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Abstract

We utilize Temporal Fusion Transformer (TFT), a sophisticated deep learning model, to
forecast German natural gas prices spanning from January 2012 to February 2023. Our
main objective is to evaluate the effectiveness of TFT as a forecasting tool, specifically
for German natural gas prices, with a 14-day forecasting horizon. Our study extends
current research by employing the relatively new TFT model. In addition to its proven
effectiveness in terms of performance, the TFT model also offers in-depth interpretability,
enabling the analysis of pattern detection.

Among a broad selection of features relevant to natural gas prediction, we identify an
effective combination for the TFT model that results in accurate price predictions. This
is accomplished by leveraging the transparency of the TFT model, where we filter out
potential noisy features. Some of the most prominent features include other trading hub
prices, temperature data, oil volatility and Google searches for the term ”war”.

To evaluate the robustness of the forecasts, we partition the time series into distinct
periods characterized by different price behavior. We find that the TFT model for many
prediction periods, significantly outperforms benchmark models in terms of Mean squared
error (MSE). Additionally, TFT excels in accurately forecasting the direction of price
movements, even during periods of heightened market volatility.
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Sammendrag

Vi benytter Temporal Fusion Transformer (TFT), en avansert dyp læremodell, for å pre-
dikere tyske naturgasspriser fra januar 2012 til februar 2023. Hovedm̊alet v̊art er å evaluere
effektiviteten til TFT som et prognoseverktøy, spesielt for tyske naturgasspriser, med en
prediksjonshorisont p̊a 14 dager. Oppgaven utvider eksisterende forskning ved å ta i bruk
den relativt nye TFT-modellen. I tillegg til at tidligere studier har trukket frem gode
prestasjoner, har TFT-modellen ogs̊a grundig tolkningsmulighet, som muliggjør analyse
av mønstergjenkjenningen i modellen.

Blant et bredt utvalg input variable som er relevante for naturgassprediksjon, identifis-
erer vi en effektiv kombinasjon for TFT-modellen som resulterer i nøyaktige prediksjoner.
Dette oppn̊as ved å utnytte TFT-modellens transparens, der vi filtrerer ut variable som
ser ut til å tilføre støy. Noen av de mest fremtredende variablene er; priser fra andre gass
huber, temperaturdata, oljevolatilitet og Google-søk etter ordet ”krig”.

For å vurdere robustheten til prediksjonene deler vi tidsserien inn i distinkte perioder
basert p̊a prisatferd. Resultatene avdekker at TFT-modellen, i mange test perioder,
overg̊ar referansemodeller signifikant n̊ar det gjelder gjennomsnittlig kvadratfeil. I tillegg,
utmerker TFT seg ved å nøyaktig forutsi retningen av prisbevegelser, selv i perioder med
økt markedsvolatilitet.
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Chapter 1

Introduction

In recent years, the German natural gas market has experienced substantial transforma-
tions. The energy landscape in Europe underwent considerable upheaval, triggered by the
Russian assault on Ukraine and the subsequent suspension of Russian natural gas deliver-
ies to Europe [Korosteleva, 2022]. The disruption was further intensified by the sabotage
of Nord Stream, the pipeline connecting Russia to Germany through the Baltic Sea [Jac-
obsen & Abnett, 2022]. This has led to significant shifts in the composition of Germany’s
gas imports [Eckert & Steitz, 2023]. Historically reliant on Russia as its primary source,
Germany faced an abrupt cessation of gas deliveries. Consequently, the country had to
implement costly emergency measures to secure alternative suppliers from the global mar-
ket [Kemfert et al., 2022]. In response to these challenges, Germany has proactively taken
numerous measures to diversify its gas supply sources [Eckert & Steitz, 2023]. There is a
particular emphasis on expediting the development of liquefied natural gas (LNG) import
infrastructure, a move characterized by an unprecedented and rapid pace [Kemfert et al.,
2022].

Amidst the recent substantial transformations in the German natural gas market and
the broader European energy landscape, stakeholders meet enhanced needs of accurately
predicting natural gas prices. This prompts the question: Can deep learning be a viable
tool for predicting future gas prices in this evolving landscape?

On natural gas price forecasting, recent studies have explored the efficacy of advanced
machine learning models. In the study by Ali et al. [2021], a deep neural network (DNN)
is employed for forecasting natural gas prices for the American natural gas trading hub,
Henry Hub. The research utilizes an extensive dataset spanning 281 months to develop
and assess the predictive capabilities of the proposed DNN model. Comparative ana-
lysis against five contemporary machine learning models reveals that the suggested DNN
model consistently outperforms its counterparts, showcasing superior performance across
multiple evaluation metrics, including mean squared error (MSE), root mean squared error
(RMSE), and coefficient of determination. Similarly, Su et al. [2019] assesses the predict-
ive capabilities of various machine learning models for Henry Hub monthly prices from
2001 to 2018. They evaluated the performance of artificial neural network (ANN), Sup-
port vector machine (SVM), Gradient Boosting Machines (GBM), and Gaussian Process
Regression (GPR) to determine which model exhibited the highest level of accuracy. They
used features such as crude oil prices, heating oil prices, temperature, natural gas supply
and demand, imports, and storage levels to predict future prices. Their findings indicated
that the ANN models outperformed other models significantly in this endeavor.
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Additionally, Ram et al. [2019] utilizes a neural network model to forecast prices at five
major natural gas exchange centers in Europe. With an R2 performance evaluation index
of 98%, indicating the well-fitted nature of the neural network model to the provided data
series, the model demonstrates remarkable accuracy in forecasting natural gas prices. The
study’s findings underscore the efficacy of the ANN method, revealing its ability to predict
gas prices in European gas hubs with high precision.

Concerning forecasts specific to German natural gas, the research conducted by Busse et al.
[2012] is comprehensive. Their research examined various features gathered through expert
interviews and assessed the influence of individual feature sets when utilizing a NARX
Neural Network for price movement forecasts. Their results suggest that implementing a
machine learning model to predict German gas prices could lead to accurate performance.
Additionally, they identified an optimal feature set, including weather data, exchange
rates, and prices of major hubs.

Lim et al. [2021] introduced a groundbreaking architecture known as the Temporal Fusion
Transformer (TFT). This model combines advanced multi-horizon forecasting capabilities
with the ability to unravel the temporal dynamics of the underlying data. Comprising
three key components encoder, decoder, and recurrent layers. The TFT model processes
input features using self-attention mechanisms to derive meaningful representations. The
decoder then utilizes these encoded representations to generate predictions for the target
variable. The recurrent layers capture temporal dependencies by incorporating previous
predictions as inputs, enhancing the model’s ability to understand and adapt to evolving
patterns [Wang et al., 2022]. Additionally, when compared against competing methods
like ARIMA and DeepAR, as detailed in Lim et al. [2021], TFT consistently outperforms
them, exhibiting performance improvements ranging from 3% to 26%.

To our knowledge, no paper has investigated the effectiveness of the TFT model in gas
price predictions. The field of predicting German natural gas prices using machine learn-
ing also remains an area where limited extensive research has been conducted. By utilizing
a TFT model incorporating a comprehensive feature set we aim to bridge the gap in the
existing literature and extend the insights from Busse et al. [2012]. Following applying
the TFT model, we conduct an in-depth post-model analysis. This involves exploring the
importance of features and identifying significant events within the dataset. This multifa-
ceted analysis aims to provide a nuanced understanding of the factors influencing German
natural gas price dynamics. Lastly, to enrich our comparative insights, we utilize Autore-
gressive Integrated Moving Average (ARIMA) and eXtreme Gradient Boost (XGBoost) as
benchmark models. ARIMA, a widely utilized time series forecasting method, is known for
its effectiveness in capturing linear trends and seasonal patterns. Furthermore, XGBoost,
a powerful ensemble learning technique, has gained popularity for its ability to handle
complex relationships within data and achieve robust predictive performance [NVIDIA,
2023]. The results obtained from all three models are compared, allowing for a compre-
hensive evaluation of their respective forecasting capabilities. This comparative approach
adds a valuable layer to our study, contributing insights into the relative strengths and
weaknesses of TFT, ARIMA, and XGBoost models in the context of gas price predictions.

The remainder of this study is structured as follows. We first present the relevant back-
ground information in Chapter 2. Chapter 3 provides a guide trough the evolution of
econometrics. Then, an extensive description of the data is presented in Chapter 4, be-
fore the methodology is presented in Chapter 5. Results and the following discussion are
presented in Chapter 6. Finally, concluding remarks are presented in Chapter 7.
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Chapter 2

Background

Natural gas is a vital component of the modern energy landscape, with a significant pres-
ence worldwide in industrial, residential, and commercial sectors. This chapter aims to
explain its multifaceted attributes, from its extraction to market dynamics, with a par-
ticular focus on the context of Germany. This is done to provide the reader with a more
comprehensive understanding of the behavior of natural gas prices, as well as to under-
stand the motivation behind incorporating multiple input features. First, a foundational
understanding of natural gas is provided, covering its origin, extraction methodologies,
and transportation process. Second, the supply and demand dynamics and the intric-
ate pricing mechanism will be explained. Finally, the market and price considerations of
natural gas in Germany will be analyzed.

2.1 Natural gas as a Fuel

According to Speight [2018, p. 6-10], natural gas, an odorless gaseous blend of hydrocar-
bons dominated by methane, may also contain trace elements of ethane, propane, butane,
and other gases, as well as non-hydrocarbon gases like carbon dioxide and nitrogen. Widely
recognized as a vital primary energy source globally, unprocessed natural gas—raw natural
gas—constitutes approximately 20%

Furthermore, as highlighted by Speight [2018, p. 166-178], natural gas is efficiently con-
veyed through a network of pipelines, with the most extensive ones, known as transmission
pipelines, often crossing provincial boundaries. Upon reaching its destination, local dis-
tribution companies or gas utilities distribute natural gas to residences and businesses.
Additionally, natural gas can be stored in underground facilities for future utilization. An
alternative method involves liquefaction, transforming natural gas into liquefied natural
gas (LNG). Achieved by cooling the gas to approximately -160 degrees, LNG serves as
a liquid state for natural gas. Its primary purpose is transporting natural gas to diverse
markets. Upon arrival, LNG undergoes regasification and is distributed as pipeline nat-
ural gas. Liquefaction offers the advantage of reduced volume compared to natural gas,
facilitating storage and transportation. In this state, the gas is transported via ships
or specialized vehicles. Shipping across the sea necessitates using dedicated refrigerated
vessels to maintain the gas’s conditions.

3



As outlined by Speight [2018, p. 4-6], adopting natural gas represents a relatively recent
development in energy usage. In the 20th century, coal and oil were the prevailing energy
sources. However, the world faced an oil shortage in the 1970s, prompting concerns about
resource availability. Before this crisis, the practical applications of natural gas were
constrained. It was only during this period of scarcity that novel uses for natural gas
emerged. The rapid expansion of its utilization ensued once natural gas transportation
over extended distances became viable.

Speight [2018, p. 149-179] highlights that natural gas serves diverse purposes, including
heating residential homes, powering various industrial processes, and fueling transport-
ation. However, its most widespread application is in electricity generation. Natural
gas power plants leverage gas turbines to produce electricity. Notably, these plants are
renowned for their cost-effectiveness, standing out as some of the most economically viable
facilities for power generation. Additionally, they offer enhanced flexibility compared to
coal-fired plants, allowing swift adjustments in power output. Historically, in the United
States, natural gas-fired plants were predominantly utilized during periods of high demand.

Speight [2018, p. 367-378] asserts that fossil fuels, including coal, crude oil, and natural
gas, release pollutants into the atmosphere during the energy generation. However, natural
gas, predominantly composed of methane, is the most environmentally friendly among
these fuels. Its combustion yields a cleaner burn than other fossil fuels, resulting in fewer
sulfur, carbon, and nitrogen emissions when contrasted with coal or oil. Additionally, the
combustion of natural gas leaves minimal residual ash particles. These characteristics are
anticipated to further drive the growing reliance on natural gas in the energy sector.

2.2 Supply and Demand Dynamics

Natural gas supply is driven by a combination of factors, including the demand for energy,
economic considerations, environmental concerns, government policies, accessibility, and
production costs. The production of natural gas has been increasing due to its lower
carbon emissions compared to other fossil fuels [Balcombe et al., 2018]. As the drive to
reduce climate change intensifies, natural gas is considered more environmentally friendly.

When modeling gas supply, Crow et al. [2018] places emphasis on specific technical vari-
ables connected to natural gas production. First, the magnitude of accessible natural gas
reserves serves as a limiting factor, determining the extractable quantity. Second, the
costs tied to reserve exploration and extraction play an important role in incentivizing the
pursuit of discovering and producing natural gas. Lastly, the costs associated with the
construction of substantial infrastructures act as a constraining factor, regulating the flow
of natural gas to distribution centers. All these elements collectively significantly influence
the overall supply dynamics of natural gas.

Furthermore, the security of the natural gas supply is a significant concern for many coun-
tries. The alterations in a country’s natural gas imports and the corresponding decrease
in exports can influence the security level of its supply system, as noted by Zhang et al.
[2015]. Moreover, increasing the gas storage capacity can also enhance the security of
supply by providing resistance to interruptions from other transport systems [Madžarević
& Crnogorac, 2022].
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Diversification of natural gas suppliers is another important aspect of enhancing supply
security [Biresselioğlu et al., 2015]. A country can create a more resilient and adapt-
able natural gas supply network by engaging with multiple suppliers. In terms of future
trends, the consumption of natural gas is expected to grow, driven by the interest of the
European Union in diversifying gas sourcing and increasing energy supply security [EU,
2023]. Policies are being implemented to allocate resources along the natural gas supply
chain and develop infrastructure to mitigate the risk of provision shortages. Lastly, pri-
cing reforms have been instrumental in encouraging natural gas supply from domestic and
overseas sources [Zhang & Paltsev, 2016].

Numerous studies have examined the determinants of natural gas demand in various coun-
tries and regions. Economic factors play a significant role in driving natural gas demand.
Studies have found that income elasticity of demand, which measures the responsiveness
of demand to changes in income, is a significant factor in natural gas consumption [Burke
& Yang [2016], Dong et al. [2019]]. As income levels rise, there is an increased demand
for energy, including natural gas, particularly in developing countries [Dong et al., 2019].
Additionally, price elasticity of demand, which measures the responsiveness of demand to
changes in price, also influences natural gas consumption [Burke & Yang, 2016]. Higher
natural gas prices can decrease demand, as consumers may seek alternative energy sources
or reduce their consumption [Erdoğdu, 2010].

Environmental concerns and policies also impact natural gas demand. The shift towards
cleaner energy sources and efforts to reduce greenhouse gas emissions have increased de-
mand for natural gas due to its lower carbon emissions compared to other fossil fuels
[Dilaver et al., 2014]. Government policies and regulations promoting the use of natural
gas as a cleaner alternative to coal or oil can drive demand. For example, subsidies and
incentives for natural gas consumption can stimulate demand [Ackah, 2014].

According to Dagher [2012], other factors influencing natural gas demand include techno-
logical advancements, energy efficiency improvements, and changes in energy use patterns.
The availability and accessibility of natural gas infrastructure, such as pipelines and storage
facilities, can also affect demand. Additionally, weather conditions, such as temperature,
can impact the need for natural gas for heating purposes [Nick & Thoenes, 2014].

2.3 Pricing Mechanisms

Natural gas pricing is a complex process that is influenced by various factors. One crucial
factor is the relationship between petroleum and natural gas prices. A study by Atil et al.
[2014] found that oil prices have an asymmetric and nonlinear effect on gasoline and natural
gas prices. However, the price transmission mechanism is different for both commodities.
Furthermore, A. Brown & Yücel [2008] found that natural gas and petroleum products are
substitutes, implying a continuum of prices between the two. This suggests that changes in
petroleum product prices can also impact natural gas prices. According to a recent study
by Rubaszek & Szafranek [2022], however, there are indications of a future trend where
European gas prices are expected to decouple from oil prices, becoming solely influenced
by market forces unique to the gas market.
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In addition to the influence of crude oil prices, market reforms also play a role in determ-
ining natural gas prices. Wang et al. [2020] discuss how China, one of the world’s largest
natural gas importers, is reforming its pricing mechanisms to align domestic prices with
international gas prices. This suggests that market reforms can help establish a more
market-oriented pricing mechanism. The effectiveness of natural gas pricing reforms is
a topic of discussion. Boqiang & Zhensheng [2020] argue that while pricing reforms in
China have achieved desired results in the non-residential sector, the current mechanism
does not accurately reflect supply and demand dynamics.

The impact of hedging transactions, taxation, and accounting practices on natural gas
pricing is discussed by Çelenk & Bozlak [2022]. These factors can help control costs
within a specific band interval or fix prices at a single level, reducing the effect of price
fluctuations on natural gas costs. Furthermore, the behavior of natural gas exporters can
affect natural gas prices. Heidari [2020] found that increased competition by gas exporters
leads to downward pressure on natural gas prices.

Overall, natural gas pricing is influenced by various factors, including crude oil prices, mar-
ket reforms, government policies, hedging transactions, taxation, and supply and demand
dynamics. Establishing an effective pricing mechanism that reflects market conditions
and considers environmental and economic factors is crucial for ensuring efficient and fair
natural gas pricing.

2.4 Trading and Exchanges

Natural gas trading involves the buying and selling of natural gas in various forms, such
as pipeline gas or LNG. Several factors influence the dynamics of natural gas trading. As
highlighted by Shi [2016], a critical aspect of natural gas trading is the establishment of
trading hubs, with some of the notable ones being Title Transfer Facility (TTF) in Europe,
Henry Hub in the United States, and National Balancing Point(NBP) in the United King-
dom. These hubs serve as focal points for trading activities, providing benchmarks for
pricing and aiding in the overall efficiency of natural gas allocation.

Traders frequently reference the prices established at these hubs, influencing the broader
global dynamics of natural gas trading. According to Cai & Wu [2021], creating trading
hubs in Asia and Europe is crucial for achieving more efficient gas allocation and ensuring
that gas pricing reflects the fundamentals of the gas markets. Developing these hubs
allows for competitive pricing and facilitates natural gas trading. The transition from oil
indexation to competitive pricing is a crucial aspect of natural gas trading, as discussed
by Shi et al. [2019]. The move towards competitive pricing involves the determination of
potential gas trading hubs supporting competitive prices.

Risk management is another essential aspect of natural gas trading. Morkunas et al. [2019]
emphasize that natural gas trading companies must assess and manage business risks. In a
liberalized market, these companies may need to promptly purchase the deficient quantity
of natural gas in the spot market to fulfill their contract responsibilities. Long-term
contracts and destination restrictions also play a role in risk management. Shi & H. [2016]
note that natural gas, particularly LNG, is often traded under rigid long-term contracts
with destination restrictions. However, Xia et al. [2022] highlights the evolving nature of
the natural gas market, with the rapid development of short-term and spot trade of LNG
leading to a shift from regionalization to globalization.
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In summary, natural gas trading involves the establishment of trading hubs, transitioning
to competitive pricing, risk management, long-term contracts, destination restrictions, and
price convergence. These factors shape the dynamics of natural gas trading and contribute
to the efficient buying and selling of natural gas in the global market.

2.5 Current Natural Gas Market

This section derives insights from the reports published by IGU [2023] and Energy Institute
[2023].

As outlined in Section 2.1, natural gas is traded either in its gaseous form through pipeline
networks or in its liquefied state as LNG. Figure 2.1 illustrates the distribution of gas
exports between LNG and pipeline transportation. The figure highlights a decreasing
trend in total gas exports from 2021 to 2022, accompanied by a shift toward increased
LNG exports. The factors contributing to this trend will be addressed later in this section.
Furthermore, due to the distinct infrastructure required for exporting gas in various states,
LNG’s principal importers and exporters will vary from those involved in the import and
export of pipeline gas [IGU, 2023].

Figure 2.1: Percent gas volumes exported as LNG versus Pipelines.

Source: IGU [2023]
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Figure 2.2 displays the gas flow for LNG trading in 2022. According to IGU [2023], the
biggest exporters of LNG were Australia, the United States, and Qatar. Japan and China
ranked as the largest importers, with imports of 73.6 million tonnes (MT) and 63.7 MT,
respectively. China, however, experienced a notable drop of nearly 20 percent compared
to 2021. In 2022, Europe witnessed a significant increase in LNG demand, resulting in
imports of 126.6 MT. Furthermore, as of April 2023, the global LNG fleet comprises 668
active vessels with 312 new vessels under construction. Following the liquefaction and
transportation of gas, the subsequent critical factor is receiving and regasifying the gas.
The capacity of regasification terminals within each region will determine the limitations
on how much LNG a country can import. Today, Japan, South Korea, and China pos-
sess the most extensive regasification capacities, with 217, 141, and 100 million metric
tons per annum (MTPA). Within Europe, Spain, The United Kingdom, France, and the
Netherlands possess the highest regasification capacities.

Figure 2.2: The flow of LNG trade in the market from exporters on the left to importers
on the right.

Source: IGU [2023]

Per Energy Institute [2023], gas traded via pipelines decreased by approximately 15 percent
in 2022. Figure 2.3 illustrates the flow of natural gas from significant exporters to major
importers through pipeline networks. Despite a 29 percent decline in its global pipeline
exports in 2022, Russia continues to be the largest exporter. Norway is the world’s second-
largest exporter of pipeline gas, accounting for a significant 25 percent of global exports.
Europe is the biggest importer of natural gas by pipeline, with United States and China
being the second and third biggest, respectively.
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Figure 2.3: The flow of pipeline gas from exporters on the left to importers on the right.

Source: Energy Institute [2023]

Figure 2.4 illustrates the disparity in gas prices across different regions. As outlined by
IGU [2023], it is evident that European gas prices exhibit higher volatility and, on average,
higher prices compared to other regions. This trend is also observable in Asia and the
Asia Pacific region. Regions with a greater reliance on LNG tend to exhibit heightened
volatility. This is primarily because LNG import prices are subject to more bidding and
are more susceptible to external factors like weather, fuel prices, and entry point capacity,
in contrast to the relative static pipelines.

Per IGU [2023] the year 2022 marked one of the most turbulent periods in the history of
the gas market, characterized by substantial supply and price shocks. The gas supply re-
mains constrained in 2023, rendering the market highly sensitive to shifts in both supplier
and demand changes. Following the Russian-Ukrainian conflict, Europe faced a significant
reduction in its gas supply from Russian pipelines. The number of operational pipeline
gas supply routes from Russia decreased from six to two, and this situation remains un-
changed as of September 2023. This equates to a 34% reduction in the volume of gas
imported to Europe. Consequently, Europe substantially increased its reliance on LNG to
compensate for the gas shortage. This shift resulted in a 69% increase in LNG imports,
positioning Europe as the largest importing market for liquefied natural gas. To address
this heightened demand, the United States, being the primary supplier, augmented its
LNG exports to Europe by 159% since 2021. Qatar, Russia, and Nigeria are the other key
suppliers of LNG to Europe.

IGU [2023] asserts that while this adaptation has played a significant role in meeting the
energy demand in Europe, it has also triggered an escalation in gas prices. In 2022, gas
prices reached extreme heights and displayed extraordinary volatility, with the Western
European and Northeast Asian markets reaching peaks of approximately 90 USD/MMBtu
and 60 USD/MMBtu, respectively. This shift has had regrettable consequences regarding
emissions, with China and India, for instance, intensifying their reliance on coal to address
energy security concerns. Coal consumption for power generation in Europe rose by 1.3%,
while in Asia, it increased by 2.6%, reflecting the gas-to-coal switching effect.
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Figure 2.4: Gas prices by region.

Source: IGU [2023]

As per IGU [2023], throughout 2023, natural gas prices have primarily followed a downward
trajectory. This descent can be attributed to reduced demand and a relatively mild start
to the northern autumn, contributing to price declines. The return of Freeport LNG in
the United States to production in February 2023, following an outage caused by a fire in
June 2022, has also contributed to easing the pressure of gas prices in Europe and Asia by
restoring a significant share of liquefaction capacity. Although prices are significantly lower
than peak periods of 2022, prices remain volatile and are extremely sensitive to changes
in market conditions. The Western European market continues to record average prices
that are approximately three times higher and average volatility that is approximately
five times higher compared to the levels observed before the COVID-19 pandemic. This
heightened sensitivity primarily results from the exceptionally tight market balance, with
no significant new supply additions expected in the next two years. The escalation of the
conflict in the Middle East, coupled with the approaching cold season, is likely to further
increase price volatility in the fourth quarter of 2023.

2.6 Natural Gas in Germany

Natural gas is Germany’s second-most crucial primary energy source after petroleum. In
2022, its share of primary energy consumption amounted to 23.8% [Appun et al., 2023].
The Industry and Household sectors stand out as the primary gas consumers in Ger-
many. Moreover, a substantial amount of natural gas is utilized for electricity generation
[Kedzierski, 2023]. With the electricity generated from renewable sources varying consid-
erably depending on weather conditions and season, natural gas-fired plants can play an
important role in offsetting such fluctuations.
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Over the years, Germany has established a considerable dependence on the import of
natural gas, notably from Russia, where 55% of the country’s imports originated in 2020
[Halser & Paraschiv, 2022]. This dependence proved problematic during the Russian in-
vasion of Ukraine in 2022. In response, the government aims to reduce imports to 10% by
2024. To mitigate the risk of a gas shortage, Germany is seeking to increase the import-
ation of LNG [Halser & Paraschiv, 2022]. Consequently, the natural gas infrastructure in
Germany is undergoing expansion and development. The country has plans to approve
up to 11 LNG terminals, both offshore and onshore, which will enable the importation of
fossil natural gas until 2043 [Kemfert et al., 2022]. Currently, Germany fulfills a significant
portion of its primary demand from Norway, constituting one-third of its total natural gas
imports. Additionally, Germany addresses a portion of the supply gap through increased
imports from Belgium and the Netherlands [Eckert & Steitz, 2023].

Starting in October 2011, Germany’s natural gas market was partitioned into two dis-
tinct dual-quality market areas: NetConnect Germany (NCG) and GASPOOL (GPL).
Nevertheless, as of June 1, 2021, GPL and NCG have been consolidated under the man-
agement of the newly established THE [Eckert, 2021]. Consequently, on October 1, 2021,
Germany’s unified nationwide gas market was established.

Various factors influence the pricing patterns in the German natural gas market. As per
a study conducted in 2018, natural gas prices in Germany are predominantly linked to
and indexed with oil prices [Zhang et al., 2018]. This indexing to oil prices is a common
practice in this market. Moreover, an investigation into the determinants of natural gas
prices in Germany conducted in 2014 revealed that market fundamentals, including supply
and demand dynamics, contribute to determining prices [Nick & Thoenes, 2014].

2021 2022 Change (%)

Production 50.4 47.2 -6.4

Imports 1673.3 1441.0 -13.9

Exports 768.9 536.0 -30.3

Net Imports 904.5 905.0 0.1

Storage Facility Balance 61.4 -86.0 -

Consumption 1016.3 866.2 -14.8

Table 2.1: Balance of German natural gas supplies in billions kWh

Source: Kedzierski [2023]

In 2022, Germany’s natural gas consumption totaled 866.2 billion kWh, with domestic
production meeting only 5.5% of the country’s demand. Notably, the volume of this
domestic production witnessed a decline of 6.3% compared to 2021, reaching 47.2 billion
kWh. The nation experienced a notable decrease in both gas imports, which fell by
13.9%, and gas exports, which saw an even more substantial drop of 30.3%. Interestingly,
in contrast to the previous year, 2022 saw a shift as more gas was injected into storage
facilities than withdrawn from them, as reported by [Kedzierski, 2023].
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Chapter 3

Forecasting Asset Prices: From
Markowitz to Deep Learning

This chapter aims to guide the reader through the evolution of econometrics, spanning
from theoretical frameworks to advanced machine learning algorithms. By presenting this
historical evolution, we offer a deeper understanding of the motivation behind benchmark
selections and provide motivation for exploring opportunities in new advancements.

For an extended period, financial analysts have strived to comprehend and forecast the
future values of financial assets. In the early stages of econometric theory, the primary
emphasis was on formulating theoretical frameworks to enhance the understanding of asset
pricing. Markowitz [1952] introduced a pivotal mean-variance model, wherein investors
actively sought to maximize their portfolio’s expected return while considering a variance
threshold. This framework operated on the assumption of investor efficiency. Building
upon Markowitz’s groundwork, Sharpe and Lintner developed the Capital Asset Pricing
Model (CAPM) model in 1964 [Sharpe [1964], Lintner [1965]]. Within the CAPM, the ap-
propriate expected return for an asset is determined by considering its systematic risk and
its correlation with the market [Mossin, 1966]. Moreover, in addition to the assumptions
made by Markowitz, Sharpe and Lintner assumed homogeneity of investor expectations
and the ability of all investors to borrow or lend at a risk-free rate. Despite criticisms
highlighting its limited accuracy in predicting asset returns in the market, the CAPM
has garnered widespread popularity over the years. It persists as a fundamental tool for
estimating the cost of capital [Elbannan, 2014].

Both the CAPM model and the work of Markowitz assumed the presence of an efficient
market. Extending this premise, Fama [1991] introduced the groundbreaking efficient mar-
ket hypothesis (EMH), a theory proposing that asset prices fully incorporate all available
information. According to the EMH, achieving consistently above-average returns through
the utilization of publicly available information is deemed implausible due to the swift and
accurate adjustment of prices to new information. In essence, the EMH implies that it is
not possible to consistently outperform the market by trading on publicly available inform-
ation alone. There are different forms of the EMH: weak, semi-strong, and strong. The
weak form suggests asset prices reflect all past market data, such as historical prices and
trading volumes. The semi-strong form suggests asset prices reflect all publicly available
information, including financial statements, news announcements, and analyst reports.
The strong form suggests that asset prices reflect all information, including both public
and private information. Critics of the EMH argue that markets are not always efficient
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and that there are opportunities for investors to earn above-average returns. De Bondt
& Thaler [1985] found evidence of stock market overreaction, suggesting that prices can
deviate from their fundamental values in the short term. However, Fama [1991] argues
that even if there are deviations from fundamental values in the short term, it is diffi-
cult to consistently profit from them due to transaction costs and the competition among
investors.

Following the EMH, the belief held that all relevant information regarding financial as-
sets was inherently embedded within their prices. Consequently, researchers concentrated
their efforts on interpreting the statistical aspects of asset time series data. Coinciding
with Fama’s introduction of the EMH in the same year, 1970, Box and Jenkins offered
their approach for modeling and utilizing the Autoregressive Integrated Moving Average
(ARIMA) model [Box & Jenkins [2008], p. 88-103]. This approach marked a pivotal ad-
vancement in econometric theory. The ARIMA model combines autoregressive and moving
average components to predict the future values of assets. The autoregressive component
considers the correlation between an asset’s value and lagged past values, while the mov-
ing average component considers the relationship between an asset value and past errors.
By incorporating both components, the ARIMA model provides a flexible framework for
modeling and forecasting time series data [Ho & Xie, 1998].

However, a limitation of the ARIMA model lies in its assumption of a constant variance
within the series. Empirical evidence has demonstrated that this assumption does not hold
for financial time series data [Morgan, 1976]. The emergence of the theory of heterosce-
dasticity in financial time series accelerated the development of more sophisticated models
to capture the varying levels of volatility within these series accurately. In 1982, Robert
F. Engle introduced the autoregressive conditional heteroskedasticity (ARCH) model, a
non-linear framework for addressing heteroscedasticity in time series data [Engle, 1982].
This model acknowledges the presence of clustered volatility and incorporates the assump-
tion that volatility is autocorrelated. It models the conditional variance in the error term
using past squared error values.

Engle’s efforts laid the foundation for developments by Bollerslev in 1986. He introduced
the generalized autoregressive conditional heteroskedasticity (GARCH) model, which in-
corporates past lags of conditional variance into the model [Bollerslev, 1986]. The GARCH
model and its variations have found extensive practical application [Wang et al., 2001].
Its ability to capture time-varying volatility has significantly impacted the field of econo-
metrics, catalyzing the development of more sophisticated algorithms and methodologies.

Dixon et al. [2020, p. 4-6] writes that, in recent years, data has emerged as a precious asset,
with an increasing abundance of new and more comprehensive datasets in the financial
sector. Furthermore, ”Alternative” data, encompassing information beyond traditional
financial metrics, holds significant importance among market experts. For instance, social
media data is considered a top source of alternative data, widely used by experts for market
prediction. Many of these datasets are unstructured and are the foundation for intricate
measurements. They often possess high dimensionality, incorporate non-numeric data,
and exhibit complex non-linear dependencies, rendering them challenging for classical
econometric models. Historical statistical models are susceptible to issues with high-
dimensional data and often struggle to discern topological relationships [de Prado, 2019].
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According to Dixon et al. [2020, p. 4-8], the convergence of new data challenges, coupled
with the exponential growth in computing power and storage capacity, has ushered in a
paradigm shift in econometrics towards big data techniques. Machine Learning techniques,
empowered by increased computational capabilities, exhibit flexibility in recognizing more
complex patterns within the data. Nevertheless, empirical evidence suggests that, espe-
cially for short-term forecasting, statistical methods can outperform sophisticated machine
learning algorithms [Makridakis et al., 2018].

ANNs stand out as one of the most widely recognized categories of machine learning
algorithms. The perceptron component, proposed by Rosenblatt [1958], marked a found-
ational step in their development. Subsequently, a cadre of researchers, including Widrow
& Hoff, Ivakhnenko, Paul Werbos, Yann LeCun, and Geoffrey Hinton, among others, have
made significant contributions to the continual evolution of neural networks [Prieto et al.,
2016]. Dixon et al. [2020, p. 112-138] provides an in-depth description of Neural net-
works, which seek to replicate the intricate workings of the human brain through the use
of perceptrons and synapse connections. Feed-forward Neural networks begin with the
initial input of data into the input layer. This data traverses through the network, with
each perceptron applying a transformation to its input through an activation function
and weighing the inputs. In doing so, the network effectively operates as a mapping tool,
converting inputs into outputs. The network receives feedback on prediction errors to
enhance its accuracy, enabling the model to refine its weights and better align with the
target values.

According to Prieto et al. [2016], neural networks received massive attention in the early
2000s and found real-world applications in various domains, including facial recognition,
medical diagnosis, robotics, and financial time series forecasting. Following the popularity
of artificial neural networks, numerous other machine learning techniques, including recur-
rent neural networks (RNN), tree-based architectures, and convolutional neural networks,
have emerged. Notably, RNNs proposed by Elman [1990], and Long Short-Term Memory
Networks (LSTM) proposed by Hochreiter & Schmidhuber [1997] have garnered significant
attention, particularly in the context of time series forecasting. Apart from the standard
feed-forward neural network input mechanism, they incorporate feedback connections, al-
lowing predictions to account for prior time steps [Dixon et al. [2020], p. 239-255]. Fischer
& Krauss [2018] showed that the LSTM outperformed memory-free classification methods
when predicting directional movements of the S&P 500.

While recurrent architectures like LSTM and RNN have displayed potential in capturing
sequential patterns, they may encounter challenges in capturing long-term dependencies
[Yu et al., 2019]. In response to the limitations of recurrent architectures, a team of
researchers, primarily from Google, introduced the Transformer model. As detailed in
Vaswani et al. [2017], the Transformer model marked a significant departure from tra-
ditional transduction models by relying solely on attention mechanisms instead of RNN
layers. The researchers contended that reducing the length of signal pathways for past
input data makes detecting and learning long-term dependencies more feasible.

14



The transformer model was quickly adopted within the natural language processing com-
munity and is now considered state of the art for natural language generation models
[Topal et al., 2021]. The architecture forms the fundamental basis of OpenAI’s GPT-3
model. It is an exceptional natural language processing system known for comprehending
the context of questions and producing high-quality responses [Ray, 2023]. Li et al. [2019]
showed that the transformer model, with its ability to capture both long and short-term
dependencies, is highly suitable for time series forecasting. The transformer model out-
performed RNN-based methods when forecasting electricity production, wind and solar
energy, and traffic data.

Building on the transformer model, Lim et al. [2021] proposed the TFT model in 2021.
This innovative attention-based architecture integrates attention mechanisms designed to
capture long-term dependencies, complemented by LSTM layers for localized processing.
The TFT model extends the transformer architecture by considering static covariates
and incorporating future known data, which makes it tailored for predicting future time
series values. In the original paper, when compared to other methods, such as ARIMA and
DeepAR, TFT consistently outperformed them, demonstrating performance enhancements
ranging from 3% to 26%. The TFT model was quickly adopted and applied across various
domains, yielding remarkable results [Wang et al. [2022], Nazir et al. [2023]]. Beyond
its exceptional performance, the TFT model contributes to interpretability by providing
insights into the relationship between input variables and target predictions.

The TFT model is one of the latest and most promising additions to the continuum of
proposed models for time series forecasting. Its robust performance in comparison to
alternative models makes it particularly intriguing for deployment in a financial context.
Furthermore, the model addresses the challenging black box phenomenon, a common issue
in many machine learning architectures. As explained by Guidotti et al. [2018], the lack
of explainability introduces both ethical and practical concerns, and various approaches
have been proposed to address this issue within established models. By incorporating
interpretability into its architecture, the TFT model offers a fundamental solution to the
challenge of explainability. The combination of high performance and interpretability
makes the TFT model highly intriguing and could be a pivotal aspect of future advance-
ments in the field.
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Chapter 4

Data

This chapter presents the data employed by the models. Initially, we introduce each input
feature and the corresponding motivation for their inclusion. Subsequently, we delve into
selecting, collecting, and pre-processing the data to ensure its compatibility with our
TFT model. Finally, we explore techniques employed for addressing missing values and
the reshaping and standardization procedures applied to optimize the input data for our
analysis. A complete list of all input features and their respective sources can be found in
Appendix A.

4.1 Dataset

Significant research has been undertaken to identify effective input features for predicting
future gas prices. In leveraging the comprehensive architecture of the TFT model, fea-
turing distinct feature selection networks, we gather a diverse set of input features that
have demonstrated the potential to enhance predictive accuracy. By supplying all data to
the model, it can determine the inclusion or exclusion of features. Unfortunately, some
desired data is not publicly accessible, rendering some input features less optimal.

Natural gas prices

The primary variable within the dataset is German gas prices, which serve as both the
focus of our analysis and the target for our prediction. As detailed in Section 2.6, the
consolidation of GPL and NCG into a single gas hub occurred in 2021. To create a unified
time series for gas data, we gathered daily data from GPL and NCG from 01/01/2011 to
01/10/2021, and daily data for THE was collected from 1/10/2021 to 30/09/2023. Data
from GPL and NCG were averaged to create a single composite gas price for Germany.
This single price was merged with the THE prices to create one continuous German gas
price throughout the period.

Figure 4.1 visualizes the continuous price data. The data displays a pattern consistent
with the European market dynamics discussed in Section 2.5. Prices exhibited a sharp
increase during the pandemic, particularly from 2021 onwards. Subsequently, prices surged
following the Russian invasion of Ukraine in February 2022 before receding into an unstable
equilibrium in the fourth quarter of 2022.

16



Figure 4.1: Germany natural gas price data. Average of GPL and NCG price data until
2021.

Source: Eikon

German Gas TTF Henry Hub NBP

German Gas 1.000000 0.993019 0.734612 0.924731

TTF 0.993019 1.000000 0.733773 0.932876

Henry Hub 0.734612 0.733773 1.000000 0.635841

NBP 0.924731 0.932876 0.635841 1.000000

Table 4.1: Price correlation between natural gas trading hubs

In addition to German gas spot data, we collect data from three other major gas hubs.
As demonstrated in the study by Busse et al. [2012], the incorporation of TTF prices
and NBP prices has significantly improved the predictive accuracy of German gas prices.
Consequently, we include these features in addition to Henry hub prices. The Henry hub,
situated in the USA, is one of the primary gas suppliers to Europe and holds a key role
in global gas pricing. All prices are collected daily from 2011 to 2023.

Figure 4.2 illustrates the price trends for all trading hubs. TTF and German gas prices
exhibit a strong correlation, closely tracking each other, whereas the Henry Hub consist-
ently maintains a lower price throughout the period. NBP, on the other hand, displays a
pattern similar to German gas but with greater volatility. Table 4.1 provides additional
insight into the correlations between trading hub prices. TTF and German gas exhibit
a robust correlation. NBP demonstrates high correlations with TTF and German gas,
whereas the Henry Hub displays comparatively lower correlations.
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Figure 4.2: Prices per MWh for three major gas hubs in addition to German gas

Source: Eikon

Temperature data

In the research conducted by Busse et al. [2012], it was identified that temperature data
played a significant role in predicting short-term price movements for German gas. As
described in Section 2.6, gas plays a crucial role in heating in Germany, making the
gas demand sensitive to temperatures. Incorporating temperature data in the model is,
therefore, particularly interesting.

In their research, Busse et al. [2012] utilized historical weather forecasts ranging from
one to five days ahead. Unfortunately, historical German weather forecasts are not freely
accessible to the public; hence, we must depend on historical temperatures.

Historic temperatures are gathered for Germany’s ten most populous cities. These tem-
perature records are derived from daily aggregates, calculated by averaging hourly temper-
atures. Subsequently, this temperature data is consolidated to establish a daily average
temperature for Germany. The constituent cities utilized in this aggregation process,
weighted by their respective rounded population levels, are presented in Table 4.2.
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City Population

Berlin 3 800 000

Hamburg 1 900 000

Munchen 1 500 000

Cologne 1 100 000

Frankfurt 760 000

Dusseldorf 653 000

Stuttgart 610 000

Leipzig 624 000

Dortmund 610 000

Essen 593 000

Table 4.2: Ten largest cities in Germany

Source: Wartenburg [2023]

Figure 4.3 displays the average temperature data. The data indicates a seasonal pattern,
as we would expect with cold winters and warm summers. January is the coldest month
with an average temperature of 2.99◦C, and July is the warmest month with an average
temperature of 20.01◦C. Analyzing across the years, 2012, 2013, and 2021 emerge as the
coldest in terms of average temperatures, whereas 2020, 2022, and 2023 register as the
warmest. Notably, 2022 exhibits an average temperature that surpasses that of 2013 by
3◦C.

In addition to the weighted temperature index, we include an additional temperature
index, simply the average daily temperature calculated from the cities in Table 4.2.

Figure 4.3: Average temperature of the ten largest cities in Germany

Source: Deutscher Wetterdienst
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Other commodity data

In addition to identifying a notable impact of temperature shocks on German natural gas
pricing, Nick & Thoenes [2014] emphasized the significance of long-term cross-commodity
effects between German natural gas and oil and coal prices. Using a structural vector
autoregressive model, they concluded that more than 60 percent of the variations in Ger-
man gas prices could be explained by changes in oil and coal prices, making these features
highly interesting in a machine-learning model. To capture these effects, we have collected
Brent crude oil spot prices and one month ahead Rotterdam coal future prices from 2011
to 2023. Ideally, to capture the effects of changes in coal prices, we wanted to utilize
data from the API 2 index, as undertaken by Nick & Thoenes [2014]. Unfortunately, this
specific dataset was not freely available to the public.

German storage data

Figure 4.4: German storage utilization rate over time.

Source: Eikon

In a competitive market characterized by price fluctuations and highly seasonal demand
patterns, utilizing storage facilities is crucial in balancing the dynamics between supply and
demand. In addition to viewing storage activity as an indicator of market dynamics, Mu
[2007] emphasizes that open storage information can incentivize investors to make decisions
based on such insights, calling it the “storage announcement effect”. The importance of
this balancing activity has led many researchers to include storage activity as an essential
feature in their models when predicting gas prices. Su et al. [2019] emphasizes using
storage activity as a significant feature when predicting Henry Hub prices.
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We gathered information on German natural gas storage to account for this data. Figure
4.4 displays the utilization rate of German natural gas storage. The storage reached its
lowest point of 14.2% in March 2018. Notably, the year 2021 recorded the lowest average
utilization rate of 47.95%. During a typical year, the storage is commonly utilized in the
cold season and replenished during the summer, reaching its peak in October. We also
incorporate daily storage activity through a net injection feature, calculated by subtracting
daily GW/h natural gas withdrawals from GW/h natural gas injections to storage. The
net injection will be negative when storage is emptied and positive when storage is refilled.

German electricity data

As detailed in Section 2.6, natural gas plays a crucial role in Germany’s electricity gen-
eration. One can capitalize on these prices by purchasing natural gas and converting it
into electricity during high electricity prices. Moradi et al. [2022] explores the arbitrage
opportunity associated with this dynamic. To capture these effects, we therefore incorpor-
ate the electricity price. Figure 4.5 presents the German day-ahead electricity price. We
observe a similar behavior to that of German gas prices, with extreme fluctuations from
mid-2021 to 2023.

Figure 4.5: German day-ahead electricity prices from 2012 to 2023

Source: Energy-Charts

In addition to electricity prices, we incorporate electricity generation from wind and solar
installations for the four electricity producers: 50Hertz, Amprion, TenneT TSO, and
TransnetBW. Hulshof et al. [2016] investigated whether day-ahead predictions for Ger-
man wind energy would affect TTF prices and found a positive significant relationship
between the variables. In their research, they concluded that this relationship stems from
bottlenecks created in the electricity grid when high levels of renewables are produced.
These unscheduled flows are prioritized, leading to less cross-border capacity used for
natural gas trade. Unfortunately, day-ahead predictions are not accessible for this data;
however, we include realized daily values.
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Google data

Tang et al. [2019] analyzes whether internet search data and news sentiment can signific-
antly enhance forecasting abilities. Their study used an ANN to predict future NYMEX
futures prices. Internet search data was collected from Google Trends for the word ”Nat-
ural gas”, and news sentiment from Yahoo Finance for the keyword natural gas. They
demonstrated that incorporating this data into the model’s input improved accuracy re-
garding Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), with Google
data emerging as the most promising addition.

Considering the research conducted by Tang et al. [2019], we find it highly interesting to
integrate internet searches into our model. The inclusion of this feature aims to capture
certain political aspects related to natural gas, a dimension highlighted as necessary by
Busse et al. [2012]. However, they faced challenges identifying a suitable data measure for
this aspect.

To gather search data, we leverage Google Trends, a platform provided by Google that
provides public information on search volumes on their search engine. The search volumes
are normalized from 0 to 100, where 100 represents the highest search volumes within a
specific period. The normalization process poses a challenge in data collection as all values
are scaled relative to the highest value within the historical period from which the data is
extracted. When examining historical data spanning over five years or more, only monthly
data is accessible. Historical weekly data is available in five-year batches. To maximize
data frequency while ensuring historical accuracy, we sample and normalize weekly data in
five-year intervals and scale it based on monthly data. The normalization is based on the
idea from Stejskalová [2023], who investigated whether Google searches can be utilized to
predict stock returns within the automobile industry. Equation 4.1 normalizes the search
volume indexed(SVI), capturing weekly fluctuations around the mean within each 5-year
batch. The normalized weekly abnormal search volume indexes (ASVI) are multiplied
with the monthly Google data, shown in equation 4.2 to capture correct scaling across the
whole period.

ASV IWeekly = log(SV It)− log(SV It) (4.1)

GoogleDataWeekly = ASV IWeekly ∗GoogleDataMonthly (4.2)

In line with the findings of Tang et al. [2019], we collect data for the search word ”Nat-
ural gas” in Germany. The data is collected for the German area and consists of news
searches. Furthermore, we also include data for the search word ”War”. Zaid & Khan
[2023] concluded that the Russian-Ukrainian war of 2022 had significantly affected energy
commodity prices. Moreover, Filis et al. [2011] notes that oil prices increased signific-
antly during the second war in Iraq. These results suggest that integrating a signal of
geopolitical tension could offer valuable information to the model.
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Stock data

In the study by Kouchaksaraei et al. [2016], the impact of natural gas prices on the stock
markets of Russia, Norway, and Qatar is investigated. The research utilizes monthly data
from January 2005 to November 2013, encompassing natural gas prices and the stock ex-
change indices of the countries above. The findings reveal a two-way causality relationship
between natural gas prices and the stock exchanges of both Russia and Norway.

In light of this research, our approach incorporates the stock prices of major energy com-
panies from nations that export natural gas to Germany. Specifically, the stock price time
series of Equinor, Gazprom, and ExxonMobil are included alongside the stock price of
Eon, a prominent German energy conglomerate.

Additional data

In addition to the mentioned data, we also incorporate the EUR/USD exchange rate, CO2

emission certificate spot, and shipping prices.

As detailed in Section 2.5, Europe has recently increased its reliance on LNG. Con-
sequently, we aim to investigate whether including a shipping price index will add further
value to the model. We integrate the Baltic Dry Index (BDI) into our analysis to explore
this. As highlighted by Lin et al. [2019], the BDI serves as a short-term indicator for
commodities, particularly during financial crises.

The exchange rate was identified as one of the five most crucial features by Busse et al.
[2012]. This feature can act as an indicator for global economies and influence import
prices from the United States, which, as highlighted in section 2.5, is one of Europe’s major
natural gas suppliers. Therefore, incorporating the exchange rate is highly interesting.

The day-ahead prices of CO2 emission certificates are included as a feature and used
in equation 4.3. As highlighted by Bai & Okullo [2023], there is a strong connection
between CO2 emission certificates and German gas prices. It is also suggested that the
carbon allowance price can be one of the main drivers of coal-to-gas switching, making
this variable of high interest.
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4.2 Feature Extraction

In addition to collecting data, we extract new features based on the data collected in
Section 4.1.

Spreads

In their study, Busse et al. [2012] explores spark spreads as input features, which experts
highlighted as necessary. These spark spreads give the model an indication of the profitab-
ility of generating electricity from gas. We compute the feature CleanSparkSpread using
Equation 4.3. This is a simplified version of the equation presented by Elias et al. [2016]
where the cost of operating maintenance is not included. Pe represents the electricity price
at time t, Pg is the German natural gas price converted to MMBtu (metric million British
thermal units), HR is the heat ratio, Pc is the spot price of CO2 emission certificates, and
EF is ton CO2 emitted per MWh produced by natural gas. As described in Section 4.1,
the gas data is represented in EUR/MwH. To get an accurate estimate of the clean spark
spread, we convert the price into EUR/MMBtu using Equation 4.4. According to S&P
[2021], the conversion factor is 2.933. Efficiency rates and emission factor is used in line
with Keles & Hasan [2020], where we use an average efficiency rate of 0.5 and an emission
factor of 0.2.

A negative value of the clean spark spread might indicate an arbitrage opportunity where
companies with generation capacities can buy excess natural gas, generate electricity, and
sell electricity at a higher price.

CleanSparkSpreadt = (4.3)

Pet(EUR/MwH) − Pgt(EUR/MMBtu) ·HR(MMBtu/MwH) − Pct(EUR/tCO2) · EF(tCO2/MwH)

Pgt(EUR/MMBtu) = Pgt(EUR/MwH) · 2.933 (4.4)

As outlined in Section 4.1, a significant correlation exists between German gas prices and
other trading hubs. To facilitate the model’s analysis of this relationship, we generate
Hub spreads using Equation 4.5. In this equation, we calculate the spread by subtracting
the German gas price from the prices of other hubs. Figure 4.6 illustrates the TTF
spread, revealing a mean-reverting process where short-term deviations from the mean
are corrected. By incorporating this relationship, the machine learning model can more
easily find correct patterns in the data.

HUBSpread = GasPricehub −GasPriceGermany (4.5)
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Figure 4.6: Spread between TTF prices and German gas prices

Source: Eikon

Date values

Following the approach outlined by Lim et al. [2021] in their proposal of the TFT model,
we create new date features to capture seasonality within the data. Notably, when fore-
casting day-ahead prices for the TTF hub, Berrisch & Florian [2022] identified a significant
Monday effect, indicating heightened price volatility on this day. Therefore, incorporating
Day-of-the-week features into the model becomes particularly interesting. Additionally,
in alignment with Lim et al. [2021], we introduce features for the month and day of the
month.

Indicators

To enhance the model’s ability to identify patterns in the data, we create features that
signify specific trends. An essential trend for the model to capture is volatility. Volatility
tends to occur in clusters, indicating that an observed increase in volatility can accelerate
further price movements. This effect is especially interesting as Goor & Scholtens [2014]
found an inverse leverage effect when analyzing UK gas prices, meaning an increase in
volatility might lead to positive returns. We use R2 as a volatility indicator. The R2 is
derived by squaring the outcomes of Equation 4.7.

In addition to incorporating the R2 measure for German gas prices, we also introduce an
R2 feature for the oil price. As demonstrated by Lin & Li [2015], there is evidence of
volatility spillover between Brent crude oil and European natural gas prices. This implies
that an increase in oil volatility could result in heightened price fluctuations for natural
gas.
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As described in Section 4.1, temperature can have a significant predictive power in machine
learning models. To capture unusual events in temperatures, we introduce a relative
temperature indicator. This is computed using Equation 4.6, where Tt represents the
temperature at time t, and AvGTt denotes the historical average for that specific day.
Including this feature enables the machine learning model to detect whether the winter is
exceptionally mild, potentially influencing seasonal patterns.

RelativeTemperaturet = Tt −AvGTt (4.6)

4.3 Data Preprocessing

Real-world data often contains noise in the form of missing values or unsuitable formats.
Preprocessing steps are necessary to make the raw data suitable and optimal for the
models.

4.3.1 Missing values

In our time series datasets, the presence of missing values is notable. This challenge is
particularly pronounced because of the weekly frequency of data, such as Google data,
alongside a significant portion of the data with a daily frequency. The machine learning
models need all data to be on the same frequency to make predictions. To get daily values
for all features, we forward fill values within each week. Forward filling is used so that no
information is leaked into the future.

The issue of missing values is also particularly prevalent when dealing with financial time
series. Since trading hubs are commonly closed on Saturdays and Sundays, data for these
days are often absent. To create a unified dataset with daily values throughout the date
range, forward filling is employed, whereby the values for these days are populated based
on the preceding Friday’s values.

4.3.2 Model preperation

The study conducted by Dixit & Jain [2021] showed that the accuracy of machine learning
models is negatively affected when the target variable displays non-stationarity. To address
this, we employ Equation 4.7 on the Gas price variable, calculating the log returns to
ensure stationarity. Utilizing the Augmented Dickey-Fuller test on the transformed data,
as suggested by Dickey & Fuller [1979], we obtain a test statistic of -11.9. This value
significantly exceeds the 1% threshold of -3.43, leading us to reject the null hypothesis
that the Target series contains a unit root.

Targett = ln (
GasPricet
GasPricet−1

) (4.7)

A challenge arises when applying a machine learning model to a real dataset due to the
varied scales in different time series. This diversity in scale representation can introduce
bias in machine learning models, favoring features with higher scales. To address this
challenge, various scaling techniques are available to normalize data so that all data range
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within the same scale. The study conducted by Thara et al. [2019] demonstrated that
the standard scaler outperformed most other scaling techniques when used in deep neural
networks. Consequently, we employ standard scaling for all continuous input data. The
standard scaler normalizes each feature, ensuring a mean of zero and a standard deviation
of one. Equation 4.8 illustrates the scaling process where z is the transformed value of
the feature, x is the feature value at time t, µ is the average value of x within the scaling
horizon, and σ is the standard deviation. Each series is scaled using information exclusively
from the training sets to prevent information leakage through scaling.

zt =
xt − µ

σ
(4.8)
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Chapter 5

Methodology

This chapter outlines the methodology employed in our thesis, aimed at producing accur-
ate and interpretable multi-horizon forecasts for German natural gas prices. Initially, we
introduce the architecture of Temporal Fusion Transformers (TFT), detailing its diverse
configurations, layers, and gating mechanisms. Following this, we present the benchmark
models utilized. Additionally, we explore the segmentation of the time series of Ger-
man natural gas prices into distinct periods. Subsequently, we expound on the training
procedure. Finally, we outline the evaluation criteria employed in the assessment process.

5.1 Temporal Fusion Transformer

In this section, we thoroughly elucidate the TFT architecture’s distinct components, visu-
ally depicted in Figure 5.1. The following section is derived from the research paper
authored by Lim et al. [2021].

5.1.1 Multi-horizon forecasting

Multi-horizon forecasting is a crucial problem within time-series machine learning. Its
utility extends to predicting essential economic indicators, encompassing important met-
rics like industrial production, GDP, and inflation rates across multiple future periods,
as highlighted in the work [Prince et al., 2022]. Furthermore, multi-horizon forecasting is
applied in financial prediction, where it is employed to anticipate stock prices and mar-
ket trends across multiple future periods [Hawkes & Date, 2007]. These predictions aid
investors, traders, and financial institutions make investment decisions and mitigate risks.
Multi-horizon forecasting presents a challenge due to increased computational complexity
and heightened uncertainty with the expansion of the prediction horizon. To maximize
the accuracy of these forecasts, it is vital to incorporate all available information. Further-
more, a multi-horizon model should be able to incorporate information that may be known
or unknown in the future. Moreover, the model needs to account for static variables, which
are time-invariant.
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Figure 5.1: TFT processes three types of input data: static metadata, past time-varying
inputs, and known future time-varying inputs. Variable Selection Network blocks are
employed to emphasize the most significant features from these inputs. GRN blocks en-
hance information flow through skipping connections and gating layers. LSTMs analyze
local patterns, and multi-head attention mechanisms integrate information across various
timesteps.

Source: Lim et al. [2021]

Figure 5.1 visualizes the high-level architecture of TFT. We have I unique entities in the
data. Each entity i has individual sets of covariates si ∈ Rms , as well as features χi,t ∈ Rmχ

and targets yi,t ∈ R at each time-step t ∈ [0, Ti]. Time-dependent input features are

subdivided into two categories χi,t =
[
zTi,t, x

T
i,t

]T
- observed past inputs zi,t ∈ Rmz which

are unknown beforehand, and known inputs xi,t ∈ Rmx , which are known in advanced.
The known features typically consist of date-related features that can, with certainty,
be known in the future. TFT integrates historically observed inputs through a context
window, incorporating all data from the start of the input window to the current day. The
context representation, combined with known future inputs and static covariates, generates
forecasts for each future day in the prediction horizon. This process is visualized in Figure
5.2.
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Figure 5.2: Multi-horizon forecasting with static covariates and various time-dependent
inputs.

Source: Lim et al. [2021]

5.1.2 Gating Mechanisms

Some challenges in developing well-performing machine learning models include identifying
the most relevant features and anticipating the level of complexity in the relationship
between input features and targets. In specific scenarios, incorporating an extensive set
of features introduces significant noise to the model. Additionally, during specific periods,
unnecessary complexity in the model can lead to a high level of overfitting, resulting in
inaccurate predictions.

To address this issue, the Gated Residual Network (GRN) is applied as a building block
of TFT that allows the model to apply non-linear processing only when necessary. The
GRN has a as its primary input and, depending on where the GRN is situated, uses static
variables with a context vector c and yields.

GRNω(a, c) = LayerNorm(a+GLUω(η1)), (5.1)

where η1 is defined as the following

η1 =W1,ωη2 + b1,ω, (5.2)

and η2 is defined as

η2 = ELU(W2,ωa+W3,ωc+ b2,ω). (5.3)
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ELU is the Exponential Linear Unit activation as proposed by Clevert et al. [2015], η1
and η2 are intermediate layers. Furthermore, LayerNorm is standard layer normalization,
and ω is an index to denote weight sharing.

The TFT model also includes Gated Linear Units (GLU), offering the flexibility to bypass
certain parts of the architecture when it is beneficial.

Letting γ be the input, the GLU takes the following form:

GLUw(γ) = σ(Ww,ωγ + b4,ω)⊙ (W5,ωγ + b5,ω), (5.4)

where σ(.) is the sigmoid activation function, W and b are weights and biases, ⊙ is the
element-wise Hadamard product. Both ELU and GLU aid the network in discerning
simple input transformations from those demanding more intricate modeling by suppress-
ing the non-linear calculations.

5.1.3 Variable Selection Networks

As previously stated, an extensive feature space can introduce substantial noise. The TFT
model introduces Variable Selection Networks (VSN), enabling the model to learn the
optimal selection of relevant features. Besides offering insights into the most significant
variables, the TFT model aims to enhance performance by eliminating noisy features.
Financial time series, such as gas prices, often contain significant noise, making filtering
in the model highly interesting.

Consider ξ
(j)
t ∈ Rdmodel as the transformed input for the jth variable at time t, and the

vector Ξt =

[
ξ
(1)
t

T
, ..., ξ

(mχ

t )
T
]T

the flattened vector of all past inputs at time t. Ξt and

an external context vector cs are fed through a filtering GRN unit and then a softmax
function, producing a normalized vector vχt.

Given the access to static information, the context vector cs is omitted for static variables.
Moreover, at each time step t, a supplementary layer of non-linear processing is applied
by passing each ξjt through its individual GRN. In this process, each variable is encoded
using a neural network. Finally, each processed variable is weighted by its corresponding
variable selection weight vjχt and then combined, where vjχt is the jth element of vχt,
making a single representation for each feature for all timesteps in the context window.
Despite each variable sharing weights in the encoding process, the model can adjust to
concentrate on specific historical time steps.

5.1.4 Static Covariate Encoders

TFT integrates information from static metadata by employing distinct GRN encoders,
resulting in the generation of four distinct context vectors: cs, ce, cc, and ch. These context
vectors are interconnected into different locations within the temporal fusion decoder. The
variable cs is employed in the variable selection process, cc and ch are utilized for local
processing, and ce is employed for enrichment. This process allows the model to increase
the importance of one feature for certain instances while ignoring it for others.
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5.1.5 Interpretable Multi-Head Attention

The TFTmodel utilizes a self-attention mechanism to learn long-range dependencies across
different timesteps. Attention mechanisms scale values V ∈ RN×dv according to the rela-
tionships between keys K ∈ RN×dattn and queries Q ∈ RN×dattn . These terms are inspired
by the retrieval process in information systems, where a query is used to search a database
to retrieve the corresponding values. For example, considering the behavior of gas prices
at time t, what are the typical values for weather? The process is employed after the
feature selection encoding and is described as:

Attention(Q,K, V ) = A(Q,K)V, (5.5)

whereA() represents the normalization function. To enhance the learning capacity Vaswani
et al. [2017] proposed multi-head attention, introducing multiple heads to project the in-
put embeddings into different subspaces. The multiple attention head process is given
by:

Multihead(Q,K, V ) = [H1, ...,HmH ]WH , (5.6)

Hh = Attention(QW
(h)
Q ,KW

(h)
K , V W

(h)
V ), (5.7)

where W
(h)
Q ∈ Rdmodel×dattn , W

(h)
K ∈ Rdmodel×dattn and W

(h)
V ∈ Rdmodel×dattn are head-

specific weights for keys, queries and values, and matrix WH ∈ R(mH ḋV )×dmodel condenses
the concatenated matrices Hh into a single matrix.

Analyzing the attention weights of the model allows us to examine both the behavior
of the model and the importance of the input features. However, when multiple heads
are employed, interpretability becomes less clear. To enhance the interpretability of the
attention, the TFT model modifies multi-head attention to share values across each head
and utilize additive aggregation across all heads. The attention mechanism employed in
the TFT model is then represented by:

H̃ = Ã(Q,K)VWH , (5.8)

=

 1

mH

mH∑
h=1

A
(
QW

(h)
Q ,KW

(h)
K

)VWV , (5.9)

=
1

mH

mH∑
h=1

Attention
(
QW

(h)
Q ,KW

(h)
K , V WV

)
, (5.10)

where WV ∈ Rdmodel×dV are value weights shared across all heads and WH ∈ Rdattn×dmodel

is used for final linear mapping.
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5.1.6 Temporal Fusion Decoder

In the architecture, where the encoding process takes input features and maps them into
the best possible representation, the decoder is utilized to learn the relationship between
the encoded feature space, local values and the target values. In this process, a series of
layers are employed.

Sequence-to-sequence layer

In time series data, identifying points of significance often involves considering their re-
lationship with local surrounding values. Therefore, incorporating local context and un-
derstanding of sequential ordering can contribute to performance improvements. To ac-
commodate various input types and the varying number of past and future inputs, the
TFT architecture incorporates a sequence-to-sequence layer. This layer feeds ξ̃t−k:t into
the encoder and ξ̃t+1:t+τmax into the decoder. The TFT model also incorporates a gated
skip connection over this layer, defined as:

ϕ̃t,n = LayerNorm
(
ξ̃t+n +GLUϕ̃(ϕ(t, n))

)
, (5.11)

where n ∈ [−k, τmax] is a position index.

Static enrichment layer

TFT employs a static enrichment layer designed to augment temporal features with static
metadata. Specifically, at a given position index n, the static enrichment process is defined
as follows:

θt,n = GRNθ(ϕ̃(t, n), ce), (5.12)

where ce represents a context vector obtained from a static covariate encoder. This layer
introduces the relative feature importance, as previously discussed, where the significance
of one feature can be observed in the context of a specific instance.

Temporal self-attention layer

In the same way as the encoder, the decoder employs interpretable multi-head attention
for each forecasted time step given by:

B(t) = InterpretableMultiHead(Θ(t),Θ(t),Θ(t))), (5.13)

to yield B(t) =
[
β(t,−k), ..., β(t, τmax)

]
. Decoder masking is then subsequently applied

to ensure that no information leakage occurs. After the self-attention layer, an extra layer
is introduced to aid in the training process:

δ(t, n) = LayerNorm(θ(t, n) +GLUδ(β(t, n))). (5.14)
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Position-wise feed-forward layer

The final part of the temporal fusion decoder is a position-wise feed-forward layer that
applies additional non-linear processing to the outputs of the self-attention layer using
GRNs:

ψ(t, n) = GRNψ(δ(t, n)), (5.15)

where the weights of GRNψ are shared across the entire layer. As seen in Figure 5.1, this
layer is also directly connected to the LSTM layer through a gate that skips over the entire
transformer block. In this manner, the model can learn to bypass unnecessary complexity.

Quantile outputs

In the domain of financial time series forecasting, it is not sufficient to merely predict the
target variable; it is equally vital to assess the associated prediction uncertainty. TFT
meets this requirement by generating probability quantiles for each prediction. These
quantile forecasts result from a straightforward transformation of the output from the
temporal fusion decoder:

ŷq,t,τ =Wqψ̃(t, τ) + bq, (5.16)

where Wq and bq are linear coefficients for the specified quantile q.

5.1.7 Interpretability Use Cases

The mentioned components above enable the analysis of individual elements to interpret
the overall relationships the model has learned. The TFT architecture assists users in
identifying globally important variables for the prediction problem and recognizing per-
sistent temporal patterns. The use cases will be explored in this subsection.

Variable Importance

By analyzing the weights of the VSNs discussed in Section 5.1.3, we can distinguish im-
portant features from insignificant ones. During the training, the weights of the VSNs,
denoted by vjχt for each variable j, are aggregated.
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The self-attention weights obtained from the interpretable multi-head layer unveil the
attention importance of features through the context window. Analyzing these weights
can provide valuable insights into the significance of input features. Combining Equation
5.8 and Equation 5.13, the self-attention layer contains the combined matrix Ã of scores
at each forecast time t. The outputs of the multi-head attention at each forecast horizon
τ can then be characterized as a score-weighted sum of the preceding features at each
position i:

β(t, τ) =

τmax∑
i=−k

α(t, n, τ)θ̃(t, i), (5.17)

where α(t, i, τ) is the (τ, i)-th element of Ã, and θ̃(t, i) is a sequence being processed.

Temporal Patterns

The attention weight patterns offer insights into the most crucial time steps that influence
the decisions of the TFT model. In contrast to other models that rely on model-based
specifications for seasonality and lag analysis, the TFT model possesses the capability to
capture seasonality or lag effects through its own architecture.

5.2 Benchmark Models

To thoroughly evaluate the effectiveness of the TFT model, we perform a comprehensive
comparative analysis with two prominent models: ARIMA and XGBoost. The subsequent
subsections provide detailed explanations of both models. The hyperparameters applied
to both models during training are presented in Appendix B.

5.2.1 eXtreme Gradient Boosting

Tree boosting stands out as an exceptionally potent and extensively employed machine
learning technique. A noteworthy contribution to this field is XGBoost, a scalable ma-
chine learning system designed for tree boosting. This innovative approach was initially
presented in the research paper authored by Chen & Guestrin [2016]. The methodology
detailed in the following paragraphs is derived from the insights and techniques expounded
in this work.

The fundamental concept of XGBoost is to minimize the following objectives:

Lt =
n∑
i=1

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft), (5.18)

where Lt is a differentiable convex loss function that measures the difference between the
prediction ŷt and the target yi.
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The regulation term Ω(f) is expressed as the following:

Ω(fk) = γT +
1

2
λ∥w∥2, (5.19)

where T indicates the total number of trees, γ and λ are penalty coefficients, and w is
a vector containing the score of each leaf. The second-order approximation is used to
optimize the objective in general and we get:

Lt ⋍
n∑
i=1

l(yi, ŷ
(t−1)
i + gift(xi) +

1

2
hif

2
t (xi)) + Ω(ft), (5.20)

where gi = ∂ŷ(t−1)l(yi, ŷ
t−1) and hi = ∂2ŷ(t−1)l(yi, ŷ

t−1) are first and second order gradient
statistics on the loss function. The constant terms are removed to obtain the following
simplified objective at time t:

L̃t =
n∑
i=1

(gift(xi) +
1

2
hif

2
t (xi)) + Ω(fk) = γT +

1

2
λ

T∑
j=1

w2
j . (5.21)

This Equation can be rewritten by expanding Ω as follows:

L̃t =

n∑
i=1

(gift(xi) +
1

2
hif

2
t (xi)) + Ω(ft). (5.22)

For a fixed structure q(x), the optimal weight w∗
j of leaf j is given by:

w∗
j =

∑
i∈Ij gi∑

i∈Ij hi + λ
, (5.23)

and the optimal value is calculated as the following:

L̃t(q) = −1

2

T∑
j=1

(
∑

i∈Ij gi)
2∑

i∈Ij hi + λ
+ γT. (5.24)
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5.2.2 Autoregressive Integrated Moving Average

The following subsection is derived from Shumway & Stoffer [2017]. The ARIMA model
integrates the differenced autoregressive and moving average models. Within this frame-
work, the AR component signifies the regression of the time series against its historical
data, while the MA component indicates that the forecast error is a linear combination of
past errors. Lastly, the I component of ARIMA reveals that the original data values have
been converted into differenced values of order ’d’ to establish stationary data, a necessary
condition for the ARIMA model.

y
′
t = I + a1y

′
t−1 + a2y

′
t−2 + ...+ apy

′
t−p + et + θ1et−1 + θ2et−2 + ...++θqet−q, (5.25)

where the predictors are the lagged p data points for the autoregressive part and the lagged
q errors are for the moving average part. The prediction is the differences yt in the dth

order.

5.3 Period Segmentation

As shown in Section 4.1, the behavior of German gas prices has undergone significant
transformations over the years. The past three years have witnessed substantial shifts
from relatively stable prices to pronounced fluctuations and heightened prices, eventually
reaching a state of unstable equilibrium. Evaluating the model exclusively with recent
gas prices will yield results specific to only one particular state of the gas prices. Given
the uncertainty surrounding future gas price behavior, our goal is to establish a model
that demonstrates robust performance across the entire dataset, encompassing all distinct
periods of price behavior. A potential approach involves incrementally training the model
for each day and generating corresponding predictions for the entire dataset. However,
this is not feasible within our constrained timeframe due to the computational demands of
the TFT model. To address this challenge, we propose dividing the dataset into segments
according to the price behavior. The model is trained for each segment using data up
to day T − 60, where T represents the final day within each segment. Subsequently, the
model is then tested on the last 60 days. This approach enables us to assess the model’s
robustness across various segments while maximizing the utilization of training data.
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Figure 5.3: Change points over the period 2012-2023

We employ a change point detection algorithm to separate the time series of German gas
prices into distinct segments. In their research, Van den Burg & Williams [2020] found
that the binary segmentation algorithm proposed by Scott & Knott [1974] yielded the best
results for univariate time series when default parameters were used. Utilizing the binary
segmentation algorithm from the ruptures library by Truong et al. [2020], we identified
eight distinct segments as depicted in Figure 5.3. The length of these segments varies,
with the shortest segments observed in recent years.

The initial segment started in January 2012 and extended until April 2014, when a signific-
ant downturn in oil prices occurred, primarily attributed to supply-related factors. These
factors encompassed the surge in U.S. oil production, diminishing geopolitical tensions,
and changing policies within OPEC [Stocker et al., 2018]. The pivotal force behind the
decline in natural gas prices was the substantial reduction, amounting to a 50% drop, in
the cost per barrel of crude oil. However, multiple additional elements contributed to this
trend. Economic downturns in Europe and Asia and the global adoption of more fuel-
efficient vehicles collectively resulted in a decreased demand for gasoline [Isidore, 2014].

The second segment starts in April 2014 and extends until May 2019. Notably, 2018
witnessed record-high natural gas demand, propelled by increased reliance on natural gas-
fired generation and the growth of LNG exports [Anderson, 2019]. Furthermore, in 2019,
a sharp decrease in gas prices was observed [Shelor, 2020]. This decline was influenced by
various factors, including a slowdown in China’s economic growth to an estimated 6.1%,
as well as reduced consumption in Eurasia and South America [IEA, 2019].

The third segment, starting in May 2019 and extending until April 2021, is marked by
noteworthy warm weather patterns and a contraction in economic activity attributed
to the COVID-19 pandemic [EIA, 2021]. This economic downturn led to 2020 natural
gas prices at the benchmark Henry Hub plummeting to their lowest level in 25 years.
Throughout 2020, prices steadily declined into the summer, influenced by a reduced LNG
export demand and decreased heating demand due to a warm spring. However, the latter
half of the year witnessed a resurgence in LNG demand, contributing to a strengthening
of prices [Holland, 2021].
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In the fourth segment, which starts in April 2021 and ends in September 2021, natural gas
prices surged globally as a result of the economic recovery from the impacts of COVID in
2021. European prices, in particular, experienced a dramatic escalation when the major
external supplier, Gazprom, initiated supply withholdings in Q4 2021. Additionally, 2021
witnessed a substantial rise in global demand for natural gas, while various geopolitical,
environmental, and economic factors concurrently constrained the overall supply [Kotek
et al., 2023].

Segment five, which starts in September 2021 and ends in June 2022, is distinguished by
the Russian invasion of Ukraine. The invasion in February 2022 introduced substantial
geopolitical and market uncertainties, particularly regarding the supply of Russian natural
gas, culminating in a significant and abrupt surge in natural gas prices later that month.
This escalation compounded pre-existing tensions within the natural gas market. After
the invasion, reductions in Russian pipeline gas supply during 2022 triggered a rapid
succession of price increases in European natural gas futures, ultimately reaching record
levels in late August [ESMA, 2023].

Segment six, starting in June 2022 and ending in October 2022, is marked by a substantial
decline in natural gas prices attributed to various factors. Initially, concerns about short-
ages prompted the European Council to set targets for member states to fill gas storage
facilities to a minimum of 80 percent capacity before winter, a goal surpassed ahead of
schedule. Concurrently, domestic gas resources typically increased in the months leading
up to winter, with average reserves in October registering a year-on-year increase of approx-
imately 15 percent [HSN, 2022]. Secondly, milder-than-expected weather across Europe
reduced heating demand, allowing for the conservation of the continent’s gas inventories
[IEA, 2022]. Lastly, the manufacturing Purchasing Managers’ Index (PMI) figures from
major steel-consuming countries indicated a decline, signifying a deterioration in activity
within those sectors. This decline was further accentuated by several domestic steelmakers’
idling of melting capacity in response to weakened steel demand [HSN, 2022].

Segment seven, starting in October 2022 and ending in March 2023, is characterized by a
sharp downturn. This could be attributed to the EU natural gas price cap implemented
on December 3, 2022 [Welle, 2022].

Segment eight, ending in June 2023, is marked by a significant downturn in natural gas
prices, driven by a combination of factors. The presence of relatively mild temperat-
ures, record production levels, and inventories surpassing the usual averages collectively
contributed to the reduction in natural gas prices [EIA, 2023].
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Start Date End Date Min Price Max Price Standard Deviation Net Change

p1 2014-02-11 2014-04-11 22.3 26.24 1.12 -2.83

p2 2019-03-07 2019-05-05 14.4 17.9 0.77 -2.65

p3 2021-02-24 2021-04-24 16.0 21.9 1.67 4.43

p4 2021-07-14 2021-09-11 34.26 56.9 6.15 22.14

p5 2022-04-30 2022-06-28 77.3 132.9 17.1 28.9

p6 2022-08-03 2022-10-01 164.6 313.6 41.4 -37.7

p7 2023-01-10 2023-03-10 43.6 70.6 6.5 -18.7

p8 2023-05-02 2023-06-30 23.7 41.9 4.6 -2.4

Table 5.1: Characteristics of each test period

Table 5.1 presents the characteristics of each test period, which comprises the last 60
days within each period denoted as p1, p2, . . . , p8. Period p1 and p2 exhibit a relatively
small standard deviation, both characterized by a downward trend in gas prices. Period
p3 shows a comparatively more significant standard deviation with a net change in prices
of 4.43. Periods p4 to p7 witnessed sharp increases in volatility, with period p6 being
the most extreme, featuring a standard deviation of 41.1. The last period demonstrates
similar behavior as described in section 2.5, in an unstable equilibrium. Although it shares
a similar net change pattern with period p1, the standard deviation is notably higher.

5.4 Training Procedure

As outlined in the preceding sections, a pivotal component of the TFT model involves
temporal processing, acquiring both lengthy- and short-term temporal relationships from
observed and known time-varying inputs. Consequently, we leverage distinct segments
detailed in Section 5.3 to facilitate the training and testing of the data.

5.4.1 Train test split

As mentioned in Section 5.3, the model is trained using data from day T=0 up to T − 60
for each segment before being tested on the corresponding test periods shown in table 5.1.
Predictions are generated for each day within the test period, projecting forward for the
subsequent 14 days ahead. This process yields 60 · 14 predictions for each segment.
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5.4.2 Loss Function

TFT is trained by jointly minimizing the quantile loss summed across all quantile outputs.

L(Ω,W ) =
∑
yt∈Ω

∑
qt∈ℓ

τmax∑
τ=1

QL(yt, ŷ(q, t− τ, τ), q

Mτmax

(5.26)

QL(y, ŷ, q) = q(y − ŷ)+ + (1− q)(ŷ − y)+, (5.27)

where Ω is the domain of the training data containing N samples. W represents the weight
of TFT, and ℓ = [0.1, 0.25, 0.5, 0.75, 0.9] are the 10th, 25th, 50th, 75th and 90th percentile.
In the quantile regression loss specified in Equation 5.27, the first term becomes prominent
and positive when the predicted value, ŷ, is less than the actual value, y, resulting in a
penalty for under-predictions. Conversely, the second term dominates when ŷ exceeds y,
penalizing over-predictions.

When q is set to 0.5, under-predictions and over-predictions are equally penalized, yielding
the median. As the value of q increases, the penalty for under-predictions intensifies
compared to over-predictions. For example, at q = 0.9, under-predictions are penalized by
a factor of 0.9, while over-predictions are penalized by a factor of 0.1. Consequently, the
model endeavors to mitigate under-predictions approximately nine times more aggressively
than over-predictions, resulting in the 0.9 quantile.

5.4.3 Parameter Optimization

The precise hyperparameters governing the learning process are selected from a predefined
search space outlined in Table 5.2. Inadequate combinations of hyperparameters yield
suboptimal results by failing to minimize the loss function. Consequently, hyperparameter
tuning is a crucial component in optimizing any machine learning model.

Hyperparameter Search Grid

Encoder 30,60,100,365

Learning rate 0.01,0.001,0.0001

Hidden size 32,64,128,256

Attention head size 1,4,8,10,14

Dropout rate 0.1,0.2,0.3

LSTM layers 1,2,3,4

Table 5.2: Hyperparameter search space.

The sheer abundance of hyperparameter values renders the search space for identify-
ing optimal model configurations overwhelmingly complex. Employing a grid search,
which tests every conceivable combination, is impractical given computational constraints.
Consequently, hyperparameter optimization is executed through 50 iterations of random
search. Furthermore, due to constraints in computational resources, hyperparameter tun-
ing is conducted once on the entire dataset, excluding the test periods.
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Every TFT model undergoes training on a dedicated Nvidia RTX A2000 GPU using Cuda.
Our optimal TFT models require slightly over 9 hours for the entire training process for
all segments, with each epoch lasting approximately 1 minute. The specific parameter
specification of our trained TFT model is detailed in Table 5.3 below.

Parameter Value

Library details pytorch-forecasting version 1.0.0

Network details Encoder 365

LSTM layers 2

Dropout rate 0.2

Hidden layer size 128

Attention head size 8

Loss QuantileLoss

Training details Epochs 80

Minibatch size 32

Predictions 14

Learning rate 0.003

Max gradient norm 0.9

Optimizer RANGER

Computational cost Hardware Nvidia RTX A2000

Minutes per average epoch 2

Table 5.3: Information on library and optimal TFT configuration.

5.4.4 Feature sets

To identify the most practical combination of features for our analysis, we have created
various feature sets, each comprising a blend of input variables. Due to computational
constraints hindering an exhaustive search for the optimal feature set, we have undertaken
a manual approach to craft diverse configurations. The table below presents the feature
sets designed and explored in this study, each representing a unique combination of factors
that we anticipate will contribute to the precision of our analysis.
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Name Features

Simple German Gas Prices

Base Weather data, Gas Prices and Exchange data

Feature set 1 Base + Google data

Feature set 2 Base + Storage data

Feature set 3 Base + Electricity data

Feature set 4 Base + Commodity data

Feature set 5 Base + Stock data

Full All Features

Pooled Simple feature set pooled by Hub

Table 5.4: Feature sets

The feature sets presented in Table 5.4 encapsulate distinct combinations of input features
designed for our analysis. The ”Simple” feature set includes solely the ”Gas Price” feature
and temporal features such as Day of the week and Month. When researching optimal
parameters for predicting German gas prices Busse et al. [2012], identified five features for
best performance using an ANN. These features include trading hub prices, EUR/USD
exchange rate, and weather data. These features form our ”Base” in table 5.4. To test
whether the TFT model identifies additional patterns compared to an ANN or if the
dependencies have changed through the years, we test additional features through feature
sets 1 to 5. Each feature set adds data from specific domains. The ”Full” set incorporates
all available data as inputs and assesses whether the variable selection networks of the
TFT model can effectively choose the most optimal features. A complete list of all features
associated with each feature set is presented in Appendix C.

Inspired by Lim et al. [2021], we additionally evaluate a pooled model. In this configura-
tion, price data from each natural gas hub is consolidated into a single feature set named
”Pooled”. Leveraging the static enrichment layer, the TFT can discern common patterns
across hubs while isolating effects unique to individual hubs. By comparing the accuracy
of the ”Pooled” feature set with the ”Simple” feature set, we can assess whether the model
demonstrates improved performance through data pooling.

5.5 Evaluation Criteria

To comprehensively evaluate the model, we introduce the diverse accuracy measures em-
ployed to identify deviations from the actual results. Finally, we elaborate on applying
the Diebold-Mariano test to assess the statistical significance of potential improvements.

5.5.1 Accuracy Measures

The performance of each feature set discussed in Section 5.4.4 is assessed based on three
accuracy criteria. We employ Price MSE, Target MSE, and Quantile loss. MSE is the
average squared difference between the values observed in a statistical study and the values
predicted from a model and is calculated according to Equation 5.28
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MSE =
1

n

n∑
i=1

(yi − ŷi)
2, (5.28)

where yi is the ith observed value, ŷi is the corresponding predicted value for yi, and n is
the number of observations. Given that the model’s objectives involve forecasting future
returns, we compute the Target MSE directly from the model’s predictions and actual
returns using Equation 5.28. The predictions employed in this computation correspond to
the 50th percentile of the quantile predictions detailed in Section 5.27.

Price MSE, however, differs slightly from target MSE. We have the forecasted price, which
is given by Equation 5.29

P̂t = P̂t−1 · e1+r0.5t (5.29)

where P̂t is the forecasted price at time t, and r0.5t is the 50th percentile forecasted return
at time t. The process involves forecasting returns and multiplying them by the last
forecasted price to obtain a new price. When t is 0, P̂t−1 corresponds to the last observed
price in the training period. Thus, the Price MSE is given by Equation 5.30

PriceMSE =
1

n

n∑
i=1

(Pi − P̂t)
2 (5.30)

where Pi is the actual price at time t, P̂t is the forecasted price at time t, and n is the
number of observations. As the price depends on each individual prediction, the price MSE
allows us to assess the model’s capability to predict a target series rather than focusing
solely on pointwise predictions.

Additionally, as outlined in Section 5.4.2, the TFT model is trained by minimizing the
Quantile loss. As a third criterion for evaluating the performance of distinct feature sets
in the TFT model, we assess the quantile loss using Equation 5.27.

In the evaluation between TFT and the benchmark models, the lack of quantile forecasts
in the latter makes the comparison using the quantile loss criterion inconclusive. Hence,
we assess forecasts within each period through Target and Price MSE. Additionally, we
introduce the ”Correct Way” measure as an evaluation criterion. This binary measure
takes the value of 1 when the deep learning model successfully forecasts the direction of
the 14-day price movement and 0 otherwise. This evaluation criterion tests the model’s
ability to recognize price movement patterns.
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5.5.2 Significance test

To test the significance of the predictions, we employ the Diebold-Mariano test, as pro-
posed by Diebold & Mariano [1995]. The null hypothesis (H0) posits that the difference
in prediction errors between two series of forecasts is zero. However, it is noteworthy that
Diebold [2015] argued that the Diebold-Mariano test was designed for comparing forecasts
rather than models.

In our study, each period encompasses 60 prediction days, with each day generating a 14-
day forecast, resulting in a total of 840 data points for each period. Despite the caution
recommended in using the Diebold-Mariano test, given the substantial number of data
points calculated for each period, it still provides a meaningful indication of significance.
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Chapter 6

Results

We will present our findings in three stages. Initially, we will evaluate the performance
of each discussed feature set outlined in Section 5.4.4. Subsequently, we will assess the
performance of the TFT model for each period, considering both comparisons with other
models and an analysis of the model dynamics. Finally, we will explore the TFT model’s
capability to recognize temporal patterns in the data.

46



6.1 Feature Selection

p1 p2 p3 p4 p5 p6 p7 p8

Simple Q 11.86 21.16 29.13 30.72 71.41 83.53 55.49 67.16

Model MSEP 0.45 0.78 0.66 11.89 277.18 2222.1 17.78 22.83

MSET 0.00011 0.00034 0.00034 0.00081 0.0032 0.0051 0.0020 0.0030

Base Q 10.93 18.6 21.4 31.7 59.2 77.0 46.4 58.6

Model MSEP 0.5 0.64 0.87 17.47 254.5 2247.4 54.6 24.6

MSET 0.00011 0.00034 0.00029 0.0009 0.00034 0.0054 0.0018 0.0034

Feature Q 11.6 19.2 26.48 27.9 59.5 79.9 44.7 62.1

set 1 MSEP 0.81 0.76 3.25 12.96 304.76 3644.7 19.30 22.60

MSET 0.00012 0.00033 0.0006 0.00082 0.0033 0.0056 0.0020 0.0029

Feature Q 11.8 19.6 28.2 35.3 59.8 77.9 52.9 59.6

set 2 MSEP 0.698 0.72 1.33 17.92 278.4 1974.31 14.59 18.2

MSET 0.00012 0.00035 0.00035 0.00088 0.0032 0.0051 0.0017 0.0039

Feature Q 12.7 19.9 24.3 31.2 59.9 76.5 52.5 58.3

set 3 MSEP 0.62 0.82 0.94 17.0 257.59 1995.29 22.02 21.60

MSET 0.00012 0.00035 0.00032 0.00087 0.0031 0.0052 0.0015 0.0028

Feature Q 12.89 20.3 27.57 33.8 61.5 79.4 51.4 58.8

set 4 MSEP 0.73 0.68 1.52 18.58 250.97 2023.75 17.78 22.1

MSET 0.00012 0.00033 0.00037 0.00089 0.0031 0.0051 0.0017 0.0029

Feature Q 12.4 20.5 25.9 30.6 60.8 77.2 48.3 67.7

set 5 MSEP 0.62 0.68 1.11 15.5 261.8.5 1889.89 18.07 22.2

MSET 0.00011 0.00033 0.00032 0.00085 0.0032 0.0048 0.0017 0.0029

Full Q 10.5 17.9 28.0 27.3 61.3 80.5 57.6 68.8

Model MSEP 0.45 0.55 1.10 10.16 299.80 2029.51 48.6 56.5

MSET 0.00010 0.00032 0.00033 0.00079 0.0033 0.0050 0.0033 0.0046

Pooled Q 11.9 20.3 28.7 32.1 62.8 78.1 52.6 58.2

Model MSEP 0.54 0.69 1.19 18.41 253.60 2364.91 24.58 24.03

MSET 0.00012 0.00034 0.00038 0.00088 0.0031 0.0052 0.0018 0.0029

Table 6.1: Errors for all Feature sets within each period

Table 6.1 provides a comprehensive summary of the results derived from different feature
sets as detailed in Section 5.4.4. All feature sets are trained with consistent model con-
figurations for each period and are assessed based on three criteria: Quantile-loss (Q),
Price MSE (MSEP), and Target MSE (MSET). In each period, the lowest error for each
measure is highlighted. Appendix D presents the feature importance plots discussed in
this section.

Upon reviewing Table 6.1, it is evident that no individual feature set consistently out-
performs others across all periods. Almost every feature set demonstrates periods where
they excel and instances where their performance is poor compared to other sets. This
observation implies that each feature set contains valuable information, but there are peri-
ods where they introduce a significant amount of noise to the model. To gain a deeper
understanding of this dynamic, we delve into the feature importance of each Feature set.
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Feature set 1 incorporates Google search data associated with the keywords ”war” and
”natural gas,” in addition to the base model features. As depicted in Table 6.1, this specific
feature set performs slightly worse than the Base set for most periods, except for p4 and
p8. Notably, during period p3, the feature set experiences a significant increase in error
compared to the base set. Upon inspecting the feature importance plot, we observe that
Natural gas searches rank as the fourth most dominant feature, while War searches are
comparatively lower. For period p4, where the feature set outperforms the Base set across
all measures, we note that Natural gas searches are less prominent, while War searches
gain importance. This observation suggests that War searches might contribute value to
the predictions, whereas Natural gas searches mainly introduce noise.

Feature set 2, which includes data on German storage, exhibits results with higher errors
during period p2 and p3, compared to the Base set. While demonstrating slight improve-
ments across multiple periods, this feature set excels in period p7. After examining the
feature importance plots, it becomes apparent that the ”Full(%)” feature gains significance
while remaining insignificant during inaccurate periods.

Feature set 3, incorporating energy data, demonstrates strong performance in period p4,
p7, and p8, compared to the Base set. However, it exhibits substantial errors in period
p1 and p2. Upon analyzing the imprecise periods, we observe that in period p1, Sun
power and CO2 spot are prominent, while in period p2, Wind energy and CO2 spot
rank among the four most important features. In periods of good performance, Wind
energy takes precedence. Therefore, drawing a definitive conclusion from this observation
is challenging, but it is evident that the features added in Feature Set 3 often dominate
the model, potentially causing some disruptions.

Feature Set 4 incorporates all features related to oil and coal prices. This feature set
generally yields robust results, except for period p3, which incurs higher errors than the
Base set. Notably, the feature set excels in period p5, characterized by volatile price
fluctuations. Examining the model behavior, the features in this set provide value as they
are consistently present in accurate periods while not being overly dominant in inaccurate
periods.

Feature Set 5 investigates whether incorporating stock data for four major companies
related to the natural gas supply can offer additional insights into the model. As shown in
Table 6.1, this feature set performs similarly to the Base set, with some improvements and
some declines in performance. Examining the importance of features, stock price features
generally gain significance in most periods, with instances where they dominate other
features. The stocks of these companies are highly correlated with commodity prices,
potentially leading the model to assign higher importance to these features. Despite
offering some value, especially in period p6, they may introduce significant noise.

The Full model encompasses all available features. As depicted in Table 6.1, the results
unveil a volatile pattern in the performance. Notably, period p1, p2, and p4 present highly
favorable predictions in comparison to alternative feature sets, whereas period p7 and
p8 exhibit substantial increases in error. These observations suggest that adding extra
features brings considerable value in specific periods but also introduces noise into the
model. This noise becomes particularly apparent in period p7 and p8. During these
periods, we observe dominant behavior of the features Natural gas searches, Full(%), CO2

spot, Shipping price, and EOAN. These findings imply that identifying an optimal feature
set for the model can significantly mitigate loss during testing.

The final feature set examined is the Pooled model, which incorporates price data from
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each natural gas hub consolidated into one dataset. Employing the static enrichment
layers of the TFT model, this approach allows the model to generate separate predictions
for each hub while concurrently capturing shared patterns. As indicated in Table 6.1,
the Pooled model performs similarly to the Simple model, with specific improvements,
particularly in the most recent periods.

In light of the uncertain trajectory of gas prices in the future, our objective is to pinpoint a
set of features that proves resilient across diverse periods, thereby ensuring adaptability to
evolving dynamics in upcoming scenarios. Given limited computational power, employing
sophisticated feature selection techniques is deemed too resource-intensive. To address the
challenge of selecting the optimal subset of features, we leverage the transparency inherent
in the model. Through an iterative process of removing and analyzing dominant features
in periods with inaccurate predictions, we derive a final subset of features that, on average,
outperforms other feature sets presented in Table 6.1. The final feature set is presented
in Appendix C.

6.2 Post-Model Analysis

We conduct a comprehensive post-model analysis of the price forecasts for each period
outlined in Section 5.3. Initially, we evaluate each model based on the criteria specified in
Section 5.5. Subsequently, we delve into the identification of the most essential features.
Finally, an analysis aimed at understanding the reasons behind the varying significance of
certain features is presented.

6.2.1 Period 1

Price MSE Target MSE Correct Way

TFT 0.31 0.00012 87%

ARIMA 0.57 0.00013 65%

XGBoost 0.63 0.00012 32%

Table 6.2: Performance evaluation for period p1

The outcomes for the period p1 are presented in Table 6.2. During this period, TFT
demonstrated superior performance compared to ARIMA and XGBoost in terms of Price
MSE and Correct way, while XGBoost exhibited similar performance in Target MSE. The
Diebold-Mariano test in Appendix E.1 reveals that the TFT model significantly outper-
forms the other models concerning Price MSE and outperforms ARIMA in terms of Target
MSE. As discussed in Section 5.3, period p1 is characterized by a descending trend with
a low standard deviation. The combination of this low standard deviation and the obser-
vation that 88 % of all prediction intervals fall within the price range contributes to the
overall low error across all models in this period.
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Figure 6.1 illustrates the model’s assessment of feature importance. Notably, the model
identifies the Temperature feature as significant during this timeframe. The average tem-
peratures for February, March, and April across the entire dataset are 3.49, 6.42, and 10.0,
respectively. Comparatively, the average temperatures in 2014 were 5.88, 8.46, and 12.2,
indicating a hot season. This warmer climate could lead to a decreased demand for gas in
terms of heating requirements, which may contribute to the observed decline in gas prices
during this period.

Figure 6.1: Attention weights p1

As displayed in Figure 6.1 we observe that the TTF Spread feature is the most critical
feature for the model attention during this period. Figure 6.2 illustrates this feature
from January 2012 to December 2014, with the period p1 colored orange. Notably, the
TTF spread exhibits a meager and sustained value during this timeframe. The model
acknowledges that such deviations tend to swiftly correct themselves, establishing this
feature’s crucial role in predicting future prices during this period.

In addition to the mentioned features, the model focuses on the Oil volatility and past
values of the German gas prices.
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Figure 6.2: TTF Spread during period p1

Source: Eikon

6.2.2 Period 2

Price MSE Target MSE Correct Way

TFT 0.49 0.00033 72%

ARIMA 0.75 0.00036 61%

XGBoost 0.70 0.00033 70%

Table 6.3: Performance evaluation for period p2

The period p2 results are presented in Table 6.3. Although XGBoost and TFT show
similar outcomes for Target MSE, TFT outperforms the other models regarding Price
MSE. The Diebold-Mariano test results, however, indicate that this outperformance in
MSE is not statistically significant. One possible explanation is that the TFT predictions
consistently display a downward trend for all periods. This tendency is also reflected in
the correctness measure, aligning with the number of declining periods. While TFT may
demonstrate significantly lower MSE in falling forecasts, it may exhibit less flexibility in
capturing rising prices.

Like period p1, period p2 exhibits a low standard deviation and a negative price trend.
Despite having a lower standard deviation compared to period p1, predicting this period is
more challenging, as indicated by the results in Table 6.3. The complexity arises from the
intricate nature of the price movements. In March 2019, there was a sharp price decline,
followed by a steep increase in early April, followed by a gradual decrease. These dynamic
shifts pose a challenge for the models, demanding a high degree of flexibility to capture
the evolving patterns accurately
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Figure 6.3: Attention weights p2

In period p2, the dominant features are the Relative time index, War searches, and Day
of the month. First, the Relative time index, portraying the number of days since the
starting day, provides temporal context, offering insights into evolving patterns over time.
Similarly, the day-of-month feature, indicating the day in the current, introduces a tem-
poral element that could capture seasonality effects and cyclical trends influencing natural
gas prices. Finally, Google Data serves as an indicator for the volume of searches related to
”War.” Notably, searches for ”War” may signify geopolitical tensions or conflicts, and the
resultant geopolitical instability can impact energy markets, thereby influencing natural
gas prices.

When examining Google searches for ”War” displayed in Figure 6.4, an explanation for this
feature’s importance emerges. A pronounced spike was observed in April 2018, suggesting
an influential event. Our primary hypothesis points to the Douma chemical attack in
Syria during that month. In the aftermath of this attack, France, the UK, and the US
conducted missile strikes on Syrian targets, escalating global tensions [Deutsch, 2023].
Despite the occurrence of this spike approximately a year before the current prediction
period, it remains within the model’s contextual window. The model may identify that
the prediction period differs substantially from the previous year due to the noteworthy
event in 2018.

As the model cannot rely on the historical price behavior from past years, it intensifies
its attention on other seasonal features like net injection and average temperature. This
involves identifying analogous seasonal periods beyond the same day of the previous year
relative to the prediction period.
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Figure 6.4: Google searches for ”War”

Source: Google Trends

6.2.3 Period 3

Price MSE Target MSE Correct Way

TFT 0.69 0.00033 83%

ARIMA 1.07 0.00035 65%

XGBoost 1.11 0.00033 52%

Table 6.4: Performance evaluation for period p3

The period p3 results are presented in Table 6.4. While ARIMA and XGBoost showcase
similar outcomes, TFT outperforms the benchmark models, notably regarding Price MSE
and the Correct way metric. The significance of this outperformance is further evident in
Appendix E.1. Additionally, the TFT model significantly outperforms the ARIMA model
in Target MSE, as detailed in Appendix E.2.

As indicated in Table 5.1, period p3 witnesses an increase in gas prices, with a higher
standard deviation compared to periods p1 and p2. Despite the higher standard deviation
in this period, the model excels in regards to the correct way metric. This could be
attributed to a consistent pattern in the data, characterized by a consistent upward price
trend.

In period p3, some important features observed from figure 6.5 are Relative temperature,
Weighted average temperature, and Month. The Relative temperature and Weighted
average temperature features hold substantial importance, potentially reflecting seasonal
demand patterns and responding to heating and cooling needs. During February, March,
and April in the prediction period p3, the weather exhibits high volatility, fluctuating
between icy and warm conditions. Specifically, the temperature was notably colder in
April, registering 3 degrees below the average for this month. This could have contributed
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Figure 6.5: Attention weights p3

to the observed increase in gas prices during this period.

In addition to the significance of the TFT spread as a feature during this period, Figure
6.5 also emphasizes the importance of Henry Hub prices. Figure 6.6 displays Henry Hub
prices from January 2021 to July 2021, with values within the p3 highlighted in blue. It
is evident that just before this period, prices experienced a substantial spike, increasing
by over 712 % from February 9th to February 17th. According to IEA [2021], this spike
resulted from an extreme winter storm in parts of the United States, causing massive
demand for heating. The resultant shortage in storage led to a decline in the global
supply of American natural gas. This decrease could also contribute to the rise in German
natural gas prices during this period.
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Figure 6.6: Henry Hub prices during period p3

Source: Eikon

6.2.4 Period 4

Price MSE Target MSE Correct Way

TFT 10.66 0.00085 83%

ARIMA 19.98 0.00097 63%

XGBoost 16.78 0.00086 63%

Table 6.5: Performance evaluation for period p4

Analyzing the findings in Table 6.5, it is apparent that during period p4, both machine
learning models outperform ARIMA in Price MSE and Target MSE. TFT exhibits su-
perior performance in Price MSE and price movement prediction. However, despite the
considerable reduction in Price MSE compared to the other models, the results of the
Diebold-Mariano test suggest that this improvement is not statistically significant at the
5% threshold.

The noticeable increase in Target and Price MSE for all models can be attributed to the
rise in standard deviation for gas prices during period p4. As indicated in Table 5.1,
period p4 exhibits a standard deviation of 6.15 with a net increase of 22.14, making minor
prediction errors resulting in substantial errors in both Price and Target MSE.
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In period p4, visualized in Figure 6.7, the dominant feature is the Oil price volatility ratio.
As Section 2.6 outlines, oil prices might affect German natural gas prices. The average
correlation between oil and gas prices across all periods is 0.36. However, in period p4
specifically, the correlation level spikes to 0.85, making oil prices an influential factor.
Figure 6.8 illustrates the Oil price volatility from March 2021 to December 2021, with
period p4 highlighted in orange. Throughout this period, we observed significant spikes in
the feature. These spikes, combined with an increase in the correlation between gas and
coal, might explain the significance of the oil price volatility in this period.

Figure 6.7: Attention weights p4
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Figure 6.8: Oil Price volatility p4

Source: Eikon

6.2.5 Period 5

Price MSE Target MSE Correct Way

TFT 248.95 0.0032 65%

ARIMA 273.74 0.0035 47%

XGBoost 255.25 0.0032 47%

Table 6.6: Performance evaluation for period p5

The period p5 results are detailed in Table 6.6. As depicted in Section 5.3, period p5
signifies the onset of the two most extreme periods, a characteristic further underscored
by the outcomes in Table 6.6. According to Table 5.1, this period is characterized by
a standard deviation of 17.1 and a net price increase of 28.9. The predictions exhibit
approximately equal proportions of rises and falls, underscoring the challenging nature of
accurate predictions during this period. All models exhibit notably higher errors during
this period, with TFT marginally outperforming others regarding Price MSE and the
correct way metric. From Appendices E.1 and E.2, it is evident that the TFT model
significantly outperforms ARIMA in terms of Price MSE; however, this is not in terms of
Target MSE.
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Figure 6.9: Attention weights p5

In period p5, we observe from Figure 6.9 that the feature NBP-spread emerges as the
dominant factor along with temperature features. NBP spread indicates the price dis-
parity between German and British natural gas, and its significance can be attributed to
several reasons. Firstly, disparities in natural gas supply and demand between the UK
and Germany can induce fluctuations in their respective prices. Changes in production,
import/export volumes, or disruptions in the natural gas supply chain may contribute to
these variations, with the observed price difference reflecting imbalances in supply and de-
mand and enhancing the predictive efficacy of this variable. The NBP spread, historically
averaging around 20, exhibited notable deviations with average values of 67.96 in 2021
and 80.79 in 2022. Figure 6.10 illustrates the behavior of the NBP spread in period p5.
NBP reached its all-time low at -65.29, indicating an unusual event in the market. The
subsequent day saw a swift correction, with the value rebounding to 6.07. This intriguing
pattern suggests that the NBP spread could serve as an indicator of potential future price
fluctuations.

Moreover, the Relative temperature feature is an essential factor in this period. Notably,
May 2022 experienced hot weather. Over the five years from 2018 to 2022, the average
temperature for May stood at 13.77. However, in May 2022, an average temperature of
15.73 was recorded, signifying a substantial deviation towards higher temperatures. These
elevated temperatures likely played a role in the downturn of gas prices, declining from
approximately 100 to 80 during that month.
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Figure 6.10: NBP Spread in p5

Source: Eikon

6.2.6 Period 6

Price MSE Target MSE Correct Way

TFT 1757.26 0.0054 65%

ARIMA 1967.23 0.0059 60%

XGBoost 1820.56 0.0052 58%

Table 6.7: Performance evaluation for period p6

Table 5.1 reveals that period p6 is the most extreme, characterized by a substantial stand-
ard deviation of 41.4 and a price range difference of 149 between the highest and lowest
prices. The challenging nature of this period is further emphasized by the distribution of
prediction directions, with 57% trending downward and 43% upward. This difficulty is
reflected in the results presented in Table 6.7, where all models exhibit high errors. Among
them, TFT demonstrates the lowest errors in terms of Price MSE, while XGBoost achieves
the lowest errors in target MSE. From Appendix E, we observe that TFT outperforms the
ARIMA model significantly in terms of Price MSE and Target MSE.
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Figure 6.11: Attention weights p6

Figure 6.11 highlights the most influential features of this period. The most important
features are NBP spread, Relative time index, and Exchange rate. During period p6, the
volatile pattern observed in the NBP spread, illustrated in Figure 6.10, during period p5,
continues. This continuity in behavior could explain why this feature remains of high
interest in this period.

In period p6, there is a notable and rapidly changing pattern in gas prices, characterized
by sharp increases and significant declines. The uncertainty surrounding future price
patterns could be a key factor contributing to the significance of the Relative time index
feature. The model’s consideration of recent price data becomes particularly relevant in
this scenario, as the absence of observed comparable data implies that recent trends may
carry greater weight in predicting future price movements.

Figure 6.12 illustrates the exchange rates from 2019 to 2023, with the values corresponding
to period p6 highlighted in orange. Within this time frame, the exchange rate reaches its
lowest value of the entire dataset, specifically on September 27th, with a recorded value
of 0.96. This significant occurrence increases the model’s focus on this particular feature.
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Figure 6.12: Exchange rate in p6

Source: Eikon

6.2.7 Period 7

Price MSE Target MSE Correct Way

TFT 13.59 0.0015 93%

ARIMA 23.21 0.0017 60%

XGBoost 29.17 0.0016 35%

Table 6.8: Performance evaluation for period p7

The outcomes for the period p7 are presented in Table 6.8. Following the two extreme peri-
ods, this interval appears comparatively more stable and similar to period p4, characterized
by a negative price trend. TFT outperforms other models for all evaluation measures. The
Diebold-Mariano test in Appendix E reveals a statistically significant outperformance for
both measures compared to the benchmark models. However, it is noteworthy that TFT
does not surpass XGBoost under the 5% threshold in Target MSE.

In period p7, visualized in Figure 6.13, the dominant features are TTF price and NBP
spread. The feature TTF price, however, emerges as the dominant factor.
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Figure 6.13: Attention weights p7

Analyzing Figure 6.14, we observe that following an interval of substantial volatility in
2022, the beginning of 2023 marks a more stable phase in TTF prices. The model recog-
nizes this deviation from the previous year’s pattern. To delve deeper into the relationship
between TTF and German gas prices, Figure 6.15 depicts the correlation development
between the two gas hubs based on the past 365 days. In period p7, the correlation re-
gains significance after a deviation in 2022. The upswing in correlation and the absence
of extreme volatility might explain why the model assigns high importance to TTF prices
during this period.

Similar to the stabilization observed in the TTF price, the NPB spread also steadies during
this period. These features could indicate a potential new regime in the gas market.
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Figure 6.14: TTF Price from January 2022 to July 2023

Source: Eikon

Figure 6.15: Correlation between German Gas Prices and TTF Prices

Source: Eikon
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6.2.8 Period 8

Price MSE Target MSE Correct Way

TFT 18.77 0.0029 78%

ARIMA 23.64 0.0033 58%

XGBoost 23.13 0.0030 48%

Table 6.9: Performance evaluation for period p8

As outlined in Section 2.5, natural gas prices have recently entered an unstable equilibrium,
a notion supported by Table 5.1. In period p8, a standard deviation of 4.6 is observed, with
a slight negative trend. Table 6.9 presents the outcomes for this period. TFT surpasses
the other benchmark models across all evaluation measures, although, as observed in
Appendix E, the outperformance for the MSE measures is not statistically significant.
This could be attributed to the observations in period p8, where the TFT model lags in
capturing the rapid decline in prices, only responding to the subsequent sharp increase.
This lagging behavior might explain why the observed performance improvement is not
statistically significant. This could be attributed to the fact that in period p8, marked
by a swift price decline succeeded by a sharp increase, the TFT model seems to delay
capturing the downward trend before responding to the subsequent rise.

Figure 6.16: Attention weights p8
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In the last period, p8, the predominant features are TTF spread and HHB spread, as seen
in Figure 6.16. A closer examination of the HHB spread feature in Figure 6.17 reveals a
stabilization pattern. After experiencing a significant deviation from its typical values in
2022, it gradually returns to a more normal state in 2023.

Figure 6.17: Henry Hub Spread from January 2022 to July 2023

Source: Eikon

In addition to stabilizing the hub spreads compared to the previous year, we can also
observe from Figure 6.18 that the TTF spread is experiencing increased volatility during
June 2023. These factors contribute to this feature being the most important during this
period.

Figure 6.18: TTF Spread from January 2022 to July 2023

Source: Eikon
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6.3 Temporal Variable analysis

To gain a more comprehensive understanding of the temporal dynamics of the model and
test its pattern recognition capabilities, we conduct a sensitivity analysis focusing on tem-
poral input features. These features encompass Day of the week, Month, and Day of the
month, pivotal contributors to the predictive process of the TFT model, serving as known
future inputs. The analysis is conducted by changing input values for each feature and ob-
serving the effect on predictions. It is crucial to emphasize that the analysis is conducted
within the specific context of the final day of July 2023. This context will influence the
overall predictions. However, our primary focus is on understanding the relative effects of
the predictions rather than making absolute assessments. For this analysis, we utilize the
model trained on the entire dataset.

6.3.1 Day of the week

The Day of the Week feature ranges from Sunday, denoted 0, to Saturday, denoted 6. Fig-
ure 3a shows the TFT predictions for the scaled returns, while 3b illustrates the historical
average return for each day. Scaled returns below 1 correspond to negative actual returns.

The TFT model consistently predicts negative values for all days except Sundays. Notably,
it predicts Sundays as zero, ranking Mondays and Tuesdays as the highest and Fridays as
the lowest. In comparison to Figure 3b, although predicting Tuesdays slightly higher than
Mondays, the TFT model exhibits a pattern similar to the historically observed values. In
their study, Meek & Hoelscher [2023] observed a significant positive impact on Mondays
and Tuesdays and a significant adverse effect on Thursdays when analyzing Henry hub
returns. The findings depicted in Figure 6.19 validate these results for German gas prices
and reveal a negative impact on Fridays for the TFT model.
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(a) TFT predictions

(b) Historically observed returns

Figure 6.19: Day of the week effect
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6.3.2 Month

Figure 6.20a presents the outcomes of the sensitivity analysis concerning the Month fea-
ture, while Figure 6.20b displays the observed historical average returns for each month.
The TFT analysis reveals that the model predicts the highest values for March, August,
and November and the lowest for February, June, and September. In comparison to the
historical observed values, it is apparent that the November effect is noticeable. The
model, however, tends to overpredict in March and underpredict in June. It is noteworthy
that March and June exhibit some of the highest variance among the months, which could
potentially make the model’s predictions more sensitive to the context for these forecasts.
This heightened sensitivity might contribute to the model’s deviation from the historically
observed values.

(a) TFT predictions

(b) Historically observed returns

Figure 6.20: Month effect
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6.3.3 Day of month

The last feature we analyze is the Day of the month feature. Figure 6.21a displays the
sensitivity analysis results in the model, while Figure 6.21b presents the historical ob-
served average returns. Upon comparing the figures, it becomes apparent that the TFT
model accurately captures many of the recurrent dynamics observed historically. Notably,
it reflects historical patterns at the beginning and end of the month, where the initial day
typically exhibits higher returns, followed by a decline on the second day before experi-
encing an upward trend in days 3 and 4. Towards the end of the month, day 30 often
demonstrates elevated values. Moreover, the model effectively captures many correct fluc-
tuations throughout the month, although these fluctuations are a semblance of random.
Qadan et al. [2019] identified a notable Turn-of-Month effect in the monthly Henry Hub
prices, signifying higher returns around the transition between months. Figure 6.21a illus-
trates increased returns on days 1, 3, 4, 30, and 31, excluding day 2. This might indicate
that the model captures some Turn-of-Month effect.

(a) TFT

(b) Historically observed returns

Figure 6.21: Day of month effect
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6.3.4 Decoder Importance

To assess the significance of each feature, we examine the attention importance of the
decoder. The results from the TFT model are depicted in Figure 6.22. Notably, the Day
of the Week feature exhibits the highest significance, whereas the Day of the Month shows
the most negligible significance. The significance difference becomes more apparent when
examining the variation in TFT predictions for each feature, with the Day of the Week
feature demonstrating the highest sensitivity to input values.

Figure 6.22: Decoder importance
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Chapter 7

Conclusion

Our discoveries highlight various aspects of how the TFT model operates. First, we have
highlighted the TFT model’s ability to detect patterns in the data. Throughout all periods,
the model has captured significant events in its contextual data, enabling it to predict fu-
ture prices based on past behavior. Additionally, we observe that the model demonstrates
an excellent ability to recognize patterns in temporal features, aligning with historical
observations. This behavior has enabled the TFT model to consistently surpass both
ARIMA and XGBoost regarding Price MSE, with statistically significant outperformance
observed across numerous periods. Regarding Target MSE, the outcomes exhibit more
balanced results than the XGBoost model, with only one period demonstrating signific-
antly superior results. This observation might be attributed to the TFT model’s capacity
to discern trends in previous data and its ability to generate multi-horizon forecasts by
considering past predictions and future known inputs. These aspects enable the TFT
model to generate accurate sets of predictions rather than focusing solely on pointwise
predictions. The same observation is apparent when analyzing the performance in terms
of accurately predicting the directions of the price movements. The TFT model signific-
antly outperforms the other models in most periods, underscoring the model’s ability to
identify recurring patterns in the data.

While the TFT model demonstrates commendable predictive accuracy under relatively
normal circumstances, the model exhibits pronounced inaccuracies, particularly during
extreme periods that have not been previously observed in the data. This becomes partic-
ularly evident in periods marked by increased market volatility, especially when compared
to the XGBoost model, where the results are less significant. Upon analyzing the TFT
model’s behavior during increased market turbulence phases, we occasionally observe high
attention on previous unrelated time steps. These time steps frequently display more
stable behavior, causing the model to underpredict price fluctuations. This phenomenon
becomes especially notable when the number of input features is increased, causing the
TFT model to recognize patterns that might be unrelated to the current prediction period
and display a delayed response to changing dynamics.
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In addition to generating forecasts, the TFT proves its utility as a valuable tool for data
analytics. Specifically, the TFT model offers insightful information regarding the signi-
ficant features influencing forecasts. Our findings demonstrate that the most recurring
features in terms of significance include spreads between other gas hubs, temperature
data, and exchange rates. Gas hubs like the NBP and TTF are pivotal in forecasting
German natural gas prices. These features, forming our Base set, align with the findings
of Busse et al. [2012] from their research in 2012. While these features exhibit the most
significance overall, relying solely on the base features does not consistently yield the best
results across all periods. Incorporating additional features has proven to enhance the ac-
curacy of our analysis. Some noteworthy discoveries regarding additional features include
the impact of oil price volatility and Google searches for ”war.” The significance of the
oil volatility feature suggests the potential presence of a spillover effect as described in
Section 4.1. Despite previous studies indicating that the spillover effect between oil and
gas prices has not been significant recently, the TFT model emphasizes that this feature
still provides valuable information. The inclusion of Google searches is also intriguing.
Integrating the search term for ”war” provides the model with a signal of an unusual
event occurring. This feature gains significance in some periods, mainly when the event
occurred within its context window but not presently. This observation might indicate
that this feature primarily indicates that previous unusual events have been concluded.
We notice some significant spikes when analyzing the Google data in Figure 6.4. Still,
it consistently maintains a low level, suggesting a lack of behavioral data for when these
significant spikes occur. This is evident around the outbreak of the Ukraine-Russia war
when the feature gains little significance. Obtaining additional data on the behavior of
commodities during war outbreaks or analyzing different keywords that capture broader
market disruptions could be interesting for further research.

The model’s capability to discern patterns and events in the data introduces some ad-
ditional complexities. As illustrated in Section 6.1, the model is highly responsive to its
input data. Despite implementing sophisticated VSNs, the model continues to identify
significant features that negatively influence its performance. This sensitivity to input
features may be associated with a large context window of one year of data and a relat-
ively small number of data points used for training. Including a single feature adds 365
data points for each context window. Considering that the model’s learning period spans
from a minimum of 800 to a maximum of 4000 days, it can identify patterns that lack
value when applied out of the sample. Given the prolonged training time of the TFT
model, implementing sophisticated feature selection algorithms becomes unfeasible due to
the limitations in computational capacity. Our strategy of leveraging the model’s trans-
parency for feature selection has proven valuable. However, an extended data horizon
could be beneficial to enhance the model’s stability concerning its VSN. A more extensive
utilization of additional data can be achieved by pooling data from various gas hubs. The
concept of pooling, as demonstrated in Section 6.1, with price features only, should be
extended in further research to include all features for each gas hub pooled into a single
model. This approach could give the model a broader foundation to conclude, potentially
leading to more stable VSNs.
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A practical analysis of the financial value of the obtained predictions should be conducted
to validate the results further. As discussed, the TFT model excels in precisely forecasting
the direction of price movements, demonstrating remarkable accuracy even in periods of
increased market volatility. This aspect could be of particular interest for assessment in a
real-world application. One financial field in which this behavior might prove particularly
advantageous lies within option trading. By leveraging the accuracy of the TFT model in
predicting price trends, one can explore the potential to optimize entry and exit points in
positions and enhance the ability to manage risks through more effective hedging strategies.

While our study has yielded promising results and valuable insights, it is essential to
acknowledge certain limitations that open opportunities for further research and improve-
ments. One primary constraint stems from the limitations in computational resources,
which have restricted the range of values used in the hyperparameter tuning employed in
our analysis. The intricate architecture of the TFT models results in substantial changes
in behavior when specific parameters are adjusted. Identifying an optimal set of hy-
perparameters becomes crucial to enhance the performance of the TFT model. Future
research should conduct a more comprehensive analysis of hyperparameter tuning and its
dependence on the input set.

Another critical factor affecting the quality of our results is the constraint imposed by
the availability of input data. Historical data regarding weather forecasts, electricity
generation forecasts, and commodity spot data such as coal spot have not been available for
our study. As described in Section 4.1, many of these factors have proven more significant
for gas price forecasts than the proxy data utilized. Future research efforts could focus
on securing the necessary resources or partnerships to access more valuable data, thus
improving the overall robustness of the model.

In conclusion, while our current findings are promising, addressing the constraints related
to computational resources, hyperparameter tuning, dataset size, and data quality presents
exciting opportunities for future research. Overcoming these challenges could lead to
a more nuanced and sophisticated understanding of the factors influencing our results,
ultimately contributing to the advancement of the field and the applicability of our findings
in practical settings.
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nich, . URL: https://www.osw.waw.pl/en/publikacje/osw-commentary/2023-01-12/
germany-how-gas-sector-changed-crisis-year-2022. Accessed: 2023-12-10.

Keles, D., & Hasan, Y. (2020). Decarbonisation through coal phase-out in germany and
europe—impact on emissions, electricity prices and power production. Energy Policy ,
141 , 111472. doi:https://doi.org/10.1016/j.enpol.2020.111472.
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Morkunas, M., Černius, G., & Giriūnienė, G. (2019). Assessing business risks of natural
gas trading companies: Evidence from get baltic. Energies, 12 , 2647. doi:10.3390/
en12142647.

Mossin, J. (1966). Equilibrium in a capital asset market. Econometrica, 34 , 768–783.
doi:https://doi.org/10.2307/1910098.

Mu, X. (2007). Weather, storage, and natural gas price dynamics: Fundamentals and
volatility. Energy Economics, 29 , 46–63. doi:https://doi.org/10.1016/j.eneco.
2006.04.003.

79

http://dx.doi.org/https://doi.org/10.48550/arXiv.1907.00235
http://dx.doi.org/https://doi.org/10.1016/j.ijforecast.2021.03.012
http://dx.doi.org/https://doi.org/10.1016/j.tre.2019.05.013
http://dx.doi.org/https://doi.org/10.1016/j.tre.2019.05.013
http://dx.doi.org/https://doi.org/10.1016/j.apenergy.2015.05.123
http://dx.doi.org/https://doi.org/10.1016/j.apenergy.2015.05.123
http://dx.doi.org/https://doi.org/10.2307/1924119
http://dx.doi.org/10.46793/EEE22-4.28M
http://dx.doi.org/10.46793/EEE22-4.28M
http://dx.doi.org/https://doi.org/10.1371/journal.pone.0194889
http://dx.doi.org/https://doi.org/10.1371/journal.pone.0194889
http://dx.doi.org/https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
http://dx.doi.org/https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
http://dx.doi.org/https://doi.org/10.1080/23322039.2023.2213876
http://dx.doi.org/https://doi.org/10.1080/23322039.2023.2213876
http://dx.doi.org/https://doi.org/10.1016/j.segan.2022.100781
http://dx.doi.org/10.1086/295881
http://dx.doi.org/10.3390/en12142647
http://dx.doi.org/10.3390/en12142647
http://dx.doi.org/https://doi.org/10.2307/1910098
http://dx.doi.org/https://doi.org/10.1016/j.eneco.2006.04.003
http://dx.doi.org/https://doi.org/10.1016/j.eneco.2006.04.003


Nazir, A., Shaikh, A. K., Shah, A. S., & Khalil, A. (2023). Forecasting energy consumption
demand of customers in smart grid using temporal fusion transformer (tft). Results in
Engineering , 17 , 100888. doi:https://doi.org/10.1016/j.rineng.2023.100888.

Nick, S., & Thoenes, S. (2014). What drives natural gas prices? — a structural var
approach. Energy Economics, 45 , 517–527. doi:https://doi.org/10.1016/j.eneco.
2014.08.010.

NVIDIA (2023). Xgboost, . URL: https://www.nvidia.com/en-us/glossary/data-science/
xgboost/. Accessed: 2023-12-19.

de Prado, M. L. (2019). Beyond econometrics: A roadmap towards financial machine
learning. Econometric Modeling: Theoretical Issues in Microeconometrics eJournal , .
doi:https://dx.doi.org/10.2139/ssrn.3365282.

Prieto, A., Prieto, B., Ortigosa, E. M., Ros, E., Pelayo, F., Ortega, J., & Rojas, I.
(2016). Neural networks: An overview of early research, current frameworks and new
challenges. Neurocomputing , 214 , 242–268. doi:https://doi.org/10.1016/j.neucom.
2016.06.014.
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A Full dataset

Table 1 and 2 provide an extensive list of all data features utilized in this study with
corresponding descriptions, data sources and frequency. The data sources utilized in
this study include Eikon, Energy-Charts, Netztransparenz, Google Trends and Deutscher
Wetterdienst. Refinitiv Eikon is the primary source of data and is a financial database
providing access to a vast range of market data. Netztransparenz and Energy charts offer
information pertaining to the German electricity market, while Deutscher Wetterdienst
provides data on German weather.

Table 1: First part of the full feature set incorporated in the study

Feature Description From Frequency

Exchange EUR/USD Rate Eikon Daily

EU Clean Spark Spread Calculation from section 4.1 Daily

Oil Price Brent crude oil spot Eikon Daily

Wind Energy
Amount of wind energy

generated in Germany
Netztransparenz Daily

Average Temp.

Average temperature of

the 10 largest cities in

Germany

Deutscher Wetterdienst Daily

Weighted Average Temp. Calculation from section 4.1 Deutscher Wetterdienst Daily

Fullness Rate
Natural gas storage levels

in Germany
Eikon Daily

Net Injection Net storage Activity Eikon Daily

Shipping Price Baltic Dry Index Eikon Daily

NaturalGas˙searches Searches for ”Natural gas” in Germany Google Trends Weekly

War searches Searches for ”war” globally Google Trends Weekly

TTF Price Day ahead price of TTF Hub Eikon Daily

TTF Spread Calculation from section 4.1 Daily

NBP Price Day ahead price of NBP Hub in GBP Eikon Daily

NBP Spread Calculation from section 4.1 Daily

Henry Hub Price Day ahead price of Henry Hub Eikon Daily

Henry Hub spread Calculation from section 4.1 Daily
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Table 2: Second part of the full feature set incorporated in the study

Feature Description From Frequency

Target German Gas return Daily

R2 Calculation from section 4.1 Daily

Relav R2 Calculation from section 4.1 Daily

Oil R2 R2 calculation on Oil Price Daily

Relav Temperature Calculation from section 4.1 Daily

Coal Futures Price Rotterdam coal,1 month future price Eikon Daily

Gazprom Gazprom stock price Eikon Daily

EOAN E.ON AG stock price Eikon Daily

XOM ExxonMobil stock price Eikon Daily

EQNR Equinor stock price Eikon Daily

Gas Price German gas Prices Eikon Daily

Sun Power
Amount of sun energy

generated in Germany
Netztransparenz Daily

Electricity Price German day ahead electricity price Energy-Charts Daily

CO2 spot
Day ahead price for German

C02 emission certificate
Energy-Charts Daily

Day of week Day of week from the Date Daily

Month Month from the Date Daily

Day of month Day of the month from the Date Daily

Holiday 1 if the current day is a national holiday Eikon Daily

Relative time index
Relative position of input data

with respect to the first prediction
Daily
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B Model Parameters

B.1 ARIMA

Figure 1 presents a graphical representation of the summary statistics for the ARIMA
model. The model is deployed using the Python library statsmodels version 0.14.1 Through
the minimization of Akaike’s Information Criterion, we identified the optimal ARIMA(3,1,3)
model. The summary statistics reveal the significance of all coefficients, and the Ljung-Box
test does not reject the null hypothesis. Notably, the White test is rejected, suggesting
the presence of heteroscedasticity in the residuals.

Figure 1: Summary statistics of the ARIMA model
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B.2 XGBoost

Table 3 exhibits the hyperparameters employed in the XGBoost model deployed from the
Python library xgboost. Additional parameters that were tested but remained unchanged
include min˙child˙weight (ranging from 0 to 10), subsample (ranging from 0.5 to 0.8), and
gamma (ranging from 1 to 3).

Library xgboost version 2.0.3

General Parameters booster ”gbtree”

objective ”reg:squarederror”

epochs 100

n˙estimators 100

Learning rate 0.001

Parameters for Tree Booster eta 0.5

max˙depth 10

tree˙method ”hist”

Table 3: Hyper parameters for the XGBoost model
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C Feature sets

Table 4 presents the list of feature sets tested, along with their corresponding features.
The final dataset represents the chosen feature space employed in the analysis.

Table 4: Features in each feature set

Features Simple Base FS1 FS2 FS3 FS4 FS5 Final

Exchange ✓ ✓ ✓ ✓ ✓ ✓ ✓

EU Clean Spark Spread ✓ ✓

Oil Price ✓ ✓

Wind Energy ✓

Average Temp. ✓ ✓ ✓ ✓ ✓ ✓ ✓

Weighted Average Temp. ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fullness Rate ✓

Net Injection ✓ ✓

Shipping Price ✓

NaturalGas˙searches ✓

War searches ✓ ✓

TTF Price ✓ ✓ ✓ ✓ ✓ ✓ ✓

TTF Spread ✓ ✓ ✓ ✓ ✓ ✓ ✓

NBP Price ✓ ✓ ✓ ✓ ✓ ✓ ✓

NBP Spread ✓ ✓ ✓ ✓ ✓ ✓ ✓

Henry Hub Price ✓ ✓ ✓ ✓ ✓ ✓ ✓

Henry Hub spread ✓ ✓ ✓ ✓ ✓ ✓ ✓

Target ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Relav R2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Oil R2 ✓ ✓

Relav Temperature ✓ ✓ ✓ ✓ ✓ ✓ ✓

Coal Futures Price ✓ ✓

Gazprom ✓

EOAN ✓

XOM ✓ ✓

EQNR ✓ ✓

Gas Price ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Sun Power ✓

CO2 spot ✓

Day of week ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Month ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Day of month ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Holiday ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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D Feature importance

The upcoming section provides an overview of the feature importance of each feature
set. This importance is determined by aggregating the attention weights for each fore-
cast within a specific period. For brevity, only the periods discussed in Section 6.1 are
showcased to minimize unnecessary space.

D.1 Feature set 1

In Figure 2, the feature importance for period p3 and p4 is depicted for feature set 1.
This feature set includes additional features ”NaturalGas˙searches” and ”War˙searches”
in addition to the base set.

(a) Period p3

(b) Period p4

Figure 2: Feature importance for selected periods of Feature set 1

89



D.2 Feature set 2

In Figure 3, the feature importance for period p2, p3, and p7 is depicted for feature set 2.
This feature set includes additional features ”Full(%)” and ”Net˙Injection” in addition to
the base set.

(a) Period p2 (b) Period p3

(c) Period p7

Figure 3: Feature importance for selected periods of Feature set 2
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D.3 Feature set 3

In Figure 4, the feature importance for period p1, p2, p4 and p7 is depicted for fea-
ture set 3. This feature set includes additional features ”Wind˙energy”, ”Sun˙power”,
”EU˙Clean˙Spark˙Spread” and ”CO2˙Spot” in addition to the base set.

(a) Period p1 (b) Period p2

(c) Period p4 (d) Period p7

Figure 4: Feature importance for selected periods of Feature set 2
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D.4 Feature set 4

In Figure 5, the feature importance for period p1, p3, p5 and p8 is depicted for feature
set 4. This feature set includes additional features ”Coal˙Future˙Price”, ”Oil˙Price” and
”Oil˙Price˙Volatility” in addition to the base set.

(a) Period p1 (b) Period p3

(c) Period p5 (d) Period p8

Figure 5: Feature importance for selected periods of Feature set 4
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D.5 Feature set 5

In Figure 6, the feature importance for period p3, p4, p5 and p6 is depicted for feature set 5.
This feature set includes additional features ”XOM”, ”EOAN”, ”EQNR” and ”Gazprom”
in addition to the base set.

(a) Period p3 (b) Period p4

(c) Period p5 (d) Period p6

Figure 6: Feature importance for selected periods of Feature set 5
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D.6 Full Model

In Figure 7, the feature importance for period p2, p4, p7 and p8 is depicted for the full
model. This feature set includes all features.

(a) Period p2 (b) Period p4

(c) Period p7 (d) Period p8

Figure 7: Feature importance for selected periods of the Full model
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E Hypotisis test statistics

E.1 Price predictions

Table 5 displays the outcomes of the Diebold-Mariano hypothesis test applied to price
predictions. The predictions from TFT are compared with those from ARIMA and XG-
Boost. Test statistics are highlighted in bold, and corresponding p-values are enclosed in
parentheses. Periods with significance below the 5% threshold are marked with **, and
periods with significance below the 10% threshold are denoted with *.

Table 5: Diebold Mariano test statistics and p values for the price forecast

Period ARIMA Xgboost

p1 −2 (0.048)** −2.4 (0.019)**

p2 −1.5 (0.13) −1.38 (0.17)

p3 −5.6 (6.7× 10−7)** −4.7 (0.000014)**

p4 −1.8 (0.07)* −1.9 (0.057)*

p5 −6.91 (3.8× 10−9)** −0.41 (0.68)

p6 −2.1 (0.04)** −0.69 (0.49)

p7 −6.0 (1.2× 10−7)** −3.2 (0.0023)**

p8 −1.1 (0.26) −0.52 (0.61)

E.2 Target predictions

Table 5 displays the outcomes of the Diebold-Mariano hypothesis test applied to return
predictions. The predictions from TFT are compared with those from ARIMA and XG-
Boost. Test statistics are highlighted in bold, and corresponding p-values are enclosed in
parentheses. Periods with significance below the 5% threshold are marked with **, and
periods with significance below the 10% threshold are denoted with *.

Table 6: Diebold Mariano test statistics and p values for the return forecast

Period ARIMA XGBoost

p1 −2.27 (0.027)** 1.23 (0.22)

p2 −2.15 (0.036)** −0.46 (0.65)

p3 −3.8 (0.00031)** −2.42 (0.019)**

p4 −2.3 (0.026)** −0.61 (0.55)

p5 −0.61 (0.54) 1.56 (0.13)

p6 −2.79 (0.007)** 0.04 (0.97)

p7 −4.6 (0.000027)** −1.85 (0.07)*

p8 −0.66 (0.51) −0.55 (0.58)
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