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Abstract— Motivated by dynamic optimization of aluminium
extrusion, this paper demonstrates how a progressor transfor-
mation of dynamical models can simplify the implementation
of simultaneous methods for dynamic optimization. The im-
plementation of direct collocation becomes difficult when the
model exhibits known discontinuous changes, but at unknown
times. If the model changes happen at known values in another
progressor, the model can be transformed and implemented
effortlessly. An example from the extrusion process is given,
where the extrusion process model is transformed from time to
extrusion length. The transformation allowed the implementa-
tion of direct collocation. In addition, the predictability of the
transformed model allowed nearly a 50 percent reduction in
state variables for describing the aluminium billet throughout
the extrusion phase.

I. INTRODUCTION

The motivation behind this paper comes from dynamic op-
timization of the extrusion cycle in the aluminium extrusion
industry. Aluminium extrusion is the process of producing
aluminium profiles by means of pushing heated aluminium
billets through a shaped die opening. The quality of the
product is highly dependent on the extrusion temperature,
and accurate temperature control is therefore critical.

Aluminium extrusion is a complex time dependent pro-
cess. In this paper we focus on alternative variables to time,
that a system can progress in, other ‘progressors’, and ex-
plore advantages of using progressor transformed dynamical
models in the context of optimal control. The example from
the extrusion industry is presented to showcase an application
of a progressor transformed dynamical model and various
advantages associated with it. A natural progressor of a
system is time, as all real world system state trajectories can
be written as functions of time, irrespective of the control
trajectory. If, for a system, a variable λ is continuous and
strictly monotonically increasing in time, then the trajectory
of that system can also be written as a function of λ,
making it a progressor of that system. The simple way of
transforming a dynamical model from time to λ then only
requires the bijective mapping between them, λ = Λ(t),
which is shown in this paper.

A transformation of a dynamical model is not novel, and
have been used in the context of optimal control for various
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purposes, for example in [1], [2], [3], [4], which transform
a vehicle model to be progressed by the distance along a
racetrack, and [5], which progresses a missile by its altitude.
However, this paper, we explore the use of a progressor trans-
formation in the context of direct collocation in particular. An
obstacle may occur for simultaneous methods for dynamic
optimization, such as direct collocation, when changes occur
in the dynamical model at unknown times within the problem
horizon;

fdyn.model(·) =


fp,1(·) t ∈ [tp0, t

p
1⟩

fp,2(·) t ∈ [tp1, t
p
2⟩

...
fp,h(·) t ∈ [tph−1, t

p
h⟩

, (1)

where tp1,...,h are the unknown times at which the model
changes, and the superscript p denotes the parametric form.
This poses a problem since for simultaneous methods, one
must implement the dynamical model for the entire horizon
of the problem prior to solving the problem. There are ways
around this issue, by considering multiperiod [6], or multi-
stage [7], optimization problems, or by introducing Mixed
Integer Nonlinear Programming (MINLP), [8]. However, the
issue can be circumvented entirely if the model changes
happen to be predictable in an alternative progressor of the
system. A progressor transformation is also similar to that
of time scaling for free end time problems, [9], [10], and
may, under the right circumstances, tie neatly into solving
the minimum time problem.

The application of a progressor transformation from the
aluminium extrusion industry is presented in Section IV,
where a discontinuous extrusion model is transformed from
time to extrusion length. By transforming the extrusion
model from time to extrusion length, one may align the
state trajectory discretization points with the discontinuities
in the model, to obtain continuously differentiable model
constraints for a direct collocation implementation. This
approach also results in a significantly reduced optimization
problem, due to the predictability of the model changes when
progressed by extrusion length. A direct collocation problem
to optimize a simplified extrusion model is implemented and
solved as demonstration of the technique.

II. PROGRESSOR TRANSFORMATION

Firstly, we define what what we mean by a “progressor”
of a dynamical system;

Definition. Let the state, xA(γ) ∈ Rn, of the dynamical
system A be defined on the continuous set γ ∈ [γ0, γf ] ⊆ R



by the Initial Value Problem

dxA(γ)

dγ
= fA(xA(γ),u(γ)), xA(γi) = xi, (2)

where γi ∈ [γ0, γf ], and u(γ) ∈ Rm is a control trajectory.
Then, any variable λ(xA(γ),u(γ)) ∈ [λ0, λf ] ⊆ R is
a progressor of A under control trajectory u(γ) iff there
exists a continuously differentiable, bijective function g :
[γ0, γf ] 7→ [λ0, λf ], such that

λ = g(γ). (3)

Simply put, if there exists a bijective mapping between two
variables, γ ∈ [γ0, γf ] and λ ∈ [λ0, λf ], and one of them is
a progressor of a system for a given control trajectory, then
so is the other. Normally, when working with dynamical
systems for control purposes, the dynamical models are
written with time as their progressor; ẋ(t) = f(x(t),u(t)).
However, there may exist more than one progressor of
your system, such as the altitude of a rocket/missile [5],
or how far along a racetrack you are in your race car,
as in [1], [2], [3], [4]. Note that in both examples, it is
reasonable to assume that the altitude and progress on a race
track are continuous and strictly monotonically increasing in
time for any reasonable input trajectory, thus making them
progressors of their respective systems.

Now we derive a simple progressor transformation. A
typical dynamical model is

ẋ = f t(x,u, t), (4)

where x describes the state of some controlled system that
is progressed by time, u is the control variable, and f t(·)
are the system dynamics as progressed by time. Let λ also
be a progressor of x(·), under the control trajectory u(·).
Then one can transform the time-progressed model into the
λ-progressed model by using the chain rule;

dx

dt
=

dλ

dt

dx

dλ
. (5)

By combining (4) and (5), one gets

dx

dλ
=

1

λ̇
f t(x,u, t). (6)

We then define the λ-progressed model as

fλ(x,u, t(λ)) =
1

λ̇
f t(x,u, t), (7)

and get
dx

dλ
= fλ(x,u, λ), (8)

with the same solutions as (4), where fλ(·) are the system
dynamics when progressed by λ.

Note that since λ is a progressor of x, we are guaranteed
that λ̇ > 0 by definition, thus avoiding division by zero.
We see that if λ is the altitude of a rocket being launched,
then one can obtain the altitude-progressed model by simply
scaling the time progressed model by the vertical speed of
the rocket.

III. APPLICATION TO DYNAMIC OPTIMIZATION

A major category of dynamic optimization methods are
direct transcription methods, particularly for complex pro-
cesses such as metal extrusion. In this paper, we focus
on direct collocation. When transcribing your system into
discrete time points of the system state and control inputs,
one typically assigns a specific point in time, tk, for each
discrete time point, implying a time step ∆tk, between
each consecutive discrete time points [tk, tk+1]. In direct
collocation, this approach yields a symbolic integration over
the horizon, N , typically on the form [6]:

min
x1,...,N ,u0,...,N−1,C0,...,N−1

J(·) (9a)

s.t.

cx(x) ≥ 0 ∀k ∈ N1,N (9b)

cu(u) ≥ 0 ∀k ∈ N0,N−1 (9c)
p(τ1, Ck)

′ −∆tk · f t
k,1(p(τ1, Ck),uk)

p(τ2, Ck)
′ −∆tk · f t

k,2(p(τ2, Ck),uk)
...

p(τd, Ck)
′ −∆tk · f t

k,d(p(τd, Ck),uk)

 = 0 ∀k ∈ N0,N−1

(9d)
p(0, Ck) = xk ∀k ∈ N0,N−1 (9e)

p(1, Ck) = xk+1 ∀k ∈ N0,N−1, (9f)

where (9a)-(9c) are general objective and trajectory con-
straints, p(·) is the collocation polynomial, τi ∈ [0, 1] are
the collocation points, Ck are the collocation polynomial
coefficients, ∆tk is the size of the discretization interval
[tk, tk+1], f t

k,i are the time progressed dynamics at time
tk + τi∆tk, uk are the control inputs at time tk, and
Na,b = {a, a + 1, . . . , b}. It is not possible to implement
(9) if the model is on the parametric form in (1), and tp1,...,h
are the unknown. However, if one could deliberately place
the discrete time points t1,...,N of the transcribed trajectories
x1,·,N and u1,·,N−1 at the transition times tp0,...,h of the
parametric system model, with N ≥ h, then one could
implement (9d) with

f t
k,i = fp,k ∀(k, i), (10)

thus only integrating between transitions.
If the model changes happen to be known in a variable λ,

fdyn.model(·) =


fp,1(·) λ ∈ [λp

0, λ
p
1⟩

fp,2(·) λ ∈ [λp
1, λ

p
2⟩

...
fp,h(·) λ ∈ [λp

h−1, λ
p
h⟩

, (11)

where λp
1,··· ,h are known, and λ happens to be a progressor

of the system, then a progressor transformation allows one
to transcribe the model in λ rather than time, and implement
the model using the same idea as in (10). One can choose the
discrete progressor points, λ1,··· ,N , to match that of λp

1,··· ,h,



such that the model fλ
k,i = fk,i/λ̇, is known in every time

interval. To this end, (9d)-(9f) can be rewritten as
λ̇p(τ1, Ck)

′ −∆λkf
t
k,1(p(τ1, Ck),uk)

λ̇p(τ2, Ck)
′ −∆λkf

t
k,2(p(τ2, Ck),uk)

...
λ̇p(τd, Ck)

′ −∆λkf
t
k,d(p(τd, Ck),uk)

 = 0 ∀k ∈ N0,N−1

(12a)

p(0, Ck) = T k ∀k ∈ N0,N−1 (12b)

p(1, Ck) = T k+1 ∀k ∈ N0,N−1, (12c)

where k now denotes discrete time points in λ. The col-
location equations are now implementable as continuously
differentiable constraints in an NLP as long as the scaling
variable λ̇ is known. Note that λ̇ should the be evaluated at
the respective progressor point, k, for each equation.

In some cases, the scaling variable, λ̇, is a control variable
or have a bijective mapping to a control variable. From the
race car example, we see that the scaling, that is; the speed
of the car, has a bijective mapping to the gas pedal position
(simplified by ignoring transmission, free rolling, etc.), which
can be seen as a control variable. In such cases, the scaling
variable is known for ‘free’, as it is a decision variable, and
the NLP can easily be implemented.

By noticing the similarity of this scaling technique to
that of the “free end time” technique described in [9], we
can simultaneously solve the minimum time problem. For
simplicity, we assume that the scaling, λ̇, is a piecewise
constant control variable;

λ̇(t) = ϕk, t ∈ [tk, tk+1] ∀k ∈ N0,N−1. (13)

The minimum time problem is then solved by rewriting
(9a) as

min
x1,...,N ,u0,...,N−1,C0,...,N−1

(
tf =

N−1∑
k=0

∆tk =

N−1∑
k=0

∆λk

ϕk

)
,

(14)
where tf is the final time of the state trajectory. Note that
ϕk is a part of the decision variable uk, and that the step in
lambda, ∆λk, is known.

IV. EXAMPLE FROM ALUMINIUM EXTRUSION

Now we introduce an example from the extrusion industry,
where the aforementioned advantages of a progressor trans-
formation become clear. A typical extrusion process consists
of

• a metal cylinder/‘billet’ that will be extruded,
• a container in which the cylinder is placed,
• a ‘die’ through which the metal is extruded and shaped,
• and a piston/‘ram’ that pushes on the billet from behind,

forcing it through the die.

A model that describes the heat in the billet-container-die
system is typically progressed by time [11], [12], and are

described by Partial Differential Equations (PDEs). Consider
the form

dT (r̄,x̄;t)
dt = −v(r̄, x̄; t)∂T (r̄,x̄;t)

∂x̄

+α

(
1
r̄

∂
∂r̄

(
r̄ ∂T (r̄,x̄;t)

∂r̄

)
+ ∂2T (r̄,x̄;t)

∂x̄2

)
+Φ̃(T ; v) + Ψ̃(T ; v),

(15)

where T (r̄, x̄, t) is the temperature at point (r̄, x̄) at time t,
v(·) is the axial velocity of the metal, α is the diffusivity of
the metal, and Φ̃(·) and Ψ̃(·) are heat generation terms due
to viscous dissipation and area reduction respectively. Due
to the complexity of the extrusion process, (15) is typically
discretized by finite difference schemes [13] into ordinary
differential equations (ODEs);

dT (r̄, x̄, t)

dt
= f t,ext(T (r̄, x̄, t), vram(t), L(t)), (16)

where f t,ext(·) is the time progressed extrusion model, the
ram speed vram is the control input, and L(t) is the extrusion
length.

In the extrusion industry, it is not only common, but
mandatory, that the ram speed is always positive. That
is, the ram never stops nor goes backwards, due to
safety concerns. We then have: vram = L̇ > 0 =⇒
L(t) is strictly monotonically increasing. Neither can the
ram speed jump, as this would require infinitely large forces
in the system, thus L is continuously differentiable. There-
fore, L is a progressor of the extrusion process under all
feasible control trajectories, and one can write the dynamical
model in terms of extrusion length by simply scaling the
model by the ram speed, as seen from (6);

dT (r̄, x̄, L)

dL
=

1

vram(L)
fext(T (r̄, x̄, L), vram(L), L).

(17)
A version of the extrusion model is used as an example,

containing the billet and control volumes for the downstream
aluminium, and some surrounding steel components. The
discretization of (15) into ODEs is done according to a
spatial discretization of the billet and the other modelled
components into control volumes. These control volumes
are fixed in space. During extrusion, the whole billet moves
towards the die, such that aluminium is gradually leaving the
control volumes from the other end. This effect is illustrated
in Fig. 1, along with the partitioning of the billet into cells.
The part of a control volume that is occupied by aluminium is
referred to as a ‘cell’. As the cells gradually decrease in size,
the model gradually changes, implying an extrusion length
dependent model; fext( · , L). Not only does the model
undergo continuous change in L, as the backmost control
volumes become completely empty, and the cells ‘die’, the
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Fig. 1: Illustration of cells ‘dying’ during the extrusion pro-
cess. The billet is shown in gray, and the ram is represented
by the orange piston, pushing the billet in the direction
indicated by the red arrow. In the first three time instances,
the billet has a constant number of cells, and by time t3,
the number of cells have decreased, causing a discontinuous
change in the model equations.

Fig. 2: Depiction of the discretization for the state and input
trajectories. Vertical arrows indicate the extrusion length
assigned to the transcribed state and control variables, where
the extrusion length dimension, L, is horizontal from right
to left. The green arrows are where the discretization points
align with the discontinuities in the extrusion model.

model experiences a discontinuous change;

fext( · , L) =


fp,1,ext( · , L) L ∈ [Lp

0, L
p
1⟩

fp,2,ext( · , L) L ∈ [Lp
1, L

p
2⟩

...
fp,nx,ext( · , L) L ∈ [Lp

nx−1, L
p
nx⟩

,

(18)
By using the extrusion length progressed model (17), (18),

the dynamics can be discretized such that the transcribed
trajectories align with the discontinuities in L, as depicted in
Fig. 2. Equation (12) can then implemented without the need
to keep track of the extrusion length, and, most prominently,
without handling the discontinuities in the model.

This technique is used in an implementation of an NLP
that optimizes the ram speed with respect to extrusion
time, using CasADi [14] and the IPOPT algorithm [15],
the solution of which is shown in Fig. 3. The resulting
trajectories are not verified by experimentation, though they
resemble trajectories previously recorded in industry. In
addition, they correspond with what is expected based on
basic understanding and intuition of heat diffusion and metal
extrusion. Nevertheless, the convergence of the NLP shows
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Fig. 3: The state and input trajectories as a solution to
a dynamic optimization problem, optimizing the extrusion
process with respect to total extrusion time using direct
collocation with the progressor transformation approach.

the effectiveness of the technique, as the same problem with-
out a progressor transformation would result in a complex
Mixed Integer Nonlinear Program (MINLP), a multi-stage
approach, or some approximation technique.

To acquire the times at which the discrete time points of
the trajectories occur, one simply has to re-scale using the
ram speed, vram;

tk =

k−1∑
i=0

∆Li

vram,i
. (19)

Aside form the sheer ability to implement the discontin-
uous model as an NLP and effectively solve the control
problem, there is another major benefit to the progressor
transformation technique. In a formulation based on a time
progressed model, one needs to account for all cells at every
discrete time point, at least the worst case, since one does
not know at what times the various cells die. By transcribing
in extrusion length, in which the cells are also defined, one



Fig. 4: A visualization of the reduction in decision vari-
ables for the billet cells in the NLP implementation, due
to discretizing in extrusion length rather than time. Dark
cells represent active cells. The arrow indicates increasing
extrusion length.

knows exactly what cells are active at every discrete time
point, allowing one to only assign state variables for the
active cells. Using a discretization such as shown in Fig. 2,
the number of state decision variables necessary in the NLP
is reduced by

wL,billet

wt,billet
=

1
2 (1 + d)nr(nx + 1)N

(1 + d)nrnxN
=

1

2
+

1

2nx
, (20)

where wL,billet and wt,billet are the total number of active
cells across every discrete time point when discretized in L
and time respectively, nr and nx are the number of cells in
the billet in the radial and axial dimensions respectively, and
N is the number of discrete time points. The reduction of
decision variables is visualized in Fig. 4. We see that the
number of variables necessary to describe the billet states
is nearly halved when using the technique covered in this
paper.

V. CONCLUSION

In the beginning of this paper we defined the term “pro-
gressor” for a dynamical system, followed by a description
of how to transform a dynamical model to be progressed by a
different variable. When implementing direct collocation on
a dynamic model that is dependent on alternative progressor

of the system, performing such a progressor transformation
on the model allows integration of the model without the
need to keep track of the alternative progressor. In addition,
we see that one can implement a model that is discontinuous
at unknown times as an NLP, if its discontinuities occur at
known times in another progressor of the system, and the
scaling variable for that particular progressor transformation
is known. That way, one avoids the use of cumbersome
and slow MINLPs or other methods of circumventing the
problem. We take note of the fact that this is only possible
when the bijective mapping between the two progressors is
known. That is, the scaling variable, λ̇(t), is available.

From the aluminium extrusion example, we saw that the
predictability of the model changes that arose from trans-
forming the model from time to extrusion length, allowed us
to align the discretization points of the state trajectory with
the discontinuities of the model. It also allowed us to predict
what cells were active at what discretization points, which
nearly cut the necessary number of decision variables for the
billet in half.

By employing the technique presented in this paper, a
direct collocation NLP of the extrusion process is imple-
mentable, allowing optimization over a long horizon. This
opens up the possibility of optimizing open loop trajectories
over the entire extrusion cycle, and predict optimal references
for the billet preheating phase. Reference trajectories for a
hierarchical control scheme, as in [1], may also be produced
in this way, for the extrusion phase. Such a control scheme
may contribute to an increase in production overall.
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