
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Ba
ch

el
or

’s
th

es
is

Vegard Johansen
Nicolai Andre Olsen
Joachim Olerud Milward

Enhancing Chat Moderation with Soft
Biometric Keystroke Dynamics

Bachelor’s thesis in BIDATA
Supervisor: Sony George
May 2024

Vegard Johansen
Nicolai Andre Olsen
Joachim Olerud Milward

Enhancing Chat Moderation with Soft
Biometric Keystroke Dynamics

Bachelor’s thesis in BIDATA
Supervisor: Sony George
May 2024

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Enhancing Chat Moderation with Soft Biometric
Keystroke Dynamics

Joachim Olerud Milward Vegard Johansen Nicolai Andre Olsen

May 21, 2024

Abstract

Supporting chat moderators by reducing their workload in removing unwanted
behavior and eliminating cyber grooming in game communities is essential for
maintaining user-friendliness and welcoming online gaming environments.

Through our work, we propose a method for extracting Soft Biometric Key-
stroke Dynamics data from third-party chat applications in Unity. This data could
then processed using AIBA’s AI algorithm to assess whether individuals are the
age and gender they claim to be online.

In this project, we have developed an Software Development Kit (SDK) that
integrates seamlessly into most Unity chat applications. We also completed an
overview of upcoming regulations, including the EU Digital Services Act (DSA),
Online Safety Act 2023 (OSA), US Kids Online Safety Act (KOSA), and EU Artificial
Intelligence Act (EU AI Act), and assessed their implications for service providers.
Additionally, we conducted a market scan to analyze the current age verification
methods used by other enterprises.

The report will also discuss the measures taken to efficiently transfer data from
the SDK to a server, minimizing the bandwidth usage when transferring this data

Overall, the thesis addresses the importance of exploring new ways to help
combat unwanted behavior online.

iii

Sammendrag

Å støtte chattemoderatorer ved å redusere arbeidsmengden deres når det gjelder
å fjerne uønsket innhold og eliminere nettgrooming i spillsamfunn er et essentielt
tiltak for å opprettholde brukervennlige og innbydende spillmiljøer på nettet.

Gjennom vårt prosjekt foreslår vi en metode for å hente ut Soft Biometric Key-
stroke Dynamics-data fra tredjeparts chat-applikasjoner i Unity. Disse dataene vil
deretter behandles ved hjelp av AIBAs KI-algoritme for å vurdere om enkeltper-
soner er den alderen og det kjønnet de hevder å være på nettet.

I dette prosjektet har vi utviklet en Software Development Kit (SDK) som in-
tegreres sømløst i de fleste Unity-chatapplikasjoner. Vi har også utarbeidet en
oversikt over kommende reguleringer, inklusivt EU Digital Services Act (DSA),
Online Safety Act 2023 (OSA), US Kids Online Safety Act (KOSA) og EU Artificial
Intelligence Act (EU AI Act), og vurdert hvilke konsekvenser de vil få for tjen-
esteleverandører. I tillegg har vi gjennomført en markedsanalyse for å kartlegge
hvilke verifiserings-metoder for alder som brukes av i dagens marked av andre
virksomheter.

Rapporten vil også diskutere tiltakene som er iverksatt for å overføre data
fra SDKen til en server på en effektiv måte, og minimere båndbreddebruken ved
overføring av disse dataene.

Samlet sett tar avhandlingen for seg viktigheten av å utforske nye måter å
bekjempe uønsket atferd på nettet.

v

Acknowledgements

We would like to thank our supervisor Sony George for his guidance with this
thesis. We also extend our gratitude to Gard Støe and Patrick Bours for their as-
sistance with the topic of Soft Biometric Keystroke Dynamics.

Additionally, we appreciate the Unity Developer forum for their providing
guidance where the documentation did not. Finally, we thank our girlfriends for
their patience and support in these trying times.

vii

Contents

Abstract . iii
Sammendrag . v
Acknowledgements . vii
Contents . ix
Figures . xv
Tables . xvii
Code Listings . xix
Acronyms . xxi
Glossary . xxv
1 Introduction . 1

1.1 Background . 1
1.2 Problem description . 1
1.3 Goals and frames . 1

1.3.1 Frames . 2
1.3.2 Result Goals . 2
1.3.3 Effect Goals . 3

1.4 Societal contribution . 3
1.5 Scope and limitations . 4
1.6 Legal and Ethical Considerations . 4
1.7 Structure of the Thesis . 5

2 Development Process . 7
2.1 Process model . 7
2.2 Choice of model . 7

2.2.1 Requirements . 7
2.2.2 Framework Options . 8
2.2.3 Choice of framework . 9

2.3 Implementation of framework . 9
2.3.1 Rituals and Meetings . 9
2.3.2 Scrum Board . 11
2.3.3 Story points . 12
2.3.4 Stories . 13

2.4 Sprint Overview . 13
2.4.1 Sprint summaries . 13

3 Software Requirements . 17
3.1 Requirements Elicitation . 17
3.2 Functional Requirements . 17

3.2.1 Use Case Diagram . 18
3.2.2 High-Level Use Cases . 18
3.2.3 Detailed Use Case . 18

3.3 Non-Functional Requirements . 20
3.3.1 Performance . 21
3.3.2 Scalability . 21

ix

x Milward et al.: Enhancing Chat Moderation with SBKD

3.3.3 Security . 21
3.3.4 Usability . 21
3.3.5 Maintainability . 21
3.3.6 Compatibility . 22

3.4 Requirement Management . 22
3.5 Requirement Validation . 22

4 Soft Biometric Keystroke Dynamics (SBKD) 23
4.1 Soft Biometric Keystroke Dynamics (SBKD) data 23

4.1.1 Definitions . 23
4.1.2 SBKD Performance . 24
4.1.3 Applications . 24
4.1.4 Common features . 25

4.2 Efficient SBKD Transmission Research 25
4.2.1 Implementation strategies . 26
4.2.2 Data Transfer Results . 26
4.2.3 Final thoughts on compression and file sizes 31

5 State of the Art . 33
5.1 Market scan . 33

5.1.1 Social Media . 34
5.1.2 Games . 35
5.1.3 SBKD data capturing . 36
5.1.4 Summarization . 37

5.2 Online Game Moderation Challenges 38
5.2.1 Current moderation practices 38
5.2.2 Scope of the problem . 39
5.2.3 Grooming . 42
5.2.4 Existing Solution . 43
5.2.5 Remaining Challenges . 44
5.2.6 Conclusion . 44

6 Legal Frameworks . 47
6.1 Digital Services Act (DSA) . 47
6.2 Online Safety Act 2023 . 49
6.3 Kids Online Safety Act (KOSA) . 51
6.4 EU AI Act . 52

6.4.1 Applicability of the EU AI Act 52
6.4.2 Risk categories . 53
6.4.3 Determining High-Risk Status 54
6.4.4 Obligations of high risk systems 58
6.4.5 Final thoughts on the EU AI Act 60

7 Technical Design and Implementation . 61
7.1 Technical design . 61

7.1.1 Overall structure . 61
7.1.2 Chat service layer - Presentation 62
7.1.3 Keystroke Dynamics Extraction layer - Business 62

Contents xi

7.1.4 Data transfer layer - Business 63
7.1.5 Firebase - Persistence/Database layer 64

7.2 The Three Feasibility Stages . 64
7.3 Console application . 65

7.3.1 Data classes . 65
7.3.2 Program class . 66

7.4 Unity development . 67
7.5 Unity Chat Application . 68

7.5.1 UI Toolkit . 69
7.5.2 Layout . 71
7.5.3 Keylogger prefab . 71

7.6 SDK . 73
7.6.1 Capturing SBKD data . 73
7.6.2 RESTful API . 75

7.7 Unity Chat Application with Vivox . 78
7.7.1 User Authentication . 78
7.7.2 Concurrent users . 79
7.7.3 User interface & interaction . 79
7.7.4 Statistical calculations in UI . 81
7.7.5 Formulas utilized in statistics calculations 83
7.7.6 Keylogger integration with chat application 84
7.7.7 Command-line mode . 85
7.7.8 Unity Asset store . 87

8 Deployment . 89
8.1 Deployment on client service . 89

8.1.1 AWS API Gateway . 89
8.1.2 Enabling private integration . 90
8.1.3 Integration with SDK . 90

9 Quality Assurance . 91
9.1 Quality assurance of keylogger . 91

9.1.1 Manual Verification and Analysis of an Automated Test Setup 91
9.1.2 Results from tests . 91
9.1.3 Timing Discrepancies and Consistency Analysis 91
9.1.4 Evaluation of Non-Functional Requirements 92
9.1.5 Final thoughts . 92

9.2 Use of standards . 93
9.3 Testing for different Operating systems 93

9.3.1 Windows & macOS . 93
9.3.2 Linux . 94

10 Discussion . 95
10.1 Key Findings . 95
10.2 Project Process . 95

10.2.1 Use of Scrum . 96
10.2.2 Change of Scope . 96

xii Milward et al.: Enhancing Chat Moderation with SBKD

10.2.3 Deviations from Project Plan . 96
10.3 SDK implementation . 96

10.3.1 SBKD SDK . 97
10.3.2 Unity specific development . 97
10.3.3 Feasibility stages . 98
10.3.4 Vivox Chat Application . 98
10.3.5 Final thoughts on Chat Application 99
10.3.6 API . 99

10.4 Viability of SBKD for Age Detection in Game Chats 100
10.4.1 The Need . 100
10.4.2 The Efficacy . 100
10.4.3 The Viability . 100

10.5 Legal and Ethical Discussion . 100
10.5.1 Legal . 100
10.5.2 Ethics . 101

10.6 Future work . 102
11 Conclusion . 103
Bibliography . 105
A Thesis Description . 109
B Daily Stand Up Summary from Week 15 111
C Clockify summary report . 113
D Client meetings . 115
E Sprint Retrospective . 123
F Initial docker installation guide . 125
G File Size Analysis: Data Structure and Visualization Methods 127

G.1 Creation of file types . 127
G.1.1 Data to capture . 127
G.1.2 CSV . 128
G.1.3 txt . 128
G.1.4 JSON . 128
G.1.5 Protobuf . 129

G.2 Implementation of dataset . 129
G.2.1 Dataset Parsing Methodology 130
G.2.2 Compression Implementation 130
G.2.3 Data Structure Design for Key Entry Analysis 130
G.2.4 Data Storage with Pickle Module 131
G.2.5 Graph Generation Using Matplotlib and Plotly Express 131

H Market Scan - Social media and games . 133
H.1 Social media . 133

H.1.1 Meta - Instagram, Facebook . 133
H.1.2 Youtube . 134
H.1.3 Tiktok . 134
H.1.4 Snapchat . 135

H.2 Games . 135

Contents xiii

H.2.1 Steam . 135
H.2.2 Epic games . 135
H.2.3 Riot . 135
H.2.4 Roblox . 136

I Type dependency diagram for SDK . 137
J Project Plan . 139

Figures

2.1 Comparison of Agile Methodologies as perceived by group members 8
2.2 Jira workflow . 11
2.3 Jira Boards . 12

3.1 Use Case Diagram . 18

4.1 SBKD metrics (inspired by figure in [13]) 25
4.2 Total Size for file . 27
4.3 Total Size for zipped file . 28
4.4 Size per key entry . 29
4.5 Compressed size per key entry . 30

5.1 TypingDNA worflow9109 . 37
5.2 Graphs from ADL about impact of harassment on young people [17] 41
5.3 Graphs from ADL about impact of harassment on young people [17] 42

7.1 System Architecture . 61
7.2 Layered architecture pattern 111 . 62
7.3 SBKD continuous authentication lifecycle (figure from [27]) 63
7.4 SDK computed SBKD metrics (inspired by figure in [13]) 63
7.5 Class diagram for the console application 66
7.6 Sequence diagram for the console application 67
7.7 An example of how the Unity Editor looks 69
7.8 Unity chat application screenshot . 71
7.9 Final iteration data classes . 74
7.10 Sequence diagram for the keylogger 75
7.11 Case-specific REST API communication 76
7.12 Visual feedback on credentials in the sign up process 79
7.13 The final iteration of the chat interface 80
7.14 The statistics panel of the interface . 82
7.15 A class diagram for the command mode related classes and interface 86
7.16 Activity diagram illustrating the command handling process in the

CmdProcessor . 87

8.1 Amazon API gateway architecture 111 89

B.1 Sample day from the Daily Stand up notes 111

I.1 Autogenerated type dependency diagram for SDK 137

xv

Tables

3.1 Use case 1: Attaching to a chat interface 19
3.2 Use case 2: Capture SBKD data . 19
3.3 Use case 3: Transfer of SBKD data to API 19
3.4 Use case 4: Calculate SBKD metrics . 19
3.5 Use case 5: Storage of SBKD data . 19
3.6 Detailed use case: Capture SBKD data 20

4.1 Total size in Bytes per file type . 30
4.2 file size per key entry in Bytes per file type 30

5.1 Age verification methods used in popular social media 34
5.2 Age verification methods used on popular game platforms 35

G.1 Example of SBKD in csv format . 128

xvii

Code Listings

7.1 UXML login form example . 70
7.2 Pseudocode using Update() . 72
7.3 Pseudocode Key Handlers . 74
7.4 JSON request when POST-ing data . 76
7.5 JSON response when POST-ing data . 76
7.6 Bash script for deploying changes (IP redacted) 78

G.1 Example of SBKD in txt format . 128
G.2 Example of SBKD in JSON format . 128
G.3 Example of Protobuf datastructure for SBKD capturing 129
G.4 Structure for Python dictionary . 130

xix

Acronyms

.NET .NET Framework. 66, 67, 93

ADL Anti-defamation League. 40–42

AI Artificial Intelligence. iii, 1, 37, 50, 52–55, 95, 100, 101, 103

API Application Programming Interface. xvii, 2, 6, 13, 14, 19–22, 26, 36, 61, 63–
65, 67, 73–78, 85, 87, 89, 90, 94, 95, 99, 102, 125

AWS Amazon Web Services. 89, 90

COPPA Children’s Online Privacy Protection Act. 5, 33, 47, 95, 101

CPU Central Processing Unit. 31, 68

CSS Cascading Style Sheets. 70

CSV Comma-Separated Values. 26–29, 31, 32

DSA EU Digital Services Act. iii, v, 2, 3, 5, 47–49, 61, 87, 95, 100, 101, 103

EU European Union. 3, 48, 52, 101

EU AI Act EU Artificial Intelligence Act. iii, v, 2, 5, 13, 47, 52–60, 95, 100, 101,
103

FAR False Acceptance Rate. 24

FRR False Rejection Rate. 24

GDPR General Data Protection Regulation. 5, 47, 101

git https://en.wikipedia.org/wiki/Git#Naming. 67

GPU Graphics Processing Unit. 68

HTML HyperText Markup Language. 70

HTTP Hypertext Transfer Protocol. 2, 19, 64, 65, 75, 89, 90, 99

HTTPS Hypertext Transfer Protocol Secure. 21, 90, 97, 99, 102

IaaS Infrastructure as a Service. 89

IDE Integrated Development Environment. 6, 68, 97

IMGUI Immediate Mode GUI. 69, 98

xxi

xxii Milward et al.: Enhancing Chat Moderation with SBKD

ISP Internet Service Providers. 51

JSON JavaScript Object Notation. 26, 28, 29, 31, 32, 64, 65, 73–75, 77, 90

KDE KeyDownEvent. 73, 81–83, 85

KOSA US Kids Online Safety Act. iii, v, 2, 5, 13, 47, 51, 95, 100, 101, 103

KPM Keystrokes per minute. 82, 83

KUE KeyUpEvent. 73, 81–83, 85

LINQ Language Integrated Query. 66, 82

LLMS Large Language Models. 39

MMS Multimedia Messaging Service. 49

MOOC Massive Open Online Courses. 24

NLP Natural Language Processing. 39

NoSQL not only Structured Query Language. 19, 75, 77

NTNU Norwegian University of Science and Technology. 1, 93

OFCOM Office of Communications. 50

OS Operating System. 22, 51, 66

OSA Online Safety Act 2023. iii, v, 2, 5, 47, 49, 50, 95, 100, 101

PaaS Platform as a Service. 89

POC Proof of concept. 4, 14, 17, 66, 85

REST Representational State Transfer. 64, 75, 89, 90, 99

SaaS Software as a Service. 89

SBKD Soft Biometric Keystroke Dynamics. xvii, 1–7, 10, 13, 14, 17, 19–21, 23,
25, 26, 28, 29, 31, 33, 38, 44, 50–52, 54, 55, 57, 58, 60, 62, 63, 65, 71, 73,
78, 81, 89, 95, 96, 98, 100, 101, 103, 133

SCP Secure Copy. 125

SDK Software Development Kit. iii, v, 1–6, 17–23, 25, 33, 36, 37, 47–52, 61–65,
73, 75, 76, 78, 87, 89–97, 99, 101–103

Tables xxiii

SMS Short Message Service. 49

SQL Structured Query Language. 77

UGS Unity Gaming Services. 78

uGUI Unity User Interface package. 64, 69, 84, 85, 97, 98

UI User Interface. 64, 65, 68–71, 74, 79, 81, 84–86, 90, 96–99

UK United Kingdom. 49, 50, 101

UN United Nations. 3

USA United States of America. 51, 101

USS Unity Style Sheet. 70, 79, 80

UTF-8 Unicode Transformation Format – 8-bit. 28, 66, 75, 80

UUID Universal Unique Identifier. 21, 77

UXML Unity Extensible Markup Language. 70, 84

VM Virtual Machine. 77, 125

VPC Virtual Private Cloud. 90

YAML YAML Aint a Markup Language. 125

Glossary

cyber grooming Cyber grooming is when someone (often an adult) befriends a
child online and builds an emotional connection with future intentions of
sexual abuse, sexual exploitation or trafficking.1. 1, 3, 100

part 3 service A service that is deemed regulated according to the terms of the
Online Safety Act. 49

penalty-and-reward model A model that defines an initial confidence value that
is increased/decreased as actions are taken. 24, 37

physiological biometrics Refers to physical features in biometrics such as finger-
prints, hand shape, iris, retina and face2. 24

The European Patients’ Academy on Therapeutic Innovation (EUPATI) Organization
which focuses on educating patients and patient representives on reserach
and development processes within pharmacutical and therapautic innova-
tions. Website: https://eupati.eu/.
All use of EUPATi’s work is licensed under CC BY-NC-SA 4.0 (https://
creativecommons.org/licenses/by-nc-sa/4.0/). 56

Unity prefab Prefabs are a special type of component that allows fully configured
GameObjects to be saved in the Project for reuse3. 65, 72

1https://www.csa.gov.gh/cyber_grooming.php - fetched 20.04
2https://www.thalesgroup.com/en/markets/digital-identity-and-security/

government/inspired/biometrics - fetched 03.05
3https://learn.unity.com/tutorial/prefabs-e - fetched 15.03

xxv

https://eupati.eu/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.csa.gov.gh/cyber_grooming.php
https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/inspired/biometrics
https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/inspired/biometrics
https://learn.unity.com/tutorial/prefabs-e

1 Introduction

1.1 Background

Today, the realm of video games boasts unprecedented popularity1, yet this surge
brings with it a number of challenges. Among these challenges is the occurrence
of predatory behavior of minors within gaming communities. Our thesis aims to
address this concern, specifically in terms of implementing strategies for verifying
user ages and genders.

This project is made in collaboration with our client, AIBA, a spin-off com-
pany from NTNU research focusing on combating cyber grooming and other un-
wanted behavior in game chats. The company’s main goal is to prevent bullying,
harassment, and cyber grooming in online communities. For this purpose, they
are assessing the efficacy of using Soft Biometric Keystroke Dynamics (SBKD) on
their Amanda platform for profiling age and gender of users, as this is perceived
to facilitate more accurate age and gender predictions.

The client currently use their Amanda child protection platform for modera-
tion and analysis of chat messages, but lack a way of extracting keystroke dynam-
ics data from Unity based games as no existing solution seem to address this need.
In response to this, we have undertaken the development of a Software Develop-
ment Kit (SDK) tailored for Unity, which is proficient at capturing user keystrokes
and deriving the required metadata. AIBA can integrate this SDK with its existing
moderation tools to identify conversations with a presumed age disparity, provi-
sioning moderators with an indication of conversations that could exhibit signs of
predatory behavior.

1.2 Problem description

AIBA considers the capability of extracting Soft Biometric Keystroke Dynamics
data essential, as their AI model is intended to be used for predicting a users age
and gender based on this information. This in turn could prove critical to identify
users sending messages with a predatory intent. Additionally, upcoming and newly
implemented regulations may require significant changes in how Soft Biometric
Keystroke Dynamics is captured and used with AI.

While the initial assignment outlined these issues, client meetings revealed a
desire for a market scan to better understand how large corporations currently
handle age verification. In addition, a request for research into the most efficient
methods of transmitting SBKD data to minimize network traffic.

1.3 Goals and frames

In this section, we have outlined a set of result goals for the project, alongside
effect goals that we expect to stem from these objectives. Furthermore, we have

1https://www.statista.com/topics/1680/gaming/#topicOverview - Fetched 11.05.2024

1

https://www.statista.com/topics/1680/gaming/#topicOverview

2 Milward et al.: Enhancing Chat Moderation with SBKD

defined the scope and constraints.

1.3.1 Frames

Discussions with the client have yielded a set of criteria that the project is required
to adhere to:

• Must work with Unity
• Must work on Windows and preferably macOS
• The chat program should be able to connect directly to AIBA’s servers
• The SDK will exclusively focus on collecting SBKD data and extracting fea-

tures by processing them on the client-side
• Will limit the regulatory review to mainly include more recent western reg-

ulations from the EU, UK and US

1.3.2 Result Goals

Our objective is to deliver a fully developed SDK which is easily modifiable by the
company to facilitate integration with their software. After discussions with the
client, we have also created additional goals beyond the minimum requirements
set forth in the original assignment description. We aim to complete a market
scan of current age verification methods and a review of existing and upcoming
regulations. Furthermore, We plan to conduct a study to gauge which methods
proves most efficient for transmitting SBKD to an API, aiming to minimize network
costs.
The overall result goals are:

• Software Development Kit: Develop an SDK capable of extracting SBKD
data.
• Chat Application: Create a chat application utilizing Vivox and the SDK as

an example to facilitate further testing for the client.
• Legal Compliance: Determine the SDK’s adherence to various regulations

in relation to AIBA’s final solution, including the EU AI Act, DSA, KOSA, and
the OSA, ensuring legal compliance.
• SBKD transfer: Develop an HTTP handler that can transmit Soft Biometric

Keystroke Dynamics data to AIBA’s servers, enhancing user age profiling
accuracy.
• Market Study: Conduct a comprehensive market analysis to identify exist-

ing solutions and determine the SDK’s unique value proposition.
• Efficient Data Transfer: Examine methods for efficient transmitting of key-

stroke data to the API to minimize network costs associated with large data
packets.
• Documentation: Produce detailed documentation for integrating the pro-

gram into existing Unity projects, complete with code samples and essential
information to facilitate implementation by developers.

Chapter 1: Introduction 3

1.3.3 Effect Goals

By finalizing our project, we anticipate that the solution will notably enhance on-
line video game moderation where it is employed, enabling chat moderators to
better concentrate their moderation effort. This could result in a significant de-
crease in grooming and other unwanted behavior within these video game chats.

• Grooming Detection: Enhancing the capabilities of chat moderators in de-
tecting cyber grooming by giving them warning when users might be in-
volved in cyber-grooming.
• Grooming Reduction: Reducing the prevalence of children falling victim

to cyber-grooming by giving chat moderators the ability to step in before a
potential escalation has occurred.
• Moderation Cost Decrease: Lowering the costs associated with chat mod-

eration in Unity-based video games by flagging the game chats that should
be more closely looked at.
• SBKD Contribution: Contributing to the field of Soft Biometric Keystroke

Dynamics (SBKD) by enabling its capture in Unity game chats as well as
optimizing the data transfer to minimize overhead as much as possible.

1.4 Societal contribution

In this section we describe how optimization of data transmission packet sizes
and how contributing in the field of keeping children safe online facilitate for
progressing towards United Nations Sustainable Development Goals.

Through the EU Digital Services Act (DSA) introduced in late 2022, the EU
wanted to create a safer digital space where the rights of all users of digital services
are protected (Section 6.1). With an increasing trend of children using online
gaming services [1] and social media1, the need to implement measures to protect
children is becoming more and more vital. Doing so would also contribute to UN
Sustainability Goal 16, which specifies Peace, Justice and Strong Institutions, and
more specifically sub-goal 16.2:

End abuse, exploitation, trafficking and all forms of violence against and
torture of children2

The SDK we are developing in this thesis contributes to this sub-goal, in re-
ducing abuse and exploitation of children on games using the Unity gaming plat-
form. More accurately, we provide an improvement in manual moderation of con-
tent which in turn will keep more children safe from harassment and grooming
online.

Additionally, the SDK aids in the UN Sustainability goal number 12 regarding
responsible consumption and production3. Through the data transfer research we

2https://sdgs.un.org/goals/goal16#targets_and_indicators - Fetched 13.05
3https://sdgs.un.org/goals/goal12 - Fetched 13.05

https://sdgs.un.org/goals/goal16#targets_and_indicators
https://sdgs.un.org/goals/goal12

4 Milward et al.: Enhancing Chat Moderation with SBKD

have conducted and its implementation in the SDK, we have given AIBA the neces-
sary information to make an educated decision (Section 4.2) and thus minimize
the amount of computational resources required to utilize the SDK to its full ex-
tent.

1.5 Scope and limitations

There are certain factors that should be taken into considerations when reading
the thesis. Notably, the client already possesses an established algorithm for pro-
filing users’ age and gender, which this project will not replicate or modify. Our
SDK’s primary function is capture and transfer SBKD data to the client’s servers,
allowing their algorithm to process and profile the input.

The time constraints, alongside the necessity to conduct a market study and
regulatory research, impose limitations on our ability to develop a comprehensive
SDK. Given the extensive nature typically associated with an SDK, encompassing a
wide array of content and features, our project will aim to deliver a foundational
SDK with a limited set of features. Similarly, while we will identify obligations
that result from the regulations that we will review in Chapter 6, we will not
prioritize implementation of these regulations. This is due to the substantial time
investment that would be required to meet these obligations.

A critical decision within the project’s scope involved determining the ap-
proach towards chat SDK integration — whether to develop a new complete Chat
SDK, enhance an existing one, or engineer a solution compatible with multiple
chat SDKs available for Unity, if possible. With over a dozen chat services avail-
able within the Unity ecosystem, tailoring our SDK to each service individually
exceeds our project’s limitations due to time constraints. Since the main goal of
the project is to investigate the viability of extracting SBKD data and produce a
Proof of concept SDK the choice was made to develop a chat application utiliz-
ing Unity’s own chat service, Vivox. This approach enables the client to leverage
an existing application as a reference point for further research into their specific
needs.

1.6 Legal and Ethical Considerations

While our implementation of the product is primarily a prototype to demonstrate
a proof of concept, it is important to address the ethical considerations associated
with a final product based on our work.

One significant ethical consideration is the profiling of children. Although
AIBA does not intend to profile children, profiling all users’ ages may inadvertently
include minors. The potential for inadvertently profiling these minors based on
their biometrics raises the ethical question of whether the ends justify the means.
To mitigate this, it may be necessary for the client to limit data collection to the ab-
solute minimum, with a heightened focus on safeguarding the privacy of minors.
One potential solution could be to stop Soft Biometric Keystroke Dynamics based
profiling of a certain user when there is a high likelihood that the user is a minor.

Chapter 1: Introduction 5

Fortunately, there are numerous regulations that impose obligations on com-
panies to enforce more ethical measures. For instance, GDPR mandates informing
the user, requiring consent for storing data, and minimizing data storage to the
absolute necessary. While regulations such as the GDPR and COPPA have been in
effect for several years, new regulations have recently been implemented or are
on the horizon.

In light of this, we have chosen to examine four key regulations: the EU Di-
gital Services Act (DSA), the US Kids Online Safety Act (KOSA), the EU Artificial
Intelligence Act (EU AI Act), and the Online Safety Act 2023 (OSA) (Chapter 6).
The objective of this analysis is to determine the actions that AIBA must take to
comply with these regulations and to assess the extent to which these regulations
enhance the ethical integrity of the final product.

It is our responsibility to ensure that the client is informed about existing and
forthcoming regulations. Our aim is to guide them on what to focus on in their
further work on our project and how to make their final product as ethically re-
sponsible as is feasible.

1.7 Structure of the Thesis

Chapter 2 - Development Process: Outlines the methodologies and frame-
works used throughout the project, with a particular focus on the Scrum meth-
odology. It highlights how Scrum enabled a flexible and iterative development
process, facilitating dynamic adjustments based on evolving project requirements
and client feedback.

Chapter 3 - Software Requirements: Provides a concrete description of both
the functional and non-functional requirements of the SDK. Moreover, this section
encompasses the user stories developed in the sprint planning meetings.

Chapter 4 - Soft Biometric Keystroke Dynamics (SBKD): Gives an overview
of SBKD, defining its key concepts and common applications. It examines vari-
ous experiments on keystroke dynamics, emphasizing their use in authentication
and profiling. The chapter also highlights our findings on efficient methods for
transmitting SBKD data, aiming to reduce network costs.

Chapter 5 - State of the Art: This chapter provides a state of the art market scan
regarding existing age verification solutions in social media and games. It also
includes findings with regards to challenges associated with online game mod-
eration, particularly in text chats. It examines the prevalence of toxic behavior
in game chats and explores existing solutions to help moderators manage these
issues, highlighting gaps in current approaches.

Chapter 6 - Legal Frameworks: Overview of the relevant legal frameworks that
impact the development of AIBA’s solution, particularly focusing on new EU reg-
ulations concerning age verification for children in games and social media. It
discusses the EU Digital Services Act (DSA), US Kids Online Safety Act (KOSA),
Online Safety Act 2023 (OSA), and the upcoming EU Artificial Intelligence Act
(EU AI Act), explaining their relevance and implications for AIBA’s compliance

6 Milward et al.: Enhancing Chat Moderation with SBKD

and operational strategies. The chapter prioritizes recent and upcoming legisla-
tion to ensure the SDK meets modern regulatory requirements, excluding well-
established frameworks like COPPA and GDPR-K due to their widespread existing
compliance in the industry.

Chapter 7 - Technical Design and Implementation: Provides an in-depth look
at the technical aspects of the project. It starts by breaking down the problem
into manageable sub-problems and describing the iterative approach used to solve
them. Detailed sections cover the system architecture, the tools, and libraries used,
including programming languages, IDEs, APIs, and frameworks. Code examples,
UML diagrams, and database models are included to illustrate key points. Addi-
tionally, the chapter explains the processes of data collection, culminating in how
data was gathered and analyzed as outlined in the subsequent chapter.

Chapter 8 - Deployment: Detailed instructions on how to deploy the solution
to the company’s systems. It includes technical steps for setting up the solution,
along with discussions on scalability, maintenance, and other technical decisions.
Despite not having direct access to AIBA’s API during development, this chapter
outlines how AIBA can configure their API gateway for private integration with
the SDK.

Chapter 9 - Quality Assurance: Here we explain the strategies employed to en-
sure the quality of the SDK. Detailing how the testing procedures were implemen-
ted, including manual verification and automated tests using scripts. Further, we
highlighting the the SDKs compliance with the performance requirements. Then,
we discuss the implementation of industry standards, the challenges faced across
different operating systems, and the limitations encountered due to external de-
pendencies like Vivox.

Chapter 10 - Discussion: This chapter presents the key findings, project pro-
cess, and SDK implementation from our work. It also includes reflections on de-
viations from the original plan and our adaptive approach to the task. The SDK
implementation section covers technical challenges, solutions, and the integration
of the SDK with the chat application. Additionally, we discuss the viability of SBKD
for age detection. Furthermore, we address legal and ethical considerations to en-
sure compliance with relevant regulations and discuss the ethical implications of
profiling users.

Chapter 11 - Conclusion: The conclusion gives a recapitulation if the objectives,
states the results and concludes the thesis.

2 Development Process

This section outlines the overall framework and methodologies employed in the
development of our project, focusing particularly on our choice of the Scrum
methodology. We discuss how Scrum facilitated a flexible and iterative develop-
ment process, supporting dynamic adjustments of goals and tasks in response to
evolving project requirements and client feedback.

2.1 Process model

A process model is a framework of guidelines and tools designed to streamline
organizational processes12. Its goal is to ensure tasks are completed efficiently and
consistently, with a focus on continuous improvement. The framework outlines
roles, procedures, and best practices for managing and enhancing processes.

Process frameworks vary, ranging from rigid models like the waterfall method,
suitable for well-defined projects, to agile methodologies such as Scrum and ex-
treme programming, which allow for rapid adjustments and fast delivery of early
product versions for feedback.

Adopting a process framework enhances work standardization, reduces vari-
ation, and improves efficiency and product quality.

2.2 Choice of model

Given the scope of the project and the frequent use of process frameworks in
professional settings, as well as the fact that it was encouraged for the bachelor
thesis, we recognized the need to implement one for this project. This decision
was driven by a desire for better structure, to deliver the best possible product,
and to gain valuable experience with a tool that would be essential in our future
careers.

2.2.1 Requirements

Given none of us had prior experience with Unity or C#, it introduced significant
uncertainty regarding time requirements for various development phases. Some
tasks might be more challenging or simpler than initially anticipated. Additionally,
the feasibility of completing the project was uncertain, particularly concerning
the possibility of capturing Soft Biometric Keystroke Dynamics data within Unity.
These uncertainties necessitated an agile framework that would allow for rapid
adjustments. Should capturing keystrokes in Unity prove impossible, the project’s
focus would shift towards research rather than implementation. We aimed for an
iterative approach, easily enabling feedback from AIBA based on our progress,
which also facilitated starting with a "proof of concept" to quickly ascertain the

1https://www.institutedata.com/us/blog/understand-software-process-models/ - Fec-
ted 03.04

2https://www.ibm.com/blog/business-process-modeling/ - Fetched 03.04

7

https://www.institutedata.com/us/blog/understand-software-process-models/
https://www.ibm.com/blog/business-process-modeling/

8 Milward et al.: Enhancing Chat Moderation with SBKD

feasibility of keystroke capture in Unity.
Furthermore, we wanted a framework popular in the industry, enhancing the

applicability in future professional settings. These requirements led us to select a
framework that meets the following criteria:

• Agile, with the flexibility to quickly shift focus.
• Iterative, enabling a start with "proof of concept" for early validation.
• Iterative for frequent feedback from AIBA.
• Popular among businesses.

2.2.2 Framework Options

After conducting research, we evaluated the following potential frameworks:

• Scrum: Offers short sprints allowing rapid focus shifts and iterative devel-
opment, with frameworks for showcasing work to clients. While it lacks
formalized intra-sprint communication structures, its popularity in the in-
dustry is notable.
• Kanban: Features continuous flow and flexible task management, support-

ing ongoing evaluation and adjustments. The Kanban board provides client
insight into progress, fostering feedback.
• Lean: Prioritizes eliminating resource waste to quickly remove non-value

activities. It is non-iterative but emphasizes frequent feedback by continuous
communication, making it popular among development frameworks.
• Crystal Clear: Minimal rules for quick focus adjustments and emphasizes

rapid delivery of a functioning prototype. It encourages frequent deliveries
for client feedback but is less widely used in industry.
• Extreme Programming (XP): Includes an iteration plan for adaptable fo-

cus, with a strong emphasis on customer collaboration. Its popularity has
waned as its principles have been integrated into other frameworks like
Scrum.

Based on our analysis, we created the matrix in figure 2.1 to visualize how
well each framework matched our project requirements.

Criteria Scrum Kanban Lean
Crystal
Clear

Extreme
Programming

Agile and
adaptable

5 4 4 4 5

Iterative for
PoC

5 4 3 4 5

Iterative for
feedback

4 3 2 4 5

Popularity 5 4 4 3 4
Average score 4.75 3.75 3.25 3.75 4.25

Figure 2.1: Comparison of Agile Methodologies as perceived by group members

Chapter 2: Development Process 9

2.2.3 Choice of framework

We ultimately chose Scrum as our framework, as it best matched our needs ac-
cording to the criteria matrix. Sprints offer opportunities to update the client on
our progress during sprint reviews, allowing for timely feedback on their thoughts.
While Scrum traditionally does not advocate contacting the client outside of sprint
reviews, together with AIBA we determined that our project had limited need for
such interaction between bi-weekly client meetings or sprint reviews. Scrum also
facilitates adjustments to the backlog based on the outcomes of the current sprint,
enabling us to quickly pivot if capturing keystrokes in Unity proved infeasible.

Additionally, AIBA recommended the use of Jira, a popular tool for managing
Scrum projects in the professional sphere. After some research we concluded that
expertise in both Jira and Scrum could prove beneficial for our future professional
opportunities due to their extensive use in the industry.

2.3 Implementation of framework

While Scrum provides structured rules and practices for teamwork and project
management, it’s designed with flexibility in mind to accommodate the unique
needs of different teams.

2.3.1 Rituals and Meetings

Scrum incorporates various "rituals" designed to facilitate optimal communication
among developers, the Scrum Master, and the Product Owner.

2.3.1.1 Sprint planning

During the sprint planning process, the group collaboratively engaged in shaping
the upcoming sprint by examining and updating the backlog. This initial phase
involved identifying any missing items and assigning story points to those that
had not yet been estimated.

Following the backlog refinement, we proceeded to define the sprint’s goals
and its duration. We then selected stories that aligned with these goals, prioritizing
tasks that would best steer us towards achieving these goals.

To maintain a sustainable workload and ensure the feasibility of our sprint
commitments, we aimed at around 50 story points for each week of the sprint to
make the goals for each sprint achievable.

2.3.1.2 Daily Stand Up

At the beginning of each day, we conducted a 15-minute daily stand-up meeting.
Initially, the implementation of these meetings was somewhat inconsistent, but by
the second sprint, we had established a more stable routine, with fixed procedures
in place by the third sprint. Meetings were scheduled every day at 10:30 AM unless
all team members agreed and there was a specific reason to cancel.

During the daily stand-up, each member addressed three key points: priorit-
ies, progress, and issues. This structure allowed team members to update each

10 Milward et al.: Enhancing Chat Moderation with SBKD

other on their current work focus and achievements since the last meeting. It also
enabled the Scrum Master to identify any issues early in the process, facilitating
quick resolution. Responses to these three questions were recorded by the Scrum
Master in Confluence and shared with the group. An example of these notes can
be found in Appendix B. This practice provided team members with a resource to
revisit the day’s objectives and assess which group member could help with which
issues.

2.3.1.3 Supervisor meetings

Every Thursday at 1:00 PM, we held a meeting with our supervisor. An agenda
was distributed before each meeting in order to allow all participants to prepare.
The Scrum Master took minutes during these meetings, enabling team members to
review discussions and decisions made on various topics. These meetings provided
an opportunity to clarify uncertainties and receive feedback on our completed
work and on our prioritization strategies relative to our project’s progress.

2.3.1.4 Client meetings

The biweekly meetings with AIBA were important for receiving feedback on our
focus areas and AIBA’s vision for the product. This also provided an opportunity
to showcase our progress, allowing for ongoing input throughout the product de-
velopment process. Additionally, these meetings enhanced our understanding of
Soft Biometric Keystroke Dynamics, benefiting from the client’s expertise in this
area. The meeting minutes from these meetings can be found in Appendix D.

2.3.1.5 Sprint Reviews

At the end of each sprint, we held a sprint review meeting to present our work to
the client and receive feedback. This is a crucial component of the Scrum meth-
odology, as it maximizes the likelihood of delivering a product that meets AIBA’s
expectations. Primarily, these meetings involved Gard Støe, although Patrick Bours
was also typically present. The transparency fostered by these meetings ensured
that AIBA, was well-informed of our progress and had realistic expectations for
the project’s outcomes.

2.3.1.6 Sprint retrospective

At the end of each sprint, we conducted a sprint retrospective to discuss our per-
ceptions of the sprint’s progression. Each team member was tasked with contribut-
ing items to the retrospective board, which was divided into three sections: "Start
Doing," "Stop Doing," and "Keep Doing." This categorization was designed to en-
courage the team to identify successful practices to continue, highlight ineffect-
ive actions to cease and recognize ongoing effective strategies worth maintaining.
The underlying theory is that subsequent sprints would improve upon earlier ones
through increased feedback and the elimination of less productive practices.

At the end of the retrospective, the team developed one or two actionable
items to be addressed in the next sprint. These actions provided specific goals
to focus on, ensuring continual improvement and progress throughout the pro-

Chapter 2: Development Process 11

ject’s life-cycle. One example of the sprint retrospective board can be found in
Appendix E

Figure 2.2: Jira workflow

2.3.2 Scrum Board

To manage issues effectively, we utilized Scrum boards, comprising five different
stages:

• To-Do: Contains tasks that are pending commencement. Developers select
stories to work on from this board.
• Doing: Indicates that a developer has started working on a task. Tasks re-

main here until they are completed and ready for review or encounter a
blockage requiring intervention.
• In Review: Once tasks are completed, they move to this board for quality

assurance. All other team members will then review this story and provide
feedback.
• Done: Represents tasks that have been completed and approved by the

team. Placement in this board signifies that a story has met all criteria and
objectives, marking its conclusion.

12 Milward et al.: Enhancing Chat Moderation with SBKD

• Blocked: Used for tasks that cannot progress due to external dependencies
or obstacles. Tasks remain in this status until the issue is resolved, at which
point they either return to the To-Do board for reevaluation or proceed as
determined by the resolution.

See Figure 2.3 for an example of how the board could look, and figure 2.2 for
a workflow diagram on how the boards were to be used.

This decision for collective review aims to provide all members with insight
into the work accomplished and its methodology, while also leveraging multiple
perspectives for identifying potential errors.

Figure 2.3: Jira Boards

2.3.3 Story points

To estimate the complexity of user stories, we utilized story points. Story points
indicate the relative scale of effort required for each "story" based on its complexity
rather than the time it would take to complete. This approach takes into account
that developers may spend varying amounts of time on the same task and aims
to mitigate discrepancies in time estimation that have led to disagreements in the
past. By using common scrum practises and focusing on complexity, we found it
easier to reach a consensus.

To establish a baseline for these estimates, we identified the simplest task as
a reference point and assigned it a value of 1. Then, we determined the most
challenging task at hand and assigned it a value of 55. The sizes for all other tasks

Chapter 2: Development Process 13

were estimated based on where they fell within this spectrum of complexity.
For the numerical values, we adopted the Fibonacci sequence: 1, 2, 3, 5, 8,

13, 21, 34, 55, 89. This choice reflects the common Scrum practice rooted in the
difficulty humans have in estimating with more than 60% accuracy; the Fibonacci
numbers increase by just under 60% from one to the next.

The use of story points provided developers with a clearer understanding of
the workload they were committing to, based on complexity, and offered an ef-
fective overview of the remaining work during each sprint.

2.3.4 Stories

Each user story encapsulates a unique narrative, typically formulated as: "As a
[role], I need [requirement], so that [benefit]."

An example of this could be: "As an AIBA developer, I need the SBKD data
from chats to be sent to our API, so that we can process data for further use."

This narrative framework is designed to provide developers with a clearer
understanding of the problem that the story aims to solve. By framing the task in
terms of who requires what and why, it becomes easier for the development team
to grasp the purpose behind each task and approach their work with a solution-
oriented mindset.

2.4 Sprint Overview

At the outset of our project, the sprints commenced with a lengthy duration. This
was primarily due to the fact that other courses were taking up time, leaving us
with a more limited time to work on the thesis. Once the other courses were fin-
ished, full focus was directed towards the thesis, and the sprint duration shortened
as more work could be accomplished in less time. We went from four-week sprints
in the beginning to one-week sprints by the end. The reasoning for these short
sprints at the end was for frequent evaluation of the team’s position in relation to
the delivery date, and adjust our strategy to accommodate the the work that had
been accomplished thus far.

2.4.1 Sprint summaries

Under is a compilation of what was the main focus areas, the length, and what
was the goals for each sprint during the thesis.

2.4.1.1 Sprint 1 (07.02 - 06.03)

The focus of this sprint was on setting up the report structure, writing the first
chapter, and start working on the literature research related to it. Significant time
was devoted to understanding and writing about regulations such as the EU AI
Act and KOSA. Additional research on SBKD was conducted to enhance our un-
derstanding of its functionality and general application. Efforts were also made to
make a console application for capturing keystrokes in C# as a preliminary step
towards integration with Unity, and an API was developed for receiving captured

14 Milward et al.: Enhancing Chat Moderation with SBKD

data.
Due to a misunderstanding of what is considered a best practice in Scrum

when sprint goals are not met, this sprint duration was extended, which should
not be done. It was later recognized that a better Scrum practice would have
been to address unmet goals during the retrospective, and discussing strategies
for improvement in the next sprint.

2.4.1.2 Sprint 2 (07.03 - 26.03)

Following the C# Proof of concept (POC) application, our focus shifted to creating
a similar POC within a minimalist chat service in Unity. This effort was to verify
the feasibility of implementation in Unity and assess sending data from the Unity
environment to a REST API. It would also be useful for a showcase for presenting
the program and as a "fallback" solution if it would not be viable to capture key-
strokes with Vivox or other chat services. Concurrently, we commenced work on
the "Development Process" chapter of the report.

The progress this sprint was impeded due to the group’s decision to allocate
additional focus on the ING2300 course, which had a project submission and ex-
amination during this period.

2.4.1.3 Sprint 3 (27.03-05.04)

As we reached further into the semester, the group decided to adopt shorter sprints
to accelerate iterations, now fully directing all attention to the project. The primary
focus was to complete as much as possible of the first four chapters of the report,
aiming to catch up on our lack of report progress.

2.4.1.4 Sprint 4 (05.04-12.04)

In sprint 4 we stared work on making a Vivox application, and our data transfer
research. We also had a large focus on report writing this sprint.

2.4.1.5 Sprint 5 (12.04-19.04)

After facing bigger challenges on getting a Vivox project going, this work was
continued this sprint. We also continued work on the data transfer, and starting
work on the implementation chapter.

2.4.1.6 Sprint 6 (19.04-30.04)

During sprint 6 we had the goal of completing the most crucial work that was in
progress. The Implementing SBKD into the Vivox application, finishing the data
transfer research, and completing work on the API.

2.4.1.7 Sprint 7 (30.04-07.05)

This sprints focus went into report writing with finishing chapter 1-4 in the report,
most of the implementation chapter, and reworking the report structure based
on supervisor feedback. We also had a goal of completing all tests on the Vivox
application during this sprint.

Chapter 2: Development Process 15

2.4.1.8 Sprint 8 (07.05-21.06)

The last sprint we had full focus on report writing with a goal of completing the
rest of the report. In addition to that as a way to vary the work, we implemented
finishing touches to the code and provided missing documentation.

3 Software Requirements

This chapter covers the essential aspects of requirements engineering for our pro-
ject. We start with Requirements Elicitation, detailing how stakeholder needs were
gathered. Functional Requirements follow, featuring a Use Case Diagram and both
High-Level and Detailed Use Cases.

Next, we explore Non-Functional Requirements, discussing Performance, Scalab-
ility, Security, Usability, Maintainability, and Compatibility. We then address Re-
quirement Management, focusing on tracking and controlling requirement changes.
Finally, we discuss Requirement Validation, ensuring the requirements align with
stakeholder needs and are feasible to implement.

As the projects initial main goal was to investigate the feasibility of extracting
keystroke information from a Unity application, the requirements are less compre-
hensive than if it would be a production ready application. Through conversations
with AIBA, they wanted our focus to be on making a Proof of concept (POC) that
can extract keystroke data and outside of that goal we were free to make our own
requirements.

3.1 Requirements Elicitation

Requirements were elicited from a number of sources, such as priorities of the cli-
ent, software with similar areas of applicability that we found online and through
a market scan (Section 5.1). The undergone research ranging from legal frame-
works to SBKD also helped define the requirements (Chapter 4, Chapter 6).

In general, these requirements were defined through the thesis description
(Chapter 11) and biweekly meetings. The requirements we have set for the task
internally within the group also had an impact on the SDK.

The methods we used to gather requirements varied depending on where they
came from. For instance, the requirements we received from AIBA were mainly
defined through the thesis description and through meetings during the semester.
One such example of a requirement not present in the task description, was the
study of legal frameworks. This task, which was an additional assignment that
went beyond the task description, was both prioritized due to a wish from AIBA
and has enabled us to reflect on what would be required to deploy the SDK for use
by real providers of Unity games. The task description also defines a market scan
on age verification methods employed by various actors, which can be found in
Section 5.1. Lastly, discussion among the group members evoked the self-defined
goals we wanted to achieve through the thesis.

3.2 Functional Requirements

The functional requirements detail the core functionality that the SDK provides.

17

18 Milward et al.: Enhancing Chat Moderation with SBKD

3.2.1 Use Case Diagram

For depicting the system interaction in the project, a general use case diagram was
created.

Figure 3.1: Use Case Diagram

3.2.2 High-Level Use Cases

The use cases that are mentioned in this section were created to get a general
overview of the functionality we would have to incorporate to comply with the
functionality requirements and to provide a satisfactory final product. It is also
something the group members can look back at during development to ensure
compliance with functionality requirements.

The high level use cases created for the purpose of this project abstract away
user interaction and moderator responsibilities commonly found in online game
chats. In Table 3.1, 3.2, 3.3, 3.4, and 3.5 are the primary use cases focusing on
SDK functionality.

3.2.3 Detailed Use Case

In Table 3.6 we have extended one of the main use cases of the application after
a detailed use case model template1. This was done to provide more details on

1https://www.rose-hulman.edu/class/csse/csse497/Process/detailed_use_case_model_
template.html - Fetched 01.04

https://www.rose-hulman.edu/class/csse/csse497/Process/detailed_use_case_model_template.html
https://www.rose-hulman.edu/class/csse/csse497/Process/detailed_use_case_model_template.html

Chapter 3: Software Requirements 19

Use case: Attach to a chat interface
Actor(s): SDK
Goal: Provide a well-documented, user-friendly way of integrating the SDK in
different chat interfaces
Description: Supporting integration with different chat services that are suppor-
ted by Unity

Table 3.1: Use case 1: Attaching to a chat interface

Use case: Extract Soft Biometric Keystroke Dynamics data
Actor(s): SDK
Goal: Capture Soft Biometric Keystroke Dynamics in chat session
Description: The SDK attaches onto the active chat session and captures the SBKD
data.

Table 3.2: Use case 2: Capture SBKD data

Use case: Transfer of SBKD data to API
Actor(s): SDK
Goal: Transmission of data to API included in SDK.
Description: Ensure proper transmission of the collected SBKD data to the API
using HTTP.

Table 3.3: Use case 3: Transfer of SBKD data to API

Use case: Calculate SBKD characteristics
Actor(s): SDK
Goal: Calculate duration and latency from the derived KeyUp and KeyDown tim-
ing information sampled
Description: Client-side calculation of useful characteristics for profiling of indi-
viduals

Table 3.4: Use case 4: Calculate SBKD metrics

Use case: Storage of SBKD data
Actor(s): SDK
Goal: Storing user SBKD data to increase sample size on actors and to provide
data in a simple way
Description: API with a NoSQL database for storing data on users of chat service
and possibility of data lookup on said user

Table 3.5: Use case 5: Storage of SBKD data

20 Milward et al.: Enhancing Chat Moderation with SBKD

this specific use case, the arguably most important one, and to picture how an
extended use case could be structured if providing more details is desirable.

Use case: Capture SBKD data
Description: The SDK attaches onto the active chat session and captures the keys
pressed by the user and timing information of the key press
Actor(s) involved: User of service, chat service, SDK
Basic flow of events:

1. User starts typing a message to another user
2. Whilst user is typing, the SDK captures SBKD data.
3. User sends message
4. SDK arranges data in the correct order and format

Alternate flow of events:

1. User starts typing a message to another user
2. Whilst user is typing, the SDK captures SBKD data.
3. User clicks out of chat window
4. SDK temporarily saves data for session and temporarily stops capture
5. User focuses chat windows once more
6. Capture is restarted
7. User sends message
8. SDK arranges data in the correct order and format, ensuring inclusion of all

sessions

Pre-conditions: The SDK is attached to the chat interface, and the chat window
is focused or active
Post-conditions: Captured data is formatted correctly, and may at any time be
sent to API
Special requirements: These are detailed in section 3.3

Table 3.6: Detailed use case: Capture SBKD data

3.3 Non-Functional Requirements

Non-functional requirements detail how a system as a whole should operate and
can be described as the emergent properties of the system or quality attributes of
a system2.

In this section we will describe the non-functional requirements that we have
set for the system based on our meetings with AIBA and discussions within the
team.

2http://users.csc.calpoly.edu/~jdalbey/SWE/QA/nonfunctional.html - Fetched 02.04

http://users.csc.calpoly.edu/~jdalbey/SWE/QA/nonfunctional.html

Chapter 3: Software Requirements 21

3.3.1 Performance

• The system should not add a significant perceivable delay for the logging
and processing of the keystroke data. Significantly perceivable is defined as
78 ms. Threshold perceivable click to visual response is 78±12 ms according
to [2].
• The Soft Biometric Keystroke Dynamics capturing should not have a dis-

crepancy of more than 0.1 ms between a key press occurring and it being
registered, as AIBA indicated a preference for at least 0.1 ms accuracy
• The system should handle capturing keystroke data above the upper end of

normal writing speed without problems. Upper end of normal writing speed
for programmers can be estimated as 90 words per minute3 which roughly
equates to 441 characters per minute if there are 4.9 characters per word 4.
• The size of transferred data should be minimized. Tests should be conducted

to determine the size of data using the most common file and data types.

3.3.2 Scalability

• The system should be designed in such a way that adding or removing key-
stroke metrics would require little extra work.
• If the service has a considerable amount of users, the API component of the

SDK needs to undergo vertical scaling to handle the increased demand.

3.3.3 Security

• The entry-id in the API should be provided through Googles UUID to ensure
all ids are unique 5.
• Each transaction sent to the API should utilize the HTTPS protocol to ensure

confidentiality and integrity of the data.
• Credentials should not be stored or transmitted in plain text to ensure con-

fidentiality. Instead, environment variables should be defined and used

3.3.4 Usability

• The system should not add a significant perceivable delay for the logging
and processing of the keystroke data. Significantly perceivable is defined as
two times 78 ms. Threshold perceivable click to visual response is 78 ±12
ms according to [2].
• The user interface should be modeled on the behavior of common chat ser-

vices, e.g. Discord, Messenger and so on.

3.3.5 Maintainability

• The code of the project should be well documented. Each line of code in the
SDK should have an explanation unless the variable and function names

3https://onlinetyping.org/blog/average-typing-speed.php - fetched 23.02
4https://norvig.com/mayzner.html - fetched 23.02
5https://pkg.go.dev/github.com/google/uuid - Fetched 02.04

https://onlinetyping.org/blog/average-typing-speed.php
https://norvig.com/mayzner.html
https://pkg.go.dev/github.com/google/uuid

22 Milward et al.: Enhancing Chat Moderation with SBKD

describes it sufficiently.
• The project should follow established coding standards and best practices

as specified in the project plan.
• Efforts should be made to write modular code with clear separation of con-

cerns. This will ease the workload if any modifications or updates needs to
be done.

3.3.6 Compatibility

• Tests should be conducted to determine the best file formats and data types
for us to use which minimizes payload size.
• The transferred data should be uniformly structured throughout life-cycle

of the SDK.
• Little effort should be required to route the data from the SDK to the client’s

API.

3.4 Requirement Management

Having been given a lot of freedom in the development process, requirements in
the early phases were under constant refinement. One such change was the ad-
dition of a research requirement on legal frameworks that was proposed in the
meeting held the 7th of February. Another example of one such change was after
scrum review 3 where a focus shift happened due to amount of time remaining.
Here, AIBA suggested prioritizing ensuring integrity over confidentiality on trans-
mitted data.

For management of requirements we utilized stories and boards in Jira. More
information regarding requirement management can be found in section 2.3.1
and 2.3.2.

3.5 Requirement Validation

Requirements were mainly validated through scrum reviews with the client present.
These were held after most the sprints had concluded. The different prototypes
(Section 7.2), starting with the console application, were showcased to make sure
we were on the right track. The feedback received in these meetings helped shape
the requirements for upcoming sprints and the final SDK, and gave us concrete
goals to work towards.

Quality assurance of the SDK was completed, where the application was tested
on different OSs, making sure that the attributes were being calculated correctly
and documenting the SDK Chapter 9.

A final review on whether the requirements were met or not was held the
24th of April, where the client told us that they were satisfied with what we had
created. They also seemed to appreciate the chat application we had developed,
as they saw it as an opportunity to use for testing themselves.

4 Soft Biometric Keystroke Dynamics (SBKD)

This chapter aims to provide an overview of Soft Biometric Keystroke Dynamics
(SBKD) and how it works. It will provide a definition, it’s most common applica-
tions, and results with these uses. Additionally, we will present our research find-
ings on efficient methods for transmitting keystroke dynamics to the API, aiming
to minimize network costs associated with large data packets.

4.1 Soft Biometric Keystroke Dynamics (SBKD) data

To understand the results and to define the data that is captured in the SDK, the
research conducted by the group on Soft Biometric Keystroke Dynamics has been
summarized in this section.

4.1.1 Definitions

Soft biometrics may be defined as:

Characteristics that provide some information about an individual but
lacks the distinctiveness to sufficiently differentiate any two individuals
[3]

The SDK proposed in this thesis focuses on capturing keystroke dynamics, a
type of behavioural biometric, in a Unity environment. In this context, keystroke
dynamics are habitual patterns or rhythms an individual exhibits while typing
on a keyboard [4]. There are currently no other solution that captures keystroke
dynamics for biometric purposes in Unity (Section 5.1.3).

4.1.1.1 Different keystroke dynamics experiments

Most research publications conducting keystroke dynamics experiments, may use
one or more of these different kinds of observations [5]:

• Free-text where a user has no restrictions when typing a paragraph [4]
• Fixed-text where the text to type is predetermined and stays constant through-

out the experiment [6]
• Semi fixed-text, a middle ground between free and fixed text. An example

being commands in a command line

We have found keystroke dynamics to have most commonly been studied in
authentication systems. Two common approaches in authentication, are the fixed-
test approach that analyzes a single input string where the goal is to grant a genu-
ine person access to a system, or a continuous approach that aims to lock an
impostor out from a system [6].

Another utilization of keystroke dynamics are in profiling of soft biometric
traits, which is of most interest in this thesis.

23

24 Milward et al.: Enhancing Chat Moderation with SBKD

4.1.2 SBKD Performance

4.1.2.1 Proven results

The performance of keystroke dynamics as a metric for authentication or profiling
are lower than that of physiological biometrics modalities based authentication
systems [7].

In a study on continuous authentication by Bours and Barghouthi, a suggested
method involved compiling a template on keystroke dynamics after longer peri-
ods of use, and continuously compute a confidence level through a penalty-and-
reward model that determines if a user change has happened or not [8]. In these
research articles they commonly utilize False Acceptance Rate (FAR) and False
Rejection Rate (FRR) as measurable values on whether the user is who they say
they are or not. Another article on the same topic achieves both low FAR(1.89%)
and FRR(1.45%), which is ideal [9].

In terms of soft biometrics, one study has been successful in identifying traits
such as gender (70%-86%), age (67%-78%) and handedness (76%-88%) using
a fixed-text analysis achieving a recognition rate between 67%-88% across these
categories [7]. The article is based on another previous study, which achieved up
to 90% recognition rate across these same categories with a database of 110 users
[10].

4.1.2.2 Challenges

Even though the results that these methods yield are promising, the application
of keystroke dynamics for either profiling or authentication in the real world has
been limited [5].

Keystroke dynamics does run into challenges when analyzing user behaviour.
A persons typing can be affected by a number of factors, and may even change
throughout the day. A persons fatigue, mood, posture or whether the person is
sitting or standing up may affect results of such soft biometrics [11]. Additionally,
if a user discerns that their typing metadata is tracked, they may change their
typing pattern and rhythm to dupe the profiling algorithm.

4.1.3 Applications

In 2014, an article was published detailing the use of keystroke dynamics as a veri-
fication method in Massive Open Online Courses, where Coursera1 was the tar-
geted platform [12]. After a task had been completed, the course attendee could
choose between verification through photo or through typing a short phrase. More
applications have been found through a market scan we have completed that looks
into common state of the art age verification software utilized on different plat-
forms (Section 5.1)

1https://about.coursera.org/how-coursera-works/ - Fetched 06.03

https://about.coursera.org/how-coursera-works/

Chapter 4: Soft Biometric Keystroke Dynamics (SBKD) 25

4.1.4 Common features

Common Soft Biometric Keystroke Dynamics features applied are figuratively de-
scribed in Figure 4.1, where the captured ones are listed below and visualized in
Figure 7.4.

Figure 4.1: SBKD metrics (inspired by figure in [13])

• Key down time - the time of pressing down a key
• Key up time - the time of releasing a key that was previously pressed
• Down-up time - the time between pressing down a key and releasing the

same key (also known as duration, dwell time or hold time)
• Up-down time - the time of releasing one key to pressing down another (also

known as latency or flight time)

Between the research publications studied, these definitions overlap in all of
them, but they may be termed differently.

4.2 Efficient SBKD Transmission Research

As part of our research into Soft Biometric Keystroke Dynamics, we have conduc-
ted a study into how to efficiently transmit Soft Biometric Keystroke Dynamics
data with minimal amount of bandwidth usage. The client indicated at an early
stage that there was a desire to ascertain the most efficient method of transmitting
SBKD, with the objective of minimising the data packet size. It was recognised that
sending a message with Soft Biometric Keystroke Dynamics data would be costly
for those who had implemented the SDK, given that the data would occupy a sig-
nificant increase in space compared to just sending the plain message. Professor
Bours from AIBA had found that it would take eight times the bandwidth than if
it were to only transmit the message text. We did not find research that explored
the size difference between a file containing only the message text versus the mes-

26 Milward et al.: Enhancing Chat Moderation with SBKD

sage text with it’s SBKD data. Similarly, no research was found on how to send the
SBKD as efficiently as possible. While the problem was not included in the task
description, we found the problem interesting, and the lack of existing research
on this made us see an opportunity to contribute to this field.

4.2.1 Implementation strategies

We began with the understanding that different file types would have varying
sizes. Four distinct file types were thus selected for analysis: text (txt), Comma-
Separated Values (CSV), JavaScript Object Notation (JSON), and Protocol Buf-
fers (protobuf). The txt and CSV formats were chosen because they can be cre-
ated with minimum extraneous information, thus preserving only the most critical
data. The JSON and Protobuf formats were selected for their prevalence in API
implementations, scalability and their robust serialization capabilities2,3, which
can streamline data handling once it has been transferred.

We also explored the possibility of file compression before transmission to
reduce file size. Several compression methods exist, but we opted for Gzip due
to its widespread use and the fact that the compression is considered lossless.
Other compression methods might have provided a better compression ratio or
greater efficiency, but since the objective here is to explore possibilities for saving
data during transmission rather than expending significant resources to find the
absolutely best method, Gzip was deemed sufficient.

4.2.2 Data Transfer Results

In order to obtain the relevant data for analysis, we utilized the dataset provided
by [13]. Specifically, we extracted the initial 10,000 keystrokes from this dataset
and converted the pertinent information into various data types to generate four
distinct file types. Consequently, we created 10,000 files each in CSV, TXT, Proto-
buf, and JSON formats, allowing us to analyze the relationship between file size
and the number of keystroke entries, up to 10,000 keystrokes.

Additionally, we employed the Gzip compression utility with a compression
level of 9 (which provides the best compression ratio, at the cost of compression
speed) to compress all these files, resulting in another 40,000 files. In total, 80,000
files were generated for further analysis.

Subsequently, we utilized the Matplotlib graphing library to visualize the file
size differences in relation to the number of keystroke entries. Furthermore, tables
1 and 2 were generated to provide a representation of the file size development.

A more detailed description on how this data was created, the variables used
to create the files, and how the testing how done can be found in Appendix G.

4.2.2.1 Graph Intervals and Their Relevance

In the report, we have chosen to present the graphs across four distinct ranges: [1,
50], [50, 1000], [1000, 10000], and [50, 10000]. The rationale for these ranges

2https://infinum.com/blog/json-vs-protocol-buffers/ - Fetched 08.04
3https://jsoneditoronline.org/indepth/compare/json-vs-csv/ - Fetched 08.04

https://infinum.com/blog/json-vs-protocol-buffers/
https://jsoneditoronline.org/indepth/compare/json-vs-csv/

Chapter 4: Soft Biometric Keystroke Dynamics (SBKD) 27

is as follows:

• The [1, 50] range: Represents file sizes when data is sent with each mes-
sage. This range helps in understanding the overhead associated with each
transmission.
• The [50, 1000] range: Represents scenarios with smaller batch sizes or

longer messages.
• The [1000, 10000] range: Demonstrates potential file sizes when opting for

larger batch sizes.
• The [50, 10000] range: Provides a comprehensive overview of data, ex-

cluding the [0, 50] range to ensure clarity. This exclusion prevents extreme
values from disproportionately enlarging the y-axis and obscuring insights.

4.2.2.2 Graphs

Total size of file types
The graphs in Figure 4.2 shows a linear relationship between the number of key
entries and the file size. Of particular interest is the observation that the size of
Protobuf files is very close to that of CSV and TXT files. As can be calculated from
the values in Table 4.1, when the files are uncompressed, Protobuf uses only 6%
more space for the first character. However, the difference increases in favor of the
CSV file, but it stabilizes at larger number of key entries with Protobuf using 33%
more space than CSV. Considering the speed with which Protobuf can be parsed
and its ease of use, these are very favorable results, especially if the data were to
be sent uncompressed.

Figure 4.2: Total Size for file

28 Milward et al.: Enhancing Chat Moderation with SBKD

Total size for compressed file types
A number of noteworthy findings emerge from the graphs depicted in Figure 4.3.
The data in Table 4.1 show significant space saving, ranging from 76.7% for CSV
files to 95.2% for JSON files. Of interest is the observation that, for approximately
9 to 1,900 key entries, the total file size of JSON is smaller than that of Protobuf.
This can likely be attributed to the fact that Protobuf is stored as binary files,
which could have fewer duplicated characters for Gzip to effectively compress.
Alternatively, it may be that Gzip is simply just not as effective at compressing
binary files.

Furthermore, the graphs indicate that both TXT and CSV files consistently
maintain a significantly smaller size than both JSON and Protobuf. The reduction
in file size is initially around 30% for 10 key entries, but this difference decreases
to around 20% for 10,000 key entries. The differences in file size are less pro-
nounced with compressed files than with uncompressed ones, meaning that there
is a bit more freedom in which files to use as the relational differences between
then, bandwidth wise, will be smaller should they be compressed

Figure 4.3: Total Size for zipped file

Total size per key entry for file types
In many ways, the most relevant factor for AIBA is the amount of space each key-
stroke occupies. An English text formatted in UTF-8 typically requires one byte per
character. However, significantly more space is needed when transmitting SBKD.
This underlines the importance of using short variable names to minimize the
amount of extra data sent. In Figure 4.4’s graphs for size per key entry of uncom-

Chapter 4: Soft Biometric Keystroke Dynamics (SBKD) 29

pressed files, we observe that the size quickly stabilizes. This is consistent with
Figure 4.2 which had a linear correlation between the number of key entries.
Table 4.2 shows that CSV quickly reaches 18.82 bytes per key entry when there is
250 key entries in the file. TXT rises to 20.76 bytes, Protobuf to 25.06 bytes, and
JSON stands at 119.20 bytes per key entry. From this data, we can see that the
structure of the files and their corresponding SBKD data result in file sizes that are
at least 18 times larger than if only the messages were sent, and up to 119 times
larger if the data is transmitted as JSON files.

Figure 4.4: Size per key entry

Total size per key entry for compressed file types

However, the size difference becomes much more acceptable when data is com-
pressed prior to transmission, which is shown in Figure 4.5, significantly improv-
ing the results for larger files. This makes this graph particularly noteworthy. At
250 key entries, the CSV file is already reduced to 6.267 bytes per key entry and
declines further to 4.36 bytes per key entry at 10,000 entries. The TXT format is
almost the same, with 6.296 bytes at 250 key entries and 4.4454 bytes at 10,000.
As previously stated, Protobuf exhibits weaker results in the 10-1900 key entries
range. Nevertheless, it still significantly outperforms its uncompressed version at
250 key entries, with 9.33 bytes per entry, and drops to 5.36 bytes at 10,000 key
entries, which is almost exactly 1 byte more than CSV, the most cost-effective file
format. The JSON format demonstrates the most significant improvement in com-
parison to its uncompressed counterpart. It reduces from size per key entry from
119 bytes at 250 key entries to 7.8 bytes, and 5.75 bytes at 10,000 key entries.

30 Milward et al.: Enhancing Chat Moderation with SBKD

Figure 4.5: Compressed size per key entry

Table 4.1: Total size in Bytes per file type

Table 4.2: file size per key entry in Bytes per file type

Chapter 4: Soft Biometric Keystroke Dynamics (SBKD) 31

4.2.2.3 Size Differences in Data Formats Relative to Key Entries

We can see that the compression of data prior to transmission can result in a
significant reduction in the data volume that needs to be transmitted. Compression
reduces the size of data from 77% for CSV files and up to 95% for JSON. This large
decrease for JSON is likely due to JSON’s structural data such as brackets and
quotations stored in plain text. In contrast, Protobuf is stored in binary format,
which eliminates the need for human readability and offers benefits similar to
those of JSON. By compressing data, particularly JSON, the size reduction can
reach 95%. CSV files are shown to have the least data per key entry, while Protobuf
surpasses JSON in efficiency after 2,000 key entries.

4.2.2.4 Progressive SBKD Transmission Strategy

The transmission of SBKD data would undoubtedly result in a significant increase
in network costs due to the larger data transfer. Additionally, to quickly map crit-
ical data, it would be impractical for AIBA to batch all messages until reaching
10,000 characters each time they are sent, as potential issues may have already
occurred by the time the first 10,000 keystrokes are sent. This results in signific-
ant delays for moderators to assess potential age discrepancies among speakers.
Therefore, a more gradual approach to transmission may be beneficial for AIBA.
For instance, the initial 10 messages could be sent individually for immediate ana-
lysis and a rough age estimate. As the conversation progresses, more messages can
be batched until a certain key entry sum is reached, or a specific time has elapsed
since the first batched message. This method would allow AIBA to quickly obtain
information about the SBKD of users, while subsequently reducing cost per user
as more data is collected about the specific user to confirm that the initial estim-
ates remain unchanged. While this approach make new users expensive as their
baseline is calculated and smaller messages batches are sent, it would be a sig-
nificantly lower overall data cost than if all messages are sent individually, and
provide a minimal delay for the moderator to obtain an age prediction for the
users.

4.2.3 Final thoughts on compression and file sizes

While the compression of files undoubtedly improves file sizes, it is not without
costs. For example, files must be compressed on the users devices. This process
consumes relatively few data resources, typically during less intense sections of
games where messaging is feasible, and the computational demand is lower, it
might be imperceptible if one of the CPU cores on the device takes 0.1 seconds
(the longest duration recorded to compress a file with 10,000 key entries in our
tests). Nevertheless, many video game players are sensitive to any performance
degradation, regardless of the reason. While many might accept this trade-off to
protect children in video games, it risks criticism from some players.

More efficient compression options exist. while Gzip is designed to operate on
a single processor core, alternatives like Pigz can utilize multiple cores, thereby
speeding up the compression process. An alternative method, Brotli, may take

32 Milward et al.: Enhancing Chat Moderation with SBKD

longer to compress data but often achieves a better compression ratio than Gzip.
We have not tested Brotli or Pigz, so we are unable to provide specific insights
on how they would perform with our data. Nevertheless, they provide interesting
fields for further testing.

If AIBA can manage the additional overhead of parsing CSV data compared
to JSON or Protobuf, it is clear that this would be the most cost-effective method
for receiving data. If neither CSV nor TXT is viable, the choice then depends on
whether the data can be compressed. If compression is not feasible, Protobuf is
the most appropriate choice due to its efficiency in both size and parsing. In the
event that compression is feasible and the choice is between JSON or Protobuf, it
becomes significantly more challenging to determine the most economical option.
If the majority of communications consists of shorter messages, then it is likely that
JSON will be the most cost-effective option. However, if messages are batched into
larger collections more frequently, then Protobuf may be the more cost-effective
option.

5 State of the Art

This chapter will firstly present a market scan into how other enterprises conduct
age verification of it’s users, and what other enterprises employ Soft Biometric
Keystroke Dynamics in one way or another. Furthermore, it will look into the
challenges that are faced with online game moderation in relation to text chats. It
will examine the prevalence of toxic behavior in game chats, the existing solutions
to help moderators address these issues, and the functional gaps in these current
solutions.

5.1 Market scan

In order to explore the problem space, a market scan was conducted on currently
existing age verification for children in social media and games. This section aims
to summarize the results of the data found on each social media and game plat-
form in Appendix H. It shows what age verification solutions are available in pop-
ular social media and games. Additionally, it indicates whether Soft Biometric
Keystroke Dynamics are used when verifying age. Furthermore, looking for ex-
isting solutions that occupy a similar domain to the SDK could help expand or
improve the field of SBKD

Due to the duties imposed by COPPA and GDPR-K and ensuring compliance
with these regulatory frameworks, many of the age verification methods utilized
among all actors are similar. Table 5.1 and Table 5.2 show the available age veri-
fication methods that are used by different social media and game platforms.

The following is a description of what methods may be supported on the dif-
ferent platforms:

1. Age specification: Users are asked for their age upon account creation
2. Community reporting: Users of the platform may report other users they

believe violate guidelines
3. Moderator reviewing: Platforms that have moderators that supervise the

content that is published or exists
4. Parental controls: Platforms that allow parents to supervise the content

their child can access
5. ID verification: Users having to provide legal documents to prove their age
6. Video verification: Sending a video doing a defined set of tasks in front of

a camera which is then analyzed
7. Face age estimation: Similar to video verification, a user takes a selfie

which is analysed to determine age
8. Age vouching: Enabling friends or parents of users to vouch for a persons

age
9. AI review: Employing an AI algorithm that looks at content, analyses and

attempts to draw conclusion based on user behaviour
10. Keystroke dynamics: Using either a fixed-text or continuous analysis of

user typing dynamics to authenticate users

33

34 Milward et al.: Enhancing Chat Moderation with SBKD

5.1.1 Social Media

Given the popularity of social media among children and young people, it is par-
ticularly useful to explore. It is estimated that around 40% of American children
between the ages of 8 and 12 years old use social media. Furthermore, 95% of
children between 13 and 17 years old in the US use social media1.

The social media we have explored were chosen for their active monthly users
and popularity2; Facebook, Instagram, Youtube, TikTok and Snapchat.

Using Unknown Not Using

Methods\Social Media Facebook Instagram TikTok Youtube Snapchat
Age specification
Community reporting
Moderator reviewing
Parental Controls
ID verification
Video verification
Face age estimation
Age vouching
AI reviewing
Keystroke dynamics

Table 5.1: Age verification methods used in popular social media

Users that specify their age to be below 13 or younger than their respective
minimal age of digital consent in their country, are locked out during the user
creation process altogether (Appendix H). To combat attempting to specify a false
age, all social media examined employ community reporting and moderator re-
viewing of reported users. Instagram, Facebook, TikTok and YouTube may also
require ID verification to access certain content.

Age estimation software solutions such as face age estimation or video verifica-
tion are adapted by Facebook, Instagram and TikTok. Facebook and Instagram use
Yoti3 for this purpose. It was previously stated that TikTok also used the same com-
pany for face age estimation, but the article is no longer accessible (Appendix H).

Facebook and Instagram, in some cases, use AI for scanning posts, birthday
messages, other linked accounts across Meta or other behavioural patterns to find
and remove underage accounts.

When looking into whether these services utilized keystroke dynamics for
authentication, TikTok was the only actor that specified that they captured key-

1https://health.clevelandclinic.org/dangers-of-social-media-for-youth - Fetched
06.03

2https://en.wikipedia.org/wiki/List_of_social_platforms_with_at_least_100_
million_active_users - Fetched 06.03

3https://www.yoti.com/ - Fetched 07.03

https://health.clevelandclinic.org/dangers-of-social-media-for-youth
https://en.wikipedia.org/wiki/List_of_social_platforms_with_at_least_100_million_active_users
https://en.wikipedia.org/wiki/List_of_social_platforms_with_at_least_100_million_active_users
https://www.yoti.com/

Chapter 5: State of the Art 35

strokes in their privacy policy. TikTok currently capture keystroke information and
patterns to: "Verify the authenticity of an account" or as they specified in their
terms of service: "for risk control, debugging, troubleshooting, and monitoring
for proper performance"4. It is likely that they use keystroke dynamics for some
form of authentication, but the purpose is not clear and was not found during this
analysis.

Different media outlets such as The Guardian and The Register have claimed
that Facebook and Instagram captured these events on their in-app browsers when
accessing external websites on iOS mobile phones. This was based on a report
from Felix Krause5,6 but these claims are mostly unsustained and are not conclus-
ive.

5.1.2 Games

An article published in the national library of medicine in 2023 estimates that
more than 90% of children above the age of 2 years old play video games [1].
Looking at how age is verified in game services is therefore also an important
factor to consider, as they in the same article estimate that children between the
ages of 8 and 17 spend 1.5-2 hours playing video games each day.

Using Unknown Not Using

Methods\Game platforms Roblox Epic games Riot games Steam
Age specification
Community reporting
Moderator reviewing
Parental Controls
ID verification
Video verification
Face age estimation
Age vouching
AI reviewing
Keystroke dynamics

Table 5.2: Age verification methods used on popular game platforms

In their terms of service, the game providers, Roblox, Epic games, Riot games
and Steam, urge parents to take a more active role in supervising their childs
online presence rather than incorporate comprehensive age verification solutions
(Appendix H). From Table 5.2 we can, however, see that Roblox and Epic games

4https://www.tiktok.com/legal/page/eea/privacy-policy/en - Fetched 13.03
5https://krausefx.com/blog/ios-privacy-instagram-and-facebook-can-track-

anything-you-do-on-any-website-in-their-in-app-browser - Fetched 06.03
6https://krausefx.com/blog/announcing-inappbrowsercom-see-what-javascript-

commands-get-executed-in-an-in-app-browser - Fetched 07.03

https://www.tiktok.com/legal/page/eea/privacy-policy/en
https://krausefx.com/blog/ios-privacy-instagram-and-facebook-can-track-anything-you-do-on-any-website-in-their-in-app-browser
https://krausefx.com/blog/ios-privacy-instagram-and-facebook-can-track-anything-you-do-on-any-website-in-their-in-app-browser
https://krausefx.com/blog/announcing-inappbrowsercom-see-what-javascript-commands-get-executed-in-an-in-app-browser
https://krausefx.com/blog/announcing-inappbrowsercom-see-what-javascript-commands-get-executed-in-an-in-app-browser

36 Milward et al.: Enhancing Chat Moderation with SBKD

apply age authentication methods on par with some of the social media surveyed
(Table 5.1)

All gaming platforms taken into consideration have solutions for underage
accounts. Steam adds functionality for Junior mode accounts and Epic games have
Cabined accounts. These accounts allow underage accounts to play games, but
restrict communication with other users and account visibility. Roblox and Riot
games grant parents the right to supervise and limit what the accounts of their
children can access.

One of the potential reasons that Roblox have a wider variety of authentication
methods, may be because of its user base. In 2022, 47% of all Roblox users were
under the age of 137. This creates an extra responsibility and underlines the need
for separation between the accounts.

Roblox also closely monitors content posted in chats or on their platform. Fur-
thermore, they "train models" that detect such content. This way they can use a
method that detect breaches in their terms of conditions quickly and efficiently
that becomes more sophisticated as time goes on (Appendix H).

5.1.3 SBKD data capturing

There is currently no software that captures keystroke dynamics metadata in
Unity, neither on the Unity asset store nor as downloadable add-ons for Unity.
The closest asset found was, Dishook8, an asset that enables sending a Discord
message from a Unity game.

During this market scan, the group found no tools or providers that focused on
profiling using keystroke dynamics. There are, however, several other third party
actors that provide software that capture keystroke metadata for use in authen-
tication on customer platforms and services.

5.1.3.1 TypingDNA

One such service is TypingDNA, who provide a means for continuous authentica-
tion, 2 factor authentication and an authentication API using keystroke dynamics
authentication services9. The authentication API alongside its typing biometrics
recorder are the components they provide that are most likely to be comparable
to the SDK we are developing.

The API and capture software is also easy to use and can easily be merged into
a technology stack without much trouble. The frontend should include the typing
biometrics recorder, while the backend should communicate with their REST API
to get the results10 (Figure 5.1).

When looking at their public JavaScript source code, latency (seek time) and

7https://create.roblox.com/docs/production/roblox-user-base - Fetched 07.03
8https://assetstore.unity.com/packages/tools/network/dishooks-send-discord-

messages-from-your-game-171381 - Fetched 07.03
9https://www.typingdna.com/ - Fetched 06.03

10https://api.typingdna.com/#api-overview-how - Fetched 07.03

https://create.roblox.com/docs/production/roblox-user-base
https://assetstore.unity.com/packages/tools/network/dishooks-send-discord-messages-from-your-game-171381
https://assetstore.unity.com/packages/tools/network/dishooks-send-discord-messages-from-your-game-171381
https://www.typingdna.com/
https://api.typingdna.com/#api-overview-how

Chapter 5: State of the Art 37

Figure 5.1: TypingDNA worflow10

duration (press time) are the attributes they capture11. Additionally, their software
supports fetching keystroke dynamics for mobile devices, a number of operation
systems and different browsers.

TypingDNA only provides authentication rather than profiling of individuals.
Its purpose does therefore not align with AIBA’s in terms of profiling based on key-
stroke dynamics. Its typing biometrics recorder does, however, incorporate most
of the things we would like the SDK to also do.

5.1.3.2 Other solutions

LexisNexis’ BehavioSec12 provides an analysis tool for continuous authentication
using AI. In short, the tool detects non-human behaviour on the deployed service
and flags such behaviour. It employs a penalty-and-reward model for this purpose.

Plurilock provides a continuous authentication solution called Defend which
uses keystroke dynamics13. Defend notices moderators or staff when user beha-
viour exceeds their defined considerable risk threshold.

5.1.4 Summarization

Across many of the game platforms and social media studied, there is no single
best way of authenticating age of users. For many services, figuring out the age of
an account without overstepping the boundaries of the data they are allowed to
collect is troublesome (Appendix H).

• ALL applications allow users to specify age, community reporting of ac-
counts and moderator reviewing of content
• 6 of 9 services studied employ identity verification through IDs
• 5 of 9 services use face age estimation or video verification to authenticate
• 3 of 9 services use AI or train models to detect content and figure out in-

formation and estimate the age of an account
• Potentially 3 of 9 services utilize keystroke dynamics in some way or another,

where 1 of these services explicitly specify doing so to authenticate users

This analysis describes the current state of age verification in popular social

11https://github.com/TypingDNA/TypingDnaRecorder-JavaScript/blob/master/
typingdna.js#L266 - Fetched 08.03

12https://risk.lexisnexis.com/products/behaviosec - Fetched 09.03
13https://plurilock.com/products/defend/ - Fetched 09.03

https://github.com/TypingDNA/TypingDnaRecorder-JavaScript/blob/master/typingdna.js#L266
https://github.com/TypingDNA/TypingDnaRecorder-JavaScript/blob/master/typingdna.js#L266
https://risk.lexisnexis.com/products/behaviosec
https://plurilock.com/products/defend/

38 Milward et al.: Enhancing Chat Moderation with SBKD

media and games. An addition to the already established ways of authenticating
users could be through the use of Soft Biometric Keystroke Dynamics. There are
already software solutions that provide authentication through keystroke dynam-
ics as a service, but no applications of verifying age through keystroke dynamics
was found during the market scan.

5.2 Online Game Moderation Challenges

This section aims to provide an overview of current moderation practices in game
chats, the extent of content that needs moderation, available solutions to en-
hance moderation tools and the common challenges in moderating text-based
game chats.

5.2.1 Current moderation practices

Various issues with user-generated content often demand a distinct moderation
approach. These practices could be divided into two main categories: manual and
automated moderation14, each with its own strengths and weaknesses. Automated
moderation is generally viewed as a supplement to manual moderation rather
than a potential replacement.

5.2.1.1 Manual moderation

Manual moderation relies on human moderators, either paid staff or volunteers,
who review messages. This process can involve reviewing each message sent, but
more commonly, it prioritizes messages flagged for violating the game’s rules15

Advantages of Manual Moderation:

• Precision: Humans generally understand context and nuance better than
automated systems, reducing errors.
• Complex Situations: Humans are capable of handling complex situations

that automated services are not trained for or capable of resolving.
• Percieved Fairness: Humans may be perceived as more fair than automated

systems when moderating content.

Disadvantages of Manual Moderation

• Resource intensive: Resource-Intensive: Requires a significant investment
of time and labor, making it challenging to expand.
• Human Error: Moderators are susceptible to error and inconsistency, which

may impact the outcomes of moderation.
• Longer Reaction Time: Messages are typically reported before they can

be deleted or addressed, which allows harmful messages to impact other
players before action is taken.

14https://getstream.io/blog/chat-moderation/ - Fetched 10.04
15https://www.checkstep.com/content-moderation-a-comprehensive-guide/ - Fetched

10.04

https://getstream.io/blog/chat-moderation/
https://www.checkstep.com/content-moderation-a-comprehensive-guide/

Chapter 5: State of the Art 39

• Emotional Burden: The process of manual moderation has been found to
place an emotional burden on moderators [14].

5.2.1.2 Automated Moderation

The complexity of automated moderation can vary considerably. It can be as simple
as blocking specific words by utilizing a block list or as advanced as using Natural
Language Processing (NLP) and machine learning to better understand the inten-
tions, context, and meanings behind messages.16 These moderation tools rely on
predefined rules to make decisions.

Advantages of Automated Moderation:

• Scalability: Unlike manual moderation, which is inherently resource-intensive,
automated systems are capable of reviewing every message before it reaches
other players. Consequently, harmful messages can be prevented from caus-
ing any form of emotional distress to other players.
• Consistency: Automated systems apply rules in a uniform manner, thereby

avoiding the inconsistencies that can arise when different human moderat-
ors have varying standards.
• Efficiency: Machine learning and NLP can analyze each message, categor-

izing its content and identifying those that violate established rules or that
require further review by human moderators.

Disadvantages of Automated Moderation:

• Lack of Context Understanding: Although AI models such as GPT-4 or
similar LLMS have made significant advancements, they remain susceptible
to limitations in their ability to comprehend nuances and context. This can
result in false positives or missed detections when not adequately trained.
• Handling Complex Situations: Automated systems may encounter diffi-

culties in managing complex and unusual events that are not well-defined
in their rule sets. This may result in the failure to flag potentially dangerous
conversations.
• Dependence on Training Data: The quality of the training data utilized by

automated systems is of vital importance. In the case of games such as Movi-
eStarPlanet, where users frequently insert typos other techniques with the
intention of circumventing filters, these systems may encounter difficulties
if not trained on data that includes such instances. [15]

5.2.2 Scope of the problem

This text will primarily focus on moderation in text-based chats in video games.
However, it will also include studies on voice-based chats to provide a more com-
prehensive understanding of the scope of toxic behavior in game chats, due to the
lack of research exclusively focusing on text-based conversations in video games.

16https://www.cometchat.com/blog/what-is-chat-moderation - Fetched 10.04

https://www.cometchat.com/blog/what-is-chat-moderation

40 Milward et al.: Enhancing Chat Moderation with SBKD

5.2.2.1 Prevalence of Harassment

A 2022 study [16] involving 15,000 Discord users who used voice chat for com-
munication identified 25,291 instances of "offensive" behavior. Among the users,
26.43% had one or more instances of offensive outbursts. Of these, 21.39% were
classified as minor, while 5.03% of users had at least one severely offensive out-
burst. The distribution of outbursts was as follows:

• 53% racial/cultural hate speech
• 33% sexual vulgarity
• 12% gender/sexual orientation hate speech
• 1% other offensive speech

The study revealed that 16.58% of minors had an offensive outburst, compared to
36.28% of adults. For severe outbursts, adults were almost three times more likely
to have at least one compared to minors (7.29% for adults vs 2.77% for minors).
Adults were more likely to engage in racial and cultural hate speech (55.63%),
whereas minors exhibited higher rates of sexual vulgarity (38.17%) and gender/-
sexual orientation hate speech (18.23%), compared to adults (32.22% and 11.25%,
respectively). The study used the tool "ToxMod" to collect data. More details on
ToxMod will be provided in Section 5.2.4.1

Another 2022 survey conducted by the Anti-defamation League (ADL) [17] in-
terviewed 2,134 Americans who play games on PCs, consoles, and mobiles, with
1,931 of them playing online games. The survey has a margin of error of 2-3%.
This survey revealed that 66% of teenagers (13-17) and 70% of pre-teens (aged
10-12) had experienced harassment in video games. Additionally, 15% of young
people (aged 10-17) had been exposed to white supremacist ideologies. The per-
centage of adults experiencing harassment increased from 65% in 2019 to 77%
in 2022. Rates of harassment among teenagers (aged 13-17) vary by game, with
46% in Minecraft and 80% in Valorant reporting harassment. Similarly, exposure
to white supremacist ideologies also varies, with the lowest prevalence observed
in Destiny 2 (0%) and the highest in PUBG: Battlegrounds (32%).

The most comprehensive study we identified was conducted by the London
School of Economics and Political Science in 2012 [18], which surveyed 25,142
children aged 9-16 from 25 different countries. This study focused more on chil-
dren’s exposure and behavior on the internet in general rather than specifically in
video games. The study revealed that 12% of European children aged 9-16 had
been bothered or upset by something online, with most not reporting it to parents
or others. The study noted that children do not necessarily perceive risks as upset-
ting or harmful. For example, 1 in 8 children have seen sexual images or received
sexual messages online, but they generally do not find these experiences inappro-
priate or harmful. The probability of encountering a risk increases with age: 14%
of children aged 9-10, 33% of 11-12-year-olds, 49% of 13-14-year-olds, and 63%
of 15-16-year-olds reported having experienced scenarios that the London School
of Economics and Political Science labeled as risk. Additionally, 15% of children
aged 11-16 have received sexual messages or images directly from other users,

Chapter 5: State of the Art 41

with 3% of these children reporting that they had sent such messages. Of those
who received sexual messages, a quarter reported being bothered by them.

The study also highlighted significant gaps in parents’ awareness of their chil-
dren’s online experiences. which landed on the following numbers:

• 40% of parents whose children had seen sexual images online believed their
children had not seen such content.
• 56% of parents whose children had received messages that were hurtful or

unpleasant were unaware of this fact.
• 52% of parents whose children had received sexual messages believed that

their children had not received such content.
• 61% of parents were unaware that their children had met someone in person

with whom they had initially communicated online.

5.2.2.2 Impact of Toxic behaviour

The harm caused to players exposed to toxic behavior from other players is note-
worthy. The ADL’s 2022 survey [17] provides the graphs in Figure 5.2 representing
how toxic game chats affect youth.

Figure 5.2: Graphs from ADL about impact of harassment on young people [17]

From these graphs, we observe that nearly one third of young players stop
playing certain games due to toxic behavior. The negative impacts extend to aca-
demic performance and interpersonal relationships. Only 20% of players report
that toxic behavior does not affect them. The most common responses to toxic
behavior include limiting the games they play, altering how they play, and choos-

42 Milward et al.: Enhancing Chat Moderation with SBKD

ing whom they play with. Additionally, only 16% of young players report such
behavior.

For adults, the ADL provides the graphs in Figure 5.3 representing how they
are affected by toxic behavior.

Figure 5.3: Graphs from ADL about impact of harassment on young people [17]

The data indicates a general increase in the impact of toxic players on adults.
Toxic behavior commonly influences what games are played, who players choose
to play with, and their playing style. Nearly one-fifth of adults report becoming
less social, and 12% feel isolated and lonely. Alarmingly, 11% of adults have con-
tacted the police over something said in game chats, highlighting the severity of
these interactions. Moreover, adults also report that toxic behavior causes them
to treat others poorly and affects their personal relationships. Furthermore, 10%
have experienced depressive or suicidal thoughts as a result of harassment in game
chats.

5.2.3 Grooming

On the topic of grooming. In the UK there have been, on 150 different application,
34,000 cases of online grooming in the last 6 years, with an 82% increase from
2017/18 to 2022/23 [https://www.nspcc.org.uk/about-us/news-opinion/2023/2023-
08-14-82-rise-in-online-grooming-crimes-against-children-in-the-last-5-years/]. In
2009 the UK police receive more than 100 alerts every month from child internet

Chapter 5: State of the Art 43

users who are in immediate danger of sexual abuse or violence from online pred-
ators [https://www.theguardian.com/uk/2009/feb/25/internet-children-sexual-
predators-abuse].

It is Estimated that there are 500,000 predators online each day, and that an es-
timated 89 percent of sexual advances directed at children occur in Internet chat-
rooms or through instant messaging [https://childsafety.losangelescriminallawyer.pro/children-
and-grooming-online-predators.html] Of these, One out of every four reported
cases of child exploitation involves a sexual predator requesting sexual images
from the child. [https://susiesplace.org/prevention/gaming-safety/]

5.2.4 Existing Solution

Given the widespread issues of harassment and toxic behavior in video games, it is
evident that purely manual moderation is not a scalable solution. This is especially
true since many players do not report being subjected to such behavior. Therefore,
automated moderation tools are necessary to handle obvious rule violations and
identify unreported incidents. These tools can significantly alleviate the burden
on human moderators by addressing clear infractions and uncovering cases that
go unreported.

5.2.4.1 ToxMod and Unity Safe Voice

ToxMod17 is a proactive voice moderation tool and, according to its developers,
the only voice moderation tool built on advanced machine learning models. It
goes beyond keyword matching to interpret the tone, emotions, and context of
conversations. Available in 18 different languages, ToxMod can accurately detect
whether users are minors or adults based on their voice chats. It can also identify
and flag sexual vulgarity. However, ToxMod’s limitation is that it currently only
supports voice chat, but not text-based conversations.

Unity Safe Voice18 appears to be an alternative to ToxMod. It is an automated
tool for classifying conversations and is also designed for voice chat. However,
it does not have the capability to determine the age of the speakers, which may
make it difficult to identify when adults are talking to children.

5.2.4.2 Vivox and WebPurify

Vivox offers a native solution for text moderation19, but appears to be limited to
filtering specific words or phrases. WebPurify20 is slightly more comprehensive; it
can categorize the topics of conversations and flag content that moderators should
review. Like Vivox, WebPurify also allows blocking specific words or phrases. How-
ever, neither WebPurify nor Vivox can predict the age of users.

17https://www.modulate.ai/tox-mod - Fetched 12.04
18https://www.google.com/search?client=firefox-b-d&q=unity+safe+voice - Fetched

12.04
19https://unity.com/products/vivox-text-chat - Fetched 12.04
20https://www.webpurify.com/ - Fetched 12.04

https://www.modulate.ai/tox-mod
https://www.google.com/search?client=firefox-b-d&q=unity+safe+voice
https://unity.com/products/vivox-text-chat
https://www.webpurify.com/

44 Milward et al.: Enhancing Chat Moderation with SBKD

5.2.5 Remaining Challenges

While machine learning is employed by some moderation tools, it appears that
standard word filters are still commonly used to moderate text chats, with manual
moderation typically reserved for messages flagged by other users. For instance,
MovieStarPlanet is a popular game that operates using extensive lists of alert and
blacklisted words [15]. Here the blacklisted words would be blocked from being
sent, whereas alert words accumulate for individual users as their use does not
necessarily indicate malicious intent but should lead closer scrutiny for those who
frequently use them.

5.2.5.1 Technical Challenges

The study from Cheong et al. [15] highlights the challenges associated with games
like MovieStarPlanet, where many users frequently misspell words, use abbrevi-
ations, or employ alternative terms to circumvent the filters. These misspellings
and abbreviations can also hinder machine learning models from keeping up with
language evolution. The study observed that their model could achieve up to 98%
accuracy in detecting predatory users, but this required significant preprocessing.
It is also uncertain whether the model would remain effective over time as player
language evolves away from the data it was trained on.

Additionally, there is a noticeable lack of text-based moderation tools that map
the age of users. Estimating age based solely on text analysis appears to be more
challenging. None of the tools we identified could predict age based purely on
users’ text data alone.

5.2.5.2 Reporting Issues

Another issue is the under-reporting of incidents in games. As previously noted,
only a small number of players report harassment. Many players choose to leave
the game rather than report the behavior. This may be due to a widespread belief
that the video game industry does not effectively combat abuse and harassment
in games [19], leading players to see no point in reporting incidents.

5.2.5.3 Cultural and Linguistic Variations

The most effective tool for the analysis of multiple languages was ToxMod, which
is capable of handling 18 different languages. This highlights a market gap in the
availability of automated moderation tools for less commonly spoken languages.

5.2.6 Conclusion

While there are several analysis tools for both text- and voice-based conversations,
the extent of abusive and harassing behavior in games is significant enough that
human moderators could benefit from all available automated moderation tools.
Reports indicate that players are greatly affected by harassment in video games.
Additionally, we found a lack of text-based services capable of predicting players’
age and gender. This is an area where Soft Biometric Keystroke Dynamics could
be beneficial.

Chapter 5: State of the Art 45

Given that children rarely report incidents and that approximately half of par-
ents are unaware of the content their children are exposed to or the individuals
with whom they interact online before meeting in person, this could be an effective
method of automatically flagging suspicious conversations for closer examination
by moderators to detect unwanted behavior.

6 Legal Frameworks

A significant part of our project involved learning about and analyzing four dif-
ferent regulatory frameworks that have the potential to impact the development
of a final product that incorporates the SDK. Our focus was not on how these
regulations would affect the SDK itself, as it has limited functionality that would
be affected by these regulations. Instead, by focusing on the impact of the reg-
ulations on the final product, we can better understand how they will affect a
complete software product and identify key compliance points that AIBA should
adhere to in order to ensure compliance with the regulations and to address the
ethical aspects that arise from these obligations.

While frameworks such as General Data Protection Regulation-K and Chil-
dren’s Online Privacy Protection Act are important when dealing with the collec-
tion of data from children, we have prioritized the EU Digital Services Act (DSA),
US Kids Online Safety Act (KOSA), EU Artificial Intelligence Act (EU AI Act), and
the Online Safety Act 2023 (OSA). These are regulatory frameworks that have
recently been implemented or are about to be implemented. Both GDPR-K, the
part of GDPR that covers children’s privacy, and COPPA were enacted in 2018 and
2000, respectively, meaning that most companies have had ample time to ensure
compliance with these frameworks.

The oldest framework we are covering is the DSA, which came into force in
the EU on 09.09.2022. The OSA came into force on 26.10.2023. As of 21.05.2024,
neither the KOSA nor the EU AI Act has been enacted. While the KOSA is currently
in the proposal stage, the EU AI Act was finalized and endorsed by all 27 EU
member states on 02.02.2024 and by the European Parliament on 13.03.2024.1

6.1 Digital Services Act (DSA)

The EU Digital Services Act is an active regulation which entered into force 16.09.2022,
while its rules became applicable on 17.02.2024. The act aims to fulfill the fol-
lowing two goals: 2:

1. To create a safer digital space in which the fundamental rights of all
users of digital services are protected

2. To establish a level playing field to foster innovation, growth, and
competitiveness, both in the European Single Market and globally

The act affects by definition different "online intermediaries" which are pro-
viders service functionality aligns with one or more of these [20] (Chapter 1,
Article 3.g):

1https://www.whitecase.com/insight-our-thinking/ai-watch-global-regulatory-
tracker-european-union - Fetched 02.05

2https://digital-strategy.ec.europa.eu/en/policies/digital-services-act-package -
Fetched 03.02

47

https://www.whitecase.com/insight-our-thinking/ai-watch-global-regulatory-tracker-european-union
https://www.whitecase.com/insight-our-thinking/ai-watch-global-regulatory-tracker-european-union
https://digital-strategy.ec.europa.eu/en/policies/digital-services-act-package

48 Milward et al.: Enhancing Chat Moderation with SBKD

• Facilitates transmission of data over a communication network
• Provides information or data to a recipient of a service
• Stores data provided by a recipient of the service

Moreover, actors who target their services specifically towards countries of the
Union and have a "substantial connection" with a member country are the ones
concerned by this act [20] (Preliminary, Point 8). The act also defines stricter
obligations which are to be followed by "very large online platforms" which are
platforms that have more than 45 millions users monthly in the EU 3.

One specific such duty mentioned in the act is to explain terms and conditions
in a manner that is understandable to minors [20] (Chapter 3, Section 1, Article
14.3). Furthermore:

Providers of online platforms accessible to minors shall put in place ap-
propriate and proportionate measures to ensure a high level of privacy,
safety, and security of minors, on their service.

In more detail, this entails that such a service is obligated to limit collection
of personal data and not present advertisements based on profiling for an indi-
vidual that they are aware with reasonable certainty is a minor [20] (Chapter 3,
Section 3, Article 28). This obligation does not require providers to take measures
in assessing whether a recipient is a minor.

Another essential obligation found in the EU Digital Services Act states that
providers of hosting services and online platforms are required to give reasoning
for their content moderation and the measures taken [20](Chapter 3, Section 1,
Article 15.1c). This would mean that the providers of services that employ the SDK
are required to inform the recipient of the measures employed. For this reason,
the SDK must be documented well, so that the reasoning behind the matter can
be clearly explained to the recipient. The act also specifies a notice and actions
mechanism requirement which should allow recipients to flag content [20] (Pre-
liminary, Point 50). Recipients who show success in reporting inappropriate or il-
legal content are defined as trusted flaggers (Preliminary, Point 62). The SDK that
has been developed will serve as an important tool and facilitate for detection of
inappropriate content.

It is not clear whether AIBA per definition is an intermediary service or not.
The role of AIBA is in many ways a third party service that analyzes data given
from providers. One could in this case argue that it does not fit under any of the
definitions and therefore exempt from this act. On the other hand, due to the
nature of this act it would be unrealistic to deem oneself unaffected by this act.
AIBA processes chat data and could thus be defined as a "hosting service" as per
the definition section of the act [20] (Chapter 1, Article 3.g.iii). Because of this
uncertainty, more thorough insight into the act is needed to conclude whether
AIBA is affected or not.

3https://digital-strategy.ec.europa.eu/en/policies/dsa-vlops - Fetched 04.02

https://digital-strategy.ec.europa.eu/en/policies/dsa-vlops

Chapter 6: Legal Frameworks 49

It is important to note that the DSA eases the responsibility on startups and
moderately sized companies, and tailors the different obligations to the size of
the company in question [20]. AIBA is a growing actor, but would not be labeled
a "very large online platform" due to their services being provided as a tool for
companies and thus not fitting the requirements of the definition.

There are other articles that aim to protect minors as recipients of intermediary
services. These are, however, directed toward "very large platforms" and small
businesses are exempt from these. Thus, they are at this time not vital for the
sake of the SDK. These articles can be read in the following sections of the act:

1. Chapter 3, Section 5, Article 34 [20]
2. Chapter 3, Section 5, Article 35 [20]
3. A lot of the preliminaries also include such duties (p.89, p.102, p.104) [20]

6.2 Online Safety Act 2023

The Online Safety Act 2023 was enacted by the British government on the 26th
October 20234, and can be read in its entirety online5. The act provides a regu-
latory framework ensuring safer use of internet services in the UK. Furthermore,
the act imposes a duty upon providers in - and outside of the UK in Part 1, section
1, point 2a to mitigate and manage risk from content containing illegalities and
content that is harmful to children.

The act mentions different types of services. Firstly, user-to-user services, i.e.
services where content uploaded by one user can be accessed or viewed by other
users. Secondly, a search service is where content provided by the service is lim-
ited to SMS, MMS, verbal communication or other related identifying content.
These services, by definition in this Act are either regulated or not regulated. In
this context, regulated means that a service has ties within the UK, or combines
user generated content with pornographic content thus already being regulated
in other ways. These types of regulated services will from here on be addressed as
part 3 services. All the definitions mentioned here are found in part 2 in section
3 of the act.

Considering this act regulates services that provide services as mentioned, the
focus in this particular analysis will lie in how AIBA’s service and the SDK may
benefit providers that fall under the scope of this act. More specifically, how this
act affects services which are mainly utilized by children. This is, for instance,
mentioned in Chapter 2 and Chapter 4 of the Online Safety Act 2023.

Services likely to be accessed by children are to follow guidelines which facil-
itates protection of children using the service. Such services who also fall under
the scope of a part 3 service are imposed several duties as mentioned in Chapter
2 section 11 point 6 and section 12 point 8 in the same part, some of which are
mentioned below:

4https://bills.parliament.uk/bills/3137 - Fetched 01.02
5https://www.legislation.gov.uk/ukpga/2023/50/enacted - Fetched 01.02

https://bills.parliament.uk/bills/3137
https://www.legislation.gov.uk/ukpga/2023/50/enacted

50 Milward et al.: Enhancing Chat Moderation with SBKD

• Providing an up-to-date children’s risk assessment

◦ User base - number of children in respective age groups
◦ Harmful content children may encounter - either within the service or

non-designated
◦ Separating such content in different age groups

• Notify Office of Communications (OFCOM) if any unwanted content is found
• Safety duties protecting children

◦ Mitigate impact of harm when children encounter harmful content
◦ Prevent children from encountering harmful primary content
◦ Do so by implementing a way of age verification or age estimation
◦ If a service is utilizing age estimation, it must be "highly effective" at

correctly determining whether a user is a child or not.

• Actively take measure to prevent encounters of such harmful content

◦ Minimize time frame illegal content is reachable
◦ Swiftly take down said content and blocking users
◦ Include policies for staff, use of service and moderation
◦ Include provisions in terms of service of how users are protected from

illegal content
◦ Design service in such a way that the points above are facilitated
◦ Include information about countermeasures that are applied of com-

pliance with duties in the act

Given that this act mainly imposes duties on the services which affect UK cit-
izens, extra care should be taken if the Software Development Kit (SDK) is de-
ployed by providers of services situated in the UK or targeted towards British
people. A thorough compliance review of the service and its functionality should
be completed if the service falls under the scope as a part 3 service. AIBA as a
company does not by definition fall under the scope of a part 3 service nonethe-
less. This means that the duties imposed by this act does not directly affect their
work. Rather, the existing solution AIBA provides in addition to the SDK could be
used as a way of complying with the OSA. In a way, the OSA yields more clients
for providers such as AIBA, considering navigating the duties sanctioned by this
Act could be troublesome.

Regulated services are also required to improve and minimize harmful con-
tent shown to children through active use of age validation or age estimation.
Given that some age validation methods are less effective and more susceptible
to manipulation, the ability to provide effective age estimation functionality by
capturing SBKD data and using AI analysis algorithms could be a key component
in meeting the obligations. Such an age estimation service must be considered ef-
fective enough to comply with the conditions proposed by the Act. The SDK that
the Group is developing could therefore make a positive difference and enable
more companies to comply.

The SDK is neither the full solution nor the only way to comply to these duties.

Chapter 6: Legal Frameworks 51

It is not realistic for the SDK to disable certain accounts from viewing content in
real-time. Comparatively, it will be one of many tools that should be acquired to
form a full compliance package.

One consideration worth mentioning, however, is the fact that the user must
be notified on what sort of technology is implemented in the service. Because of
AIBA’s solution regarding age estimation capabilities, this will have to be included
in the terms of service. Going forward, the group must remember to include the
fact that use of the SDK should be included in the terms of service. This act should
also be examined further if such an opportunity to work with regulated services
arise.

6.3 Kids Online Safety Act (KOSA)

The US Kids Online Safety Act (KOSA) is a legislation proposed in 2022 in the USA
that established guidelines that aim to protect minors from harm on social media
platforms. In this legislation "minors" refers to individuals under the age of 13. In
the proposition, Internet Service Providers (ISP), email services and educational
institutions are exempt from the guidelines. Below is a quote from KOSA reported
in the United States senate (13.12.23) which can be found in point A of section 3
"Duty of care" 6

"Covered platforms must take reasonable measures in the design and
operation of products or services used by minors to prevent and mitigate
certain harms that may arise from that use (e.g., sexual exploitation and
online bullying)."

It is not clear from reading the report what "reasonable measures" entails, and
since this is currently only a proposed bill we can not conclude anything about
these measures.

The proposition in it’s current form does not seem to directly impact neither
AIBA’s business nor our SDK as the bill only targets data collected for advertising
purposes. The bill is also more directed at preventing harm to children through
limiting or preventing interaction between users, and to limit information disclos-
ure about minors to other users.

In addition to what is stated above, the bill proposes that there should be
conducted independent research on the harms of using social media for minors,
and ways to age verify minors at the device or OS level 7,8. With the increased
focus on age verification of minors, it may be an opportunity for AIBA to further
expand their market using SBKD. Since KOSA is only a proposition, all of this is
subject to change, and any further impact analysis would be guesswork with a
low probability of yielding meaningful results.

6https://www.congress.gov/bill/118th-congress/senate-bill/1409/text - Fetched 10.02
7https://www.congress.gov/bill/118th-congress/senate-bill/1409/text#

id856540475ea648148031fa3374b7f9f6 - Fetched 10.02
8https://www.congress.gov/bill/118th-congress/senate-bill/1409/text#idcf4f5fdf-

6bd7-46c1-ab08-b3a4993ef449 - Fetched 10.02

https://www.congress.gov/bill/118th-congress/senate-bill/1409/text
https://www.congress.gov/bill/118th-congress/senate-bill/1409/text#id856540475ea648148031fa3374b7f9f6
https://www.congress.gov/bill/118th-congress/senate-bill/1409/text#id856540475ea648148031fa3374b7f9f6
https://www.congress.gov/bill/118th-congress/senate-bill/1409/text#idcf4f5fdf-6bd7-46c1-ab08-b3a4993ef449
https://www.congress.gov/bill/118th-congress/senate-bill/1409/text#idcf4f5fdf-6bd7-46c1-ab08-b3a4993ef449

52 Milward et al.: Enhancing Chat Moderation with SBKD

6.4 EU AI Act

While our project does not directly incorporate Artificial Intelligence (AI) com-
ponents, the end product is designed to interface with AI. Specifically, it aims to
profile users based on age and gender to identify high-risk conversations that may
involve predatory behavior. Given this context, we find it important to examine
how the EU Artificial Intelligence Act (EU AI Act) would influence further devel-
opment of our SDK upon completion of the project. This section focuses primarily
on categorizing which of the risk categories in the EU AI Act the use of Soft Bio-
metric Keystroke Dynamics with AI for age and gender detection would place in.
To our knowledge, this analysis may be among the first to clarify how this use of
AI will be classified under the EU AI Act and outline the corresponding regulatory
obligations as of April 16, 2024.

The EU AI Act is presently under development, and expected to become the
worlds first AI Act9. A provisional agreement was reached on 12 December 2023
and subsequently published on 26 January 2024, outlining the European Union
(EU) legislative objectives10. The EU published a final draft of the EU AI Act on 13
March 2024, followed by a corrigendum [21] on 16 April 2024. All references and
citations to the EU AI Act in this document are based on this latest corrigendum.
Following the enactment of the EU AI Act, entities using AI will have two years to
comply with its obligations.

6.4.1 Applicability of the EU AI Act

First, it is necessary to determine whether the EU Artificial Intelligence Act applies
to AIBA’s end product. Article 2 of the EU AI Act defines the scope of the legislation.
Specifically, Paragraph 1(a) of article 2 states:

"providers placing on the market or putting into service AI systems or pla-
cing on the market general-purpose AI models in the Union, irrespective
of whether those providers are established or located within the Union
or in a third country;"

Given that AIBA qualifies as a ’provider’ under the definition stipulated in point
(3) of article 3 :

"provider’ means a natural or legal person, public authority, agency or
other body that develops an AI system or a general-purpose AI model
or that has an AI system or a general-purpose AI model developed and
places it on the market or puts the AI system into service under its own
name or trademark, whether for payment or free of charge;"

it is clear that if AIBA were to develop and release software utilizing AI to profile
users based on their Soft Biometric Keystroke Dynamics, such software would

9https://www.wiley.law/alert-EU-Adopts-the-AI-Act-The-Worlds-First-
Comprehensive-AI-Regulation - Fetched 17.05

10https://data.consilium.europa.eu/doc/document/ST-5662-2024-INIT/en/pdf - Fetched
28.04

https://www.wiley.law/alert-EU-Adopts-the-AI-Act-The-Worlds-First-Comprehensive-AI-Regulation
https://www.wiley.law/alert-EU-Adopts-the-AI-Act-The-Worlds-First-Comprehensive-AI-Regulation
https://data.consilium.europa.eu/doc/document/ST-5662-2024-INIT/en/pdf

Chapter 6: Legal Frameworks 53

indeed fall under the jurisdiction of the EU AI Act, should it operate within the
EU.

6.4.2 Risk categories

On the topic of how the EU Artificial Intelligence Act will influence AIBA and
which obligations apply, we need to examine the risk classifications established
by the legislation. The EU AI Act will classify Artificial Intelligence systems ac-
cording to their risk where minimal risk/general-purpose AI models, limited risk,
high risk, and unacceptable risk are the established risk categories. Each of AIBA’s
AI-driven components carries regulatory obligations, influencing the steps which
AIBA needs to take to become compliant with the EU Artificial Intelligence Act

6.4.2.1 Minimal risk and general-purpose AI models

The minimal risk/general-purpose AI category represents the most prevalent uses
of AI. The minimal risk category will comprise of AI systems such as AI-enabled
video games and spam filters. The term ’general-purpose AI’ is defined in point
(66) of Article 3 of the legislation as

"‘general-purpose AI model’ means an AI model, including where such an
AI model is trained with a large amount of data using self-supervision at
scale, that displays significant generality and is capable of competently
performing a wide range of distinct tasks regardless of the way the model
is placed on the market and that can be integrated into a variety of
downstream systems or applications, except AI models that are used for
research, development or prototyping activities before they are placed on
the market;"

This category encompasses applications such as Dall-E, ChatGPT, Gemini, and
other chatbots and APIs. Given that our project does not align with this category,
it is of limited relevance to this report

6.4.2.2 Unacceptable risk category

In the initial press releases concerning the EU AI Act, it was suggested that AI-
based products, such as AIBA’s, might be classified within the unacceptable risk
category11. However, subsequent press releases and the final draft of the Act have
narrowed the criteria for this category as the legislation neared completion. Article
5 of EU AI Act now specifies that biometric AI applications deemed unacceptable
primarily include real-time biometric profiling of individuals in public spaces. This
narrowing of criteria makes it so that the unacceptable risk category is also of
little interest in this report as the end product will not operate in public spaces,
but rather within game chats, where game developers can disclose the use of such
biometric profiling in their terms of service.

11https://www.europarl.europa.eu/topics/en/article/20230601STO93804/eu-ai-act-
first-regulation-on-artificial-intelligence - Fetched 14.02

https://www.europarl.europa.eu/topics/en/article/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence
https://www.europarl.europa.eu/topics/en/article/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence

54 Milward et al.: Enhancing Chat Moderation with SBKD

6.4.3 Determining High-Risk Status

Having determined that the minimal and unacceptable risk categories are not
applicable to our project, we can now focus on the remaining categories: limited
and high risk. Paragraph 2 of Article 6 states that AI systems referred to in Annex
III shall be considered High risk. In Annex III, there are two uses of biometrics
which is relevant to our case, paragraph 1(a) and 1(b).

"High-risk AI systems pursuant to Article 6(2) are the AI systems listed
in any of the following areas:

1. Biometrics, insofar as their use is permitted under relevant Union or
national law:

(a) remote biometric identification systems.

This shall not include AI systems intended to be used for biometric veri-
fication the sole purpose of which is to confirm that a specific natural
person is the person he or she claims to be;

(b) AI systems intended to be used for biometric categorisation, accord-
ing to sensitive or protected attributes or characteristics based on the
inference of those attributes or characteristics;"

6.4.3.1 Evaluating Remote Biometric Identification

The EU AI Act defines "remote biometric identification systems" in Article 3, point
(41), as:

"‘remote biometric identification system’ means an AI system for the pur-
pose of identifying natural persons, without their active involvement,
typically at a distance through the comparison of a person’s biometric
data with the biometric data contained in a reference database"

Given that the program involves users interacting in game chats, where they type
messages without actively participating in any biometric data provision, there is
an argument that the program could be classified under Annex III paragraph 1(a).
However, Article 3 point 35 clarifies that ’biometric identifications’ involve the
identification of individuals based on biometric data compared against previously
stored data in a database. This definition supports the requirement for a reference
database, indicating that ’biometric identification’ pertains to identifying specific
individuals, rather than extracting limited information about an unknown person.

The application in question, which employs AI to predict an individual’s age
and gender, does not identify specific individuals. This suggests that using Soft
Biometric Keystroke Dynamics (SBKD) to predict users age and gender does not
fall under the specified high-risk category of Annex III, paragraph 1(a). However,
Recital 54 provides a broader context for consideration:

"As biometric data constitutes a special category of personal data, it is
appropriate to classify as high-risk several critical-use cases of biometric

Chapter 6: Legal Frameworks 55

systems, insofar as their use is permitted under relevant Union and na-
tional law. Technical inaccuracies of AI systems intended for the remote
biometric identification of natural persons can lead to biased results and
entail discriminatory effects. The risk of such biased results and discrim-
inatory effects is particularly relevant with regard to age, ethnicity, race,
sex or disabilities. Remote biometric identification systems should there-
fore be classified as high-risk in view of the risks that they pose."

Recital 54 specifies that the use of Artificial Intelligence to predict age is regarded
as high-risk due to the potential for technical inaccuracies and the possibility of
discriminatory outcomes due to potential age bias from moderators. Although the
use of SBKD for age detection may not precisely meet the criteria for high risk
systems set forth in Annex III, the explicit language in Recital 54 indicates that
the legislative intent is to categorize such uses of SBKD as high-risk, reflecting
concerns about potential bias and discrimination.

6.4.3.2 Biometric Categorization

While we have determined that the end product qualifies as high-risk under Annex
III paragraph 1(a) of the EU AI Act, it is wise to also explore paragraph 1(b) as
this exploration could provide (valuable) insight into the regulatory stance on the
use of SBKD for age and gender prediction. Annex III paragraph 1(b) refers to the
use of biometric categorisation which is defined in Article 3 point (40):

"‘biometric categorisation system’ means an AI system for the purpose
of assigning natural persons to specific categories on the basis of their
biometric data, unless it is ancillary to another commercial service and
strictly necessary for objective technical reasons"

As the program categorises individuals into specific age groups and genders, its
use case falls clearly within the definition of ’biometric categorisation’. The data is
not ancillary to another commercial service, but is used by AIBA as a core feature.
The next consideration is then whether the categorisation parameters are sensitive
or protected characteristics as defined by the EU AI Act.

The EU AI Act refers to Article 9(1) of Regulation (EU) 2016/679 for the
definition of sensitive or protected attributes:

"1. Processing of personal data revealing racial or ethnic origin, political
opinions, religious or philosophical beliefs, or trade union membership,
and the processing of genetic data, biometric data for the purpose of
uniquely identifying a natural person, data concerning health or data
concerning a natural person’s sex life or sexual orientation shall be pro-
hibited."

The relevant question here is whether age or gender qualifies as "data concern-
ing health". Article 4(15) of Regulation (EU) 2016/679 defines "data concerning
health" as:

56 Milward et al.: Enhancing Chat Moderation with SBKD

"‘data concerning health’ means personal data related to the physical or
mental health of a natural person, including the provision of health care
services, which reveal information about his or her health status;"

While there is a lack of definition for physical health in any of the EU regulations,
The European Patients’ Academy on Therapeutic Innovation (EUPATI) defines
physical health as

"Physical health is defined as the condition of your body, taking into
consideration everything from the absence of disease to fitness level."12

Therefore, neither age nor gender should be categorized as data concerning health
under EU regulations. This indicates that although the application appears to sat-
isfy the criteria for a high-risk system as outlined in paragraph 1(a) of Annex III,
it avoids the criteria in paragraph 1(b). Since the age and gender data output by
the application is not categorized as protected or sensitive data, it is not covered
by paragraph 1(b).

6.4.3.3 Exceptions to Annex III

Having established that the program qualifies as a high-risk system under Annex
III, as specified in Recital 54, we proceed to examine potential exceptions outlined
in Article 6, paragraph 3 of the EU Artificial Intelligence Act. The complete text of
Article 6 paragraph 3 is as follows:

"By derogation from paragraph 2, an AI system shall not be considered
to be high-risk if it does not pose a significant risk of harm to the health,
safety or fundamental rights of natural persons, including by not mater-
ially influencing the outcome of decision making. This shall be the case
where one or more of the following conditions are fulfilled:

(a) the AI system is intended to perform a narrow procedural task;

(b) the AI system is intended to improve the result of a previously com-
pleted human activity;

(c) the AI system is intended to detect decision-making patterns or devi-
ations from prior decision-making patterns and is not meant to replace
or influence the previously completed human assessment, without proper
human review; or

(d) the AI system is intended to perform a preparatory task to an assess-
ment relevant for the purposes of the use cases listed in Annex III.

Notwithstanding the first subparagraph, an AI system referred to in An-
nex III shall always be considered to be high-risk where the AI system
performs profiling of natural persons."

12https://toolbox.eupati.eu/glossary/physical-health/ is licensed under CC BY-NC-SA
4.0 - fetched 30.04.2024

https://toolbox.eupati.eu/glossary/physical-health/

Chapter 6: Legal Frameworks 57

The paragraph commences with a general exclusion criteria, stipulating that AI
systems which do not pose a significant risk to a natural persons health, safety, fun-
damental, or materially influence decision-making outcomes, may be considered
for exemption. Following this, it lists specific conditions under which an AI system
could be excluded from being categorised as high-risk. In regards to paragraph
3(a), the EU AI Act recital 53 gives the following examples of procedural tasks:

"AI system that transforms unstructured data into structured data, an AI
system that classifies incoming documents into categories or an AI system
that is used to detect duplicates among a large number of applications."

Although the estimation of users’ ages and genders is more complex than the ex-
amples presented, it is fundamentally similar to the task of classifying documents.
The primary function of the end product is to classify users by their estimated age
and gender, providing these classifications to moderators who may then take fur-
ther action based on the users’ chat history. Since the application itself does not
utilise this information post-classification, it can be categorised as a procedural
task.

With regard to point (b), the primary objective of the program is to optimise
the allocation of moderators’ resources, thereby reducing the number of moderat-
ors required in conversations where it is evident that both participants are in the
same age group, either adult or minor. This optimisation allows for increased fo-
cus and resources directed towards conversations where age discrepancies might
pose a risk of predatory behavior occurring. Thus, the program clearly meets the
stipulations of condition (b).

For point (c), according to Recital 53 of the EU AI Act, the essence of this
condition is to identify anomalies within a dataset that warrant further review.
The legislation uses the following example:

"AI systems include for instance those that, given a certain grading pat-
tern of a teacher, can be used to check ex post whether the teacher may
have deviated from the grading pattern so as to flag potential inconsist-
encies or anomalies!"

Although AIBA’s application may not appear to be directly analogous, a closer
examination reveals that it does align with this condition. The application pro-
cesses the self-reported ages of users and utilises AI to detect deviations from
these ages based on the users’ Soft Biometric Keystroke Dynamics. Such anom-
alies, once flagged, can be scrutinised further by human moderators. Thus, the
program also meets the criteria outlined in point (c).

With regard to point (d), the program performs an important preparatory task
in assessing users’ ages, which moderators subsequently evaluate in greater detail.
This preparatory assessment is of great importance in ensuring that moderators
can effectively prioritise their review processes, particularly in scenarios where
age-related discrepancies are detected. Consequently, the application fulfils the

58 Milward et al.: Enhancing Chat Moderation with SBKD

stipulations of condition (d), as it aids in preparing assessments that are vital for
the purposes outlined in Annex III of the EU AI Act.

Upon examination of the conditions set forth in Article 6, Section 3, it becomes
evident that the application in question fulfills not only one of the exceptions, but
all of them. However, there remains one final sentence to be considered within
Article 6, paragraph 3, which states that all AI systems referred to in Annex III shall
be considered high-risk if the system performs profiling of a natural person. In
order to ascertain whether SBKD for age and gender detection constitutes profiling
of natural persons under the EU AI Act, it is necessary to examine the definition of
profiling set out in the regulation. The definition of profiling given in point (52)
of Article 3 in the regulation is

"profiling’ means profiling as defined in Article 4, point (4), of Regulation
(EU) 2016/679;"

Additionally, recital 53, which addresses Article 6 section 4, states:

"profiling within the meaning of Article 4, point (4) of Regulation (EU)
2016/679 or Article 3, point (4) of Directive (EU) 2016/680 or Article
3, point (5) of Regulation (EU) 2018/1725."

All three referenced regulations consistently define profiling as:

"‘profiling’ means any form of automated processing of personal data
consisting of the use of personal data to evaluate certain personal as-
pects relating to a natural person, in particular to analyse or predict
aspects concerning that natural person’s performance at work, economic
situation, health, personal preferences, interests, reliability, behaviour,
location or movements;"[22][23][24]

The definition of personal data under these regulations is also consistent:

"‘personal data’ means any information relating to an identified or iden-
tifiable natural person (‘data subject’);"

Given these definitions, the application’s use of SBKD to predict age and gender
can be considered profiling, given that it involves the automated processing of
personal data to evaluate specific personal aspects. Consequently, this profiling
categorizes the use of SBKD for age and gender prediction as high-risk under
the EU AI Act, aligning it with the stringent regulatory requirements intended to
manage the risks associated with such AI systems.

6.4.4 Obligations of high risk systems

Given that we have now categorised the application as high-risk, it seems prudent
to shortly examine the specific obligations that AIBA would be subject to under
this classification.

Chapter 6: Legal Frameworks 59

The EU AI Act delineates two distinct categories of obligations for entities like
AIBA operating within the high-risk framework. The first set comprises general
obligations applicable to all high-risk systems, as outlined in Chapter III, Section
II of the EU AI Act. The second set of obligations relates specifically to providers
of high-risk systems, detailed in Article 16 of the Act. both sets of obligations will,
according to article 113, become effective 24 months after the EU AI Act has been
enacted.

6.4.4.1 General obligations for high risk systems

The following list enumerates the general obligations for high-risk systems as de-
rived from the EU AI Act Compliance Checker, accessed through
https://artificialintelligenceact.eu13:

• Establish and implement risk management processes according to Article 9
• Use high-quality training, validation and testing data according to Article

10.
• Establish documentation and design logging features according to Article

11 and Article 12.
• Ensure an appropriate level of transparency and provide information to

users according to Article 13.
• Ensure human oversight measures are built into the system and/or imple-

mented by users according to Article 14.
• Ensure robustness, accuracy and cybersecurity according to Article 15.
• Set up a quality management system according to Article 17.

These obligations collectively aim to mitigate risks associated with the deployment
of high-risk AI systems, ensuring they are safe, secure, and transparent in their
operations.

6.4.4.2 Obligations for Providers of high risk systems

In conjunction with the general obligations for high-risk systems, AIBA, as a pro-
vider of an AI system, must adhere to supplementary obligations outlined primar-
ily in Article 16. This article serves as a comprehensive list detailing additional
responsibilities for providers. It includes references to relevant articles that pro-
viders must comply with and outlines obligations to meet accessibility standards
as set forth in Directives (EU) 2016/2102[25] and (EU) 2019/882[26].

Moreover, there are more stringent obligations enumerated in Section 2 that
AIBA is required to follow. These pertain specifically to Articles 9, 10, 13, and
14, which cover the aspects of risk management, data quality, transparency, and
human oversight, respectively.

13https://artificialintelligenceact.eu/assessment/eu-ai-act-compliance-checker/ -
Accessed: 29.04.2024

https://artificialintelligenceact.eu
https://artificialintelligenceact.eu/assessment/eu-ai-act-compliance-checker/

60 Milward et al.: Enhancing Chat Moderation with SBKD

6.4.5 Final thoughts on the EU AI Act

In this section, we have delineated the risk category under which AIBA’s applic-
ation of SBKD for age and gender prediction falls within the EU AI Act, and dis-
cussed the associated regulatory implications. We determined that the application
is classified as high-risk. Furthermore, we have identified the relevant sections of
the EU AI Act that address the obligations of being a provider of high-risk AI
systems. While a more detailed exploration of these obligations is possible, the
primary aim of this report section was to ascertain the classification of SBKD for
age and gender prediction under the EU AI Act. This objective has been satisfact-
orily achieved. Delving further into the specific obligations would be beneficial
but also exceed the scope of this particular inquiry.

7 Technical Design and Implementation

This chapter outlines the technical design and implementation of the project. It
begins with an overview of the overall structure, defining functional layers for
the SDK components. Next, it shows how we broke down the main problem into
manageable sub-problems, referred to as stages, and describes the iterative ap-
proach used to gradually increase complexity as the tools became familiar. The
subsequent sections provide a detailed account of the implementation of each
stage, along with a mention of the necessity for a DSA notification if the SDK is to
be deployed to the Unity Asset Store.

7.1 Technical design

This section describes the overall system architecture, its different components
and their interoperability in how they enable diverse subsystems to function as a
cohesive unit.

7.1.1 Overall structure

The SDK provides a separate data stream that can send keystroke dynamics data
to AIBA’s API. The SDK we have developed will operate between a User and the
Chatroom server, extracting keystrokes as portrayed in Figure 7.1.

Figure 7.1: System Architecture

We have attempted to follow the layered architecture pattern for software
development, dividing components that provide similar functionality into func-

61

62 Milward et al.: Enhancing Chat Moderation with SBKD

tional layers providing their own purpose1. There are no rules as to how many
layers a team can define, but generally a set of predefined layers are implemen-
ted: presentation, business, persistence, and database (Figure 7.2).

Figure 7.2: Layered architecture pattern 1

The presentation layer is normally the component that a user can interact with,
the business layer consists of all logic and most functionality of the service while
the persistence and database layer encompass the means of storing retrievable
information in a service2.

7.1.2 Chat service layer - Presentation

Before sending a message to a chat room server, the user types a message in a chat
field using a keyboard. This action is shown as the horizontal line going from user
to Chatroom server (Figure 7.1). Depending on the chat service, this is usually done
through transferring data packets between users. They may contain information
such as the message string itself, time information and other metadata are sent in
the process. The chat service we have developed supports concurrent users talking
in channels using Vivox (7.7.2).

7.1.3 Keystroke Dynamics Extraction layer - Business

The lifecycle of a continuous authentication system using Soft Biometric Keystroke
Dynamics (SBKD) includes the phases as seen in Figure 7.3 [27]. The SDK lives
in the two first phases of the lifecycle; collecting SBKD data in a chat window and
extracting features by calculating them on the client-side.

1https://www.oreilly.com/library/view/software-architecture-patterns/
9781491971437/ch01.html - Fetched 18.05

2https://cs.uwaterloo.ca/~m2nagapp/courses/CS446/1195/Arch_Design_Activity/
Layered.pdf - Fetched 18.05

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch01.html
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch01.html
https://cs.uwaterloo.ca/~m2nagapp/courses/CS446/1195/Arch_Design_Activity/Layered.pdf
https://cs.uwaterloo.ca/~m2nagapp/courses/CS446/1195/Arch_Design_Activity/Layered.pdf

Chapter 7: Technical Design and Implementation 63

Figure 7.3: SBKD continuous authentication lifecycle (figure from [27])

Although this lifecycle illustrates the process of continuous authentication
using SBKD without considering biometric applications such as those facilitated
by the SDK, the data collection and feature extraction phases (I and II) remain
unchanged, while stages III and IV differ.

Not noticeable to the users of the chat service, the SDK will synchronously
extract keystroke dynamics such as their typing rhythms, patterns and key-codes
given as input while a user types. The features calculated by the SDK are detailed
in Figure 7.4. Having Latency and Duration, one has enough information to be
able to calculate the rest of the other attributes as mentioned in Figure 4.1.

Figure 7.4: SDK computed SBKD metrics (inspired by figure in [13])

When a user presses Enter or sends the message, the extraction process will
stop. The information gathered during this process is saved in short-term memory
in non-persistent Keystroke and Data classes (Figure 7.9).

7.1.4 Data transfer layer - Business

Not having access to AIBA’s API, meant the data would not be transferred directly
to the client. It was rather transmitted to the API we have developed ourselves

64 Milward et al.: Enhancing Chat Moderation with SBKD

(Section 7.6.2). With a few tweaks such as changing the IP which the Unity SDK
transmits data to, it is able to transmit data to the company’s API without trouble,
as further described in Section 8.1 detailing deployment of SDK on the employers
system.

The APIHandler and Gzipper libraries in the Unity SDK handle transmission of
data and compression from Unity SDK to the REST API (Section 7.6.1).

Due to the results from the data transfer research we completed in Section 4.2,
gzip compression was something we implemented through a wrapper library using
System.IO.Compression from the C#s standard library.

The REST API receives compressed JSON data from the APIHandler. On the
server-side, the endpoint handler receives the compressed data, reads the gzipped
request with the gzip package by calling gzip.NewReader()3, and finally decode
the JSON struct.

7.1.5 Firebase - Persistence/Database layer

The database is crucial in a layered architecture, as this is where all the data is
stored. When a valid POST-request is sent to the endpoint from the REST API, the
data will be saved in the database. This is done through a Request-response model
using HTTP (Figure 7.11).

7.2 The Three Feasibility Stages

In consultations with AIBA, it was determined that capturing keystrokes in Unity
had not been verified prior to defining the project. This situation required an al-
ternative approach to the task, considering the lack of previous experience with
Unity and C#. To address this challenge, we developed what was labeled "The
Three Feasibility Stages." These stages consisted of three progressively complex
prototypes, which were constructed sequentially over the span of the project.
This structured approach was important when mitigating the initial uncertain-
ties present when starting development and for facilitating systematic progress
during the project.

One of the reason for dividing development into three stages was to learn
concepts through prototypes.

• Stage 1 aided in learning C# syntax
• Stage 2 gave insight into developing in Unity, a prior unknown environment

for the group
• Stage 3 for integrating key capture in Vivox

Additionally, through stages 2 and 3 the opportunity to explore Unity’s two UI
systems, uGUI4 and UI toolkit5, arised (7.5).

The first prototype was a console chat application in pure C# that captured
user keystrokes in a terminal (7.3). Although the application itself was not in-

3https://pkg.go.dev/compress/gzip - Fetched 18.05
4https://docs.unity3d.com/Manual/com.unity.ugui.html - Fetched 16.04
5https://docs.unity3d.com/Manual/UIElements.html - Fetched 16.04

https://pkg.go.dev/compress/gzip
https://docs.unity3d.com/Manual/com.unity.ugui.html
https://docs.unity3d.com/Manual/UIElements.html

Chapter 7: Technical Design and Implementation 65

cluded in the SDK, it became a way to learn basic C# syntax, naming conventions
for variables and representing data using the JSONSerializer class. Similarly, C#
code regarding keystroke capture and the aforementioned C# language under-
standing was further developed and utilized in the next stages of implementation.

Secondly, a Unity chat window UI with keystroke capture embedded in it was
developed (7.5). In this prototype, attaching a key logger script onto a UI text
field and sending the SBKD data required for profiling (4.1) to an API was ac-
complished. From this implementation we had a Unity prefabs consisting of a
keylogger and an HTTP handler we could use for the next stage.

The previous iteration solves the task depicted in the task description by en-
abling extraction of SBKD from a Unity game chat (Chapter 11). However, when
learning about Unity Gaming Services and how it provides cloud services similar
to that of Google Cloud Platform, the next stage consisted of enabling SDK support
for another chat service. The chat service chosen by the group was Vivox 6 (7.7 -
Fetched 16.04). The final iteration acts as a middle layer between user keyboard
interaction and the Vivox chat service, extracting SBKD data when a user is typing
in the chat window.

7.3 Console application

The console application is a program made in the C# programming language. Our
main goal when planning and implementing it was to familiarize ourselves with
C#, VSCode and Rider. The main goal of the program is to register which key is
pressed and when that key press occurred relative to when the program started
running. This section presents both a textual description and a sequence diagram
(see Figure 7.6) that illustrate the flow of operations in the console application.

7.3.1 Data classes

This functionality was achieved by creating the three classes which is shown in
Figure 7.5:

The Keystroke classrepresents a keystroke and contains properties for
which key is pressed and the time of the key press in relation to when the session
started.

When a user has submitted a message in the console the keystroke data is
prepared for transmission. This is done by organizing the the data in the Data
class. This class has properties for the username of the message sender, a list of
keystrokes, the full message and the operating system in which the program is
running.

These classes are structuring classes or data classes that move some of the
responsibility away from the main class, the Program class. This class contains
a Main-function that is called on program start. It will prompt the user to enter
some text, then start capturing keystrokes by declaring and initializing a list of
keystrokes as the return value of the CaptureKeystrokes() method.

6https://unity.com/products/vivox-text-chat

https://unity.com/products/vivox-text-chat

66 Milward et al.: Enhancing Chat Moderation with SBKD

Figure 7.5: Class diagram for the console application

7.3.2 Program class

When the method for capturing keystrokes is called it will start a stopwatch, ini-
tialize an empty list of keystrokes, then start a while loop that runs until the enter
key is pressed. The loop awaits a key input, when a key press occurs, the elapsed
time is saved in a variable. A new instance of the Keystroke class is created and the
key and elapsed time is passed as arguments to its constructor and added to the
list of keystrokes. When the enter key is pressed, the loop stops together with the
stopwatch and the list of keystrokes is returned which completes the initialization
of the keystroke variable in Main() method.

Once the list of keystrokes is initialized we pass it as an argument to the
PrepareData(List<Keystrokes>) method. In this method an instance of the Data
class gets constructed by setting the username to a dummy value. The full mes-
sage from the console input is concatenated using a Language Integrated Query
(LINQ) expression with the string.join method to select each character from
the list of keystrokes.

To get the OS version we use the Environment class of the .NET Framework
which contains an OSVersion property which receives an OperatingSystem object
which in turn contains details such as a platform identifier and a version number
which we deemed good enough for this Proof of concept (POC) application7.

Once the data is returned from the preparation function it is passed to a
PostDataAsync(Data) method. This method serializes the Data object into JSON
format, sets the encoding to Unicode Transformation Format – 8-bit (UTF-8) and
sets the mediatype to "application/json" which is defined as a constant property of

7https://learn.microsoft.com/en-us/dotnet/api/system.environment.osversion?view=
net-8.0 - Fetched 23.04

https://learn.microsoft.com/en-us/dotnet/api/system.environment.osversion?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.environment.osversion?view=net-8.0

Chapter 7: Technical Design and Implementation 67

the Program class. The data is then passed to a PostAsync(Uri, StringContent)
function of the HttpClient .NET class and either a success or failure message is
sent to the output stream of the console.

A method to display the prepared data to the console output stream in proper
JSON format was also created, this was used for getting data to test the API in the
early stage before the POST method was implemented. It can be found in the git
repository.

In Figure 7.6 we have included a diagram showing the sequence of the console
application. It covers the flow from starting the program, capturing the keystroke
dynamics data, preparing the data to be sent and then posting the data to the API.

Figure 7.6: Sequence diagram for the console application

7.4 Unity development

In Unity, the development of an application revolves around the concept of a scene,
which acts as a container for all elements within the application8. When creating
a new scene it includes a camera and depending on the version of Unity it may

8https://docs.unity3d.com/Manual/CreatingScenes.html - Fetched 01.05

https://docs.unity3d.com/Manual/CreatingScenes.html

68 Milward et al.: Enhancing Chat Moderation with SBKD

also include a light source. The camera will render the visuals that a user sees,
while the light is used to illuminate the elements within the scene.

The core architecture of Unity is built around GameObjects9, which purpose
is to act as containers for various functionalities though added components. The
previously mentioned camera and light are such GameObjects. Unity has many
pre-made objects with commonly used functionality, like objects for handling au-
dio, physics and user interface elements. In our project we primarily utilized the
camera and UI objects as the others were not relevant for our purpose.

We used the Unity Editor for Unity specific development. It can be thought of
as an IDE for game development. It’s interface is largely drag and drop focused,
but does also provide scripting functionality directly in the editor. In our project
we did not use the built-in scripting functionality as Unity supports integration
with external development environments for writing code and we deemed Jet-
brains Rider a better fit for the task. The Unity editor also has a "Profiler" for
viewing performance metrics such as CPU, GPU and memory usage, rendering
stats and an overview of network operations which helped in detecting potential
problems at an early stage. There are also dedicated debuggers for physics, net-
work, animations and the one utilized most frequently in our case, the UI Toolkit
debugger.

In Figure 7.7 we provide a screenshot of the editor displaying some of the
commonly used windows when using Unity. In the upper left corner section A
of the screen there is the "Hierarchy", which displays the currently opened scene
and all the GameObjects of that scene. The middle part of the screen, section B,
has the "Game" window which displays a real-time preview of the currently active
scene. This is how the scene appears in the built version of the application. To
the right of the screen, section C, there is an "Inspector". When a GameObject
is selected, all of it’s components are shown in this window, and provides a way
to modify or add new behaviors and functionality. At the bottom in section D is
the "Project" window which provides an overview of the directory structure of the
project and an area to display the files contained in a selected directory. Docked in
the same window as the Project window in section D, two other commonly used
tabs are also shown, the "Console" and the "Unity Version Control" which shows
their respective windows.

7.5 Unity Chat Application

The Unity Chat Application was created because there was a need to get famil-
iar with Unity development in general. In the early phases of learning Unity, a
YouTube tutorial on how to make a simple game in Unity was completed by each
group member10. This was done to make sure everyone was acquainted with the
Unity Editor and to eliminate some of the challenges that might get encountered
early on. Each member was also assigned the task of exploring and getting an

9https://docs.unity3d.com/Manual/GameObjects.html - Fetched 01.05
10https://www.youtube.com/watch?v=XtQMytORBmM - Fetched 01.05

https://docs.unity3d.com/Manual/GameObjects.html
https://www.youtube.com/watch?v=XtQMytORBmM

Chapter 7: Technical Design and Implementation 69

Figure 7.7: An example of how the Unity Editor looks

overview of the Unity Documentation pages11.
When the development started on the chat application the Unity User Inter-

face package (uGUI) was utilized and we built the complete UI using this. The
UI framework is based on creating a hierarchy of GameObjects containing com-
ponents for handling the arrangement, positioning, styling and behavior of the in-
terface. Getting the layout to behave as expected proved troublesome because of
some layout components in uGUI that was not performing as specified in the doc-
umentation. When looking for solutions in the Unity developer forums we came
across many posts suggesting UI Toolkit as an alternative to uGUI. In Unity docs
there is a page comparing the different UI systems12 and since Unity recommends
using UI Toolkit for new UI development projects the group decided to rebuild the
UI using the UI Toolkit.

7.5.1 UI Toolkit

The UI Toolkit, formerly known as UI Elements, is a framework that can be used
for creating user interfaces in Unity. As stated in the Unity Manual it is the re-
commended tool when creating new UI development projects and is intended to
replace the older uGUI and IMGUI systems13. The UI Toolkit has been in develop-
ment ever since Unity version 2017.114 which was released in July 2017, but is
still a work in progress and has not yet attained the same level of maturity as the
other UI frameworks.

11https://docs.unity.com/ - Fetched 10.05
12https://docs.unity3d.com/Manual/UI-system-compare.html - Fetched 11.05
13https://docs.unity3d.com/Manual/UIElements.html - Fetched 28.04
14https://docs.unity3d.com/2017.1/Documentation/Manual/UIElements.html - Fetched

28.04

https://docs.unity.com/
https://docs.unity3d.com/Manual/UI-system-compare.html
https://docs.unity3d.com/Manual/UIElements.html
https://docs.unity3d.com/2017.1/Documentation/Manual/UIElements.html

70 Milward et al.: Enhancing Chat Moderation with SBKD

UI Toolkit is similar to common web technologies like HyperText Markup Lan-
guage (HTML) and Cascading Style Sheets (CSS) with their analogs Unity Extens-
ible Markup Language (UXML) and Unity Style Sheet (USS). The UXML is used
to structure an interface and USS is used to style the elements. In Code listing 7.1
is an example of how a simple login form would look in UXML.

Code listing 7.1: UXML login form example

<?xml version="1.0" encoding="utf-8"?>
<UXML>

<Box class="login-form">
<Label text="Username:"/>
<TextField name="username" />
<Label text="Password:"/>
<TextField name="password" type="password" />
<Button name="submit" text="Login" />

</Box>
</UXML>

The Box, Label, TextField and Button defined in the UXML above are all types
of VisualElements, which is the most basic object in UI Toolkit and UXML. Since
they all inherit from the VisualElement base class they are all able to be layed
out, styled and interacted with. A VisualTree is an object graph that defines the
UI and contains all the VisualElements of the window or panel. VisualElements
themselves can have parents and children.

In the Unity Editor there is a UI Builder which provides a user with a drag
and drop interface for building UIs with UI Toolkit. It has a panel for stylesheets
where it’s possible to define selectors for applying styles to the elements. Below
the stylesheet panel there is a hierarchy view of the VisualTree which displays
all the VisualElements and their children. If an element is selected, it’s attributes
and styles will be visible and modifiable in the inspector panel to the right of the
screen. There are only a selection of the USS styles that are modifiable through
the inspector. There is also a Library panel visible in the UI Builder that contains
controls.

Controls are pre-made VisualElements with functionality, behaviour and styles
defined by default. Some examples include: ListView, Button, Label, Dropdown
and Toggle. With these pre-made elements only some of the functionality and
styles are modifiable directly in the UI Builder, it is however possible to directly
modify the applied USS styles either through creating a separate USS file and
defining a selector for the element, or through accessing the element in C# code
and setting it there. Sufficient documentation on specific VisualElements can be
scarce or non-existent, but it’s often possible to find the desired information in the
Unity forum15. Creating custom controls is also an option.

15https://forum.unity.com/- Fetched 05.05

https://forum.unity.com/

Chapter 7: Technical Design and Implementation 71

7.5.2 Layout

The UI layout was inspired by existing chat services such as Discord, Teams or
Messenger (3.3.4). The UI can be split into three columns.

Figure 7.8: Unity chat application screenshot

The left aligned column contains two sections that each contains statistics. The
top section contains statistics about the message history and the bottom section
contains statistics about the message input field. Currently they have counters. In
the top section there are a counter for the number of message and in the bottom, a
counter for the number of keystrokes. This was just to provide an example for the
layout, and more useful statistics could be added at a later stage. The middle top
column contains a message history where posted messages would appear. Each
message has a field for the username, timestamp with date and time, and the
message itself. The middle bottom column has a text field where a user can input
their message. Lastly, the right columns contains sections for controls, where each
section has it’s own responsibility, like general application controls, chat history
controls and chat input controls. We did not populate the general and chat history
control panels with any functionality as our focus was on creating an MVP where
the chat functionality was in focus. The functionality of the buttons in the bottom
section is for clearing the text field and for submitting the message.

7.5.3 Keylogger prefab

Testing of SBKD data capture in an unknown environment was also an essential
part of this prototype. While previously only recording the keys typed in a terminal
window (7.3), we now had to handle UI as well. We further developed and refined
the code from the console application to also work with this implementation.

Initially, we used the Update() method that is included in all classes that in-

72 Milward et al.: Enhancing Chat Moderation with SBKD

herit from the MonoBehaviour parent class16. When the scene the script resides in
is active, this function is called every frame. Though technically working in our
favor capturing every user’s press of keys, it is tied to the application frame rate
which could lead to some of the keystrokes being missed or record faulty timing
information.

FixedUpdate() also seemed like a viable option, as it calls logic inside it in
a fixed time interval of 0.02 seconds17. This would decouple the capturing of
keys from the client frame rate, but does unfortunately not solve the problem of
potentially missing keystrokes. If a user presses two or more keys within the fixed
interval, two keys would be recorded in the same frame and as a single keystroke
element rather than the single one. The data would in this case have to be sorted
which would require looping through all of the keystrokes several times.

In the version of the keylogger Unity prefab in this iteration, the decision was
made to have the Update() function handle the logic. It would check for user in-
put every frame by calling the DetectKeys() function which fetched the Keycode
for the pressed key by looping through the Keycode Enum used in Unity (Code
listing 7.2).

Code listing 7.2: Pseudocode using Update()

1 private void Update()
2 {
3 // Check if chatField is active, dont track if not
4 if (chatController.IsTextFieldActive())
5 {
6 // Start stopwatch
7 // Start detecting keys, will run until Enter/return is pressed
8 DetectKeys();
9

10 // Check if return is pressed by checking if it is in the cache
11 if (_keyCache.ContainsKey(KeyCode.Return))
12 {
13 // Remove return key from cache,
14 // Send data to API
15 // Clear keystroke and keycache register
16 // Restart stopwatch
17 }
18 }
19 }
20
21 private void DetectKeys()
22 {
23 // Loop through each element in the KeyCode Enum that is built into Unity
24 foreach (KeyCode key in Enum.GetValues(typeof(KeyCode)))
25 {
26 // Check if the key is pressed down in this frame and not in cache
27 if ()
28 {
29 // Add time key was pressed down to key cache
30 }

16https://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html - Fetched 11.05
17https://docs.unity3d.com/ScriptReference/MonoBehaviour.FixedUpdate.html - Fetched

11.05

https://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.FixedUpdate.html

Chapter 7: Technical Design and Implementation 73

31
32 // Check if the key is released in this frame and was recorded
33 if ()
34 {
35 // Add keystroke to list
36 // Remove key from cache, as it has been released
37 }
38 }
39 }

The use of the Update() function was a good option when wanting to show
off the prototype. The goal was not a refined solution, but rather one that AIBA
could give specific feedback on while still solving the task specified in the task
description (Chapter 11). The code would still have to be optimized and tested,
but the ideal feedback we wanted for this stage was on the application workflow
rather than how well the code ran.

The key capture data that is saved during a typing sessions is stored in Serial-
izable classes in Unity18. By using the UnityEngine JsonUtility class, the class and
its data can easily be represented in JSON format. Having the data represented
in the correct way, we could send a POST request to the API with the keystrokes
and its respective timing information.

Only requiring the injection of a single UI Gameobject where a user can type,
this Keylogger prefab was revised and reused when capturing SBKD from the Vivox
chat engine (7.7).

7.6 SDK

The following sections introduce all the components of the SDK and how they
were implemented in their respective regard.

7.6.1 Capturing SBKD data

The sequence diagram for the Keylogger displayed in Figure 7.10 explains the
sequence of interactions between the system’s components in response to user-
generated events. The process is initiated when a user triggers a KeyDownEvent
(KDE) by pressing any key while the text field is focused. The event is captured by
the text field through a callback to a KDE handler method in the Keylogger class.
Subsequently, when the key is released a KeyUpEvent (KUE) is captured through
a similar callback to a KUE handler. The Pseudo code of this interaction can be
found in Code listing 7.3.

When a KDE is received, the keylogger class will check with the ChatUIMan-
ager class to see if command mode is triggered. If it is, the KDE handler method
will reset the keylogger state and return. If the command mode is not triggered
the method will proceed with initiating the stopwatch to record the initial KDE
time. When a KUE is received the keylogger calculates the total duration of the
key-press by referencing the KDE timestamp and current time. This information

18https://docs.unity3d.com/ScriptReference/Serializable.html - Fetched 16.05

https://docs.unity3d.com/ScriptReference/Serializable.html

74 Milward et al.: Enhancing Chat Moderation with SBKD

is saved in the Keystroke and the SbkdData classes (see Figure 7.9).

Figure 7.9: Final iteration data classes

After the keystroke has been added to the list of keystrokes the data is prepared
for transmission by serializing it to JSON and passing it to the APIHandler. This
component is responsible for uploading the keystroke data to the remote API.
When all data has been sent and processed the keylogger’s internal state is reset.

In parallel with uploading the data to the API, the list of keystrokes is also
passed to the KeystrokeStatisticsManager instance which performs statistical ana-
lysis on the list and triggers a StatUIManager class to update the values in the
statistics panel of the UI.

Code listing 7.3: Pseudocode Key Handlers

1 private void KeyDownHandler(KeyDownEvent kde)
2 {
3 // Reset KeyLogger state if command mode, return
4
5 // if key pressed is Return-Key, Send data and reset state, return
6
7 // Start stopwatch if not already running
8
9 // Add keycode and time of key press to cache

10 }
11
12 private void KeyUpHandler(KeyUpEvent kue)
13 {
14 // Assign variable to key pressed and check if cache contains key
15
16 // Assign variables for key down time, up time
17
18 // Add keystroke with information to list of keystrokes
19
20 // Remove key from cache as it has been released
21 }

Chapter 7: Technical Design and Implementation 75

Figure 7.10: Sequence diagram for the keylogger

7.6.2 RESTful API

Initially used for testing data transfer and for facilitating the proof of concept, an
API was created as part of the SDK.

The API was created using Golang19 with a NoSQL Firestore20 database for
storing data captured in the keylogger (7.7).

Golang was used due to its familiarity from the PROG2005 course and it’s sim-
plicity for building endpoints. As the API was necessary for proving the feasibility
of sending HTTP requests from Unity, the framework we used had to be effectively
deployed and functional early on in the development phase.

7.6.2.1 Communication

All communication between Unity keylogger and API is in the JSON file format
and is compressed using gzip. Protobuf was also considered a viable candidate for
the file format choice due to its efficiency in storing data and speed in serializ-
ation and deserialization. However, as the application had not implemented any
sort of message batching as suggested in Section 4.2.2.4, we chose to use JSON.
Compressed JSON files were found in Section 4.2.2.2 to use less bandwidth when
the package had less than 1,900 key entries, which the 320 UTF-8 character limit
in the chat application further ensured that all packages were.

The communication is a Request-Response model which in turn follows REST
API principles and architectural constraints21. The API supports the REST methods
GET, POST and DELETE to be able to view, add and delete data stored in the API.

19https://go.dev/ - Fetched 03.05
20https://firebase.google.com/docs/firestore - Fetched 03.05
21https://www.redhat.com/en/topics/api/what-is-a-rest-api#rest - Fetched 15.05

https://go.dev/
https://firebase.google.com/docs/firestore
https://www.redhat.com/en/topics/api/what-is-a-rest-api#rest

76 Milward et al.: Enhancing Chat Moderation with SBKD

When a request is sent to the endpoint, a relevant response body and status
code is sent back (Code listing 7.4, Code listing 7.5). This ensures the service that
receives gets feedback on whether the transmission was successful or not.

Figure 7.11: Case-specific REST API communication

Code listing 7.4: JSON request when POST-ing data

1 {
2 "username": "user",
3 "keystrokes": [
4 {
5 "key": "H",
6 "keydown": 0.0811971,
7 "keyup": 0.1783721,
8 "duration": 0.097175,
9 "latency": -0.0960924,

10 "modifiers": "None"
11 },
12 {
13 "key": "E",
14 "keydown": 0.2418755,
15 "keyup": 0.3312188,
16 "duration": 0.0893433,
17 "latency": 0.0635034,
18 "modifiers": "None"
19 },
20 {
21 "key": "Y",
22 "keydown": 0.4710933,
23 "keyup": 0.5766012,
24 "duration": 0.1055079,
25 "latency": 0.1398745,
26 "modifiers": "None"
27 }
28],
29 "fullmsg": "hey",
30 "os": "Microsoft Windows NT 10.0.22631.0"
31 }

Code listing 7.5: JSON response when POST-ing data

1 {
2 "id": "9fe48431-3e4e-46cc-9fad-4db2c889a56c"
3 }

The different status codes, example requests and response as well as how to
interact with the API are described in the README that is included as SDK docu-
mentation.

Chapter 7: Technical Design and Implementation 77

7.6.2.2 API Storage

For persistence of data we have used a Google Firebase database. When a valid
entry is sent to the API and stored in Firebase, it is given an UUID. In the data-
base, we would ideally be able to separate each entry using a unique identifier to
search for single entries. Assigning a UUID to an entry does not make the probab-
ility of duplicated values zero, but the chances are considered negligible as they
are close to zero22. This choice was made due to the need of a NoSQL database,
as we believed the JSON structure of the data would be reworked several times in
the span of the project. MongoDB23, which is also a Cloud-based NoSQL database
would also fulfill our requirements but fell short due to Firebase’s free version
offering twice as much storage capacity compared to MongoDB. Other Structured
Query Language databases such as SQLite24 were considered, but were not a vi-
able choice given that the structure of the data for transmission had not been
defined this early on in the development phase.

7.6.2.3 Deployment of changes

The API is deployed by utilizing assigned resources on NTNU Gjøvik’s Openstack
installation, SkyHiGh. This means that the API is dependent on SkyHiGh to func-
tion properly, unless deployed elsewhere.

The API is deployed with Docker and simplified using Docker-compose. An
installation guide for the initial deployment one can follow on their own can be
found in Appendix F.

Using Docker-compose mitigates a lot of manual commands that one has to
write. Instead of having to create a new image and then deploy it, we can just run
a single command. Furthermore, we facilitated for even less manual interaction
with the VM by making a Bash-script that automates deploying changes to the API
(Code listing 7.6). This script takes in 2 arguments:

• $1 Absolute or relative Path to the private key used to access the VM
• $2 The directory of files that should be copied

These path parameters should be defined as environment variables or kept in
an .env file before running the script. Whilst the most common and more secure
method used in production environments would be to inject secrets in a pipeline
during deployment25, defining environment variables is a simple measure that
makes it considerably more secure. Using environmental variables in this way
avoids exposing the file structure of your local machine and is generally con-
sidered good practice when dealing with secrets.

The aforementioned bash script runs another bash script on the VM, update.sh
that sets current directory and runs docker compose up -d. A new container with
the changes that were applied now runs on the VM.

22https://en.wikipedia.org/wiki/Universally_unique_identifier - Fetched 02.05
23https://www.mongodb.com/ - Fetched 102.05
24https://www.sqlite.org/ - Fetched 11.05
25https://cheatsheetseries.owasp.org/cheatsheets/Secrets_Management_Cheat_Sheet.

html - Fetched 10.05

https://en.wikipedia.org/wiki/Universally_unique_identifier
https://www.mongodb.com/
https://www.sqlite.org/
https://cheatsheetseries.owasp.org/cheatsheets/Secrets_Management_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Secrets_Management_Cheat_Sheet.html

78 Milward et al.: Enhancing Chat Moderation with SBKD

Code listing 7.6: Bash script for deploying changes (IP redacted)

1 #!/bin/bash
2
3 # Uses scp to copy files securely onto the VM.
4 scp -i $1 -r $2 ubuntu@[Public IP]:/home/ubuntu/
5
6 # SSH into the VM, and run the script on there which deploys the new changes
7 # to the API + spins up docker container.
8 ssh -t -i $1 ubuntu@[Public IP] ’sh␣update.sh’

7.7 Unity Chat Application with Vivox

Vivox is a communication service providing voice and text chat technology for
online games. In 2019 the company was acquired by Unity and integrated into
their developer platform, Unity Gaming Services (UGS). It is currently used in
more than 650 games developed using either Unity or Unreal Engine on Steam26.
It supports most major platforms such as Xbox, PlayStation, PC, Android, and iOS.
The service is engine agnostic, and can be integrated with a custom engine using
the Unity Core SDK27.

The reasoning for choosing to implement the chat using Vivox is that we
wanted to investigate if there was any unexpected hurdles when capturing SBKD
data in an environment likely to be encountered in a Unity game. To further facilit-
ate this we created the chat interface shown in Figure 7.13. A dependency diagram
of the final application with the keylogger SDK is also included in Appendix I.

7.7.1 User Authentication

Vivox requires a means of user authentication when using their services. In UGS
there is a service called Unity Authentication which lets developers authenticate
users through either SDK or API calls. In the project we opted for utilizing the
Authentication SDK by creating an AuthManager class acting as a wrapper for the
Authentication service methods provided by UGS. This class invokes events on
sign up, sign in and sign out which triggers scene changes.

UGS enables users to authenticate anonymously with Unity creating a player
ID and associating it with a session token without any input from the user. Ad-
ditionally, Unity provides functionality for third-party authentication, including
Unity Player Accounts, Google accounts, Facebook, Steam, and username and
password solutions amongst others28. In the project, we opted for the username
and password solution. Unity imposes certain requirements for the username and
password such as uniqueness of the username, credential length and allowed char-
acters. To comply with these requirements, a regular expression-based validation
service class was created, which the credentials were passed though in the sign-up
process. In addition, a class for displaying information and visual feedback to the

26https://steamdb.info/tech/SDK/Vivox/ - Fetched 03.05
27https://unity.com/products/vivox-voice-chat - Fetched 03.05
28https://docs.unity.com/ugs/en-us/manual/authentication/manual/approaches-to-

authentication - Fetched 05.05

https://steamdb.info/tech/SDK/Vivox/
https://unity.com/products/vivox-voice-chat
https://docs.unity.com/ugs/en-us/manual/authentication/manual/approaches-to-authentication
https://docs.unity.com/ugs/en-us/manual/authentication/manual/approaches-to-authentication

Chapter 7: Technical Design and Implementation 79

user was included, where the border color of the message is based on the validity
state of the credentials. As can be observed in Figure 7.12, where a valid username
and password are provided, but without a matching confirmation password.

Figure 7.12: Visual feedback on credentials in the sign up process

7.7.2 Concurrent users

It is possible for multiple users to communicate in the chat application simultan-
eously. A "participants" panel that would be visible whenever multiple users were
in the same channel was implemented. This panel would show the usernames of
the participants. However, in the final product, it was decided to hide this feature
in order to avoid cluttering the UI with unnecessary elements. The majority of the
functionality for sending private messages between users instead of in a "public"
channel has been implemented, but not utilized, as it would deviate from the core
objectives of the project.

Upon posting of a new message to a channel, whether by the user in question
or another user, an event is triggered, resulting in the UI being updated by the ad-
dition of the new message and a scrolling action to the bottom of the chat history.
The username displayed in the message will be coloured green for the currently
logged-in user and blue for other users’ messages as can be seen in Figure 7.13.

7.7.3 User interface & interaction

In the final iteration of the chat application where Vivox was utilized, an oppor-
tunity was identified to enhance the interface and align the visual representation
with a more contemporary style. This task proved challenging due to the limita-
tions of UI Toolkit, which is not yet fully developed and lacks certain functionality
found in the web technologies it’s based on, including z-index, shadows, blurs,
and pseudo-classes for USS. The appearance of some default controls, such as
ListView and TextField, cannot be modified using the UI Builder. Therefore, the
UI Toolkit debugger, a tool similar to Developer Tools or Inspector in a browser,

80 Milward et al.: Enhancing Chat Moderation with SBKD

had to be used to identify the correct USS selectors. The design is inspired by the
Discord interface, with modifications made to accommodate the statistics panel.
This can be observed in Figure 7.13.

Figure 7.13: The final iteration of the chat interface

The interface can be divided into four sections. The top of the screen displays
a tool and information bar, which includes the username of the currently signed-in
user. Additionally, a sign-out button is located here.

The first column on the left, with the header "Channels," displays the channels
a user has joined. The channels are selectable by clicking them. At the bottom of
the channels column, there is a "Leave channel" button, which leaves a selected
channel and removes it from the list. The channel with the name "Global" is a
channel that all users join by default. It is also not possible to leave this channel.

The middle column displays the chat interface, which contains the message
history of a channel and a text field for writing and sending a message to the se-
lected channel. If no channels are selected when a message is written, no actions
are taken. However, when a channel is selected, the message history of the chan-
nel is displayed. Currently, only the default value of 10 messages are displayed in
order to conserve bandwidth and avoid straining the Vivox SDK, as is considered
a good practice. However, this limit can be expanded by modifying a configur-
ation constant in the code. A paging mechanism with lazy loading29 could also
be implemented, but this was considered a low priority task. The Scrollbar to the
right of the message history is hidden until there are enough messages to warrant
scrolling, at which point it will scroll to the bottom of the history when a new
message event is received.

At the base of the chat interface is a text field where a user may input a chat
message. This text field has a size limit of 300 characters, as the default Vivox
configuration has a limit of 320 bytes with the UTF-8 encoding per message. It

29https://www.cloudflare.com/learning/performance/what-is-lazy-loading/ - Fetched
16.05

https://www.cloudflare.com/learning/performance/what-is-lazy-loading/

Chapter 7: Technical Design and Implementation 81

is possible to alter this limit through a pre-login configuration, as detailed in the
Unity manual30. However, this was not done in this instance, as the objective
was to demonstrate that the system was functioning correctly. The text field will
expand and contract in the vertical direction in accordance with the calculated
size of the characters. Located immediately above the text field is a button labeled
"Clear" that clears the text and resets the Keylogger state.

The Statistics panel, located to the right of the interface, displays statistical in-
formation derived from the messages that the user has sent. The top left section of
the panel displays the statistics for the most recent message that the user has sent,
while the top right section displays the cumulative statistics for all messages in the
current session. The lower section of the panel comprises four sections, each con-
taining two bars. The bars provide a visual representation of the statistical values
displayed in the upper section of the panel and are color-coded identically to those
values. Each section contains a bar for the most recent message on the left and
the statistics for the entire session on the right. Since a negative latency is a valid
value, the baseline of the latency bars is set to the middle of the container. If the
value is less than 0, the bar will reflect about the baseline (to point downwards).

7.7.4 Statistical calculations in UI

Making a statistics panel and displaying the statistics based on the keystroke dy-
namics data was not part of the initial task. The team still though it would help
in showcasing some aspects in the field of SBKD analysis, and to provide some
real-time visual feedback to any users of the chat application.

The following list outlines the methodology used to derive the values displayed
in the UI. Where applicable, each list entry starts with an explanation for the value
of the latest message, then proceeds with an explanation for the sessions cumu-
lative messages. In Figure 7.14 a screenshot of the statistics panel is presented.
The messages sent to produce the values consists of a variety of different typing
cadences, rhythms and button mashing.

• Message duration: is calculated by taking the time from the sessions last
KeyUpEvent (KUE) (excluding the enter key press) and subtracting the time
of the first KeyDownEvent (KDE) resulting in the total time taken to write
the message. The time of the first KDE will be approximately zero in most
cases, but some delay in the order of a few microseconds due to processing
are factored in. For the cumulative statistics, the durations are summed up
and divided by the number of entries to get the average duration of writing
a message in the current session.
• Keystroke count: in the case of the latest message, the keystrokes are simply

counted with a call to the Count() extension method of the IEnumerable
interface in C#. For the cumulative statistics, the number of keystrokes in
each list is summed up and divided by the total number of messages giving

30https://docs.unity.com/ugs/en-us/manual/vivox-unity/manual/Unity/text-chat-
guide/text-chat-guide-overview - Fetched 17.05

https://docs.unity.com/ugs/en-us/manual/vivox-unity/manual/Unity/text-chat-guide/text-chat-guide-overview
https://docs.unity.com/ugs/en-us/manual/vivox-unity/manual/Unity/text-chat-guide/text-chat-guide-overview

82 Milward et al.: Enhancing Chat Moderation with SBKD

Figure 7.14: The statistics panel of the interface

the average number of keystrokes per message.

For the following calculations there are in essence no other difference between
the latest message and cumulative message calculations besides the list that is
passed to the method.

• Keystroke rate: is calculated by counting the number of keystrokes and
divide the sum by the total time resulting in a value with the unit Keystrokes
per minute (KPM). Since the keystroke timings are recorded in seconds we
convert the time to minutes to get the KPM.
• Average keystroke duration: These are the dark blue colored values. They

are calculated by using a LINQ expression where the Average() method is
called on the duration property of the Keystrokes in the respective list. The
duration property contains the time value from a KDE to the same keys KUE.

Chapter 7: Technical Design and Implementation 83

• Average keystroke latency: These are the orange colored values. Similar
to the duration calculation, the latency also uses the Average() method to
compute the latency. A notable difference is that the first keystroke’s latency
is removed from the list before processing as it will always be zero, since the
latency itself is calculated by subtracting the previous KUE from the current
KDE. Negative values are valid and produced by pressing a different key
before releasing the previous key.
• Standard deviation duration: These are the cyan colored values. The de-

viation is calculated by taking the difference between each keystroke’s dur-
ation and the average duration, squaring this difference, and summing all
these squared differences. Finally, the sum of squared differences is divided
by the number of keystrokes to get the variance, and the square root of the
variance gives the standard deviation. This would show how much variation
there is in the keystroke durations relative to the average duration.
• Standard deviation latency: These are the red colored values. The latency

standard deviation calculation is fundamentally the same as for the duration
standard deviation.

7.7.5 Formulas utilized in statistics calculations

We include a general formula for the average of a property in a collection since it
is used throughout the calculations. N is the number of elements in the list and x i
would be substituted for the values.

Average=
1
N

N
∑

i=1

x i

Calculations for keystrokes per minute:

Total time in minutes=
Total time in seconds

60 seconds per minute

KPM=
Total number of keystrokes

Total time in minutes

General formula for standard deviation:

Sum of Squared Differences=
N
∑

i=1

(x i −µ)2

Variance=
1
N

N
∑

i=1

(x i −µ)2

84 Milward et al.: Enhancing Chat Moderation with SBKD

σ =
p

Variance=

√

√

√

√

1
N

N
∑

i=1

(x i −µ)2

where:

• N is the total number of elements in the collection.
• x i is the value of the i-th element in the collection such as duration or latency

of a keystroke.
• µ is the mean (average) value of the elements in the collection.
• σ is the standard deviation.

7.7.6 Keylogger integration with chat application

The integration of the Keylogger class with a chat application is dependent on the
implementation of the chat application itself and which frameworks is used. The
primary focus when integrating the keylogger with the application we created has
been on integration with UI Toolkit because that is what Unity recommend for new
UI projects13. However, when developing the second iteration of the Keylogger, it
was successfully utilized with the old Unity User Interface package (uGUI) before
refactoring it to use UI toolkit.

In our implementation of the Keylogger class, two fields are declared: one of
the TextField type and another of the UIDocument type. The UIDocument field is
marked with the [SerializeField] attribute, enabling it to be initialized directly
within the Unity Editor. This is achieved by dragging the corresponding UIDocu-
ment GameObject onto this field in the Inspector panel, thus linking the UI docu-
ment to the Keylogger script (see Figure 7.7 section C for a view of the Inspector).

Following the initialization of the UIDocument, the TextField instance is sub-
sequently initialized. This is accomplished by accessing the rootVisualElement
property of the UIDocument, which serves as the container for the UI elements
defined in the UI document. The TextField is then specifically retrieved by invok-
ing the Q<TextField>("idOfTextField") method. Here, "idOfTextField" refers to
the unique identifier or name assigned to the TextField element within the Unity
Extensible Markup Language (UXML) definition. This method effectively locates
and initializes our TextField instance, allowing it to be used within our class for
further operations.

Using old UI system
When integrating the Keylogger class using uGUI instead of UI Toolkit, this ne-
cessitates a slightly different approach due to the architectural and component
system differences between the two. In uGUI, components are generally attached
directly to GameObjects in the scene, and these components are managed and
accessed through scripts. In the case of uGUI, one would begin by attaching a
script to the GameObject that contains the InputField component, which is uGUI’s
equivalent of UI Toolkit’s TextField.

To get a reference to the InputField component the GetComponent

Chapter 7: Technical Design and Implementation 85

<InputField>() method could be used, which retrieves the component attached to
the same GameObject as the Keylogger. The reference to the InputField component
allows the Keylogger to subscribe to the onValueChanged and onEndEdit events,
which are triggered whenever the user types into the field or completes their input,
respectively.

Custom solutions:

Another possibility would be to use the custom input handlers with
"Input.GetKeyDown" and "Input.GetKeyUp" from the Unity Scripting API and asso-
ciate these key events with the active UI elements which would be a lot more com-
plex than using either the built in functionality of UI Toolkit, or the "valueChange"
and "onEndEdit" listeners of uGUI.

The last possibility we explored to a significant depth was creating a custom
control for a text field. In this option the best suited solution would be to extend
the already existing TextField or BaseField of UI Toolkit to override or create new
methods with the desired functionality. This would still provide the opportunity
to inherit the ability to register callbacks with KDE and KUE. A possible advantage
to this option would be to build the Keylogger’s functionality directly into the new
TextField control.

7.7.7 Command-line mode

As a way to explore one of the group members personal curiosity, and to prevent
the UI becoming crowded with elements that could take away focus from the core
of the Proof of concept (POC) application, command-line functionality was added.
It was implemented directly in the text field analogous to how Discord commands
operate.

In the chat interface UIManager class there is a callback to a handler method
on the text field for handling message submission when a KDE with the key code
for the "enter" key is pressed. A boolean flag, "IsCommandMode", at the top of
this function is set to "true" when the first KDE has the key code for the "/" char-
acter. This flag is accessed in the Keylogger and stops the recording of keystroke
dynamics data and resets the Keylogger’s state.

In the figure below (Figure 7.15), a class diagram of the command-mode re-
lated entities is shown:

Furthermore, a call to the static method
CmdProcessor.ProcessCommand(string input) is performed. This method trims
the command keyword "/", from the input string, then splits the rest of the string
into a command and an argument and passes them to the asynchronous
CmdProcessor.ExecuteCommand(string command, string argument) method
for execution. See (Figure 7.16) for the activity diagram providing a high level
overview of the decisions in the process.

A member of the CmdProcessor class is a field of a Dictionary type with the
generic type arguments "string" and "ICommand". This dictionary is used to hold
a mapping of command keywords to their corresponding ICommand implementa-

86 Milward et al.: Enhancing Chat Moderation with SBKD

Figure 7.15: A class diagram for the command mode related classes and interface

tions. There are currently two implemented commands, "JoinGroupChannel" and
"LeaveGroupChannel".

The ICommand interface was created to promote separation of concerns within
the application. Each command implementation can focus solely on its specific
functionality without needing to consider the execution logic handled by the Cm-
dProcessor. This design approach simplifies the process of extending the system;
new commands can be added without modifying the CmdProcessor class, adher-
ing to the Open/Closed Principle. By not requiring CmdProcessor to be aware of
the details of each command, the design achieves loose coupling between classes,
enhancing modularity and maintainability.

To expand with additional commands, a command class that implements the
ICommand interface needs to be created. It is also recommended to add a constant
for the command keyword. Then a new entry in the command dictionary of the
CmdProcessor class needs to be created with the command keyword constant and
an instance of the newly created implementation of the command class.

Example commands:

• If the command /joinGroupChannel channel1 is typed in the input field
and the enter key is pressed to submit the command. A Vivox group channel
with the name "channel1" would either be joined, or created and joined if
it did not exist prior to the command submission. The channel would be
displayed in the "Channels" panel of the UI
• Similarly the /leaveGroupChannel channel1 command will leave the chan-

nel if it is joined. It is possible to re-join the channel again after leaving.

Chapter 7: Technical Design and Implementation 87

Figure 7.16: Activity diagram illustrating the command handling process in the
CmdProcessor

7.7.8 Unity Asset store

If the SDK is to be deployed on the Unity Asset store, there is a requirement im-
posed by Unity for the implementation of a DSA notification that is shown to a
signed in user. Any time a user signs in, a check for notifications should be per-
formed, and if any are found it should be displayed to the user. The same applies
for restricted user. To help developers meet this requirement, Unity has created a
new notifications API for this purpose31.

31https://docs.unity.com/ugs/en-us/manual/authentication/manual/dsa-notifications
- Fetched 16.05

https://docs.unity.com/ugs/en-us/manual/authentication/manual/dsa-notifications

8 Deployment

This chapter provides information on how the solution could be deployed on the
companies services, with detailed instructions on how to integrating the SDK with
AIBA’s API gateway.

8.1 Deployment on client service

AIBA provided general instructions on how their API is configured and how their
customers connect to it. From this information, we will explore the process of
rerouting the Soft Biometric Keystroke Dynamics (SBKD) data from the Unity SDK
directly to the client.

8.1.1 AWS API Gateway

Amazon Web Services (AWS) is a cloud computing service providing comprehens-
ive Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as
a Service (SaaS) services. Providing a pay-as-you-go model, this makes it a great
choice for companies such as AIBA as they can administrate the costs and scale up
and down as needed1. The client has recently ported their services to AWS, and
use one such IaaS service; the RESTful API gateway for transmission of chat data
to and from their clients. The API gateway is described in Figure 8.1.

Figure 8.1: Amazon API gateway architecture 1

Some of the relevant features AWS provides by the AWS API gateway2 are:

• Support for stateful (WebSocket) and stateless (HTTP and REST) APIs.
• Authentication mechanisms (AWS Access Management policies, Lambda au-

thorizer functions, and Amazon Cognito)

1https://aws.amazon.com/api-gateway/ - Fetched 19.05
2https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html -

fetched 19.05

89

https://aws.amazon.com/api-gateway/
https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html

90 Milward et al.: Enhancing Chat Moderation with SBKD

• Tools for monitoring API usage and costs (CloudTrail and CloudWatch)

AWS provides a graphical UI for creating APIs. Furthermore, in terms of APIs,
one is presented with the choice of creating an HTTP API or a RESTful API, where
the latter provides more functionality and supports more features.

8.1.2 Enabling private integration

Accessing the API gateway can be done through a number of ways2:

• AWS Management Console – provides a web interface for creating and man-
aging APIs. Have to create an account, an administrator account and assign
users to privilege groups.
• AWS SDKs – Simplifies authentication, integrates easily with development

environment, and provide access to API Gateway commands. Can only be
used if AWS supports the programming language.
• API Gateway V1 and V2 APIs
• AWS Command Line Interface
• AWS Tools for Windows PowerShell

Ultimately, AIBA uses a template for building an API with private integration
to allow customers to access resources through HTTPS 3.

Implementation wise, AIBA must facilitate a private connection by creating a
new REST API and turn on VPC proxy integration by enabling VPC link. Further-
more, they must add the VPC id, stageVariables.vpcLinkId to the VPC link. By
adding the VpcLink, approved clients requests will be forwarded to the Virtual
Private Cloud (VPC) that the company possesses. Thus, this becomes the integra-
tion endpoint.

When the API is configured and eventually called by a client, the network load
balancer routes the requests to the intended receiver component of AIBA’s Virtual
Private Cloud and returns back-end responses to the caller.

8.1.3 Integration with SDK

First and foremost, the Unity keylogger prefab must be attached to a chat in a Unity
game to start capturing and sending data (Section 7.7.6). This SDK incorporates
all the functionality needed to capture keystroke dynamics data in a Unity game
chat and sending it to an API (Section 7.7).

When it comes to the data transmission, the Unity SDK we have developed
already interfaces with a self-developed REST API and should therefore have no
issues with accessing AIBA’s API. REST API interfaces are meant to be uniform4,
and as long as they make the effort to grant access to the SDK, it should be plug-
and-play. Additionally, as the APIHandler from the Unity SDK sends compressed
data, AIBA must ensure that they decompress the zipped file to access the JSON
contents.

3https://docs.aws.amazon.com/apigateway/latest/developerguide/getting-started-
with-private-integration.html - fetched 19.05

4https://restfulapi.net/ - fetched 19.05

https://docs.aws.amazon.com/apigateway/latest/developerguide/getting-started-with-private-integration.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/getting-started-with-private-integration.html
https://restfulapi.net/

9 Quality Assurance

In this chapter, we delve into the details of how we ensured the quality of the SDK.
This is accomplished by examining and testing its conformity to the requirements
outlined in Section 3.3.1, followed by presenting the standards used to streamline
the program’s code. Lastly, the chapter discusses how our SDK performs across
different operating systems.

9.1 Quality assurance of keylogger

To ensure that the keylogger functions as within the requirements set forth in
Chapter 3, it is crucial to conduct adequate testing to verify its compliance. Given
that our main product is an SDK and not intended for direct user interaction, we
determined that user tests would provide limited feedback on the SDK’s function-
ality. Instead, we focused on verifying the precision of the times recorded by the
SDK, aiming for accuracy and a low variability from expected values.

9.1.1 Manual Verification and Analysis of an Automated Test Setup

The test setup involved an automated Python script utilizing the pynput.keyboard
library to simulate key presses and releases at set intervals. Due to the pynput.keyboard
library’s key press and key release methods, each of which took approximately 0.9
ms on the test machine, the script also logged the actual duration and latency of
each keystroke from the script. We then used the script to log key press times
on the SDK within the chat application. The times recorded by the Python script
and those provided in the Vivox statistics panel were then manually logged into a
separate list to facilitate a comparison between the Python script and the SDK.

9.1.2 Results from tests

Based on 25 rounds of using a Python script to type 320 characters into the ap-
plication, we calculated the mean differences in latency, duration, and total typing
time. Additionally, we computed the standard deviation for these values to assess
the stability of the measurements.

• Latency: The mean delay from key press to the time logged by the SDK was
0.38 ms, with a standard deviation of 0.12 ms.
• Duration: Unexpectedly, the SDK recorded durations 0.37 ms faster than

the key presses, with a standard deviation of 0.13 ms.
• Total Time per Keystroke: Surprisingly, the SDK registered total times 0.22

ms faster than the Python script, with a standard deviation of 0.23 ms.

9.1.3 Timing Discrepancies and Consistency Analysis

It may appear counterintuitive that the duration times registered by the SDK are
shorter than those recorded by the keylogger. However, a closer examination of
the libraries used to simulate the key presses provides an explanation. In a test

91

92 Milward et al.: Enhancing Chat Moderation with SBKD

involving 10,000 key presses and releases, we found that the average times were
0.89 ms for key presses and 0.91 ms for key releases. Further examination of the
key release method in the Python pynput.keyboard library revealed that additional
checks are performed after the key is released, which adds extra overhead before
the method completes. Conversely, the SDK timer stops immediately after regis-
tering the key release. The negative total key entry time appears to be a follow-up
error from the duration measurement in Python.

Despite these unusual numbers, they are not as critical as the consistency of
the time logging. A discrepancy of half a second between the time a key is pressed
and the time it is logged in the SDK would render the keylogging functionality
nearly useless due to insufficient precision for analysis. Fortunately, the standard
deviation between the key press script and the SDK is very low. The standard
deviation for total time per key press is under 0.25 ms, while duration and latency
are both well under 0.15 ms.

9.1.4 Evaluation of Non-Functional Requirements

The first requirement in the non-functional requirements (Section 3.3.1) regard-
ing performance is that the delay for each keystroke should not exceed 78 ms, as
this is perceivable to the average person. Our tests show that the delay for each
key press is at most 0.25 ms, meaning that this requirement is satisfactorily met.

In an early client meeting, Professor Bours indicated that the SDK does not re-
quire accuracy beyond 0.1 ms. The standard deviations, which show times slightly
above 0.1 ms in variation, suggest that the system is either already adequate or
very close to being adequate for a final product, thus almost satisfying the second
non-functional requirement regarding maintaining discrepancies below 0.1 ms.

Regarding the ability to capture keystroke data at the speed of high-end human
typing, the goal was to capture at least 441 characters per minute. In our tests,
we were able to capture all keystrokes at speeds in excess of 10,000 keystrokes
per minute, far exceeding this requirement.

For the last requirement, we conducted tests as described in Appendix G,
where we outlined strategies for minimizing file sizes and implemented the spe-
cified approach, as explained in Section 7.6.2.1.

9.1.5 Final thoughts

The low standard deviation observed is a promising indicator of the SDK’s con-
sistency. Additionally, the fact that the mean differences between the SDK and the
Python script are less than 0.25 ms underscores the SDK’s promising accuracy.

Despite identifying that the issue of shorter times in the SDK than in the py-
thon script likely resides within the Python pynput.keyboard library’s timing for
completing the key release method, the fact that the SDK reports faster times
for duration raises some doubts about the accuracy of these tests. A variety of
approaches were attempted to address the issue, including multi-threading the
Python script to decouple the key press from the time logging. However, these
approaches proved infeasible. Nevertheless, given the low standard deviation, we

Chapter 9: Quality Assurance 93

remain confident that the results demonstrate the SDK’s ability to capture stable
and reliable keystroke times. Therefore, the SDK appears suitable for use in a final
product for capturing keystroke data.

Regarding the functional requirements, we satisfactorily met all but one goal.
The unmet goal pertained to achieving a standard deviation for the key press of
less than 0.1 ms. Our tests showed a standard deviation slightly exceeding 0.2
ms for the total key press duration. While this misses the target, it is reasonable
to suspect that this discrepancy may stem from variation in the Python script or
computer performance. Thus, it is plausible that the SDK meets the non-functional
requirements specifications, but we are simply unable to prove it with our current
test setup.

9.2 Use of standards

We have made an effort to follow common development standards for Unity in
our project. Together with what we have been taught at NTNU we also used the
Unity website’s how-to for naming and code style tips as a reference1. In addition
to this we used the code convention guide in the Microsoft .NET website2.

In Unity and C# there are some notable differences in naming conventions,
serialization, method handling, and property usage. In C#, PascalCase is used for
public methods and class names, and camelCase for private fields, whereas Unity
often uses PascalCase for public fields to facilitate Inspector access. Serialization
in C# relies on standard .NET attributes and mechanisms, while Unity uses its
own system, requiring public fields or [SerializeField] attributes, which can be
limiting for complex types. C# methods are explicitly called by developers, but
Unity has the lifecycle methods like Start(), Update(), and Awake() that are im-
plicitly managed by the engine. Additionally, while C# encourages encapsulation
through properties with getters and setters, Unity frequently uses public fields for
ease of accessing them in the inspector, potentially compromising encapsulation
principles.

9.3 Testing for different Operating systems

To ensure keystroke capture is supported on as many devices as possible, we have
built the chat application on other operating systems to test whether this is the
case.

9.3.1 Windows & macOS

In the instance of Windows and macOS, the SDK successfully captures keystrokes
on both operating systems and the chat application works as intended. This is

1https://unity.com/how-to/naming-and-code-style-tips-c-scripting-unity - fetched
16.05

2https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/coding-style/
coding-conventions -fetched 16.05

https://unity.com/how-to/naming-and-code-style-tips-c-scripting-unity
https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/coding-style/coding-conventions
https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/coding-style/coding-conventions

94 Milward et al.: Enhancing Chat Moderation with SBKD

likely because Vivox provides SDK support for both of these operating systems 3,
allowing the built applications to run and function properly natively.

9.3.2 Linux

Vivox does not currently have Linux support4, and it is therefore not possible to
log in to the chat application we have created. When attempting to do so, the
connection times out and you are unable to get past the login screen. This is likely
an error caused by the lack of support from Vivox, as when testing the Unity chat
application from the second stage of the feasibility stages (Section 7.2) in Linux,
the data was successfully sent to the API.

This means that unless Vivox implements Linux support, a chat application
using Vivox with the SDK ran as a native application on Linux will in this specific
case hinder the SDK from functioning properly.

3https://docs.vivox.com/v5/general/unity/15_1_170000/en-us/Unity/developer-
guide/supported-platforms.htm?TocPath=Vivox%20Unity%20SDK%20documentation%7CVivox%
20Unity%20Developer%20Guide%7CSupported%20platforms%20and%20versions%7C_____0 -
Fetched 19.05

4https://support.unity.com/hc/en-us/articles/4780622639636-Vivox-Does-Vivox-
offer-Linux-support - fetched 19.05

https://docs.vivox.com/v5/general/unity/15_1_170000/en-us/Unity/developer-guide/supported-platforms.htm?TocPath=Vivox%20Unity%20SDK%20documentation%7CVivox%20Unity%20Developer%20Guide%7CSupported%20platforms%20and%20versions%7C_____0
https://docs.vivox.com/v5/general/unity/15_1_170000/en-us/Unity/developer-guide/supported-platforms.htm?TocPath=Vivox%20Unity%20SDK%20documentation%7CVivox%20Unity%20Developer%20Guide%7CSupported%20platforms%20and%20versions%7C_____0
https://docs.vivox.com/v5/general/unity/15_1_170000/en-us/Unity/developer-guide/supported-platforms.htm?TocPath=Vivox%20Unity%20SDK%20documentation%7CVivox%20Unity%20Developer%20Guide%7CSupported%20platforms%20and%20versions%7C_____0
https://support.unity.com/hc/en-us/articles/4780622639636-Vivox-Does-Vivox-offer-Linux-support
https://support.unity.com/hc/en-us/articles/4780622639636-Vivox-Does-Vivox-offer-Linux-support

10 Discussion

This chapter delves into the key findings, the project process and the implementa-
tion of the report, providing a comprehensive discussion of the project’s outcomes.

The chapter begins with a summary of the primary results, highlighting the
creation of a fully functional SDK and the regulatory implications of implement-
ing it in a final product. It then discusses the project’s process, emphasizing the
use of Scrum and the changes in project scope. The implementation of the SDK
is examined, including challenges faced and solutions implemented. The feasib-
ility and viability of using SBKD for age detection in game chats are evaluated,
considering both the need for such tools and their efficacy. The chapter also ad-
dresses legal and ethical considerations, focusing on the implications of using AI
and SBKD for age prediction under various regulations. Finally, the discussion
concludes with insights into future work, outlining potential improvements and
additional features for the SDK.

10.1 Key Findings

The main results of our work consists of creating a fully functional SDK that has
the ability to collect Soft Biometric Keystroke Dynamics (SBKD) data from a Unity
application and transmit this data to an API. Another major finding is having es-
tablished that the use of SBKD for age prediction lies within the high risk category
of the EU AI Act. In addition where this concept finds itself within the KOSA, DSA
and OSA regulations.

In addition to these primary goals from the original assignment, we also cre-
ated a chat application in Unity for testing and visualizing the SDK. We conducted
a market scan on existing age verification methods, finding that most platforms
studied employ similar age verification methods to comply with COPPA. Interest-
ingly, only 1 of 9 services explicitly stated that they use keystroke dynamics for
authentication in one way or another. We also established where the final product
will fit under the KOSA, COPPA, and OSA regulations. Furthermore, we conduc-
ted a study on SBKD transmit sizes and laid forth a strategy in Section 4.2.2.4 for
minimizing the bandwidth cost related to transmitting this data.

10.2 Project Process

One of our objectives was to achieve a stable and comprehensive understanding of
utilizing an agile process framework. Ultimately, the project team selected Scrum
as the framework to be used. While the project initially focused on the creation of
an SDK and conducting either a research study on regulations or a market scan
of existing solutions, the use of Scrum allowed us to quickly change focus based
on discussions during client meetings. These discussions identified exciting ideas
that expanded the project scope, allowing us to gain more knowledge and to make
the project more our own.

95

96 Milward et al.: Enhancing Chat Moderation with SBKD

10.2.1 Use of Scrum

Although our adherence to the principles of Scrum was somewhat lacking in the
beginning, we improved over time and reinforced the principles. By the latter
half of the project, we had established effective routines, including daily stand-
ups, productive Scrum reviews with the client, better story creation processes and
valuable Scrum retrospectives. Effectively implementing Scrum not only made our
workflow more systematic but also enhanced the overall quality of our project
outcome.

10.2.2 Change of Scope

The initial project description outlined the creation of an SDK and either a mar-
ket scan of existing solutions or a minor study on upcoming regulations. After
discussions with the client, it was decided that the scope of the project would
be expanded. This expansion included conducting both a market scan of existing
solutions and upcoming regulations, as well as a study on effectively transferring
Soft Biometric Keystroke Dynamics (SBKD) data. Additionally, we decided to de-
velop a chat application and integrate it with our SDK. This facilitated testing of
the SDK and provided the client with a tool to test and further develop the SDK.
These expansions made the project significantly larger than initially planned, but
it enabled us to deliver a more comprehensive product to the client while gaining
deeper insights into areas of our interest.

10.2.3 Deviations from Project Plan

While reexamining the project plan, some deviations from the original plan were
discovered.

The black box of profiling ages and genders that AIBA were responsible for
after the data collection and extraction had been completed, was originally some-
thing we believed we would take part in. This was likely due to the fact that AIBA
mentioned that they had no prior employment of SBKD on their moderation plat-
form and a misunderstanding on our part. This, in the end, had little impact on
development, but became an uncertainty until it was clarified shortly after the
project plan had been delivered.

Initially, we planned to arrange user and expert evaluations, but the idea was
scrapped early on. Testing our SDK on users wouldn’t provide sufficient benefits,
as its functionality isn’t visible to users and they wouldn’t focus on the most critical
aspects we needed to test. Although the chat application’s UI would have made
the tests easier to conduct, it wouldn’t have provided the correct feedback. The
tests would have focused on the UI and chat application functionality rather than
the underlying processes of the SDK, which was our main objective.

10.3 SDK implementation

Through the work on the SDK, we got the opportunity to explore new technolo-
gies and refine our skills in the field of software development. At times, it was

Chapter 10: Discussion 97

challenging to work without prior knowledge and experience, as well as not hav-
ing the training wheels of a typical university assignment. However, these chal-
lenges gave us a deeper understanding and adaptability, ultimately enhancing our
problem-solving abilities and confidence in taking on real-world projects more in-
dependently.

10.3.1 SBKD SDK

Many aspects of this project was unfamiliar to all members of the group. No mem-
bers of the group had used C# previously, though we found it quite similar to
other programming languages encountered. Unexplored nuances such as the syn-
tax, new IDE’s, events and delegates made it more challenging to master.

At times, it was difficult to determine what was expected and how to pro-
gress. However, by consulting with the client, the supervisor, and conducting
independent research, we managed to find solutions to most of our problems.
Some elements, such as data transmission using HTTPS in Unity, proved too time-
consuming and complex. With encouragement from the client to focus on the core
functionality, this aspect was abandoned.

A concern that was up for consideration was to have a complete separation
of the SDK and chat application. In the final deliverable we opted for a close
integration. This was in part due to the numerous options Unity offers for a control
like the text field, including various functionalities and event registration methods
that are not interchangeable. By integrating the keylogger functionality of the
SDK with the text field provided in the chat application, the client is provided
with a comprehensive prototype that can be utilized without having to make any
additional modifications.

If the client for any reason needs compatibility with the old UI system, uGUI,
we outlined an alternative for how the keylogging functionality could be imple-
mented using this in Section 7.7.6. Here we mentioned creating a custom control
implementation that would integrate the recording of keystrokes directly. This
option was something we became aware of at a late stage in development, and
therefore did not try to implement it. We did however investigate how it could
be done and if it could provide any benefits over our chosen implementation. We
think a direct implementation in a custom control could better encapsulate the
keystroke recording logic thus making it simpler to reuse and maintain.

10.3.2 Unity specific development

Our introduction to Unity and game development presented a valuable learn-
ing opportunity. While navigating Unity’s extensive Platform roadmap1, we en-
countered challenges due to the large backlog of planned features, some dating
back several years. We noticed frequent discussions in Unity developer forums
about delayed "promised" features, often attributed to shifts in focus or the need
to rework existing systems. This experience underscored the importance of thor-

1https://unity.com/roadmap/unity-platform - Fetched 19.05

https://unity.com/roadmap/unity-platform

98 Milward et al.: Enhancing Chat Moderation with SBKD

oughly researching the chosen technology to avoid assumptions about feature
availability and to ensure realistic planning that accounts for potential limitations.

Another problem we encountered in the implementation phase was a lack of
comprehensive and up-to-date documentation for Unity related code. Often times,
we had to either rely on the hope of finding a post discussing a related problem in
the Unity developer forum, or just figuring it out from scratch. One possible reason
for this lack of or outdated documentation is that Unity sometimes has multiple
concurrent frameworks providing the same functionality, as is the case with the
three UI systems: IMGUI, uGUI, and UI Toolkit. In addition to this, the input sys-
tem, rendering pipeline, networking, physics engine and animation system also
has multiple systems each. With that being said, using Unity as a development
platform gave us a great deal of flexibility in how things could be implemented,
but at the cost of doing lots of research and having to make decisions that had to
be reverted at a later point in the development process.

10.3.3 Feasibility stages

By working through feasibility stages, we were able to investigate the problem
incrementally. This approach allowed us to pivot the project in conjunction with
the client if it became clear that the task was impossible or unlikely to be com-
pleted. Partitioning the project into stages with increasing complexity and expand-
ing scope provided us with a great opportunity to become comfortable with the
new environments and learn from mistakes and challenges encountered in pre-
vious iterations. This process also gave us a better chance to identify what was
missing or what could be removed, particularly in the UI part of the development.

On the other side, not incorporating feasibility stages and setting a goal of
creating the end-product from the start could have reduced the time needed for
the development stage. It would have provided more time for direct work on the
final deliverable and other aspects of the thesis. Each option would have its ad-
vantages, but overall we think using incremental stages provided the best learning
outcomes as the process became more comprehensive.

10.3.4 Vivox Chat Application

In the planning phase of the project, many possible solutions for how to start cap-
turing keystroke data was investigated. A screen overlay was considered, but the
idea was abandoned in it’s infancy due to lacking relevance for the given task.
Another approach would have been to use the console application we initially
created for collecting the required data. This option would limit the use of the
input systems provided by Unity, and therefore not solve the task of collecting
keystrokes in a Unity application. Early on in the process we observed the need of
having a natural environment to capture SBKD data from. Because of this reason,
we decided to create the chat interface using Unity’s own chat service, Vivox. This
proved to be a time consuming endeavour and a task that was more comprehens-
ive and complex than initially though.

We spent some time working on features that we later decided against, such

Chapter 10: Discussion 99

as sending direct messages between users. This was a thing we originally wanted
and saw as a necessity, but upon further consideration it was decided that the
group channel messages would suffice in providing the needed features. Thus,
the necessary functionality for direct messages was implemented, but ultimately
remains a disabled feature.

Since the core of the project concerns collecting metadata about keystrokes,
which will be further processed and used in statistical analysis, we saw the oppor-
tunity to provide visual feedback to a user of the application. This was achieved
by displaying some of the captured values and values derived from the data in the
statistics panel. We also planned to utilize this statistical display in a demonstra-
tion for the presentation of our work.

When work on the implementation of the bar chart in the statistics panel star-
ted, we encountered a problem. Unity does not have any built-in functionality for
creating charts and graphs. We searched the internet for a solution, but found
none that would fit our needs. In the Unity Asset store there are some solutions
that claim to work, but as those had a high price tag we did not consider those
an option. In our solution we ended up creating the charts ourselves from scratch
using plain VisualElements that gets scaled based on values passed to a class for
calculating statistical values.

10.3.5 Final thoughts on Chat Application

Since all requirements and goals of the project were met, we are satisfied overall
with how the chat application turned out. However, there are still some aspects
of the application that could be improved, such as testing and improved error
handling, detection of edge cases, more detailed documentation, optimization and
other minor improvements. The UI itself and state-handling in the UI also needs
more work. Considering the applications purpose was to work as a prototype for
proving and visualizing a concept, we are generally happy with the achieved final
results.

10.3.6 API

It was initially difficult to determine whether the REST API would be deemed as
part of the final Software Development Kit or not. An SDK should include several
components and an API is a one such vital addition. Furthermore, the entire SDK
on its own would not be complete without it, as there would be nowhere to send
the data if it is not present. On the other hand, however, the fact still remained
that AIBA already has an API which the SDK should interface towards, making
the API redundant when the client ultimately would integrate the SDK into their
stack themselves.

The API was in the end kept as a component of the SDK. Due to the con-
cerns addressed above, however, the API ended up not being as extensive as a
production-ready API should be. As of its latest iteration, it still utilizes HTTP
in favor for HTTPS, and there are no authentication methods present. This would
later be labeled as "future work" when we decided we had spent too long attempt-

100 Milward et al.: Enhancing Chat Moderation with SBKD

ing to set this up without much progress being made.

10.4 Viability of SBKD for Age Detection in Game Chats

While we have successfully developed a product that captures Soft Biometric Key-
stroke Dynamics (SBKD) in Unity-based games and determined that using AI with
SBKD to predict user ages is permissible under the reviewed regulations, there re-
mains the question of its viability as a product.

10.4.1 The Need

Game moderation faces significant challenges, particularly concerning the pre-
valence of toxic behavior and online grooming. Statistics highlight widespread
toxicity in online video games, and while specific research on the occurrence of
grooming in video games is limited, studies confirm the growing problem of online
grooming in general. This information suggests that tools aiding moderators and
law enforcement in detecting and preventing cyber grooming would be valuable
additions to a game moderator’s toolkit.

10.4.2 The Efficacy

With regard to the efficacy of using SBKD to predict user age, studies cited in
Section 4.1 indicate an accuracy range of 67% to 78% for age prediction and
70% to 86% for gender prediction. One study achieved up to 90% accuracy in
these categories. An accuracy of 67% for age prediction may not be sufficient for
moderators, as it could result in a significant number of false positives, increasing
their workload. However, discussions with the client revealed that the accuracy of
their age prediction AI could be significantly improved by predicting age groups
rather than specific ages, potentially yielding much better results.

10.4.3 The Viability

There is a clear need for effective tools for age detection in game chats. The ques-
tion thus arises as to whether the efficacy of age prediction with SBKD is good
enough to be useful. If focusing on age groups rather than specific ages substan-
tially improves accuracy, these tools could be sufficiently effective. Furthermore,
considering AIBA’s Amanda software, which would use not only SBKD to highlight
worrisome conversations, but also chat history analysis. The combined approach
could significantly enhance accuracy and viability. This comprehensive tool-set
is likely to provide a useful and practical solution for chat moderators, thereby
improving their ability to detect and address grooming behaviors effectively.

10.5 Legal and Ethical Discussion

10.5.1 Legal

In our project, we focused on four key legislative frameworks: the EU AI Act, the
US Kids Online Safety Act (KOSA), the EU Digital Services Act (DSA), and the On-

Chapter 10: Discussion 101

line Safety Act 2023 (OSA). The DSA and OSA were enacted in 2022 and 2023,
respectively, while KOSA and the EU AI Act have yet to come into force. Among
these, particular emphasis was placed on the EU AI Act due to its prominence as
the world’s first regulation specifically addressing the use of AI2, which is highly
relevant to our SDK’s final product which collects SBKD data and uses AI for pre-
dicting users’ ages.

Through our work on these legislations, we gained a comprehensive under-
standing of their objectives, potential impacts, and the specific products they af-
fect. We particularly examined how the use of our SDK for age detection aligns
with these regulations. Our research on the EU AI Act was noteworthy, both in
terms of our analysis and the timeliness of our completion—just one month after
the Act’s latest version was released.

We believe our work significantly contributes to the understanding of the im-
plications of using SBKD and AI for user information collection.

10.5.2 Ethics

The program profiles not only adult individuals but also children, which raises
significant ethical concerns. Determining whether our use case scenario makes
it ethical to collect someone’s biometric data is challenging and requires careful
consideration.

Many remedies for these concerns are already enforced by various regulations,
making it crucial to adhere to them. These include the regulations discussed in this
report, as well as GDPR, COPPA, and other relevant regulations in the EU, UK, and
USA.

Key aspects of these regulations include GDPR’s requirements to inform users,
obtain consent, and collect only the minimum information necessary. In addition,
the upcoming AI Act mandates the use of high-quality training datasets to ensure
accurate AI results.

Even when adhering to these regulations, ethical concerns persist. Monitoring
users’ keystrokes to detect suspicious behavior may infringe on their autonomy
and privacy. Users may feel surveilled, altering their natural behavior and negat-
ively impacting their gaming experience. Balancing child safety with user privacy
and autonomy is essential. Determining whether keystroke logging for a limited
number of messages is sufficient for accurate age prediction requires careful con-
sideration by AIBA.

False positives are another critical issue. If the product incorrectly classifies an
adult as a minor, or vice versa, it could lead to unwarranted surveillance. This risk
must be mitigated through careful procedures. While the AI Act’s obligation to use
quality datasets addresses this to some extent, additional measures are needed.
Providing a confidence interval score for the age predictions could help, but other
safeguards are needed for when there is high-confidence yet incorrect predictions.
Given that AIBA intends to utilize the product in conjunction with their Amanda

2https://www.wiley.law/alert-EU-Adopts-the-AI-Act-The-Worlds-First-
Comprehensive-AI-Regulation - Fetched 17.05

https://www.wiley.law/alert-EU-Adopts-the-AI-Act-The-Worlds-First-Comprehensive-AI-Regulation
https://www.wiley.law/alert-EU-Adopts-the-AI-Act-The-Worlds-First-Comprehensive-AI-Regulation

102 Milward et al.: Enhancing Chat Moderation with SBKD

platform, which is capable of generating a risk score based on the conversation
history, one solution might be to prevent a moderator from further investigating
a user based solely on their predicted age.

There is also a broader debate about whether such software contributes to
increased societal surveillance and whether the benefits justify the means.

While we acknowledge these serious ethical concerns, we believe it is possible
to implement this program ethically. First, careful compliance with all applicable
regulations is essential. Second, clear communication with users about what data
will be collected, how it will be used, and for what purpose is critical to ensure
that users both understand and accept what they are agreeing to when they play
video games that implement the final product. Third, robust measures must be in
place to minimize unnecessary surveillance. This includes systems to prevent false
positives from triggering investigations and to stop keystroke monitoring when a
high confidence interval is reached, indicating no further monitoring is necessary.
We believe that these measures would greatly improve the ethics of using such
software.

10.6 Future work

SDK mobile support: Unity can also be built on many other operating systems
than Linux, Windows and macOS; the ones we have tried. The SDK singles in on
physical keyboards, but it is also possible to support extracting keystroke dynamics
from touch-screen devices, which would greatly extend the potential games that
the SDK could be used with.

Unit testing for business layer: A task that was repeatedly postponed, the
group would like to incorporate unit tests for each component of the SDK.

Implementing HTTPS for the API: A lack of having implemented HTTPS before
and having to do so on an internal network made HTTPS hard to implement.
Deploying the SDK on SkyHiGh meant that acquiring a signed certificate would
be challenging, and resulted in an attempt to create our own certificate authority
and sign a certificate ourselves. Being one step towards the goals means that this
feature was close to be implemented.

Token-based authentication for the API: The group also wanted to ensure that
only the SDK could access the API. This was not prioritized, but would be imple-
mented had the group had more time.

More robust error handling:Implement more comprehensive error handling and
checks for edge cases.

11 Conclusion

In this thesis, we have addressed the pressing issue of predatory behavior in online
gaming communities by developing a Software Development Kit (SDK) tailored
for Unity-based games to extract and process Soft Biometric Keystroke Dynamics
(SBKD) data. Our collaboration with AIBA aimed to enhance the Amanda child
protection platform, providing a crucial tool for age and gender profiling to sup-
port more effective moderation and intervention strategies.

The primary goal of our project was to create a functional SDK that seamlessly
integrates with Unity, facilitating the collection of SBKD data. This SDK serves as
a foundational component that AIBA can use to refine their existing moderation
tools, thus enabling more accurate detection of conversations with potential pred-
atory intent. By focusing on the development of a keystroke data collection tool,
we have laid the groundwork for future advancements in automated moderation
and user safety.

Our investigation into the upcoming legal framework revealed that while AIBA
has minimal obligations under the DSA, KOSA, and SDK, the EU AI Act will classify
the use of SBKD for age profiling as high risk, thus imposing significant responsib-
ilities. Given that the last corrigendum of the EU AI Act is just over a month old as
of 21.05.2024, we believe this is the first study examining the placement of SBKD
and AI for age profiling usage within the EU AI Act.

We conducted a market analysis to understand the age verification methods
employed by major enterprises and gaming services. Our findings indicate that
few are utilizing any form of Soft Biometric Keystroke Dynamics. Furthermore,
there is a seem to be a major need for enhanced moderation tools in video games,
as highlighted by Section 5.2, which found significant levels of toxic behavior
towards both minors and adults, where major parts of this goes unreported by the
users..

The project’s outcomes include not only the SDK itself but also a prototype
chat application utilizing Vivox, comprehensive documentation for developers,
and detailed guidelines for efficient data transmission to minimize network costs.
These deliverables collectively aim to empower Soft Biometric Keystroke Dynam-
ics to enhance it’s moderation capabilities, reduce instances of cyber grooming,
and ultimately create safer online environments for minors.

In conclusion, our work contributes significantly to the field of online safety
and moderation. By providing a robust technical solution and aligning it with
ethical and legal standards, we support the ongoing efforts to protect vulnerable
users in digital spaces. Future work can build on this foundation to further refine
and expand the capabilities of the SDK, ensuring it remains a vital tool in the fight
against online predatory behavior.

103

Bibliography

[1] D. Alanko, ‘The health effects of video games in children and adolescents,’
en, Pediatr Rev, vol. 44, no. 1, pp. 23–32, Jan. 2023.

[2] H.-J. Zuberbühler, H. Krueger and A. Kündig, ‘Delay perception thresholds
in human-computer interaction. fundamentals for cscw-applications,’ en,
I. für Hygiene und Arbeitsphysiologie Zürich, Ed., XVII International An-
nual Occupational Ergonomics and Safety Conference; Conference Loca-
tion: Munich, Germany; Conference Date: 2003, Zürich: Swiss Federal In-
stitute of Technology Zurich, Institute of Hygiene and Applied Physiology,
2003. DOI: 10.3929/ethz-a-004606991.

[3] A. K. Jain, S. C. Dass and K. Nandakumar, ‘Soft biometric traits for per-
sonal recognition systems,’ in Biometric Authentication, D. Zhang and A. K.
Jain, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 731–
738, ISBN: 978-3-540-25948-0. [Online]. Available: https://biometrics.
cse . msu . edu / Publications / SoftBiometrics / JainDassNandakumar _
SoftBiometrics_ICBA2004.pdf.

[4] Y. "Deng and Y. Zhong, ‘"keystroke dynamics user authentication based on
gaussian mixture model and deep belief nets",’ "ISRN Signal Processing", S.
Kwong and K. Wang, Eds., 2013. [Online]. Available: https://doi.org/
10.1155/2013/565183.

[5] R. Shadman, A. A. Wahab, M. Manno, M. Lukaszewski, D. Hou and F.
Hussain, Keystroke dynamics: Concepts, techniques, and applications, 2023.
arXiv: 2303.04605 [cs.CR].

[6] L. Araújo, L. Sucupira, M. Lizarraga, L. Ling and J. Yabu-uti, ‘User authentic-
ation through typing biometrics features,’ vol. 3072, Jan. 2004, pp. 694–
700, ISBN: 978-3-540-22146-3. DOI: 10.1007/978-3-540-25948-0_94.
[Online]. Available: https : / / www . researchgate . net / publication /
221215288_User_Authentication_through_Typing_Biometrics_Features.

[7] S. Z. Syed Idrus, E. Cherrier, C. Rosenberger and P. Bours, ‘Soft Biomet-
rics for Keystroke Dynamics: Profiling Individuals While Typing Passwords,’
Computers & Security, p. 1, Jun. 2014. [Online]. Available: https://hal.
science/hal-01011801.

[8] P. Bours and H. Barghouthi, ‘Continuous authentication with biometric key-
stroke dynamics,’ in The Norwegian Information Security Conference (NISK),
vol. 2009, 2009. [Online]. Available: https : / / sciencegatepub . com /
books/gcsr/gcsr_vol2/GCSR_Vol2_Ch3.pdf.

[9] L. C. F. Araújo, L. H. R. Sucupira, M. G. Lizárraga, L. L. Ling and J. B. T. Yabu-
uti, ‘User authentication through typing biometrics features,’ in Biometric
Authentication, D. Zhang and A. K. Jain, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 694–700, ISBN: 978-3-540-25948-0. [Online].

105

https://doi.org/10.3929/ethz-a-004606991
https://biometrics.cse.msu.edu/Publications/SoftBiometrics/JainDassNandakumar_SoftBiometrics_ICBA2004.pdf
https://biometrics.cse.msu.edu/Publications/SoftBiometrics/JainDassNandakumar_SoftBiometrics_ICBA2004.pdf
https://biometrics.cse.msu.edu/Publications/SoftBiometrics/JainDassNandakumar_SoftBiometrics_ICBA2004.pdf
https://doi.org/10.1155/2013/565183
https://doi.org/10.1155/2013/565183
https://arxiv.org/abs/2303.04605
https://doi.org/10.1007/978-3-540-25948-0_94
https://www.researchgate.net/publication/221215288_User_Authentication_through_Typing_Biometrics_Features
https://www.researchgate.net/publication/221215288_User_Authentication_through_Typing_Biometrics_Features
https://hal.science/hal-01011801
https://hal.science/hal-01011801
https://sciencegatepub.com/books/gcsr/gcsr_vol2/GCSR_Vol2_Ch3.pdf
https://sciencegatepub.com/books/gcsr/gcsr_vol2/GCSR_Vol2_Ch3.pdf

106 Milward et al.: Enhancing Chat Moderation with SBKD

Available: https://link.springer.com/chapter/10.1007/978-3-540-
25948-0_94.

[10] S. Z. S. Idrus, E. Cherrier, C. Rosenberger and P. Bours, ‘Soft biometrics
for keystroke dynamics,’ in Image Analysis and Recognition, M. Kamel and
A. Campilho, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 11–18, ISBN: 978-3-642-39094-4.

[11] D. Shanmugapriya and G. Padmavathi, ‘A survey of biometric keystroke dy-
namics: Approaches, security and challenges,’ CoRR, vol. abs/0910.0817,
2009. arXiv: 0910.0817. [Online]. Available: http://arxiv.org/abs/
0910.0817.

[12] A. Maas, C. Heather, C. (Do, R. Brandman, D. Koller and A. Ng, ‘Offering
verified credentials in massive open online courses: Moocs and technology
to advance learning and learning research (ubiquity symposium),’ Ubiquity,
vol. 2014, no. May, May 2014. DOI: 10.1145/2591684. [Online]. Available:
https://doi.org/10.1145/2591684.

[13] T. Dias, J. Vitorino, E. Maia, O. Sousa and I. Praça, ‘Keyrecs: A keystroke
dynamics and typing pattern recognition dataset,’ Data in Brief, vol. 50,
p. 109 509, 2023, ISSN: 2352-3409. DOI: https://doi.org/10.1016/
j.dib.2023.109509. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S2352340923006091.

[14] D. Y. Wohn, ‘Volunteer moderators in twitch micro communities: How they
get involved, the roles they play, and the emotional labor they experience,’
in Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems, ser. CHI ’19, Glasgow, Scotland Uk: Association for Computing Ma-
chinery, 2019, pp. 1–13, ISBN: 9781450359702. DOI: 10.1145/3290605.
3300390. [Online]. Available: https : / / doi . org / 10 . 1145 / 3290605 .
3300390.

[15] Y.-G. Cheong, A. K. Jensen, E. R. Guðnadóttir, B.-C. Bae and J. Togelius,
‘Detecting predatory behavior in game chats,’ IEEE Transactions on Compu-
tational Intelligence and AI in Games, vol. 7, no. 3, pp. 220–232, 2015. DOI:
10.1109/TCIAIG.2015.2424932.

[16] R. Kowert and L. Woodwell, Moderation challenges in digital gaming spaces:
Prevalence of offensive behaviors in voice chat, https://www.takethis.
org/wp- content/uploads/2022/12/takethismodulatereport.pdf, A
white paper by TakeThis, 2022.

[17] Anti-Defamation League, ‘Hate and harassment in online games 2022,’ Cen-
ter for Technology & Society, Tech. Rep., 2022, Accessed: 13.05.2024. [On-
line]. Available: https://www.adl.org/sites/default/files/documents/
2022-12/Hate-and-Harassment-in-Online-Games-120622-v2.pdf.

https://link.springer.com/chapter/10.1007/978-3-540-25948-0_94
https://link.springer.com/chapter/10.1007/978-3-540-25948-0_94
https://arxiv.org/abs/0910.0817
http://arxiv.org/abs/0910.0817
http://arxiv.org/abs/0910.0817
https://doi.org/10.1145/2591684
https://doi.org/10.1145/2591684
https://doi.org/https://doi.org/10.1016/j.dib.2023.109509
https://doi.org/https://doi.org/10.1016/j.dib.2023.109509
https://www.sciencedirect.com/science/article/pii/S2352340923006091
https://www.sciencedirect.com/science/article/pii/S2352340923006091
https://doi.org/10.1145/3290605.3300390
https://doi.org/10.1145/3290605.3300390
https://doi.org/10.1145/3290605.3300390
https://doi.org/10.1145/3290605.3300390
https://doi.org/10.1109/TCIAIG.2015.2424932
https://www.takethis.org/wp-content/uploads/2022/12/takethismodulatereport.pdf
https://www.takethis.org/wp-content/uploads/2022/12/takethismodulatereport.pdf
https://www.adl.org/sites/default/files/documents/2022-12/Hate-and-Harassment-in-Online-Games-120622-v2.pdf
https://www.adl.org/sites/default/files/documents/2022-12/Hate-and-Harassment-in-Online-Games-120622-v2.pdf

Bibliography 107

[18] S. Livingstone, L. Haddon, A. Görzig and K. Ólafsson, ‘Risks and safety
on the internet: The perspective of european children: Full findings and
policy implications from the eu kids online survey of 9-16 year olds and
their parents in 25 countries,’ EU Kids Online Network, London School
of Economics and Political Science, Tech. Rep., 2011. [Online]. Available:
https://eprints.lse.ac.uk/33731/1/Risks%20and%20safety%20on%
20the%20internet%28lsero%29.pdf.

[19] R. D. Meyer, ‘Exploring toxic behaviour in online multiplayer video games,’
Ph.D. dissertation, University of York, Department of Computer Science,
2020. [Online]. Available: https://etheses.whiterose.ac.uk/30580/1/
Meyer_206059909_CorrectedThesisClean.pdf.

[20] C. o. t. E. U. European Parliament. ‘Regulation (eu) 2022/2065 of the
european parliament and of the council of 19 october 2022 on a single
market for digital services and amending directive 2000/31/ec (digital
services act) (text with eea relevance).’ (Oct. 2022), [Online]. Available:
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%
3A32022R2065.

[21] European Parliament and Council of the European Union, REGULATION
(EU) 2024/. . . OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of
. . . laying down harmonised rules on artificial intelligence and amending Reg-
ulations (EC) No 300/2008, (EU) No 167/2013, (EU) No 168/2013, (EU)
2018/858, (EU) 2018/1139 and (EU) 2019/2144 and Directives 2014/90/EU,
(EU) 2016/797 and (EU) 2020/1828 (Artificial Intelligence Act), Corrigendum
to the position of the European Parliament adopted at first reading on 13
March 2024, with a view to the adoption of Regulation (EU) 2024/... lay-
ing down harmonised rules on artificial intelligence and amending vari-
ous regulations and directives (Artificial Intelligence Act), 2024. [Online].
Available: https://www.europarl.europa.eu/doceo/document/TA-9-
2024-0138-FNL-COR01_EN.pdf.

[22] E. Parliament and C. of the European Union. ‘Regulation (eu) 2016/679,
on the protection of natural persons with regard to the processing of per-
sonal data and on the free movement of such data, and repealing Direct-
ive 95/46/EC (General Data Protection Regulation).’ (Apr. 2016), [Online].
Available: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=
CELEX:32016R0679.

[23] E. Parliament and C. of the European Union. ‘Directive (eu) 2016/680, on
the protection of natural persons with regard to the processing of personal
data by competent authorities for the purposes of the prevention, investiga-
tion, detection or prosecution of criminal offences or the execution of crim-
inal penalties, and on the free movement of such data, and repealing Coun-
cil Framework Decision 2008/977/JHA.’ (Apr. 2016), [Online]. Available:
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:
32016L0680.

https://eprints.lse.ac.uk/33731/1/Risks%20and%20safety%20on%20the%20internet%28lsero%29.pdf
https://eprints.lse.ac.uk/33731/1/Risks%20and%20safety%20on%20the%20internet%28lsero%29.pdf
https://etheses.whiterose.ac.uk/30580/1/Meyer_206059909_CorrectedThesisClean.pdf
https://etheses.whiterose.ac.uk/30580/1/Meyer_206059909_CorrectedThesisClean.pdf
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32022R2065
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32022R2065
https://www.europarl.europa.eu/doceo/document/TA-9-2024-0138-FNL-COR01_EN.pdf
https://www.europarl.europa.eu/doceo/document/TA-9-2024-0138-FNL-COR01_EN.pdf
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016L0680
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016L0680

108 Milward et al.: Enhancing Chat Moderation with SBKD

[24] E. Parliament and C. of the European Union. ‘Regulation (eu) 2018/1725,
on the protection of natural persons with regard to the processing of per-
sonal data by Union institutions, bodies, offices, and agencies and on the free
movement of such data, and repealing Regulation (EC) No 45/2001 and De-
cision No 1247/2002/EC.’ (Oct. 2018), [Online]. Available: https://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32018R1725.

[25] European Parliament and Council of the European Union. ‘Directive (eu)
2016/2102, on the accessibility of the websites and mobile applications of
public sector bodies.’ (Oct. 2016), [Online]. Available: https://eur-lex.
europa.eu/legal-content/EN/TXT/?uri=CELEX:32016L2102.

[26] European Parliament and Council of the European Union. ‘Directive (eu)
2019/882, on the accessibility requirements for products and services.’ (Apr.
2019), [Online]. Available: https://eur-lex.europa.eu/legal-content/
EN/TXT/?uri=CELEX:32019L0882.

[27] E. A. Kochegurova and R. P. Zateev, ‘Hidden monitoring based on keystroke
dynamics in online examination system,’ en, Program. Comput. Softw., vol. 48,
no. 6, pp. 385–398, Dec. 2022. [Online]. Available: https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC9707207/.

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32018R1725
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32018R1725
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016L2102
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016L2102
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32019L0882
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32019L0882
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707207/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707207/

Oppgave 46 BPROG, BIDATA, DIGSEC 2 stk

1

Oppgavetittel: Soft Biometic Keystroke Dynamics SKD

Bedrift: AIBA
Kontaktperson: Gard Støe
E-post: gard.aiba.ai
Telefon: 99223535
Lokasjon: Gjøvik

Beskrivelse av oppgaven
AIBA is a spin-off company from NTNU research and aims at detection of online cybergrooming in

game chats as early as possible. This is done both by analyzing the messages in a conversation and by

looking at anomalous user behaviour. Besides that, there is a focus on detection of toxic language

and other unwanted behaviour, as well as profiling of user's gender and age based on behaviour.

The students should in this project first perform a metastudy or market scan on age verification

software in light of the new EU regulations coming (i.e. age verifying kids in games and SoMe).

Furtermore, they should develop an SDK that can collect keystroke dynamics data (i.e. typing

behaviour information) and send it to a server and a server application where different analysis

algorithms can be incorporated for age detection.

For more information you can visit us on Wednesdays in room A108 in the A-building on campus.

A Thesis Description

109

B Daily Stand Up Summary from Week 15

Figure B.1: Sample day from the Daily Stand up notes

111

C Clockify summary report

113

114 Milward et al.: Enhancing Chat Moderation with SBKD

13.12.2023 | Aiba meeting no. 1

• Aiba is a spinoff company from NTNU that aims to prevent grooming online.
They cooperate with police, developers and other entities to achieve this. Aiba
are responsible for the analysis part, where they collect text and apply an
algorithm to analyze the age of the users. This way, it will be easier to see
where there is a large age discrepancy between the users who are chatting
together.

• Aiba works mainly with .NET and python.
• As the project will be based on unity, we will probably need to learn C# as that

seems to be the most used language in unity
• Our task is to research the possibility of, and possibly implementing software

to extract the keystroke biometric data from a chat in unity.
o This will be used to calculate the age of the users and to search for

language that can signal that there is intent to groom a younger person
in a game.

• We will need to do research to see what already exists for unity in relation to
keystroke dynamics data, and if it is at all possible to extract it from unity

• Identify what devices the program should support.
o Should phones be included, or just computers?
o If only computers, should it be limited to only windows, or can we

extend it to linux and OSX as well?
• Aiba has old java code we could take a look at to get some inspiration.
• Our task would very simply be; register the time a key is pressed down, then

the time before it is released again, and lastly the time to get to the next
character. This will be done for the entire message. Afterwards we need to
have an efficient stream or batch of data to be sent to the server so that it can
be analyzed by Aibas other programs.

12.01.2024 | Aiba meeting no. 2
Deltakere:
Nicolai Andre Olsen
Vegard Johansen
Joachim Olerud Milward
Gard Støe

Notater
Case no. 01 Opening meeting

Case no. 02 Establishing a regular (bi-weekly meeting time)

16.01: Holding meetings on Tuesdays every other week from 16:00 to 16:30. Starting
the upcoming one (16.01.2024).
But will look at the possibility of having weekly meetings during the start of the
project.

D Client meetings

115

Case no. 03 System development method

16.01: Aiba has an agile development method, not religiously adhering to scrum, but
runs 2-week sprints.
Aiba also has a kanban board, implementing 'scrumban'.
Uses Jira as a tool for task management and documentation

Case no. 04 Documentation standards at Aiba.ai

16.01: Aiba has not established any documentation standards.

Case no. 05 “Standard agreement” terms

16.01: Gard is arranging a Non-Disclosure Agreement in relation to code and chat
data. We will bring the collaboration agreement.

Case no. 06 Side note – NISlab

16.01: Gard does not have knowledge about this, but Patrick might know more.

Case no. 07 Curiosity - Possible to look at current processing of chat data?

16.01: Possible to gain insight into the chat data.

31.01.2024 | Aiba meeting no. 3
Participants:
Nicolai Andre Olsen
Joachim Olerud Milward
Vegard Johansen
Gard Støe

Notes
Case no. 01 Establishing a regular (bi-weekly meeting time)

12.01: Holding meetings on Tuesdays every other week from 16:00 to 16:30. Starting
the upcoming one (16.01.2024).
But will look at the possibility of having weekly meetings during the start of the
project.

16.01: Will try to have physical meetings on wednesdays 10:00.

Case no. 02 “Standard agreement” terms

12.01: Gard is arranging a Non-Disclosure Agreement in relation to code and chat
data. We will bring the collaboration agreement.

16.01: will look more at this on wednesday

Case no. 03 Possible to look at the current processing of chat data?

12.01: Possible to gain insight into the chat data.

16.01: Will look more at chat data at the next meeting as that will be physical.

116 Milward et al.: Enhancing Chat Moderation with SBKD

Case no. 04 SDK vs library

12.01: Aiba wants the final product to be more of a full package that developers can
download from the unity asset store, with limited ability to edit on their own. It should
also have more documentation than a regular library. However, also developing a
library that could add supplemental elements could be a choice to consider during the
end of the development.
The final product will probably not become a full sdk before the delivery date, but can
then supplement with have explanation of what is missing for the product to become
an sdk.

Next steps
• Gard will update with potential meeting time on wednesday
• We will take a look at the unity asset store to see what is there of similar assets, and

take an initial look on what is needed there to release an asset.
• Send mail to Patrick regarding NISlab
• Gett in touch with the Unity developer for Attensi that was spoken about

31.01.2024 | Aiba meeting no. 4
Participants:
Nicolai Andre Olsen
Joachim Olerud Milward
Vegard Johansen
Patrick Bours

Notes

Case no. 01 “Standard agreement” terms

12.01: Gard is arranging a Non-Disclosure Agreement in relation to code and chat
data. We will bring the collaboration agreement.

16.01: Will look more at this on wednesday

31.01: Will have to send it digitally to Gard as he is in oslo today.

Case no. 02 Possible to look at the current processing of chat data?

12.01: Possible to gain insight into the chat data.

16.01: Will look more at chat data at the next meeting as that will be physical.

31.01: Patrick did not find the SKBD source code, but will look for it.

Case no. 03 Showing of keystroke data registration

31.01: Patrick talked about the different potential solutions on how the SKBD should
be saved, and sent, for efficient data transfer.

Case no. 03 AOB

 31.01: no other buisness

Chapter D: Daily Stand Up Summary from Week 15 117

07.02.2024 | Aiba meeting no. 5
Participants:
Nicolai Andre Olsen
Joachim Olerud Milward
Vegard Johansen
Gard Støe

Notes

Case no. 01 Signing of confidentiality agreement

07.02: Gared will send the confidentiality agreement after the meeting

Case no. 02 Set a possible date for seeing service in action

07.02: Will have a more set date next meeting, with patrick to show both Aiba’s
current solution, and the datastream they use for the SKBD

Case no. 03 AOB

07.02: Gard mentioned that there is a digital service act (DSA) that will go into effect
next week, that we will need to do research on.

There is also an AI act for regulating work with AI, which we should take a small look
at, and a UK safety bill that should be taken a look at and lastly kids only safety act
(KOSA) which relates more to USA.
Relevant links:
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/europe-fit-
digital-age/digital-services-act_en
https://www.gov.uk/government/news/britain-makes-internet-safer-as-online-safety-
bill-finished-and-ready-to-become-law
https://www.europarl.europa.eu/news/en/headlines/society/20230601STO93804/eu-
ai-act-first-regulation-on-artificial-intelligence
https://en.wikipedia.org/wiki/Kids_Online_Safety_Act

Next steps:
• Bring the confidentiality agreement to Sony, to have him take a look at it before

signing.
• Look more into the new regulations that are forthcoming

14.02.2024 | Aiba meeting no. 6
Participants:
Nicolai Andre Olsen
Joachim Olerud Milward
Patrick
Gard Støe

Notes

Case no. 01 Signing of confidentiality agreement

118 Milward et al.: Enhancing Chat Moderation with SBKD

07.02: Gared will send the confidentiality agreement after the meeting

Case no. 02 AOB

14.02:

15.03.2024 | Aiba meeting no. 8
Participants:
Nicolai Andre Olsen
Joachim Olerud Milward
Gard Støe

Notes

Case no. 01 confidentiality agreement

07.02: Gared will send the confidentiality agreement after the meeting

15.03: small delays, will be sent to us in not long

Case no. 02 Current progress update/future work. API + calculations, C# keylogger, Unity
Sandbox

 15.03: Aiba will never create their own chat client, and would realistically try to use
existing chat clients to capture the SKBD. Aiba’s focus will rather be to focus on the API
part.

Case no. 03 Chat service – create own or use one that already exists? Vivox etc. Plans to
create your own service in the future?

15.03: Gard thoughts on the implementation would be for the solution to only capture
timestamps, duratins, latency and such. Patrick think it might be useful to to calculations on
the client side. Also notes that JSON files are big and it might be useful to have it be sent as
raw data or such.

Case no. 03 AOB

15.03:

Next steps:
• Preliminary reseach on size difference of different version (csv, json, run in real time,

as batches and so on) to send the messages
• Look at output and how that can be handled in relation to the cases generated by

Aiba

05.04.2024 | Aiba meeting no. 9

Participants:
Nicolai Andre Olsen
Vegard Johansen
Joachim Olerud Milward
Gard Støe
Patrick Bours

Chapter D: Daily Stand Up Summary from Week 15 119

Notes

Case no. 01 Progress update + demo of current prototype

05.04: in regards to when to send data: Gard thinks it sounds most logical to send it
when the messages are sent to another user.

Case no. 02 Encryption of SBKD captured, any security concerns? Requirement for secure

transfer from SDK/API to your servers?

05.04: Aiba has not discussed the topic of encryption. Gard thinks that the APi call
should be encrypted, but it has yet to be discussed. Though it is not seen as
necessary for this project, but rather explain it as a further work in the report.

Patrick thinks that we should not forget to place a large focus on the integrity part of
the data, as that might be more relevant for this project

Gard: Focus primarily on getting stuff to work before doing a lot of work in the
confidentiality aspect.

Case no. 03 Specifics on metrics that we can calculate in API. Which metrics would be ideal

for your case?

05.04: The most important fact according to Patrick is the minimization of data sent.
e.g., is it possible to calculate duration of press already on user level, before the data
is sent to the api. Metric about the data sent is not very relevant for this part of the
project.

Gard think a smart step would be to calculate the different payload sizes, to find the
smaller possible payload size.
Patrick: duration accuracy should be ms, with 1 decimal accuracy.

Case no. 04 Would it be possible to use your API for creating a demo video when

demonstrating the SDK? I.e. Using a chat service with SDK attached, send data and receive

profiling information.

05.04: Gard: if it is technically possible, Gard does not see a problem with it.

Case no. 04 AOB

05.04: No other comments from Gard.

Gard is satisfied with meetings every other week instead of every week.

Next steps:
• Get Vivox in place
• Talk in the report about how Unity has not been consistent with how the UI is built,

and that there are a lot of threads online about how this is a problem for many users.

120 Milward et al.: Enhancing Chat Moderation with SBKD

24.04.2024 | Aiba meeting no. 10
Participants:
Nicolai Andre Olsen
Vegard Johansen
Joachim Olerud Milward
Gard Støe
Patrick Bours

Notes

Case no. 01 Suggestion for plan moving forward. Potential changes?

24.04: Aiba seek no other changes, and are happy with product the way it is now

Case no. 02 Vivox progress

24.04: Aiba very happy with progress in Vivox.

Case no. 03 Data transfer research progress

24.04: Aiba was happy with reserach, and found results very interesting.

Case no. 04 What type of API are you using? REST? GraphQL? Needed for writing
deployment section in thesis

24.04: Aiba uses Rest API.

Case no. 04 AOB

24.04:

• Aiba had also experieced sloppy game development documentation
• Aiba very happy with progress up to now, and are willing to read through

report to find sections they wish to change

Chapter D: Daily Stand Up Summary from Week 15 121

Sprint retrospect 3

 Overview

 Retrospective

 Action items

Team Group 11

Participants @Joachim Olerud Milward @Vegard Johansen @nicolai andre olsen

Date 05.04.2024

Adding more varied tasks to

the sprint

Make more structure around

when to send meeting

summons and such

Start taking implementation

notes

Nothing of note Write report during week

Add story-id to logs and

commits

Start doing Stop doing Keep doing

Standardization of meeting summons

Sprint story variation

Make template for implementation

E Sprint Retrospective

123

F Initial docker installation guide

1. Make a Dockerfile that copies the project into the image, exposes a port and
instantiates server

2. Make a docker-compose YAML file that automates container building
3. Created the Virtual Machine on SkyHiGh where the API would be deployed
4. Install the packages required to run Docker and docker-compose on the VM
5. Transfer the API code using SCP 1.
6. Deploy the API by using the docker compose up -d command
7. Make sure to allow TCP traffic for the port specified in the Dockerfile

1https://www.commandlinux.com/man-page/man1/scp.1.html

125

https://www.commandlinux.com/man-page/man1/scp.1.html

G File Size Analysis: Data Structure and Visual-
ization Methods

G.1 Creation of file types

G.1.1 Data to capture

Figure 4.1 presents the types of information relevant to SBKD. Figure 7.4 illus-
trates the data selected for transmission. We determined that the two data points
shown in Figure 7.4, Up-Down flight time and Down-Up Hold time, are sufficient,
as additional data can be derived from these if necessary. This approach ensures
that the data transmitted are streamlined, encompassing only the most essen-
tial measurements for efficient data processing, and thus transmitting the least
amount of data to use as little data as possible.

Thus the data points that we use are as follows:

• Up-down flight time: Stored as milliseconds from when the previous key
was released to when the current key was pressed down. For the first key
pressed by the in each message, this value is set to 0 milliseconds, as there
were no preceding keystrokes.
• Down-up hold time: Recorded as milliseconds from when the current key is

pressed down to when it is released.

The remaining data points can be calculated from the two data points that
have been used in the following ways:

• Down-up flight time: This is calculated by summing the down-up hold time
from the previous key, the up-down flight time from the previous to the
current key, and the down-up hold time of the current key.
• Down-down flight time: Calculated by adding the hold time of the previous

key to the up-down flight time from the previous key to the current key.
• Up-Up flight time: Calculated by adding together the Up-Down flight time

and Down-Up Hold time

Each data point’s time was calculated from the start of the arrow to the end of the
arrow, as illustrated in Figure 7.4. For instance, the duration of a key entry’s down-
up hold time is the duration from when the key was pressed down(the start of the
blue arrow) to when it was released (the end of the blue arrow). Additionally, each
key entry’s up-down flight time is recorded as the duration from when the previous
key was released (the start of the red arrow) to the pressing of the current key (the
end of the red arrow). The rationale for storing each key’s data point times in this
manner, rather than using a simpler method of recording time from the first key
press in a message for all values, is that the chosen method should increase the
likelihood of producing duplicate values. This approach enhances the compression
benefits, as with a precision of 0.1 ms, these values will rarely exceed five digits
(one second). In contrast, using milliseconds from the first key press would cause

127

128 Milward et al.: Enhancing Chat Moderation with SBKD

values to increase to six digits after just 10 seconds of total typing time, thereby
consuming more data space than the chosen method.

G.1.2 CSV

We chose CSV due to its systematic nature and its efficiency in terms of file sizes,
which we believed created a good balance between ease of handling and file size.
The CSV was structured as in Table G.1.

k kd ku msg ID

W 0.15 -0.796 We 724d95de-0592-4749-94b6-a339cb002aa5

Shift 0.962 1.148

e 0.107 0.172

Table G.1: Example of SBKD in csv format

Here, the first line of data contains information about which user the message
belongs to, and what the full message is. The first and subsequent messages also
contain key entry data.

G.1.3 txt

The TXT file type was selected because it allows for excluding any information
from the file that is not essential. The TXT file was structured in the same manner
as Code listing G.1:

Code listing G.1: Example of SBKD in txt format

1 724d95de-0592-4749-94b6-a339cb002aa5
2 We
3 W | 0.15 | -0.796
4 Shift | 0.962 | 1.148
5 e | 0.107 | 0.172

Here, the first line provides information about the user. The second line presents
the full message, while lines 3 and beyond contain the key entry values. The values
and keys are separated by "|" to distinguish the values from each other.

G.1.4 JSON

The decision to utilise JSON was based on its extensive utilisation and the simpli-
city of parsing. The JSON structure was as in Code listing G.2:

Code listing G.2: Example of SBKD in JSON format

1 [
2 {
3 "id": "724d95de-0592-4749-94b6-a339cb002aa5",
4 "ks": [
5 {
6 "k": "W",
7 "kd": 0.15,
8 "ku": -0.796

Chapter G: File Size Analysis: Data Structure and Visualization Methods 129

9 },
10 {
11 "k": "Shift",
12 "kd": 0.962,
13 "ku": 1.148
14 },
15 {
16 "k": "e",
17 "kd": 0.107,
18 "ku": 0.172
19 }
20],
21 "msg": "We",
22 "os": "Windows 10"
23 }
24]

In this format, the key entries are stored in a list. This facilitates the extraction of
only the key entries and subsequent analysis of their values when required.

G.1.5 Protobuf

Protobuf was selected for its fast serialization and deserialization capabilities, and
its ability to significantly reduce the space required in comparison to JSON files.
This is due to the fact that it is stored as a binary file instead of a human-readable
file. The data structure is given in Code listing G.3:

Code listing G.3: Example of Protobuf datastructure for SBKD capturing

1 message KeyEntry {
2 string k = 1;
3 double kd = 2;
4 double ku = 3;
5 }
6
7 message Session {
8 string id = 1;
9 string msg = 2;

10 repeated KeyEntry entries = 3;
11 string os = 4;
12 }

Similar to the JSON file, key entries are stored in a list, which would make it easy
to extract these values for further processing.

G.2 Implementation of dataset

To generate key entries for the file size data, we utilized a dataset provided by
[13]. To streamline the process and minimise variables, such as special characters
(å, ø, æ), we opted for an English dataset to base the data off of.

While the dataset contained over half a million keystrokes, we selected only
the first 10,000 for our study. This decision was based on the impracticality and
scope limitations associated with processing files containing more than 10,000
keystrokes, which would likely impact user experience due to potentially notice-

130 Milward et al.: Enhancing Chat Moderation with SBKD

able performance implications in application scenarios if the users where to com-
press files with more than 10,000 keystroke entries. Moreover, accumulating 10,000
keystrokes can be time-consuming, potentially requiring a significant duration for
some users to achieve, ranging from half an hour to several days. A review of the
Vivox specifications revealed that it has a default limit of 320 bytes per message,
implying that collecting 10,000 key entries would necessitate at least 32 messages.

G.2.1 Dataset Parsing Methodology

The dataset was parsed into the various files using the format described above.
While the dataset contains all the data depicted in Figure 4.1, we chose to extract
only the two instances shown in Figure 7.4. For the parsing process, we utilized
Python with the pandas library to read the CSV file of the dataset. The program
processed each entry, adding them to different data types—JSON, TXT, CSV, and
Protobuf—and subsequently saved a new copy for each format. This process res-
ulted in the creation of a file for every increment of keystrokes up to 10,000 key
entries.

G.2.2 Compression Implementation

Once all the files had been generated, they were sent to a specific function within
the Python compressor file to create a compressed copy of each file. This was done
to facilitate the comparison of space savings achieved by zipping the files across
different file types. The compressed files were then stored in a separate folder.

G.2.3 Data Structure Design for Key Entry Analysis

After preparing all the files, we began the next step of creating dictionaries from
the lists to facilitate data handling. These dictionaries were stored within another
dictionary to in order consolidate all the information. The representation of these
dictionaries can be viewed in Code listing G.4. The data necessary for comparing
file sizes included the number of inputs each file contained, the space it occupied,
and the space it required per key entry. In order to determine the number of key
entries, special processing was conducted based on the file type. For JSON, the
length of the KS list was checked; in CSV, the number of lines was counted, ex-
cluding the header line, similarly for TXT. Since Protobuf is stored as a binary file,
the numbers in the file name were used as an indicator of the number of inputs.
The file sizes were determined using the ’os’ library to check the file sizes. The ’size
per entry’ was calculated by dividing the total file size by the number of entries,
thereby determining the space each entry occupied in each file. The final structure
was as follows:

Code listing G.4: Structure for Python dictionary

1 data = {
2 ’txt’: {
3 ’num_inputs’: [1, 2, ..., 9999, 10000],
4 ’zipped_size’: [58, 81, ..., 164, 173],
5 ’size_per_entry’: [88, 106, ..., 24, 24],

Chapter G: File Size Analysis: Data Structure and Visualization Methods 131

6 ’zip_size_per_entry’: [88.0, 53.0, ..., 18, 17]
7 },
8 ’csv’: {
9 similar structure as txt

10 },
11 ’json’: {
12 similar structure as txt
13 },
14 ’protobuf’: {
15 similar structure as txt
16 }
17 }

This structure allowed for the easy retrieval of the necessary data for the sub-
sequent generation of graphs.

G.2.4 Data Storage with Pickle Module

Once the data variable was fully constructed, it was saved using the pickle module
to facilitate future use without the need to reconstruct the lists from scratch. It was
decided not to save the entire dataset as a single file. Instead, it was segmented
and saved as separate files for each data type, thereby simplifying the selection
process for future analyses and allowing for easier choice among the available file
types.

G.2.5 Graph Generation Using Matplotlib and Plotly Express

Once all the data had been processed, it was visualized using Matplotlib and Plotly
Express. Plotly Express was utilized for live presentations to the client due to its
interactivity, including zoom capabilities and the ability to display values at the
cursor’s nearest graph point. For the report, we employed Matplotlib, as it offered
superior adaptability for integration into a PDF file. Four different graphs were se-
lected for display, each presenting all data types.Two sets of graphs were created,
each including versions for uncompressed and compressed files. The first set illus-
trates the total file size in relation to the number of key entries, while the second
set shows the file size per key entry, indicating the space each key occupies.

H Market Scan - Social media and games

This document provides the basis of information on social media and games stud-
ied in the market scan. The analysis regarding existing SBKD verification solutions
are not included in this document but can be found in Section 5.1.3.

H.1 Social media

H.1.1 Meta - Instagram, Facebook

• For both Facebook AND Instagram - age must exceed 13 y/o to create and
use account
• On account creation through an age screen, must specify age, will be locked

out if age is less than 131. Is however easy to maneuver past, can specify
faulty age when signing up.
• Currently apply a report mechanic, allowing users to report underage users

and have content reviewers trained to flag possible underage individuals
• May require user to show ID to determine whether a users age exceeds a

certain number2, but not all users have IDs (varies according to nationality)
• Current: Using AI to determine whether someone is above 18 or not. Check

birthday messages, posts and other accounts registered under same handle1.
• Uses the above AI to stop adults from messaging young people that don’t

follow them. Will not show public posts by young people to adults who have
shown suspicious behaviour
• New potential method, work with OS providers to share information regard-

ing age to apps
• Want to create "own platforms" for underage people that has a similar ex-

perience, but can be parental controlled
• In 2022: using video selfie and age vouching (currently in test phase), part-

nering with Yoti3 that has a dataset of peoples faces of different age. Was
planned to be made globally available in 2 months from March 2024.
• As of January 2024: Start to hide more content from teens on Instagram,

placing in restrictive content control
• Speculative: Potentially also captures keystrokes on mobile devices
• Other exciting links include:

◦ Meta child protection
◦ Facebook help center

1https://about.fb.com/news/2021/07/age-verification/
2https://www.meta.com/nb-no/help/quest/articles/accounts/privacy-information-

and-settings/id-verification-meta-accounts/
3https://about.fb.com/news/2022/06/new-ways-to-verify-age-on-instagram/

133

https://about.meta.com/actions/safety/onlinechildprotection/
https://www.facebook.com/help/search/?q=age%20minimum&is_typeahead=false
https://about.fb.com/news/2021/07/age-verification/
https://www.meta.com/nb-no/help/quest/articles/accounts/privacy-information-and-settings/id-verification-meta-accounts/
https://www.meta.com/nb-no/help/quest/articles/accounts/privacy-information-and-settings/id-verification-meta-accounts/
https://about.fb.com/news/2022/06/new-ways-to-verify-age-on-instagram/

134 Milward et al.: Enhancing Chat Moderation with SBKD

H.1.2 Youtube

• 13 minimum age if country rules do not specify otherwise. Can create an
account with parental link to enable underage accounts
• Age restriction of videos that have inappropriate content for children, and

ads are 18+4

• Launched YT kids to enable underage users to use youtube, also has parental
controls5

• New verification step after EUs AVMSD directive, some european users may
be asked to provide ID/credit card if unable to detect age
• Community content reporting, reviewed by moderators6

• Other interesting links:

◦ Google age requirements description and compliance
◦ Youtube’s suggested youth policy

H.1.3 Tiktok

• Must be 13 years or older to utilize service
• Tiktok will ban any account found to be used by users below 13 years of age.

A user can then appeal the decision by using any of these methods (depends
on where they are located)7:

◦ Selfie with ID
◦ Photo with parent/guardian (age 13-17)
◦ Credit card authorization (if above 18)
◦ Facial age estimation (uses Yoti most likely)8 (broken url, but: "Yoti

only uses your selfie and face information to estimate your age and to
judge whether the image is of a live person or not. Your selfie and face
information aren’t used to identify you or for any other purpose. Yoti
doesn’t share your face information with TikTok or third parties.")

• Prior to 2022, recorded keystrokes9. Used to verify the authenticity of an
account, for risk control, debugging, troubleshooting, and monitoring for
proper performance. Never tracked which key was pressed, only that a key
event happened. Currently collects keystroke information and patterns10

• Privacy policy for younger users

4https://blog.youtube/news-and-events/using-technology-more-consistently-apply-
age-restrictions/

5https://www.youtube.com/kids/
6https://support.google.com/youtube/answer/2802027?hl=en&co=GENIE.Platform%

3DAndroid
7https://support.tiktok.com/en/safety-hc/account-and-user-safety/underage-

appeals-on-tiktok#2
8https://support.tiktok.com/en/account-and-privacy/personalized-ads-and-

data/how-we-process-face-and-voice-information
9https://newsroom.tiktok.com/en-us/tiktok-truths-a-new-series-on-our-privacy-

and-data-security-practices
10https://www.tiktok.com/legal/page/eea/privacy-policy/en

https://support.google.com/accounts/answer/1333913?sjid=282591751069279361-EU
https://static.googleusercontent.com/media/publicpolicy.google/no//resources/youth-legislative-framework.pdf
https://www.tiktok.com/legal/page/global/privacy-policy-for-younger-users/en
https://blog.youtube/news-and-events/using-technology-more-consistently-apply-age-restrictions/
https://blog.youtube/news-and-events/using-technology-more-consistently-apply-age-restrictions/
https://www.youtube.com/kids/
https://support.google.com/youtube/answer/2802027?hl=en&co=GENIE.Platform%3DAndroid
https://support.google.com/youtube/answer/2802027?hl=en&co=GENIE.Platform%3DAndroid
https://support.tiktok.com/en/safety-hc/account-and-user-safety/underage-appeals-on-tiktok#2
https://support.tiktok.com/en/safety-hc/account-and-user-safety/underage-appeals-on-tiktok#2
https://support.tiktok.com/en/account-and-privacy/personalized-ads-and-data/how-we-process-face-and-voice-information
https://support.tiktok.com/en/account-and-privacy/personalized-ads-and-data/how-we-process-face-and-voice-information
https://newsroom.tiktok.com/en-us/tiktok-truths-a-new-series-on-our-privacy-and-data-security-practices
https://newsroom.tiktok.com/en-us/tiktok-truths-a-new-series-on-our-privacy-and-data-security-practices
https://www.tiktok.com/legal/page/eea/privacy-policy/en

Chapter H: Market Scan - Social media and games 135

H.1.4 Snapchat

• At least 13 years old to use11, will delete account if familiar that the user is
younger than 13 no hesitation
• Limit collection of data of user below 18 years old
• In-app reporting12

• Parental controls - family center13

H.2 Games

H.2.1 Steam

• Minimum age for collection of user data and to create a steam account is
1314

• When viewing games that have an age restriction of 18+, the user has to
state their DOB, but can be easily faked and reentered
• Community based reporting
• Junior mode accounts, limit accessibility to certain games, communication

with other users and visibility to other users15

H.2.2 Epic games

• Users that create an account below the age of 13, get a so-called Cabined
account. Here they must wait until they are of digital consent age, or until
parents grant them access to certain services that collect personal data16

• Cabined accounts may still play games created by Epic.
• This only applies to accounts that are SPECIFIED to be Cabined
• Has partnered with KWS (Kids Web Services, owned by Epic) as a verifica-

tion platform, they provide:

◦ Credit card verification - Stripe/KWS
◦ Cross referencing social security number - only in US
◦ ID card/passport - Veratad/Veriff
◦ Face scan - Yoti

H.2.3 Riot

• Age limit is 16 across EU, unless country specifies otherwise17

• It is possible to play the game underage if the date of birth specified is

11https://values.snap.com/privacy/privacy-policy?lang=en-US
12https://values.snap.com/safety/safety-enforcement?utm_source=values_snap_com&

utm_medium=referral&utm_campaign=universal_navigation&utm_content=footer_item_link&
lang=en-US

13https://parents.snapchat.com/parental-controls
14https://store.steampowered.com/privacy_agreement/?snr=100601_44_44_
15https://store.steampowered.com/eula/471710_eula_0
16https://www.epicgames.com/site/en-US/parental-consent
17https://support-leagueoflegends.riotgames.com/hc/en-us/articles/20590570974483-

Parents-of-Underage-Players-FAQ-and-Contact

https://values.snap.com/privacy/privacy-policy?lang=en-US
https://values.snap.com/safety/safety-enforcement?utm_source=values_snap_com&utm_medium=referral&utm_campaign=universal_navigation&utm_content=footer_item_link&lang=en-US
https://values.snap.com/safety/safety-enforcement?utm_source=values_snap_com&utm_medium=referral&utm_campaign=universal_navigation&utm_content=footer_item_link&lang=en-US
https://values.snap.com/safety/safety-enforcement?utm_source=values_snap_com&utm_medium=referral&utm_campaign=universal_navigation&utm_content=footer_item_link&lang=en-US
https://parents.snapchat.com/parental-controls
https://store.steampowered.com/privacy_agreement/?snr=100601_44_44_
https://store.steampowered.com/eula/471710_eula_0
https://www.epicgames.com/site/en-US/parental-consent
https://support-leagueoflegends.riotgames.com/hc/en-us/articles/20590570974483-Parents-of-Underage-Players-FAQ-and-Contact
https://support-leagueoflegends.riotgames.com/hc/en-us/articles/20590570974483-Parents-of-Underage-Players-FAQ-and-Contact

136 Milward et al.: Enhancing Chat Moderation with SBKD

wrongly stated by the underage user18. There are in other words no mechan-
isms involved except for community reporting of user that may be underage.
• Suggest parents monitor their child’s activities online

H.2.4 Roblox

• Has content for all ages. They define the different age requirements and
label each game/part as rated
• They support:

◦ ID verification - Persona19

◦ ID scan + selfie - Veriff, Persona20

◦ 17+ ONLY AVAILABLE IF AGE IS VERIFIED21

• Community reporting of abuse22

• Monitor speech and text written when under 13 years old, quickly catch
violations and train models that detect this content 23

• Parental controls24

18https://support-leagueoflegends.riotgames.com/hc/en-us/articles/360001192567-
Parental-Approval-Information-for-Parents

19https://en.help.roblox.com/hc/en-us/articles/4407276151188-Age-ID-Verification-
FAQs

20https://en.help.roblox.com/hc/en-us/articles/4412863575316-Roblox-Biometric-
Privacy-Notice

21https://en.help.roblox.com/hc/en-us/articles/8862768451604-Experience-
Guidelines-and-Age-Recommendations

22https://en.help.roblox.com/hc/en-us/articles/203313410-Roblox-Community-
Standards

23https://en.help.roblox.com/hc/en-us/articles/115004630823-Roblox-Privacy-and-
Cookie-Policy

24https://en.help.roblox.com/hc/en-us/articles/8863284850196-Allowed-Experiences-
Controls

https://support-leagueoflegends.riotgames.com/hc/en-us/articles/360001192567-Parental-Approval-Information-for-Parents
https://support-leagueoflegends.riotgames.com/hc/en-us/articles/360001192567-Parental-Approval-Information-for-Parents
https://en.help.roblox.com/hc/en-us/articles/4407276151188-Age-ID-Verification-FAQs
https://en.help.roblox.com/hc/en-us/articles/4407276151188-Age-ID-Verification-FAQs
https://en.help.roblox.com/hc/en-us/articles/4412863575316-Roblox-Biometric-Privacy-Notice
https://en.help.roblox.com/hc/en-us/articles/4412863575316-Roblox-Biometric-Privacy-Notice
https://en.help.roblox.com/hc/en-us/articles/8862768451604-Experience-Guidelines-and-Age-Recommendations
https://en.help.roblox.com/hc/en-us/articles/8862768451604-Experience-Guidelines-and-Age-Recommendations
https://en.help.roblox.com/hc/en-us/articles/203313410-Roblox-Community-Standards
https://en.help.roblox.com/hc/en-us/articles/203313410-Roblox-Community-Standards
https://en.help.roblox.com/hc/en-us/articles/115004630823-Roblox-Privacy-and-Cookie-Policy
https://en.help.roblox.com/hc/en-us/articles/115004630823-Roblox-Privacy-and-Cookie-Policy
https://en.help.roblox.com/hc/en-us/articles/8863284850196-Allowed-Experiences-Controls
https://en.help.roblox.com/hc/en-us/articles/8863284850196-Allowed-Experiences-Controls

I Type dependency diagram for SDK

Figure I.1: Autogenerated type dependency diagram for SDK

137

Project Plan

Enhancing Chat Moderation with Soft Biometric Keystroke Dynamics

Authors:
Vegrad Jonhansen
Nicolai Andre Olsen

Joachim Olerud Milward

January 2024

J Project Plan

139

Contents

1 Goals and Framework 2
1.1 Background . 2
1.2 Project Goals . 2

1.2.1 Learning Goals . 2
1.2.2 Result Goals . 3
1.2.3 Effect goals . 3

2 Project Scope 4
2.1 Problem Field . 4
2.2 Problem Limitation . 4
2.3 Problem Description . 4

3 Project Organisation 5
3.1 Project Roles and Responsibility Management . 5
3.2 Routines and Group Rules . 6

3.2.1 Group rules . 6
3.2.2 Routines . 7

4 Planning, Follow-up and Reporting 9
4.1 Process framework . 9

4.1.1 Choice of process framework . 9
4.2 Practical use of model . 9
4.3 Meeting Plans . 9
4.4 Meeting Minutes . 10

5 Organisation of Quality Assurance 11
5.1 Documentation, Storage and Source Code . 11

5.1.1 Documentation . 11
5.1.2 Storage . 11
5.1.3 Source code . 11
5.1.4 Testing . 12

5.2 Data Management . 12
5.3 Tools . 12
5.4 Risk Analysis . 12

6 Plan of Execution 15
6.1 Time schedule . 15

Bibliography for resources 17

List of glossaries 18

1

140 Milward et al.: Enhancing Chat Moderation with SBKD

1. Goals and Framework

1.1 Background

AIBA, a spin-off company originating from NTNU research, is dedicated to combating online cyber-grooming
and other unwanted behavior. Their primary market target is within game chats, with a focus on early
detection of such behaviour. The company’s mission encompasses the analysis of conversational messages
and the identification of anomalous user behaviors. Moreover, AIBA aims to detect toxic language and other
undesirable behaviors while also profiling users based on gender and age-related behaviors.

To align AIBA with the emerging regulatory frameworks, the project mandates an initial meta-study or
market scan of age verification software, especially considering the forthcoming EU regulations concerning
age verification in gaming and social media platforms. This preparatory phase sets the stage for informed
decision-making regarding age verification strategies tailored to the evolving regulatory landscape.

Central to the project’s technical objectives is the development of a Software Development Kit (SDK)
capable of gathering soft biometric keystroke dynamics data, offering insights into users’ typing behaviors.
This SDK facilitates the transmission of collected data to a server application, wherein AIBA’s existing
analysis algorithms can be integrated for age detection purposes. By request from our contact at AIBA, our
main focus would be to target the Unity framework as that has widespread use in many of today’s popular
games.

Given the increasing prevalence of cyber threats and the imperative to safeguard online communities, AIBA’s
initiative represents a proactive response to the challenges posed by cyber-grooming and related online
misconduct. By combining innovative technological solutions with a proactive regulatory approach, AIBA
seeks to contribute to the creation of safer digital environments for users of all ages.

1.2 Project Goals

1.2.1 Learning Goals

Throughout this project, our primary objective is to deepen our understanding of the SDLC. We aim to
explore the development of SDKs, understanding their usage and the requirements for creating one. A
significant focus will be on Soft Biometic Keystroke Dynamics, particularly in learning how it is performed,
what data is necessary for effective profiling, how to acquire this data from unity chat, and how to optimize
data collection to reduce transmission load without compromising analytical effectiveness.

Working within the Scrum framework, we anticipate gaining valuable insights into this process model. Our
specific learning goals include:

• Understanding the nature of SDKs and their practical implementation.

• Capturing keystroke biometric data in unknown environments.

• Acquiring basic skills in programming within the Unity framework, including suitable programming
languages and implementation principles.

• Managing chat message data streams in Unity and optimal methods for transmitting this data to
external servers.

• Recognizing and addressing the challenges of scaling software projects.

• Effective implementation of the Scrum framework in our project management.

2

Chapter J: Type dependency diagram for SDK 141

• Enhancing our existing project management skills.

1.2.2 Result Goals

By the conclusion of this project, we hope to deliver a fully functional SDK within the Unity framework.
This SDK should efficiently capture keystroke dynamics, send data to AIBA with minimal overhead, and
provide comprehensive profiling of users in gaming chat environments. Specific goals include:

• Developing and integrating a functional SDK into Unity to capture keystroke dynamics and analyze
chat messages for cyber-grooming indicators.

• Ensuring the SDK adheres to EU regulations and other applicable data privacy laws.

• Successfully completing the assignment and constructing the proposed solution.

• Innovating within the field of Soft Biometic Keystroke Dynamics in the sense of figuring out more ways
to make capturing and transfer this data more efficient (reduced data transfer cost).

1.2.3 Effect goals

• Enhancing the capabilities of chat moderators in detecting cyber grooming by giving them warning
when users might be involved in cyber grooming.

• Reducing the prevalence of children falling victim to cyber grooming by giving chat moderators the
ability to step in before a potential escalation have occured.

• Lowering the costs associated with chat moderation in Unity-based video games by pinpointing the
game chats that should be more closely looked at.

• Contributing to the field of Soft Keystroke Biometric Data by enabling its capture in Unity game chats.

3

142 Milward et al.: Enhancing Chat Moderation with SBKD

2. Project Scope

2.1 Problem Field

One of the concerning aspects of children playing multiplayer games is the difficulty in monitoring their
interactions. A seemingly harmless friendship formed over gaming could, in reality, involve a predatory adult
masquerading as a peer. This project aims to prevent such scenarios. While it’s relatively easy for someone
to falsely declare their age, manipulating biometric keystroke data to appear younger is significantly harder.
Our program is designed to identify potential grooming situations by analyzing users’ biometric keystroke
data. Using AIBA’s algorithm, it should determine the likelihood of an interaction involving a minor and
an adult, and should be able to alert moderators or administrators to potential risks.

2.2 Problem Limitation

This project will investigate the feasibility of implementing an SDK to capture soft keystroke biometric data
within the Unity framework. Furthermore, the aim is to integrate this SDK with an existing algorithm devel-
oped by AIBA. The main focus lies in establishing communication between our program and the algorithm
without modifying its core functionality, as it falls outside the scope of our project.

The group faces a time constraint due to our commitment to the INGG2300 course, which spans three full
working days until March 13, 2024. Consequently, we will have only two working days for the bachelor thesis
per week for the first two months. However, once the course concludes, we will dedicate our full attention
to the project, albeit with a slower start than anticipated.

2.3 Problem Description

A prevalent method today for detecting grooming and unwanted behavior in online platforms with chat
functionality involves manual human moderation or the use of algorithms analyzing chat texts for potential
grooming signs. These methods have significant drawbacks. Human moderation requires substantial man-
power and can be inefficient, while algorithms must be continually updated to keep pace with the evolving
nuances of language. What an algorithm could detect a decade ago might no longer be sufficient to identify
grooming in today’s context. Furthermore, groomers might intentionally alter their typing style to appear
younger, or they might employ more covert tactics in their grooming, making detection even more challenging
for these algorithms.

Implementing an SDK to capture users’ ages offers a significant improvement in this area. It allows mod-
erators to efficiently allocate their time and attention, moving beyond guesswork and imperfect algorithms.
Unlike text analysis, which can be fooled by language manipulation, age detection through biometric data is
less susceptible to such deception. Even if a user employs language typically used by children, their biometric
patterns might not match those of a child. This clearer indicator of potential risk enables moderators to
respond promptly to alarms and focus on conversations that genuinely require scrutiny. Consequently, this
more streamlined approach reduces the burden of sifting through a large volume of harmless interactions,
allowing moderators to concentrate on genuinely concerning cases.

4

Chapter J: Type dependency diagram for SDK 143

3. Project Organisation

3.1 Project Roles and Responsibility Management

• Project Manager (Vegard Johansen): The Project Manager is the key leader of the project,
focusing on efficient execution, strict adherence to schedules, and maintaining budget control. Respon-
sibilities include:

– Planning and Coordination: Coordinates meeting times, topics, and general communication with
Sony, and AIBA.

– Central point of contact : acts as a central point of contact for project-related inquiries, providing
guidance, support, and leadership to the project team and external actors.

– Risk Management : Identifying and addressing potential risks with strategies to minimize impact
and ensure project completion.

– Communication: Ensuring effective communication within the team and with stakeholders, main-
taining transparency and clarity.

– Quality Assurance: Upholding high standards throughout the project, with regular evaluations
to guarantee that outcomes align with set criteria.

– Final Say : Will have the final say if there are disagreements where the team are split two or three
ways, unable to come to an amicable agreement between each other.

• Scrum Master and Report Product Owner (Nicolai Olsen): This role combines Scrum lead-
ership with report management, ensuring smooth sprint operations and comprehensive reporting. Re-
sponsibilities include:

– Sprint Management : Overseeing Scrum ceremonies like Sprint Planning, Daily Stand-ups, Re-
views, and Retrospectives.

– Meeting Notes: Documenting discussions and decisions in all meetings for future reference and
action plans.

– Facilitating Product Owner : Assisting in backlog prioritization and planning backlog enhance-
ments.

– Removal of Hindrances: Proactively addressing issues impeding developers’ sprint progress.

– Report Backlog : Developing, maintaining, and prioritizing the report backlog for developer en-
gagement.

• Program Product Owner (Joachim Olerud Milward): The Product Owner is pivotal in final
product delivery and backlog management. Key responsibilities are:

– Product Backlog : Developing, maintaining, and prioritizing the product backlog for developer
engagement.

• Developers (All Members): Each team member functions as a developer, balancing this with their
respective roles. This dual responsibility is feasible due to:

– The project’s scale, which allows for effective management of development tasks alongside other
roles without significant time conflicts.

5

144 Milward et al.: Enhancing Chat Moderation with SBKD

To get a better picture of the different roles, they are depicted as an organizational chart below:

Figure 3.1: Organizational chart for the group

3.2 Routines and Group Rules

For the group rules and routines, the group has created a group contract.

For the sake of simplicity, the group rules and routines are summarized below:

3.2.1 Group rules

Teamwork rules:

• Said work time will be tracked using Clockify at the end of every work day.

• Planning of meetings will happen on every Monday the same week they are held.

• Sprints will begin and end each Wednesday the weeks they are scheduled

6

Chapter J: Type dependency diagram for SDK 145

• Each team member will attend every meeting with supervisor and client, unless a valid reason is given
not to do so.

• If for some reason a group member does not perform as defined by the work rules, this would be a
breach of conduct. If the breach is reoccurring, the appropriate consequence will be employed (3.2.2)

Work rules:

• Complete the tasks that you have said to complete.

• Don’t give up easily. If the tasks requires cooperation, this should be explained to other group members
as fast as possible to ensure progress.

• Each group member will prioritize the bachelors project and should give their all.

• Each deadline will be held, and each group members is responsible for completing their part in doing
so.

• As the group is aiming for a good grade on the thesis, they should have high expectations to one
another and openly communicate it.

• A meeting agenda will be sent out to the respective participants at least 12 hours before the meeting
takes place.

• Meetings can be rescheduled upon request or other valid reasons.

• The group will follow the best practices for Unity development defined in organisation and quality
assurance 5.

• Complete tasks at minimum 2 days prior to internal deadlines.

3.2.2 Routines

Routine for solving conflicts

Ideally, all conflicts, no matter how major, are to be resolved at the lowest level possible. If the conflict
cannot be resolved through discussion alone, the matter will be resolved by bringing in an external person.
The following steps will be followed if a conflict breaks out between the group members:

1. If a person does not deliver as expected, the member will be given either a written or an oral warning
what the rest of the group felt was done wrong, how it hindered progress and what could be done in
the future to avoid similar situations. The group should always, when giving constructive criticism,
state it this way.

2. Internal discussion within the group. We should act like professionals and grown-ups, and should thus
be able to resolve whatever is hindering teamwork.

3. If the matter is not easily resolved, is reoccurring or not improved upon after internal discussions, a
conversation with the group and supervisor will be scheduled.

4. Group discussion with bachelor thesis supervisor Tom Røise if none of the above has any effect.

Development routines

Our development routines are based on the development routines used in Opphus et al., 2017 [1], as we found
these to work well for us as well
The development process adheres to the following guidelines to ensure efficiency and clarity:

• All issues must be clearly defined and documented within the Jira backlog.

• Estimation of completion time for all issues will utilize story points.

• Every commit must include the corresponding issue ID from Jira to maintain traceability.

7

146 Milward et al.: Enhancing Chat Moderation with SBKD

• Developers are encouraged to commit their changes at least once every hour, with a minimum expec-
tation of one commit per day.

• Commit messages must be concise, clear, and informative to assist other developers in understanding
the changes.

• Naming conventions for functions, variables, and similar constructs must be descriptive and adhere to
the best practices of the specific programming language used.

Workflow in Jira

Figure 3.2: Jira backlog board workflow

Table 3.1: Workflow descriptors

Status Description

To do Non started issues
In progress Issues that have been started on, and assigned to at least one

team member
Blocked Issues that have something hindering them from being completed
In review Issues that are done, and waiting for quality assurance from an-

other team member
Done Issues that are checked and completed.

8

Chapter J: Type dependency diagram for SDK 147

4. Planning, Follow-up and Reporting

4.1 Process framework

The group has decided upon the use of the scrum process framework. Scrum is in short a framework that
aids in generating value through adaptive solutions for complex problems [2].

4.1.1 Choice of process framework

Our decision to adopt Scrum as our process framework was driven by several compelling reasons, primarily its
widespread acceptance in software development. This not only equips us with industry-relevant knowledge
and practices, but Scrum also offers the flexibility to adapt our approaches quickly. Scrum’s iterative nature
enables us to refine our focus with each sprint, allowing for real-time adjustments based on ongoing experi-
ences and findings. Additionally, its accessibility, supported by extensive resources gives the scrum master all
resources needed to ensure that the entire team is familiar with the scrum workflow. The Scrum framework
simplifies setting tangible goals and milestones, with each sprint serving as a clear target, enhancing visibility
on progress, and enabling prompt corrective actions if necessary.

Moreover, Scrum’s emphasis on continuous learning and improvement is invaluable. It fosters a culture of
reflection and adaptation, ensuring that the team grows more efficient and cohesive over time. The backlog
board further streamlines task management, providing clarity on responsibilities and pending tasks. Partic-
ularly relevant to our project is Scrum’s flexibility in accommodating ongoing research and implementation
phases, permitting us to revisit and revise strategies as needed—an advantage not readily available with
more rigid methodologies like the waterfall model. This dynamic approach is crucial for navigating the
complexities of our thesis work, ensuring that we can pivot effectively when faced with challenges.

4.2 Practical use of model

The Sprint Planning session will be initiated by the Scrum Master with help of the Product Owners. De-
velopers are tasked with organizing their work on the product backlog board, ensuring that tasks they are
responsible for are placed on the appropriate board. Once the sprint commences, daily 15-minute stand-
up meetings will be held where each team member discusses their progress, any challenges faced, and any
obstacles hindering their work. The Scrum Master will actively address these issues to ensure developers
can proceed with minimal disruptions. At the sprint’s conclusion, a Sprint Retrospective meeting will take
place. Here, team members will reflect on the sprint’s successes and failures, providing valuable insights to
improve future sprints.

4.3 Meeting Plans

Meetings will take place regularly, respectively with supervisor Sony weekly on Thursdays at 13:00 and client
AIBA on Wednesdays 10:00-10:30 biweekly.

For each meeting, an agenda will be proposed and a meeting summon will be sent out to each party attending
the meeting. This will enable participants to prepare, thus making the meeting as efficient as possible.
Talking points will be prepared and decided amongst the group members on Mondays the same week the
meetings are to be conducted.

The meetings with the supervisor of the group, Sony, will mainly be spent updating the supervisor regarding
the current standing in the project and receive useful feedback. Concurrently, these meetings will facilitate
tracking progress; to make sure that the group does not fall behind schedule.

9

148 Milward et al.: Enhancing Chat Moderation with SBKD

Furthermore, the client meetings are mainly spent to gain more insight in solving the task. This will be done
through the client answering any questions that may arise during the span of the project. Additionally, these
meetings will be used to update the client on progression. In doing this, the client can ensure the quality of
work is up to par, and that the group stays within the scope of the project.

Meetings may be cancelled if there is just cause 3.2.

4.4 Meeting Minutes

During each meeting, a single group member will note what is discussed. Later, these notes will be revised
and formatted more appropriately after the meeting has finished. All group members will be present during
the approval of meeting minutes. This will aid in both recalling meetings and giving an insight into the
meeting if an individual is absent.

10

Chapter J: Type dependency diagram for SDK 149

5. Organisation of Quality Assurance

5.1 Documentation, Storage and Source Code

5.1.1 Documentation

Documentation will serve as a way of tracking the project progression. Each meeting will be documented
in the form of an agenda and meeting minutes. A meeting in this instance refers to a meeting between the
group and either the client or the supervisor.

Documentation and commenting of code will be standardized. The client does not at the time of writing have
a documentation standard for their source code. The group members will follow the standards proposed by
Microsoft [3] when commenting C# code. XML Documentation Comments will be used when commenting
source code. This also allows for generation of API documentation through third party libraries similar to
JavaDoc [4].

The agendas, meeting minutes, diagrams and other files that the code is not dependent on, will be stored
on Google Disk 5.1. This allows for easy access, concurrent editing and sharing of files between the group
members. Additionally, the risk of losing files will decrease as the files are stored in more than one place.
Other files, such as the README.md which includes a description of what is included in the repository,
main aspects of the program and an installation guide is located in the GitHub repository.

5.1.2 Storage

For storage of source code and for version control, GitHub will be utilized. This enables the group to save
the code and files of relevance in two places; locally and on the cloud. The group also benefits from this by
being able to make changes locally and committing and pushing the changes to a central repository.

5.1.3 Source code

To ensure quality of code, the group will devise a Github actions pipeline which will run every time a group
member pushes a change to the repository. This action has the purpose of checking if the code is of the
appropriate quality. This also allows for an approach that minimizes human error by automating the linting
and testing process the code will undergo after each change. The tools the group will employ for this purpose
are:

• Dotnet format [5]

• Standard .NET compiler platform, Roslyn analyzers [6] (included in platform)

For this project, we will program in C# while using the Unity framework. As most, if not all applications
in Unity are developed in C#, this was the logical choice. Unity also has extensive support for C#. In
terms of the IDE the group will use, this will likely be Visual studio or Rider. Considering NTNU offers
student licences for Jetbrains Rider, this is likely the best candidate for the nature of the task. The group
has the most experience, and is most familiar with the Jetbrains IDEs. However, the Unity framework does
have seamless integration with Microsoft visual studio, so the choice of IDE will be based on preference
alone.

The group will follow the best practices for Unity development [7].

11

150 Milward et al.: Enhancing Chat Moderation with SBKD

5.1.4 Testing

In the starting phase of development, most of the software testing will be testing of functionality, such as
unit testing and integration testing. After parts of the SDK are developed and intended functionality is
ensured through unit testing, integration tests will be created to ensure cooperation between the SDK and
the server receiving data. Finally, user testing or expert evaluations will be conducted to improve efficiency
of, for instance, data transfer, program performance, or functionality.

5.2 Data Management

The data sent from the SDK will be stored on a Openstack server, which will be provisioned by NTNU 5.1
through SkyHiGh. This will only be in the starting phase of development, however, as the data transfer
will be routed to AIBA’s servers at a later stage when the implementation is more refined and thoroughly
tested.

5.3 Tools

Purpose Name Description

LATEX-editor Overleaf
Online LATEX-editor used for
report writing

Timesheets Clockify
We used a time tracking applet
for recording hours worked

Version control GitHub

GitHub for source control and
storage of source code. Will
also use GitHub actions for
automating processes when
code is pushed to the repository

Communication Discord, Teams and Slack

Discord for communicating with
the bachelor group, Microsoft
Teams for the supervisor and
Slack for AIBA

File storage Google drive
We have a Google drive
directory with all files

Scrum tool Jira
Provides backlog board, and
insights on how the sprints are
going.

Receiver server OpenStack
Infrastructure for receiving
keystroke data

Gantt chart Instagantt Online Gantt chart maker

Table 5.1: Project management tools

5.4 Risk Analysis

The risk assessment have a probability, prob. for short, and an impact rating.

Both the impact and probability rating is ranked from 1 to 5.
The probability rating is as follows:
1 - highly Unlikely, 2 - unlikely, 3 - possible, 4 - likely, 5 - very likely.

The impact rating is as follows:
1 - insignificant impact, 2 - minor impact, 3 - moderate impact, 4 - major impact, 5 - catastrophic im-
pact.

12

Chapter J: Type dependency diagram for SDK 151

Table 5.2: Project Risk Assessment

Risk Description prob. Impact Consequence Mitigation

R1 Illness in one
group member

3 2 Workload on other team
members will be higher

Continue work as normal

R2 Illness in more
than one group
member

2 4 Progress will probably
be slowed considerably

Work on high priority tasks

R3 Project not done
by deadline

2 5 Lower grade, possibility
of failing the course

Keeping internal deadlines with
due dates well ahead of course
deadlines

R4 Unable to capture
soft keystroke
biometrics data
(SKBD) in Unity
due to it not being
technically feasible

2 3 We would have to replan
how we structure our
report

Pivot report to focus more on
the research side of the project

R5 Loss of report or
source code

1 5 If it is not recoverable,
we would have to start
over

Connect Overleaf to GitHub
and periodically save a copy
locally

R6 Existing solution
already exists

2 1 It could be hard to bring
innovation with our
project

Look into the possibility of
adding innovation to the
existing solution, or using
another approach

R7 Problem with
having SDK
connect to AIBA’s
servers

2 3 Unable to properly test
that the SDK is working
as intended, leading to
an unfinished SDK

Have a meeting with AIBA
where we discuss solutions. Try
to set up our own test
environment

R8 Project is in
Breach of GDPR

3 2 We are not in control of
how AIBA handles their
data. This is more of an
ethical consideration on
our part

Talk with our supervisor on
how to move forward. Include
a section in our report

R9 Project stretching
beyond scope

4 3 Adding too many or
unnecessary elements to
our project will impact
the time we have for
producing the report

Follow the plan and only add
further work when reaching our
goals

R10 Minor Group
conflict

5 2 Has the potential to
create tension in the
group which could
hinder the group
dynamic and impact our
progress

Disputes or disagreements will
be voiced when encountered
and discussed until a solution
is found

Continued on next page

13

152 Milward et al.: Enhancing Chat Moderation with SBKD

Table 5.2 – Continued from previous page

Risk Description prob. Impact Consequence Mitigation

R11 Major Group
conflict

2 4 Can create serious delays
in our progress

If we are not able to solve our
disputes in the group we will
seek outside guidance. See
project plan → Group
rules3.2.1

R12 Unexpected
amount of time
spent on certain
parts of project

4 3 Too much time spent on
one part could impact
our progress in other
parts of the project

Use Jira tools to catch it early
when some issues have been in
the ”doing” board for too long.
Work to find a solution before
too much time has been sunk
on these issues

Figure 5.1: Risk factors visualized

14

Chapter J: Type dependency diagram for SDK 153

6. Plan of Execution

6.1 Time schedule

A detailed time schedule has been created for the purpose of planning the project from start to finish. The
Gantt chart can be found in Figure 6.1.

The main milestones are:

1. Finishing project plan (31.01.2024)

2. Send data from mock application to receiver server (23.02.2024, might become delayed because
of SkyHiGh server outage)

3. Developing an MVP (17.03.2024)

4. Getting feedback from AIBA (17.03.2024)

5. First iteration report (15.04.2024)

6. Second iteration report (29.04.2024)

7. Finishing development of SDK (30.04.2024)

8. Final iteration report (13.05.2024)

9. Handing in final report (20.05.2024)

10. Final presentation (06.06.2024)

15

154 Milward et al.: Enhancing Chat Moderation with SBKD

Project plan:

Make collaboration agreement

1st draft of project plan

Finalize Gantt chart

Risk assessment

Finish project plan

Literary research:

Initial Unity research

Keystroke biometrics data in Unity

Keystroke biometrics data research

Market scan on age veri�cation software software in relation to EU GDPR

Research process framework

Decide upon process framework

Testing server:

Create server to receive data

Create simple chat program in Unity

Send request from application to server

Report:

Writing �nal report

First iteration report

Second iteration report

Final iteration report

Hand in report

Testing:

User test #1

Expert evaluation #1

Analyze results

User test #2

Expert evaluation #2

Analyze results

SDK development:

3rd party development in Unity research

Set up development environment

Sprint #1 - Proof of concept

Sprint #2 - Make an MVP/functional prototype

MVP

Feedback from client

Sprint #3 - improve upon feedback from Client

Sprint #4, #5

Sprint #6, #7 - improve upon feedback from testing

Sprint # 8 - Improve upon feedback from testing

Finishing touches

Finish development

Presentation:

Practice for presentation

Fine-tuning presentation

Get feedback on presentation

Final presentation

- 05/Jan 01/Feb

Unassigned - 05/Jan 31/Jan Not started

Unassigned - 12/Jan 22/Jan Not started

Unassigned - 22/Jan 29/Jan Not started

Unassigned - 22/Jan 29/Jan Not started

Unassigned - 01/Feb 01/Feb Not started

- 12/Jan 09/Feb

Unassigned - 12/Jan 19/Jan Not started

Unassigned - 22/Jan 08/Feb Not started

Unassigned - 26/Jan 08/Feb Not started

Unassigned - 29/Jan 09/Feb Not started

Unassigned - 17/Jan 24/Jan Not started

Unassigned - 26/Jan 29/Jan Not started

- 05/Feb 23/Feb

Unassigned - 05/Feb 09/Feb Not started

Unassigned - 09/Feb 16/Feb Not started

Unassigned - 23/Feb 23/Feb Not started

- 05/Jan 20/May

Unassigned - 05/Jan 20/May Not started

Unassigned - 15/Apr 15/Apr Not started

Unassigned - 29/Apr 29/Apr Not started

Unassigned - 14/May 14/May Not started

Unassigned - 20/May 20/May Not started

- 11/Mar 24/Apr

Unassigned - 11/Mar 18/Mar Not started

Unassigned - 15/Mar 22/Mar Not started

Unassigned - 25/Mar 29/Mar Not started

Unassigned - 04/Apr 11/Apr Not started

Unassigned - 10/Apr 16/Apr Not started

Unassigned - 19/Apr 24/Apr Not started

- 24/Jan 30/Apr

Unassigned - 24/Jan 02/Feb Not started

Unassigned - 01/Feb 05/Feb Not started

Unassigned - 07/Feb 20/Feb Not started

Unassigned - 22/Feb 06/Mar Not started

Unassigned - 07/Mar 07/Mar Not started

Unassigned - 07/Mar 07/Mar Not started

Unassigned - 07/Mar 19/Mar Not started

Unassigned - 20/Mar 02/Apr Not started

Unassigned - 03/Apr 16/Apr Not started

Unassigned - 17/Apr 25/Apr Not started

Unassigned - 26/Apr 29/Apr Not started

Unassigned - 30/Apr 30/Apr Not started

- 22/May 06/Jun

Unassigned - 22/May 05/Jun Not started

Unassigned - 28/May 05/Jun Not started

Unassigned - 30/May 04/Jun Not started

Unassigned - 06/Jun 06/Jun Not started

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

Project plan:

Make collaboration agreem…1

1st draft of project plan2

Finalize Gantt chart3

Risk assessment4

Finish project plan5

Literary research:

Initial Unity research7

Keystroke biometrics data i…8

Keystroke biometrics data r…9

Market scan on age veri�ca…10

Research process framework11

Decide upon process frame…12

Testing server:

Create server to receive data14

Create simple chat progra…15

Send request from applicati…16

Report:

Writing �nal report18

First iteration report19

Second iteration report20

Final iteration report21

Hand in report22

Testing:

User test #124

Expert evaluation #125

Analyze results26

User test #227

Expert evaluation #228

Analyze results29

SDK development:

3rd party development in U…31

Set up development environ…32

Sprint #1 - Proof of concept33

Sprint #2 - Make an MVP/fu…34

MVP35

Feedback from client36

Sprint #3 - improve upon fe…37

Sprint #4, #538

Sprint #6, #7 - improve upo…39

Sprint # 8 - Improve upon fe…40

Finishing touches41

Finish development42

Presentation:

Practice for presentation44

Fine-tuning presentation45

Get feedback on presentation46

Final presentation47

27 04 11 18 25 01 08 15 22 29 05 12 19 26 04 11 18 25 01 08 15 22 29 06 13 20 27 03 10 17 24 01 08 15 22 291

Dec 2023 Jan 2024 Feb 2024 Mar 2024 Apr 2024 May 2024 Jun 2024 Jul 2024
ASSIGNEE EH START DUE STATUS %ACTIVITIES

Bachelor

Read-only view, generated on 01 Feb 2024

Figure 6.1: Gantt chart

Chapter J: Type dependency diagram for SDK 155

Bibliography for resources

[1] S. G. Steinar Opphus Ole Andre Slettum, “Prosjektplan viten i senter,” 2017.
[2] Scrum guides, https://scrumguides.org/, Accessed: 2024-01-26.
[3] C# documentation standards, https://learn.microsoft.com/en-us/dotnet/csharp/, Accessed:

2024-01-26.
[4] Xml documentation comments (c# guide), https://learn.microsoft.com/en-us/dotnet/csharp/

language-reference/xmldoc/, Accessed: 2024-01-26.
[5] Dotnet format, https://github.com/dotnet/format, Accessed: 2024-01-26.
[6] Overview of .net source code analysis, https://learn.microsoft.com/en-us/dotnet/fundamentals/

code-analysis/overview?tabs=net-8, Accessed: 2024-01-28.
[7] Technical deep dive, unity best practices, https://unity.com/how-to, Accessed: 2024-01-26.
[8] Integration testing, https://en.wikipedia.org/wiki/Integration_testing, Accessed: 2024-01-31.
[9] Unit testing, https://en.wikipedia.org/wiki/Unit_testing, Accessed: 2024-01-31.

17

156 Milward et al.: Enhancing Chat Moderation with SBKD

Glossary

A | I | M | S | U
A

agenda

An brief overview of what will be discussed during a meeting. 9, 11

I

integration testing

A way of testing software where several units of a system is tested as a combined unit [8]. 12

M

meeting minutes

An overview of what was discussed during a meeting in detail. 11

S

Soft Biometic Keystroke Dynamics

Soft Biometic Keystroke Dynamics is a way of profiling a person on the way they write. It is based
on the users travel time between the pressed keys, the duration of each key press, and the rest time
between each key press. 2, 3

U

unit testing

Testing of isolated components of a system [9]. 12

Unity

A game engine for developing both 2D and 3D games, made by Unity technologies . 2

18

Chapter J: Type dependency diagram for SDK 157

	Abstract
	Sammendrag
	Acknowledgements
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Glossary
	1 Introduction
	1.1 Background
	1.2 Problem description
	1.3 Goals and frames
	1.3.1 Frames
	1.3.2 Result Goals
	1.3.3 Effect Goals

	1.4 Societal contribution
	1.5 Scope and limitations
	1.6 Legal and Ethical Considerations
	1.7 Structure of the Thesis

	2 Development Process
	2.1 Process model
	2.2 Choice of model
	2.2.1 Requirements
	2.2.2 Framework Options
	2.2.3 Choice of framework

	2.3 Implementation of framework
	2.3.1 Rituals and Meetings
	2.3.2 Scrum Board
	2.3.3 Story points
	2.3.4 Stories

	2.4 Sprint Overview
	2.4.1 Sprint summaries

	3 Software Requirements
	3.1 Requirements Elicitation
	3.2 Functional Requirements
	3.2.1 Use Case Diagram
	3.2.2 High-Level Use Cases
	3.2.3 Detailed Use Case

	3.3 Non-Functional Requirements
	3.3.1 Performance
	3.3.2 Scalability
	3.3.3 Security
	3.3.4 Usability
	3.3.5 Maintainability
	3.3.6 Compatibility

	3.4 Requirement Management
	3.5 Requirement Validation

	4 Soft Biometric Keystroke Dynamics (SBKD)
	4.1 Soft Biometric Keystroke Dynamics (SBKD) data
	4.1.1 Definitions
	4.1.2 SBKD Performance
	4.1.3 Applications
	4.1.4 Common features

	4.2 Efficient SBKD Transmission Research
	4.2.1 Implementation strategies
	4.2.2 Data Transfer Results
	4.2.3 Final thoughts on compression and file sizes

	5 State of the Art
	5.1 Market scan
	5.1.1 Social Media
	5.1.2 Games
	5.1.3 SBKD data capturing
	5.1.4 Summarization

	5.2 Online Game Moderation Challenges
	5.2.1 Current moderation practices
	5.2.2 Scope of the problem
	5.2.3 Grooming
	5.2.4 Existing Solution
	5.2.5 Remaining Challenges
	5.2.6 Conclusion

	6 Legal Frameworks
	6.1 Digital Services Act (DSA)
	6.2 Online Safety Act 2023
	6.3 Kids Online Safety Act (KOSA)
	6.4 EU AI Act
	6.4.1 Applicability of the EU AI Act
	6.4.2 Risk categories
	6.4.3 Determining High-Risk Status
	6.4.4 Obligations of high risk systems
	6.4.5 Final thoughts on the EU AI Act

	7 Technical Design and Implementation
	7.1 Technical design
	7.1.1 Overall structure
	7.1.2 Chat service layer - Presentation
	7.1.3 Keystroke Dynamics Extraction layer - Business
	7.1.4 Data transfer layer - Business
	7.1.5 Firebase - Persistence/Database layer

	7.2 The Three Feasibility Stages
	7.3 Console application
	7.3.1 Data classes
	7.3.2 Program class

	7.4 Unity development
	7.5 Unity Chat Application
	7.5.1 UI Toolkit
	7.5.2 Layout
	7.5.3 Keylogger prefab

	7.6 SDK
	7.6.1 Capturing SBKD data
	7.6.2 RESTful API

	7.7 Unity Chat Application with Vivox
	7.7.1 User Authentication
	7.7.2 Concurrent users
	7.7.3 User interface & interaction
	7.7.4 Statistical calculations in UI
	7.7.5 Formulas utilized in statistics calculations
	7.7.6 Keylogger integration with chat application
	7.7.7 Command-line mode
	7.7.8 Unity Asset store

	8 Deployment
	8.1 Deployment on client service
	8.1.1 AWS API Gateway
	8.1.2 Enabling private integration
	8.1.3 Integration with SDK

	9 Quality Assurance
	9.1 Quality assurance of keylogger
	9.1.1 Manual Verification and Analysis of an Automated Test Setup
	9.1.2 Results from tests
	9.1.3 Timing Discrepancies and Consistency Analysis
	9.1.4 Evaluation of Non-Functional Requirements
	9.1.5 Final thoughts

	9.2 Use of standards
	9.3 Testing for different Operating systems
	9.3.1 Windows & macOS
	9.3.2 Linux

	10 Discussion
	10.1 Key Findings
	10.2 Project Process
	10.2.1 Use of Scrum
	10.2.2 Change of Scope
	10.2.3 Deviations from Project Plan

	10.3 SDK implementation
	10.3.1 SBKD SDK
	10.3.2 Unity specific development
	10.3.3 Feasibility stages
	10.3.4 Vivox Chat Application
	10.3.5 Final thoughts on Chat Application
	10.3.6 API

	10.4 Viability of SBKD for Age Detection in Game Chats
	10.4.1 The Need
	10.4.2 The Efficacy
	10.4.3 The Viability

	10.5 Legal and Ethical Discussion
	10.5.1 Legal
	10.5.2 Ethics

	10.6 Future work

	11 Conclusion
	Bibliography
	A Thesis Description
	B Daily Stand Up Summary from Week 15
	C Clockify summary report
	D Client meetings
	E Sprint Retrospective
	F Initial docker installation guide
	G File Size Analysis: Data Structure and Visualization Methods
	G.1 Creation of file types
	G.1.1 Data to capture
	G.1.2 CSV
	G.1.3 txt
	G.1.4 JSON
	G.1.5 Protobuf

	G.2 Implementation of dataset
	G.2.1 Dataset Parsing Methodology
	G.2.2 Compression Implementation
	G.2.3 Data Structure Design for Key Entry Analysis
	G.2.4 Data Storage with Pickle Module
	G.2.5 Graph Generation Using Matplotlib and Plotly Express

	H Market Scan - Social media and games
	H.1 Social media
	H.1.1 Meta - Instagram, Facebook
	H.1.2 Youtube
	H.1.3 Tiktok
	H.1.4 Snapchat

	H.2 Games
	H.2.1 Steam
	H.2.2 Epic games
	H.2.3 Riot
	H.2.4 Roblox

	I Type dependency diagram for SDK
	J Project Plan

