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Abstract 

In this paper, we develop two complete discounted-cash flow (DCF) frameworks for the valuation of 
constant-growth annuities and perpetuities. By ‘complete’ we mean that these frameworks allow the 
valuation of a firm or project by means of different DCF methods, particularly, the equity method, the 
free-cash-flow (FCF) method, the adjusted-present-value-method, and the capital-cash-flow method. This 
also requires the derivation of formulas that allow the translation between different required returns, 
like the required return on unlevered and levered equity, the discount rate in the FCF method, and the 
required return on the tax-shield. Our paper departs from the two most advocated and mutually exclusive 
frameworks when dealing with DCF. The first is based on Modigliani and Miller (M&M), where the FCF at 
different points in time are independently distributed. The second framework rests on the analysis of 
Miles and Ezzell (M&E) who presume a first-order autoregressive cash-flow process. Some elements of a 
‘complete’ framework exist in the literature, but in our opinion, a complete picture has not been 
developed yet. 

The contributions of this paper are the following: (1) We develop (or expand) the set of formulas that are 
required for the valuation of constant-growth annuities and perpetuities; (2) The formulas we develop in 
this paper are based on a backward-iteration process, which in itself represents a suitable tool for firm 
valuation; (3) Using a numerical example, we show that the two mutually exclusive frameworks of M&M 
or M&E achieve very different valuation results; (4) It turns out that the expected returns and the growth 
rate of the FCF are partly linked, but this relationship is different in the two frameworks; (5) In our 
numerical examples, we show how the constant-growth annuity or perpetuity, can be integrated with an 
explicitly planned FCF. 
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1 Introduction 

Discounted cash flow (DCF) methods belong to the most widely used approaches to evaluate firms and 
investment projects in practice and academia (Mukhlynina & Nyborg, 2016). Within these methods, the 
value of annuities and perpetuities with constant growth play a particular role, either for the valuation of 
the continuation value at the end of some explicit planning horizon (Damodaran, 2006, chapters 5 and 6; 
Koller et al., 2010, chapter 6; Mukhlynina & Nyborg, 2016, p. 20, Berk & DeMarzo, 2019, chapter 19; 
Cornell et al., 2021) or for studying relationships between different methods like the free-cash-flow 
method, the adjusted-present-value-method, capital-cash-flow method, etc. (Arzac & Glosten, 2005, 
Massari, et al. 2007, Barbi, 2012). As reasons for adding growth to the DCF models, the literature mentions 
inflation in nominal terms (Bradley & Jarrel, 2003) or that companies aim at growing by means of 
attractive investment opportunities (Miller & Modigliani, 1961; O’Brien, 2003). 

The main purpose of this paper is to show how we can consistently evaluate a firm’s cash flow by means 
of different discounted cash flow (DCF) methods, when these cash flows are modeled as either constant-
growth annuities or perpetuities. By “consistently” we mean that the different DCF methods mentioned 
above must give the same firm value if they are based on the same assumptions. 

Our analysis focuses on two of the most commonly advocated frameworks when dealing with DCF. The 
first is based on Modigliani and Miller (1958, 1963, abbreviated as M&M), and the second has been 
introduced by Miles and Ezzell (1980, 1985, abbreviated as M&E). These two frameworks are different 
with respect to one particular assumption that regards the stochastic behavior of the cash flow. In the 
M&M framework, it is necessary that the free cash flow follows a strictly stationary process, while M&E 
require the FCF to be a particular auto-regressive process to achieve their results (Becker, 2021 and 2022). 
Both frameworks do originally not consider any growth in the free cash flow. Growth has been introduced 
to the M&M framework in Stapleton (1972), and with respect to the model of M&E growth is considered 
in Arzac & Glosten (2005) or Barbi (2012). 

In this paper, we are interested in developing a complete framework for the valuation of constant-growth 
annuities and perpetuities. This means that we can value firms by both backward iteration, direct 
mathematical formulas, and transition formulas between levered and unlevered returns. Some elements 
exist in the literature, but in our opinion a complete picture has not been developed yet. However, 
formulas for annuities without growth are shown in Becker (2022). 

An additional takeaway from our analysis is an understanding about the mechanics between returns and 
growth-rates, which is not taken care of in the literature. 

The sequel of this paper is structured as follows: In section 2 we briefly introduce the relevant DCF 
methods for this paper. Sections 3 and 0 are devoted to the mutually exclusive frameworks of Modigliani 
& Miller and Miles & Ezzell, respectively. Each of these sections is structured as follows: Subsection 3.1 
(4.1) shows how to compute the value of the unlevered and levered firm by means of a backward iteration 
process followed by a numerical example. In subsections 3.2 (4.2) we derive the mathematical formulas 
that allow the direct firm valuation followed by a continuation of the numerical examples. Finally, 
subsection 3.3 (4.3) discuss the takeaways for the respective framework. Section 5 concludes the paper 
with some practical advice and open issues for further research. 
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2 Brief overview of relevant DCF methods 

In this section we give a brief overview of existing DCF methods. In all methods we assume that the free 
cash flow (FCF) is given exogenously. The FCF corresponds to the cash flow to the unlevered firm. 

Direct valuation of debt and equity: Here we compute the firm value 𝐹𝑉  as the sum of the levered equity 
value 𝐸𝑉  and the debt value 𝐷𝑉: 

𝐹𝑉 = 𝐸𝑉 + 𝐷𝑉 

The value of levered equity is based on the flow to equity 𝐹𝑡𝐸 discounted with the required return of the 
equity holders 𝑟 , and the debt value is calculated by discounting the flow to debt 𝐹𝑡𝐷 with the required 
return 𝑟  of the debt holders. The valuation formulas are as follows: 

Perpetuity: Recursive:  

𝐸𝑉 =
𝐹𝑡𝐸

𝑟 − 𝑔
  and  𝐷𝑉 =

𝐹𝑡𝐷

𝑟 − 𝑔
 𝐸𝑉 , =

𝐹𝑡𝐸 + 𝐸𝑉 ,

1 + 𝑟 ,
  and  𝐷𝑉 =

𝐹𝑡𝐷 + 𝐷𝑉

1 + 𝑟 ,
 (1) 

The flow to the equity holders corresponds to the free cash flow plus the tax shield minus the flow to the 
debt holders: 𝐹𝑡𝐸 = 𝐹𝐶𝐹 + 𝑇𝑆 − 𝐹𝑡𝐷. 

 

Capital-cash-flow method (CCF method): In this method we discount the total flow to the capital holders 
𝐶𝐶𝐹 = 𝐹𝑡𝐸 + 𝐹𝑡𝐷 by means of the corresponding required return 𝑟 : 

Perpetuity: Recursive:  

𝐹𝑉 =
𝐶𝐶𝐹

𝑟 − 𝑔
 𝐹𝑉 , =

𝐶𝐶𝐹 + 𝐹𝑉 ,

1 + 𝑟 ,
 (2) 

The capital cash flow also equals the free cash flow plus the tax shield: 𝐶𝐶𝐹 = 𝐹𝐶𝐹 +  𝑇𝑆. 

 

Free-cash flow method (FCF method): in this method we retrieve the value of the levered firm by 
means of discounting the flow to the unlevered firm by means of 𝑟 . 

Perpetuity: Recursive:  

𝐹𝑉 =
𝐹𝐶𝐹

𝑟 − 𝑔
 𝐹𝑉 , =

𝐹𝐶𝐹 + 𝐹𝑉 ,

1 + 𝑟 ,
 (3) 

The discount rate in the FCF method (also referred to as after-tax weighted average cost of capital) is 
usually computed as 𝑟 = 𝑞 ∙ 𝑟 + (1 − 𝑞) ∙ (1 − 𝜏) ∙ 𝑟 , and the required return in the CFC-method 
(also referred to as before-tax weighted average cost of capital) is calculated as 𝑟 = 𝑞 ∙ 𝑟 + (1 − 𝑞) ∙

𝑟  (Arditti, 1973, p. 1002 or p. 1006; McConnell & Sandberg, 1975, p. 885; Harris & Pringle, 1985, p. 237; 
Ruback, 2002, p. 85 and p. 89). Hence, the required return in the CCF-method can also be directly 
calculated from the discount rate in the FCF-method: 𝑟 = 𝑟 + (1 − 𝑞) ∙ 𝑟 ∙ 𝜏. 
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Adjusted-present-value-method (APV method): In this method we compute the levered firm value as 
the sum of the unlevered firm value and the tax shield value: 𝐹𝑉 = 𝐹𝑉 + 𝑇𝑆𝑉. The value of the 
unlevered firm is calculated by discounting the FCF with the required return on unlevered equity (firm)  
𝑟 , and the tax shield 𝑇𝑆 is discounted with its appropriate discount rate 𝑟 . 

Perpetuity: Recursive:  

𝐹𝑉 =
𝐹𝐶𝐹

𝑟 − 𝑔
  and  𝑇𝑆𝑉 =

𝑇𝑆

𝑟 − 𝑔
 𝐹𝑉 , =

𝐹𝐶𝐹 + 𝐹𝑉 ,

1 + 𝑟 ,
, 𝑇𝑆𝑉 =

𝑇𝑆 + 𝑇𝑆𝑉

1 + 𝑟 ,
 (4) 

 

In this paper we focus on the two mutually exclusive frameworks of M&M and M&E, that are linked to 
several assumptions. Most importantly, the leverage of the firm is held constant throughout the lifetime 
of the firm’s or project’s cash flow, i. e. 𝐸𝑉 , = 𝑞 ∙ 𝐹𝑉 ,  and 𝐷𝑉 = (1 − 𝑞) ∙ 𝐹𝑉 ,  where 𝑞 is the constant 
equity-to-firm-value ratio. There exist alternative frameworks, where interest payments and down 
payments on debt are specified in advance and independent of the firm value. In such cases leverage can 
vary over time (Inselbag & Kaufold, 1997; Becker, 2020). 

Furthermore, it is assumed that the outstanding amount of debt equals the value of debt, and that debt 
financing is risk-free, which implies that the required return on debt equals the risk-free rate:  𝑟 = 𝑟 . 
Moreover, there are no costs of financial distress, there exists only corporate taxation, whereas wealth 
taxes or personal taxes are outside this analysis. For a more detailed overview of assumptions, the reader 
is referred to Becker (2022). 

 

3 Framework based on Modigliani and Miller 

3.1 Backward iteration for stationary cash flows (the case of M&M) 

The original model of Modigliani & Miller (1958, 1963) is valid for non-growing perpetuities only (See also 
Brusov et al., 2021, p. 39). To the best of our knowledge a complete and consistent framework for the 
valuation of growing annuities does not exist; we therefore develop it here.  

Although Modigliani & Miller (1958, 1963) have never explicitly made any assumption about the cash flow 
process, their results can only be obtained for a stochastic cash flow that is independently distributed or 
stationary (see Becker, 2021). When considering cash flows of different size or cash flows with constant 
growth, such a process can be described by the following equations: 

 𝐹𝐶𝐹 = 𝜀̃ ∙ 𝑎      or      𝐹𝐶𝐹 = 𝜀̃ ∙ (1 + 𝑔)  (5) 

where 𝜀̃  is a stochastic input-parameter that is drawn from the same time-invariant distribution 𝒟 (this 
means 𝜀̃ ~𝒟 for all 𝑡), 𝑎  is a factor that determines the size of the cash flow at point in time 𝑡, and 𝑔 is a 
constant growth rate. Because of the requirement that present values are additive (principle of arbitrage-
freeness), this implies that the one-period required return 𝑟  for discounting a cash flow 𝐹𝐶𝐹  from point 
in time 𝑡 to 𝑡 − 1 is constant (it does not depend on 𝑡). 

Furthermore, this means that the stochastic cash flow 𝐹𝐶𝐹  observed at point t does not depend on the 
history of cash flows prior to this point in time, i. e. 

 𝐹𝐶𝐹  | ℱ = 𝐹𝐶𝐹  | ℱ = ⋯ = 𝐹𝐶𝐹  | ℱ  (6) 



Page 5 

where  ℱ  denotes the information (or state of the world) at point in time 𝑡. 

With other words, the expected cash flow 𝐹𝐶𝐹  is independent of the realized cash flow 𝐹𝐶𝐹  at point 
in time 𝑡. This is different in DCF methods based on Miles & Ezzell (1980 and 1985) who assume an 
autoregressive FCF process (see section 0). 

3.1.1 Value of unlevered firm 

We will now derive the formula for the valuation of the unlevered firm. Here we need to start with a 
maturity (remaining lifetime) of one year, and then we increase the outstanding maturity step by step. In 
what follows, we apply the following notation. Whenever we write 𝑋 , we refer to some value or cash 
flow 𝑋 that appears at point in time 𝑡 ∈ {0, … , 𝑇}. Alternatively, we use the notation 𝑋[ ] (notice the 
brackets in the subscript) to refer to a value or cash flow when the remaining lifetime of the 
firm/investment is 𝑣 ∈ {𝑇, … ,0}.  At the end of the maturity (lifetime), where  𝑣 = 1, we can calculate the 
value of the unlevered firm as follows: 

𝐹𝑉 ,[ ] | ℱ[ ]  =
𝔼 𝐹𝐶𝐹[ ] |  ℱ[ ]

1 + 𝑟
 

Let us now go backwards in time from 𝑣 = 1 to 𝑣 = 2: 

𝐹𝑉 ,[ ] | ℱ[ ]  =
𝔼 𝐹𝐶𝐹[ ] |  ℱ[ ] + 𝔼 𝐹𝑉 ,[ ] |  ℱ[ ]

1 + 𝑟
 

We do not yet know the riskiness (stochasticity) of 𝐹𝑉 ,[ ]. However, we can write this expression 
component-wise as follows: 

𝐹𝑉 ,[ ] | ℱ[ ]  =
𝔼 𝐹𝐶𝐹[ ] |  ℱ[ ]

1 + 𝑟
+

𝔼 𝐹𝑉 ,[ ] |  ℱ[ ]

1 + 𝑟?
 

where 𝑟? denotes the unknown discount rate. For the second term on the right side, we can write: 

𝔼 𝐹𝑉 ,[ ] |  ℱ[ ]

1 + 𝑟?
=

𝔼 𝔼 𝐹𝑉 ,[ ] |  ℱ[ ]  |  ℱ[ ]

1 + 𝑟?
=

𝔼 𝔼 𝐹𝐶𝐹[ ] | ℱ[ ]  | ℱ[ ] 
1 + 𝑟

1 + 𝑟?
 

From (6) we know that: 

𝐹𝐶𝐹[ ] | ℱ[ ] = 𝐹𝐶𝐹[ ] | ℱ[ ] 

Therefore, the right term becomes: 

𝔼 𝐹𝑉 ,[ ] |  ℱ[ ]

1 + 𝑟?
=

𝔼
𝔼 𝐹𝐶𝐹[ ] | ℱ[ ]

1 + 𝑟  | ℱ[ ]

1 + 𝑟?
 

Here the expression 
𝔼 [ ] | ℱ[ ]  is deterministic (non-stochastic), and deterministic terms need to be 

discounted with the risk-free rate. This means, we are left with: 

𝐹𝑉 ,[ ] | ℱ[ ]  =
𝔼 𝐹𝐶𝐹[ ] |  ℱ[ ]

1 + 𝑟
+

𝐹𝑉 ,[ ]

1 + 𝑟
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By going backwards in time from 𝑣 = 2 to 𝑣 = 3, we can observe the same relationship. This means, we 
retrieve the following general pattern (we now omit the  ℱ-notation): 

 𝐹𝑉 ,[ ] =
𝐹𝐶𝐹[ ]

1 + 𝑟
+

𝐹𝑉 ,[ ]

1 + 𝑟
 (7) 

The same relationship has been shown in a numerical example in Becker (2021). To discount the 
continuation value at point in time 𝑡 + 1 (equivalently 𝑣 − 1) to point in time 𝑡 (equivalently 𝑣) can be 
seen with some discomfort. However, it is a result of the stochasticity of the cash flow defined in (5) and 
the requirement of arbitrage-free pricing. To understand this phenomenon better, let us look at Figure 1.  

 

Figure 1: Deterministic continuation values when cash flows are identically and independently distributed 

We see that the stochastic future cash flow (at 𝑡 = 2) seen from node 1 is the same as seen from node 2. 
Hence, the continuation values in nodes 1 and 2 at point in time 𝑡 = 1 are the same. It is the principle of 
arbitrage-free valuation in finance that dictates us to discount the non-stochastic value at 𝑡 = 2 by means 
of the risk-free rate. In section 0 we will discuss the framework of Miles & Ezzell (1980, 1985). In their 
approach continuation values will never be discounted with the risk-free rate, which may seem more 
tempting to the firm evaluator. 

 

3.1.2 Value of levered firm 

In what follows, we derive the formula for the valuation of the levered firm. For this purpose, we derive 
the FCF method based on the valuation of levered equity, which can be stated as follows: 

 𝐸𝑉 ,[ ] =
𝔼 𝐹𝐶𝐹[ ]

1 + 𝑟
+

𝐷𝑉[ ] ∙ 𝑟 ∙ 𝜏 − 𝐷𝑉[ ] ∙ 𝑟 + ∆𝐷𝑉[ ] + 𝐸𝑉 ,[ ]

1 + 𝑟
 (8) 

Here 𝐷𝑉[ ] ∙ 𝑟 ∙ 𝜏 represents the interest tax shield, 𝐷𝑉[ ] ∙ 𝑟  is the interest payment, ∆𝐷𝑉[ ] =

𝐷𝑉[ ] − 𝐷𝑉[ ] is the change of debt. 𝐷𝑉[ ] | ℱ[ ] has a known deterministic value at the same point in 
time; It is therefore discounted with the risk-free rate. 𝐸𝑉 ,[ ] | ℱ[ ] and 𝐷𝑉[ ]  | ℱ[ ] are 
deterministic for exactly the same reason why 𝐹𝑉 ,[ ] | ℱ[ ] is deterministic. Therefore, they need to 
be discounted with the risk-free rate 𝑟 . Furthermore, both the value of equity and debt are assumed 
proportional to the firm value, i. e.: 
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 𝐸𝑉 ,[ ] = 𝑞 ∙ 𝐹𝑉 ,[ ]    and    𝐷𝑉[ ] = (1 − 𝑞) ∙ 𝐹𝑉 ,[ ] (9) 

After substituting (9) into (8) and after solving for the levered firm value, we obtain:  

 𝐹𝑉 ,[ ] =
1 + 𝑟

1 + 𝑟
∙

𝔼 𝐹𝐶𝐹[ ]

1 + 𝑟 − (1 − 𝑞) ∙ 𝑟 ∙ 𝜏
+

𝐹𝑉 ,[ ]

1 + 𝑟 − (1 − 𝑞) ∙ 𝑟 ∙ 𝜏
 (10) 

We denote the discount rate applied in this expression as 𝛼 = 𝑟 − (1 − 𝑞) ∙ 𝑟 ∙ 𝜏.  

We are now able to fill this framework with numerical data. This is shown in the next subsection.  

 

3.1.3 Numerical Example for the case of M&M – Part 1 

In what follows, we apply the approaches from the previous subsections to a numerical example. As 
mentioned before, when evaluating companies, the lifetime is often split into several intervals. In our 
example, we apply three intervals: In the first interval, we imagine some kind of a start-up company that 
begins with an initially negative cash flow that later turns positive. For simplicity, we work with only three 
points in time (𝑡 = 0 to 𝑡 = 3). The second interval from 𝑡 = 4 to 𝑡 = 10 is modelled as an annuity with 
a constant growth rate of 8 %. We assume that the firm continues afterwards. Textbooks commonly 
suggest some perpetual model for this purpose. At this moment, we have not yet discussed, how this 
perpetual model looks like. This discussion will be part of section 3.2. We therefore assume an interval 
that starts at 𝑡 = 11 and ends at 𝑡 = 250 (This length was chosen such that the perpetual formulas 
presented later and the backward iteration in this section deliver the same numerical values with an 
accuracy of two decimals). We assume a growth rate of 2 %. 

Table 1 shows all relevant information concerning the free cash flow in the three intervals. For illustration 
purposes, we have also specified three states of the world (normally we presume that there are many 
more). It is important to understand that our framework is based on the critical assumption that 
stochastic cash flows are independently distributed and that there is a time-invariant parameter 𝜀̃, such 
that 𝐹𝐶𝐹 = 𝜀̃ ∙ 𝑎 . I.e. all states in point of time 𝑡 + 1 can be reached from all states at point of time 𝑡, 
and the stochastic cash flows in all points in time are proportional to each other. For example, in Table 1 
we see that 𝐹𝐶𝐹 = 0.25 ∙ 𝐹𝐶𝐹  or 𝐹𝐶𝐹 = −5 ∙ 𝐹𝐶𝐹 . The proportionality of the cash flows allows us to 
apply a constant one-period discount 𝑟  rates on the cash flows. 

After planning the explicit cash flows in the first time interval, the annuity and perpetuity in the following 
intervals are determined in the following forward manner: 𝐹𝐶𝐹 = 𝐹𝐶𝐹 ∙ (1 + 𝑔F). For example: 

𝐹𝐶𝐹 = 100 ∙ (1 + 8 %) = 108, 𝐹𝐶𝐹 = 108 ∙ (1 + 8 %) = 116.64, etc.  

Furthermore, we use the following additional information: 

𝑟 = 7 %,   𝜏 = 30 %,   𝑟 = 25 %,   𝑞 = 60 % 

where 𝑟  is the risk-free rate, 𝜏 is the tax rate, 𝑟  is the one-period required return on the FCF, and 𝑞 is 
the equity-to-firm-value ratio. 

At this point it is important to recognize that the type of information that is given in our valuation context 
determines the method that can be applied in this context. We can neither apply the APV-method, equity 
method, nor the CCF method directly. This is because instead of a given debt value or cash flows to the 
debt holders, the parameter 𝑞 is given, and this parameter determines the value of debt and cash flows 
to debt holders after we computed the firm-value. 
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In what follows, we apply the backward iteration methods (7) and (10). For example, the last unlevered 
firm values are determined as follows: 

𝐹𝑉 , =
19,861

1 + 25 %
= 15,899, 𝐹𝑉 , =

19,472

1 + 25 %
+

15,899

1 + 7 %
= 30,427 

The corresponding levered firm values are: 

𝐹𝑉 , =
1 + 7 %

1 + 25 %
∙

19,861

1 + 6.16 %
= 16,015 

𝐹𝑉 , =
1 + 7  %

1 + 25 %
∙

19,472

1 + 6.16 %
+

16,015

1 + 6.16 %
= 30,786 

where we have applied 𝛼 = 𝑟 − (1 − 𝑞) ∙ 𝑟 ∙ 𝜏 = 7  % − (1 − 60 %) ∙ 7 % ∙ 30 % = 6.16 %. 

Finally, the values in 𝑡 = 0 are: 

𝐹𝑉 , =
𝐹𝐶𝐹

1 + 𝑟
+

𝐹𝑉 ,

1 + 𝑟
=

−80

1 + 25 %
+

2,229.91

1 + 7 %
= 2,020.02 

𝐹𝑉 , =
1 + 𝑟

1 + 𝑟
∙

𝐹𝐶𝐹

1 + 𝛼
+

𝐹𝑉 ,

1 + 𝛼
=

1 + 7 %

1 + 25 %
∙

−80

1 + 6.16 %
+

2,729.91

1 + 6.16 %
= 2,507.00 

Once, the values of the levered and unlevered firm are determined, the values of equity, debt and the tax 
shield can be calculated by: 

𝐷𝑉 = 𝐹𝑉 , ∙ (1 − 𝑞), 𝐸𝑉 , = 𝐹𝑉 , ∙ 𝑞, 𝑉𝑇𝑆 = 𝐹𝑉 , − 𝐹𝑉 ,  

Note, that before this point it is not possible to apply the methods (1) to (4) directly because we do not 
know the discount rates 𝑟 , 𝑟 , and 𝑟 . Furthermore, neither the direct valuation of equity and debt 
nor the CCF-method can be directly applied since these methods require knowledge about the flow to 
the debt holders. However, we can calculate these values as a result of the backward iteration by the 
following expressions: 

Flow to debt: 𝐹𝑡𝐷 = 𝐷𝑉 ∙ (1 + 𝑟f) − 𝐷𝑉  (11) 

Tax shield: 𝑇𝑆 = 𝐷𝑉 ∙ 𝜏 ∙ 𝑟f (12) 

Flow to levered equity: 𝐹𝑡𝐸 = 𝐹𝐶𝐹 + 𝑇𝑆 − 𝐹𝑡𝐷  (13) 

Capital cash flow: 𝐶𝐶𝐹 = 𝐹𝑡𝐸 + 𝐹𝑡𝐷 = 𝐹𝐶𝐹 + 𝑇𝑆  (14) 

 

Required return on equity: 𝑟 , =
𝐹𝑡𝐸 + 𝐸𝑉 ,

𝐸𝑉 ,
 (15) 

Required return on CCF: 𝑟 , = 𝑞 ∙ 𝑟 , + (1 − 𝑞) ∙ 𝑟f (16) 

Discount rate in FCF method: 𝑟 , = 𝑞 ∙ 𝑟 , + (1 − 𝑞) ∙ 𝑟f ∙ (1 − 𝜏) (17) 

 

The cash flows to the equity and debt holders and the returns are shown in Tables 2 and 3. In the following 
section we will turn to formulas that allow the direct valuation of the levered and unlevered firm.
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   Explicit Explicit Explicit Annuity Annuity … Annuity Perpetuity Perpetuity … Perpetuity Perpetuity Perpetuity 

Point in time t=0 t=1 t=2 t=3 t=4 t=5 … t=10 t=11 t=12 … t=248 t=249 t=250 

Growth rate  n.a. n.a. n.a. 8 % 8 %  8 % 2 % 2 %  2 % 2 % 2 % 
State 1  -132.00 -33.00 165.00 178.20 192.46  282.78 288.44 294.21  31,499 32,129 32,771 
State 2  -80.00 -20.00 100.00 108.00 116.64  171.38 174.81 178.31  19,090 19,472 19,861 
State 3  -28.00 -7.00 35.00 37.80 40.82  59.98 61.18 62.41  6,682 6,815 6,951 
Expected CF  -80.00 -20.00 100.00 108.00 116.64  171.38 174.81 178.31  19,090 19,472 19,861 
               
Unlevered Firm Value 2,020.02 2,229.91 2,403.12 2,485.74 2,567.29 2,647.16  2,992.72 3,052.57 3,113.62  30,427 15,889 0 
Levered Firm Value 2,507.00 2,729.91 2,915.20 3,009.17 3,102.09 3,193.34  3,596.81 3,668.73 3,742.10  30,786 16,015 0 
Equity Value 1,504.20 1,637.95 1,749.12 1,805.50 1,861.25 1,916.00  2,158.09 2,201.24 2,245.26  18,472 9,609 0 
Debt Value 1,002.80 1,091.97 1,166.08 1,203.67 1,240.84 1,277.33  1,438.72 1,467.49 1,496.84  12,314 6,406 0 
Tax-shield value 486.98 500.01 512.08 523.44 534.80 546.18  604.09 616.16 628.48  359 126 0 

Table 1: FCF, growth and values in our numerical example (M&M)  
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   Explicit Explicit Explicit Annuity Annuity … Annuity Perpetuity Perpetuity … Perpetuity Perpetuity Perpetuity 

Point in time t=0 t=1 t=2 t=3 t=4 t=5 … t=10 t=11 t=12 … t=248 t=249 t=250 

Expected FCF  -80.00 -20.00 100.00 108.00 116.64 … 171.38 174.81 178.31 … 19,090 19,472 19,861 
Expected CF to Equity  -39.97 0.61 80.45 86.19 92.34 … 130.47 133.08 135.74 … 12,777 12,960 13,142 
Expected CF to Debt  -18.97 2.32 44.04 47.09 50.36 … 70.53 71.94 73.38 … 6,686 6,771 6,854 
Expected CCF  -58.94 2.93 124.49 133.28 142.70 … 201.00 205.02 209.12 … 19,463 19,730 19,996 
Expected tax shield  21.06 22.93 24.49 25.28 26.06 … 29.62 30.21 30.82 … 373 259 135 

Table 2: Cash Flows in our numerical example (M&M) 

 

   Explicit Explicit Explicit Annuity Annuity … Annuity Perpetuity Perpetuity … Perpetuity Perpetuity Perpetuity 

Point in time t=0 t=1 t=2 t=3 t=4 t=5 … t=10 t=11 t=12 … t=248 t=249 t=250 

Return unlevered firm 6.430 % 6.871 % 7.599 % 7.626 % 7.654 % 7.685 % … 7.841 % 7.841 % 7.841 % … 16.215 % 25.000 %  

Return on equity 6.234 % 6.824 % 7.823 % 7.861 % 7.902 % 7.947 % … 8.166 % 8.166 % 8.166 % … 22.180 % 36.764 %  

Return on debt 7.000 % 7.000 % 7.000 % 7.000 % 7.000 % 7.000 % … 7.000 % 7.000 % 7.000 % … 7.000 % 7.000 %  

Return on tax shield 7.000 % 7.000 % 7.000 % 7.000 % 7.000 % 7.000 % … 7.000 % 7.000 % 7.000 % … 7.000 % 7.000 %  
Discount rate in FCF 
method 5.700 % 6.055 % 6.654 % 6.677 % 6.701 % 6.728 % 

… 
6.860 % 6.860 % 6.860 % 

… 
15.268 % 24.019 % 

 

Discount rate in CCF 
method 6.540 % 6.895 % 7.494 % 7.517 % 7.541 % 7.568 % 

… 
7.700 % 7.700 % 7.700 % 

… 
16.108 % 24.859 % 

 

Table 3: Required returns/ discount rates in our numerical example (M&M) 
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3.2 Direct Valuation formulas for stationary cash flows (the case of M&M) 

3.2.1 Value of unlevered firm 

Although, a time-varying return 𝑟  does not allow the application of the standard annuity factor of the 

form  ∙ 1 −
( )

( )
, the expression (7) allows the straight-forward derivation of another annuity 

formula, because each cash flow is discounted once with 𝑟  and the remaining periods of time with 𝑟 . 
Hence, we can write the value of the unlevered firm as a sum as follows (Please note that we now use the 
time index 𝑡 instead of the remaining lifetime 𝑣), i.e. 

    𝐹𝑉 , =
1 + 𝑟

1 + 𝑟
∙

𝐹𝐶𝐹

(1 + 𝑟 )
 (18) 

We now observe the constant risk-free rate in the sum of the discounted cash flows. Hence, we can apply 
the standard formula for an annuity with constant growth to this sum. This brings us to: 

 𝐹𝑉 ,[ ] =
1 + 𝑟

1 + 𝑟
∙ 𝐹𝐶𝐹[ ] ∙ 𝜑 ,[ ] (19) 

with the following annuity factor: 

 𝜑 ,[ ] =

⎩
⎪
⎨

⎪
⎧

1

𝑟 − 𝑔
∙ 1 −

(1 + 𝑔 )

(1 + 𝑟 )
if  𝑟 ≠ 𝑔

⬚ ⬚ ⬚
𝑣

1 + 𝑟
if 𝑟 = 𝑔

    (20) 

This expression also allows us to develop a constant-growth perpetuity formula. From expression (20) we 
learn that we must analyze the value of the unlevered firm for different magnitudes of the growth rate. 

If 𝑔 < 𝑟  then the term 
( )

( )
 in the upper part of (20) tends to Zero if the maturity tends to infinity.  In 

the case that 𝑔 = 𝑟 , the term  (20) tends to infinity if the maturity tends to infinity. Finally, if 𝑔 >

𝑟 , we can see that the term 1 −
( )

( )
 in (20) tends to −∞, while 𝑟 − 𝑔 < 0. Based on this behavior, 

we can state the value of a perpetual unlevered cash flow as follows: 

 𝐹𝑉 ,[ → ] =

⎩
⎨

⎧𝐹𝐶𝐹 ∙
1 + 𝑟

1 + 𝑟
∙

1

𝑟 − 𝑔
if 𝑔 < 𝑟

⬚ ⬚ ⬚
∞ ⬚ 𝑔 ≥ 𝑟

 (21) 

We can use expressions (20) and (21) to derive the formula for the required return on the unlevered firm. 
To do this, we can substitute (19) into the following recursive formula: 

𝐹𝑉 ,[ ] =
𝐹𝐶𝐹[ ] + 𝐹𝑉 ,[ ]

1 + 𝑟 ,[ ]
 

By using  𝐹𝐶𝐹[ ] = 𝐹𝐶𝐹[ ] ∙ (1 + 𝑔 ), we obtain the following relationship: 
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 𝑟 ,[ ] =

⎩
⎪
⎨

⎪
⎧𝑟 +

1

𝜑 ,[ ]
∙

𝑟 − 𝑟

1 + 𝑟
if 𝑟 ≠ 𝑔

⬚ ⬚ ⬚

𝑟 ,[ ] = 𝑟 +
𝑟 − 𝑟

𝑣
if 𝑟 = 𝑔

 (22) 

where 𝜑 ,[ ] is given by (20). If the maturity 𝑣 tends to infinity, we obtain: 

 𝑟 ,[ → ] =

𝑟 + (𝑟 − 𝑔 ) ∙
𝑟 − 𝑟

1 + 𝑟
if 𝑟 < 𝑔

⬚ ⬚ ⬚
𝑟 if 𝑟 ≥ 𝑔

 (23) 

 

3.2.2 Value of levered firm 

Like for the unlevered firm, we also have a time-varying discount rate 𝑟  when calculating the levered 
firm value. However, expression (10) allows to write the present value as a sum of discounted cash flows, 
because each cash flow is discounted once with 𝑟  and the remaining periods with 𝛼.  

  𝐹𝑉 , =
1 + 𝑟

1 + 𝑟
∙

𝐹𝐶𝐹

1 + 𝛼
 (24) 

Assuming a constant growth annuity, we can furthermore apply the standard-textbook formula to the 
sum of discounted cash flows, where we use a constant 𝛼. This brings us to the following expression: 

 𝐹𝑉 ,[ ] = 𝐹𝐶𝐹[ ] ∙
1 + 𝑟

1 + 𝑟
∙ 𝜑 ,[ ] (25) 

where we apply the annuity factor: 

 𝜑 ,[ ] =

⎩
⎪
⎨

⎪
⎧

1

𝛼 − 𝑔
∙ 1 −

(1 + 𝑔 )

(1 + 𝛼)
if 𝛼 ≠ 𝑔

⬚ ⬚ ⬚

𝜑 ,[ ] =
𝑣

1 + 𝛼
if 𝛼 = 𝑔

                 (26) 

From expression (26) we learn that we must analyze the value of the levered firm for different magnitudes 

of the growth rate. As long as 𝑔 < 𝛼, the term ( )

( )
 in the upper part of (26) tends to Zero if the 

maturity 𝑣 tends to infinity.  In case of 𝑔 = 𝛼, the term  (26) tends to infinity if the maturity tends to 

infinity. Finally, if 𝑔 > 𝛼, we can see that the term 1 −
( )

( )
 in (26) tends to −∞, while 𝛼 − 𝑔 < 0. 

Summarizing, we obtain: 

 𝐹𝑉 ,[ → ] =

⎩
⎨

⎧𝐹𝐶𝐹 ∙
1 + 𝑟

1 + 𝑟
∙

1

𝛼 − 𝑔
if 𝑔 < 𝛼

⬚ ⬚ ⬚
∞ ⬚ 𝑔 ≥ 𝛼

 (27) 
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Let us now turn to the discount rate that needs to be applied in the FCF method. Let us start with 
substituting (25) into the following recursive formula: 

𝐹𝑉 ,[ ] =
𝐹𝐶𝐹[ ] + 𝐹𝑉 ,[ ]

1 + 𝑟 ,[ ]
 

By considering  𝐹𝐶𝐹[ ] = 𝐹𝐶𝐹[ ] ∙ (1 + 𝑔 ), we obtain the relationship: 

 𝑟 ,[ ] = 𝛼 +
1

𝜑 ,[ ]
∙

𝑟 − 𝑟

1 + 𝑟
 (28) 

where 𝜑 ,[ ] is defined given by (26). If the growth rate of the FCF equals the rate 𝛼 then this expression 
reduces to: 

𝑟 ,[ ] = 𝛼 +
𝑟 − 𝑟

𝑣
      if    𝛼 = 𝑔  

Accordingly, if the maturity tends to infinity we obtain:  

 𝑟 ,[ → ] =

𝛼 + (𝛼 − 𝑔 ) ∙
𝑟 − 𝑟

1 + 𝑟
if 𝑔 < 𝛼

⬚ ⬚ ⬚
𝛼 if 𝑔 ≥ 𝛼

 (29) 

 

Based on these derivations we can furthermore establish the relationships between different required 
returns:  

Relationship between 𝒓𝐔 and 𝒓𝐅𝐂𝐅:  This relationship is easily obtained by using (22) and (28). Particularly, 
we obtain: 

 𝑟 ,[ ] = 𝛼 + 𝑟 ,[ ] − 𝑟 ∙
𝜑 ,[ ]

𝜑 ,[ ]
 (30) 

If we let 𝑣 → ∞, we obtain the following possibilities. First we look at the case where 𝑔 < 𝛼 < 𝑟 . This 
gives: 

 𝑟 ,[ ] = 𝛼 + 𝑟 ,[ ] − 𝑟 ∙
𝛼 − 𝑔

𝑟 − 𝑔
 (31) 

After substituting 𝛼, this can be rearranged to: 

 𝑟 ,[ ] = 𝑟 ,[ ] −
𝑟 ,[ ] − 𝑔

𝑟 − 𝑔
∙ 𝑟 ∙ 𝜏 ∙ (1 − 𝑞) (32) 

This formula has also been derived by Copeland et al. (2000, appendix A) and appears in Massari et al. 
(2007).1 

In the second case we have 𝑔 ≥ 𝛼 which yields 𝑟 ,[ ] = 𝛼 which is independent of 𝑟 . 

 

 
1 Copeland et al. (2000) and Massari et al. (2007) use the cost of debt 𝑟  in their formula. However, they define the 
interest payment 𝐼  and tax shield 𝑇𝑆  as follows: 𝐼 = 𝐷𝑉 ∙ 𝑟  and 𝑇𝑆 = 𝐷𝑉 ∙ 𝑟 ∙ 𝜏. Furthermore, they 
discount the tax shield (and equivalently the interest) by means of 𝑟 . This leads to debt being risk-free. 
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Relationship between 𝒓𝐔 and 𝒓𝐄: Based on relationships (31) or (32) and by applying the after-tax 
weighted average cost of capital (𝑟 = 𝑞 ∙ 𝑟 + (1 − 𝑞) ∙ (1 − 𝜏) ∙ 𝑟 ) we can also establish the relation 
between the required return on levered equity and unlevered equity (firm): 

 𝑟 ,[ ] = 𝑟 +
𝑟 ,[ ] − 𝑟

𝑞
∙

𝜑 ,[ ]

𝜑 ,[ ]
 (33) 

If we let 𝑣 → ∞, then we obtain the following possibilities: 

(a) 𝑔 < 𝛼 < 𝑟 : 𝑟 ,[ ] = 𝑟 +
𝑟 ,[ ] − 𝑟

𝑞
∙

𝛼 − 𝑔

𝑟 − 𝑔
 

(b) 𝑔 ≥ 𝛼: 𝑟 ,[ ] = 𝑟  which is independent of 𝑟  

 

In what follows, we will apply the direct valuation formulas to our numerical example. 

 

3.2.3 Numerical Example for the case of M&M – Part 2 

In this section we use the mathematical formulas from the previous section to verify the values that we 
have obtained by means of the backward iteration. Let us start with the third interval which we now 
approximate by a perpetuity. The superscript in the following expressions indicates that we deal with the 
values of the third interval. We calculate the unlevered and levered firm value for point in time 𝑡 = 10 as 
following: 

𝐹𝑉 , = 𝐹𝐶𝐹 ∙
1 + 𝑟

1 + 𝑟
∙

1

𝑟 − 𝑔
= 𝐹𝐶𝐹 ∙

1

𝑟 ,[ → ] − 𝑔
 

 

= 174.81 ∙
1 + 7 %

1 + 25 %
∙

1

7 % − 2 %
= 174.81 ∙

1

7.8411 % − 2 %
 

 

= 2,992.72 

Where we have applied: 

𝑟 ,[ → ] = 𝑟 + (𝑟 − 𝑔 ) ∙
𝑟 − 𝑟

1 + 𝑟
= 7 % + (7 % − 2%) ∙

25 % − 7 %

1 + 7 %
≈ 7.8411 % 

The levered firm value becomes: 

𝐹𝑉 , = 𝐹𝐶𝐹 ∙
1 + 𝑟

1 + 𝑟
∙

1

𝛼 − 𝑔
= 𝐹𝐶𝐹 ∙

1

𝑟 ,[ → ] − 𝑔
 

 

= 174.81 ∙
1 + 7 %

1 + 25 %
∙

1

6.16 % − 2 %
= 174.81 ∙

1

6.8598 % − 2 %
 

 

= 3597.05 
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where 

𝛼 = 𝑟 − (1 − 𝑞) ∙ 𝑟 ∙ 𝜏 = 7 % − (1 − 60 %) ∙ 7 % ∙ 30 % = 6.16 % 

and 

𝑟 = 𝛼 + (𝛼 − 𝑔 ) ∙
𝑟 − 𝑟

1 + 𝑟
= 6.16 % + (6.16 % − 2 %) ∙

25 % − 7 %

1 + 7 %
= 6.8598 % 

 

Note that the firm values are related to 𝑡 = 10, and they need to be further discounted to 𝑡 = 0 as 
follows: 

𝐹𝑉 , =
𝐹𝑉 ,

(1 + 𝑟 )
=

2,992.72

(1 + 7 %)
= 1,521.36 

𝐹𝑉 , =
𝐹𝑉 ,

(1 + 𝛼)
=

3597.05

(1 + 6.16 %)
= 1,978.51 

In the second interval we have an annuity with constant growth. This annuity has a lifetime of 𝑣 = 7. Let 
us therefore calculate the annuity factors (20) and (26): 

𝜑 ,[ ] =
1

𝑟 − 𝑔
∙ 1 −

(1 + 𝑔 )

(1 + 𝑟 )
=

1

7 % − 8 %
∙ 1 −

(1 + 8 %)

(1 + 7 %)
= 6.7284 

𝜑 ,[ ] =
1

𝛼 − 𝑔
∙ 1 −

(1 + 𝑔 )

(1 + 𝛼)
=

1

6.16 % − 8 %
∙ 1 −

(1 + 8 %)

(1 + 6.16 %)
= 6.9468 

Now we can compute the values of the growing annuity in the second FCF-interval: 

𝐹𝑉 , = 𝐹𝐶𝐹 ∙
1 + 𝑟

1 + 𝑟
∙ 𝜑 ,[ ] = 108 ∙

1 + 7 %

1 + 25 %
∙ 6.7284 = 622.02 

𝐹𝑉 , = 𝐹𝐶𝐹 ∙
1 + 𝑟

1 + 𝑟
∙ 𝜑 ,[ ] = 108 ∙

1 + 7 %

1 + 25 %
∙ 6.9468 = 642.21 

Also, these values need to be discounted to point in time 𝑡 = 0: 

𝐹𝑉 , =
𝐹𝑉 ,

(1 + 𝑟 )
=

622.02

(1 + 7 %)
= 507.76 

𝐹𝑉 , =
𝐹𝑉 ,

(1 + 𝛼)
=

642.21

(1 + 6.16 %)
= 536.78 

Finally, we need to compute the value of the explicit planning interval, where we apply the expressions 
(18) and (24). We obtain: 

𝐹𝑉 , =
1 + 7 %

1 + 25 %
∙

−80

1 + 7 %
+

−20

(1 + 7 %)
+

−100

(1 + 7 %)
= −9.08 

𝐹𝑉 , =
1 + 7 %

1 + 25 %
∙

−80

1 + 6.16 %
+

−20

(1 + 6.16 %)
+

−100

(1 + 6.16 %)
= −8.15 

Finally, we can add all present values, such that we have the total unlevered and levered firm values: 

𝐹𝑉 , = 𝐹𝑉 , + 𝐹𝑉 , + 𝐹𝑉 , = −9.08 + 507.76 + 1,521.36 = 2,020.04 
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𝐹𝑉 , = 𝐹𝑉 , + 𝐹𝑉 , + 𝐹𝑉 , = −8.15 + 536.78 + 1,978.51 = 2,507.14 

 

3.3 Preliminary Take-aways and practical advice for the M&M model 

(1) Without knowing the direct valuation formulas derived in section 3.2, and based on the initially given 
information, we cannot directly apply the methods (1) to (4) introduced in section 2. Instead, we 
must rely on the backward iteration process to determine the unlevered and levered firm values. 
Backward iteration is simple and allows the calculation of all values: Nowadays, spreadsheet 
software is available to literally everybody. This allows to iterate quickly through many periods, by 
which we can approximate perpetual cash flows that are often assumed in continuation values at 
the end of some planning horizon. Strictly speaking, the derivation of more complicated direct-
valuation formulas is not necessary. However, we have developed these formulas in section 3.2, 
because we obtain insights into the mechanics of return and growth. Once we have determined the 
unlevered and levered firm values, we can apply expressions (11) to (17) to calculate all the flows 
and discount rates that can be used in the recursive calculations (1) to (4). 

(2) The required returns or discount rates 𝑟 , 𝑟 , 𝑟 , and 𝑟  depend on the lifetime of the free cash 
flow. Particularly, they decrease if the remaining lifetime of the cash flow becomes longer. We could 
observe this in the final interval, when going backwards from 𝑡 = 249 to 𝑡 = 10. This is because the 
deterministic continuation value takes a larger share in the total value that consists of both the value 
of one-period-ahead stochastic cash flow and deterministic continuation value. For example, the 
discount rate in the FCF method has decreased from 𝑟 , = 24.019 % to 𝑟 , = 7.86 %, and 
it is now lower than the risk-free rate. The decay of the required returns happens very sharply even 
for 𝑔 = 0 %. Hence, even for short annuities, constant required returns are never a good 
approximation.  

This behavior is depicted in Figure 2 for the required return on unlevered equity that converges 
towards the risk-free rate. The longer the remaining lifetime of the FCF, the faster the convergence 
occurs.  

This implies that we cannot apply the standard annuity formula from textbooks, because this formula 
requires a constant discount rate. However, we can apply the alternative annuity factors (20) and 
(26) which allow the valuation of M&M annuities with constant growth. 

(3) From expression (30) and (33) we also learn, that the relationship between 𝑟  and the discount rates 
𝑟 , 𝑟 , or 𝑟  depends on the remaining lifetime. 

(4) The larger the growth rate the more decrease the required returns or discount rates 𝑟 , 𝑟 , 𝑟 , 
and 𝑟 . However, 𝑟 , 𝑟 , and 𝑟  can never decrease below the risk-free rate 𝑟 . The discount rate 
𝑟  in the FCF-method can never fall below 𝛼. This can be seen in expressions (23) and (32). 

(5) Textbooks often suggest constant discount rates in all valuation methods. This is generally not 
correct, although some of the rates can be constant: In the M&M approach the required return on 
the tax shield is constant since it is linked to deterministic continuation values. The required return 
on debt is constant by assumption. 

(6) The perpetual model based on M&M does not allow for a growth rate 𝑔 ≥ 𝛼 because then the 
levered firm value becomes infinitely large. Note that 𝛼 is also less than the risk-free rate. 
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(7) Because of the uncertainty in the input factors, we often use a sensitivity analysis to see how the 
change in particular input parameters affect the firm value. Because of the preceding bullet points, 
it is important to recognize the relationship between growth rate and required return. Assuming the 
M&M framework it is essential that this relationship is not neglected, i. e. if an analyst changes the 
growth rate of the FCF then a simultaneous change in the discount rates is necessary. 

(8) Looking again at the discount rates in the final interval, we observe some convergence if the 
remaining lifetime of the cash flow is very long. E. g. the discount rates at 𝑡 = 10, 11, 12, etc. are the 
same. This implies that we can apply the standard perpetuity formulas in (1) to (4) as long as we 
know the correct discount rates. For this purpose, we have derived expressions (23) and (32) that 
allow the calculation of 𝑟  and 𝑟 , respectively. 

 

 

Figure 2: Behavior of required return on unlevered equity dependent on growth rate and lifetime of FCF  
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4 Framework based on Miles & Ezzell 

4.1 Backward iteration for autoregressive cash flows 

In this section, we look at the DCF model according to M&E. Contrary to M&M, in M&E the sum of the 
free cash flow and continuation value (𝐹𝐶𝐹 + 𝑉 ) is discounted with the same one-period discount rate 
𝑟 : 

𝑉 =
𝐹𝐶𝐹 + 𝑉

1 + 𝑟
=

𝐹𝐶𝐹 + 𝑉

1 + 𝑟
    𝑟 = 𝑟  

To discount the cash flow and continuation value with the same required return 𝑟  requires a particular 
auto-regressive cash flow. This can be stated as follows: 

 𝐹𝐶𝐹[ ]  ℱ[ ] = (1 + 𝑔 ) ∙ 𝜀̃ ∙ 𝐹𝐶𝐹[ ]  ℱ[ ], 𝔼[𝜀̃ ] = 1 (34) 

The expected value of the cash flow is then: 

 𝔼 𝐹𝐶𝐹[𝑣] | ℱ[ ] = (1 + 𝑔 ) ∙ 𝐹𝐶𝐹[ ] | ℱ[ ] (35) 

In what follows, we derive the framework for computing the value of the unlevered and levered firm by 
means of backward-iteration. 

4.1.1 Value of unlevered firm 

At the end of the maturity (𝑣 = 0) when we do not observe any continuation value, the value of the 
unlevered firm at 𝑣 = 1 can be calculated as: 

𝐹𝑉 ,[ ] | ℱ[ ]  =
𝔼 𝐹𝐶𝐹[0] | ℱ[ ]

1 + 𝑟
 

Using (35), we can then write the value of the unleveled firm as follows: 

 𝐹𝑉 ,[ ] |  ℱ[ ] =
(1 + 𝑔 ) ∙ 𝐹𝐶𝐹[ ] | ℱ[ ]

1 + 𝑟
  (36) 

 

We now go one period backwards in time from 𝑣 = 1 to 𝑣 = 2. Here the value of the unlevered firm is: 

𝐹𝑉 ,[ ] | ℱ[ ]  =
𝔼 𝐹𝐶𝐹[ ] | ℱ[ ] + 𝔼 𝐹𝑉 ,[ ] | ℱ[ ]

1 + 𝑟 ,[ ]
 

We do not yet know the riskiness (stochasticity) of 𝐹𝑉 ,[ ], therefore we cannot blindly apply 𝑟  as the 
discount rate. Therefore, we used 𝑟 ,[ ]. However, we can write this expression component-wise as 
follows: 

𝐹𝑉 ,[ ] | ℱ[ ]  =
𝔼 𝐹𝐶𝐹[ ] | ℱ[ ]

1 + 𝑟
+

𝔼 𝐹𝑉 ,[ ] | ℱ[ ]

1 + 𝑟?
 

Note that 𝐹𝑉 ,[ ] in equation (36) depends on the realization of the cash flow 𝐹𝐶𝐹[ ]. From the 
perspective of 𝑣 = 2 the cash flow 𝐹𝐶𝐹[ ] | ℱ[ ]  is stochastic, and therefore also the value 𝐹𝑉 ,[ ] | ℱ[ ] 
is stochastic. More precisely this means: 
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𝔼 𝐹𝑉U,[1] | ℱ[2]

1 + 𝑟?

=

𝔼
𝔼 1 + 𝑔

F
∙ 𝐹𝐶𝐹[1] | ℱ[1]

1 + 𝑟A
 | ℱ[2]

1 + 𝑟?

=

𝔼
𝔼 1 + 𝑔

F

2
∙ 𝜀 ∙ 𝐹𝐶𝐹[2] | ℱ[2]

1 + 𝑟A
 | ℱ[2]

1 + 𝑟?

 

Here, the term 
𝔼( ) ∙ ∙ [ ] | ℱ[ ] is stochastic. Furthermore, the term is proportional to 𝐹𝐶𝐹[ ] =

(1 + 𝑔 ) ∙ 𝜀̃ ∙ 𝐹𝐶𝐹[ ]. Hence, the continuation value needs to be discounted with the same return as the 
free cash flow, i. e. 𝑟 [ ] = 𝑟  

𝐹𝑉 ,[ ] | ℱ[ ]  =
𝔼 𝐹𝐶𝐹[ ] + 𝐹𝑉 ,[ ] | ℱ[ ]

1 + 𝑟
 

By going backwards in time from 𝑣 = 2 to 𝑣 = 3, we can observe the same relationship. This means, we 
have the following general pattern (we now omitt the ℱ-notation): 

 𝐹𝑉 ,[ ] =
𝐹𝐶𝐹[ ] + 𝐹𝑉 ,[ ]

1 + 𝑟
       𝑟 = 𝑟  (37) 

The same relationship has been shown in a numerical example in Becker (2021), which treated non-
growing annuities. 

 

4.1.2 Value of levered firm 

In this subsection we compute the value of the levered firm. It can be derived from the equity method as 
follows: 

 

𝐸𝑉L,[𝑣] =
𝔼 𝐹𝐶𝐹[𝑣−1] + 𝐷𝑉[𝑣] ∙ 𝑟f ∙ 𝜏 − 𝐷𝑉[𝑣] ∙ 𝑟f + 𝔼 ∆𝐷𝑉[𝑣−1] + 𝐸𝑉L,[𝑣−1]

1 + 𝑟 ,[𝑣]
 

 

=
𝔼 𝐹𝐶𝐹[ ]

1 + 𝑟
+

𝐷𝑉[ ] ∙ 𝑟 ∙ 𝜏 − 𝐷𝑉[ ] ∙ (1 + 𝑟 )

1 + 𝑟
+

𝔼 ∆𝐷𝑉[ ] + 𝐸𝑉 ,[ ]

1 + 𝑟
 

(38) 

 

In this expression 𝐷𝑉[ ] ∙ 𝑟 ∙ 𝜏 reflects the tax shield, 𝐷𝑉[ ] ∙ 𝑟  is the interest payment, and ∆𝐷𝑉[ ] =

𝐷𝑉[ ] − 𝐷𝑉[ ] is the change of debt. 𝐷𝑉[ ] | ℱ[ ] has a known deterministic value at the same point in 
time, and therefore it is discounted with the risk-free rate. 𝐸𝑉 ,[ ] | ℱ[ ] and 𝐷𝑉[ ]  | ℱ[ ] are 
stochastic for exactly the same reason why 𝐹𝑉 ,[ ] | ℱ[ ] is stochastic. They are also proportional to 
𝐹𝐶𝐹[ ] | ℱ[ ] and need to be discounted with the same required return 𝑟 . 

Furthermore, both the value of equity and debt are assumed proportional to the firm value, i. e. 𝐸𝑉L,[𝑣] =

𝑞 ∙ 𝐹𝑉L,[𝑣] and 𝐷𝑉[𝑣] = (1 − 𝑞) ∙ 𝐹𝑉L,[𝑣]. Therefore, expression (38) becomes: 

 𝐹𝑉L,[𝑣] =
1 + 𝑟f

1 + 𝑟A

∙
𝔼 𝐹𝐶𝐹[𝑣−1] + 𝐹𝑉L,[𝑣−1]

1 + 𝛼
, 𝛼 = 𝑟f − (1 − 𝑞) ∙ 𝑟f ∙ 𝜏 (39) 

We see that the required discount rate in the FCF-method is independent of the remaining lifetime 
(maturity). This formula has also been derived by Myers (1974, p. 13) for single-period cash flows, by 
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Miles and Ezzell (1980, p. 726) for constant-growth perpetuities, and by Becker (2022, p. 487) for 
constant-growth annuities. 

 

4.1.3 Numerical Example for the case of M&E – Part 1 

In this section we apply the approach from the previous section to a numerical example, where we use 
the same input parameters as in M&M, i. e. we have the same three intervals, the same explicit expected 
cash flows in the beginning, the same growth rates in the second and third time interval, and we apply 
the same parameters 𝑟 , 𝑟 , 𝑞, and 𝜏. Table 4 shows the evolution of the expected free cash flow. Contrary 
to M&M, we assume an autoregressive cash-flow process, which implies that the number of possible 
states gets larger with the remaining lifetime. Hence, we cannot show the complete evolution of all states 
in Table 4. However, for points in time 𝑡 = 1 and 𝑡 = 2 all achievable states are shown in Figure 3. The 
expected cash flows are the same like in M&M for all points in time. 

 

Figure 3: The evolution of an autoregressive free cash flow (M&E) 

Let us start with the calculation of the unlevered values, which need to be determined in a backward 
manner according to expression (37), for example: 

𝐹𝑉 , =
19,861

1 + 24.0187 %
= 15,899, 𝐹𝑉 , =

19,472 + 15,899

1 + 24.0187 %
= 28,289 

The levered values are determined according to expression (39): 

𝐹𝑉 , =
19,861

1 + 24.0187 %
= 16,015, 𝐹𝑉 , =

19,472 + 16,015

1 + 24.0187 %
= 28,614 
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Here we have applied 𝑟 =
( )∙( )

− 1 =
( 25 %)∙( .  %)

7 %
= 24.0187 %, and 𝛼 takes the 

previously calculated value. 

Finally, the values in 𝑡 = 0 are: 

𝐹𝑉 , =
𝐹𝐶𝐹 + 𝐹𝑉 ,

1 + 𝑟
=

−80 + 410.47

1 + 24.0187 %
= 264.37 

𝐹𝑉 , =
𝐹𝐶𝐹 + 𝐹𝑉 ,

1 + 𝑟
=

−80 + 435.15

1 + 24.0187 %
= 286.36 

Once, the values of the levered and unlevered firm are determined, the values of equity, debt and the tax 
shield can be calculated by: 

𝐷𝑉 = 𝐹𝑉 , ∙ (1 − 𝑞), 𝐸𝑉 , = 𝐹𝑉 , ∙ 𝑞, 𝑉𝑇𝑆 = 𝐹𝑉 , − 𝐹𝑉 ,  

Note, that before this point neither the capital-cash-flow method nor the equity method could be applied 
directly, since these methods require knowledge about the flow to the debt holders and the required 
returns 𝑟CCF,  and 𝑟E, . Also, the free-cash flow method was not yet accessible because its discount rate 
𝑟FCF,  requires 𝑟E,  as an ingredient. However, we can calculate these values with expressions (11) to (17). 
The results of these calculations are shown in Tables 5 and 6. 
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   Explicit Explicit Explicit Annuity Annuity … Annuity Perpetuity Perpetuity … Perpetuity Perpetuity Perpetuity 

Point in time t=0 t=1 t=2 t=3 t=4 t=5 … t=10 t=11 t=12 … t=248 t=249 t=250 
Growth rate  n.a. n.a. n.a. 8 % 8 %  8 % 2 % 2 %  2 % 2 % 2 % 
Expected CF  -80.00 -20.00 100.00 108.00 116.64  171.38 174.81 178.31  19,090 19,472 19,861 
               
Unlevered Firm Value 264.37 410.47 533.08 566.35 599.94 633.29  760.04 775.24 790.75  28,289 15,889 0 
Levered Firm Value 286.36 435.15 559.66 594.09 628.78 663.16  793.92 809.80 825.99  28,614 16,015 0 
Equity Value 171.82 261.09 335.80 356.45 377.27 397.90  476.35 485.88 495.59  17,168 9,609 0 
Debt Value 114.55 174.06 223.86 237.63 251.51 265.26  317.57 323.92 330.40  11,446 6,406 0 
Tax-shield value 21.99 24.68 26.58 27.73 28.84 29.88  33.87 34.55 35.24  325 126 0 

Table 4: FCF, growth and values in our numerical example (M&E) 
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   Explicit Explicit Explicit Annuity Annuity … Annuity Perpetuity Perpetuity … Perpetuity Perpetuity Perpetuity 

Point in time t=0 t=1 t=2 t=3 t=4 t=5 … t=10 t=11 t=12 … t=248 t=249 t=250 

Expected FCF  -80.00 -20.00 100.00 108.00 116.64 … 171.38 174.81 178.31 … 19,090 19,472 19,861 

Expected CF to Equity  -26.10 21.28 102.80 110.23 118.07 … 162.35 165.60 168.91 … 14,396 13,871 13,142 

Expected CF to Debt  -51.49 -37.62 1.90 2.76 3.85 … 15.57 15.88 16.20 … 5,018 5,841 6,854 

Expected CCF  -77.59 -16.34 104.70 112.99 121.92 … 177.92 181.48 185.11 … 19,413 19,712 19,996 

Expected tax shield  2.41 3.66 4.70 4.99 5.28 … 6.54 6.67 6.80 … 323 240 135 

Table 5: Cash Flows in our numerical example (M&E) 

 

   Explicit Explicit Explicit Annuity Annuity … Annuity Perpetuity Perpetuity … Perpetuity Perpetuity Perpetuity 

Point in time t=0 t=1 t=2 t=3 t=4 t=5 … t=10 t=11 t=12 … t=248 t=249 t=250 

Return unlevered firm 25.000 % 25.000 % 25.000 % 25.000 % 25.000 % 25.000 % … 25.000 % 25.000 % 25.000 % … 25.000 % 25.000 %  

Return on equity 36.764 % 36.764 % 36.764 % 36.764 % 36.764 % 36.764 % … 36.764 % 36.764 % 36.764 % … 36.764 % 36.764 %  

Return on debt 7.000 % 7.000 % 7.000 % 7.000 % 7.000 % 7.000 % … 7.000 % 7.000 % 7.000 % … 7.000 % 7.000 %  

Return on tax shield 23.160 % 22.509 % 22.025 % 21.973 % 21.919 % 21.863 % … 21.688 % 21.688 % 21.688 % … 12.567 % 7.000 %  
Discount rate in FCF 
method 

24.019 % 24.019 % 24.019 % 24.019 % 24.019 % 24.019 % … 24.019 % 24.019 % 24.019 % … 24.019 % 24.019 %  

Discount rate in CCF 
method 

24.859 % 24.859 % 24.859 % 24.859 % 24.859 % 24.859 % … 24.859 % 24.859 % 24.859 % … 24.859 % 24.859 %  

Table 6: Required returns/ discount rates in our numerical example (M&E) 
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4.2 Direct Valuation formulas for auto-regressive cash flows (the case of M&E) 

4.2.1 Value of unlevered firm 

From expression (37), we can easily derive the sum of discounted cash flows as: 

 𝐹𝑉 ,  =
𝐹𝐶𝐹[ ]

1 + 𝑟
 (40) 

Furthermore, we can directly apply the standard constant-growth annuity formula. This means we have: 

 𝐹𝑉 ,[ ] = 𝐹𝐶𝐹[ ] ∙ 𝜃 ,[ ] (41) 

with the annuity factor defined as: 

 𝜃 ,[ ] =

⎩
⎪
⎨

⎪
⎧

1

𝑟 − 𝑔
∙ 1 −

(1 + 𝑔 )

(1 + 𝑟 )
if 𝑟 ≠ 𝑔

⬚ ⬚ ⬚
𝑣

1 + 𝑟
if 𝑟 = 𝑔

      (42) 

From expression (42) we learn that we must analyze the value of the unlevered firm for different 

magnitudes of the growth rate. If 𝑔 < 𝑟  then the term 
( )

( )
 in the upper part of (42) tends to Zero if 

the maturity tends to infinity.  In the case of 𝑔 = 𝑟 , the term  (42) tends to infinity if the maturity 

tends to infinity. Finally, if 𝑔 > 𝑟 , we can see that the term 1 −
( )

( )
 in (42) tends to −∞, and at the 

same time we have 𝑟 − 𝑔 < 0. Based on these observations, we see that the value of the unlevered 
firm can be calculated according to the standard text-book perpetuity formula: 

 𝐹𝑉 ,[ → ] =

⎩
⎨

⎧𝐹𝐶𝐹 ∙
1

𝑟 − 𝑔
if 𝑔 < 𝑟

⬚ ⬚ ⬚
∞ ⬚ 𝑔 ≥ 𝑟

 (43) 

 

4.2.2 Value of levered firm 

Expression (39) allows to write the levered firm value as a sum of discounted cash flows:  

 
𝐹𝑉L, =

𝔼[𝐹𝐶𝐹𝑡]

(1 + 𝛼) ∙
1 + 𝑟A

1 + 𝑟f

𝑡

𝑇

𝑡=1

     where    𝛼 = 𝑟f − (1 − 𝑞) ∙ 𝑟f ∙ 𝜏 
(44) 

Obviously, the term under the fraction is constant, and corresponds to the discount rate in the FCF-

method, i. e. 1 + 𝑟FCF =
(1+𝑟A)∙(1+𝛼)

1+𝑟f
. Substituting  𝛼 = 𝑟 − (1 − 𝑞) ∙ 𝑟 ∙ 𝜏 we obtain: 

 𝑟 = 𝑟 − (1 − 𝑞) ∙ 𝑟 ∙ 𝜏 ∙
1 + 𝑟

1 + 𝑟
 (45) 
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We also see that we can directly apply the standard constant-growth annuity formula to (44): 

 𝐹𝑉 ,[ ] = 𝐹𝐶𝐹[ ] ∙ 𝜃 ,[ ] (46) 

with the annuity factor: 

 

𝜃 ,[ ] =

⎩
⎪
⎨

⎪
⎧

1

𝑟 − 𝑔
∙ 1 −

(1 + 𝑔 )

(1 + 𝑟 )
if 𝑔 ≠  𝑟

⬚ ⬚ ⬚
𝑣

1 + 𝑟
if 𝑔 =  𝑟

 

 

(47) 

From expression (47) we learn that we must analyze the value of the levered firm for different magnitudes 

of the growth rate. As long as 𝑔 < 𝑟 , the term ( )

( )
 in the upper part of (47) tends to Zero if the 

maturity 𝑣 tends to infinity.  In the case that 𝑔 = 𝑟 , the term  (47) tends to infinity if the 

maturity tends to infinity. Finally, if 𝑔 > 𝑟 , we can see that the term 1 −
( )

( )
 in (47) tends to 

−∞. At the same time, we have 𝑟 − 𝑔 < 0. Summarizing, we obtain: 

 𝐹𝑉 ,[ → ] =

⎩
⎨

⎧𝐹𝐶𝐹 ∙
1

𝑟 − 𝑔
if 𝑔 < 𝑟

⬚ ⬚ ⬚
∞ ⬚ 𝑔 ≥ 𝑟

 (48) 

 

4.2.3 Value of tax shield 

Contrary to M&M, the value of the tax shield requires some extra attention, because in M&E the tax 
shield cannot be discounted with the risk-free rate. Let us depart from the following one-period formula 
for discounting the tax shield and continuing tax-shield value: 

𝑇𝑆𝑉[ ] =
𝑇𝑆[ ] + 𝑇𝑆𝑉[ ]

1 + 𝑟 ,[ ]
 

We substitute the following expressions: 

 𝑇𝑆𝑉[ ] as difference between 𝐹𝑉 ,[ ] and 𝐹𝑉 ,[ ]: 𝑇𝑆𝑉[ ] = 𝐹𝐶𝐹[ ] ∙ 𝜃 ,[ ] − 𝜃 ,[ ]  

 𝑇𝑆𝑉[ ] as difference between 𝐹𝑉 ,[ ] and 𝐹𝑉 ,[ ]: 𝑇𝑆𝑉[ ] = 𝐹𝐶𝐹[ ] ∙ 𝜃 ,[ ] − 𝜃 ,[ ]  

 The equation of cash-flow growth: 𝐹𝐶𝐹[ ] = 𝐹𝐶𝐹[ ] ∙ (1 + 𝑔 ) 

 The tax-shield: 𝑇𝑆[ ] = 𝐷𝑉[ ] ∙ 𝑟 ∙ 𝜏 

 The debt value as part of the firm value: 𝐷𝑉[ ] = (1 − 𝑞) ∙ 𝐹𝑉 ,[ ] = (1 − 𝑞) ∙ 𝐹𝐶𝐹[ ] ∙ 𝜃 ,[ ] 

After solving for the required return of the tax shield, we obtain: 

 𝑟 ,[ ] = 𝑟 + (1 − 𝑞) ∙ 𝑟 ∙ 𝜏 ∙
𝑟 − 𝑟

1 + 𝑟
∙

𝜃 ,[ ]

𝜃 ,[ ] − 𝜃 ,[ ]
 (49) 
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For 𝑣 → ∞, the required return on the tax shield becomes: 

 𝑟 ,[ ] =

⎩
⎪
⎨

⎪
⎧ 𝑟 + (𝑟 − 𝑟 ) ∙

𝑟 − 𝑔

1 + 𝑟
if 𝑔 < 𝑟

⬚ ⬚ ⬚

𝑟 + (1 − 𝑞) ∙ 𝑟 ∙ 𝜏 ∙
𝑟 − 𝑟

1 + 𝑟
if 𝑔 ≥ 𝑟

 (50) 

The upper part of this expression is compatible with the result obtained by Arzac and Glosten (2005, 
equation 13) and Barbi (2012, equation 15).  

 

4.2.4 Numerical Example for the case of M&E – Part 2 

In this section we use the mathematical formulas from the previous section to verify the values that we 
have obtained by means of the backward iteration. Let us start with the third interval which we now 
represent as a perpetuity. The superscript in the following expressions indicates that we deal with the 
values of the third interval. We calculate the unlevered and levered firm value for point in time 𝑡 = 10. 
The discount rates for the valuation of the unlevered and levered firm are given by: 

𝐹𝑉 , = 𝐹𝐶𝐹 ∙
1

𝑟 − 𝑔
= 174.81 ∙

1

25 % − 2 %
= 760.04     where    𝑟 = 𝑟  

𝐹𝑉 , = 𝐹𝐶𝐹 ∙
1

𝑟 − 𝑔
= 174.81 ∙

1

24.019 % − 2 %
= 793.92 

where 

𝑟 = 𝑟 − (1 − 𝑞) ∙ 𝑟 ∙ 𝜏 ∙
1 + 𝑟

1 + 𝑟
= 25 % − (1 − 60 %) ∙ 7 % ∙ 30 % ∙

1 + 25 %

1 + 7 %
= 24.019 % 

 
Note that the firm values are related to 𝑡 = 10, and they need to be transferred to 𝑡 = 0. 

𝐹𝑉 , =
𝐹𝑉 ,

(1 + 𝑟 )
=

760.04

(1 + 25 %)
= 81.61 

𝐹𝑉 , =
𝐹𝑉 ,

(1 + 𝑟 )
=

793.92

(1 + 24.019 %)
= 92.24 

In the second interval we have an annuity with constant growth. This annuity has a lifetime of 𝑣 = 7. Let 
us therefore calculate the annuity factors (42) and (47): 

𝜃 ,[ ] =
1

𝑟 − 𝑔
∙ 1 −

(1 + 𝑔 )

(1 + 𝑟 )
=

1

25 % − 8 %
∙ 1 −

(1 + 8 %)

(1 + 25 %)
= 3.7681 

𝜃 ,[ ] =
1

𝑟 − 𝑔
∙ 1 −

(1 + 𝑔 )

(1 + 𝑟 )
=

1

24.019 % − 8 %
∙ 1 −

(1 + 8 %)

(1 + 24.019 %)
= 3.8717 

Then the unlevered and levered values at point in time 𝑡 = 3 of the growing annuities in the second CF-
interval are: 

𝐹𝑉 , = 𝐹𝐶𝐹 ∙ 𝜃 ,[ ] = 108 ∙ 3.7681 = 406.96 

𝐹𝑉 , = 𝐹𝐶𝐹 ∙ 𝜃 ,[ ] = 108 ∙ 3.8717 = 418.15 
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Also, these values need to be discounted to point in time 𝑡 = 0: 

𝐹𝑉 , =
𝐹𝑉 ,

(1 + 𝑟 )
=

406.96

(1 + 25 %)
= 208.36 

𝐹𝑉 , =
𝐹𝑉 ,

(1 + 𝑟 )
=

418.15

(1 + 24.019 %)
= 219.21 

Finally, we need to compute the value of the explicit planning interval, where we apply the expressions 
(40) and (44). We obtain: 

𝐹𝑉 , =
−80

1 + 25 %
+

−20

(1 + 25 %)
+

−100

(1 + 25 %)
= −25.60 

𝐹𝑉 , =
−80

1 + 24.019 %
+

−20

(1 + 24.019 %)
+

−100

(1 + 24.019 %)
= −25.08 

 

Finally, we can add all present values, such that we have the total unlevered and levered firm values: 

𝐹𝑉 , = 𝐹𝑉 , + 𝐹𝑉 , + 𝐹𝑉 , = −25.60 + 208.36 + 81.61 = 264.37 

𝐹𝑉 , = 𝐹𝑉 , + 𝐹𝑉 , + 𝐹𝑉 , = −25.08 + 219.21 + 92.24 = 286.36 

 

4.3 Preliminary Take-aways for the practical use of the M&M model  

We can now summarize the lessons that we learn from this example. Let us start with the takeaways that 
are different to the M&M case: 

(1) Because 𝑟 = 𝑟  in all points in time, we can directly calculate the value of the unlevered firm by 
backward iteration, summation of discounted cash flows, or by standard constant-growth annuity 
and perpetuity formulas. 

(2) Contrary to the case of M&M, the discount rate in the FCF method and the required returns on equity 
and the capital cash flow are constant throughout time.  

(3) The preceding point implies that we have an all-times fixed and maturity-independent relationship 
between 𝑟  and 𝑟 , 𝑟  or 𝑟 . These relationships are described by (45) and the expressions for  
𝑟  and 𝑟  in section 2. After calculating  𝑟  based on (45), we can directly calculate the value 
of the levered firm by backward iteration, summation of discounted cash flows or by standard 
constant-growth annuity and perpetuity formulas. Like in the setting of M&M, we cannot apply the 
equity and CCF method directly, since we do not know the value of debt and therefore the cash flow 
to the debt holders. 

(4) None of the discount rates 𝑟 , 𝑟 , 𝑟  and 𝑟  depend on the growth of the free cash flow. 

(5) The required return on the tax shield increases with the remaining lifetime. In the very end of the 
cash flow’s lifetime, the tax shield needed to be discounted with the risk-free rate. In the beginning 
of the third time interval this rate was 21.688 %. The required return on the tax shield does not only 
depend on the maturity but also on the growth rate 𝑔  as can be seen in (49). 
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(6) The perpetual model based on M&E does not allow for a growth rate 𝑔 ≥  

𝑟 = 𝑟 − (1 − 𝑞) ∙ 𝑟 ∙ 𝜏 ∙  because then the levered firm value becomes infinitely large. 

(7) Performing a sensitivity analysis in the M&E setting is simpler than for M&M, because the discount 
rates 𝑟 , 𝑟 , 𝑟  and 𝑟  do not depend on the growth rate 𝑔 , an analyst can change the growth 
rate without being concerned about the change in the aforementioned discount rates. 

(8) All preceding conclusions are different from the conclusions in the M&M model. However, like in the 
M&M model, we can apply the standard perpetuity formulas in (1) to (4) as long as we know the 
correct relationships between these rates. This applies also to the valuation of the tax shield, since 
its required return converges according to expression (50).  

 

5 Conclusions & Practical Advise 

Most of the conclusions that concern either M&M or M&E have already been drawn in section 3.3 and 
section 4.3, respectively. Comparing these mutually exclusive frameworks, we notice that they lead to 
very different results. One essential difference is that 𝑟 , 𝑟 , 𝑟 , and 𝑟  are much higher in the M&E 
setting than in the M&M setting, even for shorter lifetimes of the cash flow. This implies that the levered 
and unlevered firm values in the M&M setting are larger than in the M&E setting. This difference becomes 
more pronounced the longer the lifetime of the free cash flow is, the higher the growth and the higher 
the one-period required return 𝑟  applied to the FCF. In our numerical example the values according to 
M&M are almost 8 to 9 times higher than the values according to M&E. 

Another important difference between the two approaches is that discount rates depend differently on 
the growth rate of the free cash flow. While the discount rates 𝑟 , 𝑟 , 𝑟  and 𝑟  are constant in M&E, 
they depend on growth and maturity in M&M. The required return on the tax shield 𝑟 , however, is 
constant in M&M, but depends on growth and maturity in M&E. This also implies that the two approaches 
require different translation formulas between 𝑟  and 𝑟 , 𝑟  or 𝑟 . 

M&M and M&E are based on the same assumptions, except for one assumption that concerns the 
stochastic behavior of the FCF. Hence, an important question is: Which approach should be chosen by the 
practitioner? This is a somewhat difficult decision, because there does not seem to exist any literature 
that empirically tests the stochastic long-term behavior of free cash flows based on financial statements. 
However, economists and finance theorists seem to prefer auto-regressive processes, as such processes 
are used in the pricing of options (Rubinstein, 2000), modeling of demand (Whitt, 1981; Ryan, 2004), 
modeling of costs (Nembhard, 2003), among others. Also, time series analysts commonly apply auto-
regressive processes of different orders and types to high-frequency financial data. We have also noticed 
that continuation values in the M&M framework need to be discounted with the risk-free rate. To avoid 
this rather strange phenomenon, an autoregressive process can be preferred. 

At this point we can only give the following advice for valuation in practice and academia: 

(1) Apply both the frameworks of M&M and M&E to recognize the spread between the valuation results. 

(2) Assuming a particular framework (like M&M or M&E), all methods (1) to (4) need to give the same 
firm values if these methods are based on the same assumptions concerning the constancy of 
leverage, the type of the stochastic FCF process, the riskiness of debt, the growth in the FCF, etc. 
However, not all methods are meant to be applied directly. For example, in both the M&M and M&E 
settings, the unlevered and levered firm values can be found by means of the backward iteration. 
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Only then can the equity, debt, and tax-shield value be calculated. The M&E setting also allows the 
direct (or one-step) calculation of the unlevered firm and the application of the FCF method, 
presuming the knowledge of the 𝑟  according to formula (45). In the M&M setting this required 
the development of special annuity formulas (see section 3.2). However, the equity method, CCF 
method, and the APV method, would not be directly accessible before we have calculated the 
unlevered and levered firm values. 

(3) Cash flows, values or their constituents should be discounted with the appropriate discount rate. The 
application of the backward-iteration as described in sections 3.1 and 4.1 can help to discount 
different elements of the cash flow properly. 

Assuming a constant level of debt financing, there are essentially no alternative settings to M&M and 
M&E. However, it can be shown that auto-regressive processes of first order or stationary cash flows are 
special cases of Markov chains. From this perspective, future research will show how the mutually 
exclusive models discussed in this paper can be unified under a more general framework. 
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