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Abstract

In this paper, we develop two complete discounted-cash flow (DCF) frameworks for the valuation of
constant-growth annuities and perpetuities. By ‘complete’ we mean that these frameworks allow the
valuation of a firm or project by means of different DCF methods, particularly, the equity method, the
free-cash-flow (FCF) method, the adjusted-present-value-method, and the capital-cash-flow method. This
also requires the derivation of formulas that allow the translation between different required returns,
like the required return on unlevered and levered equity, the discount rate in the FCF method, and the
required return on the tax-shield. Our paper departs from the two most advocated and mutually exclusive
frameworks when dealing with DCF. The first is based on Modigliani and Miller (M&M), where the FCF at
different points in time are independently distributed. The second framework rests on the analysis of
Miles and Ezzell (M&E) who presume a first-order autoregressive cash-flow process. Some elements of a
‘complete’ framework exist in the literature, but in our opinion, a complete picture has not been
developed yet.

The contributions of this paper are the following: (1) We develop (or expand) the set of formulas that are
required for the valuation of constant-growth annuities and perpetuities; (2) The formulas we develop in
this paper are based on a backward-iteration process, which in itself represents a suitable tool for firm
valuation; (3) Using a numerical example, we show that the two mutually exclusive frameworks of M&M
or M&E achieve very different valuation results; (4) It turns out that the expected returns and the growth
rate of the FCF are partly linked, but this relationship is different in the two frameworks; (5) In our
numerical examples, we show how the constant-growth annuity or perpetuity, can be integrated with an
explicitly planned FCF.

Keywords: Discounted Cash Flow, Annuity with constant growth, Modigliani-Miller Model, Miles-Ezzell
Model, Firm Valuation
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1 Introduction

Discounted cash flow (DCF) methods belong to the most widely used approaches to evaluate firms and
investment projects in practice and academia (Mukhlynina & Nyborg, 2016). Within these methods, the
value of annuities and perpetuities with constant growth play a particular role, either for the valuation of
the continuation value at the end of some explicit planning horizon (Damodaran, 2006, chapters 5 and 6;
Koller et al., 2010, chapter 6; Mukhlynina & Nyborg, 2016, p. 20, Berk & DeMarzo, 2019, chapter 19;
Cornell et al., 2021) or for studying relationships between different methods like the free-cash-flow
method, the adjusted-present-value-method, capital-cash-flow method, etc. (Arzac & Glosten, 2005,
Massari, et al. 2007, Barbi, 2012). As reasons for adding growth to the DCF models, the literature mentions
inflation in nominal terms (Bradley & Jarrel, 2003) or that companies aim at growing by means of
attractive investment opportunities (Miller & Modigliani, 1961; O’Brien, 2003).

The main purpose of this paper is to show how we can consistently evaluate a firm’s cash flow by means
of different discounted cash flow (DCF) methods, when these cash flows are modeled as either constant-
growth annuities or perpetuities. By “consistently” we mean that the different DCF methods mentioned
above must give the same firm value if they are based on the same assumptions.

Our analysis focuses on two of the most commonly advocated frameworks when dealing with DCF. The
first is based on Modigliani and Miller (1958, 1963, abbreviated as M&M), and the second has been
introduced by Miles and Ezzell (1980, 1985, abbreviated as M&E). These two frameworks are different
with respect to one particular assumption that regards the stochastic behavior of the cash flow. In the
M&M framework, it is necessary that the free cash flow follows a strictly stationary process, while M&E
require the FCF to be a particular auto-regressive process to achieve their results (Becker, 2021 and 2022).
Both frameworks do originally not consider any growth in the free cash flow. Growth has been introduced
to the M&M framework in Stapleton (1972), and with respect to the model of M&E growth is considered
in Arzac & Glosten (2005) or Barbi (2012).

In this paper, we are interested in developing a complete framework for the valuation of constant-growth
annuities and perpetuities. This means that we can value firms by both backward iteration, direct
mathematical formulas, and transition formulas between levered and unlevered returns. Some elements
exist in the literature, but in our opinion a complete picture has not been developed yet. However,
formulas for annuities without growth are shown in Becker (2022).

An additional takeaway from our analysis is an understanding about the mechanics between returns and
growth-rates, which is not taken care of in the literature.

The sequel of this paper is structured as follows: In section 2 we briefly introduce the relevant DCF
methods for this paper. Sections 3 and 0 are devoted to the mutually exclusive frameworks of Modigliani
& Miller and Miles & Ezzell, respectively. Each of these sections is structured as follows: Subsection 3.1
(4.1) shows how to compute the value of the unlevered and levered firm by means of a backward iteration
process followed by a numerical example. In subsections 3.2 (4.2) we derive the mathematical formulas
that allow the direct firm valuation followed by a continuation of the numerical examples. Finally,
subsection 3.3 (4.3) discuss the takeaways for the respective framework. Section 5 concludes the paper
with some practical advice and open issues for further research.
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2 Brief overview of relevant DCF methods

In this section we give a brief overview of existing DCF methods. In all methods we assume that the free
cash flow (FCF) is given exogenously. The FCF corresponds to the cash flow to the unlevered firm.

Direct valuation of debt and equity: Here we compute the firm value FV}, as the sum of the levered equity
value EV}, and the debt value DV:

FV, = EV, + DV

The value of levered equity is based on the flow to equity FtE discounted with the required return of the
equity holders 1, and the debt value is calculated by discounting the flow to debt FtD with the required
return rp of the debt holders. The valuation formulas are as follows:

Perpetuity: Recursive:

FtD FtE..; + EV, FtD;.1 + DV,
and DV = Lt = Gt LML and DV, = — -t (1)
TE— 9 ™m—J 1+rg,: 1+m,

EVL =

The flow to the equity holders corresponds to the free cash flow plus the tax shield minus the flow to the
debt holders: FtE = FCF + TS — FtD.

Capital-cash-flow method (CCF method): In this method we discount the total flow to the capital holders
CCF = FtE + FtD by means of the corresponding required return r¢cg:

Perpetuity: Recursive:
Vo= CCF Vo= CCFryq + FV g )
L=~ Lt =
Tcer — 9 ‘ 1+ rccre

The capital cash flow also equals the free cash flow plus the tax shield: CCF = FCF + TS.

Free-cash flow method (FCF method): in this method we retrieve the value of the levered firm by
means of discounting the flow to the unlevered firm by means of rgcE.

Perpetuity: Recursive:
FCF FCFi 1 + FV,
FVL — — FVL’t — t+1 Lt+1 (3)
TecF — 9 1+ rpcry

The discount rate in the FCF method (also referred to as after-tax weighted average cost of capital) is
usually computed as rgcg = q 15 + (1 — @) - (1 — 7) * 1p, and the required return in the CFC-method
(also referred to as before-tax weighted average cost of capital) is calculated as rccp = q 15+ (1 — @) -
1p (Arditti, 1973, p. 1002 or p. 1006; McConnell & Sandberg, 1975, p. 885; Harris & Pringle, 1985, p. 237;
Ruback, 2002, p. 85 and p. 89). Hence, the required return in the CCF-method can also be directly
calculated from the discount rate in the FCF-method: rccg = 15cp + (1 — @) " 1p " T.
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Adjusted-present-value-method (APV method): In this method we compute the levered firm value as
the sum of the unlevered firm value and the tax shield value: FV}, = FVy + TSV. The value of the
unlevered firm is calculated by discounting the FCF with the required return on unlevered equity (firm)
1y, and the tax shield TS is discounted with its appropriate discount rate rrs.

Perpetuity: Recursive:
FCF FCF;, 1 + FV, TS; 1 + TSV,
FVy = and TSV = FVye = —ot -0+ pgy, — 01 7 77041 (4)
Ty — rrs— g 141y, 1+ 7r7s:

In this paper we focus on the two mutually exclusive frameworks of M&M and M&E, that are linked to
several assumptions. Most importantly, the leverage of the firm is held constant throughout the lifetime
of the firm’s or project’s cash flow, i.e. EV,, = q : FV,;and DV, = (1 — q) * FV, where q is the constant
equity-to-firm-value ratio. There exist alternative frameworks, where interest payments and down
payments on debt are specified in advance and independent of the firm value. In such cases leverage can
vary over time (Inselbag & Kaufold, 1997; Becker, 2020).

Furthermore, it is assumed that the outstanding amount of debt equals the value of debt, and that debt
financing is risk-free, which implies that the required return on debt equals the risk-free rate: 1 = ry.
Moreover, there are no costs of financial distress, there exists only corporate taxation, whereas wealth
taxes or personal taxes are outside this analysis. For a more detailed overview of assumptions, the reader
is referred to Becker (2022).

3 Framework based on Modigliani and Miller

3.1 Backward iteration for stationary cash flows (the case of M&M)

The original model of Modigliani & Miller (1958, 1963) is valid for non-growing perpetuities only (See also
Brusov et al., 2021, p. 39). To the best of our knowledge a complete and consistent framework for the
valuation of growing annuities does not exist; we therefore develop it here.

Although Modigliani & Miller (1958, 1963) have never explicitly made any assumption about the cash flow
process, their results can only be obtained for a stochastic cash flow that is independently distributed or
stationary (see Becker, 2021). When considering cash flows of different size or cash flows with constant
growth, such a process can be described by the following equations:

FCFt— = 5t : at or FCF{: = 5{: " (1 + g)t (5)
where &; is a stochastic input-parameter that is drawn from the same time-invariant distribution D (this
means & ~D for all t), a; is a factor that determines the size of the cash flow at point in time t, and g is a
constant growth rate. Because of the requirement that present values are additive (principle of arbitrage-

freeness), this implies that the one-period required return r, for discounting a cash flow FCF; from point
intime t to t — 1 is constant (it does not depend on t).

Furthermore, this means that the stochastic cash flow FCF; observed at point t does not depend on the
history of cash flows prior to this point in time, i. e.

FCF, |Fy = FCF, | F, = - = FCF, | F_4 (6)
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where F; denotes the information (or state of the world) at point in time t.

With other words, the expected cash flow FCF;,; is independent of the realized cash flow FCF; at point
in time t. This is different in DCF methods based on Miles & Ezzell (1980 and 1985) who assume an
autoregressive FCF process (see section 0).

3.1.1 Value of unlevered firm

We will now derive the formula for the valuation of the unlevered firm. Here we need to start with a
maturity (remaining lifetime) of one year, and then we increase the outstanding maturity step by step. In
what follows, we apply the following notation. Whenever we write X;, we refer to some value or cash
flow X that appears at point in time t € {0, ..., T}. Alternatively, we use the notation X (notice the
brackets in the subscript) to refer to a value or cash flow when the remaining lifetime of the
firm/investmentis v € {T, ...,0}. At the end of the maturity (lifetime), where v = 1, we can calculate the
value of the unlevered firm as follows:

E[FCFq) | Fpy]

o | Py ==

Let us now go backwards in time fromv = 1tov = 2:

E[FCF | Fiz] + E[FVupu | Fra

FVy | ¥z = 11y

We do not yet know the riskiness (stochasticity) of FVy ;). However, we can write this expression
component-wise as follows:

E[fﬁ[ﬂ | :F[z]] [E[FVU,[l] | T[2]]
1+7, 1+n

FVyp) | Frzp =

where 7, denotes the unknown discount rate. For the second term on the right side, we can write:

E[E[FCFo) | Fruy] | Fi ]
E[FVu | Frag] _ E[E[FVupy | Frul | Fral T+7s
1 + 7"'_) - 1 + 7"'_) - 1 + 7"'_)

From (6) we know that:

Therefore, the right term becomes:

[E[FCF[O] | Fa] ] F
E[FVypg | Frz] _ T+r, (2]
1+ n 1+ 14

E[FCFo) | (3]

Here the expression is deterministic (non-stochastic), and deterministic terms need to be

TA
discounted with the risk-free rate. This means, we are left with:
E[FCFy | Fa] | FVup

FV, Fro1 =
ulz] | (2] 1471, 1+4+7¢
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By going backwards in time from v = 2 to v = 3, we can observe the same relationship. This means, we
retrieve the following general pattern (we now omit the F-notation):

FCFy_1;  FVyp-q]
147, 1+r¢

FVU,[U] = (7)

The same relationship has been shown in a numerical example in Becker (2021). To discount the
continuation value at point in time t + 1 (equivalently v — 1) to point in time t (equivalently v) can be
seen with some discomfort. However, it is a result of the stochasticity of the cash flow defined in (5) and
the requirement of arbitrage-free pricing. To understand this phenomenon better, let us look at Figure 1.

=10 t=1 =3

Figure 1: Deterministic continuation values when cash flows are identically and independently distributed

We see that the stochastic future cash flow (at t = 2) seen from node 1 is the same as seen from node 2.
Hence, the continuation values in nodes 1 and 2 at pointin time t = 1 are the same. It is the principle of
arbitrage-free valuation in finance that dictates us to discount the non-stochastic value at t = 2 by means
of the risk-free rate. In section 0 we will discuss the framework of Miles & Ezzell (1980, 1985). In their
approach continuation values will never be discounted with the risk-free rate, which may seem more
tempting to the firm evaluator.

3.1.2 Value of levered firm

In what follows, we derive the formula for the valuation of the levered firm. For this purpose, we derive
the FCF method based on the valuation of levered equity, which can be stated as follows:

B E[FCFy-1)] . DViy) " 1¢* T — DVjyy " 1 + ADVjy_1y + EVy (1)

EV; = 8
LIv] 1471, 147 (&)

Here DV, - 75T represents the interest tax shield, DV|,) - r¢ is the interest payment, ADV[,_q) =
DVjy_1] — DV is the change of debt. DV[;; | F[, has a known deterministic value at the same point in
time; It is therefore discounted with the risk-free rate. EVy |, 17| F[) and DVj,_qy | Fpy) are
deterministic for exactly the same reason why FVy [,_q) | F|;) is deterministic. Therefore, they need to
be discounted with the risk-free rate r;. Furthermore, both the value of equity and debt are assumed
proportional to the firm value, i. e.:
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EViw =q FVip and DV = (1—q): FVp, (9)

After substituting (9) into (8) and after solving for the levered firm value, we obtain:

1+re [E[FCF[U_l]] FVLv-1)

10
1+ry 1+r—A—-q@)157 1+re—(A—q) 1T (10)

FVL,[]}] =

We denote the discount rate applied in this expressionasa = rs— (1 —q) "¢ " 7.

We are now able to fill this framework with numerical data. This is shown in the next subsection.

3.1.3 Numerical Example for the case of M&M — Part 1

In what follows, we apply the approaches from the previous subsections to a numerical example. As
mentioned before, when evaluating companies, the lifetime is often split into several intervals. In our
example, we apply three intervals: In the first interval, we imagine some kind of a start-up company that
begins with an initially negative cash flow that later turns positive. For simplicity, we work with only three
points in time (t = 0 to t = 3). The second interval from t = 4 to t = 10 is modelled as an annuity with
a constant growth rate of 8 %. We assume that the firm continues afterwards. Textbooks commonly
suggest some perpetual model for this purpose. At this moment, we have not yet discussed, how this
perpetual model looks like. This discussion will be part of section 3.2. We therefore assume an interval
that starts at t = 11 and ends at t = 250 (This length was chosen such that the perpetual formulas
presented later and the backward iteration in this section deliver the same numerical values with an
accuracy of two decimals). We assume a growth rate of 2 %.

Table 1 shows all relevant information concerning the free cash flow in the three intervals. For illustration
purposes, we have also specified three states of the world (normally we presume that there are many
more). It is important to understand that our framework is based on the critical assumption that
stochastic cash flows are independently distributed and that there is a time-invariant parameter &, such
that FCF, = £ - a. |.e. all states in point of time t + 1 can be reached from all states at point of time t,
and the stochastic cash flows in all points in time are proportional to each other. For example, in Table 1
we see that FCF, = 0.25 - FCF,; or FCF; = —5 - FCF,. The proportionality of the cash flows allows us to
apply a constant one-period discount 7, rates on the cash flows.

After planning the explicit cash flows in the first time interval, the annuity and perpetuity in the following
intervals are determined in the following forward manner: FCF; ., = FCF, - (1 + gg). For example:

FCF, =100-(1+8%) = 108, FCF; =108 (1 +8%) = 116.64, etc.
Furthermore, we use the following additional information:
re=7% =30%, 1A =25%, q=60%

where 1y is the risk-free rate, 7 is the tax rate, r, is the one-period required return on the FCF, and q is
the equity-to-firm-value ratio.

At this point it is important to recognize that the type of information that is given in our valuation context
determines the method that can be applied in this context. We can neither apply the APV-method, equity
method, nor the CCF method directly. This is because instead of a given debt value or cash flows to the
debt holders, the parameter q is given, and this parameter determines the value of debt and cash flows
to debt holders after we computed the firm-value.
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In what follows, we apply the backward iteration methods (7) and (10). For example, the last unlevered
firm values are determined as follows:
19,861 19,472 15,899

FVipo = ————— = 15,899,  FVyug = + = 30,427
U249 ™ 1 4 250, U248 = 14250,  1+7%

The corresponding levered firm values are:
1+7% 19,861
1+25% 14+6.16%

1+7 % 19,472 N 16,015
1+25% 14+616% 1+616%

where we have applieda =7, — (1 —q)'17-7=7 % —(1—-60%) -7 %30 % = 6.16 %.

FVL‘249 = = 16,015

FVL,24-8 = = 30,786

Finally, the valuesint = 0 are:

ey o FCRL FVyy _ —80 222991 .
UO ™ty 141 1425% 14+7%
l+re FCF, FVi, 1+47% —80 2,729.91

FVio = = 2,507.00

14+1ry 1+« 1+a_1+25%.1+6.16%+1+6.16%
Once, the values of the levered and unlevered firm are determined, the values of equity, debt and the tax
shield can be calculated by:

DVy = FV - (1 —q), EVie=FVLt-q, VTSe = FV — FVy,

Note, that before this point it is not possible to apply the methods (1) to (4) directly because we do not
know the discount rates 1g, 1rcr, and r¢cg. Furthermore, neither the direct valuation of equity and debt
nor the CCF-method can be directly applied since these methods require knowledge about the flow to
the debt holders. However, we can calculate these values as a result of the backward iteration by the
following expressions:

Flow to debt: FtDi(yq =DVi- (1415 — DViyy (11)
Tax shield: TSty =DVi-1 17 (12)
Flow to levered equity: FtE .1 = FCF 11 + TS — FtDy, 4 (13)
Capital cash flow: CCFi 1 = FtE;y 1 + FtDyy 1 = FCFppq + TS, (14)

_ FtEr 1 + EVipyq

Required return on equity: Tgt = (15)
EVpe

Required return on CCF: Tcere =q Tge +(1—q) 7% (16)

Discount rate in FCF method:  1gcpe=q 15¢ + (1 —q) 15 (1 — 1) (17)

The cash flows to the equity and debt holders and the returns are shown in Tables 2 and 3. In the following
section we will turn to formulas that allow the direct valuation of the levered and unlevered firm.
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Explicit | Explicit | Explicit | Annuity | Annuity Annuity | Perpetuity | Perpetuity Perpetuity | Perpetuity | Perpetuity
Point in time t=0 t=1 t=2 t=3 t=4 t=5 t=10 t=11 t=12 t=2438 t=249 t=250
Growth rate n.a. n.a. n.a. 8% 8% 8% 2% 2% 2% 2% 2%
State 1 -132.00 -33.00 165.00 178.20 192.46 282.78 288.44 294.21 31,499 32,129 32,771
State 2 -80.00 -20.00 100.00 108.00 116.64 171.38 174.81 178.31 19,090 19,472 19,861
State 3 -28.00 -7.00 35.00 37.80 40.82 59.98 61.18 62.41 6,682 6,815 6,951
Expected CF -80.00 -20.00 100.00 108.00 116.64 171.38 174.81 178.31 19,090 19,472 19,861
Unlevered Firm Value 2,020.02 2,229.91 2,403.12 2,485.74 | 2,567.29 2,647.16 2,992.72 3,052.57 3,113.62 30,427 15,889 0
Levered Firm Value 2,507.00 2,729.91 2,915.20 | 3,009.17 | 3,102.09 | 3,193.34 3,596.81 3,668.73 3,742.10 30,786 16,015 0
Equity Value 1,504.20 1,637.95 1,749.12 | 1,805.50 | 1,861.25 | 1,916.00 2,158.09 2,201.24 2,245.26 18,472 9,609 0
Debt Value 1,002.80 1,091.97 1,166.08 1,203.67 1,240.84 1,277.33 1,438.72 1,467.49 1,496.84 12,314 6,406 0
Tax-shield value 486.98 500.01 512.08 523.44 534.80 546.18 604.09 616.16 628.48 359 126 0

Table 1: FCF, growth and values in our numerical example (M&M)
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Explicit Explicit Explicit Annuity Annuity Annuity | Perpetuity | Perpetuity Perpetuity | Perpetuity | Perpetuity
Point in time t=0 t=1 t=2 t=3 t=4 t=5 t=10 t=11 t=12 =248 t=249 t=250
Expected FCF -80.00 -20.00 100.00 108.00 116.64 171.38 174.81 178.31 19,090 19,472 19,861
Expected CF to Equity -39.97 0.61 80.45 86.19 92.34 130.47 133.08 135.74 12,777 12,960 13,142
Expected CF to Debt -18.97 2.32 44.04 47.09 50.36 70.53 71.94 73.38 6,686 6,771 6,854
Expected CCF -58.94 2.93 124.49 133.28 142.70 201.00 205.02 209.12 19,463 19,730 19,996
Expected tax shield 21.06 22.93 24.49 25.28 26.06 29.62 30.21 30.82 373 259 135

Table 2: Cash Flows in our numerical example (M&M)

Explicit Explicit Explicit Annuity Annuity Annuity | Perpetuity | Perpetuity Perpetuity | Perpetuity | Perpetuity
Point in time t=0 t=1 t=2 t=3 t=4 t=5 t=10 t=11 t=12 t=248 t=249 t=250
Return unlevered firm 6.430% | 6.871% 7.599 % 7.626 % 7.654 % 7.685 % 7.841 % 7.841 % 7.841 % 16.215% | 25.000 %
Return on equity 6.234% | 6.824% 7.823 % 7.861 % 7.902 % 7.947 % 8.166 % 8.166 % 8.166 % 22.180% | 36.764 %
Return on debt 7.000% | 7.000 % 7.000 % 7.000 % 7.000 % 7.000 % 7.000 % 7.000 % 7.000 % 7.000 % 7.000 %
Return on tax shield 7.000% | 7.000 % 7.000 % 7.000 % 7.000 % 7.000 % 7.000 % 7.000 % 7.000 % 7.000 % 7.000 %
Discount rate in FCF
method 5.700% | 6.055% 6.654 % 6.677 % 6.701 % 6.728 % 6.860 % 6.860 % 6.860 % 15.268% | 24.019%
Discount rate in CCF
method 6.540% | 6.895% 7.494 % 7.517 % 7.541 % 7.568 % 7.700 % 7.700 % 7.700 % 16.108 % | 24.859 %

Table 3: Required returns/ discount rates in our numerical example (M&M)
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3.2 Direct Valuation formulas for stationary cash flows (the case of M&M)

3.2.1 Value of unlevered firm

Although, a time-varying return 1y; does not allow the application of the standard annuity factor of the
v
. (1 — m), the expression (7) allows the straight-forward derivation of another annuity
Ty—gr (1+ry)?
formula, because each cash flow is discounted once with r, and the remaining periods of time with r¢.
Hence, we can write the value of the unlevered firm as a sum as follows (Please note that we now use the

time index t instead of the remaining lifetime v), i.e.

form

(18)

We now observe the constant risk-free rate in the sum of the discounted cash flows. Hence, we can apply
the standard formula for an annuity with constant growth to this sum. This brings us to:

Vg =~ TR,y -
Ul = 1 A [v-1] " Py, [v] (29)
with the following annuity factor:
(1 T+gp)"\ .
[1- f *
o (1)
Puv] = 4 i (20)
| v
L T+ it T =g

This expression also allows us to develop a constant-growth perpetuity formula. From expression (20) we
learn that we must analyze the value of the unlevered firm for different magnitudes of the growth rate.

(1+gp)”
(1+rp?

the case that gg = 1y, the term # (20) tends to infinity if the maturity tends to infinity. Finally, if g >
f

If gr < r¢then the term in the upper part of (20) tends to Zero if the maturity tends to infinity. In

(1+gp)’
(1 +Tf)v

we can state the value of a perpetual unlevered cash flow as follows:

¢, we can see that the term 1 — in (20) tends to —oo, while ¢ — gg < 0. Based on this behavior,

(_ 1+T'f 1

if gp<r¢

(21)

We can use expressions (20) and (21) to derive the formula for the required return on the unlevered firm.
To do this, we can substitute (19) into the following recursive formula:

FCF[U_l] + FVU,[‘U—I]

FV, =
Ulv] 1+ T‘U‘[U]

By using FCFp,_3) = FCFy—q) - (1 4 gp), we obtain the following relationship:
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(
|

Ty = 4 i (22)
|

TA—T¢ .
e+ (Tf—gF)'( rf> if 7¢<gr
Ty [voe] = (23)

3.2.2 Value of levered firm

Like for the unlevered firm, we also have a time-varying discount rate rgcr when calculating the levered
firm value. However, expression (10) allows to write the present value as a sum of discounted cash flows,
because each cash flow is discounted once with 74 and the remaining periods with a.

T —

_1+rf FCFt

TN 1+a
t=1

(24)

Assuming a constant growth annuity, we can furthermore apply the standard-textbook formula to the
sum of discounted cash flows, where we use a constant a. This brings us to the following expression:

1+T'f
1+TA

FVy ) = FCFy_q; - QL] (25)

where we apply the annuity factor:

(1 (1+gp)"
Nl if a#
Ia—gF < 1+ a)y ! gr
PLv] = { i (26)
v
| L = T4 if a=gr
From expression (26) we learn that we must analyze the value of the levered firm for different magnitudes
v
of the growth rate. As long as gr < «, the term % in the upper part of (26) tends to Zero if the
maturity v tends to infinity. In case of gg = «, the term 1:—“ (26) tends to infinity if the maturity tends to
v
infinity. Finally, if gr > a, we can see that the term 1 — % in (26) tends to —oo, while @ — gg < 0.
Summarizing, we obtain:
A f gr<
t=1 ) I gr<a
14+1ry a-—
FVi o] = { oy br (27)
L % " ogrza
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Let us now turn to the discount rate that needs to be applied in the FCF method. Let us start with
substituting (25) into the following recursive formula:

FCFpyq) + FVi[y1]

1+ rrcr

FVL,[v] =

By considering FCFp,_5 = FCF,_q) - (1 + gg), we obtain the relationship:

_ 1 TpA —T¥
reeein =+ oo (1) (28)

where @y, [, is defined given by (26). If the growth rate of the FCF equals the rate a then this expression
reduces to:

Ta —Tf

TrcRw] = @ + if a=gg
Accordingly, if the maturity tends to infinity we obtain:
a+ (a—grp) (rA ) if gr<a
TRCF [v—00] = L+r (29)
a 1f gF..; 3

Based on these derivations we can furthermore establish the relationships between different required
returns:

Relationship between 1y and rgcg: This relationship is easily obtained by using (22) and (28). Particularly,
we obtain:

Pu,[v]
PL,[v]

Trcrp) = @+ (Tup) —7¢) - (30)

If we let v = oo, we obtain the following possibilities. First we look at the case where g < a < r¢. This
gives:

a— gr
TFCF 0] = @ F (rU,[OO] - rf) 'rf — 9r (31)
After substituting a, this can be rearranged to:
Ty,[0] — 9F
TECF,[o0] = TU,[o0] — —rf i reet(1—q) (32)

This formula has also been derived by Copeland et al. (2000, appendix A) and appears in Massari et al.
(2007).!

In the second case we have gr = a which yields rgcp[«) = @ Which is independent of ry.

! Copeland et al. (2000) and Massari et al. (2007) use the cost of debt 1y, in their formula. However, they define the
interest payment I;,, and tax shield TS, as follows: I;,; = DV, - rp and TS;,1 = DV, - rp - T. Furthermore, they
discount the tax shield (and equivalently the interest) by means of rp,. This leads to debt being risk-free.
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Relationship between 71y and rg: Based on relationships (31) or (32) and by applying the after-tax
weighted average cost of capital (rgcg = q * 15 + (1 — @) - (1 — T) - 1¢) we can also establish the relation
between the required return on levered equity and unlevered equity (firm):

(rup1 —76) Puw]
q PL,[v]

If we let v = oo, then we obtain the following possibilities:

TE[p] = T¢+ (33)

(U fe0] = 7¢) @~ gr
q rt — gr
(b) gp=a: T[] = T'f Which is independent of ry

(a) gr < a <7 TE o] = T¢ +

In what follows, we will apply the direct valuation formulas to our numerical example.

3.2.3 Numerical Example for the case of M&M — Part 2

In this section we use the mathematical formulas from the previous section to verify the values that we
have obtained by means of the backward iteration. Let us start with the third interval which we now
approximate by a perpetuity. The superscript in the following expressions indicates that we deal with the
values of the third interval. We calculate the unlevered and levered firm value for point in time t = 10 as
following:

Fy3 . = FCF,, 7.1 FCF
u1o = Yl re—gr ! Ty [v>o0] — F
— 17481 2177 % LT
T 1 425% 7% —2% T 78411 % - 2%
= 2,992.72

Where we have applied:

+( ) (rA_rf) 7% + (7 % — 2%) (25%_7%) 7.8411 %
TU ool =T T — . = — N NS DY 4
U,[v—] f f— Jr T+ 0 0 () TT7% o
The levered firm value becomes:
FV3, = FCF, 2t 1 _Fer
L10 Yl4r a—gr Y rEcE o] — 9F

=174.81 1+7% 1 =174.81 1

ST 1425% 616%—2% 0 6.8598% —2 %

= 3597.05
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where
a=1rr—(1—-q) s 1=7%—-(1-60%)"7%-30% =6.16%

and
TA—T¢
1+ re

25% — 7 %
)=6.16%+(6.16%—2%)-(—1+70/
(0]

rpcp=a+(a—gp)-( )=6.8598%

Note that the firm values are related to t = 10, and they need to be further discounted to t = 0 as
follows:

ey = PV 299272 o
YO+ T (1 +7%)0 T T
FViio _ 3597.05

FV3, =

Atra)® 161600 7851

In the second interval we have an annuity with constant growth. This annuity has a lifetime of v = 7. Let
us therefore calculate the annuity factors (20) and (26):

1 1+ gp)” 1 (1+ 8%)7
Puln = \1- = (11— - | = 6.7284
T — gF A+m)") 7%—-8% (147 %)
1 1 +gp)?¥\ 1 (1+8%)7 \ _
L = g <1 T 0+ay ) 616%-8% \! O+616%)7) " 078

Now we can compute the values of the growing annuity in the second FCF-interval:

FV{¢, = FCF 1t 0] =108 1+7% 6.7284 = 622.02
U3 4 1+ ra ul7l 1+4+25% ’ '
FV{Z, = FCF 1t 0] =108 1+7% 6.9468 = 642.21
L3 4 1+ Ta L[7] 1+ 25 % ’ ’

Also, these values need to be discounted to point in time t = 0:
FVys  622.02
1413 (1+7%)3

FVis 64221
(1+a)d (1+6.16%)3

= 507.76

FV§, =

FVZ, = = 536.78

Finally, we need to compute the value of the explicit planning interval, where we apply the expressions
(18) and (24). We obtain:

ey _1+7% (—80 N —20 N —-100 \ 9.08
U0 14+25% \14+7% ' (1+7%)>? (1+7%)3)_ '
—— 1+7% —80 N —20 N —100 _ eis
L0 142509 (1+6.16% (14 6.16 %)>2 (1+6.16%)3)_ '

Finally, we can add all present values, such that we have the total unlevered and levered firm values:

FVyo = FV{o + FV§o + FV§, = —9.08 + 507.76 + 1,521.36 = 2,020.04
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FVi,0 = FVio + FV{Zo + FV, = —8.15 + 536.78 + 1,978.51 = 2,507.14

3.3 Preliminary Take-aways and practical advice for the M&M model

(1)

(2)

(3)

(4)

(5)

(6)

Without knowing the direct valuation formulas derived in section 3.2, and based on the initially given
information, we cannot directly apply the methods (1) to (4) introduced in section 2. Instead, we
must rely on the backward iteration process to determine the unlevered and levered firm values.
Backward iteration is simple and allows the calculation of all values: Nowadays, spreadsheet
software is available to literally everybody. This allows to iterate quickly through many periods, by
which we can approximate perpetual cash flows that are often assumed in continuation values at
the end of some planning horizon. Strictly speaking, the derivation of more complicated direct-
valuation formulas is not necessary. However, we have developed these formulas in section 3.2,
because we obtain insights into the mechanics of return and growth. Once we have determined the
unlevered and levered firm values, we can apply expressions (11) to (17) to calculate all the flows
and discount rates that can be used in the recursive calculations (1) to (4).

The required returns or discount rates 1y, 7¢cp, Trcp, and 7 depend on the lifetime of the free cash
flow. Particularly, they decrease if the remaining lifetime of the cash flow becomes longer. We could
observe this in the final interval, when going backwards from t = 249 to t = 10. This is because the
deterministic continuation value takes a larger share in the total value that consists of both the value
of one-period-ahead stochastic cash flow and deterministic continuation value. For example, the
discount rate in the FCF method has decreased from 7gcp 249 = 24.019 % to 75cp 10 = 7.86 %, and
it is now lower than the risk-free rate. The decay of the required returns happens very sharply even
for gr = 0 %. Hence, even for short annuities, constant required returns are never a good
approximation.

This behavior is depicted in Figure 2 for the required return on unlevered equity that converges
towards the risk-free rate. The longer the remaining lifetime of the FCF, the faster the convergence
occurs.

This implies that we cannot apply the standard annuity formula from textbooks, because this formula
requires a constant discount rate. However, we can apply the alternative annuity factors (20) and
(26) which allow the valuation of M&M annuities with constant growth.

From expression (30) and (33) we also learn, that the relationship between 1y; and the discount rates
Tcer, Trcr, OF Tg depends on the remaining lifetime.

The larger the growth rate the more decrease the required returns or discount rates 1y, ccr, TrcF,
and 1. However, 1y, ccr, and g can never decrease below the risk-free rate r¢. The discount rate
Trcr in the FCF-method can never fall below a. This can be seen in expressions (23) and (32).

Textbooks often suggest constant discount rates in all valuation methods. This is generally not
correct, although some of the rates can be constant: In the M&M approach the required return on
the tax shield is constant since it is linked to deterministic continuation values. The required return
on debt is constant by assumption.

The perpetual model based on M&M does not allow for a growth rate gr = a because then the
levered firm value becomes infinitely large. Note that « is also less than the risk-free rate.
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(7)

(8)

Because of the uncertainty in the input factors, we often use a sensitivity analysis to see how the
change in particular input parameters affect the firm value. Because of the preceding bullet points,
it is important to recognize the relationship between growth rate and required return. Assuming the
M&M framework it is essential that this relationship is not neglected, i. e. if an analyst changes the
growth rate of the FCF then a simultaneous change in the discount rates is necessary.

Looking again at the discount rates in the final interval, we observe some convergence if the
remaining lifetime of the cash flow is very long. E. g. the discount rates at t = 10,11, 12, etc. are the
same. This implies that we can apply the standard perpetuity formulas in (1) to (4) as long as we
know the correct discount rates. For this purpose, we have derived expressions (23) and (32) that
allow the calculation of r; and 1y, respectively.

10,50%
10,00% Lifetime= 10
— =—Llifetime =15
9,50%
\ = = -lifetime = 25
0,00% | \\ =+ = Lifetime = 50
,.\ N N Lifetime = 300

8,50%

8,00%

7,50%

Required return on unlevered firm

7,00%
6.50%

6,00%
0% 10% 20% 30% 40% 50% 60% 70% 80%
Growth rate

Figure 2: Behavior of required return on unlevered equity dependent on growth rate and lifetime of FCF
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4 Framework based on Miles & Ezzell

4.1 Backward iteration for autoregressive cash flows

In this section, we look at the DCF model according to M&E. Contrary to M&M, in M&E the sum of the
free cash flow and continuation value (FCF, + V,) is discounted with the same one-period discount rate
Ta:

v _FCF, +V, FCF, +V,
=1 1+T'A - 1+T‘U

Ty =Ta

To discount the cash flow and continuation value with the same required return ry; requires a particular
auto-regressive cash flow. This can be stated as follows:
FCFu) | Floan) = (14 gp) & FCFppq) | Fluy,  El&] =1 (34)

The expected value of the cash flow is then:

E[FCFy) | Fry+11] = (1 + gp) - FCF [y | Flosq (35)
In what follows, we derive the framework for computing the value of the unlevered and levered firm by
means of backward-iteration.

4.1.1 Value of unlevered firm

At the end of the maturity (v = 0) when we do not observe any continuation value, the value of the
unlevered firm at v = 1 can be calculated as:

E[FCFio) | 1]

FV: Frqg = ———1 =22
u | Fra T+,

Using (35), we can then write the value of the unleveled firm as follows:

(14 gp) " FCFyy | Fiy
1+T'A

FVy | Frg = (36)

We now go one period backwards in time from v = 1 to v = 2. Here the value of the unlevered firm is:

E[FCF) | Fia)] + E[FVya) | Fra]

gz 1 Fra = 1+ 7y

We do not yet know the riskiness (stochasticity) of FVy [1), therefore we cannot blindly apply 74 as the
discount rate. Therefore, we used ry ;). However, we can write this expression component-wise as
follows:

E[FCFLy | Fpa) N E[FVy | Fra]

FV, Fr1 =
ul2] | (2] 1+ Ta 1+ 14

Note that FVy ;) in equation (36) depends on the realization of the cash flow FCF[;). From the
perspective of v = 2 the cash flow FCF[y) | F[) is stochastic, and therefore also the value FF'T/Ul[l] | Fl2
is stochastic. More precisely this means:
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IE[(]. +gF)2 'g'FCF[Z] |.‘F[2]] |

N g [EL(L+ g;) - FCFpy | P | T[z]] E T 2]
E[FVyp | Frag] T+7, B
1 + ) B 1 + 1) B 1 + )

]E(1+gF)2-T€-FCF[2] | .7:[2]
1414
(1 + gg) - €+ FCF[3). Hence, the continuation value needs to be discounted with the same return as the

Here, the term is stochastic. Furthermore, the term is proportional to FCF[;) =

free cash flow, i. e. Ty = 7a

E[FCFp; + FVyy | Fiz)
1+ ra

FVyp) | Frzy =
By going backwards in time from v = 2 to v = 3, we can observe the same relationship. This means, we
have the following general pattern (we now omitt the F-notation):

FCFpy_11 + FVy fy—1]
1+ Ty

FVym = Ty =7a (37)

The same relationship has been shown in a numerical example in Becker (2021), which treated non-
growing annuities.

4.1.2 Value of levered firm

In this subsection we compute the value of the levered firm. It can be derived from the equity method as
follows:

IE[FFEF[V_H] + DV[U] Tt T — DV[U] T+ IE[ADT/[U_l] + ET/L,[V—l]]
1+ rEL,[U]

EVL‘ [v] =

(38)
_ E[FCFp,_q] LDVt T DV A4 E[ADViy_1) + EVy,p_q)]
1+71a 1+7¢ 1+7,

In this expression DV}, - 1¢ - T reflects the tax shield, DV}, - 7¢ is the interest payment, and A[717[U_1] =
DT/[U_l] — DV}, is the change of debt. DV} | [, has a known deterministic value at the same point in
time, and therefore it is discounted with the risk-free rate. EVy ,_q) | Fp) and DVj,_q) | Fy) are
stochastic for exactly the same reason why FVy[,,_q) | F[y] is stochastic. They are also proportional to
ﬁf[v_l] | F» and need to be discounted with the same required return 7.

Furthermore, both the value of equity and debt are assumed proportional to the firm value, i. e. EVy, [, =

q - FVyy; and DV, = (1 — q) - FVy,[,). Therefore, expression (38) becomes:

1+ E[FCF,q) + FV, ]

FV =
LIv] 1+7, 1+a

,a=r—=(A-q) et (39)

We see that the required discount rate in the FCF-method is independent of the remaining lifetime
(maturity). This formula has also been derived by Myers (1974, p. 13) for single-period cash flows, by
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Miles and Ezzell (1980, p. 726) for constant-growth perpetuities, and by Becker (2022, p. 487) for
constant-growth annuities.

4.1.3 Numerical Example for the case of M&E —Part 1

In this section we apply the approach from the previous section to a numerical example, where we use
the same input parameters as in M&M, i. e. we have the same three intervals, the same explicit expected
cash flows in the beginning, the same growth rates in the second and third time interval, and we apply
the same parameters ¢, 74, q, and 7. Table 4 shows the evolution of the expected free cash flow. Contrary
to M&M, we assume an autoregressive cash-flow process, which implies that the number of possible
states gets larger with the remaining lifetime. Hence, we cannot show the complete evolution of all states
in Table 4. However, for points in time t = 1 and t = 2 all achievable states are shown in Figure 3. The
expected cash flows are the same like in M&M for all points in time.

Figure 3: The evolution of an autoregressive free cash flow (M&E)

Let us start with the calculation of the unlevered values, which need to be determined in a backward
manner according to expression (37), for example:
19,861 19,472 + 15,899

FViyopeg = —————— =15899,  FVy,us = = 28,289
U249 ™ 11240187 % U248 ™ "1 1 24.0187 %

The levered values are determined according to expression (39):

gy 19861 oo oo 19472416015
L2499 = 11240187 % P 1+240187% T
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Here we have applied 1gcp = (1+r‘1“i'r(1+a) -1= (1425 0/1()1;1(;6'16 % _ 24.0187 %, and a takes the
f 0

previously calculated value.
Finally, the valuesint = 0 are:

_FCF,+FVy,  —80+410.47

FVyo = = = 264.37
uo 1+ny 1+ 24.0187 %

_FCF,+FV,, _ —80+435.15

Vi g = = = 286.36
Lo 1+ Tecr 1+ 24.0187 %

Once, the values of the levered and unlevered firm are determined, the values of equity, debt and the tax

shield can be calculated by:
DVy = FV - (1 —q), EVie=FVLt-q, VTSe = FV — FVy,

Note, that before this point neither the capital-cash-flow method nor the equity method could be applied
directly, since these methods require knowledge about the flow to the debt holders and the required
returns 7¢cge and g ;. Also, the free-cash flow method was not yet accessible because its discount rate
Trcp,+ Fequires 13 as an ingredient. However, we can calculate these values with expressions (11) to (17).
The results of these calculations are shown in Tables 5 and 6.
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Explicit | Explicit | Explicit | Annuity | Annuity Annuity | Perpetuity | Perpetuity Perpetuity | Perpetuity | Perpetuity
Point in time t=0 t=1 t=2 t=3 t=4 t=5 t=10 t=11 t=12 1=248 =249 =250
Growth rate n.a. n.a. n.a. 8 % 8% 8% 2% 2% 2% 2% 2%
Expected CF -80.00 -20.00 100.00 108.00 116.64 171.38 174.81 178.31 19,090 19,472 19,861
Unlevered Firm Value 264.37 410.47 533.08 566.35 599.94 633.29 760.04 775.24 790.75 28,289 15,889 0
Levered Firm Value 286.36 435.15 559.66 594.09 628.78 663.16 793.92 809.80 825.99 28,614 16,015 0
Equity Value 171.82 261.09 335.80 356.45 377.27 397.90 476.35 485.88 495.59 17,168 9,609 0
Debt Value 114.55 174.06 223.86 237.63 251.51 265.26 317.57 323.92 330.40 11,446 6,406 0
Tax-shield value 21.99 24.68 26.58 27.73 28.84 29.88 33.87 34.55 35.24 325 126 0

Table 4: FCF, growth and values in our numerical example (M&E)

Page 22




Explicit Explicit Explicit Annuity Annuity Annuity | Perpetuity | Perpetuity Perpetuity | Perpetuity | Perpetuity
Point in time t=0 t=1 t=2 t=3 t=4 t=5 t=10 t=11 t=12 t=248 t=249 t=250
Expected FCF -80.00 -20.00 100.00 108.00 116.64 171.38 174.81 178.31 19,090 19,472 19,861
Expected CF to Equity -26.10 21.28 102.80 110.23 118.07 162.35 165.60 168.91 14,396 13,871 13,142
Expected CF to Debt -51.49 -37.62 1.90 2.76 3.85 15.57 15.88 16.20 5,018 5,841 6,854
Expected CCF -77.59 -16.34 104.70 112.99 121.92 177.92 181.48 185.11 19,413 19,712 19,996
Expected tax shield 2.41 3.66 4.70 4.99 5.28 6.54 6.67 6.80 323 240 135

Table 5: Cash Flows in our numerical example (M&E)

Explicit Explicit Explicit Annuity Annuity Annuity | Perpetuity | Perpetuity Perpetuity | Perpetuity | Perpetuity
Point in time t=0 t=1 t=2 t=3 t=4 t=5 t=10 t=11 t=12 t=248 t=249 t=250
Return unlevered firm 25.000 % | 25.000% | 25.000% | 25.000% | 25.000% | 25.000 % 25000% | 25.000% | 25.000 % 25.000 % | 25.000 %
Return on equity 36.764 % | 36.764% | 36.764% | 36.764% | 36.764% | 36.764 % 36.764% | 36.764% | 36.764 % 36.764% | 36.764 %
Return on debt 7.000% | 7.000% | 7.000% | 7.000% | 7.000% | 7.000% 7.000 % 7.000 % 7.000 % 7.000% | 7.000 %
Return on tax shield 23.160% | 22.509 % | 22.025% | 21.973% | 21.919% | 21.863 % 21.688% | 21.688% | 21.688% 12.567% | 7.000 %
?:iﬁ;gt rate in FCF 24.019% | 24.019% | 24.019% | 24.019% | 24.019% | 24.019% 24.019% | 24.019% | 24.019% 24.019% | 24.019%
:Jiiﬁigt rate in CCF 24.859% | 24.859% | 24.859% | 24.859% | 24.859% | 24.859 % 24.859% | 24.859% | 24.859% 24.859% | 24.859 %

Table 6: Required returns/ discount rates in our numerical example (M&E)
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4.2 Direct Valuation formulas for auto-regressive cash flows (the case of M&E)
4.2.1 Value of unlevered firm

From expression (37), we can easily derive the sum of discounted cash flows as:

T

FCFp,_4
Proo = ) T35 (40)
t=1 v

Furthermore, we can directly apply the standard constant-growth annuity formula. This means we have:

FVy ) = FCFy-1) - Oy ) (41)
with the annuity factor defined as:
(1 < 1+ gF)U> )
11— if g+
I7”U — 9r A +ry)? uFIr
Ouw) = 4 i (42)
| v f
L T+my o= g

From expression (42) we learn that we must analyze the value of the unlevered firm for different

(1+ggp)’
(1+Tu)v

the maturity tends to infinity. In the case of gp = 1yj, the term ﬁ (42) tends to infinity if the maturity
U

magnitudes of the growth rate. If gg < 1y then the term in the upper part of (42) tends to Zero if

(1+gp)”
(1+Tu)v
same time we have 1y — gp < 0. Based on these observations, we see that the value of the unlevered

firm can be calculated according to the standard text-book perpetuity formula:

tends to infinity. Finally, if gr > 1y, we can see that the term 1 — in (42) tends to —oo, and at the

(FCF - —
FVU,[u—wo] = { U F (43)
| o
4.2.2 Value of levered firm
Expression (39) allows to write the levered firm value as a sum of discounted cash flows:
E[FCF,]
FVL,0=2 - where a=r—(1—q) re 7
=1 (1+ ).1+T'A (44)
a 1+ e

Obviously, the term under the fraction is constant, and corresponds to the discount rate in the FCF-

method, i.e. 1 + rgcp = W. Substituting a = r¢— (1 — q) - r¢ - T we obtain:
f

1+T'U
1+7"f

rpecr=1y— (1 —¢q) 15" 7 (45)
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We also see that we can directly apply the standard constant-growth annuity formula to (44):

FVi v = FCFy_q) - Oy (46)
with the annuity factor:

( 1 < 1+ gp) ) .

| —— (1l————"—] if gp# n

TecF — JF (1 + recp)” FRCE
L) = 4 » o (47)

v
Ik if  gp = Tecrp
1 + TECF

From expression (47) we learn that we must analyze the value of the levered firm for different magnitudes
(1+gp)¥
(1+7pcp)?

maturity v tends to infinity. In the case that gg = 1p¢cp, the term

of the growth rate. As long as gg < 7gcp, the term in the upper part of (47) tends to Zero if the

v

(47) tends to infinity if the
1+TFCF

maturity tends to infinity. Finally, if gr > 1rcg, We can see that the term 1 — % in (47) tends to
FCF.
—oo. At the same time, we have 1gcr — gr < 0. Summarizing, we obtain:
(Frp._ L -
FCF - r— if Ir < TFCF
FVL,[v—wo] = { FCF Gr e i (48)

4.2.3 Value of tax shield

Contrary to M&M, the value of the tax shield requires some extra attention, because in M&E the tax
shield cannot be discounted with the risk-free rate. Let us depart from the following one-period formula
for discounting the tax shield and continuing tax-shield value:
TS[‘U—I] + TSV[‘U—I]

1+ rTS,[v]

TS V[v] =

We substitute the following expressions:

e TSV, as difference between FVy, [, and FVy [): TSV} = FCFpy—qy° [HL‘[U] - HU‘[U]]

TSV}y_1) as difference between FVy, [,_qyand FVy p_13: TSVy_1) = FCFy_3) * [BL‘[,,_l] - GU‘[,,_l]]

The equation of cash-flow growth: FCF,,_5) = FCFp,_17* (1 + gr)

The tax-shield: TS,_1) = DV~ 1¢- T
e The debt value as part of the firm value: DVj,; = (1 — q) - FV, ) = (1 — @) - FCFy_q) - Oy,
After solving for the required return of the tax shield, we obtain:

re=ry Oy
1+ re BL,[‘U] - BU,[‘U]

Trgw) =ty + (1 —q)-1¢-7 (49)

Page 25



For v — oo, the required return on the tax shield becomes:

Ty — 9rF .

TS [0] = 4 (50)

Ir +(1- )-r-r-rf_rU if >
kU q)- Tt T+ JF = TFCF

The upper part of this expression is compatible with the result obtained by Arzac and Glosten (2005,
equation 13) and Barbi (2012, equation 15).

4.2.4 Numerical Example for the case of M&E — Part 2

In this section we use the mathematical formulas from the previous section to verify the values that we
have obtained by means of the backward iteration. Let us start with the third interval which we now
represent as a perpetuity. The superscript in the following expressions indicates that we deal with the
values of the third interval. We calculate the unlevered and levered firm value for point in time t = 10.
The discount rates for the valuation of the unlevered and levered firm are given by:

_ 1

3 . — . — —
FVg10 = FCFyy rU_gF—174-81 25%_2%—760.04 where 1y =1,

FV3,, = FCF ! =174.81 1 = 793.92

Lo = o e —gF  24019% —2%
where
Ty 1425%
T‘FCF=T'U—(1—q)'T'f'T'1+rf=25%—(1—60%)'7%'30%'m=24.019%

Note that the firm values are related to t = 10, and they need to be transferred to t = 0.

pyr _ PVuw 76004
UO™ (1m0 " (14+25%)10
FV, 793.92
FV3, = L0 = = 92.24

(1 +15cp)10 (1 +24.019 %)10

In the second interval we have an annuity with constant growth. This annuity has a lifetime of v = 7. Let
us therefore calculate the annuity factors (42) and (47):

P LA +ge”) _ 1 1 (1+8%) =3.7681

L e —— (1+mr)’) 25%-8% (1+25%)7)
oL, Qtge’)_ L NP CLLIDIEN P
L7 = TrcF — IF (1 + rFCF)U B 24.019% — 8% (1 +24.019 %)7 -

Then the unlevered and levered values at point in time t = 3 of the growing annuities in the second CF-
interval are:

FV33 = FCF, - 6y, = 108 - 3.7681 = 406.96

FV2, = FCFy - 0,; = 108+ 3.8717 = 418.15
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Also, these values need to be discounted to point in time t = 0:

pyz _ FVus 40696
U™ (1 4+my)3 ” (1 +25%)3  ~
FVys 418.15

FVZ, = =219.21

(1+rpep)® (1 + 24019 %)3

Finally, we need to compute the value of the explicit planning interval, where we apply the expressions
(40) and (44). We obtain:

V=0 20 1) 2560
U0 ™1 425%  (1+25%)2  (1+25%)3% '
—-80 -20 —100

FVi, = = —25.08

1+24.019% * (14 24.019 %)? * (1+ 24.019 %)3

Finally, we can add all present values, such that we have the total unlevered and levered firm values:
FVyo = FVgo + FV§ o + FV3 o = —25.60 4+ 208.36 + 81.61 = 264.37

FVi,0 = FVio + FVZ, + FV3, = —25.08 + 219.21 4+ 92.24 = 286.36

4.3 Preliminary Take-aways for the practical use of the M&M model

We can now summarize the lessons that we learn from this example. Let us start with the takeaways that
are different to the M&M case:

(1) Because ry = 14 in all points in time, we can directly calculate the value of the unlevered firm by
backward iteration, summation of discounted cash flows, or by standard constant-growth annuity
and perpetuity formulas.

(2) Contrary to the case of M&M, the discount rate in the FCF method and the required returns on equity
and the capital cash flow are constant throughout time.

(3) The preceding point implies that we have an all-times fixed and maturity-independent relationship
between 1y and 1gcp, Tccr OF Tg- These relationships are described by (45) and the expressions for
Trcr and 1¢cr in section 2. After calculating 1wcp based on (45), we can directly calculate the value
of the levered firm by backward iteration, summation of discounted cash flows or by standard
constant-growth annuity and perpetuity formulas. Like in the setting of M&M, we cannot apply the
equity and CCF method directly, since we do not know the value of debt and therefore the cash flow
to the debt holders.

(4) None of the discount rates 1y, Trcr, Tccr @and 7 depend on the growth of the free cash flow.

(5) The required return on the tax shield increases with the remaining lifetime. In the very end of the
cash flow’s lifetime, the tax shield needed to be discounted with the risk-free rate. In the beginning
of the third time interval this rate was 21.688 %. The required return on the tax shield does not only
depend on the maturity but also on the growth rate gg as can be seen in (49).
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(6) The perpetual model based on M&E does not allow for a growth rate ggp=

1+r . o
Teep=Ty— (1 —q) 15T 1+rU because then the levered firm value becomes infinitely large.
£

(7) Performing a sensitivity analysis in the M&E setting is simpler than for M&M, because the discount
rates 1y, Trcr, Tccr and 1 do not depend on the growth rate gg, an analyst can change the growth
rate without being concerned about the change in the aforementioned discount rates.

(8) All preceding conclusions are different from the conclusions in the M&M model. However, like in the
M&M model, we can apply the standard perpetuity formulas in (1) to (4) as long as we know the
correct relationships between these rates. This applies also to the valuation of the tax shield, since
its required return converges according to expression (50).

5 Conclusions & Practical Advise

Most of the conclusions that concern either M&M or M&E have already been drawn in section 3.3 and
section 4.3, respectively. Comparing these mutually exclusive frameworks, we notice that they lead to
very different results. One essential difference is that 1y, 7gcp, Tccr, @and g are much higher in the M&E
setting than in the M&M setting, even for shorter lifetimes of the cash flow. This implies that the levered
and unlevered firm values in the M&M setting are larger than in the M&E setting. This difference becomes
more pronounced the longer the lifetime of the free cash flow is, the higher the growth and the higher
the one-period required return 1, applied to the FCF. In our numerical example the values according to
M&M are almost 8 to 9 times higher than the values according to M&E.

Another important difference between the two approaches is that discount rates depend differently on
the growth rate of the free cash flow. While the discount rates 1y, Trcr, ccr and 7g are constant in M&E,
they depend on growth and maturity in M&M. The required return on the tax shield rpg, however, is
constant in M&M, but depends on growth and maturity in M&E. This also implies that the two approaches
require different translation formulas between 1y and 1cg, Tccr OF T&-

M&M and M&E are based on the same assumptions, except for one assumption that concerns the
stochastic behavior of the FCF. Hence, an important question is: Which approach should be chosen by the
practitioner? This is a somewhat difficult decision, because there does not seem to exist any literature
that empirically tests the stochastic long-term behavior of free cash flows based on financial statements.
However, economists and finance theorists seem to prefer auto-regressive processes, as such processes
are used in the pricing of options (Rubinstein, 2000), modeling of demand (Whitt, 1981; Ryan, 2004),
modeling of costs (Nembhard, 2003), among others. Also, time series analysts commonly apply auto-
regressive processes of different orders and types to high-frequency financial data. We have also noticed
that continuation values in the M&M framework need to be discounted with the risk-free rate. To avoid
this rather strange phenomenon, an autoregressive process can be preferred.

At this point we can only give the following advice for valuation in practice and academia:
(1) Apply both the frameworks of M&M and M&E to recognize the spread between the valuation results.

(2) Assuming a particular framework (like M&M or M&E), all methods (1) to (4) need to give the same
firm values if these methods are based on the same assumptions concerning the constancy of
leverage, the type of the stochastic FCF process, the riskiness of debt, the growth in the FCF, etc.
However, not all methods are meant to be applied directly. For example, in both the M&M and M&E
settings, the unlevered and levered firm values can be found by means of the backward iteration.
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Only then can the equity, debt, and tax-shield value be calculated. The M&E setting also allows the
direct (or one-step) calculation of the unlevered firm and the application of the FCF method,
presuming the knowledge of the rgcp according to formula (45). In the M&M setting this required
the development of special annuity formulas (see section 3.2). However, the equity method, CCF
method, and the APV method, would not be directly accessible before we have calculated the
unlevered and levered firm values.

(3) Cash flows, values or their constituents should be discounted with the appropriate discount rate. The
application of the backward-iteration as described in sections 3.1 and 4.1 can help to discount
different elements of the cash flow properly.

Assuming a constant level of debt financing, there are essentially no alternative settings to M&M and
M&E. However, it can be shown that auto-regressive processes of first order or stationary cash flows are
special cases of Markov chains. From this perspective, future research will show how the mutually
exclusive models discussed in this paper can be unified under a more general framework.
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