertisement and using the timestamps to

skip during playing of the episode, but would in turn require a large scale

database implementation. Ramachandran’s Sponsorblock database con-

tains almost 17 million submissions [55], and even though this project

would receive few submissions, it would need to be able to extend to a

large scale for crowdsourcing to be a viable solution.

A downside of crowdsourcing is that performance would be inconsistent.

Popular podcasts would have many submission and skip all advertisement,

but less popular ones might not have a single submission. Furthermore,

if one listens to an episode a short time after its release it is likely one

will have to listen to all advertisements regardless of the popularity of the

podcast, as submissions have yet to be received.

Crowdsourcing would also have a negative impact on how seamless the

integration with a podcast application would be. Sponsorblock is used for

videos, a media where one normally is watching the content at all time.

With podcasts, a common use case is having an episode playing in the

background while performing other tasks. Making a submission would re-

quire a user to go to the podcast application, interfering with the listening

experience and what the user might be doing at that time.

Podcasts using DAI would make crowdsourcing challenging. Ramachandran’s

Sponsorblock is targeted at sponsor segments in videos that are equal for

all viewers, and crowdsourced advertisement filter lists used by Web adb-

lockers can simply check all content up against its filter lists independently

of the client. Contrarily, DAI results in podcast episodes having different

advertisements with different lengths. As DAI can vary content using a

broad array of parameters including what day the episode is played on



Chapter 3: Method 18

and what time of day it is within that day [12], logic for fetching the right

timestamps to skip for each user would need to be rather advanced.

Comparing two audio files

Given that a podcast uses DAI and that the DAI implementation uses IP-

addresses as one of the parameters for selecting which advertisements to

insert, all advertisements added by DAI could be removed by comparing

two audio files of the same episode fetched with two different IP-addresses

and removing the different parts, as different advertisements would have

been added to the podcast. With a simple algorithm for comparing the two

audio files this approach could be made lightweight and fast, but podcasts

not using DAI would not have any advertisements removed.

3.4.2 Integration with the podcast application

Forking the application

By forking the podcast application the adblocking solution could be ad-

ded as a native part of the application, making the integration seamless.

However, it is disadvantageous in that is would broaden the scope of the

project from an adblocker add-on to the entire application. In long terms,

this approach would mean being responsible for keeping the application

up to date, e.g. as new features or changes was added to the actual ap-

plication.

Proxy

A proxy implementation could operate in the background, forwarding com-

munication as if it was not there unless it receives something purposeful

to process. It would allow for an invisible integration and compartmental-

isation: The proxy, and by extension the adblocker, would be a separate

piece of logic apart from the podcast application. Consequently, it would

not have the advantage of being a native part of the application and would

have to be ran separately.

3.4.3 Fetching a second audio file

To fetch a second audio file with different advertisements, an IP-address

different from the address of the local machine would have to be used.

The considered options for achieving this was using a VPN or Tor.



Chapter 3: Method 19

VPN

A VPN is generally faster than using the Tor network. Every user would

need a VPN-instance separate of the adblocker, and because there are

many different VPN services which a user might have, it would be chal-

lenging to make the adblocker compatible with the different ones. It could

mean users would have to configure their respective VPN service with the

adblocker in the source code, which would reduce the ease of the set-up

and be difficult for users without experience in programming.

Tor

Tor is freely available, requires a small amount of configuration to open

a proxy, and the user would not need to change anything in the source

code. However, using Tor can result in bad performance, as detailed in

Section 2.4. This is far from ideal when a relatively large audio file is being

fetched. It is also worth noting that there are more important reasons why

Tor should not be used in this context. See Section ADD LATER.

3.5 Implementation

Given the advantages of DAI and its use growth in the U.S. mentioned

in Section 2.2, it seems possible that DAI will be the predominant form

of advertisement in podcasts moving forward. Following this assumption,

and the potential simplicity of the approach of comparing two audio files, it

was chosen to be implemented for advertisement removal. The adblocker

would be proxy-based to get the advantage of compartmentalisation and

fetching an audio file with a second IP-address was done using Tor to

prioritise ease of set-up. Figure 3.2 shows the implemented design.

AntennaPod Proxy Podcast-server

IP X

Podcast with X ads

Ad free
podcast

Tor
IP Y

Podcast with Y ads

Figure 3.2: The architecture of the system.



Chapter 3: Method 20

3.5.1 Proxy

To ensure that the proxy would have optimised functionality for the task

at hand, it was developed from the ground up. In its final iteration it was

a streaming proxy using HTTP CONNECT for HTTPS communication, which

I mistakenly believed the proxy would be able to intercept. To be able to

modify HTTPS communication the proxy had to be extended to a MITM

proxy, a time consuming and complex task. Because of time constraints,

the developed proxy was discarded after discussion with the supervisor,

and development of an extension to mitmproxy (see Section 3.2.4) began.

The proxy uses two dictionaries for data management and functionality.

The route dictionary logs the complete path of a resource. The origin URL,

i.e. the first URL being requested from the podcast application, is the key

and all subsequent URLs leading to the episode are added as values be-

longing to that key.

Origin: http://open.live.bbc.co.uk/mediaselector/6/redir/(...)

Value: http://flex.acast.com/ak/mpg_mp3_vlow/modav/bUnknown-(...)

Value: http://stitcher2.acast.com/livestitches/75d9000b0517ca(...)

Figure 3.3: The route of a episode. The last (bottom) value is the URL that led to

the episode.

The route dictionary serves two purposes, the first one being enabling the

second request for the episode made by Tor to be made using the origin

URL, increasing the probability of generating different advertisements by

DAI. Podcasts vary in how many redirects through 302 responses happen,

and if the second request is made with a later URL, the DAI might already

have taken place and the same advertisements would be in both audio

files.

In addition to this, the route dictionary enables a naive form of caching

together with the stripped dictionary. The stripped dictionary holds pro-

cessed episodes as values, i.e. episodes with advertisements removed,

and origin URLs as keys. AntennaPod sends one request when download-

ing an episode, but multiple requests when streaming. The first request

is handled, the advertisements are removed and the ad-free episode re-

turned in the response, and the three other responses retrieve the episode

from the cache (the stripped dictionary). The cache is further helpful in

dealing with the unstable performance of Tor, as the advertisement re-



Chapter 3: Method 21

moval in worst case scenarios makes playing the episode in AntennaPod

time out. The proxy will continue the advertisement removal after the time

out and once completed, the user can press play again and be served the

episode without advertisement instantly from the cache.

[14:43:44.305] Response(200, audio/mpeg, 3.4m)
[14:43:44.305] Audio file recieved
[14:43:44.305] Starting ad stripping...
Progress: 216 / 216
[14:44:03.476] Ads stripped, sending response
192.168.240.112:56156: GET https://nyt.simplecastaudio.com/(...)

<< 200 OK 3.4m
[14:44:03.948] Response(200, audio/mpeg, 3.4m)
[14:44:03.948] Audio file recieved
[14:44:03.948] Found stripped file, sending response
192.168.240.112:56146: GET https://nyt.simplecastaudio.com/(...)

<< 200 OK 3.4m

Figure 3.4: Caching on a response. The first response is handled, advertisements

are removed, and the response is sent. The second response fetches the processed

episode from the cache, no processing needed.

The route and stripped dictionaries are also used in enabling skipping func-

tionality. Although the entire episode is downloaded and served to An-

tennaPod whether streaming or downloading an episode, if a user skips

backward or too far forward during streaming, AntennaPod issues a new

request with a Range header. The Range header modifies the request to

only request a certain portion or range of the resource [22]. If not for

the cache, this would mean removing advertisements all over again for

the same episode. Instead, the proxy returns the requested range of the

episode without advertisements from the stripped dictionary.

The cache is checked on both requests and responses. When first starting

an episode by streaming, all requests will get as far as requesting the epis-

ode from the podcast server before the episode without advertisements is

added to the cache, i.e. all requests download the episode and only save

time by not processing it. However, when skipping in the episode or resum-

ing the episode at a later time, the cache will be checked on the request

and no request to the podcast server is made.



Chapter 3: Method 22

[15:29:38.079] Found stripped file, sending response
[15:29:38.079] Found stripped file, sending response
192.168.240.112:53728: GET http://open.live.bbc.co.uk/medias(...)

<< 200 OK 14.2m
192.168.240.112:46764: GET http://open.live.bbc.co.uk/medias(...)

<< 200 OK 14.2m
[15:29:38.126] Found stripped file, sending response
192.168.240.112:46764: GET http://open.live.bbc.co.uk/medias(...)

<< 200 OK 14.2m

Figure 3.5: Caching on a request. Here, AntennaPod issued three requests. No

request to a podcast server is actually made as the episode is fetched from the

cache.

As dictionaries are used and not persistent memory, the proxy limits entries

in the route and stripped dictionary to five. When a sixth origin URL is re-

quested the dictionaries are emptied, and the previously sixth URL is added

as a first entry in the route entry. See Section 6.2.7 for discussion.

To optimise performance the proxy is to do as little work as possible. On

receiving a request, it checks the cache and returns the episode, or a range

of the episode if the request contains a Range header, if the origin URL of

the request URL is in the stripped dictionary. If not, it forwards the request

unmodified.

On responses, the proxy only interferes in three cases:

1. Response has status code 302

The HTTP status code 302 signifies that the requested resource (episode)

is available at a different location, and provides that location [22]. Upon

receiving a 302 response, the proxy updates the route of the resource in

the route dictionary.

2. Response has status code 200 and audio content

Status code 200 indicates that the request has succeed [22], in this context

meaning the episode has been found. The content type is checked via the

Content-Type header, which indicates the media type of the resource in

the response [22], and ensures that the proxy only operates on received

episodes and not other 200 responses such as updating the podcast feed.

Given status code 200 and audio content, the proxy gets the origin URL

belonging to the request from the route dictionary and checks if it is in the

stripped dictionary. If it is, the processed episode is returned to the podcast



Chapter 3: Method 23

application. If not, advertisement removal takes place (see Section 3.5.2).

After the advertisements are removed, the processed episode is returned

to AntennaPod and added to the stripped dictionary with its origin URL as

key.

3. Response has status code 206 and audio content

Status code 206 indicates that the request has succeeded and a portion

of the episode content is enclosed in the the response. Which portion is

specified by the Content-Range header field in the response [22]. When

the proxy receives a 206 response it means that associated request got past

the cache check and was sent to a podcast server with a Range header. If

the origin URL of the episode is in the stripped dictionary, the requested

range is returned. If not, the requested range of the original file is served.

In practice it should not be possible for the origin URL not to be in the

stripped dictionary if a 206 status code is returned unless the proxy is

restarted during the streaming of an episode, as AntennaPod requests

the entire episode leading to a 200 response from the podcast server and

advertisement removal taking place, before issuing a request with a Range

header.

3.5.2 Removing advertisement

To optimise performance, the algorithm initially was to stream both files

concurrently and compare fixed size chunks. I was not able to implement

this functionality, and as a fallback only the file fetched by Tor is streamed

while the other one is fetched in its entirety. Coincidentally, this made it

fitting for use after changing from using the self developed proxy to us-

ing mitmproxy, as mitmproxy heavily discourages modification of streams

[41] [40].

Using the local IP-address, mitmproxy fetches the audio file in the 200 re-

sponse that, given the origin URL is not in the stripped dictionary, initiates

advertisement removal.

The algorithm

session: a Tor session enabling fetching via a Tor proxy

url: the origin URL

x: the stream of the episode fetched with Tor

data: the episode fetched with the local IP-address by mitmproxy

d: the processed episode without advertisement, initially empty



Chapter 3: Method 24

prev_idx: the index of the previous chunk in data, initialised to 0

chunk: the fixed-size chunk from Tor of size delta

idx: the index of chunk in data, or −1 if non-existent

1 def strip_ads(data: bytes) -> bytes:
2 with session.get(url, stream=True) as x:
3 d = b""
4 prev_idx = 0
5 for chunk in x.iter_content(delta):
6 idx = data.find(chunk)
7 if idx != -1 and abs(idx-prev_idx) <= 500*delta:
8 d += chunk
9 data = data.replace(chunk, b"", 1)

10 prev_idx = idx
11

12 return d

Using url the proxy opens a stream via the Tor network called x, processing

fixed-sized chunks of size delta at a time.

For every chunk, the algorithm finds the index idx of the chunk’s occurrence

in data.

If idx exists, and the absolute value of the difference between idx and

prev_idx is below the threshold 500 × delta, the chunk is added to the re-

sponse. See Section 3.5.2 for details about the threshold.

The chunk, now confirmed to exist in data, is then removed from data to

shorten the search time for the next search. To minimise the time of this

operation, the parameter 1 is added in the function call on line 9. This tells

the function to only remove one occurrence of chunk in data, making the

function return after finding one occurrence instead of searching through

all of data to make sure all occurrences are removed. Although the same

advertisement could be in multiple places in the same episode, meaning

searching for all occurrences could be useful, this scenario is more effect-

ively handled by the threshold.

Following the same reasoning of optimising the replace operation, the

function is only called for a chunk confirmed to exist in data. If it were

called for all chunks, some would not be in data, meaning the function

would waste time by searching through all of data with no results. Lastly,

prev_idx is updated to equal idx before processing of the next chunk begins.



Chapter 3: Method 25

If idx does not exist, i.e. it is equal to −1, or the absolute value of the

difference between idx and prev_idx is above the threshold, no operation

takes place before processing of the next chunk begins.

The threshold

Some advertisements are added to both episodes despite the podcast us-

ing geo-based DAI and the episode being fetched with two different IP-

addresses. These advertisements are typically advertising a product re-

lated to the company publishing the podcast, e.g. another podcast hosted

by the same company. This means that only checking if the received chunk

exists in data is not enough.

The initial idea was to calculate the amount of bytes per second of audio,

and then set a threshold to be a given amount of seconds. The amount of

bytes per second of audio depends, among other things, on how the audio

file is encoded and throughout the project all encountered episodes were

provided as MP3 files. However, the literature review proved it difficult to

find trustworthy standards for the MP3 file format.

Instead, the use of idx and prev_idx was implemented: By calculating the

difference between the index of the previous chunk in data and the index

of the current chunk, advertisements that were in both audio files but had

different placement within the episode could be removed.

Assume the beginning of an advertisement that exists in both files is re-

ceived through a chunk. Up until then the files have been identical, meaning

idx = prev_idx = 0 as chunks are deleted from data. The same advertise-

ment is at the end of the locally fetched file, and makes idx = 10000000. This

makes the threshold kick in, and the chunk is not added to the response d

and prev_idx is not updated. As all chunks with the advertisement finish,

a chunk with normal content arrives, making idx = 10000. This is below the

threshold, and adding to the response resumes, and prev_idx is updated.

3.6 Evaluation and optimisation

3.6.1 Self developed proxy

Buffering proxy for HTTP only

The first iteration was a threaded, buffering proxy for HTTP only receiv-

ing entire responses before sending it to a client. Each thread handled

a a single request and response. This iteration had terrible performance,

and the unacceptable lack in functionality in that it did not support HTTPS

communication.



Chapter 3: Method 26

Buffering proxy with HTTP CONNECT

Support for HTTPS communication was implemented through HTTP CON-

NECT. Performance for HTTP communication remained unchanged, but HT-

TPS had good performance because of tunneling.

Streaming proxy with HTTP CONNECT

In its final iteration, the proxy was a threaded, streaming proxy for HTTP

and supporting HTTPS communication through HTTP CONNECT. Perform-

ance was excellent for both HTTP and HTTPS communication, but the proxy

was unreasonably computational expensive because of poor thread hand-

ling. When it was realised HTTP CONNECT would not allow for modification

of HTTPS data, the proxy was discarded.

3.6.2 Extension to mitmproxy

With the self developed proxy discarded, time was limited to create a work-

ing implementation of an adblocker. The defining iterations of the mitm-

proxy add-on were:

MVP of adblocker

A functioning MVP for removing advertisements for both HTTP and HTTPS

communication. Fetching of a second file through Tor was done with the

last used URL of mitmproxy, and there was no functionality for skipping

or resuming episodes without advertisement.

Implementation of caching on responses

The poor performance of Tor meant downloading or streaming an episode

could time out. When a time out occurred, the proxy completed processing

the episode and removed advertisements before discarding it, as the the

client (AntennaPod) had disconnected. By attempting one more time, pro-

cessing of the episode started all over.

To combat this the route and stripped dictionaries were implemented to

allow for caching, but was only checked by responses. Skipping and re-

suming episodes without advertisement was not possible. With the route

dictionary, requests through Tor began using the origin URL.

Implementation of the threshold

Logic for the threshold was implemented, making it a possibility that ad-

vertisements that are in both episodes are removed.



Chapter 3: Method 27

Updated Tor use

Realisation that Tor was not implemented correctly. mitmproxy provides

an option for setting which IP-address mitmproxy uses for upstream con-

nections, and this was set to be the IP-address of the exit node. However,

the option was only usable with local IP-addresses and mitmproxy had

been ignoring the option. To fix this, using the Python requests library [58]

to fetch the second audio file through the Tor network was implemented.

How different advertisements had been fetched up until this point is not

understood.

Added skipping functionality and progress bar

Use of the route and stripped dictionaries were extended to allow for skip-

ping and resuming of episodes without advertisements. Although a pro-

gress bar has no affect on performance, it improves the user experience

by allowing the user to track the progress.

Implemented cache use on requests

The cache was checked on requests, improving performance and reducing

traffic by reducing the amount of requests being sent to podcast servers.

3.6.3 Advertisement removal algorithm

After abandoning the idea of streaming both audio files at the same time,

the advertisement removal algorithm was in its first iteration checking if

the received chunk from Tor was in the file fetched by mitmproxy. If it was

it was added to the response, if not it was discarded.

Delta

The delta value is used to determine the size of the chunk being received

from Tor and the size of the chunk being searched for in data. One could use

different values for receiving and searching by implementing logic where

the program buffers data as it is received from Tor, and processes a dif-

ferent sized amount of data from this buffer.

However, by testing the advertisement removal algorithm without using

Tor it was discovered that the values best suited for use with the algorithm

also worked well with Tor. The algorithm was tested by providing delta sized

chunks in a list instead of through the Tor stream, and varying the values

of delta. See Section 4.1.1 for results.

Consequently, the need for buffering logic was deemed unnecessary.



Chapter 3: Method 28

The threshold

Because of how the threshold is implemented, one has to make sure that

no advertisement or continuous set of advertisements can last longer than

the size of threshold. If that is to happen, updating the prev_idx will not

take place from that point on and for the duration of the episode, meaning

no more content will get added to the response.

Because trustworthy and consistent standards for the MP3 file format was

not found during the literature review, the value for the threshold was

tested and found manually by writing a threshold-sized chunk to file for

different podcasts for different values of the threshold, and seeing how

many seconds of audio it equalled.

3.6.4 Usability tests

As per the Assignment Details and the goals for the project outlined in

Appendix B and Appendix C, usability tests of the end product was per-

formed. The template for the test is available in Appendix G and the results

from the tests are available in 4.1.4

Preparations

Initially, the test objectives were set:

• Uncover usability issues with adblock25

• Measure the ease/difficulty of set-up and installation

• Measure the ease/difficulty of use

• Measure the degree of integration with AntennaPod

Where adblock25 is the developed adblock system.

All questions in the template were worded as neutral as possible in an

attempt to not influence the participants opinion in any way.

As stated in the Pre-Project Plan the original aim was to have the parti-

cipants have different backgrounds to get a realistic measurement of the

ease of installation and set-up. This aim was changed when it was decided

to develop towards AntennaPod on Waydroid, as Waydroid is exclusively

available on GNU/Linux systems.

Consequently, the user profile was set to be: Users with some familiarity

with GNU/Linux systems.

With tests aimed at doing research having many participants is advant-

ageous, and often times required for the gathered data to have value or



Chapter 3: Method 29

significance. However, with usability tests of a product this is not necessar-

ily the case as increasing the amount of participants can have diminishing

results, according to Nielsen and Landauer [45], who suggest rather do-

ing multiple studies with as few as five participants. Although this claim

has been challenged [64] [32], Nielsen and Landauer’s assumption was

followed in this project with five usability tests performed, but with only

one study because of time constraints.

Method

The template guides the user through the entire test. For each test, an

observer was present and took notes. The participants were told to at-

tempt to solve everything themselves using the system documentation in

Appendix F and/or the README.md in the projects repository available in

the same appendix, and clearly indicate when they required help and in-

tervention from the observer. This was done in an attempt to recreate a

realistic installation and set-up scenario, and to be able to document when

the participants required help.





4. Results

4.1 Engineering

Goals and requirements are available in the vision document in Appendix

C and the requirements documentation in Appendix D.

4.1.1 Delta

Figure 4.1 and Table 4.1 show the advertisement removal algorithm presen-

ted in Section 3.5.2 tested with different values of delta. The algorithm is

comparing 20 episodes of BBC Word Service Global News Podcast, 10 epis-

odes of Pod Save The World and 10 episodes of Pod Save the UK. All three

podcasts have multiple insertion points for DAI in episodes that are used

in varying degrees for each episode. The values delta = 210 and delta = 211

had difficulties processing larger episodes and are consequently only used

on the 20 episodes of BBC Word Service Global News Podcast.

Figure 4.1: The advertisement removal algorithm for different values of delta.

31



Chapter 4: Results 32

File size 210 211 212 213 214 215 216

14039052 18.903 9.809 4.833 2.631 1.371 0.819 0.465

14099204 15.101 7.833 4.073 2.129 1.127 0.675 0.426

14132498 15.845 8.327 4.448 2.148 1.225 0.692 0.459

14245738 15.070 7.807 4.036 2.039 1.126 0.718 0.416

14405536 18.586 9.724 4.843 2.517 1.361 0.892 0.481

14422939 17.414 8.968 4.882 2.671 1.251 0.784 0.500

14726089 18.828 9.783 4.971 2.615 1.320 0.794 0.494

15493650 20.606 10.987 5.585 2.745 1.497 0.888 0.539

15538090 20.100 10.833 5.107 2.759 1.486 0.847 0.516

15601203 19.506 10.313 5.374 2.709 1.381 0.832 0.514

15801213 19.118 10.016 5.006 2.619 1.400 0.870 0.502

16163954 24.163 12.329 5.895 3.198 1.702 0.941 0.586

16208094 21.628 10.915 5.868 2.912 1.549 0.927 0.542

16268054 21.166 10.666 5.861 2.814 1.518 0.883 0.536

16417003 22.162 11.50 5.658 2.937 1.575 0.924 0.566

16561694 24.018 12.834 6.235 3.229 1.630 1.024 0.595

16839828 24.190 12.694 6.029 3.386 1.650 1.114 0.620

16915034 24.821 13.392 6.368 3.709 1.825 0.985 0.612

17638624 24.440 13.198 6.521 3.563 1.741 1.083 0.613

17707140 23.543 12.068 6.225 3.403 1.692 1.024 0.661

37059277 N/A N/A 36.417 19.384 8.4827 4.589 2.656

39788624 N/A N/A 43.261 23.655 12.674 6.714 3.078

43200350 N/A N/A 49.780 26.777 12.639 6.982 5.415

43273716 N/A N/A 43.792 24.312 13.886 6.575 3.506

45244590 N/A N/A 56.337 29.5 15.621 10.429 3.563

45654608 N/A N/A 72.039 31.299 16.755 8.410 6.272

46910038 N/A N/A 64.526 34.128 15.782 8.803 6.452

47656215 N/A N/A 62.303 36.641 17.937 8.726 5.808

48687405 N/A N/A 64.413 37.075 17.399 8.700 4.7710

50849423 N/A N/A 74.525 42.110 19.749 9.592 5.461

52610285 N/A N/A 98.613 49.414 16.767 16.280 8.7401

57475338 N/A N/A 103.58 62.475 29.021 15.342 10.971

59528627 N/A N/A 96.544 48.359 26.116 15.819 13.618

72504098 N/A N/A 209.76 129.20 43.472 24.465 10.238

77362399 N/A N/A 270.40 194.36 63.108 32.583 28.912

78329411 N/A N/A 215.90 119.79 66.200 39.077 37.838

78536722 N/A N/A 252.36 175.95 67.364 62.530 22.276

79175980 N/A N/A 234.72 257.91 62.508 42.982 23.116

80417737 N/A N/A 278.89 185.09 65.615 35.475 28.371

82072509 N/A N/A 259.64 146.17 79.215 33.474 29.971

Table 4.1: The advertisement removal algorithm for different values of delta sorted
by file size in bytes. Time is in seconds.



Chapter 4: Results 33

Figure 4.2 shows the adblocker being used with AntennaPod for the same

episodes of BBC Word Service Global News Podcast, Pod Save The World

and Pod Save the UK with values for delta = 213 and delta = 214.

Figure 4.2: The advertisement removal used with Tor on AntennaPod for two

different values of delta.

4.1.2 Functional demands

Removal of advertisement

The adblocker is guaranteed to remove all different parts of the two fetched

episodes. If a podcast uses DAI with IP geolocation as a parameter for

selecting advertisements, this results in up to all advertisement being

removed. Occasionally, a podcast insert advertisements, e.g. advertise-

ments for podcasts made by the same company, in both episodes. See

Section 3.5.2 for details.

A podcast not using DAI, or a podcast using DAI but not with IP geoloca-

tion as a parameter for selecting advertisements, will not have any ad-

vertisements removed, except by chance, as sometimes simply fetching

the advertisement through Tor will result in fewer advertisements being

added to the episode.

Resuming episodes without advertisements

Resuming episodes without advertisements is implemented.



Chapter 4: Results 34

Undo processing of episode

Undoing the processing of an episode and getting the original file is not

implemented.

Skipping in episodes without advertisements

Skipping forwards and backwards in episodes without advertisements is

implemented.

Streaming and downloading

Both streaming and downloading of episodes without advertisement is im-

plemented. By downloading AntennaPod will store the episode without ad-

vertisements in persistent memory.

4.1.3 Non-functional demands

The solution should focus on seamless integrationwith the podcast

application and that set-up and maintenance for the end user is

minimal

After set-up, the adblocker requires no maintenance from the user and

AntennaPod can be used as if nothing has changed. The only change to

the program flow of AntennaPod is increased load times, and AntennaPod

can be used the same way as before the adblocker was added.

The integration with AntennaPod and the ease of installation and set-up

were subjects of the usability tests, see Section 4.1.4 for results.

User tests and UI/UX guidelines should inform design choices

As explained in the Assignment Details, the chosen solution ended up being

without any form of user interface beyond output in the terminal. User

surveys were not performed due to shortage of time. In agreement with

the supervisor, this demand was discarded.

Perform usability tests of the end product

Usability tests of the end product were performed. See Section 3.6.4 for

method and Section 4.1.4 for results.

4.1.4 Usability tests

See Appendix G for the usability test template and Appendix H for a full

overview of the responses. There were five participants of the usability

tests.



Chapter 4: Results 35

Installation and set-up

Participants differed in 60% finding the installation and set-up Easy and

40% finding it Difficult.

Figure 4.3: Results from installation and set-up. Here, 1 is Very easy and 5 is

Very difficult.

60% found the installation of the CA certificate of mitmproxy on the Way-

droid device challenging, and 40% found opening a Tor SOCKS proxy chal-

lenging. 20% found use of the terminal challenging, and 20% had no dif-

ficulty with installation and set-up.

Figure 4.4: Results from what part(s) of installation and set-up were challenging.

Improvement suggestions from the participants were:

• Make all paths relative or absolute



Chapter 4: Results 36

• Make it more clear that the proxy can be shut down after generating

the CA-certificate

• Make it more clear that the port of the adblock proxy, and not the Tor

SOCKS proxy, is the one to be inputted in AntennaPod

• Make it clearer that the listed Tor options are in fact options, and not

steps

Additionally, the following observations were made:

• The postboxes in the README.md had $ in front to indicate that the

commands were to be used in a terminal. However, this made the

postboxes require modification by removing the $ before use.

• Two participants mistakenly used the example value of the hash of

the CA certificate before replacing it with the actual value.

• The README.md and system documentation did not specify to press

Test and OK when setting the proxy in AntennaPod, which made some

participants exit the setting of the proxy prematurely.

• One participant inputted the IP-address of the Waydroid device end-

ing with 255 instead of the actual address

Running the adblocker

60% of participants found running the adblocker Easy, and 40% found it

Very easy.

Figure 4.5: Results from running the adblocker. Here, 1 is Very easy and 5 is Very

difficult.

Additionally, the following observations were made:

• 40% were confused by the 200 OK response being displayed in the

terminal before advertisement removal started, as they believed it



Chapter 4: Results 37

indicated advertisement removal being complete.

All 100% of participants found the usage of the port option Very easy.

Figure 4.6: Results from using the port option. Here, 1 is Very easy and 5 is Very

difficult.

All 100% of participants found the usage of the add-on option Very easy.

Figure 4.7: Results from using the add-on option. Here, 1 is Very easy and 5 is

Very difficult.

Improvement suggestions from the participants were:

• Make the add-on option use a name for features instead of actual file

names

User experience

60% of participants found the loading time between pressing play and

receiving the processed episode Unacceptable. 20% found it Acceptable,



Chapter 4: Results 38

and 20% found it in between Acceptable and Unacceptable.

Figure 4.8: Results from the loading time. Here, 1 is Very acceptable and 5 is

Very unacceptable.

80% of participants found the ”cut” sound resulting from removing advert-

isements Very acceptable, and 20% found it in between Acceptable and

Unacceptable.

Figure 4.9: Results from the ”cut” sound. Here, 1 is Very acceptable and 5 is Very

unacceptable.

40% of participants found the overall integration with AntennaPod Very

good, another 40% found it Good, and the last 20% found it Bad.



Chapter 4: Results 39

Figure 4.10: Results from integration with AntennaPod. Here, 1 is Very good and

5 is Very bad.

All 100% of participants felt that the loading time of the adblocker should

be improved.

Figure 4.11: Results from what part(s) of the adblocker that should be improved.

Additional improvement suggestions from the participants were:

• Interactive set-up that guides and/or does part of the installation and

set-up

• Add a way to see if the adblocker is running in AntennaPod

• Auto start of AntennaPod or the adblocker when the other part is

started

• Auto start the adblocker on system start, i.e. when turning the com-

puter on

• Pre-loading the next episode of a podcast

• Functionality to pre-process selected episodes



Chapter 4: Results 40

4.2 Administrative results

4.2.1 Time management

The Gantt chart was continuously used and updated throughout the pro-

ject, with the initial version being made for the Pre-Project Plan. The up-

dated version, available in Appendix E, gives an updated overview of the

different activities and milestones and their respective hour count.

4.2.2 Development method

As described in Section 3.1.2, the Gantt chart was used for a review and

retrospective of the week at the end of each week starting in April with code

development, drawing inspiration from the development method Scrum.

These are available in the time chart in Appendix B.

For code development an issue board was used to track tasks, and stand-

ard development practice of separate branches for each issue was imple-

mented. The issue board and a complete overview of the branch structure

is in the project repository available in Appendix F.



5. Discussion

5.1 Engineering

5.1.1 Sources of error

Testing of delta

Several values of delta demonstrate great variation in performance around

the 8×17 bytes mark in Figure 4.1 and Table 4.1. The tests were ran several

times with similar results, but some test runs also had sudden increases

in performance, i.e. one or several of the larger episodes requiring only

about half the time of the data presented. All tests were ran with the same

parameters and on identical files every time.

The cause of this is unclear. One theory is that the testing scenario was not

ideal: Each episodes was loaded into a list consisting of delta-sized lists.

The streaming from Tor was then replicated by processing one chunk (list)

at a time from this list of lists. The deviance in the tests runs could stem

from weird behaviour in Python caused by loading data structures of such

large sizes into non-persistent memory.

The values presented are the ones closer to the average, as the increases

in performance for larger episodes happened rarely.

Testing of the adblocker

As described in Section 2.4, performance of the Tor network is unstable.

The values presented in Figure 4.2 should therefore serve first and fore-

most as data demonstrating that Tor makes performance of the adblocker

inconsistent. The data should not be interpreted as representing average

values for episodes in the size range of the test set of episodes. Neither

can this data be used to say anything exact of which value of delta that is

ideal, as it cannot be known how large part of the times is caused by Tor.

5.1.2 Delta

Both 213 and 214 worked well in production, and setting delta to be 213 was

implemented. Although 214 increasingly outperformed 213 as the size of

the episode grew, it also resulted in slightly more content being removed

from the episode. As per the goals for the product set in the Vision Docu-

41



Chapter 5: Discussion 42

ment, the solution was to remove advertisement without further altering

the listening experience. By setting delta to be 213 the user experience was

prioritised.

This value had the additional advantage of working well with the Tor stream.

As the performance of the Tor network is unstable, waiting for larger

amounts of data can take a lot of time. By setting setting delta to be 213

both the advertisement removal algorithm and the stream could use the

same value, removing the need for the additional buffer logic discussed in

Section 3.6.3.

Although nothing exact can be said, during the project unstable perform-

ance with Tor using delta = 214 was experienced and this behaviour might

be represented in Figure 4.2.

5.1.3 The threshold

The threshold used throughout the project was 100 × delta = 100 × 213 =

819200. As stated in 3.6.3, if this value is too low it will break functionality

and return only parts of requested episodes. Towards the end of the project

this value was more extensively tested, and in the highest quality episodes

found throughout the project, this equalled about 40 seconds of sound.

This was found to be too uncertain, and the value was tripled to be 500 ×
delta = 500× 213 = 4096000, i.e. about 200 seconds.

Although the logic behind the threshold can work well, the value set for

it should be backed by more testing and data. More work is required and

should be done to find a safe value.

5.1.4 Functional demands

Removal of advertisement

The adblocker must not be thought of as as an all-purpose adblocker,

but an adblocker for use with podcasts using geo-based DAI. For such

podcasts, it is guaranteed to remove all advertisements except the special

case described in Section 3.5.2.

As of delivery of the project, there is no easy way to toggle the adblocker

off without having to unset the proxy in AntennaPod. The only way to

achieve this is by shutting down the Tor instance, which results in no pro-

cessing being done to episodes and the original file being served. If a user

listens to a selection of different podcasts and these vary in degrees of use

of geo-based DAI, this means either having to unset the proxy in Anten-

naPod, shutting down the Tor instance, or sitting through processing time



Chapter 5: Discussion 43

with no effect for the podcasts not using geo-based DAI. Consequently,

the adblocker is rather inflexible.

Performance

Table 4.1 shows the algorithm using between 2 and 3 seconds with delta =

213 on the top 20 episodes. i.e. the episodes of BBC Word Service Global

News Podcast, which average in length of about 20−35minutes. The bottom

20 episodes have lengths between 40minutes and 1.5 hour, with processing

times between 20 seconds and about 4 minutes. Even using the outlier at

257.91 seconds and setting the episode length to be somewhere between

1− 1.5 hour, this is between 5% and 7% of episode time spent processing.

For the BBC episodes, if we set an over-estimate for average processing

time at 4 seconds and every episode having length of 30 minutes, this

equals ≈ 0.2% processing for episode time.

From these calculations, the algorithm’s performance can be said to be de-

cent. However, the adblocker as a whole performs much worse due to the

use of the Tor network, making performance very fluctuating. Although

performed with few participants, the result from the usability tests deem-

ing the performance as Unacceptable (see Section 4.1.4) can be assumed

to apply to a larger user base. In its current state, the adblocker has un-

acceptable performance issues in the inconsistency of the processing due

to Tor.

Resuming episodes without advertisements

Resuming an episode without advertisements works well. Performance is

optimised if the episode is still in the the cache, but if not it will be pro-

cessed and starts playing where previously paused.

The only way for resuming an episode without advertisements not to work

is by pausing an episode that is being streamed, restarting the adblocker,

and then resuming the episode. This will result in the original file being

served.

Undo processing of episode

This functionality was unfortunately not implemented.

The main reason behind this functionality being included in the Vision Doc-

ument was in the case that the adblocker makes a mistake. With the de-

livered version of the adblocker, a mistake has not been encountered. If

the adblocker for some reason (i.e. the Tor instance not being active) does

not manage to process the episode, the original file is served. The value



Chapter 5: Discussion 44

for delta is also selected specifically to minimise the amount of content be-

ing cut away, although it still happens that seconds or fraction of seconds

are cut away. Furthermore, the threshold value has been set excessively

high compared to the experience throughout the project in an attempt to

make sure the mistake specified in Section 3.6.3 does not occur.

This functionality had the lowest priority and was the only one not im-

plemented, but other steps have been made to mitigate the lack of this

functionality.

Skipping in episodes without advertisements

Skipping in episodes without advertisement works well. When skipping, the

episode being played is almost guaranteed to be in the cache, providing

good performance.

The only way for skipping in an episode without advertisements not to work

is by restarting the adblocker while streaming an episode, and then resum-

ing the episode. Or, if during streaming of an episode enough episodes are

downloaded to empty the cache and route dictionary. These weaknesses

can be attributed to the weakness of the cache implementation, see Sec-

tion 6.2.7 for discussion.

Streaming and downloading

Both streaming and downloading of episodes without advertisement works.

Downloading is superior, as restarting the proxy will have no effect on

downloaded content. When downloading an episode, AntennaPod stores

the processed episode in its own persistent memory, meaning it will be

available at later times without the need for processing, and instantan-

eous performance in skipping and resuming.

The optimal way to use the adblocker is therefore by downloading episodes

and if scarce on memory, deleting them when finished.

5.1.5 Non-functional demands

The solution should focus on seamless integrationwith the podcast

application and that set-up and maintenance for the end user is

minimal

Making the integration seamless has been a focus throughout the entire

project. Notwithstanding the exceptions in functionality caused by restart-

ing the proxy during streaming of an episode, the program flow of An-

tennaPod is unchanged except for loading times, and no maintenance is

required after installation and set-up. Error handling is also prioritised, as



Chapter 5: Discussion 45

the worst error that could happen is the original file being served. The res-

ults from the usability tests in Section 4.1.4 show that most participants

find the integration as good.

Several participants found the set-up it difficult. Particularly the installation

of the CA certificate was challenging. After the usability tests the set-up

instructions in the README.md and System Documentation was improved

with the findings from the tests, but the set-up is still rather challenging.

This could have been improved by making a set-up script.

User tests and UI/UX guidelines should inform design choices

Discarded, see Section 4.1.3 and the Assignment Details for details.

5.1.6 Usability tests

The usability tests provided useful feedback that was used to improve the

set-up documentation in the README.md and the System Documentation.

The method implemented worked well by both receiving feedback in the

template from the participants and making notes from observing.

Regarding the discussion in Section 3.6.4 the number of participants (5)

proved useful for the testing of functionality and finding missing points

of the set-up and installation guides. However, after improving the docu-

ments, a second iteration should have been performed to measure if the

changes had any effect. Furthermore, with the participant count so low,

not much significance can be attributed to the gathered data on more sub-

jective questions, i.e. how acceptable the loading time is or how good the

integration with AntennaPod is.

5.2 Administrative results

5.2.1 Time management

Time management in the beginning of the project was not well performed.

As described in Section 3.3 the intention was to do thorough research to

avoid meeting dead-ends in development, but this did not give the results

that was hoped for. Too much time was spent on research without de-

velopment, as initial development should have helped shape the research.

Additionally, too much time passed before selecting an approach, and even

with all the research a dead end was met in use of the HTTP CONNECT

method by mistakenly believing it would be able to intercept HTTPS com-

munication. This mistake resulted in the developed proxy and two weeks



Chapter 5: Discussion 46

worth of time being discarded. However, the knowledge gained in devel-

oping the first proxy from the ground up was crucial in the development

of the final product, as time was short.

Additionally, as a consequence of personal circumstances progress in Feb-

ruary and March was below the necessary level for keeping up with the

outlined plan and deadline, and a deadline extension was requested and

granted in the beginning of April. At the same time an approach was selec-

ted and development began, and from this point on time management was

done well. Having each week serve as a informal sort of sprint where some

tasks were given priority and having the goal of completing them during

the week helped make the sessions effective, and the weekly reviews and

retrospective were also useful.

5.2.2 Development method

Usage of the issue board and standard branch practice made develop-

ment effective. As mentioned in Section 3.1.2 preserving code quality was

challenging, especially as the later parts of development was affected by

being short on time. When development of a functionality or feature fin-

ished it was important to get it reviewed and merged as soon as possible,

but reviewing the code without letting time pass would barely serve any

purpose as it was reviewed by its author. Apart from this, development

worked well.



6. Conclusion and Future

Work

6.1 Research questions

6.1.1 What is the state-of-the-art of audio adblocking?

Almost ten years later, Storelli’s Adblock Radio utilising a combination of

machine learning, fingerprinting of audio and crowdsourcing still stands

out as possibly the only complete solution to an audio adblocker by not

only detecting, but also removing advertisement in live radio [66]. Since

then, advancements in machine learning have been made, e.g. through

the introduction of OpenAI’s Whisper model [47], an automatic speech re-

cognition system with multilingual capabilities. In March of 2024, Álvarez

et. al [9] used Whisper to create a machine learning model capable of

detecting advertisements with an F1 macro score close to 90%. Other

machine learning approaches focusing on energy over time features such

as Mel-frequency cepstral coefficients (MFCC), but also incorporating use

of features such as fingerprinting and and speech [78] [38], have compar-

atively good results. However, these last two models have difficulties with

more challenging scenarios, e.g. like promotions for CDs and host-read

advertisements, which Álvarez’ model claim to be able to handle.

However, the crux of all machine learning approaches is the complexity

compared to limitations. Zamanirad and Douterloigne’s model [78] from

2022 does not manage to filter out host-read advertisements and advises

fine tuning the model every couple of months for long term performance,

and adding a layer of semantic logic to the model further increasing its

complexity. The model of Álvarez et al. does not need neither a database

for updates nor energy over time features, but stresses the importance

and difficulty in training these models with the right (hyper)parameters

and that post-processing techniques should be implemented to improve

performance, adding a layer of complexity. Additionally, the processing is

time-consuming, with the model of Álvarez et al. spending between 4 to

17 minutes to process 1 hour of audio.

Compared to these heavy implementations the approach presented in this

thesis is lightweight and naive, but although having several limitations,

47



Chapter 6: Conclusion and Future Work 48

works well for what it is designed for: DAI based on geolocation. These

heavy machine learning algorithms are overkill and not needed for every

scenario, meanwhile naive, direct approaches like the one implemented in

this project cannot handle every scenario. To maximise effectiveness and

resource use, the state of the art of adblocking would be implementing

a flexible adblocker framework with several approaches available for use

individually and combined, enabling the use of the right tool for the job

every time.

6.1.2 What adblocking architectures can be seamlessly

integrated into the podcast listening experience?

The proxy-based approach in this project could have any set of backend,

e.g. machine learning or crowdsourcing, instead of the implemented geo-

based logic and possibly achieve similar levels, or better, of integration.

Of the approaches discussed in this thesis, the use of crowdsourcing seem

to be the least ideal for seamlessly integrating with the podcast listening

experience, as podcasts differ from other media forms like video by not

necessarily being consumed while having the application open or ready.

Additionally, as Section 3.4.1 details, the advancements in advertisement

technology like DAI makes the prospect of crowdsourcing even more dif-

ficult.

Machine learning is the approach with the most theory and previous work

behind it, and have shown promising results for several years. Having

an effective machine learning model in the backed of the proxy would

have worked well, with possible increases to load time. The challenges

of using machine learning is all the work predating the finished model,

i.e. how logically complex it is and the amount of testing and adjustment,

in addition to some models requiring regular refreshment in training, or

increased complexity in forms of added layers of processing, for optimal

performance.

As discussed in Section 6.1.1, the most seamless and effective integra-

tion seems to be to have multiple tools depending on what advertisement

the podcast uses. For international podcasts using geo-based DAI the ap-

proach from this project can be used, and if some podcasts do not use DAI

or use DAI at sufficiently consistent points and lengths, a crowdsourcing

approach can be applied. If none of these are effective, the heavy ma-

chine learning models can be used to remove all advertisements, even the

host-read ones.



Chapter 6: Conclusion and Future Work 49

6.1.3 How can audio adblocking adapt to the advance-

ments in advertisement technology?

With the rise of programmatic advertising and DAI, the challenges for audio

adblockers increase. Big podcasts with a known international audience like

BBC Word Service Global News Podcast seem likely to use geo based DAI

as this is the optimal way to give audiences relevant advertisements. Other

podcasts will stick to using DAI without using IP-addresses as a parameter,

adding the need for additional logic. One grim but enabling possibility is

that as podcast advertisement revenue continues to grow a selected few

advertisement companies create a worldwide oligopoly for podcast advert-

isement, and that these services because of their reach uses geo-based

DAI no matter what podcast one listens to. Even machine learning ap-

proaches are not safe, with threats such as adversarial machine learning

[18] existing and having been used on adblockers previously [73].

As revenue in podcast advertising increases, advancements in advertise-

ments technology to provide advertisements that are as relevant as pos-

sible, as fast as possible will continue concurrently. Consequently, the only

way for adblockers to adapt to these advancements is by having a flexible

framework able to utilise different and combined architectures.

6.2 Further work

6.2.1 Tor network

The highest priority for further work on this project is to move the imple-

mentation away from using the Tor network. Tor is an important techno-

logy in a increasingly digital and surveillanced world, and as the network

have few relays compared to the amount of users causing poor and incon-

sistent performance [35] [68], the network should be reserved for more

important use [36] like people bypassing censorship. Additionally, having

the adblocker be widely used via Tor is impossible because of the perform-

ance issues with the network.

The use case in this project, i.e. solely getting another IP-address, is the

ideal task for a VPN. The reason a VPN was not used in this project was

because of time constraints and to make the installation and set-up of

the adblocker as easy and minimal as possible. Using a VPN would be

beneficial in several ways, as it would decrease strain on the Tor network

and increase the performance of the adblocker.



Chapter 6: Conclusion and Future Work 50

6.2.2 Implement full adblocker

A natural next step would be to implement a full adblocker and not just

one for for geo-based DAI by extending and integrating it with other ar-

chitectures, as discussed in Section 6.1.

6.2.3 Threading

As of delivery, the adblocker processes every episode that is streamed or

downloaded. There is no way to cancel the processing except by shutting

the adblocker down, and all other requests and responses received by the

proxy are interrupted and have to wait until processing of the episode is

finished. This should be improved by making the proxy threaded, with each

thread handling a single request or connection.

6.2.4 Selecting shows

Following the same reasoning, logic for selecting which shows should be

processed should be implemented. Having to wait for processing of epis-

odes one knows does not use geo-based DAI is poor functionality.

6.2.5 Pre-processing of episodes

Functionality for pre-processing episodes should be implemented. This is

in one way implemented by downloading an episode, resulting in Anten-

naPod storing the processed episode in persistent memory. It should be

improved by allowing for users to choose, or automatically detect by seeing

which podcasts are often played, shows that the adblocker automatically

processes the next episode of automatically.

6.2.6 Add silence to cuts

As of delivery the proxy can make a sharp sound resulting from the re-

moval of advertisement. To improve the user experience, some fractions

of a second of silence should be added after removing the advertisement

or before continuing with content.

6.2.7 The route and stripped dictionary

The use of the route and the stripped dictionary is not ideal. For one, the

implemented logic of simply emptying the dictionaries on every sixth entry

is not an actual solution, but implemented because of time constraints.

Additionally, storing data structures as large as podcast episodes in non-

persistent memory like dictionaries can cause difficulties and unwanted



Chapter 6: Conclusion and Future Work 51

behaviour, e.g. by eating away at RAM usage. One approach would be to

store the dictionaries and processed episodes in persistent memory, and

then let users define for how long they want to keep them, or use a form

of timeout based on last access time.





Societal Impact
Adblockers have the possibility of doing good by removing inappropriate

content and reducing energy usage [50]. On a more subjective note, they

can increase well-being by allowing users to avoid advertisement they find

distracting or bothersome.

However, adblockers also have possibility of doing harm by disrupting the

monetary system that is providing free availability to services through ad-

vertising. Podcasts are one such service and media. If one imagines use of

the adblocker developed in this project or another product like it becoming

wide spread, chances are advertisement companies and podcast creators

will start fighting back, e.g. like Web browsers have attempted [13] [1]

[31]. One possible outcome could be that more podcasts get locked be-

hind paywalls, which is neither desirable nor fair towards users who do

not use adblockers. Many podcasts already have the option of supporting

them in other ways than advertisements, e.g. through Patreon [49], which

in return grants benefits like private URLs leading to advertisement free

episodes. This is a more sustainable option than adblockers, as it gives

podcast creators the safety of income while at the same time giving users

who want to avoid advertisement a meaningful way to do so.

Lastly, the ethics of the developed adblocker is worsened by unnecessary

and egotistical use of the Tor network, which should be reserved for more

important use.

53





Bibliography
[1] British Broadcasting Corporation (BBC). Facebook’s hidden battle

against ad-blockers. 2018. URL: https://www.bbc.com/news/technology-
46508234 (visited on 30/05/2024).

[2] International Business Machines Corporation (IBN). An overview of

the SSL/TLS handshake. 2024. URL: https://www.ibm.com/docs/
en/ibm-mq/9.3?topic=tls-overview-ssltls-handshake (visited on

07/05/2024).

[3] International Business Machines Corporation (IBN). Digital certific-

ates. 2024. URL: https://www.ibm.com/docs/en/integration-bus/10.
1?topic=overview-digital-certificates (visited on 05/07/2024).

[4] PricewaterhouseCoopers LLP (PwC). Internet Advertising Revenue

Report. 2023. URL: https://www.iab.com/wp-content/uploads/2023/
04/IAB_PwC_Internet_Advertising_Revenue_Report_2022.pdf (visited

on 25/05/2024).

[5] PricewaterhouseCoopers LLP (PwC). U.S. Podcast Advertising Rev-

enue Study 2023. 2023. URL: https://www.iab.com/wp-content/
uploads/2023/10/IAB_US_Podcast_Advertising_Revenue_Study_2023_
Part_2.pdf (visited on 23/05/2024).

[6] AdAvoid. AdBlocker Ultimate. No date. URL: https://addons.mozilla.
org/en-US/firefox/addon/adblocker-ultimate/ (visited on 25/05/2024).

[7] Amazon Ads. Programmatic advertising. 2024. URL: https://advertising.
amazon.com/blog/programmatic-advertising (visited on 28/05/2024).

[8] Mshabab Alrizah, Sencun Zhu, Xinyu Xing and Gang Wang. ‘Errors,

Misunderstandings, and Attacks: Analyzing the Crowdsourcing Pro-

cess of Ad-blocking Systems’. In: Proceedings of the Internet Meas-

urement Conference. IMC ’19. Amsterdam, Netherlands: Associ-

ation for Computing Machinery, 2019, pp. 230–244. ISBN: 9781450369480.

DOI: 10.1145/3355369.3355588. URL: https://doi.org/10.1145/
3355369.3355588.

[9] Jorge Álvarez, Juan Carlos Armenteros, Camilo Torrón, Miguel Ortega-

Martín, Alfonso Ardoiz, Óscar García, Ignacio Arranz, Íñigo Galdeano,

Ignacio Garrido, Adrián Alonso, Fernando Bayón and Oleg Voront-

sov. ‘RADIA – Radio Advertisement Detection with Intelligent Ana-

lytics’. In: 2024. DOI: https://doi.org/10.48550/arXiv.2403.03538.
[10] AntennaPod. About. 2024. URL: https://antennapod.org/about/ (vis-

ited on 20/05/2024).

55

https://www.bbc.com/news/technology-46508234
https://www.bbc.com/news/technology-46508234
https://www.ibm.com/docs/en/ibm-mq/9.3?topic=tls-overview-ssltls-handshake
https://www.ibm.com/docs/en/ibm-mq/9.3?topic=tls-overview-ssltls-handshake
https://www.ibm.com/docs/en/integration-bus/10.1?topic=overview-digital-certificates
https://www.ibm.com/docs/en/integration-bus/10.1?topic=overview-digital-certificates
https://www.iab.com/wp-content/uploads/2023/04/IAB_PwC_Internet_Advertising_Revenue_Report_2022.pdf
https://www.iab.com/wp-content/uploads/2023/04/IAB_PwC_Internet_Advertising_Revenue_Report_2022.pdf
https://www.iab.com/wp-content/uploads/2023/10/IAB_US_Podcast_Advertising_Revenue_Study_2023_Part_2.pdf
https://www.iab.com/wp-content/uploads/2023/10/IAB_US_Podcast_Advertising_Revenue_Study_2023_Part_2.pdf
https://www.iab.com/wp-content/uploads/2023/10/IAB_US_Podcast_Advertising_Revenue_Study_2023_Part_2.pdf
https://addons.mozilla.org/en-US/firefox/addon/adblocker-ultimate/
https://addons.mozilla.org/en-US/firefox/addon/adblocker-ultimate/
https://advertising.amazon.com/blog/programmatic-advertising
https://advertising.amazon.com/blog/programmatic-advertising
https://doi.org/10.1145/3355369.3355588
https://doi.org/10.1145/3355369.3355588
https://doi.org/10.1145/3355369.3355588
https://doi.org/https://doi.org/10.48550/arXiv.2403.03538
https://antennapod.org/about/


Bibliography 56

[11] AntennaPod. Download. 2024. URL: https://antennapod.org/download/
(visited on 20/05/2024).

[12] Bryan Barletta. How Dynamic Ad Insertion Actually Works. 2021.

URL: https://soundsprofitable.com/article/how-dynamic-ad-insertion-
actually-works/ (visited on 25/05/2024).

[13] Karl Bode. Google Struggles to Justify Why It’s Restricting Ad Block-

ers in Chrome. 2019. URL: https://www.vice.com/en/article/evy53j/
google-struggles-to-justify-making-chrome-ad-blockers-worse (vis-

ited on 30/05/2024).

[14] Brave. What is a filter list? 2023. URL: https://brave.com/glossary/
filter-list/ (visited on 25/05/2024).

[15] Jan vom Brocke, Alan Hevner and Alexander Maedche. ‘Introduction

to Design Science Research’. In: Design Science Research. Cases.

Cham: Springer International Publishing, 2020, pp. 1–13. ISBN:

978-3-030-46781-4. DOI: 10 . 1007 / 978 - 3 - 030 - 46781 - 4 _ 1. URL:
https://doi.org/10.1007/978-3-030-46781-4_1.

[16] Patrick Cardinal, Vishwa Gupta and Gilles Boulianne. Content-based

advertisement detection. Ed. by Takao Kobayashi, Keikichi Hirose

and Satoshi Nakamura. 2010. URL: https://www.researchgate.net/
publication/221489859_Content-based_advertisement_detection (vis-

ited on 09/05/2024).

[17] Aotian Chen and Tianao Chen. ‘Advertisement monitoring system

based on C++’. In: 2021 IEEE International Conference on Advances

in Electrical Engineering and Computer Applications (AEECA). 2021,

pp. 742–747. DOI: 10.1109/AEECA52519.2021.9574388.
[18] Matt Churilla, Nathan M. VanHoudnos and Robert W. Beveridge. The

Challenge of Adversarial Machine Learning. 2023. URL: https://
insights.sei.cmu.edu/blog/the-challenge-of-adversarial-machine-
learning/ (visited on 30/05/2024).

[19] European Union Agency for Cybersecurity (ENISA).Man-in-the-Middle.

2024. URL: https://www.enisa.europa.eu/topics/incident-response/
glossary/man-in-the-middle (visited on 08/05/2024).

[20] Statista Reasearch Departement. Advertising - Worldwide. 2024.

URL: https://www.statista.com/outlook/amo/advertising/worldwide
(visited on 28/05/2024).

[21] EasyList. Easy List Forum. No date. URL: https://forums.lanik.us/
viewforum.php?f=62-report-unblocked-content (visited on 28/05/2024).

[22] Roy T. Fielding, Mark Nottingham and Julian Reschke. RFC 9110 -

HTTP Semantics. 2022. URL: https://datatracker.ietf.org/doc/
html/rfc9110 (visited on 06/05/2024).

[23] Uros Gazvoda. uBlock Origin - Free, open-source ad content blocker.

No date. URL: https://ublockorigin.com/ (visited on 09/05/2024).

https://antennapod.org/download/
https://soundsprofitable.com/article/how-dynamic-ad-insertion-actually-works/
https://soundsprofitable.com/article/how-dynamic-ad-insertion-actually-works/
https://www.vice.com/en/article/evy53j/google-struggles-to-justify-making-chrome-ad-blockers-worse
https://www.vice.com/en/article/evy53j/google-struggles-to-justify-making-chrome-ad-blockers-worse
https://brave.com/glossary/filter-list/
https://brave.com/glossary/filter-list/
https://doi.org/10.1007/978-3-030-46781-4_1
https://doi.org/10.1007/978-3-030-46781-4_1
https://www.researchgate.net/publication/221489859_Content-based_advertisement_detection
https://www.researchgate.net/publication/221489859_Content-based_advertisement_detection
https://doi.org/10.1109/AEECA52519.2021.9574388
https://insights.sei.cmu.edu/blog/the-challenge-of-adversarial-machine-learning/
https://insights.sei.cmu.edu/blog/the-challenge-of-adversarial-machine-learning/
https://insights.sei.cmu.edu/blog/the-challenge-of-adversarial-machine-learning/
https://www.enisa.europa.eu/topics/incident-response/glossary/man-in-the-middle
https://www.enisa.europa.eu/topics/incident-response/glossary/man-in-the-middle
https://www.statista.com/outlook/amo/advertising/worldwide
https://forums.lanik.us/viewforum.php?f=62-report-unblocked-content
https://forums.lanik.us/viewforum.php?f=62-report-unblocked-content
https://datatracker.ietf.org/doc/html/rfc9110
https://datatracker.ietf.org/doc/html/rfc9110
https://ublockorigin.com/


Bibliography 57

[24] Git. git. No date. URL: https://git-scm.com/ (visited on 20/05/2024).
[25] GitHub. About GitHub and Git. 2024. URL: https://docs.github.com/

en/get-started/start-your-journey/about-github-and-git (visited

on 20/05/2024).

[26] GlobalSign. Certificate Authorities & Trust Hierarchies. 2024. URL:

https://www.globalsign.com/en/ssl-information-center/what-are-
certification-authorities-trust-hierarchies (visited on 07/05/2024).

[27] Samuel Greengard. Crowdsourcing. 2024. URL: https://www.britannica.
com/money/crowdsourcing (visited on 10/05/2024).

[28] Shawn Hershey, Sourish Chaudhuri, Daniel P. W. Ellis, Jort F. Gem-

meke, Aren Jansen, R. Channing Moore, Manoj Plakal, Devin Platt,

Rif A. Saurous, Bryan Seybold, Malcolm Slaney, Ron J. Weiss and

Kevin Wilson. CNN Architectures for Large-Scale Audio Classifica-

tion. 2017. URL: https://doi.org/10.48550/arXiv.1609.09430 (vis-

ited on 09/05/2024).

[29] Raymond Hill. uBlock Origin (uBO). 2023. URL: https://github.com/
gorhill/uBlock/blob/b1530e26591cadea712e5dd1378a2377d9c1c9de/README.
md (visited on 25/05/2024).

[30] Raymond Hill. uBlock Origin. No date. URL: https://addons.mozilla.
org/en-US/firefox/addon/ublock-origin/ (visited on 25/05/2024).

[31] Andrew Hutchinson. YouTube Steps up Its Fight Against Ad Blockers

With Load Delays. 2023. URL: https://www.socialmediatoday.com/
news/youtube-steps-up-fight-against-ad-blockers-new-load-delays/
700512/ (visited on 30/05/2024).

[32] Wonil Hwang and Gavriel Salvendy. ‘Number of people required for

usability evaluation: the 10±2 rule’. In: Commun. ACM 53.5 (May

2010), pp. 130–133. ISSN: 0001-0782. DOI: 10 . 1145 / 1735223 .
1735255. URL: https://doi.org/10.1145/1735223.1735255.

[33] The Tor Project Inc. About Tor browser. No date. URL: https://tb-
manual.torproject.org/about/ (visited on 08/05/2024).

[34] The Tor Project Inc. History. No date. URL: https://www.torproject.
org/about/history/ (visited on 08/05/2024).

[35] The Tor Project Inc. How can I make Tor run faster? Is Tor Browser

slower than other browsers? No date. URL: https://support.torproject.
org/tbb/tbb-22/ (visited on 22/05/2024).

[36] The Tor Project Inc. Inception. No date. URL: https://2019.www.
torproject.org/about/torusers.html.en (visited on 30/05/2024).

[37] The Tor Project Inc. SOCKS5. No date. URL: https : / / support .
torproject.org/glossary/socks5/ (visited on 24/05/2024).

[38] Shashidhar G. Koolagudi, Shriyak Sridhar, Narendran Elango, Karthik

Kumar and Fathima Afroz. ‘Advertisement detection in commercial

radio channels’. In: 2015 IEEE 10th International Conference on In-

https://git-scm.com/
https://docs.github.com/en/get-started/start-your-journey/about-github-and-git
https://docs.github.com/en/get-started/start-your-journey/about-github-and-git
https://www.globalsign.com/en/ssl-information-center/what-are-certification-authorities-trust-hierarchies
https://www.globalsign.com/en/ssl-information-center/what-are-certification-authorities-trust-hierarchies
https://www.britannica.com/money/crowdsourcing
https://www.britannica.com/money/crowdsourcing
https://doi.org/10.48550/arXiv.1609.09430
https://github.com/gorhill/uBlock/blob/b1530e26591cadea712e5dd1378a2377d9c1c9de/README.md
https://github.com/gorhill/uBlock/blob/b1530e26591cadea712e5dd1378a2377d9c1c9de/README.md
https://github.com/gorhill/uBlock/blob/b1530e26591cadea712e5dd1378a2377d9c1c9de/README.md
https://addons.mozilla.org/en-US/firefox/addon/ublock-origin/
https://addons.mozilla.org/en-US/firefox/addon/ublock-origin/
https://www.socialmediatoday.com/news/youtube-steps-up-fight-against-ad-blockers-new-load-delays/700512/
https://www.socialmediatoday.com/news/youtube-steps-up-fight-against-ad-blockers-new-load-delays/700512/
https://www.socialmediatoday.com/news/youtube-steps-up-fight-against-ad-blockers-new-load-delays/700512/
https://doi.org/10.1145/1735223.1735255
https://doi.org/10.1145/1735223.1735255
https://doi.org/10.1145/1735223.1735255
https://tb-manual.torproject.org/about/
https://tb-manual.torproject.org/about/
https://www.torproject.org/about/history/
https://www.torproject.org/about/history/
https://support.torproject.org/tbb/tbb-22/
https://support.torproject.org/tbb/tbb-22/
https://2019.www.torproject.org/about/torusers.html.en
https://2019.www.torproject.org/about/torusers.html.en
https://support.torproject.org/glossary/socks5/
https://support.torproject.org/glossary/socks5/


Bibliography 58

dustrial and Information Systems (ICIIS). 2015, pp. 272–277. DOI:

10.1109/ICIINFS.2015.7399023.
[39] Nick Mathewson. A short introduction to Tor. 2023. URL: https://

gitlab.torproject.org/tpo/core/torspec/-/blob/38fa996c1cd8691cbd57b8fab543e74b33501fe3/
spec/intro/index.md (visited on 08/05/2024).

[40] mitmproxy. Addon examples. No date. URL: https://docs.mitmproxy.
org/stable/addons-examples/#http-stream-modify (visited on 26/05/2024).

[41] mitmproxy. Features. No date. URL: https://docs.mitmproxy.org/
stable/overview-features/#streaming (visited on 26/05/2024).

[42] mitmproxy. How mitmproxy works. No date. URL: https://docs.
mitmproxy.org/stable/concepts-howmitmproxyworks/ (visited on 08/05/2024).

[43] mitmproxy. Introduction. No date. URL: https://docs.mitmproxy.
org/stable/ (visited on 24/05/2024).

[44] Mozilla. What is a VPN? No date. URL: https://www.mozilla.org/
en-US/products/vpn/resource-center/what-is-a-vpn/ (visited on

24/05/2024).

[45] Jakob Nielsen and Thomas K. Landauer. ‘A mathematical model of

the finding of usability problems’. In: Proceedings of the INTERACT

’93 and CHI ’93 Conference on Human Factors in Computing Sys-

tems. CHI ’93. Amsterdam, The Netherlands: Association for Com-

puting Machinery, 1993, pp. 206–213. ISBN: 0897915755. DOI: 10.
1145/169059.169166. URL: https://doi.org/10.1145/169059.169166.

[46] NordVPN. What is a VPN? 2024. URL: https://nordvpn.com/what-is-
a-vpn/ (visited on 24/05/2024).

[47] OpenAI. Introducing Whisper. 2022. URL: https : / / openai . com /
index/whisper/ (visited on 20/05/2024).

[48] Kamalesh Palanisamy, Dipika Singhania and Angela Yao. ‘Rethink-

ing CNN Models for Audio Classification’. In: CoRR abs/2007.11154

(2020). URL: https://arxiv.org/abs/2007.11154 (visited on 09/05/2024).
[49] Patreon. Patreon for Podcasters. No date. URL: https://www.patreon.

com/creators/podcasts (visited on 30/05/2024).

[50] Joshua M. Pearce. ‘Energy Conservation with Open Source Ad Block-

ers’. In: Technologies 8.2 (2020). ISSN: 2227-7080. URL: https:
//www.mdpi.com/2227-7080/8/2/18.

[51] Adblock Plus. About Adblock Plus. 2023. URL: https://adblockplus.
org/en/about (visited on 25/05/2024).

[52] Adblock Plus. Adblock Plus. No date. URL: https://addons.mozilla.
org/en-US/firefox/addon/adblock-plus/ (visited on 25/05/2024).

[53] PyTorch. PyTorch Foundation. No date. URL: https://pytorch.org/
foundation (visited on 20/05/2024).

[54] Ajay Ramachandran. How it works. No date. URL: https://sponsor.
ajay.app/about/ (visited on 28/05/2024).

https://doi.org/10.1109/ICIINFS.2015.7399023
https://gitlab.torproject.org/tpo/core/torspec/-/blob/38fa996c1cd8691cbd57b8fab543e74b33501fe3/spec/intro/index.md
https://gitlab.torproject.org/tpo/core/torspec/-/blob/38fa996c1cd8691cbd57b8fab543e74b33501fe3/spec/intro/index.md
https://gitlab.torproject.org/tpo/core/torspec/-/blob/38fa996c1cd8691cbd57b8fab543e74b33501fe3/spec/intro/index.md
https://docs.mitmproxy.org/stable/addons-examples/#http-stream-modify
https://docs.mitmproxy.org/stable/addons-examples/#http-stream-modify
https://docs.mitmproxy.org/stable/overview-features/#streaming
https://docs.mitmproxy.org/stable/overview-features/#streaming
https://docs.mitmproxy.org/stable/concepts-howmitmproxyworks/
https://docs.mitmproxy.org/stable/concepts-howmitmproxyworks/
https://docs.mitmproxy.org/stable/
https://docs.mitmproxy.org/stable/
https://www.mozilla.org/en-US/products/vpn/resource-center/what-is-a-vpn/
https://www.mozilla.org/en-US/products/vpn/resource-center/what-is-a-vpn/
https://doi.org/10.1145/169059.169166
https://doi.org/10.1145/169059.169166
https://doi.org/10.1145/169059.169166
https://nordvpn.com/what-is-a-vpn/
https://nordvpn.com/what-is-a-vpn/
https://openai.com/index/whisper/
https://openai.com/index/whisper/
https://arxiv.org/abs/2007.11154
https://www.patreon.com/creators/podcasts
https://www.patreon.com/creators/podcasts
https://www.mdpi.com/2227-7080/8/2/18
https://www.mdpi.com/2227-7080/8/2/18
https://adblockplus.org/en/about
https://adblockplus.org/en/about
https://addons.mozilla.org/en-US/firefox/addon/adblock-plus/
https://addons.mozilla.org/en-US/firefox/addon/adblock-plus/
https://pytorch.org/foundation
https://pytorch.org/foundation
https://sponsor.ajay.app/about/
https://sponsor.ajay.app/about/


Bibliography 59

[55] Ajay Ramachandran. Overall Stats. No date. URL: https://sponsor.
ajay.app/stats/ (visited on 21/05/2024).

[56] Ajay Ramachandran. SponsorBlock. No date. URL: https://sponsor.
ajay.app/ (visited on 25/05/2024).

[57] RedCircle.What is Dynamic Insertion? No date. URL: https://support.
redcircle.com/what-is-dynamic-insertion (visited on 06/05/2024).

[58] Kenneth Reitz. requests 2.32.2. 2024. URL: https : / / pypi . org /
project/requests/ (visited on 26/05/2024).

[59] Eric Rescorla. RFC 2818 - HTTP over TLS. 2000. URL: https : / /
datatracker.ietf.org/doc/html/rfc2818 (visited on 07/05/2024).

[60] Eric Rescorla. RFC 8446 - The Transport Layer Security (TLS) Pro-

tocol Version 1.3. 2018. URL: https://datatracker.ietf.org/doc/
html/rfc8446 (visited on 06/05/2024).

[61] Feng Rong. ‘Audio Classification Method Based on Machine Learn-

ing’. In: 2016 International Conference on Intelligent Transporta-

tion, Big Data & Smart City (ICITBS). 2016, pp. 81–84. DOI: 10.
1109/ICITBS.2016.98.

[62] Ken Schwaber and Jeff Sutherland. The 2020 Scrum Guide. 2020.

URL: https://scrumguides.org/scrum-guide.html (visited on 10/05/2024).
[63] Nicolai Thorer Sivesind and Andreas Bentzen Winje. Turning Poach-

ers into Gamekeepers: Detecting Machine-Generated Text in Aca-

demia Using Large Language Models. 2023. URL: https://ntnuopen.
ntnu.no/ntnu-xmlui/handle/11250/3078096?locale-attribute=en (vis-

ited on 21/05/2024).

[64] Jared Spool and Will Schroeder. Testing web sites: five users is

nowhere near enough. 2001. DOI: http://dx.doi.org/10.1145/
634067.634236. URL: https://www.researchgate.net/publication/
200553186_Testing_web_sites_five_users_is_nowhere_near_enough
(visited on 28/05/2024).

[65] Alexandre Storelli. Designing an audio adblock. 2018. URL: https:
//www.adblockradio.com/blog/2018/11/15/designing-audio-ad-block-
radio-podcast/ (visited on 09/05/2024).

[66] Alexandre Storelli. Adblock Radio is a perceptual ad blocker. 2019.

URL: https://www.adblockradio.com/blog/2019/10/25/adblock-radio-
is-a-perceptual-ad-blocker/ (visited on 28/05/2024).

[67] Alexandre Storelli. Let’s improve our radio & podcasts experience.

2020. URL: https://www.adblockradio.com/en/ (visited on 28/05/2024).
[68] Tails. Why is Tor slow? No date. URL: https : / / tails . net / doc /

anonymous_internet/tor/slow/index.en.html (visited on 22/05/2024).
[69] Hacker Target. Tor Exit Nodes Located and Mapped. Np date. URL:

https://hackertarget.com/tor-exit-node-visualization/ (visited on

22/05/2024).

https://sponsor.ajay.app/stats/
https://sponsor.ajay.app/stats/
https://sponsor.ajay.app/
https://sponsor.ajay.app/
https://support.redcircle.com/what-is-dynamic-insertion
https://support.redcircle.com/what-is-dynamic-insertion
https://pypi.org/project/requests/
https://pypi.org/project/requests/
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc8446
https://doi.org/10.1109/ICITBS.2016.98
https://doi.org/10.1109/ICITBS.2016.98
https://scrumguides.org/scrum-guide.html
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3078096?locale-attribute=en
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3078096?locale-attribute=en
https://doi.org/http://dx.doi.org/10.1145/634067.634236
https://doi.org/http://dx.doi.org/10.1145/634067.634236
https://www.researchgate.net/publication/200553186_Testing_web_sites_five_users_is_nowhere_near_enough
https://www.researchgate.net/publication/200553186_Testing_web_sites_five_users_is_nowhere_near_enough
https://www.adblockradio.com/blog/2018/11/15/designing-audio-ad-block-radio-podcast/
https://www.adblockradio.com/blog/2018/11/15/designing-audio-ad-block-radio-podcast/
https://www.adblockradio.com/blog/2018/11/15/designing-audio-ad-block-radio-podcast/
https://www.adblockradio.com/blog/2019/10/25/adblock-radio-is-a-perceptual-ad-blocker/
https://www.adblockradio.com/blog/2019/10/25/adblock-radio-is-a-perceptual-ad-blocker/
https://www.adblockradio.com/en/
https://tails.net/doc/anonymous_internet/tor/slow/index.en.html
https://tails.net/doc/anonymous_internet/tor/slow/index.en.html
https://hackertarget.com/tor-exit-node-visualization/


Societal Impact 60

[70] Acast Team. The Benefits of Dynamic Ad Insertion in Podcast Advert-

ising. 2023. URL: https://advertise.acast.com/news-and-insights/
the-benefits-of-dynamic-ad-insertion-in-podcast-advertising (vis-

ited on 06/05/2024).

[71] AntennaPod Open Source Team. AntennaPod. 2024. URL: https:
//play.google.com/store/apps/details?id=de.danoeh.antennapod&hl=
en&gl=US (visited on 20/05/2024).

[72] TensorFlow. An end-to-end platform for machine learning. No date.

URL: https://www.tensorflow.org/ (visited on 20/05/2024).

[73] Florian Tramèr, Pascal Dupré, Gili Rusak, Giancarlo Pellegrino and

Dan Boneh. ‘Ad-versarial: Defeating Perceptual Ad-Blocking’. In:

CoRR abs/1811.03194 (2018). arXiv: 1811 . 03194. URL: http : / /
arxiv.org/abs/1811.03194.

[74] AdBlocker Ultimate. Why AdBlocker Ultimate? No date. URL: https:
//support.adblockultimate.net/en/articles/3309097-why-adblocker-
ultimate (visited on 25/05/2024).

[75] Adblocker Ultimate. Adblocker Ultimate for Browsers. No date. URL:

https://adblockultimate.net/browsers (visited on 25/05/2024).

[76] Waydroid. Waydroid. 2022. URL: https://waydro.id/ (visited on

20/05/2024).

[77] Khalid Zaman, Melike Sah, Cem Direkoglu and Masashi Unoki. ‘A

Survey of Audio Classification Using Deep Learning’. In: IEEE Access

11 (2023). DOI: 10.1109/ACCESS.2023.3318015.
[78] Shayan Zamanirad and Koen Douterloigne. ‘Say No2Ads: Automatic

Advertisement and Music Filtering from Broadcast News Content’.

In: Service-Oriented Computing – ICSOC 2021 Workshops. Ed. by

Hakim Hacid, Monther Aldwairi, Mohamed Reda Bouadjenek, Mar-

inella Petrocchi, Noura Faci Fatma Outay, Amin Beheshti, Lauritz

Thamsen and Hai Dong. Cham: Springer International Publishing,

2022, pp. 18–31. ISBN: 978-3-031-14135-5. DOI: https://doi.
org/10.1007/978-3-031-14135-5_2.

https://advertise.acast.com/news-and-insights/the-benefits-of-dynamic-ad-insertion-in-podcast-advertising
https://advertise.acast.com/news-and-insights/the-benefits-of-dynamic-ad-insertion-in-podcast-advertising
https://play.google.com/store/apps/details?id=de.danoeh.antennapod&hl=en&gl=US
https://play.google.com/store/apps/details?id=de.danoeh.antennapod&hl=en&gl=US
https://play.google.com/store/apps/details?id=de.danoeh.antennapod&hl=en&gl=US
https://www.tensorflow.org/
https://arxiv.org/abs/1811.03194
http://arxiv.org/abs/1811.03194
http://arxiv.org/abs/1811.03194
https://support.adblockultimate.net/en/articles/3309097-why-adblocker-ultimate
https://support.adblockultimate.net/en/articles/3309097-why-adblocker-ultimate
https://support.adblockultimate.net/en/articles/3309097-why-adblocker-ultimate
https://adblockultimate.net/browsers
https://waydro.id/
https://doi.org/10.1109/ACCESS.2023.3318015
https://doi.org/https://doi.org/10.1007/978-3-031-14135-5_2
https://doi.org/https://doi.org/10.1007/978-3-031-14135-5_2


A. Assignment Details
The original assignment details in form of a PDF.

i



Arbeidstittel: Adblock for podcasts

Problemstilling
How can an adblock solution for podcasts be seamlessly integrated into the podcast listening experience?

Beskrivelse av oppgaveforslag:
Develop a flexible adblocking framework for podcasts with a focus on seamless integration into an existing open 
soruce podcast application (e.g., Antennapod) or as an HTTP intercepting proxy. Make use of user surveys and UX 
design guidelines to inform design choices. Several implementation options are possible, from machine learning aided 
ad detection, to stripping of ads from audio files dynamically inserted via IP geolocation, to crowd-sourced ad 
annotation. The delivered thesis should offer a survey of state-of-the-art adblocking and audio-based adblocking in 
particular, a user-informed design and development life cycle, and usability tests of an end product.

Oppgaven passer for (kryss av de(t) som 
passer og skriv evt. en kommentar til 
oss):

- Bacheloroppgave

Hvilket studieprogram og emne passer 
oppgaven til? (spesifiseres ved 
bacheloroppgaver)

IDATT2900 – Bacheloroppgave Dataingeniør

Oppgaven passer best for, antall 
studenter:

- 1
- 2

Opplysninger om oppgavestiller 

Er du fra en bedrift/virksomhet eller er du 
student med en egendefinert/selvlaget 
oppgave?

- Bedrift/virksomhet

Navn på bedrift/organisasjon/student: AIT/IDI

Addresse NTNU

Postnummer 7000

Poststed Trondheim

Navn på kontaktperson/veileder: Donn Morrison

Telefon: 00000000

Epost: donn.morrison@ntnu.no

Forventinger
Oppdragsgiverne som får en gruppe til å velge sitt forslag, må være innstilt på å bidra med minimum 25 timeverk til 
møter og avklaringer rundt oppgaven med studentene i perioden januar-mai. NTNU sin standardavtale må benyttes. 
Lenke til informasjon om standardavtalen: https://i.ntnu.no/wiki/-
/wiki/Norsk/Standardavtale+mellom+bedrift+og+student

Frist for å levere oppgaveforslag er 5. november 2023.



B. Pre-Project Plan
The pre-project plan in form of a PDF.

iii



025

Adblock for podcasts
Forprosjektplan

Versjon 1.3

1



025

Revisjonshistorie

Dato Versjon Beskrivelse

20/01/2024 0.1 Formatering, stikkord på punkter 1 - 5

22/01/2024 0.2 Arbeid med punkter 1 - 2 og 4 - 6

25/01/2024 0.3 Arbeid med punkt 3 og 6

26/01/2024 1.0 Arbeid med punkt 3 og 6, ferdigstilling av første versjon

15/03/2024 1.1 Endret link til Gantt-diagram til full URL

13/05/2024 1.2 Omformulering og rettskriving

25/05/2024 1.3 Rettet distinksjon mellom brukerundersøkelse og brukertest

2



025

Innholdsfortegnelse
Innholdsfortegnelse 3
1. Mål og rammer 4

1.1 Orientering 4

1.2 Problemstilling, prosjektbeskrivelse og resultatmål 4

1.2.1 Problemstilling 4

1.2.2 Prosjektbeskrivelse 4

1.2.3 Resultatmål 4

1.3 Effektmål 5

1.4 Rammer 5

2. Organisering 6

3. Gjennomføring 6

3.1. Hovedaktiviteter 6

3.1.1 Forberedende arbeid 6

3.1.2 Undersøkelser 6

3.1.3 Utvikling 6

3.1.4 Lage og presentere poster 6

3.1.5 Brukertester 6

3.1.6 Rapport 7

3.1.7 Lage videopresentasjon 7

3.2. Milepæler 7

4. Oppfølging og kvalitetssikring 8

4.1 Kvalitetssikring 8

4.2 Rapportering 8

5. Risikovurdering 9

6. Vedlegg 10

6.1 Tidsplan 10

Januar 10

Februar 10

Mars 11

April 11

Mai 12

6.2 Adresseliste 12

3



025

1. Mål og rammer
1.1 Orientering
Oppgaven ble forespurt fordi jeg er interessert i adblocking og mener det spiller en økende rolle for

trivsel på internett og ved bruk av digitale tjenester, ettersom mengden reklame på internett virker til

å bli stadig større. Dette prosjektet vil nok ikke resultere i noe nytt på adblock-fagfeltet, men vil gi

meg økt forståelse av hvordan adblocking gjøres og hvilke utfordringer det byr på, samt hvordan

tjenestene adblocking gjøres mot er bygd opp. Dette utgjør ønsket for å gjennomføre prosjektet.

Oppgaven er en standard oppgave som ble lagt ut gjennom oppgaveoversikten på Blackboard og er

gitt av NTNU ved Donn Morrison.

1.2 Problemstilling, prosjektbeskrivelse og resultatmål

1.2.1 Problemstilling
Hvordan kan en en adblock-løsning sømløst integreres med lytting til podcast?

1.2.2 Prosjektbeskrivelse
Utvikle en fungerende adblock-tjeneste, med fokus på sømløs integrasjon, for en open-source

podcast-tjeneste. Brukerundersøkelser og UX-retningslinjer skal være styrende i designvalg av

løsningen. Sluttrapporten for prosjektet skal inkludere en oversikt over det nåværende teknologiske

nivået og fagfeltet innenfor adblocking, med fokus på lydbasert adblocking.

1.2.3 Resultatmål
Utvikle minimum én fungerende løsning av en adblocker for en open-source podcast tjeneste som

reduserer reklametid per podcast-episode med 70%.

Dette er hovedresultatmålet. Andre resultatmål:

● Utvikle en poster for prosjektet

● Utvikle en sluttraport med alle tilhørende vedlegg

● Løsningen etterstreber sømløs integrasjon som krever minimal oppmerksomhet fra bruker

● Løsningen er utformet i henhold til UX-retningslinjer

● Løsningen er utformet i henhold til tilbakemeldinger fra brukerundersøkelser

● Gjennomføre minimum fem brukertester av sluttproduktet

● Brukerne som deltar på brukerundersøkelsene og brukertester har varierende/spredt

fagbakgrunn

Tidsramme: Fire og en halv måned.

4



025
1.3 Effektmål
Effektmålet for dette prosjektet er å tilegne seg økt kompetanse innenfor hvordan adblocking gjøres,

utfordringene det byr på og tjenestene det gjøres mot, samt gjennomføring av større prosjekt.

Prosjektet gjennomføres ikke på vegne av en arbeidsgiver, så det er ingen effektmål relatert til

vinning for en bedrift eller liknende. Det er ikke planlagt at produktet skal lanseres på noen måte

annet enn å være et offentlig repository. Det kan allikevel være nyttig å se på hva effektmålene ville

vært hvis prosjektet var gitt fra en arbeidsgiver.

I så fall kunne effektmålene vært å utvikle en tjeneste brukere kan kjøpe som reduserer tiden man

må høre på reklame ved lytting til podcasts, og gjennom dette øke bruk og lytteglede ved

podcast-tjenesten. Herunder et mål om fortjeneste for arbeidsgiver. Et annet mål kunne være energi-

og strømsparing, med mål om at løsningen reduserer forbruk ved å ikke hente reklame.

1.4 Rammer
Prosjektet krever ikke utstyr eller materialer utover egen laptop. Prosjektet rettes mot en

open-source podcast-tjeneste, som gjør at tilgang på tjenesten og dens kildekode er gitt. Tidsrammen

for prosjektet er anslått til fem hundre timer over fire og en halv måned.

5



025

2. Organisering
Prosjektet gjennomføres av student ved NTNU Institutt for datateknologi og informatikk (IDI)

Christian Ryddheim Dahlin, med førstelektor ved NTNU IDI Donn Morrison som veileder.

Utover dette er Grethe Sandstrak emneansvarlig og kan kontaktes ved generelle spørsmål om emnet.

3. Gjennomføring
3.1. Hovedaktiviteter
Prosjektet er initsielt delt inn i følgende hovedaktiviteter. For datoer, se Gantt-diagram i avsnitt 6.1.

3.1.1 Forberedende arbeid

Forelesninger om vitenskapelig metode og prosjektet, sette seg inn i maler, sette opp en tidsplan og

lage forprosjektplan. Arbeid for å forberede prosjektet og for å sikre at man begynner på prosjektet

på en konstruktiv og planlagt måte.

3.1.2 Undersøkelser

Lese seg opp på fagfeltet og se på eksisterende løsninger. Bruke informasjonen man samler her til å

bestemme seg for hvilken løsning man vil forsøke å utvikle, samt mot hvilken tjeneste.

3.1.3 Utvikling

Utvikling av produktet. Starter med grunnfunksjonalitet, for så å fokusere på UX og UI. Iterativ

prosess der man må gå tilbake og endre/forbedre deler, samt oppdatere etter man har funnet ny

informasjon f.eks. gjennom brukertester. Forutsetning for å begynne på denne aktiviteten er at man

har funnet løsning å utforske, samt tjeneste å rette løsningen mot.

3.1.4 Lage og presentere poster
Lage poster i henhold til mal og presentere denne for andre prosjektgrupper og veiledere.

Forutsetter det samme som 3.1.3.

3.1.5 Brukertester
Gjennomføre brukertester og bruke informasjon fra disse til å endre produktet. Forutsetter at man

har utviklet en løsning eller MVP som brukerne kan teste.

3.1.6 Rapport
Skrive hovedrapporten og lage alle tilhørende vedlegg. Forutsetter ingenting for å begynne på

rapporten, men for å fullføre den må alle andre deler ved prosjektet bortsett fra

videopresentasjonen være ferdigstilt.

6



025

3.1.7 Lage videopresentasjon
Lage en video av en presentasjon av prosjektet. Forutsetter at alle andre deler ved prosjektet er

ferdigstilt.

3.2. Milepæler
Datoer for hovedaktivitetene og andre kritiske datoer kan ses i Gantt-diagrammet i avsnitt 6.1.

7



025

4. Oppfølging og kvalitetssikring
4.1 Kvalitetssikring
Punktene prøver å ta høyde for utfordringene ved kvalitetssikring som medfølger av at prosjektet

utføres individuelt.

● Gå gjennom produkter en lengre tid etter de er skrevet

● Sende inn arbeid til veileder for tilbakemelding når det er naturlig/mulig

● Lese andre, tidligere oppgaver for å kunne sammenligne

● Teste det som er utviklet jevnlig og omstendig, både ved egen utførte brukertester og ved

testing av kode per kodestandarder

● Sette opp pull-request struktur for kodingen der godkjenning/underkjenning gjøres ved

senere økter

4.2 Rapportering
Rapportering gjøres til veileder Donn Morrison. Han har uttrykt at rapportering ikke er nødvendig

ved faste tidsintervaller, men vil heller gjøres samtidig som prosjektmøter eller ved forespørsel.

Unntaket er hvis veileder får inntrykk av at ting ikke går eller gjøres som det skal, da vil veileder ta

kontakt og muligens endre kravene til rapportering.

8



025

5. Risikovurdering
Risikoene er delt inn i tre kategorier for sannsynlighet: lav, middels og høy.

Hendelse Sannsynlighet Konsekvens Tiltak

Sykdom Høy Tap av tid Jobbe inn tapte timer
på tidspunkter utenfor
timeplanen

Forespørre utsettelse
på innlevering av
prosjekt

Tilgang/endring av
podcast-tjenesten

Lav Påbegynt / utviklet
løsning blir irrelevant

Se på mulighet for å få
tjeneste/versjon
tilbake

Endre tjeneste
løsningen rettes mot

Tap av data Lav Tilbakesetting / tap av
arbeid

Lagre i skytjeneste
(Google Drive)

Ta jevnlig backup til
ekstern disk

Feiltolkninger /
misoppfatninger

Middels Feil/unødvendig
arbeid utføres, tap av
tid

Gode, konkrete
spørsmål til veileder

Forsikre om felles
forståelse av
avtaler/planer

9



025

6. Vedlegg
6.1 Tidsplan
Tidsplanen er utformet gjennom et Gantt-diagram. Gantt-diagrammet vist her er et førsteutkast, og

vil bli fyllt ut mer i detalj og revidert fortløpende gjennom prosjektet. Diagrammet et stort og dermed

utydelig i dette dokumentet, men kan ses i detalj i Google Sheets gjennom denne linken:

https://docs.google.com/spreadsheets/d/1HEQ-6-v6O43wHH_0Y3YWxjjGDEpwo8METbpw_MMbL00

/edit?usp=sharing.

For å gjøre det mulig å legge ved i dette dokumentet er diagrammet delt opp måned for måned.

Januar

Februar

10



025
Mars

April

11



025

Mai

6.2 Adresseliste

Navn Rolle Org. Telefon E-post Adresse

Christian
Ryddheim
Dahlin

Student,
utfører av
prosjektet

NTNU 97129860 00chrisryda@gmail.com Rosenborg
gate 14B,
7043
Trondheim

Donn
Morrison

Veileder NTNU N/A donn.morrison@ntnu.no IT-bygget,
sydfløy, 242,
Gløshaugen

Grethe
Sandstrak

Emneansvarlig NTNU 73559561 grethe.sandstrak@ntnu.no IT-bygget,
sydfløy, 108,
Gløshaugen

12





C. Vision Document
The vision document in form of a PDF.

xvii



025

Adblock for podcasts
Visjonsdokument

Versjon 1.0

1



Revisjonshistorie
Dato Versjon Beskrivelse

15/03/2024 0.1 Oppsett, tilpasning av mal

16/03/2024 0.2 Arbeid med punkter 1 - 4

04/04/2024 0.3 Arbeid med alle punkter

05/04/2024 0.7 Arbeid med alle punkter

06/04/2024 0.8 Arbeid med alle punkter

08/04/2024 0.9 Små endringer, førsteutkast

13/05/2024 1.0 Oppdatert med Tor-forutsetning

2



Innholdsfortegnelse

Innholdsfortegnelse 3
1. Innledning 4
2. Sammendrag problem og produkt 4

2.1 Problemsammendrag 4
2.2 Produktsammendrag 4

3. Overordnet beskrivelse av interessenter og brukere 5
3.1 Oppsummering interessenter 5
3.2 Oppsummering brukere 5
3.3 Brukermiljøet 6
3.4 Sammendrag av brukernes behov 6
3.5 Alternativer til produktet 7

4. Produktoversikt 7
4.1 Produktets rolle i brukermiljøet 7
4.2 Forutsetninger og avhengigheter 8
4.3 Produktets funksjonelle egenskaper 8
4.4 Ikke-funksjonelle egenskaper og andre krav 8

Referanser 9

3



1. Innledning
Dette dokumentet gir en overordnet beskrivelse av produktet som utvikles gjennom prosjektoppgave nr.

025 i emnet IDATT2900 Bacheloroppgave. Produktet er en adblocker for open-source podcast-tjenesten

AntennaPod (AntennaPod, 2024).

2. Sammendrag problem og produkt

2.1 Problemsammendrag

Problem med reklame i podcasts

berører alle aldersgrupper

som resultatet av dette er brukere nødt til å høre på reklame de vil slippe, eller

manuelt spole over reklame

en vellykket løsning vil fjerne reklame i podcast-episoder uten videre å endre

lytteopplevelsen

2.2 Produktsammendrag

For privatpersoner i alle aldersgrupper

som ønsker å høre på podcasts uten reklame

adblock25 er en adblocker

som fjerner reklame fra podcast-episoder

I motsetning til AntennaPod, som ikke har noen form for

adblocking-funksjonalitet

Er det nye produktet spesielt tilpasset tjenesten og fjerner reklame fra

podcast-episoder

4



3. Overordnet beskrivelse av interessenter og brukere

3.1 Oppsummering interessenter

Navn Utdypende beskrivelse Rolle under utviklingen

Veileder Representerer kunde og sensor Veileder av produktet, bistår
med innspill og er sentral ved
prioritering av funksjonalitet

Ekstern sensor Ekstern sensor med
hovedansvar for sensur, får ikke
samme kjennskap til produktet
som veileder og kan dermed ta
en mer objektiv vurdering av
produktet

Ingen rolle under utvikling

Utvikler Utvikler av produktet Organisere og gjennomføre
utviklingen av produktet

Bruker Potensiell målgruppe Bistår ved å gjennomføre
brukertester og gi
tilbakemeldinger

3.2 Oppsummering brukere

Navn Utdypende beskrivelse Rolle under utviklingen Representert av

Veileder Bistå med
tilbakemeldinger og
prioritering av
funksjonalitet

Seg selv

Bruker Potensiell målgruppe,
privatpersoner som
hører på podcasts og vil
slippe reklame

Bistår ved å
gjennomføre
brukertester og gi
tilbakemeldinger

Seg selv og ekstern
sensor

5



3.3 Brukermiljøet

Produktet utvikles mot tjenesten AntennaPod kjørende i Waydroid, en emulator som tillater kjøring av
en android-enhet på et GNU/Linux-system (Waydroid, 2022).

3.4 Sammendrag av brukernes behov

Behov Prioritet Påvirker Dagens løsning Foreslått løsning

Fjerne reklame Høy Lytting Ingen, manuelt
hoppe over

Automatisk
fjerning av
reklame fra
episoder

Sømløs
integrasjon

Høy UX Løsning må kreve
minst mulig
oppsett og
vedlikehold av
brukere

Lagring av status Middels Lytting Episoder kan
gjenopptas der
man sist sluttet å
høre på dem
(uten reklame)

Tilbakestille
endring

Lav Lytting Hvis en endring i
episoden som
følge av et forsøk
på å fjerne
reklame ikke er
bra, kan brukeren
tilbakestille
endringen

6



3.5 Alternativer til produktet

Adblockere med lignende funksjonalitet:

● Adblock Radio (Storelli, 2018)
○ Lydbasert adblocker for radio

● Sponsorblock (Ramachandran, Plsek, u.å.)
○ Adblocker for Youtube som baserer seg på crowdsourcing

● uBlock Origin (Gazvoda, u.å.)
○ Adblocker- og innholdsfiltreringsutvidelse for nettlesere

● AdBlocker Ultimate (Adblocker Ultimate, u.å.)
○ Adblocker-utvidelse for nettlesere

4. Produktoversikt

4.1 Produktets rolle i brukermiljøet

Produktet er en HTTP(S) proxy som sitter mellom AntennaPod og servere. Den mottar forespørsler fra
AntennaPod, og henter en episode to ganger: En gang med maskinens lokale IP-adresse og en gang via
Tor-nettverket. Ved å sammenligne de to hentede lydfilene levere den en reklamefri lydfil til
AntennaPod.

Figur 1: Produktets rolle i brukermiljøet

7



4.2 Forutsetninger og avhengigheter

Produktet må kjøres lokalt på egen maskin, og opp mot tjenesten AntennaPod brukt gjennom Waydroid
på et GNU/Linux-system. I tilleg kreves det tilgang på en Tor-instans (Tor Project, u.å.), enten via
Tor-browser eller en daemon.

Produktet er utviklet i Python 3.11, og er ikke garantert å fungere med andre versjoner.

4.3 Produktets funksjonelle egenskaper

Beskrivelse

Funksjonalitet som fjerner reklame fra episoden

Funksjonalitet som gjør at man kan gjenoppta episoder uten reklame

Funksjonalitet som lar en tilbakestille endring

4.4 Ikke-funksjonelle egenskaper og andre krav

Beskrivelse

Løsningen skal etterstrebe sømløs integrasjon med AntennaPod og kreve
minst mulig oppsett og vedlikehold av bruker

Brukertester og UI/UX-retningslinjer skal være styrende i designvalg av
løsningen

Brukertester av sluttproduktet skal gjennomføres og dokumenteres i
rapporten

Rapporten skal gi en oversikt over moderne adblocking med fokus på
lydbasert adblocking

Rapporten skal beskrive ulike mulige arkitekturer for løsningen, og hvorfor
den valgte løsningen ble valgt

8



Referanser

AntennaPod (2024) About. Tilgjengelig fra https://antennapod.org/about/ (Hentet 04. april 2024)

Waydroid (2022)Waydroid. Tilgjengelig fra https://waydro.id/ (Hentet 04. april 2024)

Storelli, A. (2018) Designing an audio adblock. Tilgjengelig fra
https://www.adblockradio.com/blog/2018/11/15/designing-audio-ad-block-radio-podcast/ (Hentet 04.
april 2024)

Ramachandran, A., Plsek, J. (u.å.) SponsorBlock. Tilgjengelig fra https://sponsor.ajay.app/ (Hentet 04.
april 2024)

Gazvoda, U. (u.å.) uBlock Origin - Free, open-source ad content blocker. Tilgjengelig fra
https://ublockorigin.com/ (Hentet 04. april 2024)

Adblocker Ultimate (u.å.) Adblocker ultimate. Tilgjengelig fra https://adblockultimate.net/ (Hentet 04.
april 2024)

Tor Project (u.å.) Browse Privately. Explore Freely. Tilgjengelig fra https://www.torproject.org/ (Hentet
13. mai 2024)

9



D. Requirements

Documentation
The requirements documentation in form of a PDF.

xxvii



025

Adblock for podcasts
Kravdokumentasjon

Versjon 1.0

1



Revisjonshistorie

Dato Versjon Beskrivelse

15/03/2024 0.1 Oppsett, tilpasning av mal

05/04/2024 0.2 Arbeid med alle punkter

06/04/2024 0.3 Arbeid med alle punkter

08/04/2024 0.9 Små endringer, førsteutkast

13/05/2024 1.0 Formulering og rettskriving

2



Innholdsfortegnelse

Innholdsfortegnelse 3
1. Introduksjon 4
2. User stories 4

2.1 Scenarioer 5
Referanser 5

3



1. Introduksjon
Dette dokumentet gir en overordnet beskrivelse av de funksjonelle kravene til produktet som utvikles

gjennom prosjektoppgave nr. 025 i emnet IDATT2900 Bacheloroppgave. Produktet er en adblocker for

open-source podcast-tjenesten AntennaPod (AntennaPod, 2024).

2. User stories

Som bruker
Ønsker jeg å få fjernet reklame fra podcast-episoder
Slik at jeg slipper å høre på dem

Som bruker
Ønsker jeg å kunne gjenoppta episoder uten reklame
Slik at det ikke er nødvendig å starte episoder fra starten av

Som bruker
Ønsker jeg å kunne tilbakestille endring av episoder
Slik at den vanlige episoden er tilgjengelig hvis produktet gjør en feil

4



2.1 Scenarioer

Som bruker
Ønsker jeg å få fjernet reklame fra podcast-episoder
Slik at jeg slipper å høre på dem

Scenario: starte podcast-episode
Gitt at produktet kjører
Når jeg begynner å spille en episode
Så fjerner produktet reklamen automatisk fra episoden

Som bruker
Ønsker jeg å kunne gjenoppta episoder uten reklame fra tidligere
Slik at det ikke er nødvendig å starte episoder fra starten av

Scenario: gjenoppta podcast-episode uten reklame
Gitt at produktet kjører
Når jeg gjenopptar en episode
Så fjerner produktet reklamen automatisk fra episoden

Som bruker
Ønsker jeg å kunne tilbakestille/fjerne endring av episoder
Slik at den vanlige episoden er lett tilgjengelig hvis produktet gjør en feil

Scenario: tilbakestille endring av episoder
Gitt at produktet kjører
  Og jeg hører på en episode som produktet har fjernet reklame fra
Når jeg velger å tilbakestille endringen
Så får jeg det originale lydsporet til episoden

Referanser

AntennaPod (2024) About. Tilgjengelig fra https://antennapod.org/about/ (Hentet 05. april 2024)

5



E. Project Manual
The project manual in form of a PDF.

xxxiii



025

Adblock for podcasts
Prosjekthåndbok

Versjon 1.0

1



025

Revisjonshistorie

Dato Versjon Beskrivelse

19/03/2024 0.1 Formatering, oppsett av punkter 1- 3, la inn møter #00 og #01

03/04/2024 0.2 La inn møte #02

15/04/2024 0.3 La inn møte #03

27/05/2024 0.4 La inn alle timelister bortsett fra uke 22 og oppsummering

29/05/2024 1.0 La inn alt manglende

2



025

Innholdsfortegnelse
Innholdsfortegnelse 3

1. Framdriftsplan - Gantt-diagram 5

Januar 5

Februar 5

Mars 6

April 6

Mai 7
2. Møteinnkallinger med referat 8

#00 - Oppstartsmøte 17.01.24 8

Møteinnkalling 8

Referat 8

#01 - Prosjektmøte 23.02.24 10

Møteinnkalling 10

Referat 11

#02 - Prosjektmøte 03.04.24 13

Møteinnkalling 13

Referat 14

#03 - Prosjektmøte 15.04.24 16

Møteinnkalling 16

Referat 17

3. Timeliste med statusrapporter 19

Oppsummering 19

Uke 2 20

Uke 3 20

Uke 4 20

Uke 5 20

Uke 6 20

Uke 7 20

Uke 8 20

Uke 9 21

Uke 10 21

Uke 11 21

Uke 12 21

Uke 13 21

Uke 14 21

Uke 15 22

Uke 16 22

Uke 17 22

3



025
Uke 18 22

Uke 19 23

Uke 20 23

Uke 21 23

Uke 22 23

4



025

1. Framdriftsplan - Gantt-diagram
Gantt diagrammet er tilgjengelig via denne URL:

https://docs.google.com/spreadsheets/d/1HEQ-6-v6O43wHH_0Y3YWxjjGDEpwo8METbpw_MMbL00

/edit#gid=0

Januar

Februar

5



025
Mars

April

6



025
Mai

7



025

2. Møteinnkallinger med referat

#00 - Oppstartsmøte 17.01.24

Møteinnkalling
Møtet ble avtalt på dagen så møteinnkalling ble ikke sendt ut.

Referat

#00 - Referat fra oppstartsmøte bacheloroppgave 025

Dato og tid: 17.01.24 kl 08

Sted: Digitalt via Jitsi meet

Til stede: Christian, Donn (veileder)

Frafall: Ingen

Møteleder: Christian

Sak 01/2024: Kommentarer til møteinnkalling

N/A - Møtet ble avtalt på dagen så møteinnkalling ble ikke sendt ut

Sak 02/2024: Kommunikasjon og samarbeid

● Hvilke(n) plattform skal kommunikasjon foregå gjennom?

○ E-post

● Hvilke(n) plattform skal dokumenter deles gjennom?

○ Google drive, e-post

Sak 03/2024: Konkretisering av oppgaven

● Bred og generell konkretisering av oppgaven

○ Open-ended, fleksibel på hvilken løsning jeg utforsker

○ Løsning som fungere bra for en spesifikk podcast-tjeneste er bra, evt. proxy er

like bra

● Ad block

○ Maskinlæring, prosessere lyd (klassifisering, window-by-window)

○ Geolokasjon IP

■ Sammenligne lyd fra ulike land for å finne reklame

○ Sponsor-block, brukes bla. på YT

○ Dele opp lyd ut ifra ulike talere

8



025
○ Se på hva som er gjort tidligere, hva som er mulig/sannsynlig å få til

Sak 04/2024: Rammer for oppgaven

● Bruk av prosjekthåndboka

○ Vi avtaler dette senere

● Timelister - hvor jevnlig, hvilken form

○ Jeg velger format selv

○ Donn trenger ikke se timelister med mindre problemer oppstår

● Møteplan

○ On demand

● Krav til prosess

○ Opp til meg

● Krav til dokumentasjon

○ Bruke malene som utgangspunkt

○ User stories

● Språk i oppgaven

○ Hovedrapporten på English, resten velger jeg selv

● Ambisjonsnivå

○ All in

Sak 05/2024: Eventuelt

Er noen ML-prosjekter fra i høst som kan være relevante og en tidligere BA-oppgave, Donn

sender dem.

17.01.2024, Christian

Revidert 01.02.2024

9



025
#01 - Prosjektmøte 23.02.24

Møteinnkalling

Innkalling til møte: Bacheloroppgave 025

Tidspunkt/sted: 23.02.24 kl 14:00, 242, sydfløy, IT-bygget

Følgende personer innkalles:

Christian

Donn (veileder)

Agenda:

Sak 01/2024: Møtereferat fra forrige møte gjennomgås

Sak 02/2024: Kommentarer til møteinnkalling

Sak 03/2024: Språk

Sak 04/2024: Hvordan bør jeg ligge an?

Sak 05/2024: Generell hjelp

Sak 06/2024: Eventuelt

Trondheim 22.02.24

10



025
Referat

#01 - Referat fra prosjektmøte bacheloroppgave 025

Dato og tid: 23.02.24 kl 14:00

Sted: IT bygget, sydfløy 242

Til stede: Christian, Donn (veileder)

Frafall: Ingen

Møteleder: Christian

Sak 01/2024: Møtereferat fra forrige møte gjennomgås

Ser bra ut.

Sak 02/2024: Kommentarer til møteinnkalling

Ingen kommentarer.

Sak 03/2024: Språk i oppgaven

Vi ble enige sist om at selve rapporten skal være på engelsk, resten som jeg ønsker. Vil bare

bekrefte at dette betyr at rapporten kan være engelsk og alle vedlegg norske.

● Donn bekrefter at dette er greit

Sak 04/2024: Hvordan bør jeg ligge an?

Hva bør være ferdig, hva bør være underveis / planlagt per nå og i nær fremtid?

● Dokumentasjon bør være på vei, spesielt visjonsdokument og kravdokumentasjon

Sak 05/2024: Generell hjelp

Det jeg finner baserer seg gjerne på å laste ned lydfiler og behandle de lokalt. Kan du peke

meg i noen retninger mot “sømløs integrasjon” og “real-time” behandling? HTTP proxy?

Pakkefangst? Dataset er tidkrevende å skaffe, så jeg prøver å finne en løsning som ikke

krever ML.

Forslag:

● Forskjellige reklamer basert på IP fra land, kan sammenligne to lydfiler samtidig og

fjerne delene som er ulike, buffer på f.eks. 100 kB

11



025
● HTTP proxy

● Add-on til tjenesten som forteller proxyen å oppdatere podcasten jevnlig eller ved

forandringer

● Fork a podcast with Tor (removes ads)

● Bruke ML delvis, men ikke som selve løsningen

● Sponsor block, som på YT

● Python whisper lib, speech-to-text bibliotek

● Crowd sourcing?

Rapporten: Viktig å få med diskusjon rundt etikk og mulighet (feasibility) av løsningen jeg

velger, samt kostnader av løsningen, environmental and computational costs, f.eks. at

web-basert ad-blocking sparer energi da ressurser ikke må hentes, lengre batteritid osv.,

trade-offs mm.

Sak 06/2024: Eventuelt

Ingenting.

23.02.2024, Christian

Revidert 29.02.2024

12



025
#02 - Prosjektmøte 03.04.24

Møteinnkalling

Innkalling til møte: Bacheloroppgave 025

Tidspunkt/sted: 03.04.24 kl 14:00, 242, sydfløy, IT-bygget

Følgende personer innkalles:

Christian

Donn (veileder)

Agenda:

Sak 01/2024: Møtereferat fra forrige møte gjennomgås

Sak 02/2024: Kommentarer til møteinnkalling

Sak 03/2024: Veiledning / hjelp

Sak 04/2024: Eventuelt

Trondheim 03.04.24

13



025
Referat

#02 - Referat fra prosjektmøte bacheloroppgave 025

Dato og tid: 03.04.2024 kl 11:00

Sted: IT bygget, sydfløy 242

Til stede: Christian, Donn (veileder)

Frafall: Ingen

Møteleder: Christian

Sak 01/2024: Møtereferat fra forrige møte gjennomgås

Ser bra ut.

Sak 02/2024: Kommentarer til møteinnkalling

Ingen kommentarer.

Sak 03/2024: Veiledning / hjelp

Ting har vært vanskeligere enn jeg hadde håpet, og jeg sliter med å arbeide effektivt

● Bør be om utsettelse, kontakte Grethe med Donn på kopi

● Påvirker utsettelse mastersøknad?

● Prøve å komme i arbeidsmodus, komme i gang med utvikling raskt

Må være sikker på hvordan ting gjøres med cookies og HTTP. Må kunne dokumentere alt

som skrives i thesis. Ekstern sensor vil først og fremst se på thesis og vedlegg, ikke

source-code.

Alternativer

● Add on til tjeneste

● Forke hele tjenesten legge til adblocker

● Pga. tid er kanskje proof of concept best

● Backend HTTP-proxy / interceptor / reverse proxy

○ Dette gir lite UX, kanskje en liten web-side med innstillinger

14



025
○ NginX har reverse proxy, web-server med domenenavn kan kanskje skaffes

gratis

○ Sikte på prototype som kun kjører lokalt på egen maskin

○ Apache har også reverse proxy

○ Integrere reverse proxy med vpn / form for tunnel, lese begge filer samtidig

og fjerne de ulike delene (som vil være plasserte reklamer)

Bør starte med å skrive program som sammenligner binære filer og fjerner forskjellene, for

så å integrere dette med reverse proxy

Må fikse VPN-løsning selv, ha en VPN instans kjørende og integrere den

Kan også bruke Tor til samme formål, rescripte rc-filen

VPN er kanskje enklere enn Tor, men legger muligens til mer kompleksitet for bruker av

sluttproduktet

Ha fokus på at den endelig løsningen er slik at den krever minst mulig set up av brukeren.

Sammenligning av bytestreams:

Kan bruke XOR, og shifte reader frem til likheter igjen

Comp diff

Dokumenter:

Skal være enkelt for en bruker å bruke, fokus på at set up er enkelt, fleksibilitet når det

gjelder valg av land som brukes til IP

Sak 04/2024: Eventuelt

Ingenting.

03.04.2024, Christian

15



025
#03 - Prosjektmøte 15.04.24

Møteinnkalling

Innkalling til møte: Bacheloroppgave 025

Tidspunkt/sted: 15.04.24 kl 11:00, 242, sydfløy, IT-bygget

Følgende personer innkalles:

Christian

Donn (veileder)

Agenda:

Sak 01/2024: Møtereferat fra forrige møte gjennomgås

Sak 02/2024: Kommentarer til møteinnkalling

Sak 03/2024: Veiledning / hjelp

Sak 04/2024: Eventuelt

Trondheim 15.04.24

16



025
Referat

#03 - Referat fra prosjektmøte bacheloroppgave 025

Dato og tid: 15.04.2024 kl 11:00

Sted: IT bygget, sydfløy 242

Til stede: Christian, Donn (veileder)

Frafall: Ingen

Møteleder: Christian

Sak 01/2024: Møtereferat fra forrige møte gjennomgås

Ser bra ut.

Sak 02/2024: Kommentarer til møteinnkalling

Ingen kommentarer.

Sak 03/2024: Veiledning / hjelp

Proxy
● Utvikle selv i Python
● Man kan konfigurere en proxy inn på AntennaPod

VPN/Tor
● Vil muligens kreve SSL sertifikat, kan være self-signed.
● Bruke tor binary, en deamon som kan bruke SOCKS proxy hvor all kommunikasjon

går gjennom Tor. Kan videreutvikle til å kunne konfigurere exit-nodes som vanligvis
kjøres på VPS-er

Beste starten er å sette opp en proxy på lokale maskin som logger hver individuell request
● Kan filtrere basert på forespørsler, vil hente ut mp3 forespørsler
● Eks: En Squid autentisert proxy kjørende i Docker

Kan se an angående brukerundersøkelser senere
● Hvis det kun blir en backendserver blir det ikke noe UI å snakke om uansett
● Brukertester av sluttprodukt er kanskje viktigere

○ Lurt å få tak i personer allerede nå

17



025
Thesis

● Undersøke og sammenligne mange forskjellige løsninger, skrive om fordeler og
ulemper ved hver enkelt

● Andre tilnærminger:
○ Kunne f.eks. laget en proxy som oppdager RSS feeds som ofte oppdateres

(som vil utgjøre de podcastene man hører på jevnlig), og pre-fetche nye
episoder og gjøre prosesseringen i forkant slik at en reklamefri episode er klar

○ Crowdsourcing som sjekker hvilke segmenter som er mest hoppet over
○ Forskjellige ML løsninger

● Thesis må utforske de ulike løsningenes fordeler og ulemper, f.eks. mer eller mindre
UX/UI, computational expensive, oppsett, hastighet, kompleksitet

Sak 04/2024: Eventuelt

Ingenting.

15.04.2024, Christian

18



025

3. Timeliste med statusrapporter
Timelistene er tilgjengelig via denne URL:

https://docs.google.com/spreadsheets/d/1efHS7is6W5V45BvaZmNKJofgGPn1Sc8XzRCpZ0SJ

XVI/edit#gid=1234621017

Oppsummering

19



025

Uke 2

Uke 3

Uke 4

Uke 5

Uke 6

Uke 7

Uke 8

20



025
Uke 9

Uke 10

Uke 11

Uke 12

Uke 13

Uke 14

21



025
Uke 15

Uke 16

Uke 17

Uke 18

22



025
Uke 19

Uke 20

Uke 21

Uke 22

23



F. System

Documentation
The system documentation in form of a PDF.

lvii



025

Adblock for podcasts
Systemdokumentasjon

Versjon 1.0



Revisjonshistorie
Dato Versjon Beskrivelse

12/05/2024 0.1 Oppsett, tilpasning av mal, arbeid med punkt 1

13/05/2024 0.2 Arbeid med alle punkter

14/05/2024 0.3 Arbeid med punkt 5

17/05/2024 0.4 Oppdatering av punkt 5 etter brukertester

25/05/2024 1.0 Oppdatert Tor med ExcludeExitNodes



Innholdsfortegnelse

Innholdsfortegnelse 3
1. Introduksjon 4
2. Arkitektur 4
3. Prosjektstruktur 5
4. Sikkerhet 5
5. Installasjon og kjøring 5

5.1 Installasjon 5
5.2 Avhengigheter 6

5.2.1 Python avhengigheter 6
5.2.2 Installering av mitmproxy CA-sertifikatet på Waydroid-enheten 7
5.2.3 Tor proxy 8

5.2.3.1 Alternativ 1: Bruk av Tor pakken (AUR) 8
5.2.3.2 Alternativ 2: Bruk av Tor-browser 9

5.3 Kjøring av adblock25 10
5.3.1 Tilgjengelige utvidelser 10
5.3.2 write.py 10

5.4 Sett proxy på AntennaPod 11
6. Dokumentasjon av kildekode 11
Referanser 12



1. Introduksjon
Dokumentet beskriver systemet som er utviklet gjennom prosjektoppgave nr. 025 i emnet IDATT2900
Bacheloroppgave. Hensikten med dokumentet er å beskrive de tekniske aspektene ved systemet, og
beskrive hvordan systemet skal settes opp og brukes.

2. Arkitektur
Systemet er en utvidelse til mitmproxy (mitmproxy, u.å.) som fungerer som en adblocker for bruk med
AntennaPod (AntennaPod, 2024) gjennom Waydroid (Waydroid, 2022). Systemet henter en lydfil med
maskinens lokale IP-adresse og samme lydfil gjennom Tor (The Tor Project Inc., u.å.), og fjerner de ulike
delene av lydfilene.

Systemet består av tre deler:

1. Tilpasset proxy-funksjonalitet ved behandling av data som blir sendt fra servere til proxyen
2. En algoritme som fjerner forskjellene mellom to lydfiler.
3. En Tor instans for å hente en lydfil gjennom Tor-nettverket.

Figur 1: Arkitekturen til systemet

Systemet kalles adblock25.



3. Prosjektstruktur

mitm.py: Starter adblock25 ved starte starter mitmproxy-instansen og laste inn utvidelsen.

addon.py: Den utviklede utvidelsen til mitmproxy. Lastes inn i mitmproxy-instansen som startes ved å
kjøre mitm.py.

write.py: Samme funksjonalitet som addon.py, i tillegg til at lydfiler skrives til fil. Se beskrivelse i
5.3.2.

requirements.txt: Python-avhengighetene for systemet.

proxy.py: Utdatert egenutviklet proxy som opprinnelig var tenkt til å brukes i systemet.

4. Sikkerhet
All data fra AntennaPod og servere vil gå gjennom proxyen og være leselig for proxyen. Systemet er
utelukkende ment for bruk på lokal maskin, og all kommunikasjon mellom AntennaPod og proxyen, og
proxyen og servere, er kryptert (gitt at den opprinnelige forespørselen fra AntennaPod er kryptert). Det
er kun mens dataen behandles av proxyen at den er lesbar. Under kjøring lagrer systemet de fem siste
forespørslene fra AntennaPod med evt. tilhørende episode uten reklame, men dette slettes når
kjøringen avsluttes. Systemet tar ikke i mot input.

Proxyen utgjør en redusering i sikkerhet ved å legge til et punkt i kommunikasjonsflyten hvor data
mellom AntennaPod og servere er leselig.

Systemet krever manuell registrering av et digitalt sertifikat på den emulerte Android-instansen. Å
manuelt installere digitale sertifikater medfører risiko: Ved å operere i sikkerhetssystemet til en enhet
kan skadeomfanget bli stort ved feil.

Registrering av det digitale sertifikatet utgjør en sikkerhetsrisiko.

5. Installasjon og kjøring

5.1 Installasjon

Installer adblock25 ved å klone repoet eller laste ned .zip fra:

https://github.com/chrisryda/adblock25



5.2 Avhengigheter

Avhengighetene til systemet er:

● Python 3.11 eller nyere
● Pakkene i requirements.txt filen
● mitmproxy CA-sertifikatet installert på Waydroid-enheten
● Tor SOCKS proxy

5.2.1 Python avhengigheter

mitmproxy: Pythonpakken til mitmproxy.

requests: HTTP(S) bibliotek. Brukes for å hente en lydfil gjennom Tor.

logging: Et bibliotek for å logge til terminalen.

PySocks: Bibliotek for bruk av SOCKS-proxyer. Brukes for å hente en lydfil gjennom Tor.

Python avhengighetene kan installeres ved å kjøre følgende kommando i rotmappen til prosjektet:

$ pip install -r requirements.txt

Hvis det ikke fungerer å installere PySocks-pakken, kjør følgende kommando i rotmappen til prosjektet:

$ pip install -U ‘requests[socks]’



5.2.2 Installering av mitmproxy CA-sertifikatet på Waydroid-enheten

Generer CA-sertifikatet ved å kjøre adblock25. Se delkapittel 5.3. Programmet trenger kun kjøre i kort tid,
og når beskjeden:

HTTP(S) proxy listening at *:<port>

Er synlig i terminalen kan programmet avsluttes igjen.

Sertifikatet, med navn mitmproxy-ca-cert.pem, ligger nå i mappen ~/.mitmproxy.
For å installere det på Waydroid-enheten, gjør følgende:

Lag /system/etc/security/cacerts/mappen i Wadroid sitt filsystem:

$ sudo mkdir -p
/var/lib/waydroid/overlay/system/etc/security/cacerts/

Finn hashet til sertifikatet:

$ openssl x509 -subject_hash_old -in ~/.mitmproxy/mitmproxy-ca-cert.pem | head -1

Dette vil gi output som ligner på: 12example34

Kopier sertifikatet inn i den lagde mappen, og endre navnet til hashet med .0 på slutten:

$ sudo cp ~/.mitmproxy/mitmproxy-ca-cert.pem
/var/lib/waydroid/overlay/system/etc/security/cacerts/12example34.0

Gi sertifikatet nødvendige tillatelser:

$ sudo chmod 644 /var/lib/waydroid/overlay/system/etc/security/cacerts/12example34.0

Waydroid må muligens restartes for at endringene skal inntre.



5.2.3 Tor proxy

For å åpne en Tor SOCKS proxy, må torrc filen redigeres og Tor instansen restartes. Hvor denne filen er
plassert avhenger av hvordan Tor er installert på ditt lokale system. 5.2.3.1 Bruk av Tor pakken (AUR) og
5.2.3.2 Bruk av Tor-browser viser to forskjellige alternativer.

Følgende to linjer skal legges til i torrc filen:

$ SOCKSPort 0.0.0.0:9050
$ ExcludeExitNodes {<cc>}

Ved bruk av annen port enn 9050, må addon.py og write.py oppdateres med det valgte
portnummeret.

cc er en 2-bokstavers ISO3166 Alpha-2 landskode. Se liste på:

https://www.iso.org/obp/ui/#search/code/

For å finne landskoder. Bytt ut ccmed landskoden til din lokale IP, slik at Tor er garantert ikke å hente
lydfiler med samme IP-adresse som din lokale.

5.2.3.1 Alternativ 1: Bruk av Tor pakken (AUR)

Ved bruk av tor pakken fra Arch user repository (AUR) ligger torrc filen normalt i /etc/tor.
Legg til følgende to linjer i torrc filen og restart Tor-instansen:

$ SOCKSPort 0.0.0.0:9050
$ ExcludeExitNodes {<cc>}

Ved bruk av annen port enn 9050, må addon.py og write.py oppdateres med det valgte
portnummeret.

cc er en 2-bokstavers ISO3166 Alpha-2 landskode. Se liste på:

https://www.iso.org/obp/ui/#search/code/

For å finne landskoder. Bytt ut ccmed landskoden til din lokale IP, slik at Tor er garantert ikke å hente
lydfiler med samme IP-adresse som din lokale.

For å restarte instansen, kjør følgende kommandoer:

$ sudo systemctl stop tor

$ sudo systemctl start tor



5.2.3.2 Alternativ 2: Bruk av Tor-browser

Ved bruk av Tor-browser ligger torrc filen typisk i Browser/TorBrowser/Data/Tor i Tor-browser
mappen. Legg til følgende linje i torrc filen og restart Tor-instansen:

$ SOCKSPort 0.0.0.0:9050
$ ExcludeExitNodes {<cc>}

Ved bruk av annen port enn 9050, må addon.py og write.py oppdateres med det valgte
portnummeret.

cc er en 2-bokstavers ISO3166 Alpha-2 landskode. Se liste på:

https://www.iso.org/obp/ui/#search/code/

For å finne landskoder. Bytt ut ccmed landskoden til din lokale IP, slik at Tor er garantert ikke å hente
lydfiler med samme IP-adresse som din lokale.

Restart instansen ved å lukke og åpne browseren.



5.3 Kjøring av adblock25

Kjør systemet ved å kjøre følgende kommando:

$ python mitm.py [options]

Tilgjengelige options:

Option Beskrivelse

-h Vis hjelp og avslutt.

-p tall Setter hvilken port adblock25 bindes til. Default er 8080.

-a fil.py Setter hvilken utvidelse som lastes inn. Default er addon.py.

5.3.1 Tilgjengelige utvidelser

addon.py: Fjerner reklame

write.py: Fjerner reklame og skriver behandlet lyd til filer.

5.3.2 write.py

Ved å bruke write.py får en oversikt over hvilke lydfiler som behandles, hva som fjernes og hva som
sendes som svar til AntennaPod. Filene lagres i mappen /tmp.

mitm.mp3: Filen hentet av mitmproxy med maskinens lokale IP-adresse.

tor.mp3: Filen hentet gjennom Tor-nettverket.

removed.mp3: Delene av tor.mp3 som ikke ble med i svaret til AntennaPod

response.mp3: Filen som sendes til AntennaPod.



5.4 Sett proxy på AntennaPod

Mens adblock25 kjører, inne på AntennaPod, gå til:

Settings → Downloads → Proxy

Velg HTTP som type. Fyll inn IP-adressen til Waydroid-enheten og porten adblock25 lytter til (default
8080).

IP-adressen kan ses ved å kjøre kommandoen under. Adressen er listet under waydorid0. Denne er
for eksempel 192.168.240.1.

$ ip address show

Forsikre deg om at adblock25 kjører. Etter å ha fylt inn IP-adressen til Waydroid-enheten og porten til
adblock25, trykk Test → OK.

6. Dokumentasjon av kildekode
Kildekoden er tilgjengelig fra:

https://github.com/chrisryda/adblock25



Referanser

AntennaPod (2024) About. Tilgjengelig fra https://antennapod.org/about/ (Hentet 14. mai 2024)

Waydroid (2022)Waydroid. Tilgjengelig fra https://waydro.id/ (Hentet 14. mai 2024)

mitmproxy (u.å.) How mitmproxy works. Tilgjengelig fra
https://docs.mitmproxy.org/stable/concepts-howmitmproxyworks/ (Hentet 14. mai 2024)

The Tor Project Inc. (u.å.). Browse Privately. Explore Freely. Tilgjengelig fra https://www.torproject.org/
(Hentet 25. mai 2024)





G. Usability Test

Template
The usability test template in the form of a PDF.

lxxi

















H. Usability Test

Responses
The usability test responses in the form of a PDF.

lxxix

























I. AI Declaration
The standard NTNU declaration regarding use of AI-tools in form of a PDF.

xci



--------------------------------------------------------

Signature/Date/Place

Declaration of AI aids and -tools

Have any AI-based aids or tools been used in the creation of this report?

No

Yes

If yes: please specify the aid/tool and area of use below.

Text

Spell checking. Are parts of the text checked by:

Grammarly, Ginger, Grammarbot, LanguageTool, ProWritingAid, Sapling, Trinka.ai or similar tools?

Text-generation. Are parts of the text generated by:

ChatGPT, GrammarlyGO, Copy.AI, WordAi, WriteSonic, Jasper, Simpliied, Rytr or similar tools?

Writing assistance. Are one or more of the report's ideas or approach suggested by:

ChatGPT, Google Bard, Bing chat, YouChat or similar tools?

If yes, use of text aids/tools apply to this report - please specify usage here:

Codes and algorithms

Programming assistance. Are parts of the codes/algorithms that i) appear directly in the report or ii) have been

used to produce results such as figures, tables or numerical values been generated by: GitHub Copilot, CodeGPT,

Google Codey/Studio Bot, Replit Ghostwriter, Amazon CodeWhisperer, GPT Engineer, ChatGPT, Google Bard eller

lignende verktøy?

If yes, use of programming assistance aid/tools apply to this report - please specify usage here:

Images and figures

Image generation. Are one or more of the reports images/figures generated by:

Midjourney, Jasper, WriteSonic, Stability AI, Dall-E or similar tools?

If yes, use of image generator aids/tools apply to this report – please specify usage here:

Other AI aids or tools. Have you used other types of AI aids or -tools in the creation of this report?

If yes, please specify usage here:

I am familiar with NTNU’s regulations on artificial intelligence. I declare that any use of AI aids or tools are

explicitly stated i) directly in the report or ii) in this declaration form.

Christian Ryddheim Dahlin

                    Trondheim 30.05.24




	Abstract
	Sammendrag
	Preface
	Assignment Details
	Contents
	Figures
	Tables
	Introduction
	Research questions
	Thesis structure
	Acronyms and abbreviations

	Theory and Related Work
	Adblocking
	Machine learning
	Advertisement filter lists
	Crowdsourcing

	Dynamic ad insertion
	Proxy
	HTTPS
	HTTP CONNECT
	MITM proxy

	Tor network
	Virtual private network

	Method
	Choice of Development
	Development plan
	Development method

	Choice of Technology
	Git
	AntennaPod
	Waydroid
	mitmproxy
	Tor
	Python

	Research method
	Research process

	Design theorisation
	Removing advertisement
	Integration with the podcast application
	Fetching a second audio file

	Implementation
	Proxy
	Removing advertisement

	Evaluation and optimisation
	Self developed proxy
	Extension to mitmproxy
	Advertisement removal algorithm
	Usability tests


	Results
	Engineering
	Delta
	Functional demands
	Non-functional demands
	Usability tests

	Administrative results
	Time management
	Development method


	Discussion
	Engineering
	Sources of error
	Delta
	The threshold
	Functional demands
	Non-functional demands
	Usability tests

	Administrative results
	Time management
	Development method


	Conclusion and Future Work
	Research questions
	What is the state-of-the-art of audio adblocking?
	What adblocking architectures can be seamlessly integrated into the podcast listening experience?
	How can audio adblocking adapt to the advancements in advertisement technology?

	Further work
	Tor network
	Implement full adblocker
	Threading
	Selecting shows
	Pre-processing of episodes
	Add silence to cuts
	The route and stripped dictionary


	Societal Impact
	Bibliography
	Assignment Details
	Pre-Project Plan
	Vision Document
	Requirements Documentation
	Project Manual
	System Documentation
	Usability Test Template
	Usability Test Responses
	AI Declaration

