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1. INTRODUCTION

1.1 Background

The present world situation is heavily impacted by the
COVID-19 pandemic. With over 613 millon stated cases
and 6.52 million confirmed deaths worldwide(Ritchie et al.
(2020)), COVID-19 is ranks as one of the deadliest epi-
demics in history. In order to forecast and prevent viral and
bacterial spread in epidemics, it is important to develop
methods that are able to accurately predict infections
occurring in a future time horizon.

Epidemics on large populations are frequently mod-
eled by dividing the population into compartments. One
of the most well-known compartmental models is the
Kermack-Mckendrick (SIR) model (Kermack and McK-
endrick (1927)), which captures the dynamics of infec-
tions and recovery from diseases. Under the assumption
of homogenous dynamics, these models can yield accurate
predictions for large populations.

One challenge with the compartmental models is the abil-
ity to validate its parameters using other sources of data
than population counts. Many real-life social networks ex-
hibit small-world properties(Watts and Strogatz (1998)),
indicating that the true dynamics of disease transmission
depend on heterogenous relations in a population. For
Agent-Based Models(ABMs, Bissett et al. (2021)), disease
transmission networks are able to relate infection proba-
bilities to individuals locations and activities, which could
reduce the uncertainty of an epidemics outcome.

Unfortunately, the increased complexity of network mod-
els complicates the search for epidemic control policies
like social distancing, vaccination and quarantine. For

compartmental deterministic models like the SIR-model,
control strategies are solvable numerically using Model
Predictive Control (MPC) strategies(Sereno et al. (2021)).
Despite the long history of epidemiological Models and
control theory, there is a limited amount of work related
to the unification of the two(Nowzari et al. (2016), Bussell
et al. (2019)). Applying MPC directly to network models
is computationally expensive. While the local dynamics
between nodes in a network are solvable, global graph
optimization is in general NP-hard.

One potential solution to avoid the infeasibility of graph
optimization is to treat network models as black-box mod-
els, which only considers input signals and output mea-
surements of the network. Black-box models lack inter-
pretability and transparency, which are important prop-
erties for control strategies that potentially have fatal
consequences. A remedy for the interpretability in black-
box models is sparse nonlinear regression methods, which
have gained traction over the recent years(Brunton et al.
(2016)). Sparse nonlinear regression enable the identifica-
tion of models based on input signals and output mea-
surements, such that the resulting models consists of as
few parameters as possible.

The stochastic nature of epidemics is frequently mod-
eled with chain-binomial differential equations(MAIA
(1952)), whose posterior distribution is computationally
intractable. Instead, Monte Carlo (MC) methods are used
with Bayesian inference in order to approximate the pos-
terior. Importance sampling(Kloek and van Dijk (1978))
is frequently used to reduce the dimensionality of the
sample space. Other approaches utilize Sequential Monte
Carlo(Liu and Chen (1998)) and Approximate Bayesian
Computation(Sunn̊aker et al. (2013)) for likelihood-free
problems. These methods are frequently used for parame-
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like social distancing, vaccination and quarantine. For
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control strategies are solvable numerically using Model
Predictive Control (MPC) strategies(Sereno et al. (2021)).
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control theory, there is a limited amount of work related
to the unification of the two(Nowzari et al. (2016), Bussell
et al. (2019)). Applying MPC directly to network models
is computationally expensive. While the local dynamics
between nodes in a network are solvable, global graph
optimization is in general NP-hard.

One potential solution to avoid the infeasibility of graph
optimization is to treat network models as black-box mod-
els, which only considers input signals and output mea-
surements of the network. Black-box models lack inter-
pretability and transparency, which are important prop-
erties for control strategies that potentially have fatal
consequences. A remedy for the interpretability in black-
box models is sparse nonlinear regression methods, which
have gained traction over the recent years(Brunton et al.
(2016)). Sparse nonlinear regression enable the identifica-
tion of models based on input signals and output mea-
surements, such that the resulting models consists of as
few parameters as possible.

The stochastic nature of epidemics is frequently mod-
eled with chain-binomial differential equations(MAIA
(1952)), whose posterior distribution is computationally
intractable. Instead, Monte Carlo (MC) methods are used
with Bayesian inference in order to approximate the pos-
terior. Importance sampling(Kloek and van Dijk (1978))
is frequently used to reduce the dimensionality of the
sample space. Other approaches utilize Sequential Monte
Carlo(Liu and Chen (1998)) and Approximate Bayesian
Computation(Sunn̊aker et al. (2013)) for likelihood-free
problems. These methods are frequently used for parame-

ter estimation used in prediction and long-term forecast-
ing, and enable simpler epidemiological models to be in-
ferred from ABMs and transmission networks. The meth-
ods used in this paper also address parameter inference
on transmission networks, but with the goal of identifying
simplified, controllable systems.

1.2 Overview

The theory and methods used are separated into four
sections, where each section aims to provide brief but
detailed descriptions of its relevance and implementation.
First, the epidemiological models used in the paper are
presented, followed by the methods used to sample data
from the models. The next section describes a method for
transforming the generated data to models with sparse
nonlinear regression. The last theoretical section presents
an optimal control problem, and describes how the sim-
plified models can be used to approximate solutions for
it. Parameters are then assigned for numerical simula-
tions, which results in the simulation of four different
uncontrolled and controlled epidemic scenarios which are
presented in the results. Lastly, the performance and lim-
itations of the simulations, regression method and MPC
are discussed.

2. EPIDEMIOLOGICAL MODELS

2.1 SIR Model

SIR-dynamics on a completely homogenous population
Npop can be expressed with three discrete, deterministic
differential equations.

NS,t+1 = NS,t − β
NS,tNI,t

Npop

(1)

NI,t+1 = NI,t + β
NS,tNI,t

Npop

− αNI,t (2)

NR,t+1 = NR,t + αNI,t (3)

S, I, R denotes the whether an individual is susceptible,
infectious or recovered, and N(.) denotes the compart-
mental population sizes. β is proportional to the number
of contacts for each person between each time instance
t, and α denotes the average recovery rate. This paper
aims to identify parameters similar to α, β by using sparse
nonlinear regression on network models.

2.2 Erdös-Rényi Graph Model

Erdös-Rényi models GER(Npop, pER) (Erdös and Rényi
(1959)) are used to generate graph structures for the
epidemiological network model. Population count Npop

gives the number of vertices NV , while pER is used as
connection probability to generate NE edges from all
possible node connections in the graph. The degree k for
the vertices in the graphs follow binomial distributions.

pk =

�

Npop − 1

k

�

pkER(1− pER)
Npop−1−k (4)

The variance of the binomial distribution indicates that
the graph structure will be heterogenous (high degree
variance) when connection probability pER is close to 0.5,
and homogenous (low degree variance) when pER is close
to 0 or 1.

(a) Complete Graph Npop =
10, pER = 1.0

(b) Sparsely connected ER-
model Npop = 40, pER =
0.1

2.3 Bernoulli-SIR Network Model

Each vertex vi ∈ {0, . . . NV − 1} is assigned a state
Vi(t) ∈ {S = 0, I = 1, R = 2}. Heterogeneity in the
disease transmission network is fully determined by pER,
while disease transmission parameters are homogenously
assigned. Infection probabilities between individuals in the
network are uniformly Bernoulli-distributed with pI,t ∈
[pI,min, pI,max], while recovery probability pR is fixed.
pI is an idealized parameter which in practice could be
related to targeted location and activity control strategies
in an ABM, like school/workplace control policies and
quarantine recommentdations for subpopulations. These
mitigation strategies are likely to have a discrete relation
to pI , but for relatability to (1-3) it is given a continous
range. Initial infections are assigned to vertices with fixed
probability pI0 , while remaining vertices are assigned sus-
ceptible. Under this configuration, a fully connected graph
will converge towards (1-3) in its large graph limit.

The temporal dynamics of each individual in the network
can be formulated under Markov assumptions.

V
(i)
t+1 =



























1(
�

j∈N
(i)

I,t

U
(ij)
I,t (ω) ≤ pI,t), V

(i)
t = S (5)

1 + 1(U
(i)
R,t(ω) ≤ pR), V

(i)
t = I (6)

N
(i)
I (t) denotes the directly connected neighboring ver-

tices vj of vi infected at time t ∈ [0, Nt]. U
(ij)
I,t , U

(i)
R,t ∼

Uniform(0, 1) denotes the realizations of uniform random
samples used to determine infections from vj to vi, and
infection recoveries. Equations (5) and (6) are spatial
dynamics which resembles the infection and recovery dy-
namics of the original, deterministic SIR-model (Kermack
et al. (1927)). The remaining transition probabilities are
trivial. yt = [NS,t, NI,t, NR,t]

T denotes the total count of
individuals in each state at time t.

3. MONTE-CARLO IMPORTANCE SAMPLING

Monte-Carlo (MC) importance sampling will be used to
approximate the marginal likelihood for the state trajec-
tories. Let pI,t ∼ U(pI,min, pI,max), and let ξ denote the
vector of all random variablesU I,0:Nt

,UR,0:Nt
, pI,0:Nt−1 in

the network models trajectory. Let θG = {GER, pI,0, pR}
denote all fixed parameters required for initialization of
the network. A marginal distribution for the state trajec-
tory can be found by performing an integration over all
independent random variables ξ.
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p(y1:Nt
|θG) =

�

ξ

p(y1:Nt
, ξ|θG)p(ξ)dξ (7)

An importance distribution π(.) is introduced, which ad-
vances (5) and (6) in order to generate trajectories with
reduced variance.

µ =

�

y1:Nt

p(y1:Nt
|θG)π(y1:Nt

|θG)dy1:Nt
(8)

Statistical moments of interest µ can be approximated by

drawing samples of {y
(k)
1:Nt

}NMC

k=1 from π(.), where NMC de-
notes the total number of MC-simulations. The regression
algorithm in this paper will approximate the expectation
values for the number of infected individuals in these
network models.

EN (NI,1:Nt
|θG) =

NMC−1
�

k=0

N
(k)
I,1:Nt

p(N
(k)
I,1:Nt

|θG) (9)

Algorithm 1 Bernoulli-Network Monte-Carlo Sampling

Require: GER, pI0 ,pI , pR,
for vi ∈ GER do

V
(i)
0 ← I with probability pI0

end for
for k ← 0 to NMC − 1 do

y
(k)
0 ← [NS,0, NI,0, NR,0]
for t ← 0 to Nt − 1 do

pI,t ← U(pI,min, pI,max)

for {∀vi ∈ GER|X
(i)
t �= R} do

Assign V
(i)
t+1 with (5), (6)

Increment total count NS,t+1, NI,t+1 or NR,t+1

end for
y
(k)
t+1 ← [NS,t+1, NI,t+1, NR,t+1]
if NI,t+1 < NI,min then

break
end if

end for
end for

return yMC =







y(0)

...

y(NMC−1)







4. REGRESSION

4.1 Feature Selection

It is desirable to identify simple, sparse models in order to
keep the following optimal control problem interpretable
and computationally tractable. Model features are selected
from a library of monomials D with increasing degree
order.

X(k) = [N
(k)
S,0:Nt−1, N

(k)
I,0:Nt−1, p

(k)
I,0:Nt−1] (10)

X =







X(0)

...

X(NMC−1)






, yr =









∆N
(0)
I,0:Nt−1
...

∆N
(NMC−1)
I,0:Nt−1









(11)

Pd(X) = X[:, 0]d0 ⊙X[:, 1]d1 ⊙X[:, 2]d2 (12)

Ddmax
(X) = {P[0,0,1](X), P[0,1,0](X), (13)

. . . , Pdmax
(X)}

⊙ denotes the Hadamard product, and element-wise oper-
ations are performed on the columns of X for powers d in
equation 12. [:, n] denotes the nth column in X.

X ∈ R
(Nt−1)NMC and yr ∈ R

(Nt−1)NMC denotes the
explanatory and response variable data which will be used
to fit regression models for each MC-simulation.

4.2 Polynomial NARX-Model

The proposed nonlinear system identification method
aims to fit a Nonlinear AutoRegressive eXogenous model
(NARX) which accounts for dynamics caused by control
inputs and the previous timesteps state. Let S ⊂ Ddmax

denote a subset selection with a maximum of Ns mono-
mial features. The structure of a polynomial NARX-model
FS : (R3,R) → R can be composed from the monomial
subset of features.

FS(xt, ut|θ) = θ0S{0}(xt, ut) + θ1S{1}(xt, ut) (14)

+ · · ·+ θNs−1S{Ns − 1}(xt, ut)

The rate of change in the number of infected (yr) is
considered for regression in this paper, which is denoted
FS,I .

4.3 Sparse Nonlinear Regression

The Forward Regression Orthogonal Least Squares algo-
rithm (FROLS) is used draw and evaluate models from
D in order to obtain S for (14). FROLS is a greedy
algorithm that iteratively orthogonalize and fit coefficients
for nonlinear features, resulting in sparse nonlinear models
with interpretable features. This paper presents an ap-
plied version of FROLS with similar notation to the more
generic algorithm presented in Billings (2013).

Let pm denote them’th feature drawn fromD, and let qm,s

denote them’th orthogonalized feature in feature-selection
iteration s for MC-simulation k. gm,s is the covariance-
to-variance ratio between the response variable yr and
orthogonalized feature qm,s.

gm,s =
(yr)

Tqm,s

(qm,s)
Tqm,s

(15)

Fitness of each feature is determined by the Error Reduc-
tion Ratio (ERR), which quantifies how the variance of
each feature contributes to the explanation of yr’s total
variance.

ERRm,s = (gm,s)
2
(qm,s)

T (qm,s)

(yr)
T (yr)

(16)
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Statistical moments of interest µ can be approximated by

drawing samples of {y
(k)
1:Nt

}NMC

k=1 from π(.), where NMC de-
notes the total number of MC-simulations. The regression
algorithm in this paper will approximate the expectation
values for the number of infected individuals in these
network models.

EN (NI,1:Nt
|θG) =

NMC−1
�

k=0

N
(k)
I,1:Nt

p(N
(k)
I,1:Nt

|θG) (9)

Algorithm 1 Bernoulli-Network Monte-Carlo Sampling

Require: GER, pI0 ,pI , pR,
for vi ∈ GER do

V
(i)
0 ← I with probability pI0

end for
for k ← 0 to NMC − 1 do

y
(k)
0 ← [NS,0, NI,0, NR,0]
for t ← 0 to Nt − 1 do

pI,t ← U(pI,min, pI,max)

for {∀vi ∈ GER|X
(i)
t �= R} do

Assign V
(i)
t+1 with (5), (6)

Increment total count NS,t+1, NI,t+1 or NR,t+1

end for
y
(k)
t+1 ← [NS,t+1, NI,t+1, NR,t+1]
if NI,t+1 < NI,min then

break
end if

end for
end for

return yMC =







y(0)

...

y(NMC−1)







4. REGRESSION

4.1 Feature Selection

It is desirable to identify simple, sparse models in order to
keep the following optimal control problem interpretable
and computationally tractable. Model features are selected
from a library of monomials D with increasing degree
order.

X(k) = [N
(k)
S,0:Nt−1, N

(k)
I,0:Nt−1, p

(k)
I,0:Nt−1] (10)

X =







X(0)

...

X(NMC−1)






, yr =









∆N
(0)
I,0:Nt−1
...

∆N
(NMC−1)
I,0:Nt−1









(11)

Pd(X) = X[:, 0]d0 ⊙X[:, 1]d1 ⊙X[:, 2]d2 (12)

Ddmax
(X) = {P[0,0,1](X), P[0,1,0](X), (13)

. . . , Pdmax
(X)}

⊙ denotes the Hadamard product, and element-wise oper-
ations are performed on the columns of X for powers d in
equation 12. [:, n] denotes the nth column in X.

X ∈ R
(Nt−1)NMC and yr ∈ R

(Nt−1)NMC denotes the
explanatory and response variable data which will be used
to fit regression models for each MC-simulation.

4.2 Polynomial NARX-Model

The proposed nonlinear system identification method
aims to fit a Nonlinear AutoRegressive eXogenous model
(NARX) which accounts for dynamics caused by control
inputs and the previous timesteps state. Let S ⊂ Ddmax

denote a subset selection with a maximum of Ns mono-
mial features. The structure of a polynomial NARX-model
FS : (R3,R) → R can be composed from the monomial
subset of features.

FS(xt, ut|θ) = θ0S{0}(xt, ut) + θ1S{1}(xt, ut) (14)

+ · · ·+ θNs−1S{Ns − 1}(xt, ut)

The rate of change in the number of infected (yr) is
considered for regression in this paper, which is denoted
FS,I .

4.3 Sparse Nonlinear Regression

The Forward Regression Orthogonal Least Squares algo-
rithm (FROLS) is used draw and evaluate models from
D in order to obtain S for (14). FROLS is a greedy
algorithm that iteratively orthogonalize and fit coefficients
for nonlinear features, resulting in sparse nonlinear models
with interpretable features. This paper presents an ap-
plied version of FROLS with similar notation to the more
generic algorithm presented in Billings (2013).

Let pm denote them’th feature drawn fromD, and let qm,s

denote them’th orthogonalized feature in feature-selection
iteration s for MC-simulation k. gm,s is the covariance-
to-variance ratio between the response variable yr and
orthogonalized feature qm,s.

gm,s =
(yr)

Tqm,s

(qm,s)
Tqm,s

(15)

Fitness of each feature is determined by the Error Reduc-
tion Ratio (ERR), which quantifies how the variance of
each feature contributes to the explanation of yr’s total
variance.

ERRm,s = (gm,s)
2
(qm,s)

T (qm,s)

(yr)
T (yr)

(16)

Algorithm 2 Monomial-Feature FROLS

Require: yr,X,Ddmax

Zero-initialize Q,Qs ∈ R
Nt−1×Ns ,

ERR ∈ R
Ns×Nm−1, ℓ ∈ Z

+,Ns , gs ∈ R
Nm

g ∈ R
Ns

for s ← 0 to Ns − 1 do
for m ← 0 to Nm do

pm ← Ddmax
(X){m}

Qs ← repeated orthogonalization of
pm on Q[:, : s]
Compute gs[m] and ERR[m, s]

end for
ℓ[s] ← index of max(ERR[s, :])
g[s] ← gs[ℓ[s]]
Q[:, s] ← Qs[:, ℓ[s]]

A[m, s] ← Q[:,s]TX[ℓ[s]]
X[ℓ[s]]TX[ℓ[s]]

if sum(ERR[ℓ]) > ERR threshold then
break

end if
end for
θ ← A[: s, : s]−1g[: s]
return θ

Since total population Npop is conserved, remaining
NARX-models for the number of susceptibles (FS,S) and
recovered (FS,R) can be retrieved from FS,I , yielding full
system dynamics F S .

F S =

�

FS,S

FS,I

FS,R

�

=

�

−(positive terms of FS,I)
FS,I

−(negative terms of FS,I)

�

(17)

5. OPTIMAL CONTROL PROBLEM

5.1 Robust Model Predictive Control

argmin
x,u

Φ(x,u) (18)

s.t x0 = x̄0 (19)

xt+1 = F (xk, uk|θ) ∀t\Nt (20)

τ ≤ P (g(xt) ≤ 0) ∀t\0 (21)

umin ≤ ut ≤ umax ∀t\Nt (22)

Equation 21 are single chance constraints(Shapiro et al.
(2009)) which relate probability distributions to Optimal
Control Problems (OCPs) as inequality constraints. These
are the constraints targeted for approximation by MC-
simulations and regression. Equation 20 ensures that the
input variables of objective function Φ(.) are constrained
to follow the true, stochastic system dynamics F (.) at ev-
ery timestep of the control horizon. Trajectories generated
by the MPC are denoted with x, which in this applica-
tion is the predicted population counts (NS,t, NI,t, NR,t)
over the control horizon. Infection probabilities pI acts as
control inputs over the control horizon, denoted with u.

5.2 Regression Model Predictive Control

The control strategy proposed in this paper is kept simple
in accordance with the model itself.

argmin
x,u

Nt
�

t=1

{
NI,t

Npop

−
Wu

Npop

(ut − umax)} (23)

s.t x0 = x̄0 (24)

xt+1 = FS(xk, uk|θ) ∀t\Nt (25)

xt[1] ≤ Imax ∀t\0 (26)

umin ≤ ut ≤ umax ∀t\Nt (27)

The motivation for the proposed optimal control objective
is to ”flatten the curve” within the given control horizon
Nt while the impact of social distancing measures are
minimized. Wu is used to quantify the cost of social
distancing restrictions. As a replacement for the chance
constraint in equation 21, the regression MPC is instead
constrained to follow an identified NARX-model FS(.) at
every timestep. In order to utilize FROLS-regression the
chance constraint is replaced with (9).

EN (NI,1:Nt
|θG) ≈



















x0 +
0

�

t=0

F S,I(xt, ut)

...

x0 +

Nt−1
�

t=0

F S,I(xt, ut)]



















(28)

6. SIMULATIONS

6.1 Monte-Carlo Sampling

Models are generated using different population sizes Npop

and connection probabilities pER, with the intention of
demonstrating system identification and predictive con-
trol for both heterogenous and homogenous structures.
Population sizes are kept small due to the computational
constraints caused by the number of edges in the networks.
The MC-sampling is implemented in C++ with CPU-
parallel execution on single networks.

Table 1. Graph structure parameter sets for
ER-models

Npop pER pI,max

50 0.1 0.05

50 1.0 0.005

100 0.1 0.001

100 1.0 0.3

200 0.1 0.2

200 1.0 0.1

Other parameters related to MC-simulations, regression
and optimal control remain fixed in order to generate com-
parable results. pI,t is for the MC-simulations constrained
to change at the same time instances as the control input
ut, which in this situation changes every 7 timesteps.
Simulations are terminated early when NI < NI,min.

Table 2. Fixed parameter set for the simulation
scenarios

pI0 0.1 pR0 0.05

umin 10−3 umax 0.3

pR 0.1 pI,min 0

NMC 500 Nt 70

NI,min 2 Wu 103
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8. DISCUSSION

The solutions robustness with respect to (21) have many
dependencies. The model simplification requires MC-
simulations that provide a sufficient amount of excitation
of the networks with respect to the control input pI , whose
input space will be harder to determine beforehand for
heteregenous networks. Given a sufficiently excited net-
work with constrained timeseries, the FROLS regression
algorithm is able to identify the same features used by the
structureless SIR-model.

Performing model predictive control on these models re-
quires the features identified by FROLS to be feasible with
respect to the optimization objective. False correlations
identified by FROLS may result in gradient search di-
rections in the optimization problem that is wrong with
respect to the underlying network dynamics. This, com-
bined with computational constraints was found to be very
restrictive for the size of monomial dictionary S, and the
maximum number of terms Ns that could be used.

The accuracy of the regression models increases with the
population size of the network and the number of edges
connecting its individuals. This indicates that homogenous
network clusters is well approximated by compartmental
models, while smaller clusters with uneven distributions
of edges strongly depends on the network structure. Due
to the difference in accuracy, optimal control on large,
fully connected networks enforce the infected capacity
constraint (26) better than the smaller networks with fewer
edges.

The proposed control strategy and outcome for networks
with pER = 0.1 are similar for all population sizes. These
strategies underestimate impact of the early infection
spread, resulting in infection capacity violations during
t ∈ [3, 10] for the majority of the MC-simulations. In con-
trast, the fully connected larger populations upholds the
capacity constraint for the majority of its MC-simulations.

The replacement of (21) with (25) and (26) only approxi-
mate the first order momentum of the distribution, which
can become very inaccurate for distributions with high
variance. In the case of infection capacity constraints,
introducing a lower Imax could bring the worst-case MC-
scenarios down to the desired capacity.

The long-term validity of the identified sparse nonlinear
models enable the MPC to evaluate long-term conse-
quences for the epidemics. Feedback control with offline
identification of models can be used to improve MPC
performance in cases where this does not hold.

While the practical applications for a network with these
small population sizes is limited, a metapopulation model
with community-level nodes(Bailey (1986)) could be used
in practice. Approximating such a network is likely to
require larger MC-simulation datasets to capture its dy-
namics, which in turn requires efficient algorithms for MC-
simulations and regression. While this papers implementa-
tion is C++-based and targeted towards CPUs, a SYCL-
based (Maria Rovatsou and Keryell (2022)) implementa-
tion is planned for acceleration in future projects.
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