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2 Abbreviations

• Alb3b: Albino 3b mutant

• ACP: Acyl carrier protein

• API: Application programming interface

• ANOVA: Analysis of variance

• BODIPY: Boron-dipyrromethene

• Chl: Chlorophyll

• CLSM: Confocal laser scanning microscopy

• CNRQ: Calibrated normalized relative quant-

ities

• CoA: Coenzyme A

• CRISPR: Clustered regularly interspaced

short palindromic repeats

• dNTPs: Deoxynucleotide triphosphates

• Dd: Diadinoxanthin

• DES: De-epoxidation state

• Dt: Diatoxanthin

• EDA: Exploratory data analysis

• ESI: Electron spray ionization

• ETR: Electron transport rate

• FITC: Fluorescein isothiocyanate

• FSC: Forward scattering

• Fx: Fucoxanthin

• GC-MS: Gas chromatography coupled mass

spectrometry

• GFP: Green fluorescent protein

• G3P: Glycerol-3-phosphate

• HPLC: High-performance liquid chromato-

graphy

• HL: High light

• LD: Lipid droplet

• LL: Low light

• MALDI: Matrix-assisted laser desorption ion-

ization

• ML: Medium light

• NPQ: Non-photochemical quenching

• NRMSE: Normalized Root Mean Squared Er-

ror

• OLS: Ordinary least squares

• PAR: Photosynthetic active radiation

• PCA: Principal component analysis

• PAM: Pulse amplitude modulation

• PPFD: Photosynthetic photon flux density

• PS II: Photosystem II

• rETR: Relative electron transport rate

• RFU: Relative fluorescence units

• SSC: Side scattering

• WT: Wild type
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2.1 Lipids and Lipid metabolism associated enzymes

• ACC: Acetyl-coA-carboxylase

• ATS1 & ATS2: Arabidopsis seed gene 1& 2

• CDP: Cytidine diphosphate

• CDIP: CDP-DAG inositol 3-phosphatidyl

transferase

• CDS: CDP-DAG synthase

• DAG: Diacylglycerol

• DGAT: Diacylglycerol acyltransferase

• DGK: Diacylglycerol kinase

• DGTA: Diacylglycerol trimethyl-β-alanine

• DGD: Digalactosyldiacylglycerol synthase

• DGDG: Digalactocsyl diacylglycerol

• DHA: Docosahexaenoic acid

• EAR: Enoyl-ACP reductase

• EPA: Eicosapentaenoic acid

• FA: Fatty acid

• GPAT: Glycerol-3-phosphate acyltransferase

• HAD: Hydroxyacyl-ACP dehydrate

• KAR: ketoacyl-ACP reductase

• KAS: ketoacyl-ACP synthase

• LACS: Long-chain acyl-CoA synthetase

• LPAAT: Lysophosphatidic acid acyltrans-

ferase

• MAT: Malonyl-CoA ACP transacylase

• MGD: Monogalactosyldiacylglycerol synthase

• MGDG: Monogalactosyl diacylglycerol

• PC: Phosphatidylcholine

• PAP: Phosphatidate phosphatase

• PE: Phosphatidylethanolamine

• PI: Phosphatidylinositol

• PIPLC: Phosphoinositide phospholipase C

• PGP: Phosphatidylglycerophosphatase

• PGPS: Phosphatidylglycerol phosphate syn-

thase

• PSD: Phosphatidylserine decarboxylase

• PSS: Phosphatidylserine synthase

• PUFA: Polyunsaturated fatty acid

• SQD2: Sulfoquinovosyl transferase

• SQDG: Sulphoquinovosyl diacylglycerol

• TAG: Triacylglycerol

• TE: Thioesterase
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3 Abstract

This master thesis project aimed to investigate the impact of a mutation in the Albino3b insertase

gene on the lipid profile and other associated parameters of Phaeodactylum tricornutum, a model marine

eukaryotic species of diatom. Understanding the influences of particular proteins and enzymes on the lipid

profile can give insights into the lipid metabolism in diatoms and shed light on approaches for using them

as potential candidates for sustainable production of various lipid-based products of industrial importance

like Biodiesel, nutraceuticals, or as an alternative source of PUFAs in aquaculture feed, among various

other applications. The ALBINO-3B knock-out mutation has been proven to have resulted in reduced

levels of photosynthetic pigments in the light-harvesting complexes of the cells, and also have been

reported to alter the photosynthetic and growth parameters.

The project commenced with developing a standardized data analysis pipeline for a tandem mass spec-

trometry (MS-MS) lipid profiling dataset using Python. Leveraging this pipeline, a detailed lipidomic

comparison was conducted to reveal substantial variations in different lipid classes and fatty acid compos-

itions between the wild-type and 3 different Alb3b mutant lines(Alb3b-14,16, 19). This was followed by

light-stress experiments, wherein the cell lines were treated under three light conditions(Low light(LL),

Medium light(ML), and High light(HL)), followed by experimental cell and molecular biology techniques

to understand the underlying mechanisms for the variations observed and to compare results with previous

research.

The results indicated differences between the mutants and the WT and among the different mutant

lines in how the different lipid classes and the fatty acid compositions in certain lipid classes change

between these cell lines when compared between LL and ML. Variations were also observed in the changes

in photosynthetic and photoprotective parameters, with the mutants having reduced chlorophyll pigment-

ation, increased non-photochemical quenching, and better photoacclimation properties than the wild type.

Additionally, changes were observed in Lipid droplet (LD) structure, particularly in their number within

the cell, between cell lines, and between light conditions. Furthermore, The expression levels of certain

enzymes involved in phospholipid and fatty acid metabolism between the cell lines were detected to be

deferentially regulated under the three different light conditions using quantitative PCR, during the lab

work part of the project. The project was concluded with interpretations of the results obtained and

possible explanations and predictions about the same based on findings from the literature search. The

stress responses in lipid metabolism are predicted to be different between the WT and the Alb3b-mutants

possibly because of the changes observed in photo physiologies between them.
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4 Sammendrag

Denne masteroppgaven hadde som m̊al å undersøke virkningen av en mutasjon i Albino3b insertase-genet

p̊a lipidprofilen og andre tilknyttede parametere til Phaeodactylum tricornutum, en modellorganisme for

marine eukaryoter av diatomer. Å forst̊a innflytelsen til spesifikke proteiner og enzymer p̊a lipidprofilen

kan gi innsikt i lipidmetabolismen hos diatomer og kaste lys over tilnærminger for å bruke dem som

potensielle kandidater for bærekraftig produksjon av ulike lipidbaserte produkter av industriell betydning

som biodiesel, næringsmidler eller som en alternativ kilde til PUFAer i akvakulturfor.

ALBINO-3B knock-out mutasjonen har vist seg å ha resultert i reduserte niv̊aer av fotosyntetiske

pigmenter i lysoppsamlingskompleksene til cellene, og det har ogs̊a blitt rapportert at den endrer de

fotosyntetiske og vekstparametrene.

Prosjektet startet med å utvikle en standardisert dataanalysepipeline for et tandem massespektrometri

(MS-MS) lipidprofileringsdatasett ved hjelp av Python. Ved hjelp av denne pipelinen ble det gjennomført

en detaljert lipidomisk sammenligning for å avdekke betydelige variasjoner i forskjellige lipidklasser og

fettsammensetninger mellom villtypen og 3 ulike Alb3b-mutantlinjer (Alb3b-14,16, 19). Dette ble etter-

fulgt av lysstressforsøk, der cellelinjene ble behandlet under tre lysforhold (Lavt lys (LL), Medium lys

(ML) og Høyt lys (HL)), etterfulgt av eksperimentelle celle- og molekylærbiologiske teknikker for å forst̊a

de underliggende mekanismene for de observerte variasjonene og sammenligne resultatene med tidligere

forskning.

Resultatene indikerte forskjeller mellom mutantene og WT og blant de ulike mutantlinjene i hvordan

de ulike lipidklassene og fettsammensetningene i visse lipidklasser endres mellom disse cellelinjene ved

sammenligning mellom LL og ML. Variasjoner ble ogs̊a observert i endringene i fotosyntetiske og fo-

tobeskyttende parametere, der mutantene hadde redusert klorofyllpigmentering, økt ikke-fotokjemisk

sluking og bedre fotoakklimeringsegenskaper enn villtypen. Endringer ble ogs̊a observert i lipiddr̊ape

(LD) -struktur, spesielt i antallet innenfor cellen, mellom cellelinjer og mellom lysforhold. Videre ble

uttrykksniv̊aene til visse enzymer involvert i fosfolipid- og fettsyremetabolisme mellom cellelinjene p̊avist

å være differensielt regulert under de tre forskjellige lysforholdene ved bruk av kvantitativ PCR, under

labarbeidet i prosjektet. Prosjektet ble avsluttet med tolkninger av de oppn̊adde resultatene og mulige

forklaringer og sp̊adommer om det samme basert p̊a funn fra litteratursøket. Stressresponsene i lipid-

metabolismen antas å være forskjellige mellom WT og Alb3b-mutanter, muligens p̊a grunn av endringene

som er observert i fotofysiologiene mellom dem.

5 Introduction

Diatoms are organisms of great significance in diverse research fields owing to their contribution to

primary production, characteristic evolutionary biology, ecological interactions, and biotechnological ap-

plications. Their contribution of about 20% to the global primary productivity marks their relevance in

the earth system(Malviya et al., 2016). This is almost equivalent to the organic carbon production of all

the rainforests combined(Malviya et al., 2016). Organic matter production to this scale indicates their

ecological relevance as a crucial primary producer in the ocean food chain. Furthermore, diatoms are also

involved in other complex interactions in marine ecosystems, including their well-known dominance in

algal blooms during events of nutrient enrichment and the toxic threats posed by some of the strains to
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other aquatic life(Armbrust, 2009). In addition to being major carbon fixing agents, their silicate uptake

and metabolism to construct and maintain their siliceous cell walls or frustules make them important

regulators of past and present-day ocean bio-geochemistry(Armbrust, 2009). Although the exact estim-

ates of global diatom species diversity are hard to determine, they are reputed as the most diverse group

of phytoplankton, accounting for about 12000 to 30000 species(Malviya et al., 2016). In addition to this

fact, their development through secondary endosymbiosis gives them great importance in evolutionary

research. The increased accretion of molecular sequence data because of technological development has

immensely supported increasing interest in diatom phylogenetic analysis (Williams, 2007).

Apart from being a crucial ecological actor, diatoms also serve as feedstock for biotechnological applica-

tions that have the potential to support both human and planet welfare. This includes biofuel production,

human and animal nutraceuticals, and pharmaceuticals, the development of bio-active compounds, the

development of nanotechnological materials, and wastewater treatment(Bozarth et al., 2009).

Widespread research has been and is being carried out with diatoms to harness their potential for

these applications. One group of this research area focuses on the lipidomics of diatoms as the different

lipids in diatoms or their associated fatty acids can serve several beneficial products. The lipid production

in diatoms could potentially be exploited for developing sustainable alternatives for various commercial

and industrial purposes. The lipid content in the diatom cell comprises different classes each of which

has different roles in cell metabolism and applications in the industry.

Triacylglycerols(TAG), a class of neutral lipids that forms the major carbon and energy storage

compound in diatoms, are efficiently accumulated in significant amounts by the cells accounting for

about 15-25% of the overall dry biomass. TAG and its constituent fatty acids with various chain lengths

can be utilized for many applications mentioned above For instance, most past research on diatoms for

biotechnological applications has been focused on the production of the long-chain polyunsaturated fatty

acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid(DHA)(Lebeau and Robert, 2003), which

are well described for their nutritional benefits, especially in supporting cardiovascular health and brain

development(Yi et al., 2017). However, other short or medium-chained fatty acids in the TAG content

have other relevant uses. For example, the short or medium-chained fatty acids (C14-C18) in TAG can

be chemically processed to produce Fatty acid methyl esters(FAME), commercially called bio-diesel, a

sustainable fossil-fuel alternative. Furthermore, some of the C16 fatty acids found in diatoms were shown

to have antibacterial properties, thus opening new possibilities in drug development(Yi et al., 2017).

Several studies on TAG accumulation in diatoms have been executed using environmental manipula-

tions, the majority of which involve stress conditions like nutrient starvation or non-optimal light levels,

which are environmentally germane growth stressors. Reduction of growth due to the various stressors

like nutrient or phosphorous starvation or high light intensities is clearly shown to induce TAG accu-

mulation that will help the cell to reserve its carbon and energy to support itself during recovery from

the particular stressors. However, the cell’s metabolic responses vary depending on the type of stress

introduced, and the TAG accumulation in cells is affected by metabolic pathways other than just the

fatty acid synthesis pathways(Yi et al., 2017). This could include pathways associated with amino acid

metabolism, photosynthesis, and metabolic pathways of other lipid classesGe et al., 2014.

A comprehensive understanding of TAG accumulation at the system level needs to be obtained to

better manipulate the culture environment or create lipid production-optimal strains through mutations

or genetic engineering for supporting sustainable production strategies. One way to approach this is by
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studying the lipid profile changes in mutants with knock-out mutations in genes associated with metabolic

pathways that directly or indirectly affect cell growth.

5.1 Aim of the project

This master project aims to analyze and compare the lipidomics data obtained through MS-MS of the

lipid samples from a wild type of P. tricornutum and a particular knock-out mutant called Alb-3b of the

same species. The project progressed through the following phases before completion:

• Developing a data analysis pipeline with exploratory data analysis, visualizations, and hypothesis

testing using functions and packages in Python 3.8 using the JupyterLab API.

• Acclimating the mutants and WT to the previous light experiment conditions used for mass spectro-

metry to quantify LD accumulation using neutral lipid staining and flow cytometry, and to measure

various photosynthetic and photo-protective parameters using pulse amplitude modulation.

• Using confocal laser scanning microscopy (CLSM) to observe the fluorescence-stained LDs and

compare between and among the WT and the mutants under different light conditions.

• Conducting real-time polymerase chain reaction(q-PCR) for differential expression analysis of se-

lected lipid metabolism genes.

5.2 Wild type of Phaeodactylum tricornutum

Phaeodactylum tricornutum is a model species of diatom extensively used in biotechnology research.

Selection of the species as a model for research can be based on several factors such as:

• High growth rates and ease of culturing

• Availability of whole genome sequence

• The ability of the species to grow without silicified frustule formation

These factors also make it a potential candidate for applications like biofuel production, recombinant

protein expression, and silicon nanofabrication. The wild type of the species was obtained from

5.3 Alb3b-Mutants

The Alb3b mutant strains of Phaeodactylum tricornutum are knock-out mutants in which the functionality

of the ALBINO3B insertase protein has been lost(Nymark et al., 2019). The ALBINO3B protein is

required by the cells for the insertion of the fucoxanthin-chlorophyll binding protein into the thylakoid

membrane(Nymark et al., 2019). Although plants and green algae possess Alb3b proteins with known

functionality, phylogenetic analysis led to the categorization of the Alb3b proteins in diatoms as a distinct

group. This makes the prediction of Alb3b proteins in diatoms based on characterization of the same in

plants or green algae less reliable(Nymark et al., 2019).

The Alb3b knock-out strains were developed through a biolistic transformation using pKS diaCas9-

sgRNA plasmid for CRISPR cas9-based knockout (Nymark et al., 2019). The original gene editing exper-

iment targeted both the Alb3a and Alb3b paralogs of the protein but succeeded only in creating mutants
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with edit in the Alb3b gene. The mutants, with large insertions in the 5’ end of the gene, have been shown

to have significantly reduced(75%) fucoxanthin-chlorophyll a/c-binding proteins, reduced pigmentation,

and non-photochemical quenching, truncated light-harvesting antennae and changes in photosynthetic

saturation light levels(Nymark et al., 2019). However, the knock-out mutations were shown not to af-

fect the levels of diadinoxanthin or diatoxanthins, the carotenoids involved in the xanthophyll cycle for

photo-protection(Nymark et al., 2019).

Three lines of knock-out mutants where the Alb3b gene has been disrupted through the CRISPR-cas9

mechanism were used in the previous mass spectrometry experiment on which analysis for this thesis work

is based and the flow cytometry and imaging experiments involved in the project. These are:Alb3b-14,

Alb3b-16 and Alb3b-19.

5.4 Findings from the previous study conducted on the mutants to under-

stand the role of Alb3b in Diatoms

The previous study by Nymark et al., 2019 aimed at investigating the functionality and molecular mech-

anisms of ALBINO3B insertase protein in the assembly and integration of the light harvest complex

proteins and how it affects other crucial metabolic processes including growth, photosynthesis, and pho-

toprotection. As mentioned above, knock-out mutants for the ALBINO3B gene were developed with

P.tricornutum and were subjected to varying light conditions during the experiment. The study involved

a comprehensive experimental setup combining genetic, biochemical, and imaging techniques, to provide

detailed insights into the functional role of ALBINO3B in diatoms. This multidisciplinary experimental

approach used various experimental techniques, including CRISPR/Cas9-based genome editing, spectral

analyses, photosynthetic performance analyses, complementation studies, transmission electron micro-

scopy, and HPLC pigment analysis to obtain a global view of the impact of ALBINO3B on diatom

photosynthesis. A brief description of the main components of the experimental setup is as follows:

CRISPR/Cas9-based Genome Editing:

• Design of guide RNA targeting the ALBINO3B gene and induction of double-strand breaks using

the Cas9 endonuclease.

• Mutation screening and confirmation via PCR and sequencing.

Analyses of photophysiological parameters

• Determination of changes in light energy absorption and energy transfer efficiency in mutant strains.

• Insights into alterations in pigments’ contributions to the reaction center of photosystem II (PSII).

• Light-saturation curves of photosynthesis based on oxygen evolution.

• Variable in vivo Chl a fluorescence measurement.

• Assessment of photosynthetic parameters: respiration, Pmax, and Es.

Complementation Studies:

• Introduction of a modified ALBINO3B gene to restore the wild-type phenotype.
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• Confirmation of ALBINO3B’s essential role in maintaining normal light-harvesting antenna struc-

ture and function.

Transmission Electron Microscopy:

• Visualization of thylakoid architecture in mutant strains.

• Insights into structural alterations resulting from the absence of ALBINO3B.

HPLC Pigment Analysis:

• Determination of changes in pigment content in mutant strains.

• Uncovering shifts in the composition of pigments associated with ALBINO3B deficiency.

The above analyses were performed for cells exposed or acclimated to different light conditions for

different exposure times. The light conditions employed are:

• LL: 35µmol photons m-2 s-1

• Medium-light: 200µmol photons m-2s-1

• HL: 480µmol photons m-2 s-1

This comprehensive evaluation of wild-type and mutant strains yielded some noteworthy results, As

mentioned above, various parameters were scrutinized to discern the impact of ALBINO3B deficiency on

the light-harvesting antenna complex in diatoms.

HPLC pigment analysis revealed a substantial reduction in Chl c and Fx content in mutant strains,

suggestive of an altered light-harvesting antenna complex. Spectral analyses unveiled pronounced dis-

parities in the in vivo fluorescence excitation spectra, indicating diminished energy transfer from Chl c

and Fx to the PSII reaction center in mutants. This pigment reduction is confirmed by the fact that the

absorption spectra differences aligned with alterations observed in in vivo fluorescence excitation spectra.

Notably, the pulse amplitude modulation measurements to study photosynthetic performance by

Fv/Fm values in this study indicated a high photosynthetic activity in mutant lines as compared to

the wild-type. This is also supported by the observed higher maximum electron transport rate (rETR

max)and light saturation intensity(Ek) in the mutants in the initial phase of light experiments. Further

investigation into this discrepancy by analysis of light saturation curves of photosynthesis revealed the

mutants to have a higher P max (maximum photosynthetic rate) and E s(light saturation index) and a

lower maximum light utilization coefficient (α). These results point towards a light-harvesting antenna

with reduced cross-sectional area in the mutants and avoidance of interpreting the results for improved

photosynthetic performance in the mutants.

The mutant strains initially had lower NPQ levels compared to the wild type at higher light intensities(>400

µmol photons m-2 s-1), but over time, the differences in NPQ capacity between the mutant strains and

the wild type decreased. However, the levels of the photo-protective pigment, that are diatoxanthin(Dt)

and diadinoxanthin(Dd), involved in the xanthophyll cycle, appeared not to be affected in the knock-out

mutants. Moreover, the deepoxidation state(DES) indices were even found to be higher in the mutants

than in the wild-type.
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Transmission electron microscopy depicted structural transformations in mutant chloroplasts, char-

acterized by a reduced number of thylakoid membranes per chloroplast.

Complementation studies, however, showcased a recovery of the wild-type phenotype in complemen-

ted mutants, affirming the pivotal role of ALBINO3B in maintaining normal pigment and LHCF content.

Collectively, these findings underscore the intricate influence of ALBINO3B on the structural and func-

tional aspects of the light-harvesting antenna complex, shedding light on its indispensable role in diatom

photosynthesis.

5.5 Lipid profile in diatoms

Lipids constitute a major group of biomolecules in all living organisms, performing crucial functions like

energy storage, transport, cellular structure, and signal transduction(Guo et al., 2020). Hydrophobic or

amphiphilic molecules are synthesized from fatty acid units of different chain lengths(Guo et al., 2020).

Lipids in all living organisms including algae and diatoms can be broadly classified into polar lipids

and non-polar lipids(Manning, 2022). Non-polar lipids mainly serve as energy reserve molecules whereas

polar lipids are mostly involved in other functions like structural roles in various cell membranes(Manning,

2022).

Diatoms contain various lipids belonging to these different classes with a variety of fatty acid chain

lengths present in each of the classes to form the overall lipid profile of the cell. The lipid metabolic

pathways are altered by the organism based on environmental cues like stress, resulting in a varied lipid

profile adapted to the new conditions(Maeda et al., 2017. The exact functions and sub-cellular localization

of most of these lipids are of great research interest especially because of the complex membrane system

that emerged from secondary endosymbiosis(Maeda et al., 2017). However, genes associated with enzymes

for synthesizing these lipids and those involved in the remodeling of lipid metabolic pathways under stress

conditions have been discovered in diatoms(Levitan et al., 2015, Sayanova et al., 2017). The major classes

of lipids, their functions, and molecular structures are as follows:

• Neutral lipids: The neutral lipids are mostly in the form of triacylglycerol(TAG), wherein three

fatty acid molecules attach to a glycerol backbone. These molecules serve as the major carbon and

energy storage source, especially under stress conditions (Manning, 2022). Diatom cells concentrate

their neutral lipids in special organelles called lipid droplets(Maeda et al., 2017).

Figure 1: Chemical structure of the neutral lipid, TAG obtained from PubChem.
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• Phospholipids: The glycerophospholipids, a major group of polar lipids predominantly act as

membrane lipids and form most parts of the cell membranes and endoplasmic reticulum(Tanaka

et al., 2022). These include molecules with a phosphate group-containing hydrophilic head and a

hydrophilic part comprised of fatty acid chains attached to a glycerol backbone. Phosphatidylcholine

(PC), Phosphatidylinositol (PI), phosphatidylglycerol (PG), and phosphatidylethanolamine (PE)

are the main phospholipids detected in diatoms(Manning, 2022).

(a) Phosphatidylinositol (b) Phosphatidylcholine

(c) Phosphatidylethanolamine (d) Phosphatidylglycerol

Figure 2: Chemical structures of the major types of phospholipids obtained from PubChem.

• Glycolipids: These lipids are another major group of poplar lipids which are carbohydrate-

containing lipids. A subgroup of the glycolipids, called galactolipids, wherein the sugar group

is galactose, comprises a crucial fraction of the diatom lipid profile(Manning, 2022). This frac-

tion involves species such as sulfoquinovosyl diacylglycerol (SQDG) monogalactosyl diacylglycerol

(MGDG), and galactosyl diacylglycerol (DGDG)(Manning, 2022), which predominates the thylakoid

membranes within the diatom plastids along with the phospholipids PG and PC(Tanaka et al.,

2022). They are involved in photosynthesis, membrane organization, and photoprotection func-

tions of the cell(Tanaka et al., 2022).
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(a) Monogalactosyldiacylglycerol (b) Digalactosyldiacylglycerol

(c) Sulphoquinovosyldiacylglycerol

Figure 3: Chemical structures of the major types of glycolipids obtained from PubChem.

Betaine lipids and sterols form two other groups of lipids detected in diatom, Even though betaine

lipids like the Diacylglycerylhydroxymethyl- N, N, N - trimethyl-β-alanine (DGTA) and sterols like the

brassicasterol has been detected in lipid droplets (Lupette et al., 2019) and the genes associated with

synthesis and remodeling of both these groups has been identified in diatoms the exact metabolic pathways

in diatoms still need to be delineated(Tanaka et al., 2022).
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Figure 4: Chemical structure of the betaine lipid, Diacylglycerylhydroxymethyl- N, N, N - trimethyl--

alanine from PubChem.

5.5.1 Denovo fatty acid synthesis, elongation and desaturation reactions in diatoms

The common building block for all these lipids is the fatty acids(Tanaka et al., 2022). These are produced

by the cells through an energy-dependent fatty acid synthesis pathway in the plastid starting with Acetyl-

CoA molecules(Tanaka et al., 2022). The reaction is initiated by the conversion of acetyl-CoA to Malonyl-

coenzyme A (CoA) catalyzed by acetyl-CoA carboxylase (ACC). This ATP-dependent step sets the stage

for the subsequent fatty acid synthesis (FAS) pathway(Tanaka et al., 2022).

The type II fatty acid synthesis pathway is observed in diatom cells wherein multiple mono-functional

enzymes are involved in different processes(Apt et al., 2002). According to the information on putative

pathways of fatty acid synthesis from Tanaka et al., 2015, the Malonyl-coA produced in the first reaction

is converted to Malonyl-acyl carrier protein (ACP) through the action of Malonyl-CoA: ACP transacylase.

The Malonyl-ACP acts as a carbon donor molecule to elongate the acyl chain by 2 carbons during each

cycle of the acyl elongation pathway in the plastid. This pathway involves multiple enzymatic domains

that catalyze sequential reactions, including condensation, reduction, dehydration, and reduction, to

elongate the fatty acid chain. This characteristic cyclic reaction results in the elongation of the acyl

chain of the fatty acid precursor called Acyl-ACP(Tanaka et al., 2022).

A detailed view of the FAS pathway is illustrated in the figure 5.
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Figure 5: An overview of the lipid metabolic pathways in diatoms cells created using information from

Tanaka et al., 2022. The figure depicts the acyl chain elongation cycle leading to the production of

Acyl-ACP, an important intermediate for synthesizing glycerolipids, within the chloroplast. Also, the

synthesis of the important thylakoid membrane lipids like the glycolipids(MGDG, DGDG) sulpholipids

(SQDG), and PG, are shown within the chloroplast. TAG synthesis through the Kennedy pathway using

Acyl-coA and glycerol triphosphate(G3P) and phospholipid remodeling is depicted in the Endoplasmic

reticulum. The figure was created using Biorender.

Abbreviations of the lipids and enzymes in Figure 5 involved in different steps are as follows: ACC:

Acetyl-coA-carboxylase, ATS1 ATS2: Arabidopsis seed gene 1 2, CDP: Cytidine diphosphate, CDIP:

CDP-DAG inositol 3-phosphatidyl transferase, CDS: CDP-DAG synthase, DAG: Diacylglycerol, DGAT:

Diacylglycerol acyltransferase, DGK: Diacylglycerol kinase, DGTA: Diacylglycerol trimethyl-β-alanine,

DGD: Digalactosyldiacylglycerol synthase, DGDG: Digalactocsyl diacylglycerol, DHA: Docosahexaen-

oic acid, EAR: Enoyl-ACP reductase, EPA: Eicosapentaenoic acid, FA: Fatty acid, GPAT: Glycerol-

3-phosphate acyltransferase, HAD: Hydroxyacyl-ACP dehydrate, KAR: ketoacyl-ACP reductase, KAS:

ketoacyl-ACP synthase, LACS: Long-chain acyl-CoA synthetase, LPAAT: Lysophosphatidic acid acyl-

transferase, MAT: Malonyl-CoA ACP transacylase, MGD: Monogalactosyldiacylglycerol synthase, MGDG:

Monogalactosyl diacylglycerol, PC: Phosphatidylcholine, PAP: Phosphatidate phosphatase, PE: Phos-

phatidylethanolamine, PI: Phosphatidylinositol, PIPLC: Phosphoinositide phospholipase C, PGP: Phos-
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phatidylglycerophosphatase, PGPS: Phosphatidylglycerol phosphate synthase, PSD: Phosphatidylserine

decarboxylase, PSS: Phosphatidylserine synthase, PUFA: Polyunsaturated fatty acid, SQD2: Sulfoquinov-

osyl transferase, SQDG: Sulphoquinovosyl diacylglycerol, TAG: Triacylglycerol, TE: Thioesterase

Thioesterase enzymes act upon this Acyl-ACP to produce free fatty acids by hydrolysis(Hao et al.,

2018). The free fatty acid molecules thus produced get converted through enzymatic reaction into Acyl-

coA, which along with the glycerol 3 phosphate molecules from glycolysis are used in different pathways

for denovo synthesis of both neutral lipids, that is TAG, and the various phospholipids(Tanaka et al.,

2022). TAG could be also synthesized in an Acyl-coA-independent manner, wherein the polar lipids

like phospholipids or glycolipids, undergo remodeling into TAG, especially under stress conditions like

nutrient starvation(Abida et al., 2015, Maréchal and Lupette, 2020). the galactolipids(MGDG, DGDG,

and SQDG) are synthesized from another set of pathways that uses the acyl-ACP intermediate and

glycerol 3 phosphate as the feed stock(Tanaka et al., 2022).

The thioesterase does not consume all the acyl-ACP as a fraction is transported out of the plastids and

undergoes further elongation and desaturation in the endoplasmic reticulum to produce the long chain or

very long chain and mono or polyunsaturated fatty acid molecules like the EPA and DHA(Tanaka et al.,

2022).

Although most of the elongation and desaturation reactions occur in the ER, some of these types

of reactions are also known to occur within the chloroplast(Sayanova et al., 2017). The ER-mediated

desaturation and elongation processes are integral for synthesizing intricate lipids characterized by specific

fatty acid compositions. These pathways are crucial for diatoms, as the resulting PUFAs play pivotal

roles in modulating membrane fluidity, participating in signaling pathways, and mediating stress responses

within diatom cells(Montecillo-Aguado et al., 2023). Desaturation involves the introduction of double

bonds into the fatty acid chain, leading to the formation of unsaturated fatty acids(J. M. Lee et al., 2016).

Enzymes known as desaturases catalyze these reactions by inserting double bonds at specific positions

in the fatty acid chain(J. M. Lee et al., 2016). Elongation processes in the ER involve the addition of

two-carbon units to the fatty acid chain, leading to the synthesis of longer-chain fatty acids(Wang et al.,

2023). Enzymes called elongases are responsible for extending the fatty acid chain length(Wang et al.,

2023). The carbon donor molecule for the elongation step is the same Malonyl-coA as in the FAS pathway

within the chloroplast(Tanaka et al., 2022). However, the Malonyl-coA molecules for elongation reactions

in the ER are produced from Acetyl-coA in the cytosol by the action of cytosolic ACC enzymes(Tanaka

et al., 2022).

There are two crucial elongation and desaturation pathways occurring in the diatom ER, namely the

ω6 and ω3 pathways(Arao and Yamada, 1994), which involve specific elongase and desaturase enzymes

as indicated in the figure. The ω3 desaturase enzyme acts as a crossover enzyme between these two

pathways by using products from ω 6 pathway to form products of the ω3 pathway(Sayanova et al.,

2017). The detailed process is illustrated in figure 6.
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Figure 6: An overview of the fatty acid elongation and desaturation reaction pathways within diatom

cells based on information from Tanaka et al., 2022. The figure shows only the fatty acids with 16:0, and

18:0 chains as the starting substrates obtained from the fatty acid synthesis depicted in figure 5. This is

just to show the two most important desaturation pathways that occur in the ER, namely the ω3 and

ω6 pathways leading to the production of relevant PUFAs.Similar to acyl chain elongation reactions, the

carbon donor in the elongation reactions, catalyzed by elongases, is the Malonyl-coA.However, this is

obtained from cytosolic acetyl-coA, unlike the plastidic ones in acyl chain elongation cycles.Des stands

for desaturase and Elo stands for elongase. The figure was created using Biorender.

Changes in the activity of various enzymes involved in the FAS and the desaturation pathways, with

different acyl chain preferences, will affect the fatty acid chain lengths and levels of unsaturation in the

final lipid profile of the cells(Tanaka et al., 2022,Haslam et al., 2020). Some of the most important ones

among these include:

• TE (Thioesterase): The enzyme involved in the conversion of the acyl-ACP intermediate in the acyl

elongation process in the FAS pathway into free fatty acids thereby resulting in the termination

of chain elongation in chloroplast. The specificity of this enzyme towards a particular acyl chain

length could thus potentially affect the final fatty acid profile.

• GPAT (glycerol 3 phosphate acyl transferase): One of the starting enzymes involved in both TAG

and Phospholipid synthesis pathways, which converts glycerol 3 phosphate into Lysophosphatidic

acid, the precursor of phosphatidic acid from which the phospholipids or TAG can be synthesized

through different pathways.

• LPAAT (Lysophosphatidic acid acyl transferase): The enzyme that converts the lysophosphatidic

acid into phosphatidic acid.
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• DGAT (Diacylglycerol acyl transferase: The final enzyme in the TAG synthesis pathway that adds

the final acyl chain to Diacylglycerol (DAG) to form TAG.

• PDAT (Phospholipid: diacylglycerol acyl transferase): One of the main enzymes in the phospholipid

remodeling pathway or the acyl-coA independent TAG synthesis that transfers acyl chains from

phospholipids like PC into DAG to from TAG

5.6 Lipidomics using mass spectrometry

Metabolomics involves the qualitative and quantitative analyses of metabolites in a biological sample

and includes the analyses of proteins or peptides (proteomics or peptidomics) and lipids (lipidomics)(Wu

et al., 2020). Mass spectrometry is a powerful tool that has enabled high throughput metabolomic

analyses through advanced molecular characterization and quantification approaches. The role of mass

spectrometry is considered inevitable in the field of lipidomics(Wu et al., 2020). Mass spectrometry

involves the detection of molecules that differ in their mass, charge, shape, and size after ionizing the

constituent molecules in the gas phase and separating them based on their mass-to-charge ( m/z) ratio.

Contemporary mass spectrometry methods combine it with chromatographic separation techniques to

increase the resolution of the analysis. There exist different variants of mass spectrometry based on the

type of chromatography with which it is combined, the method used for the ionization of molecules, and

the technique employed for molecular separation based on mass-to-charge ratio and detection.

Common chromatography techniques that are integrated with MS include:

• High performance liquid chromatography(HPLC)

• Gas chromatography

• Thin layer chromatography(TLC)

The previous experiment conducted by Nymark et al., 2019 isolated lipids from all the above-

mentioned mutant strains and wild types which were exposed to two different light-level treatments,

that is LL(35µmol photons m-2 s-1) and ML(200µmol photons m-2 s-1). The isolated lipid samples were

characterized using tandem mass spectrometry at the Institut National de la Recherche Agronomique,

Université Grenoble Alpes, in Grenoble, France. Generally, the glycerolipids are separated and eluted

with HPLC/TLC, and the Fatty acids with GC-FID before MS-MS. The positioning of the FAs on the

glycerol moiety is determined by radiolocalization. Both lipid class data and Fatty acid composition data

from this experiment were used to base this thesis work.

The general workflow in MS-MS coupled with GC is depicted in figure 7
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Figure 7: General workflow in gas chromatography coupled mass spectrometry for Fatty acid analysis.

The lipid samples with different components are injected after vaporization into the GC COLUMN along

with the carrier gas or mobile phase of chromatography. The movement of the different components

through the column differs based on their mass thus changing their time to traverse the column. Con-

sequently, the different components in the lipid sample are separated and adsorbed onto the stationary

phase at different points in the column, and then later on eluted to enter the MS phase for further

separation and detection based on the m/z ratio. The MS phase in lipid analysis usually involves tan-

dem mass spectrometry(MS-MS) to achieve high resolution by 2 consecutive MS steps separated by a

collision-induced fragmentation step. The final separated components are then detected by a detector

that generates the final chromatogram based on the detected electrical signals. The figure was created

using Biorender.

There are two main methods which are employed in MS for gas-phase ionization of the samples after

elution from the GC column:

• Electron spray ionization: The biological sample in the liquid phase is forced through an orifice

with an electric field across it resulting in the subsequent breakdown into smaller particles with

charge surrounding it and vaporization of the molecules into charged ions.

• Matrix-assisted laser desorption ionization (MALDI): The biological sample is in a solid state by

intercalating it in a suitable solid matrix. This is then subjected to exposure by a focused laser

that causes the desorption and ionization of the molecules.

The separation of ions based on mass and charge can be done through one of the following techniques

• Time-of-Flight: The ionized molecules are separated based on their velocities when accelerated

through a specific voltage(Sinha and Mann, 2020). Different velocities result in different times for

traversing the fixed trajectory which is a measure of mass-to-charge ratio and can be estimated

based on the arrival times at the detector(Sinha and Mann, 2020).
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• Orbitrap: Ions are differentiated based on the variations in oscillation frequencies of the molecules

as they move along a central metal spindle after being trapped in the Orbitrap(Sinha and Mann,

2020).

Tandem mass spectrometry(MS-MS) is a variant of mass spectrometric analysis that offers a much

higher resolution in ion detection by combining with subsequent mass spectrometry events. Here the

separated particles in the first MS are further disintegrated into smaller particles by collision with inert

gases like nitrogen in a chamber(Sinha and Mann, 2020). The smaller particles are then separated in the

second MS event.

Chromatography, MS, and radiolocalization analysis of lipid samples can yield two types of data;

• Lipid class data: This quantifies the amounts of different classes of lipids present in the samples in

a standard unit, usually nanomolar levels.

• Fatty acid composition and position data: This is a much more resolved view of lipidome that

indicates quantities of different lipids within each class that vary in the carbon chain length and

position( for example, on the glycerol backbone for glycerolipids) of the constituent fatty acids.

5.7 Flow cytometry

Flow cytometry, a dynamic technology, swiftly analyzes individual cells or particles as they move through

a buffered salt-based solution, exposed to lasers (McKinnon, 2018). Each particle undergoes scrutiny for

the visible light scatter and various fluorescence parameters, offering valuable insights into their unique

characteristics(McKinnon, 2018). This versatile technology finds applications across diverse scientific

disciplines, including immunology, virology, molecular biology, cancer biology, and infectious disease

monitoring(McKinnon, 2018). Flow cytometry also has immense use in algal research as it could be

used to measure cell counts within cultures and also for analyzing algal cells stained with different

fluorochromes. For instance, propidium iodide staining of algal cells and their subsequent detection using

appropriate detectors in the flow cytometer helps determine the extent of cell death. Another relevant

use is the measurement of gene expression by measurement of fluorescence from fluorescent tags like the

green fluorescent protein(GFP) that is attached to the gene under study. Flow cytometry also finds

application in algal lipid studies specifically. Lipids within cells can be stained using dyes such as Nile

red or BODIPY with characteristic excitation-emission spectra. Emission detection measurement with

defined gates of the flow cytometer under specific detectors will aid in measuring the lipid content within

cells.

As stated, measurement of visible light scatter is a crucial aspect of flow cytometry. There are two

important visible light scatter measurement parameters measured by separate detectors, namely:

• Forward scatter (FSC): The measurement of scattered light in the forward direction which is indic-

ative of the relative size of the particles or cells causing the scattering(McKinnon, 2018)

• Side scatter (SSC): The measurement of scattering in the perpendicular direction, which indicates

the cell complexity or granularity(McKinnon, 2018)

Apart from these two detectors, the flow cytometer will also be equipped with other fluorescence de-

tectors. These detectors can be of different types like photo-multiplier tubes or photo-diodes(McKinnon,
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2018). Some of the advanced flow cytometers with improved sensitivity employ avalanche photo-diodes

for fluorescence detection(McKinnon, 2018).

In addition to lasers and detectors, filters form an essential actor in the instrumentation. These include

both excitation filters for controlling the wavelength of the laser beam used for exciting the flurochromes

and the emission filters to allow only specific wavelengths to pass towards a detector or for deflecting

specific wavelengths to respective detectors(McKinnon, 2018). Most flow cytometers used at present have

precisely positioned dichroic filters and bandpass filters that steer and filter the emitted light, facilitating

the detection and measurement of individual fluorochromes(McKinnon, 2018).

The use of multiple lasers, filters, and detectors in the instruments coupled with advanced software

systems for data interpretation aids in the effective assessment of several parameters associated with the

studied samples(McKinnon, 2018).

5.8 Autofluorescence measurements

The inherent ability of different biological molecules including chlorophyll, called native fluorescence or

autofluorescence, can be utilized in cell biology studies for monitoring and assessment of the condition of

the biological samples. One of the applications for this is the establishment of algal growth curves through

autofluorescence measurements. The excitation of algal samples using wavelengths that specifically target

fluorescence emissions from the chlorophyll molecules is a commonly used approach to create growth

curves as these measurements are directly proportional to the fraction of active cells in the culture

samples. This can be considered a non-invasive and insightful method for assessing the physiological

dynamics of algal cultures as the excitation wavelength used, around 365 nm, is less prone to cause

cell damage and the detected wavelengths, around 680 nm, is a reliable marker for cellular activity,

eliminating the need for external dyes or intrusive sampling(Rost, 1999,Garćıa-Plazaola et al., 2015).

This can be achieved using specialized equipment such as flow cytometers or spectrophotometers. The

resulting growth curve, characterized by changes in autofluorescence over time, provides a comprehensive

view of algal growth phases, including lag, exponential, stationary, and decline. This data can then

be used to draw information about cellar content, metabolic activity, and growth dynamics to compare

between cell lines or treatment conditions. This approach could prove to be useful in the comparative

study between the wild type and Alb3b mutant cell lines of P.tricornutum. A conspicuous change in the

autofluorescence growth curve is expected in this case as the previous study by Nymark et al., 2019 has

proved a difference in pigment concentrations, photosynthetic activity, and growth pattern between the

cell lines.

5.9 Pulse amplitude modulation(PAM) fluorometry for measuring photosyn-

thetic efficiency

Apart from having applications in growth measurements and assessment of cell health, Autofluorescence

from pigments can be utilized to evaluate the photosynthetic efficiency of diatoms. This is possible

because autofluorescence emission is one among four techniques that the phototrophic cell uses to de-

excite the pigments, particularly chlorophyll molecules in the photosynthetic reaction centers(Consalvey

et al., 2005). The other three mechanisms by which these molecules, which are excited by light, get back

to their stable state are as follows:

17



• Thermal Dissipation: In this process, energy is dissipated in the form of heat to a random

neighboring molecule through the molecular motion of the excited chlorophyll molecules(Consalvey

et al., 2005).

• Energy Transfer: In this process, energy is simply transferred to another chlorophyll molecule in

the vicinity of the excited chlorophyll molecule, causing the excitation of an electron in the latter

to a higher energy state(Consalvey et al., 2005). This also facilitates energy distribution within the

photosynthetic system.

• Photochemical Reaction: This crucial step involves utilizing absorbed energy to drive a pho-

tochemical reaction(Consalvey et al., 2005). The excited electron, released from the chlorophyll

molecule, initiates photosynthesis by participating in chemical reactions that convert light energy

into chemical energy.

Additionally, a part of the excess energy acquired from the irradiance could be dissipated as heat

through a mechanism called non-photochemical quenching(NPQ). This involves specific carotenoid pig-

ments called diadinoxanthin and diatoxanthin which are inter-converted between each other in the xantho-

phyll cycle, the underlying reaction process of NPQ(Jahns and Holzwarth, 2012).

The strengths at which all these processes of dealing with the acquired light energy, including auto-

fluorescence, are affected by each other. Therefore, the measurement of certain autofluorescence para-

meters helps us assess the levels of other mechanisms and their associated processes(Consalvey et al.,

2005). The photosynthetic efficiency is usually determined by calculating the light utilization efficiency

and electron transport rate(Consalvey et al., 2005). Pulse amplitude modulation fluorometry is one of the

techniques in phyto-biological and algal research that utilizes fluorescence measurements from chlorophyll

to calculate the photosynthetic efficiency and the levels of the other light-associated processes.

PAM employs short light pulses that can induce chlorophyll autofluorescence but not photochemical

reactions, thus enabling the differentiation of fluorescence emissions from actinic light, which in turn

diversifies its applications(Consalvey et al., 2005). Different measures of autofluorescence can be obtained

from PAM. Some of the crucial ones among these are:

• Fo (Minimum Fluorescence Yield): The minimum fluorescence yield in the cells adapted to

dark conditions, where all reaction centers are open. This means that there is no incident light and

thereby, no electron transfer into the PSII reaction centers.

• Fm (Maximum Fluorescence Yield): The maximum fluorescence yield in the cells adapted

to dark conditions after a saturating light pulse, that is intense enough to close all the reaction

centers. This means that all the PSII reaction centers receive electrons from a donor in the light-

driven electron transport chain, leading to the maximum fluorescence yield.

• Fv (Variable Fluorescence): It represents a measure of the range of fluorescence that can be

induced in the dark-adapted state and is calculated as the difference between Fm and Fo.

• F’ (Fluorescence Yield in the Light-Adapted State): The measure of fluorescence yield

in the presence of actinic light, reflecting the extent to which PSII is closed under ambient light

conditions.
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• Fm’ (Maximum Fluorescence in the Light-Adapted State): The maximum fluorescence

yield in the cells adapted particular light levels after a saturating light pulse, indicating the max-

imum potential quantum yield of PSII under ambient light conditions.

• Fq’ (Quenched Fluorescence by photo-chemistry): The amount of fluorescence suppressed

as the light energy gets utilized for photochemical reactions. This can be calculated as the difference

between Fm’ and F’.

These measured parameters can then be used to calculate the light utilization efficiency and electron

transport rate, which reflects the photosynthetic state of the cells. The maximum light utilization effi-

ciency is calculated as the ratio of variable fluorescence and maximum fluorescence:

Fv/Fm =
Fm-F0

Fm
(1)

The light utilization efficiency at a particular actinic light level is calculated as the ratio of Photo-

chemistry-quenched fluorescence and maximum light-adapted fluorescence:

ϕPSII =
F ′
m-F

F ′
m

=
F ′
q

F ′
m

(2)

The electron transport rate is calculated as a function of the light utilization efficiency and the level of

irradiance:

ETR = ϕPSII × PPFD

2
×A (3)

Alternatively, the intensity of Photosynthetic active radiation(PAR) measured in mol photons m-2

nm-1 s-1) can be used instead of PPFD. Furthermore the calculation of ETR without the absorbance

coefficient A yields the relative electron transport rate(rETR)(Consalvey et al., 2005))

5.10 Confocal laser scanning microscopy

Confocal laser scanning microscopy(CLSM) is one of the major advancements in the field of optical

microscopy that helps achieve comparatively much higher resolution than conventional wide-field fluores-

cence microscopy. Although the resolution from CLSM is lower than electron microscopy, it has benefits

like less complex sample preparation techniques and the ability to accommodate live three-dimensional

imaging(Canette and Briandet, 2014).

As the name suggests, CLSM involves the acquisition of an image from just the focal plane and uses

a laser to scan the specimen. Unlike conventional fluorescence microscopy, where the entire specimen is

flooded with illumination, CLSM employs localized point-to-point excitation using a focused laser and

subsequent detection of excitation (Canette and Briandet, 2014). The specimen, which is usually stained

with a fluorescent dye, is illuminated with a laser of an ideal wavelength and at user-defined laser power

intensities to a diffraction-limited spot on the specimen using a lens. This allows for a high energy density

at the focused point followed by the excitation of the fluorescent probe. The excited signals traverse back

through the lens and then are passed through a pinhole before detection which serves to eliminate the out-

of-focus light and thereby increase the resolution(Elliott, 2019). The in-focus emissions from the excited
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spot are subsequently detected by a photo-multiplier tube or a photo-diode that acts as a transducer to

convert the photon signal to an electrical signal to be displayed as a pixel with specific characteristics.

This process is repeated as the laser is scanned over the specimen point by point using two rapidly moving

perpendicular scanning mirrors(Elliott, 2019).This results in a pixel-by-pixel acquisition of the emitted

light from the specimen which can then be reconstructed for the final high-resolution image. The focal

plane can be changed to a different depth by adjusting the lens position(Elliott, 2019). This change in

focal point depth is used to shift the scanning in the z direction and can be used to obtain multiple optical

sections of the specimen to form a Z-stack(Elliott, 2019). The acquired Z-stacks can then be processed

to form 3D images of the specimen(Elliott, 2019).

Figure 8: General working principle and components of confocal laser scanning microscope showing the

various components like laser, scanning mirror, filters, and lenses. The blue light rays indicate the filtered

light rays from the laser to excite the fluorescently labeled samples and the green light rays indicate the

fluorescent emission from the dye that stained the sample. it also shows that both the excitation and

emission rays pass through the same objective lens and a pinhole aperture that reduces the out-of-focus

signals before they reach a detector. Figures were created using Biorender.

The benefits put forth by CLSM such as non-invasive optical sectioning and 3D imaging, improved

contrast and resolution, reduced background noise and artifacts, and the ability to observe specimens

in different experimental conditions like nutrient or chemical stress, make it one of the ideal imaging

alternatives for algal cells under various treatment conditions. This can be used to observe structural

variations in the morphology of cells, organelles, or other cellular components under stress conditions.

This also includes studying variations in lipid droplet structure and distribution in cells using lipid-specific
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stains like Nile red or BODIPY.

5.11 BODIPY staining

Fluorescent dyes that specifically stain lipids are advantageous for lipid measurement in microalgae be-

cause they offer a rapid and inexpensive analysis tool to measure neutral lipid content, avoiding time-

consuming and costly gravimetric analysis(Rumin et al., 2015). They also allow for high-throughput

screening of potential oleaginous microalgae to identify promising sources for commercial biofuel produc-

tion. Two of the widely used fluorescent dyes for lipid staining are Nile red and BODIPY(Rumin et al.,

2015).

Although Nile red (9-diethylamino-5H-benzo[a]phenoxazine-5-one) has been used for a wide range of

lipid analysis studies it has certain limitations like reduced solubility and fluorescence in water, inter-

ference with chlorophyll, subpar photo stability levels, and permeation challenges for some microalgae

species(Rumin et al., 2015). Recent studies have shown that BODIPY 505/515 is a better marker than

Nile red for visualizing neutral lipid content in fluorescence microscopy studies(Rumin et al., 2015).

Boron dipyrromethene ( commonly called BODIPY) is a class of compounds that has its absorption

spectrum in the UV region and exhibits strong emission peaks(Rumin et al., 2015). These compounds

can be subjected to chemical modifications to form fluorescent dyes with varying excitation and emis-

sion properties to be used in the imaging of different sub-cellular components. Additionally, BODIPY

compounds are advantageous to be used in environmental manipulation experiments as they are toler-

ant to pH variations and polarity in the treatment conditions(Rumin et al., 2015). Furthermore, the

non-destructive nature of these compounds allows the cells to be used for further analysis after BODIPY

treatment(Rumin et al., 2015).

BODIPY 505/515 (4,4-difluro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene) is one of the com-

monly used variants of BODIPY in lipid analysis. This can be excited with a blue laser in the range of

450 to 490 nm and lead to a sharp emission in the green region in the range of 515 to 530 nm(Rumin et al.,

2015). The optimal staining conditions may vary depending on the microalgae species, dye concentra-

tion, cell concentration, temperature, and incubation duration(Rumin et al., 2015). However, previous

research has proved that using a permeation solvent like Dimethyl sulfoxide (DMSO) or glycerol will

significantly improve the staining efficiency(Rumin et al., 2015). One of the research that attempted to

delineate the ideal staining conditions for microalgae established that the optimal staining concentration

be 0.067µg µL-1at 1.106 cells mL-1, temperature at 25 ◦C, and incubation time of 10 minutes(Rumin

et al., 2015). However, these values were calculated for other species of microalgae than P.tricornutum,

and the optimum cell concentrations are species-specific(Rumin et al., 2015).

5.12 Real-time Polymerase chain reaction or quantitative PCR

Real-time or Quantitative polymerase Chain reaction, abbreviated as q-PCR, is a very commonly used

molecular biology technique for detecting and quantifying particular target sequences in genetic material

(Kráĺık and Ricchi, 2017). This attribute makes it a widely applied tool for studying gene expression

profiles (Bustin et al., 2009). This technique is based on the traditional polymerase Chain Reaction and

involves all the basic steps involved in a typical PCR cycle:
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• Denaturation: the samples are heated to a high temperature of about 95°C so that the double-

stranded DNA becomes denatured to generate single-stranded DNA molecules

• Annealing: The reaction temperature is brought down to about 50 to 60 °C so that the primers,

which are oligonucleotide sequences designed complementary to the target sequence, bind to the

single-stranded DNA molecules.

• Elongation: The reaction temperature is increased to about 72°C so that A suitable thermo-stable

DNA polymerase enzyme elongates the DNA strands at the regions where the primers have annealed

using dNTPs.

This cycle is repeated several times until several millions of copies of the target sequence, the amplicon,

are obtained. q-PCR differs from traditional PCR in that measurement of the amplicon is made after

every cycle using fluorescence. This can be done either by using non-specific fluorescent dyes or specific

oligonucleotide fluorescent probes. The higher specificity of the probes to detect just the desired product

makes it more advantageous than dye-based detection as the problem of detecting non-target products

is avoided(Kubista et al., 2006). These fluorescent dyes or probes used in q-PCR specifically bind to the

double-stranded DNA and only fluoresce upon binding. Therefore the amount of fluorescence measured

after each PCR cycle indicates the amount of amplified product in the sample after a particular number

of cycleKráĺık and Ricchi, 2017).

Differential gene expression studies using q-PCR are based on a parameter called the quantification

cycle value or Cq value. It can be defined as the number of cycles in q-PCR after which the fluorescent

emission from the desired product becomes detectable and distinguishable from the background(Kráĺık

and Ricchi, 2017). Since more of the initial amount of desired product leads to the product getting

amplified to levels above this threshold earlier, the Cq value is inversely proportional to the amount of

the studied product or gene in the sample(Kráĺık and Ricchi, 2017).

The absolute quantities of the expressed gene under study can be calculated by measuring serial

dilutions of the samples with known concentrations of the studied gene to make a calibration curve,

and then using it to determine unknown concentrations(Yang and Rothman, 2004). However, it is also

possible to get comparative gene expression profiles by measuring unknown samples against a control to

determine expression as fold-change compared to the control(Bustin et al., 2009).

Differential gene expression studies using q-PCR usually involve extensive sample preparation before

the PCR reaction cycles. This includes:

• RNA isolation: Purifying just the RNA fraction from the samples by using reagents, buffers, and

filtration steps to remove proteins, fats, DNA, and other biological materials. It is usually done by

using standard kits.

• Nanodrop assessment: Measuring the concentration of nucleic acid material present in the isolated

samples by spectrophotometry(Garćıa-Alegŕıa et al., 2020). The purity of the samples is estimated

by measuring the absorbance ratio at 260nm(for nucleic acids) to 280nm(for proteins), and at 260nm

to 230nm (for other contaminants like phenol)(Garćıa-Alegŕıa et al., 2020).

• RNA integrity testing: Calculating the RNA integrity numbers, ranging from 1 to 10 of isolated

RNA samples to determine RNA degradation levels and thereby the suitability of the samples for
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q-PCR. This was earlier done using gel electrophoresis and subsequent visualization using ethidium

bromide. It is now commonly done using a BioAnalyzer using special chips, fluorescent dyes, and an

algorithm to form an electropherogram based on fluorescence intensities from different-sized RNA

molecules(Puchta et al., 2020).

• cDNA synthesis: Synthesizing complementary DNA strands from isolated RNA using reverse tran-

scription using an appropriate RT enzyme(Kuang et al., 2018). This is also done using standard

kits and employing thermal cycles as in PCR. A primer mix and/or oligo-dT primers are used to

anneal to the RNA molecules to initiate reverse transcription(Kuang et al., 2018).

5.13 Data analysis pipeline development

A data analysis pipeline is a series of data processing and analysis steps organized sequentially to trans-

form raw data into meaningful insights. It can also be defined as a workflow that streamlines the entire

data analysis process, making it more efficient, reproducible, and scalable. Such a pipeline needed to be

developed for the MS-MS results dataset, so that it can be applied to various data from each mutant

and wild type to make the analysis fast and comparable. However, the plethora of options available

for incorporation into the pipeline, including basic plots, advanced graphs, statistical tests, Outlier im-

putation techniques, Null value imputation methods, and Machine learning or Deep learning algorithms,

among others, could challenge the development process. However, domain expertise in the field of diatom

lipidomics, statistical knowledge, and a comprehensive understanding of the dataset to be studied could

lead to better decision making resulting in a pipeline that yields deeper insights. The pipeline typically

includes various stages, each serving a specific purpose in the analysis process. The key components of a

data analysis pipeline may include:

• Data Collection: The original or raw dataset from the MS-MS analysis can be used as the source

to gather the required data to carry out a step further in the pipeline. For example, gathering PI

levels in Alb3b 14 mutants under high light levels and low light levels.

• Data Cleaning and Pre-processing: The missing values and the outliers need to be imputed with

scientifically reasonable values before analysis or testing for the results to be more reliable. The

raw data is then transformed into an appropriate format for analysis and testing.

• Exploratory Data Analysis (EDA): An initial exploratory analysis is conducted through plots or

graphs to understand the basic characteristics of the data, identify patterns and anomalies, and

generate hypotheses.

• Feature Engineering or decomposition: Too many features, which in this case are lipid types, can

make the analysis complex and the results hard to understand. This can be solved through this

step where either new features that explain an adequate level of data variance are generated or

some of the original features with less importance are eliminated.

• Modeling: Applying statistical or machine learning models or tests to the processed data for pre-

diction, classification, clustering, or other analytical tasks. This can also involve visualization of

values given by the different cell lines in the models to understand and compare their behavior.
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• Validation: Assessing the performance of the models and ensuring that they generalize well to new,

unseen data or checking whether the requirements for certain statistical analysis steps are met in

the gathered and processed dataset.

• Interpretation: Interpreting the results of the analysis and drawing conclusions based on the insights

gained.

A data analysis pipeline was developed for processing and exploring the MS-MS results dataset from

the light experiments using mutants conducted by Nymark et al., 2019. This included the following main

parts among others:

• principal component analysis: It is one of the most common features or dimensionality reduction

methods in which datasets with a high number of features or variables are reduced into fewer

new sets of variables called principal components(Jolliffe and Cadima, 2016). These principal

components are linear functions of the original variables and will retain the maximum possible

variance observed in the original dataset successively(Jolliffe and Cadima, 2016).

• Outlier imputation: A dedicated function was defined that takes into account all the similar sample

types, that belong to the same cell line and same light conditions, calculates the inter-quartile range,

and imputes all the values that are outside the following range (Q1-1.5xIQR) to (Q3+1.5XIQR)

where Q1 is the first quartile, Q3 is the third quartile and IQR is the inter-quartile range. The

substituted value in the place of the outliers was the mean of all the values belonging to the same

sample type.

• Welch’s T-test: This is similar to the student-T-test except that it does not assume equal variances

between the samples compared during the calculation of test statistics and p-values.
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5.14 Feature decomposition and extraction using principal component ana-

lysis

(a) Original Data Points showing no discernible variation or clustering between the data points from two groups
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Figure 9: Illustration of different steps in principle component analysis. The figure was created using

LaTeX.
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Conducting a principal component analysis before exploratory data analysis or predictive analytics is a

widely used procedure in most data science project workflows to help reform a complex dataset, usually

with a redundant number of variables or features, to a simple and more insightful one with a new set of

calculated and uncorrelated features or vectors called as the principal components(Shlens, 2014).

Principal component analysis involves the assessment of the reformed dataset to obtain otherwise

clouded information. These components are defined to hold the most variance of the original dataset,

with principal component 1 possessing the highest variance followed by principal component 2, and

so on. Therefore, PCA contributes to noise reduction by emphasizing components with the highest

variance, assumed to represent the underlying structure of the data. This non-parametric technique

operates without making assumptions about the data distribution or structure, offering flexibility and

applicability across diverse datasets including the MS-MS lipidomics dataset.

These newly established features will allow the generation of more insightful visualizations, presenting

relevant information, which can otherwise be vague when presented with the original features. This is

because PCA facilitates the representation of high-dimensional data in a lower-dimensional space(Shlens,

2014). Through this plotting based on principal components, intricate patterns, and relationships become

more accessible for observation and interpretation(Shlens, 2014). Additionally, this dataset decomposition

process reduces the computational power demands required for approaches like machine learning or deep

learning. Thus it helps in the management of large volumes of data with minimal loss of the essential

trends or patterns. Furthermore, PCA serves as a powerful feature extraction method, enabling the

identification of significant features within the data.

The main steps in PCA can be loosely defined as finding new vectors in the original feature space

of data points and plotting the same data points in the new vector space to observe for variation in the

data. This is illustrated in figure 9

A standard principal component analysis involves the following steps:

5.14.1 Data Standardization

Standardize the dataset to have zero mean (µ) and unit variance (σ) for each variable. This is also called

data scaling, where the data points are substituted with corresponding z-values.

Zij =
Xij-µj

σj

Where Zij is the standardized value for variable j in observation i, Xij is the original value, µj is the

mean, and σj is the standard deviation.

5.14.2 Covariance Matrix

The covariance matrix is a symmetric matrix that provides the covariance values between the different

features of the given dataset. In the case of the MS-MS data set this would be the covariance values

between different lipid types. It should be noted that the individual samples whose measurements were

considered for covariance matrix formation might come from multiple populations, which in this case

would be the different cell lines. For instance, the PCA might be done for checking for separate clustering

of WT and one of the Alb3b mutant lines.

Compute the covariance matrix (
∑

) of the standardized or scaled dataset.
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∑
(X,Y) =

1

n-1

n∑
i=1

(Xi-X̄)(Yi-Ȳ)

Where n is the number of observations, X and Y are two individual features Xi, and YI is the ith

standardized measurement or observation for the variable X and Y respectively, and X̄ and Ȳ is the

mean vectors for the respective variables.

The calculated covariance matrix will have the following format:

∑
(Z) =


Cov(Zlipid 1 , Zlipid 1 ) Cov(Zlipid 1 , Zlipid 2 ) . . . Cov(Zlipid 1 , Zlipid n )

Cov(Zlipid 2 , Zlipid 1 ) Cov(Zlipid 2 , Zlipid 2 ) . . . Cov(Zlipid 2 , Zlipid n )
...

...
. . .

...

Cov(Zlipid n , Zlipid 1 ) Cov(Zlipid n , Zlipid 2 ) . . . Cov(Zlipid n , Zlipid n )


Where Z represents the collective population from which the measurements are taken.

It should be noted here that the values along the main diagonal of the matrix are the variance measures

for each lipid type for the particular cell line. The number of lipid types, represented as n depends on the

dataset under analysis. For the lipid class dataset, it will be 10 incorporating the phospholipids(PI, PC,

PG, PE), glycolipids(MGDG, DGDG, SQDG), betaine lipids(DGTA), and neutral lipids(DAG, TAG).

5.14.3 Eigenvalue decomposition

Eigenvectors are non-zero vectors that maintain their direction unchanged after the application of a lin-

ear transformation(Libretexts, 2023). The linear transformations applied to a vector can be represented

as matrices, which when multiplied by the vector give an image or a transformed version of the eigen-

vector(Dan Margalit, n.d.). The scale by which the matrix transforms an eigenvector is referred to as

the eigenvalue(Dan Margalit, n.d.). That is, for a given matrix A, a unit vector v and a corresponding

eigenvalue of λ :

Av = λv

For the calculated covariance matrix for the MS-MS data, the equation will become:∑
(Z)v = λv

Where λ is an eigenvalue and v is the corresponding eigenvector.

Eigenvalue decomposition represents the crucial step in PCA(Raschka, 2015). This is a factorization

step to determine the eigenvectors and eigenvalues of the covariance matrix Σ(Z). By definition, the

principal component or axes are the eigenvectors of the covariance matrix of the dataset with the cor-

responding eigenvalues representing the extent of variance covered by the eigenvectors(Raschka, 2015).

Thus, selecting a subset of the top eigenvectors, with the highest eigenvalues allows for a transformation

of the dataset into a new coordinate system. This process enables a reduction in the dimensionality of the

dataset while retaining the essential information contained in the most significant directions of variability.

Perform eigendecomposition on
∑

(z) to obtain eigenvalues (λ) and corresponding eigenvectors (v).

5.14.4 Selection of Principal Components

Sort the eigenvalues in descending order and choose the top k eigenvectors based on the desired number

of principal components.
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5.14.5 Projection

Project the standardized data onto the selected principal components to obtain the transformed dataset.

T = ZV

Where T is the matrix of transformed data, Z is the standardized data matrix, and V is the matrix

of selected eigenvectors.

For the MS-MS data, the projection was performed using both the top two and three principal

components for the mutant lines studied. This was then used to create Two and three-dimensional

graphs respectively to observe the clustering of data points in the new coordinate system.

5.14.6 Calculation of Loading Scores

The loading scores for the different variables are calculated based on the angle of rotation of the various

principle components relative to the axes that originally represent the variables(David T. Harvey, n.d.

The loading scores provide insights into the importance of each variable in contributing to the principal

components and are a commonly used technique for feature extraction.

5.15 Statistical tests

5.15.1 Levene’s Test

Assessment of homogeneity of variances between the groups or samples to be compared can help in decid-

ing the best option for hypothesis testing. Though this can be achieved through plotting options like the

”residuals versus fits plot”, it can only indicate high or conspicuous differences. Levene’s test evaluates

the homogeneity variances between samples and is often employed before analysis of variance (ANOVA)

or independent T-tests to ensure the samples are in accord with the homogeneity of variances assump-

tion(Gastwirth et al., 2009). The test statistic is based on the absolute deviations of the observations

from the group mean(Gastwirth et al., 2009).

F =
(N-k)

(k-1)
×

∑k
i=1 ni(Zi·-Z··)

2∑k
i=1

∑ni

j=1(Xij-X̄i·)2
(4)

where:

W is the Levene’s test F-statistic,

N is the total number of observations,

k is the number of groups,

ni is the number of observations in the i-th group,

Zi· is the mean of the absolute deviations of observations from the group mean in the i-th group,

Z·· is the grand mean of the absolute deviations,

Xij is the j-th observation in the i-th group,

X̄i· is the mean of observations in the i-th group.
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5.15.2 Shapiro Wilk’s test

Most of the hypothesis testing including ANOVA and T-test assumes that the population under study

is normally distributed. This assumption can be tested using basic distribution plotting. But this can

potentially involve biases and assessing a large number of samples can be time-consuming. The Shapiro-

Wilk test is a statistical test that provides a quantification of how normally distributed the population

is(shapiro). It is normally used to supplement normality plots before other statistical tests(Shapiro and

Wilk, 1965). However, it is sensitive to departures from normality in the distribution tailsShapiro et al.,

1968. The test statistic is based on the covariances between the sorted sample values and the expected

values under normality(Shapiro and Wilk, 1965).

W =

(∑n
i=1 aiX(i)

)2∑n
i=1(X(i)-X̄)2

(5)

where:

W is the Shapiro-Wilk test statistic,

n is the sample size,

ai are constants derived from the covariance matrix of the order statistics,

X(i) is the i-th order statistic,

X̄ is the sample mean

5.15.3 T-test

The comparison of two independent groups, for example, cells treated in high light and low light separ-

ately, can be executed using a T-test. There are two options available here, namely,

• Student-T-test

• Welch’s-T-test

The T-statistic calculations, for the MS-MS dataset, in both tests utilize the following formula:

t =
X̄lipid1-X̄lipid2√

s2lipid1
nlipid1

+
s2lipid2
nlipid2

(6)

where:

t is the Welch’s t-test statistic,

X̄lipid1, X̄lipid2 are the sample means,

s2lipid1, s
2
lipid2 are the sample variances,

nlipid1, nlipid2 are the sample sizes.

Both tests assume the existence of normality in the compared groups. However, these tests differ in the

fact that the student T-test assumes equality of variances between the compared groups, Whereas the

Welch T-test is a modification of the traditional Student’s t-test that accommodates unequal variances(Lu

and Yuan, 2010). This is achieved by calculating the degrees of freedom(df) in a more detailed manner,
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taking individual variances and sample sizes into consideration, unlike the pooled variance used for

calculating df in Student’s T-test.

This can be represented by the following equations:

df in Student’s T-test is calculated as:

df = n1+n2− 2

where n1 and n2 are sample sizes of the independent samples considered.

df in Welch’s T-test is calculated as:

df =

(
s2lipid1
nlipid1

+
s2lipid2
nlipid2

)2


 s2

lipid1
nlipid1

2

nlipid1-1


nlipid1-1

+


 s2

lipid2
nlipid2

2

nlipid2-1


nlipid2-1

=

(
s2lipid1
nlipid1

+
s2lipid2
nlipid2

)2

(
s2
lipid1

nlipid1

)2

nlipid1-1
+

(
s2
lipid2

nlipid2

)2

nlipid2-1

The results from the Levenes test can be used to decide the selection of either of these tests for particular

comparisons.

5.16 Statistical plotting

Data visualization plays an inevitable role in exploratory data analysis as it allows the user to get an

overview of the entire data set or the results from the statistical analyses of the dataset. A wide range

of visualization options are available to plot the data both in two and three-dimensional space under

the Cartesian coordinate system. This includes general application plots like bar plots, scatter plots, pie

charts, violin plots, box plots, and line plots, among others to some specific plots like the scree plot and

loading plots used in principal component analyses. It is possible to make custom plots from scratch

or through modification of the plots mentioned above using Python or R programming. In this master

thesis, the results of PCA were visualized using Scree plots and Biplots and the results of statistical

modeling were visualized using custom-made T-statistic v/s P-value plots.

5.16.1 Scree plot

Scree plots can be bar plots or line plots that represent the amount of variance explained by each

of the calculated principal components from PCA. These plots are useful in deciding the number of

principal components to be used in further analysis including visualizations. These plots usually have the

percentage or fraction of explained variance on the y-axis and the principal components on the x-axis.

30



Figure 10: An example scree plot created in Python using the ’plot’ function from ’pca’ package in Python

demonstrates how many components are required to achieve a total explain variance of more than 95%.

5.16.2 Loadings plot

Loading plots are graphical visualizations of the influences or loading scores of the different variables

in the original dataset toward the principal components. These plots consist of arrows that represent

the original variables in a two or three-dimensional cartesian system with the axes being the principal

components. The starting point of all the arrows will have all the coordinates zero and the length of the

arrow indicates the loading score(Medium, 2018). The direction in which the arrow points indicates the

direction in which the respective variable causes variance and the angle between the arrows is a measure

of the correlation between variables(Medium, 2018). For example, if two arrows lie close to each other

at a very small acute angle, those two variables probably exhibit a positive correlation. If these are

perpendicular to each other, the two variables probably have no significant correlation. In the final case,

if the two arrows are at a large obtuse angle they are probably negatively correlated(Medium, 2018).
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Figure 11: An example loading plot with two principal components and three variables. Each variable is

represented by a vector with a specific color. The length of the vector is proportional to the loading score

of the vector and the direction of the arrow indicates the direction in which the variable causes variance

created using LaTeX.

5.16.3 Biplots

Biplots are a combination of a Loading plot(Figure 11 and a PCA scatterplot (Figure 9c). Thereby,

it indicates both how the different data points are distributed and how much the different variables

contribute to the variation between different data points in the space of the principal components. Figure

12 represents an example of a biplot with three principal components and four different clusters of data

points varying in the values of ten different variables

Figure 12: An example three-dimensional biplot created using Python using various functions from the

’Matplotlib’ package. This represents a combination of the PCA scatter plot and loadings plot.
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6 Materials and Method

6.1 Data analysis pipeline development

Exploratory data analysis and inferential statistics on the MS-MS lipidomics data set were performed

using Python(version 3.8) in the Jupyter Notebook API from the Anaconda software package version

3.0. Various Python libraries and associated functions were used during the process. Some of the core

libraries employed for the project are:

Table 1: Python Packages used for Data Analysis Pipeline Development and their Purposes

Python Packages Purpose

Pandas Data manipulation

Numpy Numerical operations

Matplotlib Data visualization

Seaborn Statistical data visualization

Scikit-learn Machine learning tools

Scipy Scientific computing

Two main operations were performed on the MS-MS results data set:

• principal component analysis

• Modelling based on inferential statistics

Principal component analyses were performed on the filtered versions of the main data set containing

data from samples of one of the mutant lines and the Wild-type. The decision to filter data like this was

based on several trial runs of PCA with different combinations of samples in the filtered dataset.

The data pre-processing steps before PCA included:

• Standard scaling of the data: Performed using the ’scale’ function from the ’pre-processing’

package of Sci-kit Learn to standardize the data as explained in section 5.14.1 .

• Outlier and zero value imputation: Performed using custom python functions. The outlier

imputer function detects outliers based on the IQR rule and imputes them with the mean of the

measurements from a cell line under particular light conditions. The zero value imputer replaces

the zero or null values with a random number less than 0.01% of the total value of measurements

from a cell line under particular light conditions.

The steps in PCA including Covariance matrix calculations, eigenvalue decomposition, and loading

score calculations were all performed using the ’PCA’ function from the ’decomposition’ package of Sci-kit

Learn.

The inferential statistics and the modeling based on it were also preceded by the outlier and zero

value imputation using custom functions as done for PCA. The statistical analysis involved performing
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Figure 13: Different components of the data analysis pipeline developed for analyzing the MS-MS data.

The original dataset(green) passes separately through two processes(yellow): PCA and statistical mod-

eling. Both processes have different steps arranged in order from top to bottom and connected by solid

downward arrows. Steps in principle components are shown in the orange blocks, while steps in the

statistical modeling are in the red blocks. The blue blocks connected to corresponding steps by dashed

arrows indicate the Python function and the package used(in parentheses) to execute the step. The flow

chart was created using LateX.
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Levene’s test and Shapiro Wilk’s test to assess the homogeneity of variances and Normality respectively.

These were executed using the ’Levene’ and ’Shapiro’ functions from the ’stats’ package of Scipy. A

custom function was made to perform a T-test that will first extract the data for a specified cell line in

both light conditions and store them in separate objects. Then it performs a logarithmic transformation

of these data to improve the normality before performing the T-test. The performed test will be either

the standard student’s T-test or Welch’s T-test based on the p-values from Levene’s test that indicate

equality of variances. That is if the p-values of Levene’s test for the data from a cell line in two different

light conditions are less than 0.05 the T-test function will perform a Welch’s T-test. In the opposite

scenario, it will be a Student’s T-test. The actual statistical testing steps for calculating the T-statistic

and p-values for both the T-test variants were done using the ’ttest ind’ function from the ’stats’ package

of Scipy. The results from all the T-tests performed were finally represented together in a scatter plot

with the T-statistic on the x-axis and p-values on the y-axis to better understand the nature of changes

between light conditions for particular cell lines. In these graphs, the points to the right of the vertical

line at x=0 indicate an increase, and those toward the left indicate a decrease. The points below the

horizontal line at y=0.05 indicate that the change is significant.

All the visualizations including scree plots and biplots were made from scratch using Matplotlib and

Seaborn.

The workflow followed during the project is represented in the figure 13

6.2 Sample acquisition and maintenance

• Axenic cultures of three mutant lines (Alb3b14.8, 16.7, 19.7) were obtained from Marianne Nymark.

• The cultures were split into multiple stock solutions and were acclimated for 2 weeks under controlled

conditions: 15◦C ±2, 100µM light, and agitation at 150 rpm.

• Different stock cultures, from the same parent stock, of the various cell lines including the wild type

were used for different experiments.

6.3 Experimental setup

6.4 Autofluorescence measurements

• Three treatment conditions were established: High Light (HL) with 700 µmol photons m-2 s-1,

Medium light(ML) with 200 µmol photons m-2 s-1 intensity and Low Light (LL) with 35 µmol

photons m-2 s-1 intensity in the same room were the stock cultures were acclimatized.

• Cells were cultured in 12-well plates with three biological replicates for each cell line and three

blanks for background subtraction.

• The Cytation 5 plate reader from BioTek was used for the measurement and the following protocol

was set for running the plate reader:

– Orbital shake for 0.07 ms.

– Temperature set point of 22◦ Celsius.
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– Fluorescence measurements with a excitation wavelength of 480 nm and detection wavelength

of 680 nm corresponding to the autofluorescence levels of chlorophyll molecules.

• Measurements were done for 7 consecutive days at a specific time to acquire the growth curves.

6.5 Lipid Measurements with BODIPY using flow cytometry

6.5.1 Experimental setup

• The same light conditions as described in section 6.4 were used for the flow cytometry experiments.

• cultures were maintained at an approximate volume of 40 ml in tissue culture flasks with three

biological replicates per cell line(WT, Alb3b-14,16,19) for each treatment condition(HL,ML, and

LL). That is a total of 12 cultures in each of the three light conditions.

• These cultures were acclimated for 2 weeks with media being refreshed every 2nd day.

• After the acclimation period of 2 weeks, the cell counts were estimated using flow cytometry,

6.5.2 BODIPY staining

• Stock solutions of BODIPY were made using DMSO as the solvent. The stock solutions had a

concentration of 5mmol and were stored under refrigeration in dark conditions.

• The estimated cell counts of the cultures acclimated to treatment conditions were used to estimate

the volume required to acquire 5 ml solution with 1 million cells per ml using the following formula:

V(in mL) =
5

M

Where V is the volume of culture to be diluted to 5 ml and M is the measured cell concentration

• If the measured concentration was less than 1 million cells per ml, the volume of the culture

containing 1 million cells was centrifuged and the cells were re-suspended in 1 ml of F/2 media.

The following formula was used for estimating this volume:

V(in mL) =
106

M

Where V is the volume of culture to be centrifuged and M is the measured cell concentration

• 5 ml solutions with 1 million cells per ml of all 24 cultures were prepared using the above methods

and were used for staining.

• For staining, 1 µL of the BODIPY stain was added to 1 ml of the prepared solution, containing

around 1 million cells per ml.

• Three technical replicates were used from the prepared 5 ml of solution of each of the biological

replicates.

• The stained cells were then incubated in the dark for 10 minutes before measurement using the flow

cytometer. The timing of staining for different samples was timed to achieve exactly 10 minutes of

dark incubation for all the samples before measurement.

• A negative control, with 1 ml F/2 medium containing 1 million unstained cells was used for each

set of biological replicates for a cell line in a particular light treatment.
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6.5.3 Flow Cytometer Operation

• The NovoCyte 2000 instrument from Agilent was used for flow cytometry.

• The median fluorescence intensity values of the peak obtained in the FITC-GFP channel were

measured for each technical replicate.

• The final measurement of lipid quantity was calculated as the mean of measured median values of

technical replicates for each of the three biological replicates.

Samples from the same experimental setup for flow cytometry were used for CLSM, PAM, and q-PCR.

6.6 Structural Observation of Lipid Droplets Using CLSM

The staining protocol for BODIPY used for imaging using CLSM is the same as that for flow cytometry.

That is, specific volumes of the cultures were diluted to obtain a final concentration of 1 million cells

per ml and 1 ml of the dilution was stained with 1 µL of BODIPY. However, for imaging, only 1 ml

of dilution was prepared from the cultures as the volume required on a microscopic slide is just 6 µL.

Thus, for each of the cultures 1ml of dilution containing 1 million cells was prepared by the previously

mentioned method and from each of this dilution 3 microscopic slides were prepared with 6 µL on each

of them.

6.6.1 Slide preparation

• Standard light microscopy glass slides of size 25 x 75 mm were used for imaging

• A 0.12 mm thick imaging spacer from Grace Bio-labs was stuck onto the center position of the slide.

• 6 µL of the sample was pipetted to the center of the imaging spacer.

• A glass coverslip of 24 x 24 mm was stuck onto the top of the imaging spacer to form a thin layer

of the sample between the cover slip and the glass slide.

6.6.2 CLSM operation

• The Leica SP8 confocal laser scanning microscope was used for the imaging

• The LasX software, compatible with the specific instrument, was used for controlling the imaging

settings and for image acquisition

• Samples were observed under the 60× objective of the microscope using the 488 nm laser at a power

of 1.35 and gain set to 400 V.

6.7 Quantitative PCR(q-PCR)

Genes associated with lipid metabolism in diatoms were selected for the q-PCR based on results from

other light experiments, where these genes appeared to have changed expression under different light

conditions.

The genes selected for differential gene expression analysis in the wild-type and mutant cell lines under

different light treatments are presented in Table 2
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Table 2: Information about genes used for differential expression study using q-PCR obtained from NCBI

GenBank database

Gene ID Accession Number Protein Title

PHATRDRAFT 37652 XM 002181731.1 FADB (Malonyl-CoA:ACP transacylase)

PHATRDRAFT 48423 XM 002182796.1 PTD12 (Precursor of desaturase omega-6 desaturase)

PHATRDRAFT 20508 XM 002180392.1 ELO6b 2 (Elongase delta 6 elongase)

PHATRDRAFT 50443 XM 002185338.1 Predicted protein (Fatty acid desaturase with Chl targeting motif)

PHATRDRAFT 10068 XM 002177895.1 FABI (Enoyl-ACP reductase)

PHATRDRAFT 20143 XM 002179910.1 ACS1 (long chain acyl-CoA synthetase)

PHATRDRAFT bd765 XM 002176380.1 Predicted protein (Acyl-CoA thioesterase)

PHATRDRAFT 54756 XM 002181952.1 CDS1 (Phosphatidate cytidylyltransferase)

PHATRDRAFT 42683 XM 002177125.1 PLC delta (Phospholipase C isoform delta)

PHATRDRAFT bd976 XM 002176456.1 Predicted protein (Acetyl-CoA Carboxylase)

PHATRDRAFT 41570 XM 002185462.1 PTD15 (Precursor of Omega 3 desaturase)

In addition to these selected genes, two reference genes were selected for normalizing the Cq values

during data analysis of the q-PCR results. These are:

• RPS5/30S ribosomal protein S5 encoding gene (Phatr2 42848): This nucleus localized gene was

found to be not responsive to different light treatments based on DNA microarray analysis in a

previous study(Valle et al., 2014).

• Putative hiv-1 rev binding protein (Phatr2 42776): This gene was determined as non-responsive to

high-light treatment using microarray analysis in a previous study(Nymark et al., 2009).

6.7.1 Primer design

Primers required for q-PCR were designed using the NCBI BLAST tool for 11 selected genes associated

with lipid metabolism as presented in the supplementary table 5 in the appendix.

6.7.2 Cell harvesting

The cells treated under each light treatment for two weeks were extracted 2 or 3 days after the last re-

freshing by vacuum filtration using the 0.65µm Durapore membrane filters. The cells were then separated

from the filters by centrifugation(5000xg for 1 min) and discarding the supernatant.The cells were then

frozen by keeping them in liquid nitrogen(-196°C) and were finally stored at -80°C until RNA isolation

was performed.

6.7.3 RNA isolation

Isolation of RNA from the samples treated under different light conditions was done using the RNeasy

plant mini kit. This is a standardized kit for isolating RNA from plant and filamentous fungi samples

and is based on special spin columns. These columns have silica-based membranes with affinity to RNA
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molecules. This particular binding ability is combined with centrifugation for drawing out the RNA

fraction in the sample and subsequently eluting them into a solution with RNAase-free water.

As mentioned these kits are designed for extracting plant and fungal RNA. Therefore, a special tissue

lysis procedure was followed before the spin column RNA extraction. The ‘Lysis and homogenization

of fatty acid tissues using the tissuelyser II’ Protocol From The ”Qiazol Handbook For efficient lysis of

fatty tissues and all other types of tissue before RNA purification”(Qiagen, 2021) was followed for this

purpose. The RNA pellets obtained at the end of this particular protocol were re-suspended in 100 µL

of RNAase-free water and were used as starting material for the ”RNA cleanup” protocol in the RNeasy

Mini Handbook from Qiagen(Qiagen, 2023). The optional procedure for on-column DNA digestion was

applied to all the samples for which the RNAse-free DNAase set provided in the RNeasy mini kit and

the corresponding protocol was used.

The isolated RNA was then stored in a frozen state at -80°C.

6.7.4 Nanodrop assessment

The concentration of the isolated RNA and its purity were assessed using the Nanodrop One instrument

from Thermofisher Scientific, which is a micro volume UV-Vis spectrophotometer to calculate absorbance

for nucleic acids at 230nm. These values are then used to calculate standard ratios to other absorbance

wavelengths, particularly 230nm for carbohydrates or compounds that may reside from reagents used

during RNA isolation like Phenol, and 280nm for proteins. The measurements were obtained using 1 µL

of the sample and RNAase-free water was used for blanking the instrument before measurements.

6.7.5 Bioanalyzer

The Agilent Bioanalyzer 2100 was used for calculating RNA integrity numbers from all the isolated

samples. For this purpose, the Agilent RNA 6000 nanokit and the associated standard protocols were

used. This procedure included the use of micro-fluidic chips into which a mix of the provided gel matrix

and the RNA dye concentrate was added for loading the RNA samples and a standard RNA ladder for

reference. All the RNA samples and the ladder were also added with a marker RNA provided in the kit

with a known length of 25 nt as a control.

6.7.6 Complementary DNA (cDNA )synthesis

QuantiTect Reverse Transcription Kit and the associated standard protocol from QIAGEN were used for

the cDNA synthesis from isolated RNA samples. This involved the following main steps:

• Incubation with a gDNA wipe-out buffer: An incubation process at 42°C for removing genomic

DNA contaminants in the sample to avoid errors during q-PCR for 2 minutes.

• Reverse transcription: The process of synthesizing DNA strands from RNA strands by incubation

of the samples with a master mix containing the provided Quantiscript reverse transcriptase, primer

mix, and an optimization buffer with dNTPs at 42°C for 15 minutes followed by inactivation at

95°C for 3 minutes.

The Quantiscript reverse transcriptase carries out both RNA-dependent DNA polymerase activity and

a hybrid-dependent exoribonuclease or RNase H activity to degrade RNA bound to DNA in hybrid
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molecules. The primer mix provided is a mix of oligo-dT primers that can bind to poly-A tails of

processed mRNAs and random primers that could bind to random complementary sequences in the RNA

strands. Along with the cDNA synthesis reaction negative controls( RT-ve) were set up for all the samples

in which a master mix with all the components except the reverse transcriptase was used to avoid cDNA

synthesis. The volume corresponding to 1µg and 0.5µg of each of the RNA samples were used for cDNA

synthesis and the RT-ve controls, respectively. The RT-ve reactions are done to check for genomic DNA

contamination later during the q-PCR reactions.

After the reaction process was completed the samples(supposedly having cDNA) and the negative

control were diluted 5 times and stored at -80°C.

6.7.7 Running real-time PCR

The Roche LightCycler 480 system was used for running the q-PCR reactions on the mentioned genes

and reference genes on specific 96 well plates designed for this equipment(480 Multiwell Plate 96). The

LightCycler 480 SYBR Green I Master kit, specifically prepared for q-PCR reactions on this instrument

was used for all the samples. This master kit includes a Master mix containing the saturating dye called

SYBR green, dNTP mix, and a thermostable DNA polymerase called the Taq polymerase, mixed with

reaction buffers and magnesium chloride to optimize the reaction. Additionally, PCR-grade water is

provided to adjust the volume of the final reaction mix. The final reaction mix is prepared with the

components from the kit and the primers required for the studied gene. 15 µL of this final reaction mix

is then added to the 5 µL one of the cDNA samples to form the final reaction volume of 20µL.

6.7.8 q-PCR Data analysis

The data from the Lightcycler 480 system was processed using the LinRegPCR software(version 2021.2)

for the calculation of the PCR efficiencies and Cq values. This data was then used to calculate the

corrected normalized relative quantity (CNRQ) to determine the relative gene expression levels using

the qBase+ software(version 3.4) from Biogazelle. These values were then transformed by taking the

logarithm to the base 2 and then subjected to two-way ANOVA and posthoc tests using Python for

determining significant upregulations or downregulations.

7 Results

The results are divided into two parts:

• Insights from the exploratory data analysis(EDA) of MS-MS dataset: This includes, in

the first part, results from PCA that compares each of the mutant cell lines individually with the

wild type under both LL and ML conditions. In the second part, the results from the different

statistical tests mentioned in the Material and Methods section are included.

• Results from the lab work: This includes results from Flow cytometry, Autofluorescence Growth

curves, PAM, CLSM, and q-PCR for each of the mutant cell line and the wild type under LL, ML,

and HL conditions.
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7.1 Results from EDA of the MS-MS dataset

7.1.1 PCA results comparing Alb14 with Wild type

Figure 14: Bar plot showing average concentrations in of different lipid classes in Alb3b-14 cell line

and Wild type, under LL and ML conditions, in nanomolar level per cell.Alb3b-14 behaves differently

concerning change in some lipid classes, especially TAG, than the other two mutant lines. Values are

mean from 3 technical replicates for every 3 biological replicates of the studied cell lines in each light

condition.
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(a) 2D PCA scatter plot(Alb3b-14 & WT)

(b) 3D PCA scatterplot(Alb13b-4 & WT)

Figure 15: 2D(a) and 3D(b) PCA scatterplots for comparison between the WT and ALB3b-14 under LL

and ML. Both plots are included to show how much difference can be observed in the differentiation of

clusters formed by different samples when the explained variance is increased by 3% from 89 to 92% from

2 to 3 principle components. The data points include measurements from 3 technical replicates for every

3 biological replicates of the studied cell lines in each light condition.

The scatter plots indicate a clear differentiation or clustering of three sample groups that are, Alb14

under LL, wild type under ML, and wild type under LL. The Alb14 cell line under ML can be observed

as dispersed with a major fraction of its cluster spread into the wild type under ML. Although some of

these samples can be seen as a part of the wild-type LL cluster in the 2D scatter plot, the 3D scatter

plot with a much higher representation of variance does not show the same.
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Figure 16: 3D biplot for comparing Alb3b-14 and WT samples in LL and ML. The explanation for

interpreting the biplot is explained in section 5.16.3. The data points include measurements from 3

technical replicates for every 3 biological replicates of the studied cell lines in each light condition.

The 3D biplot in figure 16 shows that the variance between the cluster of wild-type samples under

LL and that of wild-type under ML is mainly across the first principle components and mainly caused

by the phospholipid PG and PI, and the sulfolipid SQDG. Another notable observation is that the two

cell lines, Alb14, and the Wild-type, are varied mainly across the second principle component and are

mainly due to the neutral lipids TAG and DAG and the glycolipids MGDG and DGDG in one direction

and the Phospholipids’ PE and PC in the other direction. Another observation from the biplot is the

possibility of a strong positive correlation between TAG, MGDG, and DGDG. Furthermore, the probable

existence of a strong negative correlation between these three and two of the phospholipids, that is PC

and PE can be observed. However, whether these correlations exist in both the cell lines separately or

between them when the values of the lipid classes change under different light levels or if both of these

are true, is hard to delineate from the biplot as it was made by considering all the Alb14 and wild-type

samples together. Nevertheless, a cross-verification of these correlations with the bar plot showing the

average concentrations(Figure 14) shows that the negative correlation between PE and TAG, the two

lipids that contribute the most in differentiating Alb14 from wild-type, probably exist both separately in

the two cell-types and between them. Additionally, this negative correlation appears to be much more

pronounced in the Alb14, with a reduction PE by around 47% causing an approximately 6-fold increase

in TAG. A similar effect can be also observed for PI, however, the high extent of error bars could lead to

wrong inferences.
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7.1.2 PCA results comparing Alb16 and Alb19 individually with Wild type

Figure 17: Average concentrations of different lipid classes in the wild-type, Alb3b-16 and Alb3b-19 cell

lines in both LL and ML levels in nmol/cell. The values are mean from 3 technical replicates for every 3

biological replicates of the studied cell lines in each light condition.

The Alb3b-16 and Alb3b-19 mutants are compared to WT separately from the Alb3b-14 mutants as they

for clusters in almost the same fashion in the PCA comparisons with the WT compared to that of the

Alb3b-14. Additionally, the Alb3b-14 mutants also show similar levels of TAG under ML to WT, whereas

the Alb3b-16 and 19 lines show comparatively very low levels of the same in ML compared to WT.

Unlike the Alb3b14 cell line, theAlb3b16 indicates 4 clusters with obvious distinction in the PCA

scatterplots(Figure 18 encompassing both the cell lines, that isAlb3b16 and Wild-type, in two different

light conditions. Although the clusters for Alb16 under LL and ML appear close to each other in the

2D scatter plot (Figure 18a), adding more variance by the third principle component (Figure 18b) shows

that they are separated considerably along this component.

44



(a) 2D PCA scatter plot(Alb16 & WT)

(b) 3D PCA scatter plot(Alb16 & WT)

Figure 18: 2D(a) and 3D(b) PCA scatterplots for comparison between the WT and ALB3b-16 under LL

and ML. a 3,5% increase in explained variance from 2 to 3 principle components can seen to be causing

a notable difference in the clustering of the LL and ML samples of Alb3b-16 along the Z-axis represented

by PC3.The data points include measurements from 3 technical replicates for every 3 biological replicates

of the studied cell lines in each light condition.
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Figure 19: 3D biplot for comparing Alb3b-16 and WT samples in LL and ML. The explanation for inter-

preting the biplot is explained in section 5.16.3.The data points include measurements from 3 technical

replicates for every 3 biological replicates of the studied cell lines in each light condition.

The biplot for the comparative analysis of Alb16 with the wild type has similarities and differences

to that of Alb14(Figure 16). The main similarity is that the cell lines are mainly differentiated here by

the levels of TAG, MGDG, and DGDG in one direction and PE and PC in the other direction. Another

similarity is the possibility of a negative correlation between the Phospholipids(PE, PC, and PG in this

case) and TAG. However, unlike the Alba4, the Alb 16 cell line under ML forms a non-dispersed cluster

separate from the wild-type under ML with a major contribution of variance from the glycolipids MGDG

AND SQDG. Additionally, the Alb16 samples under ML vary from the same in LL along the third

principle component, with major loading contributions from PE and PC. This is not observed clearly in

the Alb14. Furthermore, the possibility of a strong positive correlation between the glycolipids and TAG

is not as clearly visible as in the previous biplot(Figure 16)
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(a) 2D scatter plot(Alb19)

(b) 3D scatterplot(Alb16)

Figure 20: 2D(a) and 3D(b) PCA scatterplots for comparison between the WT and ALB3b-19 under LL

and ML. A 3% increase in explained variance from 2 to 3 principle components causes a difference in the

clustering of the LL and ML samples of Alb3b-19 along the Z-axis represented by PC3.The data points

include measurements from 3 technical replicates for every 3 biological replicates of the studied cell lines

in each light condition.

The scattering observed for the Alb19 samples compared to wild-type in the principle components

space is similar to that of Alb16 to a great extent, except for the dispersion of Alb19 samples under LL

along the third principle component(Figure 20b).
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Figure 21: 3D biplot for comparing Alb3b-19 and WT samples in LL and ML.The explanation for

interpreting the biplot is explained in section 5.16.3. The data points include measurements from 3

technical replicates for every 3 biological replicates of the studied cell lines in each light condition.

The Observations from the biplot comparing the Alb19 cell line with the wild-type(Figure 21) are

also the same as that of Alb16(Figure 19) except that the glycolipids(MGDG and SQDG) do not appear

to contribute much to the differentiation of the cell lines, but instead contribute to the variance of each

of the cell lines in LL levels from the ML levels.

7.2 Results from statistical tests

Levene’s test and Shapiro Wilk’s test were performed on data from each lipid class for each cell line. The

graphs representing the results from Shapiro Wilk’s test show that some lipids are not normally distributed

for all the cell lines, as their p-values are below the horizontal line at y equal to 0.05(Supplementary figure

14). To alleviate the impact of this violation of the normal distribution assumption on the T-test results a

log transformation was applied to all the data before the T-test was performed. Furthermore, the graphs

showing the results of the Levene’s test indicate that the Alb3b-14 and Alb3b- 16 cell lines had some

lipid classes in which the ML and LL samples deviated from the equal variance assumption of the T-test

(Supplementary figure 13). Therefore, to improve the accuracy Welch’s T-test was applied instead of the

student’s T-test for all the lipid classes for all the cell lines.

The results from Welch’s T-test are represented in a scatter plot with the T-statistic on the x-axis and

the P value on the y-axis. The vertical line represents x = 0, which is a T-statistic equal to 0. Therefore,

all the points on the right to this line indicate an increase and all the points to the left indicate a decrease.

Similarly, a horizontal dotted line is placed at y = 0.05. This is to show that all the points below the line

indicate a significant change, and those above do not.
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Figure 22: Results for T-test comparing Wild-type cell samples acclimated in ML and LL conditions. All

the lipid classes are significantly higher in the ML samples than in LL for the WT. The samples compared

included measurements from 3 technical replicates for every 3 biological replicates of WT in one of the

studied light conditions.

Graph number one shows the results of the T-test comparing the amounts of lipid classes in the Alb3b-

14 cell line in LL and the same cell line in ML. It can be observed that there is a significantly increased

amount of the neutral lipid, TAG, the sulfolipids, SQDG, and the galactolipids, MGDG and DGDG

in the Alb3b-14 cell line under ML as compared to the same cell line under LL, with the Neutral lipid

showing the highest increase. Additionally, the amount of the phospholipid PE is significantly lower in

the sample under ML compared to LL. On the other hand, the same graphical representation comparing

the wild-type cell lines under ML and LL shows obvious differences. In the latter, it can be observed that

in the ML condition, all the lipid classes show a significant increase compared to the cell line under LL

conditions, with the highest increase being for the phospholipid PI.
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Figure 23: Results for T-test comparing Alb3b-14 cell samples acclimated to ML and LL treatments. The

neutral lipid, TAG, and glycolipids, SQDG, MGDG, and DGDG are significantly higher in ML, while

the phospholipid PE is significantly low. The samples compared included measurements from 3 technical

replicates for every 3 biological replicates of Alb3b-14 in one of the studied light conditions.

The T-test results comparing the Alb3b- 16 and Alb3b- 19 cell lines in the two light conditions also

show differences in the comparative amount of lipid classes in the two conditions as compared to that of

the wild-type. Although the pattern of this difference shown by Alb3b-16 and Alb3b- 19 cell line from

the wild type are almost the same they both differ from the pattern shown by Alb3b- 14. In both the

Alb3b-16 and Alb3b- 19 cell lines only one of the glycolipids, that is DGDG, is significantly changing. But

unlike in the Alb3b- 14, this particular glycolipid is decreasing in both the cell lines. Another similarity

observed between Alb3b-16 and Alb3b-19 cell lines is the significantly increased amount of betaine lipid

(DGTA) in the ML samples compared to the LL samples, which are not observed in Alb3b- 14 samples.

Although these similarities exist between Alb3b- 16 and Alb3b- 19 they differ in terms of the comparative

amounts of phospholipids in the different light conditions. Specifically, for Alb3b- 16 only one of the

phospholipids, that is PC, is significantly decreasing, and the phospholipid PI is significantly increasing

in contrast to the Alb3b- 14 cell line. However, for the Alb3b- 19 cell line, all the phospholipids are

significantly decreasing with the greatest increase for PC.
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Figure 24: Results for T-test comparing Alb3b-16(top) and Alb3b-19(bottom) cell samples acclimated in

ML and LL. The results are different from that of Alb3b-14(Figure 23). Although the TAG levels are

significantly higher in ML, the glycolipids are not, with one of them(DGDG) being significantly low. The

phospholipid, PE is significantly high in Alb3b-16, but low in Alb3b-19, while PC is significantly low in

both. The samples compared included measurements from 3 technical replicates for every 3 biological

replicates of one of the studied cell lines in one of the light conditions.

The MS-MS data indicating the fatty acid composition in each lipid class was also passed through the

same data analysis pipeline. This particular dataset shows that the fatty acid composition of different

lipid classes involves forms with either 2 or 3 fatty acids attached to a glycerol moiety. The chain length

of these fatty acids ranged from 14 (C14) to 22(22C) carbon atoms with varying levels of double bonds

or desaturation at different positions. For ease of explanation, the fatty acids with less than 20C length

are mentioned as medium chain and those with more than 20C are mentioned as long chain fatty acids.

Similar to the data for lipid classes the fatty acid chain length composition data was also subjected to

PCA and Welch’s T-test. This was an extensive analysis as each lipid class had a different number of fatty

acid combinations and needed to be split into separate data frames before passing through the pipeline.

Therefore, each of these 10 different datasets, corresponding to 10 different lipid classes for each 4 cell
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lines, thus accounted for a total of 10 different data frames. Consequently, the PCA for these 40 different

data frames, comparing mutant lines with the wild type, generated a high number of PCA scatter plots,

scree plots, and biplots. Although clear clustering of the wild-type samples and the analyzed Alb3b-3b

mutant lines in both the light conditions were observed for each of the lipid classes, the high number

of fatty acid combinations made the biplots complex and hard to understand. However, no discernible

pattern, where specific fatty acid composition causes variation between clusters was not observed for any

of the lipids.

Additionally, the comparative analysis of the results from the T-tests between the wild type and all

the mutant lines did not indicate any pronounced difference patterns for any of the lipid classes except

for the TAG. The T-test results for changes in concentrations of fatty acids in the TAG fraction in the

mutants between ML and LL indicate that the amount of most of the TAG with medium-chain fatty acids

and low levels of desaturation has significantly increased and most of the TAG with higher chain fatty

acids and a higher level of desaturation is significantly decreased under the ML condition as compared to

LL conditions. In contrast, an opposite scenario is observed in the wild type wherein under ML conditions

most of the TAG with medium-chain fatty acids and lower levels of desaturation is significantly decreased

and most of the TAG with long-chain fatty acids and higher levels of desaturation are significantly

increased. It can also be observed that both the increment in most medium-chain fatty acids and the

decrement in most of the long-chain fatty acids in Alb3b-14 are comparatively low as indicated by the

low values of T-statistic. However, in the Alb3b-16 and Alb3b-19 mutants, the increment in some of the

medium-chain fatty acids is considerably higher than in the Alb3b-14 cell line.
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Figure 25: Results for T-test comparing concentrations of different fatty acid compositions of TAG in

WT(top) and Alb3b-14(bottom) mutants acclimated to LL and ML conditions. The blue, violet, and pink

shades represent compositions with at least one long-chain PUFA (EPA(20:5)), while the red, yellow, and

green represent compositions with medium-chain, saturated, or monounsaturated FAs. An opposite trend

can be observed between the WT and Alb3b-14, with WT having significantly higher PUFAs and lower

saturated or monounsaturated FAs in general in ML compared to LL, while in the Alb3b-14 it is the

opposite scenario. The samples compared included measurements from 3 technical replicates for every 3

biological replicates of one of the studied cell lines in one of the light conditions.
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Figure 26: Results for T-test comparing concentrations of different fatty acid compositions of TAG in

Alb3b-16(top) and 19(bottom) mutants acclimated to LL and ML conditions. The color coding of the

compositions is the same as in Figure 25. Both the Alb3b-16 and 19 mutants show the opposite trend

to that of the WT in terms of change in TAG composition between ML and LL. However, both of

them differ from Alb3b-14 mutants, in terms of the range of increments in most of the FAs that are

significantly increased, wherein this range is considerably broad in the Alb3b-16 and 19 compared to

Alb3b-14 as observed from the T-statistic values in this figure and Figure 25. The samples compared

included measurements from 3 technical replicates for every 3 biological replicates of one of the studied

cell lines in one of the light conditions.
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7.3 Results from light experiments

This results section involves the diverse observations or measurements from the experiments conducted

on both the wild-type and mutant cell lines. As mentioned in the Material and Methods section, three

experiments were conducted with three different light conditions. These are:

• Low-light(LL):35 µmol m-2 s-1

• Medium-light(ML): 200 µmol m-2 s-1

• High-light(HL): 700 µmol m-2 s-1

The samples exposed to these three light conditions for two weeks were observed for various parameters

using the various equipment mentioned. These include:
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Table 3: Equipment and Parameters Measured

Technique Parameters Measured

Flow cytometry

• Fluorescence intensity for BODIPY

505/515 staining

• Fluorescence intensity for

Chlorophyll-A

• Forward scattering of incident light

• Side scattering of incident light

Pulse amplitude modulation

• Non-photochemical quenching

• Electron transport rate

• Photosynthetic efficiency measured

as Fv/Fm ratio

• Light utilization efficiency

Plate reader

• Relative fluorescence units in time

series

Confocal laser scanning Microscopy

• Structure of BODIPY 505/515

stained Lipid droplets

• Autofluorescence

Quantitative PCR

• Relative expression levels of different

genes involved in lipid metabolism
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7.3.1 Results from autofluorescence growth curve measurements using plate reader

Figure 27: Autofluorescence growth curves for the WT cells obtained from plate reader by measuring the

relative fluorescence units over 7 days. LL(blue) and ML(yellow) treatments were done with an initial cell

count of 50,000 cells/ml. HL(grey) treatment was done with an initial cell count of 0.5 million cells/ml,

The measurements are the mean of RFUs from 3 biological replicates of the WT in each light condition.

Growth curves using relative fluorescence units(RFU) from chlorophyll autofluorescence in the wild-type

cells are depicted in figure 27. It can be observed that the LL and ML levels, where the initial cell

count was set to around 50,000 cells/ml, resulted in normal growth curves with the lag, exponential, and

stationary phases, followed by the beginning of the declining phase in 6 days in LL and ML conditions.

In the HL levels, where the initial cell count was set to 0.5 million cells/ml, only a declination in the

RFU levels was observed to approach near zero level by the 6th day.

Results for the Autofluorescence growth curves for all the Alb3b mutant lines are depicted in figure

28. It is observed that the same pattern of growth curves occurs for all the mutant lines as the wild-type.

They form normal growth curves with lag, exponential, and stationary phases in the LL and ML levels,

whereas they just decline in HL conditions. The Alb3b mutants took approximately 10 days to reach the

stationary phase under LL compared to just 6 days of the WT. in the ML,n. In HL, all the mutants

undergo declination, The RFU levels in the mutants can be seen as generally lower than the WT in all

the light conditions.
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(a) Alb3b mutants in HL

(b) Alb3b mutants in ML

(c) Alb3b mutants in LL

Figure 28: Growth curves made for Alb3b mutants under different light conditions by measuring the

relative fluorescence units over 7 days for HL and 12 days for LL and ML treatments. The initial cell

counts in each light treatment are the same as that followed for the WT(Figure 27). The measurements

are the mean of RFUs from 3 biological replicates for each cell line in each light condition.
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7.3.2 Results from flow cytometry using BODIPY 505/515 staining

Figure 29: Median fluorescence intensity values from BODIPY 505/515 as observed in the FITC-GFP-A

channel in flow cytometry. The values are the mean of median fluorescence intensities from 3 technical

replicates for every 3 biological replicates of the studied cell lines in each light condition.

The quantity of lipid droplets as indicated by BODIPY 505/5015 fluorescence measurements in the FITC-

GFP-A channel in the flow cytometer(29) does not indicate a clear pattern of increasing neutral lipid

accumulation with increasing stress by irradiance as expected. In the wild-type cells, the fluorescence

increases by 22% in ML conditions whereas it decreases by about 16% in HL conditions. However, the

measurements in HL conditions have a high standard deviation indicating high variability between the

replicates.In the mutant cell Lines, the fluorescence measurements appear to be more or less the same in

LL and ML conditions. In HL conditions fluorescence measurements increase by 6, 14, and 10% for the

Alb3b-14,16, and 19 mutants respectively.
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Figure 30: Median fluorescence intensity values from Chlorophyll as observed in the respective

channel(Chlorophyll-A) in flow cytometry. The chlorophyll levels can be seen decreasing with increasing

light intensity in all the cell lines and the values are lower in the mutants compared to WT in all condi-

tions. The values are the mean of median fluorescence intensities from 3 technical replicates for every 3

biological replicates of the studied cell lines in each light condition.

The chlorophyll autofluorescence measurements from the flow cytometer indicate the expected results,

wherein the values for mutants are significantly lower compared to those of the Wild type in all three

conditions. Also, the chlorophyll levels are reduced for all the cell lines with increasing light levels.

Under LL, all the mutant lines show a 40% decreased chlorophyll A autofluorescence compared to the

wild type. Under, HL, this decrement becomes around 50% for the Alb3b14 and 16 lines and around 30%

for the Alb3b 19 line. In the HL treatment, the mutant lines except Alb3b19 show extreme reductions in

chlorophyll autofluorescence values, which are around 90% less for Alb3b 14 and 80% less for the Alb16

mutants compared to that of wild type in similar conditions. Whereas Alb 19 lines show just a 34%

reduction in chlorophyll levels compared to the wild type in HL levels.
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Figure 31: Median forward scattering values from flow cytometry for all the cell lines(WT, Alb3b-14,16,

19) in three different light conditions(HL, ML, and LL) measured as the average of medians of three

technical replicates for each of the three biological replicates of all cell lines in each of the light treatments.

The results from forward and side scattering measurements in flow cytometry(figure 31 and figure

32) indicate that the mutant line, Alb3b 14 and 16, changes almost similarly with different treatments.

The forward scattering for these mutant lines is the highest under LL and lowest in HL. Whereas in HL

they are shown to have an intermediate forward scatter. This contrasts with what is observed in the wild

type, where the highest forward scatter occurs in HL and the lowest in HL. The Alb3b-19 mutant line,

shows a completely different change pattern, with the forward scattering increasing with increasing light

intensity. Another notable observation is that the forward scattering is generally higher in the mutant

lines compared to the wild type.

Regarding the side scattering measurements, although the values differ among all the cell lines, a

general pattern can be observed. That is, the side scatter values decrease from low to HL levels and then

increase from medium to HL levels. This pattern is seen as more pronounced and similar in the Alb3b

14 and 16 mutant lines. Also, the side scatter values are observed to be generally higher in the mutants

compared to the wild type.
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Figure 32: Median side scattering values from flow cytometry for all the cell lines(WT, Alb3b-14,16,

and 19) in three different light conditions(HL, ML, and LL) measured as the average of medians of three

technical replicates for each of the three biological replicates of all cell lines in each of the light treatments.

The results from two-way ANOVA for the measurements from flow cytometry are presented in figure

33. It can be seen that both the cell line and light condition have significant effects on all the measured

parameters from flow cytometry with p-values less than 0.05. The interaction effect of the cell line and

light condition can be seen as significant for all the parameters except the FITC-GFP-H. The validation

of the assumptions for ANOVA was done using the ’residuals v/s fitted values’ plot, q-q plot, Shapiro

Wilk’s test, and Levene’s test. It was observed that, except for the FITC-GFP parameters, all the other

parameters deviate from the assumption of the ANOVA model’s homogeneously varying and normally

distributed residuals. This is presented in the figure 12

Figure 33: Table from ANOVA results from Jupyter Notebook indicating P-values for cell line, light

condition, and the interaction effect of both for each of the measured variables from flow cytometry.

Significant influences by both cell line and light treatment and interaction effect can be seen on all the

parameters except for the interaction effect of the variables on the FITC-GFP-H parameter.

Since only the FITC-GFP parameters followed the underlying assumptions in ANOVA and only

the FITC-GFP-A had a significant interaction effect for cell line and light condition, the results from

residuals v/s fitted values plotting and q-q plotting, and Tukey’s-HSD analysis is presented just for the
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FITC-GFP-A. The results for the other parameters are added to the appendix.

The variance homogeneity and normality of the residuals, as proved to be significant in Levene’s and

Shapiro Wilk’s test respectively, can be seen in figure 25. It can be noticed that the residual values

across all points are almost homogeneous around the fitted values line. Similarly, the q-q plot, with the

quantile values of the samples plotted against theoretical quantiles for normally distributed data, depicts

how almost perfectly the residual points align with the red line representing normal distribution.

Figure 34: Post hoc (Tukey’s HSD) test results for FITC-GFP measurements presenting the comparisons

with significant changes(p-value<0.05) between individual samples.The color coding is as follows; Yellow:

compares the wild type in different treatments, Blue: compares the wild type with the mutant lines in

the same condition, Green: Compares different mutant lines under same conditions, Orange: compares

the same mutant line under different conditions.

The subset of Tukey’s HSD analysis results for FITC-GFP-A, in which only the comparisons with p

value<0.05 are presented in figure 34. The comparative observations from these results are as follows:

• The wild type in LL differs significantly from the same cell line in medium and HL

• The wild type in HL and HL significantly differs from the Alb3b 14 and 16 mutant lines in the same

conditions. Whereas the wild-type cell in LL differs significantly just with the Alb3b 16 mutant

lines.

• The Alb3b 14 and 16 mutant lines under all three light treatments significantly differ from the Alb3b

19 mutant lines in the same conditions.

• There is no significant difference between the same mutant lines under any of the different conditions.
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Figure 35: Post hoc (Tukey’s HSD) test results for chlorophyll measurements from flow cytometry,

presenting the comparisons with significant changes(p-value<0.05) between individual samples. The

color coding is the same as explained in Figure 34.

The post hoc analysis of the chlorophyll measurements from flow cytometry(Figure 35) shows that

the chlorophyll autofluorescence significantly changes in all the cell lines from LL to ML and then from

ML to HL treatments. Additionally, the chlorophyll levels are significantly different between WT and

all the mutant lines in similar light conditions, It can also be observed that the Alb3b-19 mutant line

has significantly different chlorophyll levels from the Alb3b-14 and 16 mutant lines under ML and HL

treatments.
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(a) (b)

Figure 36: Post hoc (Tukey’s HSD) test results for forward scatter(a) and side scatter(b) measurements

from flow cytometry, presenting the comparisons with significant changes(p-value < 0.05) between indi-

vidual samples. The color coding is the same as in Figure 34.

The post hoc analyses of FSC and SSC measurements from flow cytometry indicate several significant

differences within cell lines under different light levels and also between the cell lines under similar

conditions as seen in figure 36. The general observations from these analyses are as follows:

• The FSC and SSC values for WT in LL and HL significantly differ from those of all the mutant

lines.

• The FSC and SSC values for all the mutant lines under LL significantly differ from those under ML

and HL.

• There are significant differences in the FSC values between all the different mutant lines in LL and

HL treatments.

• The FSC values for WT significantly change between LL and ML, but not between LL and HL or

ML and HL. Additionally, the SSC values in WT significantly change between LL and both ML

and HL treatments.
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7.3.3 Results from pulse amplitude modulation

Figure 37: Fv/Fm measurements from PAM for the different cell lines(WT, Alb3b-14,16, 19) in three

different light treatments (HL, ML, and LL) measured as mean of values from 3 biological replicates for

each cell line in each light condition. The values Fv/Fm can be seen decreasing with increasing light

intensity in all the cell lines, but at different extents between mutants and WT.

The Fv/Fm ratios of the different cell lines under different light treatments follow the same expected

pattern. That is, the values are the highest in LL levels and decrease with increasing light intensity(Figure

37. However, the extent of this decrease varies between the wild type and the mutants. The decrease in

the Fv/Fm values from LL to HL ranges between 24% to 32% in the mutants, whereas, for the wild type

it is just approximately 7%. Similarly, the decrease in the Fv/Fm values from HL to HL ranges from 35%

to 42% in the mutants, while that of the wild type is around 18%.

The results from posthoc analysis for the Fv/Fm values with only the significant changes are presented

in figure 38. It can be observed that all the mutant lines significantly change in the Fv/Fm values from

the same cell line under all different light treatments. In the wild type, the significant change is only

between low and HL levels. Also, comparing the values between the wild type and the mutants shows

that they have similar values under LL. The Alb3b14 and 16 line significantly differs from the wild type

under the other two light conditions and Alb13b 19 differs from the wild type just under HL levels.
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Figure 38: Post hoc (Tukey’s HSD) test results for Fv/Fm values presenting the comparisons with signi-

ficant changes(p-value<0.05) between individual samples.The color coding is as follows; Yellow: compares

the wild type in different treatments, Blue: compares the wild type with the mutant lines in the same

condition, Green: Compares different mutant lines under the same conditions, Orange: compares the

same mutant line under different conditions.

Figure 39: Light utilization efficiency(α) measurements from PAM for the different cell lines(WT, Alb3b-

14,16, 19) in three different light treatments (HL, ML, and LL) measured as mean of values from 3

biological replicates for each cell line in each light condition. The α values can be seen decreasing with

increasing light intensity in all the cell lines, but differently between mutants and WT similar to the

Fv/Fm values.

The measurements of light utilization efficiency from PAM show a similar pattern to the Fv/Fm ratio

values. It is observed in figure 39 that with the increasing light intensity, the light utilization efficiency

decreases for all the cell lines. The extent of this decrease, Similar to Fv/Fm values, varies between the
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mutants and the wild type. The decrease in light utilization values for the mutants when they are shifted

from LL to HL ranges between 22% to 27%, And when they are shifted from HL to highlight it ranges

between 22% to 41% with the Alb3b14 mutant showing the highest decrease. however, these values are

just around 10% and 12%,respectively,in the wild type.

It is seen from the post hoc analysis results(Figure 40) that all the mutant lines’ light utilization

efficiency changes’ are significant in all the different light treatments. Whereas, for the wild type the only

significant difference in light utilization efficiency is between low and highlight levels. When the mutants

are compared to the wild type it can be observed the values for all the mutants in low and HL levels are

comparable to the same light levels for the wild type. However, the Alb3b-14 and 16 mutant lines show

significant differences from the wild type under HL levels.

Figure 40: Post hoc (Tukey’s HSD) test results for α values presenting the comparisons with significant

changes(p-value<0.05) between individual samples. The color coding is the same as explained in Figure

38.
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Figure 41: Relative maximum Electron transport rate(rETRmax) measurements from PAM for the dif-

ferent cell lines(WT, Alb3b-14,16, 19) in three different light treatments (HL, ML, and LL) measured as

mean of values from 3 biological replicates for each cell line in each light condition. The rETRmax values

can be seen increasing with increasing light intensity in WT and the Alb3b-19 mutants in a similar fash-

ion.However, the Alb3b-14 and 16 mutants show a different behavior with the rETRmax values increasing

and then decreasing from LL to ML and then from ML to HL, respectively.

The maximum relative electron transport rate values(rETRmax), as measured using PAM, indicated in

figure 41 some unexpected results. Here, the Alb3b-19 mutants and wild type followed the same pattern,

in which, as the light intensity increased, the rETRmax values increased. This increase is around 74%

from low to HL and around 20% from medium to HL. However, the Alb3b-14 and 16 lines show a different

pattern in which the rETRmax values increase from low to HL and then decrease under HL by around 47

and 22% respectively.

Post-hoc analysis of the rETRmax measurements (Figure 42)indicate that, for all the mutant lines

and the wild type, the increase in values from LL to HL is significant. It can also be observed that the

decrease in values from HL to highlight is significant for the Alb3b-14. Whereas the increase in values

from HL to HL is significant for both the Alb3b-19 and the wild type. As expected, there is a significant

difference between the values for Alb3b-14 and 16 when compared to Alb3b-19 under highlight.
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Figure 42: Post hoc (Tukey’s HSD) test results for rETRmax values presenting the comparisons with

significant changes(p-value<0.05) between individual samples. The color coding is the same as explained

in Figure 38.

Figure 43: Light saturation index(Ek) from PAM for the different cell lines(WT, Alb3b-14,16, 19) in three

different light treatments (HL, ML, and LL) measured as mean of values from 3 biological replicates for

each cell line in each light condition. The Ek generally appears to be increasing with increasing light

intensity in all the cell lines but to various extents.

The measurements of the light saturation indices of different cell lines under different light treatments

are depicted in Figure 43. A general trend of increasing Ek values with increasing light intensity can be

observed for all the cell lines, except for Alb3b-14, wherein the Ek values slightly decrease from ML to

HL treatment. The common observation for all the cell lines is the steep increase in Ek from LL to ML

conditions, the increments being 146,118,120, and 101 % for Alb3b-14,16,19 and WT, respectively. The

Alb3b-16 mutant shows just a 9% increase in Ek from ML to HL. Whereas for the Alb3b-19 and WT,
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this increase is around 54 and 38 %, respectively. Additionally, the mutants generally appear to have

a greater Ek than the WT in all the light levels. The post hoc analysis to compare individual samples

did not indicate a significant difference between any of the samples, which is not the case. This could be

explained by the great deviation of the residuals in the ANOVA model from the homogeneous variance

and Normality assumptions as indicated in Figure 29 in the Appendix.

Figure 44: NPQ values values all the cell lines(WT, Alb3b-14,16, 19) measured from PAM after acclima-

tion to LL conditions for 14 days. The values are averages from three biological replicates of each cell

line.

The non-photochemical quenching measurements for the mutant lines and wild type using PAM

fluorometry for the LL acclimated cells show that the mutants generally have higher NPQ values than

the wild type, with the Alb3b-19 mutant having the highest NPQ values.

The results from ANOVA analysis conducted on the NPQ values (Figure 45) for different cell lines

show that the p-value is about 0.002, meaning that the cell line significantly affects the NPQ values.

Additionally, the results from post hoc analysis (Figure 45) indicate that the Alb3b-19 mutants have

significantly different NPQ values from the wild-type.
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Figure 45: Results from One-way ANOVA and post-hoc(Tukey’s HSD) for NPQ indicating a significant

effect of cell line (p<0.05) on the NPQ levels and significant difference between the Alb3b-19 and WT

and also one of the other mutant line(Alb3b-16).

7.3.4 Results from CLSM

(a) Wild type (b) Alb3b-14

(c) Alb3b-16 (d) Alb3b-19

Figure 46: CLSM images of different cell lines exposed to LL levels of 35 µmol photons m-2 s-1 for 2

weeks and then stained with BODIPY 505/515. Images include those from channel 0, with BODIPY

signals(Left), and from channel 1, with autofluorescence signals of the Leica SP8 microscopes. Images

were processed using FIJI for applying appropriate look-up tables, removing background, and adjusting

contrast levels.
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The CLSM images from LL acclimated cells(Figure 46a) indicate variations in the lipid droplet structures

among the different cell lines. The wild-type cells show multiple LDs(2-3) that appear compact and

separated. Most of the cells in the Alb3b-14 and 16 mutant lines(Figure 46b and Figure 46c)seem to

have a single compact LD having a similar size to that of LDs in the wild type. In contrast to all the

other cell lines, the cells in the Alb3b-19(Figure 46d) line show much more dispersed LDs spread almost

throughout the cell without conspicuous separation. In terms of autofluorescence images, all the cell lines

emitted detectable levels of autofluorescence, with the wild-type cell having the strongest autofluorescent

emissions compared to the Alb3b mutants. Also, the cell morphotypes for most of the cells are comparable

between the cell lines.

(a) Wild type (b) Alb3b-14

(c) Alb3b-16 (d) Alb3b-19

Figure 47: CLSM images of different cell lines exposed to ML levels of 200 µmol photons m-2 s-1 for 2

weeks and then stained with BODIPY 505/515. Images include those from channel 0, with BODIPY

signals(Left), and from channel 1, with autofluorescence signals of the Leica SP8 microscopes. Images

were processed similarly to those in Figure 46.

The Lipid droplet size and structure change considerably in the HL-treated cells for all the cell lines

compared to their LL counterparts. In the wild-type, Alb3b-14, and Alb3b-16 cell lines, it can be observed

that the LDs have increased in size due to stress and no longer appear compact and have become more

dispersed. The morphology of these cells seems to be unaffected under HL exposure. However, the

Alb3b-19 mutants show great variation in LD and cell morphology as compared to others. Here, it is seen

that most cells have several compact LDs (3-8) spread across cells that appear elongated than the normal

fusiform morphology. It was also seen that some of the tri-radiate cells in these cultures had at least one
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of their arms extended beyond the others. Two common observations among all the cell lines include the

tendency of some cells to cluster with others and significantly lower autofluorescence emissions compared

to their LL counterparts, as observed in figure 46

(a) Wild type (b) Alb3b-14

(c) Alb3b-16 (d) Alb3b-19

Figure 48: CLSM images of different cell lines exposed to HL levels of 680 µmol photons m-2 s-1 for 2

weeks and then stained with BODIPY 505/515. Images include those from channel 0, with BODIPY

signals(Left), and from channel 1, with autofluorescence signals of the Leica SP8 microscopes. Images

were processed similarly to those in Figure 46.

The imaging results for HL-treated cells(Figure 48) yielded almost the same results as the ML samples,

except that the cells in HL were more stressed and consequently had bigger LDs. Even though The LDs

in HL acclimated wild-type cells appear less compact and distinguished from each other than the ones in

LL, they appear to congregate in the center of the cell(Figure 48a). LDs in Alb3b-14 and 16 cells(Figure

48b and Figure 48c) have almost the same structural and distribution features as their counterparts in

medium-light but with an increased size. In the case of the Alb3b-mutant lines, no clear pattern was

found as cells with different LD structures and dispersion were observed. Additionally, all the cell lines

in HL seem to have the stress-responsive clustering of cells with Alb3b-19 mutants having more clusters

and more fractions of oval-shaped cells(Figure 48d). Furthermore, the majority of the cells in all cell

lines had significantly lower autofluorescence levels than both medium and LL treatments, with many of

them even being unable to be detected.
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7.3.5 Results from Real-time q-PCR

The results from the nanodrop assessment of the RNA are presented in the table 20. It was observed

that several of the samples(yellow) had A260/A80 ratios above the recommended level of 2, therefore

indicating reduced protein contamination, but had the A260/A230 ratios below 2, thus indicating possible

phenolic contamination from the RNA isolation procedure. Just one sample(red), Alb3B-16LL3, had

both the A260/A280 and A260/A230 ratios below 2, hence is of bad quality. In terms of the nucleic acid

concentrations, the same sample had concentrations below the recommended level of 200 ng/µL, while

the rest had more than this, with some of them even above 1000 ng/µL.

The results of calculated RIN values from the bioanalyzer are presented in Figure 21. All the samples

had RIN values above 4, which is the recommended value for RNAseq. Since no recommended RIN levels

are established for q-PCR, this value was used as a threshold for qualifying the sample as good quality

with less RNA degradation.

Fluorescence and melting curves from the q-PCR reaction for amplification of the two selected refer-

ence genes indicated possible contamination with genomic DNA in the majority of the samples. As seen

in the Figures, there are two batches of fluorescent curves, one having a higher range of Cq values and

the other one with a lower range of Cq values. The fluorescence curves with a higher range of Cq values

come from the RT-ve samples and those with a lower range of Cq values come from the cDNA samples,

thus indicating the possible presence of genomic DNA at concentrations lower than that of the cDNA in

the samples. This is further supported by the melting curves shown in Figures, in which all the melting

curves including those from RT-ve samples and cDNA samples peak at the melting point of around 80°C

Figure 49: Results from q-PCR comparing the expressions of the different genes in WT in HL and ML

compared to WT in LL. The values are calculated as the mean of CNRQ values obtained from the

analysis of Cq values in qBASE+ from three biological replicates of WT in each light condition. The

bars highlighted with yellow outline indicate significant upregulation or downregulation based on post

hoc analysis. The PLC and CDS1 genes are seen as significantly up-regulated in HL samples of WT.
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Figure 50: Results from q-PCR comparing the expressions of the different genes in Alb3b-14 mutants in

HL and ML compared to the same mutant in LL. The values are calculated as the mean of CNRQ values

obtained from the analysis of Cq values in qBASE+ from three biological replicates of the mutant in

each light condition. The bars highlighted with a yellow outline indicate significant changes in expression

post hoc analysis. The FABI and FADB genes are seen as significantly down-regulated in ML samples of

Alb3b-14.

Figure 51: Results from q-PCR comparing the expressions of the different genes in Alb3b-16 mutants in

HL and ML compared to the same mutant in LL. The values are calculated as the mean of CNRQ values

obtained from the analysis of Cq values in qBASE+ from three biological replicates of the mutant in each

light condition. The bars highlighted with a yellow outline indicate significant changes in expression post

hoc analysis. The observations are the same as that of the Alb3b-14 mutants(Figure 50) with significant

downregulation in FABI and FADB enzymes in ML-treated mutants.
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Figure 52: Results from q-PCR comparing the expressions of the different genes in Alb3b-19 mutants in

HL and ML compared to the same mutant in LL. The values are calculated as the mean of CNRQ values

obtained from the analysis of Cq values in qBASE+ from three biological replicates of the mutant in

each light condition. The bars highlighted with a yellow outline indicate significant changes in expression

post hoc analysis.In contrast to the Alb3b-14 and 16 mutants( Figures 50, 51), there are no significant

changes in FADB and FABI under ML. However, FADB is significantly down-regulated under HL.

Figure 53: Results from q-PCR comparing the expressions of the different genes in all the Alb3b mutant

lines LL compared to WT in LL. The values are calculated as the mean of CNRQ values obtained from the

analysis of Cq values in qBASE+ from three biological replicates of the mutant in each light condition.

The bars highlighted with a yellow outline indicate significant changes in expression post hoc analysis.

The FABI gene in Alb3b-14 is significantly upregulated and the FA-desaturase in Alb3b-19 is significantly

down-regulated.
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Figure 54: Results from q-PCR comparing the expressions of the different genes in all the Alb3b mutant

lines ML compared to WT in ML. The values are calculated as the mean of CNRQ values obtained

from the analysis of Cq values in qBASE+ from three biological replicates of the mutant in each light

condition. The bars highlighted with a yellow outline indicate significant changes in expression post hoc

analysis. The FA-desaturase in Alb3b-19 is significantly down-regulated.

Figure 55: Results from q-PCR comparing the expressions of the different genes in all the Alb3b mutant

lines HL compared to WT in HL. The values are calculated as the mean of CNRQ values obtained from

the analysis of Cq values in qBASE+ from three biological replicates of the mutant in each light condition.

The bars highlighted with a yellow outline indicate significant changes in expression post hoc analysis.

The observations are the same as the LL samples(Figure 53with significant upregulation of the FABI

gene in Alb3b-14 and downregulation of FA-desaturase in Alb3b-19.
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The results from the q-PCR reaction indicate a high level of variability in many of the genes among

the biological replicates of all the samples under all the different light conditions. This can be seen in the

wide error bars in Figures 49, 50,51,52,53,54,55.

The results indicate differences in the regulation of the different genes studied between the WT

and mutant cell lines. The WT cells in HL treatment show a significant upregulation of two of the

phospholipid metabolism enzymes, namely CDS1 and PLC compared to WT in LL(Figure 49). However,

this upregulation is not observed in any of the mutants as can be observed in Figures 50, 51, and 52.

Another contrasting difference is observed in the expression levels of two of the enzymes involved in the

acyl chain elongation cycle in the plastid, which are the FADB(Malony coA- ACP transacylase) and

FABI(Enoyl ACP reductase). These two enzymes appear to be significantly down-regulated under ML

treatment in the Alb3b-14 and 16 mutants compared to the same mutants in the LL treatment, whereas

they do not significantly change in WT under ML or HL levels compared to WT in LL. In the Alb3b-19

cells, only the FADB enzyme is significantly down-regulated, but in the HL treatment, compared to

the same mutant under LL condition. However, when the mutants under each of the light treatments

are compared to WT in the same light treatment, no significant expression change is observed in the

mentioned phospholipid metabolic and the acyl chain elongation enzymes(Figures 53,54,55), except for a

significant upregulation of the FABI in Alb3b-14 cells in LL compared to WT in LL. Another observation

in the later comparison is the significantly down-regulated levels of a predicted fatty acid desaturase

enzyme localized in the chloroplast(Phatr2 50443) in the Alb3b-19 cells under all the light treatments

compared to WT in each light level. Analysis of the melting curves of this particular gene shows that the

Alb3b-19 mutants show a separate melting peak from the other mutants and the wild type(Figure 56).

(a) Amplification curves of the Phatr50443 gene in WT and mutants

(b) Melting curves of the Phatr50443 gene in WT and mutants

Figure 56: The results for amplification and melting curves of the Phatr50443 gene from the Light cycle

96 software. The WT cells are represented by the green lines, the Alb3b-14, and 16 cells by the blue

lines, and the Alb3b-19 cells by the red lines. a) The amplification curves showing the red lines(Alb3b-

19) generally expressed low compared to the other samples as the curves appear later than those of the

other samples Alb3b-14, Alb3b-16, and WT). b) Melting peaks showing the red lines(Alb3b-19) forming

a separate melting peak compared to the blue and green lines(Alb3b-14, Alb3b-16, and WT).
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8 Discussion

Research on lipid metabolism in diatoms or microalgae is of great significance because of their potential to

be used as feedstocks for the sustainable production of lipids or fatty acids to be used in various industries

like bio-fuel, human nutraceuticals, and aquaculture feed production. Studying the lipidomics in knock-

out mutants with a non-functional protein, which is otherwise important for the normal performance

of a major metabolic pathway in the cell, can help us understand the influences of other pathways on

lipid metabolism. This can lead to insights to be used for further research or development of strategies

for commercial microalgal culturing for industrial lipid production. This project aimed at studying the

lipidome of one such knock-out mutant, the Albino-3b mutant, compared to the wild-type cells.

As explained, the project involved developing a standardized workflow for processing and analyzing the

lipidomics data from GC=MS, and conducting light treatment experiments to observe changes in various

parameters (Table 3)associated with cell structure and function. The factors affecting the accuracy of

the developed pipeline, the results obtained after passing the lipidomics data through the same, and

how these results can be compared to the observations from previous research and those made from the

experiments in this project are discussed sections below.

8.1 Principle component analysis and statistical modeling of MS-MS data:

Challenges and Limitations

One main component of the pipeline developed for this project was to perform PCA after all the necessary

pre-processing steps such as outlier imputation and scaling. This was performed on subsets of the

GC=MS lipid class dataset containing measurements for wild-type samples and one of the mutant lines.

That accounts for 3 subsets of data comparing each mutant line with the wild-type in two different light

conditions.

The greatest advantage obtained by doing PCA in this project was generating visualizations that

gave an overall overview of the entire dataset, The scatter plots in the space of principle components in

not useful by themselves except for showing whether the samples get clustered in a discernible manner.

The scatter plots were overlaid with corresponding loadings plots to obtain more information on which

variables contribute most to the variance. These graphical representations gave a picture of how the

various samples of different cell lines under different treatment conditions are differentiated based on the

concentrations of different lipid classes in a lower dimensional space. This has facilitated circumventing the

impossibility of plotting all the samples in 10 dimensions representing the 10 lipid classes in the dataset.

Although the length and orientation of the arrows representing the loadings give valuable information as

mentioned in Section 5.16.2, it was not possible to present the exact values of loading scores or angles

between the arrows, as it can make the graphs redundant and hard to interpret. This limitation also

applies to performing PCA on the Fatty acid composition datasets. Although perfectly separated clusters

of different samples were observed for the fatty acids composition measurements for most of the lipid

classes, the biplots generated were highly crowded because of the high number of variables, that is fatty

acid compositions, making them hard to understand or interpret.

One main problem faced during the performing PCA was choosing between a standard PCA or a

kernel PCA. Standard PCA assumes a linear correlation between the studied variables, whereas kernel

PCA is adapted to non-linearly separate variables. For the MS-MS dataset, Linear relationships between
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the measurements of concentrations of different lipid classes were observed for many of the lipid class

pairs for WT and the mutant lines as presented in Figure 57. The heat maps presented here indicate that

many of the lipid pairs have the absolute value of the person correlation coefficient(R) above 0.5 in all the

cell lines, indicating strong linear correlations. However, non-linearity(R<0.5) can also be observed in

almost as many lipid class pairs in all the cell lines. However, standard PCA was chosen for the pipeline,

even though the violation of the linearity assumption could potentially lead to wrong inferences. This

was done mainly because in kernel PCA, the influence of individual variables cannot be represented using

individual loading scores like in standard PCA, Additionally, selecting kernel PCA will lead to further

difficult choices of the best kernel for the dataset, like Gaussian, tanH, or Neural net kernel, based on

the kind of relationship between lipid pairs. Furthermore, the results obtained by executing a standard

PCA on the dataset can be checked for correctness based on the results obtained from the second most

important component in the pipeline, which is statistical modeling. Another issue that potentially could

lead to misinterpretation is the fact that when comparisons are made between mutant and wild types,

measurements of both these cell lines are considered for calculating the eigenvalues in PCA. Thus, the

correlation interpreted from the angle between the loading score vectors in the loading plot, between

lipids, will be based on all the measurements. This necessitates a cross-verification using the original

dataset, to check if the correlation exists in the values within each cell line or between the cell lines. For

example, in the 3D biplot comparing Alb3b-3b mutants and wild-type, a strong negative correlation is

observed between PE and TAG as the loading score vectors are almost at a 180-degree angle. However,

it is hard to interpret whether this negative correlation exists in both the cell lines or across the cell lines.

In this case, we could cross-check it with the pair plot generated from the original dataset (Figure 2. It

can be seen in the regression plot comparing PE to TAG this a negative correlation exists, just in the

Alb3b-14 mutants, whereas in the wild type, they exhibit a positive correlation.

Misinterpretations could also arise during PCA, as the explained variance is not cent percent and the

resultant biplots may not represent some hidden structures in the data. One reason for this is the inherent

orthogonality of the principle components, that is the defined principle components are perpendicular to

each other. There may be non-orthogonal components that possibly explain better variance and reveal

unseen structures in distribution. One example of this is the correlations observed between TAG and the

betaine lipid DGTA. It is seen in figure 16 that these two lipids are possibly positively correlated because

of the acute angle between the loading score vectors. Additionally, in the figures 19 and 21, a negative

correlation is observed for the same lipid classes. However, comparing the regression models for these

two lipid classes in WT and the mutant lines in Figure 3 shows contrasting results, wherein the Alb3b-14

shows negative correlation and the wild-type, Alb3b-16, and Alb3b-19 shows positive correlation.

As mentioned above, the fatty acid composition data set was also passed through the same data

processing and analysis pipeline. It was observed that for each of the lipid classes the data for the

measurements of Concentrations of each of the different fatty acid compositions, yielded clear clustering

of the different samples in the PCA scatter plot. that is, 4 different clusters representing mutants In

two light conditions and the wild-type cells in two light conditions were observed during each of the

comparisons. this indicates that the fatty acid composition varies between the cell lines and also between

the different light conditions. Additionally, how this variation occurs between the different light conditions

is different between the cell lines. However, making biplots for these comparisons was challenging because

of the high number of unique fatty acid compositions that each lipid class has, which consequently resulted
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in very crowded plotting plots that are hard to interpret. Regardless of this complexity, close observation

of these graphs was done To check for any patterns in change of fatty acid compositions for each of

the lipid classes. Nevertheless, no inclination for any of the cell lines or any of the Light treatments

toward particular fatty acid compositions was observed in any of the lipid classes except for the neutral

lipid TAG. This was cross-verified with the results obtained from statistical modeling of the fatty acid

composition data for each of the lipid classes and similar results were obtained. That is a conspicuous

difference in variation of concentrations of fatty acid compositions in TAG was observed Between the cell

lines, but this was not the case for other lipid classes. This can also be considered a limitation of the

PCA in this pipeline because even though a clustering was observed for the different samples in all the

lipid classes, The reason for these differences between the samples could not be delineated.

(a) Wild-type (b) Alb3b-14

(c) Alb3b-16 (d) Alb3b-19

Figure 57: Heat maps showing the Pearson coefficient values(R) between different lipid classes for WT

and mutants. The R values were calculated to assess the linearity between the different lipid classes

before performing the standard PCA. R values were estimated using the ’corr’ function in the pandas

library and the heat maps were generated using the ’seaborn’ library in Python.

Statistical modeling for the MS-MS data was done based on results from unpaired t-tests comparing

the means of the concentrations of each lipid class or fatty acid composition between the light treatments
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for WT and the mutant lines. As Shapiro Wilk’s tests yielded results showing normal distribution

of concentrations of the majority of the lipids, and Levene’s tests resulted in an indication of non-

homogeneous variances in a considerable number of compared samples, Welch’s T-test was chosen as the

best choice of statistical test. A log transformation was added to the compared samples to scale the data

and also to improve the normal distribution curve characteristic of the samples.

The main limitation here is the low number of observations in each sample compared, that is just

9 values in each treatment comprising of three biological replicates, with three technical replicates for

each of them. This significantly reduces the statistical power and reduces confidence in the interpretation

made from these tests. Another alternative was to use a two-way ANOVA model to fit this data with

two defined categories, that is cell line, with 4 values(WT, Alb3b14, Alb3b16, and Alb3b19) and the

treatment(LL and ML). Even though this test was performed, and significant interaction effects were

observed between cell line and light treatment for each of the lipid classes, ANOVA was not chosen as a

step in the pipeline as the residuals of concentrations of all the lipid classes significantly deviated from

the normal distribution and were not homogeneously varying across the fitted values in ANOVA OLS

model. However, many of the inferences made from the statistical tests were comparable to the results

from PCA. For instance, in the PCA biplot comparing Alb3b-14 mutants with Wild type(Figure 16, two

of the lipids causing the most variation between the cell lines are observed to be PE and TAG, and they

also appear to have a strong negative correlation. In comparison, the T-test results show that, under

high light, PE is the most significantly reduced lipid class and TAG is the most significantly increased

one in ALb3b-14 mutants, indicating its negative correlation in the mutants. In contrast, both of these

lipids significantly increase in the wild type in high light compared to LL, thus showing a difference in

variation of these two lipids in the mutant and the wild type.

8.2 Interpretations of the results from MS-MS data analysis

It has been previously proven that diatoms have an intricate mechanism consisting of photo-receptive

and other sensory systems, with associated metabolic pathways that are utilized for sensing and con-

sequently modulating their photosynthetic Machinery to acclimatize to the changes in the ambient light

conditions(Wilhelm et al., 2006). Since the metabolic pathways including those associated with photosyn-

thesis and lipid metabolism are intertwined, the changes in one of the metabolic pathways can potentially

influence the other metabolic pathways(Wilhelm et al., 2006). Changes in concentrations of total lip-

ids and individual lipid classes have been discovered in diatom cells treated with high light in previous

research. For example, in a study conducted by Ding et al., 2023, the light stress-induced cells, with

exposure to a high light level of 300 µmol photons m-2 s-1 for 3 days showed an increased amount of the

total lipid content in the cells compared to the control in LL level of 50 µmol photons m-2 s-1(Ding et al.,

2023). These high Light treated cells also indicated higher levels of the neutral lipid TAG, upregulation of

certain phospholipid remodeling enzymes like the PDAT, and decreased levels of the plastidic membrane

lipids like the MGDG, DGDG, and SQDGs(Ding et al., 2023). The wild-type cells continuously exposed

to highlight treatment after three days in this study were found to have higher total lipid content and

tag levels than cells treated in highlight for three days. Furthermore, the lipid levels of cells that were

recovered from the highlight treatment for three days were also measured and it was seen that most of

these stress responses reversed. In the cells recovered from high light the total lipid levels went back to
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normal levels and the glycolipid MGDG increased back to the normal level. This confirms that changes

in lipid metabolism are also a part of the stress response towards light treatment in the cells. It also

points towards possible phospholipid and glycolipid remodeling of the membrane constituents of the cell

to produce storage lipids (Ding et al., 2023). This master’s project aimed to study the changes in the

lipid profile of the wild-type and Alb3b mutant cell lines under continuous highlight and LL exposure for

two weeks. Additionally, changes were observed in mutants compared to the wild type in several para-

meters, including photosynthetic performance, pigment concentrations, thylakoid membrane structures,

and photo-protection in the research conducted by Nymark et al., 2019, so change in the lipid profile

between the mutants and the wild type was also expected.

The inferences from the analysis of lipid classes is summarized in the following table:

LL v/s ML treated samples

Lipids Phospholipids Glycolipids Betaine Lipids Neutral Lipids

Classes PI, PC, PG, PE MGDG, DGDG, SQDG DGTA TAG,DAG

WT SI SI SI SI

Alb3b-14 SD&NC SI NC SI

Alb3b-16 SI&SD&NC SD&NC SI SI(TAG)&SD(DAG)

Alb3b-19 SI&(SD)* SD&NC SI SI(TAG)&SD(DAG)

Table 4: A summary of inferences from statistical analysis of lipid class data from MS. The abbreviations

are as follows; SI: significant increase, SD: significant decrease, NC: No significant changes. * means a

general trend towards the inferred change. Significance is defined by p-values<0.05.

As presented in the results section and summarized in table 4, clear differences were observed both in

PCA and T-test results in the concentration of several lipid classes between LL and ML-treated samples

in all cell lines. Also, obvious differences can be observed between the wild-type and the mutant cell lines.

As seen in figure 22, in the wild-type samples treated at an ML level of 200 µmol photons m-2 s-1 for 2

weeks all the lipid classes have significantly increased compared to the LL treated samples at 35 µmol

photons m-2 s-1. This is consistent with results from a study by Ding et al., 2023, where the total lipid

content in the cell in continuous HL treatment increased significantly compared to the control. However,

the significantly increased amount of phospholipids and glycolipids in the HL-treated cell is not in accord

with possible membrane lipid remodeling suggested by Ding et al., 2023. The possible explanation for

this is that the long-term exposure has led to acclimation of the cells to the condition and reveal of the

stress responses resulting in increases of the glyco- and phospholipids. Contrastingly, the mutants show

significantly decreased levels of certain phospholipids, and increased levels of TAG (Figures 23 24. The

group of significantly decreased, remained unchanged, or significantly increased phospholipids are not

similar among the mutants. In terms of glycolipids, the Alb3b-14 have significantly increased amounts

of MGDG AND DGDG under HL treatment, but the Alb3b-16 and 19 have significantly decreased

DGDG and unchanged MGDG. These results could mean that the stress responses are not reversing

in the mutants in the same way as in the wild-type and even if there is a reversal to some extent it is

not occurring similarly among the different mutants. Another notable observation is the significantly

increased amount of either the sulpholipid SQDG or the phospholipid PG in the ML-treated mutants.

These are polar lipids that are known to replace the glycolipids in thylakoid membranes under light
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stress and consequent remodeling events(Lepetit et al., 2011). These results lead to the inference that

membrane lipid remodeling is occurring also in the mutants but, might be in a different fashion than in

the wild-type.

Regarding the analysis of the fatty acid composition data, as presented in the Results section, a

difference was observed in the TAG fatty acid composition change between mutants and the WT, when

the LL and ML treatments were compared. It was observed that most of the long-chain polyunsaturated

fatty acids were significantly higher and most of the medium-chain saturated fatty acids or those with a

low degree of unsaturation were significantly lower in the ML treatment compared to the LL treatment

for the WT cells. In contrast, the mutant cell lines had just the opposite scenario. This general trend

was not observed in the fatty acid compositions of other lipid classes, but specific observation of the FA

composition data analysis for the glycolipids MGDG and the phospholipid PC shows that the fraction of

these lipids with most of the compositions containing the PUFAs like EPA and DHA changes differently

between the mutants and WT when comparison is made between the different light levels. It can be

seen in Figures 7a,8a, and 9a that the mutants have significantly increased amount of many of the PUFA

containing molecular compositions, including those with both EPA and DHA, in their PC fraction under

ML treatment, whereas, in the WT, most of the same are significantly lower in ML as seen in figure 10a.

As opposed to this, In the MGDG fraction, the mutants have significantly lower levels of most of the

PUFA containing compositions, including the ones with at least one EPA, under ML condition(Figures

7b,8b, and 9b), while the WT has significantly higher levels of the same in ML(Figure 10b)

Previous studies have shown that the fatty acid composition of the lipids in diatom changes in response

to environmental factors including irradiance(Qiao et al., 2016,Guihéneuf et al., 2008). For instance, the

study by Guihéneuf et al., 2008 has found that the diatom Skeletonema costatum had the highest level of

the PUFA, EPA under saturating light levels of 340 µmol photons m-2 s-1 and the levels of the same lipid

had shown a significant decrease under limiting light conditions. The research by Qiao et al., 2016 has

observed a significant increase in another PUFA called DHA, with increasing irradiance. The changes in

the fatty acid composition in the membrane lipids like the glyco- and phospholipids can be interpreted as

an attempt to adapt to changed conditions by adjusting the membrane fluidity(Tanaka et al., 2022). The

change in fluidity or stability of the membranes can have implications on photosynthetic performance as

it will affect the rate of electron flow through these membranes(Mock and Kroon, 2002a). For instance,

a previous study by Mock and Kroon, 2002b has shown an increased amount of EPA in the MGDG

fraction under limited light conditions in the antarctic sea ice diatoms. This was also associated with

an increased electron transport rate. It is also known that the presence of membrane pigment-protein

complexes in the thylakoid membrane affects the lipid composition of these membranes(Mock and Kroon,

2002b). For example, a sufficient level of these pigment-protein complexes is required to obtain a bilayer

membrane with a considerable amount of non-bilayer lipids like MGDG to ensure appropriate fluidity

and electron transport(Mock and Kroon, 2002b). Thus the difference between the Alb3b mutant lines

and WT observed in how this membrane lipids changes in adaptation to light conditions can be linked

to the difference in the pigment-protein complexes in the mutants’ thylakoid membrane as observed by

Nymark et al., 2019. Additionally, the differences observed in the thylakoid membrane structures(Nymark

et al., 2019) in the mutants compared to WT could also be due to this difference in the membrane lipid

compositions.
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8.3 Interpretations of results from lab work

8.3.1 BODIPY fluorescence measurements

No discernible pattern was observed in the BODIPY fluorescence for all the cell lines under the different

light treatments as seen in figure 29. The observation that, in the wild-type cells, the quantity of

lipid droplets, as indicated by BODIPY fluorescence, increases in medium light and then decreases in

high light tends to be erroneous because of the considerably high standard deviation values in the HL

samples. Additionally, the wild-type samples under HL appeared to be more stressed than the medium

light samples in the autofluorescence-based growth curves(Figures 28 and 27), thus making the BODIPY

measurements questionable. Similar observations do not occur for the Alb3b mutants, However, high

standard deviation levels can also be observed for many of the Alb3b samples. This is because of the

presence of outliers, which were consequently imputed with the median values of samples before the

ANOVA and post hoc tests. The post hoc tests conducted on the BODIPY measurements also yielded

unexpected results(Figure 34 like no significant differences in the BODIPY fluorescence levels between the

different light conditions for any of the mutants. Nevertheless, as expected from the mass spectrometry

results, a significant difference was observed between WT and two of the mutant lines (Alb3b-14 and

16) under HL and ML treatment. Also, a significant difference is seen between WT cells under LL and

the same under ML and HL, showing increased accumulation of lipids in the WT due to stress from

irradiance.

One possible explanation for the unexpected BODIPY measurements and the high variance between

the biological replicates is connected to the staining protocol used during the measurements. The optimum

staining concentration of 0.067% according to Govender et al., 2012 was tested for other microalgal species,

namely, Chaetoceros calcitrans, Dunaliella primolecta, and Chlorella vulgaris. It could be possible

that this concentration is not ideal for effectively staining the LDs in P.tricornutum. Additionally, the

stock solutions of BODIPY in DMSO had been thawed and re-frozen again multiple times, before the

measurement, which appeared to affect the stain as was indicated by the color change in the frozen form of

the solutions. The freshly frozen solutions were bright red, whereas the red color decreased considerably in

the refrozen samples. Furthermore, the sensitivity issues associated with such fluorometric measurements

such as issues like signal loss, necessitate the development of standard protocols by testing staining

methods for a wide range of microalgal species.(Govender et al., 2012,Rumin et al., 2015)

Another interesting observation from figure 29 is that the difference in lipid quantities, as measured

by BODIPY fluorescence, between the wild-type and the mutants is not comparable to the TAG meas-

urements from mass spectrometry as seen in figures 17 and 14. For example, the TAG level in Alb3b-14

in LL is around 85% lower than that of wild type in mass spectrometry. In contrast, this difference in

lipid level is 16% in the BODIPY measurements. The same comparison is also applicable to the Alb3b-16

mutants in LL, for which the decrease in TAG levels from mass spectrometry is a strong 92%, whereas

the decrement in lipids compared to wild type is 22% in the BODIPY experiment, Furthermore, the steep

spike in TAG level in Alb3b-14 in medium light compared to LL as observed from mass spectrometry

cannot be observed in the BODIPY experiment. Alb3b-19 mutants also show contrasting results in the

BODIPY fluorescence as compared to mass spectrometry, These cells in both low and medium light

have shown significantly low TAG levels(98% and 68% lower than the wild type in the same conditions

respectively) in mass spectrometry data. However, the lipid levels be 8% higher and 14% lower in LL and
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medium light respectively compared to wild type in similar treatments in the BODIPY measurements. It

must be noted as mentioned above that the high standard deviations in the measurements for BODIPY

fluorescence make the validity of these observations uncertain.

The reduced difference between WT and the mutants in their Lipid content in the BODIPY meas-

urements as compared to the mass spectrometry was unexpected and led the way to some hypotheses.

It could be possible that the BODIPY 505/515 is not just binding to the TAG as this is not explicitly

mentioned in the previous studies like Cooper et al., 2010 and Govender et al., 2012. They just indicate

that the BODIPY 505/515 targets the LDs or neutral lipids in the cells and not any other organelles.

This led to the inference that there are possibly other neutral lipids in the LDs of the observed cells. It is

known that the neutral lipids generated under stress conditions as energy reserves do not solely include

TAG but also other compounds like cholesterol and wax esters(Turkish and Sturley, 2009). Also, BOD-

IPY staining has been previously used for labeling other neutral lipid molecules like Cholesterol, stearyl

esters, and free fatty acids(Elle et al., 2010), thus indicating that they could bind to similar molecules in

the stained cells’ LDs. Furthermore, a previous study by Lupette et al., 2019 detected the presence of

brassicasterol in the LDs isolated from P.tricornutum, thus reassuring the possibility of accumulation of

sterols in LDs.

8.3.2 Photophysiology and growth

The chlorophyll measurements from flow cytometry, the growth curves based on auto-fluorescence from

the plate reader, and the measurements of photosynthetic parameters from PAM can be linked together.

As observed in Figure 30, the chlorophyll levels decrease with increasing light in density and the

mutants have lower chlorophyll levels than the wild-type. Additionally, How the decrease happens is

different between the mutants and the wild-type. From LL to ML treatments the decrease in chlorophyll

is 38% in the wild type whereas for the Alb3b-14 and 16 mutants, it is around 50%. But the same

value for the Alb3b-19 mutants is just around 27%. The decrease in chlorophyll levels from ML to HL

treatments is also around 38% for the wild type whereas the Alb3b-14 and 16 mutants show a steep

decrease of 87 and 76% respectively. the same value for Alb3b-19 mutants is 42%. These values hold

sensible when compared with the measurements of photosynthetic parameters from PAM. For instance,

the decrement observed in Photosynthetic performance, measured as Fv/Fm values, is on par with the

decrement in chlorophyll levels when compared between the wild type and the mutant cells. As explained

in the results section and depicted in Figure 37, the decrease in Fv/Fm values Is around 3 to 4 times

in the mutants compared to the wild type from LL to ML treatments and about 2 times from ML to

HL treatments, based on the increased decrement in chlorophyll levels of mutants compared to the wild

type. Similarly, when the light utilization efficiencies are compared between wild type and mutants under

different light treatments as depicted in figure 39, the decrement in the light of utilization efficiency is

around 2 times for the mutants compared to WT from LL to ML treatment, and around 2-3 times from

ML to HL. One possible confusion that might arise in this case is the comparable levels of the Fv/Fm

or α values between the mutants and the wild type in the same light conditions, especially in the LL

treatments as shown by the post hoc tests(Figures 38 and 40). This is counterintuitive because of the lower

chlorophyll levels in the mutants compared to the wild type in the same light conditions Which should

probably lead to lower photosynthetic performance in the mutants. this is accounted for in the previous

study by Nymark et al., 2019, wherein the photosynthetic parameters were measured again using oxygen
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evolution from photosynthesis, and subsequently normalized to chlorophyll a value from HPLC, which is

a standard step in photosynthetic measurements(Consalvey et al., 2005). These repeated measurements

led to the conclusion that the mutants had truncated antennae for light harvesting with higher maximum

photosynthetic rate(Pmax) and light saturation coefficient(Es), and lower maximum utilization efficiency

or α, similar to the observations in a previous study on cyanobacteria by Kirst et al., 2014.

The implications of these reduced chlorophyll levels and consequent decrease in photosynthetic per-

formance with increasing light conditions are reflected in the growth curves measured by autofluorescence

emissions using the plate reader. In the figure 27, it can be seen that the wild type reaches the station-

ary phase at around the fifth day of growth with the relative fluorescence units reaching a maximum of

around 950 under LL treatment. However, the mutants take around 10 to 11 days to attain the stationary

phase with comparatively lower RFU values ranging between 400 to 650(Figure 28). Furthermore, under

ML treatment the WT cells reach the stationary phase at around 6 days, whereas the Alb3b-14 and 16

mutants do this at about the 9th to 10th day. The Alb3b-19 reached the stationary phase around the

6th day, the same as the wild type. This is possibly an outlier because of contamination in the Alb3b-19

cultures with the WT cells, as the post hoc analysis indicated significantly.

These growth rates are based on auto-fluorescence and do not indicate the actual cell division rate.

Additionally, the varying chlorophyll levels in different light conditions further make these measurements

unfit for comparing growth rates between mutants and WT, unlike using other methods like Bürker-Türk

counting chamber or flow cytometry.

The decreased chlorophyll levels, as indicated by the reduced level of auto-fluorescence in both flow

cytometry and the plate reader, can be explained by the results from Nymark et al., 2009. This study

found downregulation of the Light-harvesting complex proteins during all the phases in which the WT

cells acclimated to HL treatment of 500 µmol photons m-2 s-1. This also appeared to have an impact on

the concentrations Chla, Chlc, and Fucoxanthin(Fx )(Nymark et al., 2009), which are some of the major

light-harvesting pigments(LHPs) in diatoms cells(Brown, 1988). The concentration of Fx decreased as

an immediate response to HL exposure whereas the Chla and Chlc levels decreased only in the late

acclimation phases to HL(Nymark et al., 2009). The reduction in Fx was also evident during this lab

work from the visual properties of the cultures. All the cultures, including the mutant lines and WT,

showed changing coloration with increasing light intensity. The WT were more brown colored under LL

but became more green in ML, and light green in HL. The Alb3b mutants were green colored in LL as

expected from the results from Nymark et al., 2019, and became increasingly light green colored under

ML and HL. The normal golden brown coloration observed for WT cells is because of the high amounts

of Fx in the diatom fucoxanthin chlorophyll a/c-binding protein complexes(FCP complex)(Gundermann

and Büchel, 2014). Additionally, it is known that Fx changes its spectral properties in terms of absorption

and emission wavelengths in response to protein binding(Premvardhan et al., 2009). Therefore the fact

that the Alb3b mutants are green-colored compared to WT and the decreasing pigmentation of all cell

lines with increasing light can be explained by the changed FCP complex concentrations in the thylakoid

membrane due to the mutation in the ALBINO3B insertase and the downregulation of LHPs, respectively.

The significant increases observed in the maximum electron transport rate(Figures 41,42) and sat-

uration coefficients(Figure 43) from LL to ML in all the cell lines can be explained by the results from

Nymark et al., 2009. According to this, the increased electron flow and the increased threshold to reach

photosynthetic saturation are consequences of the photo-acclimation mechanisms adopted by the cells
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in response to high light and the subsequent ability to capture and utilize the increased available light

energy. A notable observation when comparing the mutants and the WT is that the mutants have com-

paratively higher ETR and Ek values than the WT. The rETRmax values are 32, 35, and 9 % higher in the

Alb3b-14,16,19 mutants respectively compared to the WT in LL, and 37, 21, and 10 % respectively under

ML. As explained before this shouldn’t be misinterpreted as increased photosynthetic performance of the

mutants compared to WT as the repeated measurements using oxygen evolution and normalization to

Chla proves otherwise according to Nymark et al., 2019. However, under HL the rETRmax values reduce

in the Alb3b-14 and 16 mutants with the decrease being significant for Alb3b-14(Figures 41,42). The

same parameter for the Alb3b-19 mutant and the WT increases under HL but not significantly(Figures

41,42). This can be interpreted as a result of photo-inhibition in the Alb3b-14 and 16 mutants as the

Chlorophyll levels decreased drastically for them in HL compared to Alb3b-19 and the WT (Figure 30),

According to Adir et al., 2003 the electron transport associated with photosynthesis will be drastically

affected during photo-inhibition as the rate of light-induced damage exceeds the rate of repair of the PS

II reaction centers. The increased light saturation coefficient in the mutants ranged from 26 to 33% from

that of the WT in LL(Figure 43). In ML, the increase was 55, 38, and 13% for the Alb3b-14,16 and

19 respectively compared to WT. In HL, this gap is diminished greatly to around 2-9% for the mutants

compared to WT. Also, as explained in the results section and depicted in figure 43, there is a general

trend of increasing Ek values with increasing irradiance in each cell line. This could again be linked to the

reduced changing pigmentation or LHPs in the cells. The reduced LHPs with increasing light irradiance

due to the downregulation of LHC proteins as described above or due to the truncated antennae in the

mutants leads to the requirement of higher light intensities to reach the saturation points as was observed

for similar mutants of cyanobacteria generated in previous studies by Kirst et al., 2014 and green algae

by Polle et al., 2003.

8.3.3 Connection of Lipid profile to photophysiology

Linking these results of the variations in photosynthetic pigments, electron transport rate and photo-

inhibition to the lipid profile of the cells is challenging. It is known that the lipids, especially the membrane

lipids interact with the integral membrane proteins and affect the functions of each other(A. G. Lee, 2004).

The LHPs like chlorophyll and carotenoids are folded along with the integral membrane proteins called

the Light-harvesting complexes(Natali et al., 2014 and a previous study has shown that these LHCs

interact with one of the major constituent lipids in the thylakoid membrane, that is MGDG, thereby

affecting each other functioning(Simidjiev et al., 2000). For instance, MGDG is known to affect the

formation and maintenance of PS II dimers in the thylakoid membrane(Kern and Guskov, 2011). Since

significant changes were observed in the total amounts and fatty acid compositions of the membrane lipids

including MGDG, between different light treatments, from the MS-MS data analysis, it might have played

a role in changing the pigment concentrations or compositions in the thylakoid membranes as suggested

by the Flow cytometry, Autofluorescence, and PAM experiments in this study and the previous one by

Nymark et al., 2019 as discussed above. The changes in these lipids between different light treatments

were also different between the mutant and WT, which might be the reason for the variation in how the

pigmentation parameters change between them.

Another possible connection is between the membrane fluidity and the electron transport rate. The

fatty acid compositions of the lipids will affect the membrane’s fluidity (Katarzyna and Wydro, 2007).
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Generally, saturated fatty acids are known to reduce the fluidity or increase the rigidity of the membrane

and unsaturated fatty acids do the opposite(Katarzyna and Wydro, 2007). The maintenance of high

fluidity in thylakoid membranes by the accumulation of PUFAs like the ω 3 FAs, EPA, and DHA, can

increase the electron flow rate through these membranes(Mock and Kroon, 2002a,Guihéneuf et al., 2009).

The change in the fatty acid compositions in the MGDG fraction is discussed in detail in section 8.2

based on results from the MS-MS data analysis. The increase in Electron transport rate in the WT

under ML compared to LL can be explained partly by the significant increase in the fraction of many

of the EPA-containing MGDG compositions(Figure 10b). However, the increase in electron transport

rate in the mutants in ML than the LL conditions, at a level generally higher than that of WT, is not

in accord with the fact that most of the EPA-containing MGDG compositions reduced significantly in

all the mutants under Ml (Figures 7b, 8b,9b) and require further investigation into other mechanisms

that could increase the electron flow rate through the membranes. In terms of photoacclimation and

photoprotection, the mutants appeared to perform better than the WT as indicated by the generally

higher levels of NPQ as detailed in the results section 7.3.3 and depicted in figure 44, additionally the

NPQ levels were also shown to be significantly affected by Cell-type according to the ANOVA analysis.

One explanation for this could be the truncated light-harvesting antennae in the mutants(Nymark et al.,

2019), which leads to lower absorption of light energy and thus reduced photodamage.

Lipids also play a role in the photoacclimation of the cells. One way to link the photo-acclimation to

the lipids is the role of MGDG in acting as a solvent for the xanthophyll cycle pigments, diatoxanthin,

and diadinoxanthin, thus increasing their accessibility in the de-epoxidation reaction essential in photo-

protection(Goss et al., 2005). It has also been shown that the MGDG forms a non-bilayer region that

facilitates the conversion reaction of these photo-protective pigments(Latowski et al., 2002). Since the

changes observed in MGDG levels in the mutants and WT under different light conditions are found to be

different, there might be implications of this in the differences observed in the photo-protective properties

of the mutants and the WT. Additionally, free fatty acids, particularly, long chain-saturated FAs, like

palmitic and stearic acids improve the rates of PS II repair mechanism by accelerating the D1 protein

synthesis(Jimbo et al., 2020). This supports the hypothesis of accumulation of neutral lipids other than

TAG, like FFAs, in the Lipid droplet fraction of the cells as explained before in this section.

8.3.4 Changes in cell and LD morphology

Notable differences were also observed in the cell morphology between the WT and mutants in both flow

cytometry parameters(FSC and SSC) and CLSM. However, the reason for this change is not understood.

As explained in the results section 7.3.2 and depicted in the figures 31 and 32 there are conspicuous

differences in forward scattering and side scattering respectively, between the WT and mutants and also

among the mutants. This means there are differences in the cell sizes and granularity and how they

change under different light treatments. Generally, the mutants were observed to be significantly bigger

and more granular(Figures 31,36a & Figures 32,36b, respectively) than the mutants in LL and HL except

for the Alb3b-19 mutants in LL being smaller and less granular than the WT in LL. significant differences

in cell size and granularity were also observed within each cell line with changing light conditions(Figure

36). These changes are also evident in the CLSM images(Figures 48, 47, 46). The cell sizes in these

images cannot be compared as the processing of images resulted in varying levels of zoom in and out to

adjust the noises and to remove the background. However, bigger or longer cell sizes were observed in the
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mutants compared to the WT. This is consistent with the FSC values observed in figure 31. The same

inference holds for the cell granularity as the SSC values are generally higher in the mutants than in WT

and the CLSM images show more dispersed LDs in the mutant cell compared to WT. The high granularity

could also be due to components other than LDs. The fact that the very high side scattering observed in

LL treatments for Alb3b-14 and 16 is not observed as highly dispersed LDs in the corresponding CLSM

images(Figures 46b, 46c) supports this notion. One interesting observation was the odd-shaped cells in the

Alb3b-19 mutant line in ML and Hl treatments under CLSM, wherein these cells appeared considerably

elongated with one end being round and the other tapered. Some of these cells were also found to touch

tips. Additionally, the same mutants also had many cells with round-shaped morphotypes, the majority

of which appeared in clusters(Supplementary figure 19). These observations were not made for the other

two mutants and the WT, which expressed the normal fusiform shape. This could explain the difference

in the behavior of the Alb3b-19 mutants from the other mutants and WT in FSC and SSC measurements.

The round morphotype has been previously reported to have occurred in the WT cells of P.tricornutum

under various abiotic stress conditions like salinity and temperature(De Martino et al., 2011), However,

this was only a consequence of a long-term or chronic exposure to such conditions. Additionally, this

particular morphotype was also observed in a previous light stress experiment by Herbstová et al., 2017,

wherein chronic acclimation to ambient modified light conditions with an enhanced red region of the

spectrum, resulted in the same. Although this behavior can thus be treated as a normal stress response

by the cell to abiotic stressors including light(De Martino et al., 2011,Herbstová et al., 2017), the reason

why Alb3b-19 cells do this in a considerably short acclimation time still need explanation. The reason for

the change in the Lipid droplet morphology between mutants and WT could be linked to the differences

observed in phospholipids and their fatty acid compositions. The LDs generally have a hydrophobic core

containing mostly the accumulation of the neutral lipid, TAG and this is surrounded by a mono-layer of

polar amphipathic lipids like phospholipids and glycolipids(Murphy, 2001). The study by Lupette et al.,

2019 indicates that the composition of the LD mono-layer in P.tricornutum consists of PC,DGTA and

SQDG. Although the change in DGTA and SQDG between light treatment is not different between the

mutants and WT, that of PC is different as observed in figures 22, 23, 24. As explained in the results

section 7.2 and depicted in these figures, the PC significantly increased in the WT, remained almost

the same in Alb3b-14, and significantly decreased in Alb3b-16 and 19 in ML compared to LL treatment.

Additionally, as already mentioned multiple times in earlier parts of this section, the changes in fatty

acid composition between light treatments are different between WT and mutants (Figures 10a,7a,8a9a).

Therefore, this could alter the LD mono-layer and thus the overall LD morphology differently for the WT

and mutants.

8.3.5 Differential gene expression in lipid metabolism

The differential expression of selected genes involved in lipid metabolism was studied using q-PCR for

this study. As explained in the results section 7.3.5, differences were found in the expression of certain

enzymes involved in the phospholipid metabolism and acyl chain elongation cycle. It should be noted that

these results are greatly uncertain owing to the high variability among the biological replicates and the

contamination of cDNA samples with genomic DNA. Additionally, data from three biological replicates

do not give enough statistical power to be conclusive about the observed up- or downregulations.

The upregulation of the enzymes, PLC delta(Phospholipase C isoform delta: PHATRDRAFT 42683)
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and the CDS1(Phosphatidate cytidiltransferase: PHATRDRAFT 54756) under HL treatment compared

to WT in LL, indicates the possible occurrence of phospholipid remodeling. PLC, also called PIPLC

is a membrane-bound enzyme that is involved in hydrolyzing PI in the membrane bi-layers to form

the neutral lipid, DAG(Lyon and Tesmer, 2013,Tanaka et al., 2022). CDS1 is involved in synthesizing

Cytidyl diphosphate diacyl glycerol(CDP-DAG) from Phosphatidic acid(Mishra et al., 2017). The CDP-

DAG will be in turn used to synthesize phospholipids like PS, PE, and PI(Tanaka et al., 2022). One

possibility is that the cells are remodeling the PI from the membranes, and the consequent reduction

in the PI fraction of the membranes is compensated by increased synthesis of other phospholipids from

CDP-DAG. However, this was not observed in any of the mutants as expected from the results of MS-MS

data analysis. This was unexpected because the MS-MS data analysis indicated that the WT in ML had

significantly higher levels of all detected phospholipids compared to LL and the mutants had significantly

lower levels of most phospholipids in ML compared to LL, as seen in figures 22 23, 24, there is a significant

decrease in most of the phospholipids.. However, no significant differential expressions are observed for

the studied phospholipid metabolism genes in the mutants acclimated to ML and HL conditions(Figures

50,51, and 52). Also, the upregulations observed for the same genes were not significant in the WT in ML.

As mentioned in section 8.2, the study by Ding et al., 2023 gave indications of phospholipid remodeling

in WT by the upregulation of enzymes like PDAT at a light level of 300 µmol photons m-2 s-1 for 3

days, which was also reversed when the light stress was removed. Therefore, it could be possible that

there was a phospholipid remodeling response initially at a light level of 200 µmol photons m-2 s-1 and

then a subsequent reversal of the same as the cell got acclimated. However, the same WT cells at HL

couldn’t reverse this response probably due to reduced ability to acclimate to a higher stress level. The

observation that the mutants acclimated to HL and ML didn’t show significant differential expression

compared to the same cell lines in LL and WT in the same light treatments might indicate their higher

photo-acclimation abilities as mentioned before in this section.

In addition to the enzymes mentioned above the mutants and WT showed a difference in the dif-

ferential expression of two acyl chain elongation cycle enzymes, FADB(Malonyl-coA-ACP transacylase:

PHATRDRAFT 37652) and FABI(Enoyl-ACP reductase: PHATRDRAFT 10068). FADB is crucial in

fatty acid synthesis as it catalyzes the transfer of the 2 C atom donor, Malonyl-coA, to ACP, thus parti-

cipating in the actual FA elongation process(Zhang et al., 2007,Tanaka et al., 2022). The FABI enzyme

is also important as it catalyzes the final step in the elongation cycle by reducing the trans-enoyl-ACP

into Acyl-ACP, the substrate for thioesterases to make FFAs(Massengo-Tiassé and Cronan, 2009,Tanaka

et al., 2022). These enzymes were found to be significantly downregulated in the Alb3b-14 and 16 mutant

lines in ML and for Alb3b-19 in HL compared to the LL conditions for the same cell lines(Figures 50,51,

and 52). Considerable downregulation of the same enzymes can be also observed in HL conditions for

the Alb3b-14 and 16, but these are not deemed significant in ANOVA. This strong deregulation was not

found in both ML and HL conditions. These results are comparable with the results from analysis of the

fatty acid composition data from MS-MS. In the figures 25 and 26, in section 7.2, it can be seen that

mutants under ML generally had a significantly high amount of medium-chain saturated Fatty acids and

low amount of long-chain saturated fatty acids. In contrast, the WT indicates an opposite scenario. This

leads to the interpretation that the acyl-chain elongation might be affected in the mutants as supported

by the observed downregulation of FABI and FADB.

The observed differences in stress responses in the lipid metabolism between the WT and mutants are
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probably because of the compounded stress created by the mutation itself over the light stress. microal-

gae, among other autotrophs, are known for their physiological flexibility to adjust their metabolisms in

response to diverse and extreme stress conditions to acclimate to their unpredictable natural surround-

ings(Gorelova et al., 2019). One major stress response among these is the alteration in the composition

of pigments and functioning of the photosynthetic machinery(Gorelova et al., 2019). As these properties

were already found to be different in the Alb3b mutants by Nymark et al., 2019, the change in the corres-

ponding stress responses is not surprising. The numerous and complex interconnections and cross-talks

between metabolic pathways within these cells, including those associated with photosynthesis, photo-

protection, pigment, and lipid metabolism make the stress responses observed in these different cellular

processes linked to each other. For instance, it is known that the molecular mechanism that triggers

TAG accumulation upon stress is brought about by the reduced cell growth or division rate as a result

of the reduced photosynthesis(Teh et al., 2021). Additionally, A link between pigment and Lipid meta-

bolism reported as a coordinated synthesis of carotenoids and TAG has been found in previous studies

by Whitelam and Codd, 1986 and Solovchenko et al., 2010. TAG synthesis and its accumulation in LDs

can be directly linked to light stress by the fact that they act as a sink and reservoir of the excess energy

produced through excessive photosynthesis. Additionally, the photo-protective role of the accumulated

LDs under light stress has been previously reported where it acts as a quencher of excessive light to

avoid photo-damage of the chloroplasts. These connections lead to the inference that the changes already

observed in the photosynthetic or photo-protective properties of the mutants compared to WT, in the

previous study, could also be the reason for the observed differences in the Lipid profile in this study.

However, the differences observed among the different mutant lines are inconclusive. One plausible ex-

planation is off-target mutations caused in other genes of these mutant lines while they were developed by

knocking out the ALBINO3B genes. Proof for the occurrence of such off-target mutations was observed

during q-PCR for the Alb3b-19 mutant’s fatty acid desaturase gene, Phatr50443, which gave a significant

down-regulated expression profile (Figures 53,54, and 55)separate melting peak from the WT and other

mutant lines as seen in figure 56.

9 Conclusion

The results from the lipidomics data analysis pipeline developed for this project, and the lab work that

followed it. and the discussed interpretations and predictions based on the literature search led to the

conclusion that there are differences in the stress responses within lipid and fatty acid metabolism between

the Alb3b mutants and the WT and among the different Alb3b mutant lines towards light stress.

The main conclusions made are as follows:

• There are differences in the way in which lipid profile changes between the WT and mutant lines,

and also among the mutant lines when compared between LL and ML acclimated samples. The

difference between WT and mutants is generally associated with the phospholipid and glycolipids

profile changes between the light treatments as summarized in table 4. This suggests a difference

in the membrane lipid remodeling response between the WT and mutants.

• It can be hypothesized that there is a possible accumulation of other neutral lipid molecules, like

sterols and FFAs in the LDs of mutants unless the BODIPY staining protocol used for the LD

93



analyses is non-optimal.

• The mutants have altered photophysiological components compared to WT as previously demon-

strated by Nymark et al., 2019, especially due to their truncated light-harvesting antennae. This

mainly includes reduced chlorophyll levels and a difference in how the photophysiological para-

meters like Fv/Fm, Ek, and rETRmax change between the WT and mutant lines when compared

between different light treatments. Also, the mutants generally have higher photoprotection and

photoacclimation properties. It is hypothesized that the changes observed in the lipid profile can

be contributing to these differences to some extent.

• There are visible changes in the cell and LD morphology between different light treatments and

between the different cell lines. These differences observed between the cell lines are possibly due

to the differences in their phospholipid profile changes between light treatments.

The inferences from the Differential gene expression analysis in section 8.3.5 cannot be used for drawing

solid conclusions because of the high variability and low number of replicates, which yields insufficient

statistical power for the results.

The analysis of the performance of the pipeline based on comparisons with regression plots and

heat maps led to the conclusion that there are some challenges associated with dealing with complex

metabolomics data like the MS-MS dataset used in this project and some potential pitfalls within the

pipeline that could lead to uncertain results or misinterpretation. However, the pipeline succeeded in

providing an overview of the entire data, with the majority of results being comparable to results from

previous literature.

To conclude, the differences among cell lines in their lipid profile and associated aspects include

changes within the actual concentrations of the various lipid classes, their different fatty acid compositions,

and the structural characteristics of the LDs within the cells. The variations between the cell lines

in their photosynthetic and photo-protective parameters like the light utilization efficiencies, electron

transport rate, and non-photochemical quenching measured using PAM, along with the variations in

their autofluorescence characteristics measured using flow cytometry and the plate reader, were able to be

connected to these differences in lipid metabolic responses to some extent. This concludes the existence of

connections or cross-talks between the Pigment composition, photosynthetic apparatus, photo-protective

pathways, cell growth and division, TAG accumulation, lipid chemistry of the various membranes like

the thylakoid membrane, and LD mono-layer, and the FA compositions within different lipid classes as

reported previously in individual research projects.

10 Future research

The prospective future works to progress the findings from this project can include both attempts to

improve the developed pipeline and further improve the knowledge about the Alb3b-mutant lines. This

can include:

• Finding a better way to impute the outliers, especially the null values in the dataset,

rather than using 0.01% of the total lipid concentration: One suggested approach is to

use machine learning algorithms like the Random Forest or K-nearest neighbors as in the study
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by Kokla et al., 2019. The performance of these imputation techniques can then be assessed and

compared to the technique used in this study by measuring the Normalized Root Mean Squared

Error (NRMSE) as mentioned in Kokla et al., 2019. It would also be interesting to see the exact

nature of these missing values in the dataset and compare them with imputation techniques.

• Studying the variations in the membrane structures in detail using transmission elec-

tron microscopy(TEM): This can be done to build on the predictions of membrane lipid remod-

eling made in this study and the actual observation in structural changes in thylakoid membrane

observed by Nymark et al., 2019. The changes in the membrane lipids involved in LD architecture

are a reason to study the LD mono-layer in detail using TEM. Also, the possible differences in lipid

class compositions in the membranes between the WT and mutants suggest using electron dispers-

ive spectroscopy or electron energy loss spectroscopy in integration with TEM to detect differences

in membrane elemental compositions.

• DNA sequencing and RNAseq of the mutants to detect off-target mutations and de-

tailed differential gene expression analysis: the inference of possible mutations in genes other

than the ALBINO3B in the different mutant lines can give more insights into the peculiar behavior

of mutants like the formation of round morphotype and clustering, more rapidly than WT, in the

Alb3b-19 mutants observed in this study and the increased NPQ values in the mutants. Addition-

ally, performing RNAseq could yield results of differential regulation of genes in different metabolic

pathways associated with light stress responses, and could explain changes in lipid metabolism in

more detail than what is understood from q-PCR.
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Maréchal, E., & Lupette, J. (2020). Relationship between acyl-lipid and sterol metabolisms in diatoms.

Biochimie, 169, 3–11.
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11 Appendix

11.1 Supplementary analyses for assessing pipeline efficiency

Supplementary Figure 1: A pair plot presenting regression plots between different Glycolipids classes and

the neutral lipid TAG. This was created to cross-verify the observed correlation observed in the Biplots

generated after PCA. Heat maps in Figure 57could also have been used for the same purpose, but these

regression plots present all the cell lines together in a single Cartesian plane along with corresponding

regression lines, thus allowing multiple comparisons. The pair plot was generated using the ’pairplot’

function in the seaborn library of Python. The histograms presented in the diagonal of the pair plot can

be used to determine the distribution of the different lipid classes.
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Supplementary Figure 2: A pair plot presenting regression plots between different Phospholipid classes

and the neutral lipid TAG. The plot was created using ’seaborn’ package from Python.
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Supplementary Figure 3: A pair plot presenting regression plots between Betaine lipid DGTA and the

neutral lipid TAG.The plot was created using ’seaborn’ package from Python.

11.2 Supplementary results from PCA

Supplementary Figure 4: Scree plot for the principle components of the subset of the original dataset,

which includes all the Alb14 and wild-type samples in both the light conditions.
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Supplementary Figure 5: Scree plot for the principle components of the subset of the original dataset,

which includes all the Alb16and wild-type samples in both the light conditions.

Supplementary Figure 6: Scree plot for the principle components of the subset of the original dataset,

which includes all the Alb19 and wild-type samples in both the light conditions.
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11.3 Supplementary results from T-tests

(a)

(b)

Supplementary Figure 7: Results for T-test comparing concentrations of different fatty acid compositions

of PC and MGDG in Alb3b-14 in ML and LL conditions.
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(a)

(b)

Supplementary Figure 8: Results for T-test comparing concentrations of different fatty acid compositions

of PC and MGDG in Alb3b-16 in ML and LL conditions.
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(a)

(b)

Supplementary Figure 9: Results for T-test comparing concentrations of different fatty acid compositions

of PC and MGDG in Alb19 in ML and LL conditions.
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(a)

(b)

Supplementary Figure 10: Results for T-test comparing concentrations of different fatty acid compositions

of PC and MGDG in Wild-type in ML and LL conditions.
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11.4 ANOVA assumptions tests for flow cytometry parameters

(a) Shapiro Wilk’s test results for residuals from the fitted ANOVA model.

(b) Levene’s test results for residuals from the fitted ANOVA model.

Supplementary Figure 11: Results from statistical tests conducted for checking whether the assumptions

of ANOVA are being followed by the parameters measured using flow cytometry. Shapiro Wilk’s tests(a)

and Levene’s tests(b) indicate that all parameters except those from the FITC-GFP channel, violate both

normal distribution and homogeneous variation assumption for residuals in the ANOVA model.
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(a) Shapiro Wilk’s test results for residuals from the fitted ANOVA model

(b) Levene’s test results for residuals from the fitted ANOVA model

Supplementary Figure 12: Results from statistical tests conducted for checking whether the assumptions

of ANOVA are being followed by the parameters measured using flow cytometry. Shapiro Wilk’s tests(a)

and Levene’s tests(b) indicate that all parameters except those from the FITC-GFP channel, violate both

normal distribution and homogeneous variation assumption for residuals in the ANOVA model.

112



11.5 Results from testing assumptions of T-tests on the MS-MS data

Supplementary Figure 13: Results from Levene’s test for the different cell lines comparing the equality

of variances in data from all lipid classes between two different light conditions(LL and ML) in WT,

Alb3b-14,16,19 (in order from top to bottom). The horizontal dotted line indicates p=0.05.
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Supplementary Figure 14: Results from Shapiro Wilk’s test for the different cell lines for assessing the

normal distributions of data from all lipid classes in two different light conditions(LL and ML) in WT,

Alb3b-14,16,19 (in order from top to bottom). The horizontal dotted line indicates p=0.05. Thus, all the

points below indicate deviation from normal distribution.
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11.6 Processing steps and supplementary results from CLSM

Supplementary Figure 15: The macro applied in FIJI/ImageJ for editing the z-stacks obtained from

CLSM to obtain the final version of the images shown in section 5.3.4(Figures 46,47,48). C=0 represents

images from channel zero representing the BODIPY signals and C=1 represents channel 1 images for

auto fluorescence. The LUT editing part in step 4 is explained in detail in figure 17. The brightness and

contrast adjustment part for images from channel 1 for auto fluorescence in step 9 is presented in figure

16.

Supplementary Figure 16: Brightness and contrast setting applied for all the images in the auto fluores-

cence channel(c=1) during the 9th step in the macro given in Figure 15.
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(a) Original color distribution of ’mpl-viridis’ (b) Original RGB values of ’mpl-viridis’

(c) Edited color distribution of ’mpl-viridis’
(d) Edited RGB values of ’mpl-viridis’

Supplementary Figure 17: Figures showing the process of editing the ’mpl-viridis’ LUT in FIJI/ImageJ.

The purple background was removed by changing the original RGB values for the first three rows in the

LUT into zero resulting in a completely black background with blue cells with yellow colored LDs.a) Color

distribution of the original ’mpl-viridis’ LUT with the first three rows representing the various shades of

purple. b) Original RGB values of the purple region in ’mpl-viridis’ LUT. c) and d) Edited ’mpl-viridis’

color distribution and RGB values for the purple shade region respectively, indicating the change of all

shades into complete black.
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Supplementary Figure 18: A 3D model of a WT cell under LL conditions showing a compact LD in the

center (Yellow). The red color indicates the auto fluorescence emissions from the cell. The model was

formed using FIJI using Z stacks captured from CLSM.
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Supplementary Figure 19: A 3D model of a cell cluster formed by the Alb3b-19 mutants under HL

acclimation for 14 days indicating the formation of round morphotypes and aggregation of the same as a

stress response to HL. The model was generated using FIJI using Z stacks captured from CLSM.
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11.7 supplementary results from q-PCR and associated steps

Gene ID Primer Designs

PHATRDRAFT 3765
Fw: TCCCACAAGACGGGTGACGTG

Rw: CCGGCTGTTGCCTCCTTGGAA

PHATRDRAFT 48423
Fw: ACAGATACCGATGTTCCGCA

Rw: GCATCGGTAGCAATCTGAGC

PHATRDRAFT 20508
Fw: TCCTCACCATCGTCTTGAACGGT

Rw: TCGTGATGAACTGCACCAGC

PHATRDRAFT 50443
Fw: CGGAAGCAGATGCGGTCCCT

Rw: ACCGTCTGGTCGATCTTCGCC

PHATRDRAFT 10068
Fw: CCGGTAACGGTTCGGGCCAT

Rw: TGGCAAAGAGCCCGGTCAGA

PHATRDRAFT 20143
Fw: GACTCAAGGGTGACTGGGAG

Rw: GTCCACGGTGAGTCCAAAAG

PHATRDRAFT bd765
Fw: TGGTTGGAAAGGCGAGCCGA

Rw: TCGGGGACTACTACGCCTCT

PHATRDRAFT 54756
Fw: GATCGAGAATGCCGCCGTGC

Rw: GCGGTACACTGTCGGAGCGT

PHATRDRAFT 42683
Fw: CTCGCCGCAGGCAGGATACA

Rw: AGAAAACTGGGCAGTCGCTATGTT

PHATRDRAFT bd976
Fw: CCAATGGTCAGTGCTCAACGC

Rw: TGGTCTTTACAGGGGAAGATTG

PHATRDRAFT 41570
Fw: CGGGGCGCCTTTCAAACTGT

Rw: TCGTCGCTTCTTCGAGCCTGT

Table 5: Primer designs for the genes used in real-time PCR. Fw stands for forward primer and Rw

stands for reverse primer.
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Supplementary Figure 20: Results from nanodrop assessment showing extent of contamination based on

A260/A80 and A260/A230 ratios. The samples highlighted in yellow indicate A260/A230 values less than

2, but A260/A280 values greater than 2 and those in red indicate both ratios below 2. Only one sample,

i.e Alb3b-16 LL3, is considered to be of bad quality as it has both values below 2, pointing towards the

possible presence of both protein and phenolic contamination.

(a) LL treated samples (b) ML treated samples (c) HL treated samples

Supplementary Figure 21: RNA integrity numbers calculated from samples of the four different cell lines

treated under the three different light conditions. All samples had RIN numbers above the value of 4

recommended for RNAseq(Although RNAseq was not done, this value was taken as a reference for good

RNA quality for q-PCR because of the unavailability of any standards.
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(a) Fluorescence curves from q-PCR reaction for the hiv binding rev protein

(b) Fluorescence curves from q-PCR reaction for the RPS5 protein

Supplementary Figure 22: Fluorescence curves from the q-PCR reaction for the two reference genes in

both the RT-ve and cDNA samples. The yellow lines represent all the RT-ve samples including wild-type

and mutant lines in all the different light treatments. The red lines represent cDNA samples from all the

mutant lines in all different light conditions, the blue lines represent the wild-type cDNA samples in all

the light treatments, and the black lines indicate blanks with just the master mix containing primers, RT

enzyme and dNTPs in buffer solution.

120



(a) Melting curves from q-PCR reaction for the hiv binding rev protein

(b)

(c) Melting curves from q-PCR reaction for the RPS5 protein

Supplementary Figure 23: Melting curves from the last stage of q-PCR reaction for the two reference

genes in both the RT-ve and cDNA samples. the color coding of lines is the same as Figure 22. The

majority of the curves, including the RT-ve samples and the cDNA samples appear to have a melting

peak around 80°C
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11.8 Results from testing assumptions for ANOVA on various data collected

during lab work

11.9 ANOVA assumptions tests for Flow cytometry measurements

Supplementary Figure 24: Plots showing characteristics of Residuals in the fitted ANOVA model for

median FITC-GFP-A parameter. The total number of sample points and thus the number of residuals

will be 108, including 3 technical replicates for each of the 3 biological replicates of 4 cell lines in 3 light

treatments. The number of sample categories thus fitted values is 12 combinations including 4 cell lines

in 3 light conditions. The ’Residuals v/s fitted values’ plot(Left) indicates almost homogeneously varying

residuals of different sample points(red circles) across the fitted values along the fitted model(dashed

black line) as assumed in ANOVA. The q-q plot(quantile-quantile plot)(right) plotting the theoretical

quantile values for a standard normal distribution along the x-axis plotted against the observed quantiles

for residuals indicates the residuals almost aligned to the line representing normally distributed residuals

as assumed in ANOVA.
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Supplementary Figure 25: Plots showing characteristics of Residuals in the fitted ANOVA model for the

measured FITC-GFP-H parameters. The description of the graph is the same as Figure 24. Although

imperfect, homogeneity in distribution and normality can be observed for the residuals to some extent.

Supplementary Figure 26: Plots showing characteristics of Residuals in the fitted ANOVA model for

median Chlorophyll-A parameter measurements. The description of the graph is the same as Figure 24.

Residuals for one of the sample categories around the fitted value are not homogeneous with that of the

rest and notable deviations from normal distribution are observed.
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Supplementary Figure 27: Plots showing characteristics of Residuals in the fitted ANOVA model for

median FSC-A parameter measurements. The description of the graph is the same as Figure 24. Although

not perfect, some level of homogeneity in distribution and normality can be observed for the residuals.

Supplementary Figure 28: Plots showing characteristics of Residuals in the fitted ANOVA model for

median SSC-A parameter measurements. The description of the graph is the same as Figure 24. Residuals

for almost half of the sample categories appear to be distributed in a short range, and the rest in a long

range, thus deviating from the homogeneity assumption. The normal distribution also does not appear

perfect.
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11.10 ANOVA assumptions tests for PAM measurements

Supplementary Figure 29: Plots showing characteristics of Residuals in the fitted ANOVA model for the

measured Ek parameters. The total number of sample points and thus the number of residuals will be

36, including 3 biological replicates of 4 cell lines in 3 light treatments. The number of sample categories

thus fitted values is 12 combinations including 4 cell lines in 3 light conditions The ’Residuals v/s fitted

values’ plot(Left) indicates a strong violation of the homogeneous variance assumption for the residuals

of different sample points(red circles) across the fitted values along the fitted model(dashed black line)).

The q-q plot(quantile-quantile plot)(right) plotting the theoretical quantile values for a standard normal

distribution along the x-axis plotted against the observed quantiles for residuals indicates a clear violation

of the normal distribution assumption for the residuals in ANOVA.
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Supplementary Figure 30: Plots showing characteristics of Residuals in the fitted ANOVA model for

measured rETRmax parameters The description of the graph is the same as Figure 29. Although imper-

fect, homogeneity in distribution and normality can be observed for the residuals to some extent. One

sample category shows a great difference in residual distribution.

Supplementary Figure 31: Plots showing characteristics of Residuals in the fitted ANOVA model for

measured Fv/Fm ratios. The description of the graph is the same as Figure 29. One sample category

appears to be greatly deviating in residual distribution compared to the rest and there is a notable

deviation from normal distribution.
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Supplementary Figure 32: Plots showing characteristics of Residuals in the fitted ANOVA model for

measured alpha values. The description of the graph is the same as Figure 29. An almost homogeneous

residual distribution and normal distribution can be observed.
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11.11 ANOVA assumptions tests for q-PCR measurements

Supplementary Figure 33: Plots showing characteristics of Residuals in the fitted ANOVA model for

CNRQ values of the PHATRDRAFT-10068 Gene. The total number of sample points and thus the

number of residuals will be 36, including 3 biological replicates of 4 cell lines in 3 light treatments.

The number of sample categories and thus fitted values is 12 combinations including 4 cell lines in 3

light conditions. The ’Residuals v/s fitted values’ plot(Left) indicates a homogeneous variance between

residuals of the different sample points(red circles) across the fitted values along the fitted model(dashed

black line)). The q-q plot(quantile-quantile plot)(right) plotting the theoretical quantile values for a

standard normal distribution along the x-axis plotted against the observed quantiles for residuals indicates

almost normally distributed residuals in ANOVA.
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Supplementary Figure 34: Plots showing characteristics of Residuals in the fitted ANOVA model for

CNRQ values of the PHATRDRAFT-20143 Gene. The description of the graph is the same as Figure

33. Just one of the sample categories has the residuals considerably deviating in distribution compared

to the rest and there is a notable deviation from the normal distribution.

Supplementary Figure 35: Plots showing characteristics of Residuals in the fitted ANOVA model for

CNRQ values of the PHATRDRAFT-20508 Gene. The description of the graph is the same as Figure

33. All sample categories appear to have a homogeneous distribution of residuals that are also almost

normally distributed.
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Supplementary Figure 36: Plots showing characteristics of Residuals in the fitted ANOVA model for

CNRQ values of the PHATRDRAFT-37652 Gene. The description of the graph is the same as Figure

33. Homogeneous distribution and normal distribution of residuals observed to some extent, though not

perfect,

Supplementary Figure 37: Plots showing characteristics of Residuals in the fitted ANOVA model for

CNRQ values of the PHATRDRAFT-41570 Gene. The description of the graph is the same as Figure 33.

Residuals for almost half of the sample categories appear to be distributed in a short range, and the rest

in a long range, thus deviating from the homogeneity assumption. An almost perfect normal distribution

can also be observed.
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Supplementary Figure 38: Plots showing characteristics of Residuals in the fitted ANOVA model for

CNRQ values of the PHATRDRAFT-42683 Gene. The description of the graph is the same as Figure 33.

There is a deviation from homogeneous residual distribution, with short, intermediate, and long ranges

among different sample categories. The residuals also appear to be almost normally distributed.

Supplementary Figure 39: Plots showing characteristics of Residuals in the fitted ANOVA model for

CNRQ values of the PHATRDRAFT-48423 Gene. The description of the graph is the same as Figure

33. Residuals for almost half of the sample categories appear to be distributed in a short range, and the

rest in a long range, thus deviating from the homogeneity assumption. Also, there is a notable deviation

from the normal distribution.
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Supplementary Figure 40: Plots showing characteristics of Residuals in the fitted ANOVA model for

CNRQ values of the PHATRDRAFT-50443 Gene. The description of the graph is the same as Figure

33. Residuals for one of the samples are distributed in a considerably short range compared to the rest.

A normal distribution of residuals was observed to some extent, though not perfect,

Supplementary Figure 41: Plots showing characteristics of Residuals in the fitted ANOVA model for

CNRQ values of the PHATRDRAFT-54756 Gene. The description of the graph is the same as Figure 33.

There is a deviation from homogeneous residual distribution, with short, intermediate, and long ranges

among different sample categories. The residuals also appear to be almost normally distributed.
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Supplementary Figure 42: Plots showing characteristics of Residuals in the fitted ANOVA model for

CNRQ values of the PHATRDRAFT-pbd765 Gene. The description of the graph is the same as Figure

33. There is a deviation from homogeneous residual distribution, with short, intermediate, and long

ranges among different sample categories. The residuals also appear to be almost normally distributed.

Supplementary Figure 43: Plots showing characteristics of Residuals in the fitted ANOVA model for

CNRQ values of the PHATRDRAFT-pbd976 Gene. Residuals for one of the samples are distributed in

a considerably long range compared to the rest. A notable deviation from the normal distribution can

also be observed.
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11.12 Python script for the data analysis pipeline development

11.12.1 Importing packages

# Importing necessary packages

import pandas as pd

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

from sklearn.decomposition import PCA

from sklearn.preprocessing import scale

import os

from scipy.stats import ttest_ind

import seaborn as sns

import warnings

warnings.filterwarnings('ignore ')

os.chdir('C:\\ Users\\ arshad \\ Downloads ')

df = pd.read_excel('Lipidclassnew.xlsx','Sheet2 ',index_col =0)

df.drop('Total ',axis=1,inplace=True)

from scipy.stats import shapiro , levene

11.12.2 Custom-made data preprocessing functions for the MS-MS dataset

# Function for mapping the dataset for extracting the needed sections of the

data

def mapper(name):

l=[]

for i in df.index:

if str(name) in i:

l.append(i)

return l

# Defining sample names

samples =['Alb14 -LL',

'Alb14 -HL',

'Alb16 -LL',

'Alb16 -HL',

'Alb19 -LL',

'Alb19 -HL',

'WT-LL',

'WT-HL']

# Function for imputing outliers with the median values

def outlier_imputer(dataframe):

for sample in samples:

for lipid in lipids:

dft=dataframe.loc[mapper(sample)][ lipid]

Q1 = dft.quantile (0.25)
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Q3 = dft.quantile (0.75)

IQR = Q3 - Q1

lower = Q1 - 1.5* IQR

upper = Q3 + 1.5* IQR

upper_array = np.where(dft >=upper)[0]

lower_array = np.where(dft <=lower)[0]

if len(dataframe.index[list(upper_array)+list(lower_array)])!=0:

for i in range(len(dataframe.index[list(upper_array)+list(

lower_array)])):

dataframe.loc[dft.index[list(upper_array)+list(lower_array)

][i]][ lipid ]='Nan'

for i in range(len(dataframe.index[list(upper_array)+list(

lower_array)])):

a=mapper(dft.index[list(upper_array)+list(lower_array)][i

][0:11])

median=np.median(dataframe.loc[a][[ lipid ]])

dataframe.loc[dft.index[list(upper_array)+list(lower_array)

][i]][ lipid ]= median

return dataframe

# Function for imputing zero/null values with 0.01 percent of total value of the

lipid class measurements

def zero_imputer(sample ,lipid):

df_z=df.loc[mapper(sample)][lipid]

indices=df_z[df_z ==0]. index

df.loc[indices ,lipid ]=[ random.uniform ((0.01/100)*sum(df_z) ,(0.01/100)*sum(

df_z)) for i in range(len(indices))]

11.12.3 Script for principle component analysis and related plots

# extracting a subsection of the dataset for PCA

l=[]

for i in df.index:

if 'WT' in i or 'Alb19 ' in i: #This is an example script to compare Alb3b

-19 with the WT using PCA(This line can be changed to the desired mutant

line)

l.append(i)

df=df.loc[l]

print('dataframe:','\n',df)

# Performing PCA after scaling on the subsection of the dataset

scaled_df=scale(df)

pca=PCA()

pca.fit(scaled_df)

pca_data=pca.transform(scaled_df)

pca_data

per_var=np.round(pca.explained_variance_ratio_ *100, decimals =1)

labels =['PC'+str(i) for i in range(1,len(per_var)+1)]
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pca_df=pd.DataFrame(pca_data ,index=df.index ,columns=labels)

# Plotting a 2D PCA scatterplot

plt.rcParams.update ({'font.size': 12})

fig = plt.suppfigure(figsize =(10 ,5))

albhl=plt.scatter(pca_df.loc[mapper('Alb19 -HL')].PC1 ,pca_df.loc[mapper('Alb19 -HL

')].PC2 ,marker='*',color='yellowgreen ',s=150, alpha =1)

albll=plt.scatter(pca_df.loc[mapper('Alb19 -LL')].PC1 ,pca_df.loc[mapper('Alb19 -LL

')].PC2 ,marker='*',color='lime',s=150, alpha =1)

wthl=plt.scatter(pca_df.loc[mapper('WT -HL')].PC1 ,pca_df.loc[mapper('WT-HL')].PC2

,marker='o',color='peru',s=150, alpha =1)

wtll=plt.scatter(pca_df.loc[mapper('WT -LL')].PC1 ,pca_df.loc[mapper('WT-LL')].PC2

,marker='o',color='saddlebrown ',s=150, alpha =1)

plt.xlabel('PC1 - {0}%'.format(per_var [0]))

plt.ylabel('PC2 - {0}%'.format(per_var [1]))

plt.legend ((albhl ,albll ,wthl ,wtll),('Albino3b -19 mutant line in high light ','

Albino3b -19 mutant line in low light ',

'Wild -type in high light ','Wild -type in low

light ' ),loc='center left',

bbox_to_anchor =(1, 0.5), ncol=1, labelspacing =1)

plt.title('Scattering at_'+ str(per_var [0]+ per_var [1]) + '%_explained variance ')

plt.savefig('Alb192Dscatter.jpg',bbox_inches='tight ')

# Plotting a 3D PCA scatterplot

fig = plt.figure(figsize =(10 ,10))

plt.rcParams.update ({'font.size': 13})

ax = fig.add_subplot(projection='3d')

albhl=ax.scatter(xs=pca_df.loc[mapper('Alb19 -HL')].PC1 ,ys=pca_df.loc[mapper('

Alb19 -HL')].PC2 , zs=pca_df.loc[mapper('Alb19 -HL')].PC3 , marker='*',

color='yellowgreen ',s=150, alpha =1)

albll=ax.scatter(xs=pca_df.loc[mapper('Alb19 -LL')].PC1 ,ys=pca_df.loc[mapper('

Alb19 -LL')].PC2 , zs=pca_df.loc[mapper('Alb19 -LL')].PC3 , marker='*',

color='lime',s=150, alpha =1)

wthl=ax.scatter(xs=pca_df.loc[mapper('WT-HL')].PC1 ,ys=pca_df.loc[mapper('WT-HL')

].PC2 , zs=pca_df.loc[mapper('WT-HL')].PC3 , marker='o',

color='peru',s=150, alpha =1)

wtll=ax.scatter(xs=pca_df.loc[mapper('WT-LL')].PC1 ,ys=pca_df.loc[mapper('WT-LL')

].PC2 , zs=pca_df.loc[mapper('WT-LL')].PC3 , marker='o',

color='saddlebrown ',s=150, alpha =1)

ax.legend ((albhl ,albll ,wthl ,wtll) ,('Albino3b -19 mutant line in high light ','

Albino3b -19 mutant line in low light ',

'Wild -type in high light ','Wild -type in low

light ' ),loc='center left',

bbox_to_anchor =(1.1, 0.5), ncol=1, labelspacing =1)

ax.set_xlabel('PC1 - {0}%'.format(per_var [0]),labelpad =10)

ax.set_ylabel('PC2 - {0}%'.format(per_var [1]),labelpad =10)

ax.set_zlabel('PC3 - {0}%'.format(per_var [2]),labelpad =10)
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plt.title('Scattering at_'+str(np.round(per_var [0]+ per_var [1]+ per_var [3]))+'%

_explained variance ')

plt.savefig('Alb193Dscatter.jpg',bbox_inches='tight')

# Plotting a 2D biplot

load_df=pd.DataFrame(pca.components_ ,columns=df.columns ,index=pca_df.columns)

PC1 = pca.fit_transform(scaled_df)[:,0]

PC2 = pca.fit_transform(scaled_df)[:,1]

ldngs = pca.components_

scalePC1 = 1.0/( PC1.max() - PC1.min())

scalePC2 = 1.0/( PC2.max() - PC2.min())

features = df.columns

plt.rcParams.update ({'font.size': 12})

fig , ax = plt.subplots(figsize =(19, 9))

for i, feature in enumerate(features):

ax.arrow(0, 0, ldngs[0, i],

ldngs[1, i],

head_width =0.01 ,

head_length =0.01 ,

color="black")

ax.text(ldngs[0, i]*1.1,

ldngs[1, i]*1.1 ,

feature ,color="red", fontsize =13)

albhl=ax.scatter(pca_df.loc[mapper('Alb19 -HL')].PC1*scalePC1 ,pca_df.loc[

mapper('Alb19 -HL')].PC2*scalePC2 ,marker='*',color='yellowgreen ',s=150,

alpha =1)

albll=ax.scatter(pca_df.loc[mapper('Alb19 -LL')].PC1*scalePC1 ,pca_df.loc[

mapper('Alb19 -LL')].PC2*scalePC2 ,marker='*',color='lime',s=150, alpha =1)

wthl=ax.scatter(pca_df.loc[mapper('WT-HL')].PC1*scalePC1 ,pca_df.loc[mapper('

WT-HL')].PC2*scalePC2 ,marker='o',color='peru',s=150, alpha =1)

wtll=ax.scatter(pca_df.loc[mapper('WT-LL')].PC1*scalePC1 ,pca_df.loc[mapper('

WT-LL')].PC2*scalePC2 ,marker='o',color='saddlebrown ',s=150, alpha =1)

ax.legend ((albhl ,albll ,wthl ,wtll) ,('Albino3b -19 mutant line in high light ','

Albino3b -19 mutant line in low light ',

'Wild -type in high light ','Wild -type in

low light' ),loc='center left',

bbox_to_anchor =(1, 0.5), ncol=1, labelspacing =1)

ax.set_xlabel('PC1', fontsize =20)

ax.set_ylabel('PC2', fontsize =20)

ax.set_title('Biplot with loading scores by each lipid at_'+ str(per_var [0]+

per_var [1]) + '%_explained variance ', fontsize =15)

plt.savefig('Alb19scatterbiplot.jpg',bbox_inches='tight')

# Finding the best loading scores
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from pca import pca as new_pca

model=new_pca(normalize=True ,n_components =0.95)

results=model.fit_transform(df)

results_df=results['topfeat ']

print(results_df)

# Plotting a screeplot for the PCA

from bioinfokit.visuz import cluster

plt.rcParams.update ({'font.size': 3})

plt.ylabel('Fraction of explained variance ')

plt.xlabel('Principle components ')

plt.savefig('Alb19scree.jpg',bbox_inches='tight ')

# Plotting a 3D PCA scatterplot

plt.rcParams.update ({'font.size': 10})

PC1 = pca.fit_transform(scaled_df)[:,0]

PC2 = pca.fit_transform(scaled_df)[:,1]

PC3= pca.fit_transform(scaled_df)[:,3]

ldngs = pca.components_

scalePC1 = 1.0/( PC1.max() - PC1.min())

scalePC2 = 1.0/( PC2.max() - PC2.min())

scalePC3= 1.0/( PC3.max() - PC3.min())

features = df.columns

plt.rcParams.update ({'font.size': 13})

fig = plt.figure(figsize =(10 ,10) ,)

ax = fig.add_subplot(projection='3d')

for i, feature in enumerate(features):

ax.quiver(0,0,0, ldngs[0, i],

ldngs[1, i],

ldngs[2, i],

color="black")

ax.text(ldngs[0, i]*1.3,

ldngs[1, i]*1.3 ,

ldngs[2, i]*1.3 ,

feature ,color="black", fontsize =13)

albhl=ax.scatter(xs=pca_df.loc[mapper('Alb19 -HL')].PC1*scalePC1 ,ys=pca_df.

loc[mapper('Alb19 -HL')].PC2*scalePC2 , zs=pca_df.loc[mapper('Alb19 -HL')].

PC3*scalePC3 , marker='*',

color='yellowgreen ',s=150, alpha =1)

albll=ax.scatter(xs=pca_df.loc[mapper('Alb19 -LL')].PC1*scalePC1 ,ys=pca_df.

loc[mapper('Alb19 -LL')].PC2*scalePC2 , zs=pca_df.loc[mapper('Alb19 -LL')].

PC3*scalePC3 , marker='*',

color='lime',s=150, alpha =1)

wthl=ax.scatter(xs=pca_df.loc[mapper('WT-HL')].PC1*scalePC1 ,ys=pca_df.loc[

mapper('WT -HL')].PC2*scalePC2 , zs=pca_df.loc[mapper('WT -HL')].PC3*
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scalePC3 , marker='o',

color='peru',s=150, alpha =1)

wtll=ax.scatter(xs=pca_df.loc[mapper('WT-LL')].PC1*scalePC1 ,ys=pca_df.loc[

mapper('WT -LL')].PC2*scalePC2 , zs=pca_df.loc[mapper('WT -LL')].PC3*

scalePC3 , marker='o',

color='saddlebrown ',s=150, alpha =1)

ax.legend ((albhl ,albll ,wthl ,wtll) ,('Albino3b -19 mutant line in high light ','

Albino3b -19 mutant line in low light ',

'Wild -type in high light ','Wild -type in

low light' ),loc='center left',

bbox_to_anchor =(1.1, 0.5), ncol=1, labelspacing =1)

ax.set_xlabel('Loading scores for PC1 - {0}%'.format(per_var [0]),labelpad

=10)

ax.set_ylabel('Loading scores for PC2 - {0}%'.format(per_var [1]),labelpad

=10)

ax.set_zlabel('Loading scores for PC3 - {0}%'.format(per_var [2]),labelpad

=10)

plt.title('3D Biplot with Scattering at_'+str(np.round(per_var [0]+ per_var

[1]+ per_var [3]))+'%_explained variance and loading scores ')

plt.savefig('Alb193Dbiplot.jpg',bbox_inches='tight ')

11.12.4 T-tests

# Custom -made function for performing Welch's T-test on the MS -MS dataset

def Ttester(sample1 ,sample2 ,lipid):

df1=np.log2(outlier_remover(sample1 ,lipid))

df2=np.log2(outlier_remover(sample2 ,lipid))

plt.rcParams.update ({'font.size': 10})

plt.figure(figsize =(5 ,5))

fig ,ax=plt.subplots (1,2)

sns.violinplot(df1 ,ax=ax[0])

sns.violinplot(df2 ,ax=ax[1])

print(df1)

print(df2)

t_stat , p_value = ttest_ind(df1 , df2 ,equal_var=False)

print('Results for',sample1 ,'vs',sample2 ,':')

print('T-statistic value:', t_stat)

print("P-Value:", p_value)

measures =[t_stat ,p_value]

return measures

# Defining the samples and variables

samples =[['Alb14 -HL','Alb14 -LL'],['Alb16 -HL','Alb16 -LL'],['Alb19 -HL','Alb19 -LL'

],['WT -HL','WT -LL']]

lipids=list(df.columns)

#Performing the t-test and storing the results

139



df_list =[]

for s in samples:

res_list =[]

for l in lipids:

t_test_values=Ttester(s[0],s[1],l)

res_list.append(t_test_values)

res_df=pd.DataFrame(np.array(res_list),index=lipids ,columns =['T-statistic ','

P-value'])

df_list.append(res_df)

df_p=pd.DataFrame ()

a=0

for i in samples:

df_p[str(i[0])+'_v/s_'+str(i[1])]= df_list[a]['P-value ']

a=a+1

df_T=pd.DataFrame ()

a=0

for i in samples:

df_T[str(i[0])+'_v/s_'+str(i[1])]= df_list[a]['T-statistic ']

a=a+1

# Plotting the stored Welch's T-test results

a=0

for i in samples:

mpl.rcParams['lines.markersize '] = 12

plt.rcParams.update ({'font.size': 13})

plt.figure(figsize =(10 ,6))

plt.title('T_statistic v/s P_value graph for '+ i[0]+'_vs_'+i[1])

g=sns.scatterplot(data=df_list[a],x=df_list[a]['T-statistic '],y=df_list[a]['

P-value '],hue=df_list[a].index ,marker='o')

plt.axhline (0.05, linestyle="--",color='k')

plt.text (7,0.048,'P_value =0.05')

plt.axvline (0.047)

g.legend(loc='center left', bbox_to_anchor =(1, 0.5), ncol=1, labelspacing =1)

a=a+1

plt.savefig('scatterinf '+str(i)+'.jpeg',bbox_inches='tight ')

11.13 Shapiro Wilk’s tests

# Creating an empty data frame to store p-values

shapiro_p_values_df = pd.DataFrame(columns =['cell_type ', 'condition ', 'lipid', '

Shapiro -Wilk P-Value'])

# Iterating over each lipid class for running the test

for lipid in lipids:

for cell_type in df['cell_type ']. unique ():

for condition in df['condition ']. unique ():
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# Extract the data for the current combination

data = df[(df['cell_type '] == cell_type) & (df['condition '] ==

condition)][lipid]

# Shapiro -Wilk test

shapiro_stat , shapiro_p_value = shapiro(data)

# Add the results to the p-values data frame

shapiro_p_values_df = shapiro_p_values_df.append ({

'cell_type ': cell_type ,

'condition ': condition ,

'lipid ': lipid ,

'Shapiro -Wilk P-Value': shapiro_p_value

}, ignore_index=True)

# Display or use shapiro_p_values_df as needed

print(shapiro_p_values_df)

# Plotting the Shapiro results

import matplotlib as mpl

for ct in df.cell_type.unique ():

shapiro_df=shapiro_p_values_df[shapiro_p_values_df['cell_type ']==ct]

mpl.rcParams['lines.markersize '] =7.5

plt.rcParams.update ({'font.size': 12})

plt.figure(figsize =(10 ,5))

plt.title('Results from Shapiro wilk\'s test for '+str(ct))

plt.ylabel('P-values ')

hl=plt.scatter(x=lipids ,y=shapiro_df[shapiro_df['condition ']=='HL']['Shapiro

-Wilk P-Value '],marker='x',color='y')

ll=plt.scatter(x=lipids ,y=shapiro_df[shapiro_df['condition ']=='LL']['Shapiro

-Wilk P-Value '],marker='x',color='g')

plt.legend ((hl ,ll),('High light samples ','Low light samples '),bbox_to_anchor

=(1.30 , 0.6), ncol=1, labelspacing =1)

plt.axhline (0.05, linestyle="--",color='k')

plt.text (7,0.06,'P_value =0.05')

plt.xticks(rotation =90)

plt.savefig('shapiro '+str(ct)+'.jpeg',bbox_inches='tight')

# Creating an empty DataFrame to store the p-values

levene_p_values_df = pd.DataFrame(columns =['lipid ', 'cell_type ', 'Levene_P_Value

'])

# Iterating through each lipid class for running the Levene 's test

for lipid in lipids:

for cell_type in df['cell_type ']. unique ():

# Splitting the data into the two light conditions

condition_ll = df[(df['cell_type '] == cell_type) & (df['condition '] == '

LL')][ lipid]

condition_hl = df[(df['cell_type '] == cell_type) & (df['condition '] == '
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HL')][ lipid]

# Perform Levene 's test

stat , p_value = levene(condition_ll , condition_hl)

# Appending the results to the p-values DataFrame

levene_p_values_df = levene_p_values_df.append ({'lipid ': lipid , '

cell_type ': cell_type , 'Levene_P_Value ': p_value}, ignore_index=True

)

# Print or use levene_p_values_df as needed

print(levene_p_values_df)

# Plotting the Levene 's test results

for ct in df.cell_type.unique ():

levene_df=levene_p_values_df[levene_p_values_df['cell_type ']==ct]

mpl.rcParams['lines.markersize '] =7.5

plt.rcParams.update ({'font.size': 12})

plt.figure(figsize =(10 ,5))

plt.title('Results from Levene\'s test for '+str(ct)+ '(low light v/s high

light)')

plt.ylabel('P-values ')

plt.scatter(x=lipids ,y=levene_df['Levene_P_Value '],marker='*',color='red')

plt.axhline (0.05, linestyle="--",color='k')

plt.text (7,0.06,'P_value =0.05')

plt.xticks(rotation =90)

plt.savefig('levene '+str(ct)+'.jpeg',bbox_inches='tight ')

142



11.14 Python scripts for the ANOVA and post hoc analyses on data from

labwork

11.14.1 ANOVA and post hoc analyses of flow cytometry data

#Importing packages

import statsmodels.api as sm

from statsmodels.formula.api import ols

from statsmodels.stats.anova import anova_lm

import scipy.stats as stats

import seaborn as sns

import pandas as pd

import numpy as np

import os

import matplotlib.pyplot as plt

os.chdir("C:\\ Users \\ arshad \\ Downloads")

import warnings

warnings.filterwarnings('ignore ')

#loading the dataset

df=pd.read_csv('BODIPY COMPILED - Sheet1.csv',index_col =0)

df.drop(['All_Abs._Count ','M1_Abs._Count '],axis=1,inplace=True)

# Defining the samples

samples =['Alb14ll ','Alb14hl ','Alb14ml ','Alb16ll ','Alb16hl ','Alb16ml ','Alb19ll ','

Alb19hl ','Alb19ml ','WTLL','WTHL','WTML']

# Making a custom mapping fucntion

def mapper(name):

l=[]

for i in df.index:

if str(name) in i:

l.append(i)

return l

#Defining variables

Variables=df.columns [0:5]

# Imputing outliers with mean values using custom -made IQR rule -based function

def outlier_imputer(dataframe):

for sample in samples:

for variable in Variables:

dft=dataframe.loc[mapper(sample)][ variable]

Q1 = dft.quantile (0.25)

Q3 = dft.quantile (0.75)

IQR = Q3 - Q1

lower = Q1 - 1.5* IQR

upper = Q3 + 1.5* IQR

upper_array = np.where(dft >=upper)[0]

lower_array = np.where(dft <=lower)[0]

if len(dataframe.index[list(upper_array)+list(lower_array)])!=0:
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for i in range(len(dataframe.index[list(upper_array)+list(

lower_array)])):

dataframe.loc[dft.index[list(upper_array)+list(lower_array)

][i]][ variable ]='Nan'

for i in range(len(dataframe.index[list(upper_array)+list(

lower_array)])):

a=mapper(dft.index[list(upper_array)+list(lower_array)][i

][0:11])

mean=np.mean(dataframe.loc[a][[ variable ]])

dataframe.loc[dft.index[list(upper_array)+list(lower_array)

][i]][ variable ]=mean

return dataframe

df=outlier_imputer(df)

#Performing ANOVA on dataset , Shapiro Wilk's test and Levenes 's test on the

residuals , and storing the results

anova_df=pd.DataFrame(index=Variables ,columns =['P-value(cell_type)','P-value(

treatment)',

'P-value(interaction)','P-value(

shapiro)',

'P-value(levene)'])

for i in Variables:

test_data=df[[str(i),'cell_type ','treatment ']]

#test_data[str(i)]=np.log2(test_data[str(i)])

model = ols(str(i) +'~ cell_type*treatment ', data=test_data).fit()

anova_table = anova_lm(model , typ=2)

cell_type_sig=anova_table['PR(>F)'][0]

light_sig=anova_table['PR(>F)'][1]

interaction=anova_table['PR(>F)'][2]

anova_df.loc[i]['P-value(cell_type)']= cell_type_sig

anova_df.loc[i]['P-value(treatment)']= light_sig

anova_df.loc[i]['P-value(interaction)']= interaction

residuals = model.resid

shapiro_test_statistic , shapiro_p_value = stats.shapiro(residuals)

anova_df.loc[i]['P-value(shapiro)']= shapiro_p_value

fitted_values = model.fittedvalues

plt.figure(figsize =(10, 15))

fig ,(ax1 ,ax2)=plt.subplots (1,2, figsize =(10 ,5))

fig.tight_layout(pad =5.0)

ax1.scatter(fitted_values , residuals , c='r', marker='o')

ax1.axhline(y=0, color='k', linestyle='--')

ax1.set_title('Residuals vs. Fitted Values for '+str(i),fontsize =10)

ax1.set_xlabel('Fitted Values ')

ax1.set_ylabel('Residuals ')

sm.qqplot(residuals , line='s',ax=ax2)

ax2.set_title('Q-Q Plot of Residuals ',fontsize =10)
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ax2.set_ylabel('Quantiles of residuals ')

ax2.set_xlabel('Normal theoretical quantiles ')

plt.savefig(str(i)+'qq.jpeg')

#sns.displot(residuals ,ax=ax2)

from bioinfokit.analys import stat

res=stat()

res.levene(df=test_data ,res_var=str(i),xfac_var =['cell_type ','treatment '])

anova_df.loc[i]['P-value(levene)']=res.levene_summary['Value '][2]

print(anova_table)

print(anova_df)

# Performing Tukey -HSD analyses and storing the data

for i in Variables:

test_data=df[[str(i),'cell_type ','treatment ']]

from bioinfokit.analys import stat

res = stat()

res.tukey_hsd(df=test_data , res_var=str(i), xfac_var =['cell_type ','treatment

'], anova_model=str(i)+'~C(cell_type)+C(treatment)+C(cell_type):C(

treatment)')

print('post hoc results for_'+ str(i))

tukey_df=pd.DataFrame(res.tukey_summary [['group1 ','group2 ','p-value']])

print(tukey_df[tukey_df['p-value'] <0.05])

sig_df=tukey_df[tukey_df['p-value '] <0.05]

sig_df.to_excel(str(i)+'tukeyhsd.xlsx')

11.14.2 ANOVA and post hoc analyses of PAM data

The same packages used in section 11.14.1 are imported as the first step.

#loading the dataset

df=pd.read_csv('PAM - Sheet4.csv',index_col =0)

# Removing unnecessary variables(including NPQ in the first part as the analyses

is separate for NPQ)

df.drop(['Fo','Fm','Fv','factor ','NPQ'],axis=1,inplace=True)

#Defining the samples

samples =['Alb14LL ','Alb14HL ','Alb14ML ','Alb16LL ','Alb16HL ','Alb16ML ','Alb19LL ','

Alb19HL ','Alb19ML ','WTLL','WTHL','WTML']

# Making a custom mapping function

def mapper(name):

l=[]

for i in df.index:

if str(name) in i:

l.append(i)

return l
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#Defining variables

Variables=df.columns [0:5]

# Imputing outliers with mean values using custom -made IQR rule -based function

def outlier_imputer(dataframe):

for sample in samples:

for variable in Variables:

dft=dataframe.loc[mapper(sample)][ variable]

Q1 = dft.quantile (0.25)

Q3 = dft.quantile (0.75)

IQR = Q3 - Q1

lower = Q1 - 1.5* IQR

upper = Q3 + 1.5* IQR

upper_array = np.where(dft >=upper)[0]

lower_array = np.where(dft <=lower)[0]

if len(dataframe.index[list(upper_array)+list(lower_array)])!=0:

for i in range(len(dataframe.index[list(upper_array)+list(

lower_array)])):

dataframe.loc[dft.index[list(upper_array)+list(lower_array)

][i]][ variable ]='Nan'

for i in range(len(dataframe.index[list(upper_array)+list(

lower_array)])):

a=mapper(dft.index[list(upper_array)+list(lower_array)][i

][0:11])

mean=np.mean(dataframe.loc[a][[ variable ]])

dataframe.loc[dft.index[list(upper_array)+list(lower_array)

][i]][ variable ]=mean

return dataframe

#Performing ANOVA on the dataset , Shapiro Wilk's test and Levenes 's test on the

residuals , and storing the results

(# The same script as in section 10.11.1 for flow cytometry data is used for

ANOVA of PAM data)

# Performing Tukey -HSD analyses and storing the data

(# The same script as in section 10.11.1 for flow cytometry data is used for

Tukey -HSD analyses of PAM data)

# One -way ANOVA for NPQ

# Realoading the data

df=pd.read_csv('PAM - Sheet4.csv',index_col =0)

#Perform outlier imputation with the previous function

df=outlier_imputer(df)

# Making a new dataset with just NPQ values for LL -treated samples

df_npq=df[['NPQ','cell_type ','treatment ']]

df=df_npq[df_npq['treatment ']=='LL']

#Performing ANOVA and Tukey HSD

from scipy.stats import f_oneway
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from statsmodels.stats.multicomp import pairwise_tukeyhsd

anova_result = f_oneway(df['NPQ'][df['cell_type '] == 'Alb14 '],

df['NPQ'][df['cell_type '] == 'Alb16 '],

df['NPQ'][df['cell_type '] == 'Alb19 '],

df['NPQ'][df['cell_type '] == 'WT'])

# Print ANOVA test result

print("ANOVA Test Result:")

print("F-statistic:", anova_result.statistic)

print("p-value:", anova_result.pvalue)

# Perform Tukey 's HSD post hoc test

tukey_results = pairwise_tukeyhsd(df['NPQ'], df['cell_type '])

# Print Tukey 's HSD post hoc test results

print("\nTukey 's HSD Post Hoc Test Results:")

print(tukey_results)
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