
Verifiable Mix-Nets and Distributed Decryption for Voting from
Lattice-Based Assumptions∗

Diego F. Aranha

dfaranha@cs.au.dk

Aarhus University

Aarhus, Denmark

Carsten Baum

cabau@dtu.dk

DTU Compute

Copenhagen, Denmark

Kristian Gjøsteen

kristian.gjosteen@ntnu.no

Norwegian University of Science and Technology

Trondheim, Norway

Tjerand Silde
†

tjerand.silde@ntnu.no

Norwegian University of Science and Technology

Trondheim, Norway

ABSTRACT
Cryptographic voting protocols have recently seen much interest

from practitioners due to their (planned) use in countries such as

Estonia, Switzerland, France, and Australia. Practical protocols usu-

ally rely on tested designs such as the mixing-and-decryption para-

digm. There, multiple servers verifiably shuffle encrypted ballots,

which are then decrypted in a distributed manner. While several

efficient protocols implementing this paradigm exist from discrete

log-type assumptions, the situation is less clear for post-quantum

alternatives such as lattices. This is because the design ideas of the

discrete log-based voting protocols do not carry over easily to the

lattice setting, due to specific problems such as noise growth and

approximate relations.

This work proposes a new verifiable secret shuffle for BGV ci-

phertexts and a compatible verifiable distributed decryption proto-

col. The shuffle is based on an extension of a shuffle of commitments

to known values which is combined with an amortized proof of

correct re-randomization. The verifiable distributed decryption pro-

tocol uses noise drowning, proving the correctness of decryption

steps in zero-knowledge. Both primitives are then used to instan-

tiate the mixing-and-decryption electronic voting paradigm from

lattice-based assumptions.

We give concrete parameters for our system, estimate the size of

each component and provide implementations of all important sub-

protocols. Our experiments show that the shuffle and decryption

protocol is suitable for use in real-world e-voting schemes.

CCS CONCEPTS
• Security and privacy→ Public key (asymmetric) techniques;
Privacy-preserving protocols.

∗
The full version of this paper is available at eprint.iacr.org/2022/422.pdf.

†
Work done in part while visiting Aarhus University.

This work is licensed under a Creative Commons Attribution

International 4.0 License.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0050-7/23/11.

https://doi.org/10.1145/3576915.3616683

KEYWORDS
Lattice-Based Cryptography, Electronic Voting, Implementation

ACM Reference Format:
Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, and Tjerand Silde. 2023.

Verifiable Mix-Nets and Distributed Decryption for Voting from Lattice-

Based Assumptions. In Proceedings of the 2023 ACM SIGSAC Conference on

Computer and Communications Security (CCS ’23), November 26–30, 2023,

Copenhagen, Denmark. ACM, New York, NY, USA, 15 pages. https://doi.org/

10.1145/3576915.3616683

1 INTRODUCTION
Mix-nets were originally proposed for anonymous communica-

tion [14], but have since been used extensively for cryptographic

voting systems. A mix-net is a multi-party protocol that gets as

input a collection of ciphertexts and outputs another collection of

ciphertexts whose decryption is the same set, up to order. It guar-

antees that the permutation between input and output ciphertexts

is hidden if at least one party is honest, while none of the servers

involved learns the plaintexts.

Mix-nets are commonly used in cryptographic voting. Here,

encrypted ballots are submitted to a bulletin board or ballot boxwith

identifying information attached. These ciphertexts are then sent

through a mix-net before decryption, to break the identity-ballot

correlation. In addition to hiding the permutation, the correctness of

the mix-net output must be verifiable. In applications such as voting

it is important that the mix-net provides a proof of correctness that

can be verified by anyone at any later point in time, to ensure

universal verifiability.

A shuffle of a set of ciphertexts is another set of ciphertexts whose

decryption is the same as the original set, up to order. Compared to

a mix-net, it is performed by one server only (which does not learn

the plaintexts). As for mix-nets, a shuffle is secret if it is hard for

any external party to correlate input and output ciphertexts, and

verifiable if there is a proof that decryptions are the same.

If we have a verifiable secret shuffle for some cryptosystem,

then this can be used to construct a mix-net: for this, the nodes

of the mix-net receive a set of ciphertexts as input, shuffle them

sequentially and each provides a proof of correctness. The mix-net

proof then consists of the intermediate ciphertexts along with the

shuffle proofs. If at least one node in this chain is honest, it is hard

to correlate the inputs and outputs.

1467

https://orcid.org/0000-0002-2457-0783
https://orcid.org/0000-0001-7905-0198
https://orcid.org/0000-0001-7317-8625
https://orcid.org/0000-0002-5455-0409
https://eprint.iacr.org/2022/422.pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3576915.3616683
https://doi.org/10.1145/3576915.3616683
https://doi.org/10.1145/3576915.3616683
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576915.3616683&domain=pdf&date_stamp=2023-11-21

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, and Tjerand Silde

For applications in cryptographic voting, it must also be guar-

anteed that the correct result can be obtained from the mix-net

output, while nobody has the secret decryption key. One strategy

is to use verifiable threshold decryption, where the key is secret-

shared among a committee of decryption parties. Each of them

contributes to the decryption and proves that they did so honestly.

Verifiable shuffling and verifiable distributed decryption proto-

cols are well-known for cryptosystems based on discrete logarithm-

type assumptions. For example, Neff [31] proposed the first efficient

verifiable secret shuffle for ElGamal-like cryptosystems. Verifiable

decryption for ElGamal-like cryptosystems can be constructed us-

ing standard Verifiable Secret-Sharing and Σ-protocols.
While ample voting schemes have been constructed based on the

aforementioned outline, they essentially all rely on assumptions

that are not secure against quantum computers. Given the need

for the long-term privacy of elections, it is important to construct

verifiable shuffles and distributed decryption from quantum-safe

computational problems such as lattice assumptions. NIST recently

standardized post-quantum key-encapsulation mechanisms and

digital signatures based on lattices [28, 33, 35]. Using shuffles and

distributed decryption schemes based on the same assumptions,

it seems well-motivated to build a plausibly post-quantum voting

scheme following the aforementioned approach. The main obstacle

to simply adopting the protocols for discrete logarithms to lattices is

the (presumed) lack of suitable efficient techniques for verification,

as well as the problem of noise growth.

1.1 Our contributions
In this work, wemake progress in the direction of plausibly quantum-

secure voting. We design a verifiable secret shuffle for BGV cipher-

texts [13] that is suitable for cryptographic voting systems dealing

with arbitrary vote structures. In addition, we construct a verifiable

distributed decryption protocol by compiling previous passively-

secure constructions with zero-knowledge proofs and show how

to integrate these and other building blocks into a voting scheme.

Finally, we implemented the main parts of the verifiable shuffle and

distributed decryption protocols to demonstrate the viability and

efficacy of our overall design.

Lattice-based shuffle. To construct a mix-net for BGV ciphertexts

we extend the shuffle of commitments to known values by Aranha

et al. [4]. Their construction only works for BDLOP [7] commit-

ments of message length 1, while we generalize their construction

to an arbitrary length. Given such a generalized verifiable shuffle of

commitment openings, our verifiable shuffle for input ciphertexts

𝒄1, . . . , 𝒄𝜏 then works as follows: We let the shuffler commit to BGV

re-randomization ciphertexts 𝒄1, . . . , 𝒄𝜏 (encryptions of 0) using

the linearly homomorphic BDLOP commitment scheme Com. To-
gether with efficient proofs of well-formedness for the committed

re-randomization ciphertexts, this gives us a verifiable shuffle:

(1) The shuffler commits to the re-randomization ciphertexts

𝒄1, . . . , 𝒄𝜏 as Com(𝒄𝑖) and shows that they are well-formed

using zero-knowledge proofs.

(2) The shuffler computes 𝒅𝑖 = 𝒄𝑖 + 𝒄𝑖 and sends shuffled ele-

ments 𝐿 = (𝒅𝜋 (𝑖))𝑖∈[𝜏] to the receiver.

(3) Finally, the prover shows that 𝐿 is a list of openings of the

commitments obtained from 𝒄𝑖 +Com(𝒄𝑖) using the extended
shuffle of commitments to known values.

To prove the well-formedness of the ciphertexts, we utilize proofs

of shortness where the proof size is sublinear in the number of

ciphertexts 𝜏 . For this, we use a version of recent amortized proofs of

shortness [10]. Unfortunately their construction as-is is suboptimal

for our setting, so we adapt and re-prove their protocol.

Verifiable distributed decryption. As explained, a verifiable secret

shuffle on its own is usually not sufficient to build a cryptographic

voting system. The ciphertexts must also be decrypted, without

introducing correctness and privacy problems. Our solution is to

distribute the decryption operation in a verifiable way. We hand out

key shares of the secret decryption key to each decryption server,

and all of them perform a partial decryption of each ciphertext.

In addition, we publish commitments to the key shares. The de-

cryption servers then add noise to the partial decryption to hide

information about their shares, in a process called noise drowning.

Finally, decryption servers publish the partial decryptions together

with a proof of correctness of the decryption, and the plaintexts

are computed in public by combining all the partial decryptions.

We use a decryption protocol for BGV ciphertexts that is similar

to existing works such as [18]. Their construction is only passively

secure. We, therefore, modify the protocol to be resistant to active

attacks even if all decryption servers are malicious, and prove it

secure. For this, we again utilize an (amortized) zero-knowledge

proof of shortness that allows each decryption server to show that

it behaved honestly during decryption.

Putting things together. Lattice-based cryptography is very del-

icate, and one has to be cautious when combining multiple sub-

protocols into a larger (voting) construction. This is mainly due to

noise in ciphertexts, which can lead to faulty decryptions, overly

large parameters, or both.

In our construction, each shuffle adds noise to the ciphertexts,

which means that to ensure the correctness of decryption we need

to choose parameters based on the number of shuffles and the

amount of noise added in each shuffle. Each partial decryption

also adds noise to the ciphertexts to hide the secret key. Because

of the noise drowning technique, the norm must be quite large,

influencing the choice of parameters for the overall construction

as well as the choice of zero-knowledge proof techniques involved.

In particular, it is important when measuring performance to use

parameters suitable for the complete system, not parameters opti-

mized for individual components only. In order to provide proper

context for our contributions, we give a sketch of a full crypto-

graphic voting protocol and provide example parameters. A simpli-

fied version could be used as a quantum-safe Helios [1] variant.

Implementation results. Our example parameters assume 4 mix-

nodes and 4 decryption nodes. We have estimated the size of each

component with respect to the parameters for the full protocol in

addition to implementing all sub-protocols, showing that it can be

used for large-scale real-world elections where ballots typically are

counted and verified in batches of several thousand.

To summarize our implementation results, a ciphertext ballot is

of size 80 KB (encoding a vote of size 4096 bits), each mixing proof is

1468

Verifiable Mix-Nets and Distributed Decryption for Voting from Lattice-Based Assumptions CCS ’23, November 26–30, 2023, Copenhagen, Denmark

of total size 370𝜏 KB and each decryption proof is of total size 157𝜏

KB, where 𝜏 is the number of total ciphertexts. It takes only 0.74 ms

to encrypt a ballot, while the mixing proof takes 158.4𝜏 ms and the

decryption proof takes 138.11𝜏 ms. Verification is much faster, with

only 12.9𝜏 ms for the mixing and 30.2𝜏 ms for the decryption. These

results improve on the state of the art considerably, see Section 7.

Quantum security. While our work constructs and implements a

voting scheme from post-quantum assumptions, we do not claim

that it is post-quantum secure. We discuss this in Appendix B.

1.2 Related work
Aranha et al. [4] provide a verifiable shuffle of known commitment

openings together with concrete parameters and implementation

of a complete voting protocol. However, their trust model has the

limitation that the ballot box and the shuffle server must not collude

to ensure the privacy of the ballots, which is too restrictive for most

real-world settings. This is inherent for the protocol which can not

easily be extended to several shuffles unless layered encryption is

used, and this would heavily impact the performance.

Costa et al. [16] design a shufflewith a straight-forward approach

similar to Neff [31] based on roots of polynomials. Their protocol

requires committing to two evaluations of a polynomial and then

proving the correctness of the evaluation using a sequence of mul-

tiplication proofs which are quite costly in practice. Farzaliyev et al.

[22] implements the mix-net by Costa et al. [16] using the amorti-

zation techniques by Attema et al. [5] for the commitment scheme

by Baum et al. [7]. Here, the proof size is approximately 14 MB per

voter, a factor 40 larger than our shuffle proof, even for a smaller

parameter set that does not take into account distributed decryption

afterward. We expect our shuffle proof to be an additional factor

10 smaller than what we presented above with optimal parameters

for the shuffle only (𝑞 ≈ 2
32

and 𝑁 = 1024 instead of 𝑞 ≈ 2
78

and

𝑁 = 4096). Furthermore, their proof generation and verification

respectively take 1.54 and 1.51 second per vote, which is approx-

imately 17 times slower than it takes to produce and verify our

shuffle proof in sequence (when normalizing for clock frequency),

with parameters that do not take decryption into account.

Recently, Herranz et al. [26] gave a new proof of correct shuffle

based on Beneš networks and sub-linear lattice-based proofs for

arithmetic circuit satisfiability. However, the scheme is not imple-

mented and the example parameters do not take the soundness

slack of the amortized zero-knowledge proofs into account. More-

over, [26] does not consider the decryption of ballots, which would

heavily impact the parameters of their protocol in practice.

A completely different approach to mix-nets is the so-called de-

cryption mix-nets. The idea is that the input ciphertexts are actually

nested encryptions. Each node in the mix-net is then responsible

for decrypting one layer of each ciphertext. These can be made

fully generic, relying only on public key encryption. Boyen et al.

[11] carefully adapt these ideas to lattice-based encryption, result-

ing in a very fast scheme. Decryption mix-nets are well-suited to

applications in anonymous communication. However, for voting

applications, they are often less well-suited due to their trust re-

quirements. An important goal for cryptographic voting is universal

verifiability: after the election is done, anyone should be able to ver-

ify that the ballot decryption was done correctly without needing to

trust anyone. This trust issue generalizes to any situation where it

is necessary to convince someone that a shuffle has been performed

correctly, but no auditor is available. Fast and generic decryption

mix-nets such as Boyen et al. [11] need an auditor (potentially dis-

tributed) to verify the mix-net, but then it must be trusted during

the operation. This conflicts with universal verifiability.

del Pino et al. [19] give a practical voting protocol based on ho-

momorphic counting. They only support yes/no elections, and the

total size depends directly on the number of candidates for larger

elections. It was shown by Boyen et al. [12] that the protocol in

[19] is not end-to-end verifiable unless all tallying authorities and

all voters’ voting devices are honest. This problem is solved by [12],

but their construction still has the downside of only supporting

homomorphic tallying. Strand [38] built a verifiable shuffle for the

GSW cryptosystem, but this construction is too restrictive for prac-

tical use. Chillotti et al. [15] uses fully homomorphic encryption,

which for the foreseeable future is most likely not efficient enough

to be considered for practical deployment.

2 BUILDING BLOCKS
In this section, we define the building blocks that we use in our

construction of the voting scheme. Then, in Section 3 we show how

these can be put together.

Let ^ be the computational and sec the statistical security pa-

rameter. We define the ring 𝑅𝑞 = Z𝑞 [𝑋]/⟨𝑋𝑁 + 1⟩, its norms, the

discrete Gaussian distributionN , rejection sampling, and knapsack

problems SKS2

𝑛,𝑘,𝛽
and DKS∞

𝑛,𝑘,𝛽
in the full version of the paper.

We use 𝑆𝐵 ⊆ 𝑅𝑞 to denote the subset of 𝑅𝑞 where each coefficient

is less or equal 𝐵.

2.1 PKE with Distributed Decryption
We first present a definition of a secure public key encryption (PKE)

scheme with a distributed decryption protocol. Such a scheme

works like a regular PKE scheme but allows the secret key to be

shared among decryption servers. Then, for a given ciphertext, the

decryption servers can compute decryption shares using their key

shares which, when combined, reveal the plaintext. The goal here

is that the decryption shares do not reveal information about the

secret key shares.

Definition 1 (PKE with Distributed Decryption). A PKE

scheme with distributed decryption consists of five algorithms: key

generation (KGen), encryption (Enc), decryption (Dec), distributed
decryption (DDec), and combine (Comb), where
KGen On input security parameter 1

^
and number of key-shares b2,

outputs public parameters pp, a public key pk, a secret key sk,
and key-shares {sk𝑗 },

Enc On input pk and messages {𝑚𝑖 }, outputs ciphertexts {𝑐𝑖 },
Dec On input sk and ciphertexts {𝑐𝑖 }, outputs messages {𝑚𝑖 },

DDec On input a secret key share sk𝑗∗ and ciphertexts {𝑐𝑖 }, outputs
decryption shares {ds𝑖, 𝑗∗ },

Comb On input ciphertexts {𝑐𝑖 } and decryption shares {ds𝑖, 𝑗 }, out-
puts either messages {𝑚𝑖 } or ⊥,

and pp are implicit inputs to Enc, Dec, DDec and Comb.

For such a scheme, we requiremultiple security properties. (Thresh-

old) correctness and IND-CPA security are standard and we only

1469

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, and Tjerand Silde

provide their definitions for completeness in the full version of the

paper.

Threshold verifiability and decryption simulatability are of more

interest, which we define below.

Let 𝑃sk (𝑐) be an efficiently computable predicate that on input

secret key sk and a ciphertext 𝑐 outputs 1 or 0. Such a predicate

signals that the ciphertext is reliably decryptable - which we need

to consider as ciphertexts contain noise. We first define threshold

verifiability, which models that distributed decryption is secure

against active attacks.

Definition 2 (Threshold Verifiability). A PKE scheme with

distributed decryption is threshold verifiable with respect to 𝑃sk (·)
if an adversary Adv corrupting 𝐽 ⊆ [b2] secret key shares {sk𝑗 } 𝑗∈ 𝐽
cannot convinceComb to accept maliciously created decryption shares

{ds𝑖, 𝑗 }𝑖∈[𝜏], 𝑗∈ 𝐽 . More concretely, the following probability is bounded

by a negligible 𝜖 (^):

Pr

Dec(sk, {𝑐𝑖 }𝑖∈ [𝜏])

≠

Comb({𝑐𝑖 }𝑖∈ [𝜏] , {ds𝑖,𝑗 }
𝑗 ∈ [b

2
]

𝑖∈ [𝜏])
≠
⊥

:

(pp, pk, sk, {sk𝑗 } 𝑗 ∈ [b2
]) ← KGen(1^ , b2)

({𝑐1, . . . , 𝑐𝜏 }) ← Adv(pp, pk, {sk𝑗 } 𝑗 ∈ 𝐽)
∀𝑖 ∈ [𝜏] : 𝑃sk (𝑐𝑖) = 1, ∀ 𝑗 ∉ 𝐽 :

{ds𝑖,𝑗 }𝑖∈ [𝜏] ← DDec(sk𝑗 , {𝑐𝑖 }𝑖∈ [𝜏])
{ds𝑖,𝑗 }𝑖∈ [𝜏], 𝑗 ∈ 𝐽 ← Adv({ds𝑖,𝑗 }𝑖∈ [𝜏], 𝑗∉𝐽)

,

where the probability is taken over KGen and DDec.

We moreover define a simulation property, that shows that de-

cryption shares do not leak any information about the secret key.

This models security against passive attackers.

Definition 3 (Distributed Decryption Simulatability). A

PKE scheme with distributed decryption is simulatable with respect

to 𝑃sk (·) if an adversary Adv corrupting 𝐽 ⊊ [b2] secret key shares

{sk𝑗 } 𝑗∈ 𝐽 cannot distinguish the transcript of the decryption protocol

from a simulation by a simulator Sim which only gets {sk𝑗 } 𝑗∈ 𝐽 as
well as correct decryptions as input. More concretely, the following

probability is bounded by a negligible 𝜖 (sec):

|Pr

𝑏 = 𝑏′ :

(pp, pk, sk, {sk} 𝑗 ∈ [b
2
]) ← KGen(1^ , b2)

({𝑐1, . . . , 𝑐𝜏 }) ← Adv(pp, pk, {sk𝑗 } 𝑗 ∈ 𝐽)
∀𝑖 ∈ [𝜏] : 𝑃sk (𝑐𝑖) = 1

{ds0

𝑖,𝑗
} ← DDec({sk𝑗 } 𝑗 ∈ [b2

] , {𝑐𝑖 }𝑖∈ [𝜏])
{ds1

𝑖,𝑗
} ← Sim(pp, {sk𝑗 } 𝑗 ∈ 𝐽 , {𝑐𝑖 ,Dec(sk, 𝑐𝑖) }𝑖∈ [𝜏])

𝑏
$← {0, 1}, 𝑏′ ← Adv({ds𝑏

𝑖,𝑗
}𝑖∈ [𝜏], 𝑗 ∈ [b

2
])

− 1

2

|,

where the probability is taken over KGen,DDec, Sim.

2.1.1 Our instantiation. Let 𝑝 ≪ 𝑞 be primes, define 𝑅𝑞 and 𝑅𝑝
for a fixed 𝑁 , let 𝐵Key, 𝐵Err ∈ N be bounds. We use the BGV [13]

encryption scheme, which consists of three algorithms: key gener-

ation (KGen), encryption (Enc) and decryption (Dec), where:

KGen Samples a uniform element 𝑎
$← 𝑅𝑞 , a short 𝑠

$← 𝑆𝐵Key

and noise 𝑒
$← 𝑆𝐵Err . The algorithm outputs the public key

pk = (𝑎, 𝑏) = (𝑎, 𝑎𝑠 + 𝑝𝑒) and secret key sk = 𝑠 .

Enc On input the public key pk = (𝑎, 𝑏) and a message𝑚 ∈ 𝑅𝑝 ,

samples a uniform 𝑟
$← 𝑆𝐵Key , noise 𝑒′, 𝑒′′

$← 𝑆𝐵Err and

outputs the ciphertext 𝑐 = (𝑢, 𝑣) = (𝑎𝑟 + 𝑝𝑒′, 𝑏𝑟 + 𝑝𝑒′′ +𝑚).
Dec On input secret key sk = 𝑠 and ciphertext 𝑐 = (𝑢, 𝑣), outputs

message𝑚 = (𝑣 − 𝑠𝑢 mod 𝑞) mod 𝑝 .

The following theorem follows from [13] and [30].

Theorem 1. The BGV encryption scheme is correct if ∥𝑣 − 𝑠𝑢∥∞ ≤
𝐵Dec < ⌊𝑞/2⌋, and IND-CPA secure if the DKS∞

𝑁,2,𝛽
problem is hard

for some 𝛽 = 𝛽 (𝑁,𝑞, 𝐵Key, 𝐵Err, 𝑝).

We use this theorem to define the predicate 𝑃sk (𝑢, 𝑣) to be 1 iff

∥𝑣 − 𝑠𝑢∥∞ < 𝐵Dec and otherwise 0. Since each ciphertext consists

of 2 elements from 𝑅𝑞 , it can be represented using 2𝑁 log
2
𝑞 bits.

2.1.2 Threshold decryption. We quickly recap the passively secure

distributed decryption protocol by Damgård et al. [8, 17, 18]. Here,

the KGen algorithm on input b2 ∈ N additionally outputs uniformly

random shares sk𝑗 = 𝑠 𝑗 of the secret key sk = 𝑠 such that 𝑠 = 𝑠1 +
· · · + 𝑠b2

in 𝑅𝑞 . This defines a passively secure threshold decryption

protocol by using the linearity of the decryption function:

DDec On input a secret key-share sk𝑗 = 𝑠 𝑗 and a ciphertext 𝑐 =

(𝑢, 𝑣), does the following:
(1) Compute𝑚 𝑗 = 𝑠 𝑗𝑢 and sample a uniformly random 𝐸 𝑗

$←
𝑅𝑞 such that

𝐸 𝑗 ∞ ≤ 2
sec (𝐵Dec/𝑝b2) for statistical secu-

rity parameter sec and noise-bound 𝐵Dec,

(2) Output ds𝑗 = 𝑡 𝑗 =𝑚 𝑗 + 𝑝𝐸 𝑗 .
Comb On input ciphertext 𝑐 = (𝑢, 𝑣) and set of decryption shares

{ds𝑗 = 𝑡 𝑗 } 𝑗∈[b2] , outputs message 𝑚 = (𝑣 − 𝑡 mod 𝑞)
mod 𝑝 , where 𝑡 = 𝑡1 + · · · + 𝑡b2

.

The following theorem follows from [17, 18].

Theorem 2. Let sec be the statistical security parameter. The dis-

tributed BGV encryption scheme is correct for input ciphertexts with

∥𝑣 − 𝑢𝑠 ∥∞ ≤ (1 + 2
sec)𝐵Dec < ⌊𝑞/2⌋, and is decryption simulatable

against passive adversaries (i.e fulfills Definition 3).

Each partial decryption consists of one element from 𝑅𝑞 , namely

the output ofDDec, which means that the output from the passively

secure protocol is of size 𝑁 log
2
𝑞 bits per party.

This scheme is not secure against active adversaries, i.e. it does

not have threshold verifiability. We, therefore, modify it in Section

6 to withstand active attacks.

2.2 Commitments
Commitment schemes were first introduced by Blum [9], and we

use these at multiple points in this work to achieve verifiability.

Definition 4 (Commitment Scheme). A commitment scheme

consists of three algorithms: key generation (Setup), commitment

(Com) and opening (Open), where
Setup On input security parameter 1

^
, outputs public params pp,

Com On input message𝑚, outputs commitment 𝑐 and opening 𝑟 ,

Open On input𝑚, 𝑐 and 𝑟 , outputs either 0 or 1,

and the public parameters pp are implicit inputs to Com and Open.

For the commitment scheme, we require that it is correct, binding,

and hiding. Correctness means that an honestly generated commit-

ment is always accepted by the opening algorithm. Binding requires

that no PPT adversary can provide two different valid openings

of a given commitment for different messages. Hiding means that

the commitment itself does not reveal any information about the

committed value. We provide these definitions for completeness in

the full version of the paper.

2.2.1 Our instantiation. Our work uses the BDLOP [7] commit-

ment scheme. Let 𝑅𝑞 be defined as above and letN𝜎C be a Gaussian

distribution with standard deviation 𝜎C and 𝐵Com be a noise bound.

The algorithms are defined as follows:

1470

Verifiable Mix-Nets and Distributed Decryption for Voting from Lattice-Based Assumptions CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Setup Outputs a pk which allows to commit to length-𝑙𝑐 messages

from 𝑅
𝑙𝑐
𝑞 using length-𝑘 randomness from 𝑆𝑘

𝐵Com
outputting

length-(𝑛 + 𝑙𝑐) vectors. For this, we define

𝑨C,1 =

[
𝑰𝑛 ̂𝑨C,1

]
where ̂𝑨C,1

$← 𝑅
𝑛×(𝑘−𝑛)
𝑞

𝑨C,2 =

[
0𝑙𝑐×𝑛 𝑰 𝑙𝑐

̂𝑨C,2

]
where ̂𝑨C,2

$← 𝑅
𝑙×(𝑘−𝑛−𝑙𝑐)
𝑞 .

Let pk = 𝑨C =

[
𝑨C,1
𝑨C,2

]
. 𝑨C has height 𝑛 + 𝑙𝑐 and width 𝑘 .

Com On input 𝒎 ∈ 𝑅𝑙𝑐𝑞 samples 𝒓𝒎
$← 𝑆𝑘

𝐵Com
and computes

Compk (𝒎; 𝒓𝒎) = 𝑨C · 𝒓𝒎 +
[
0
𝒎

]
=

[
𝒄1

𝒄2

]
= ⟦𝒎⟧.

Com outputs ⟦𝒎⟧ and the opening 𝒅 = (𝒎, 𝒓𝒎, 1).
Open Verifies whether an opening (𝒎, 𝒓𝒎, 𝑓), with 𝑓 ∈ ¯C, is a

valid opening of ⟦𝒎⟧ by checking that ∥𝒓𝒎 [𝑖] ∥ ≤ 4𝜎C
√
𝑁 ,

for 𝑖 ∈ [𝑘], and if

𝑓 ·
[
𝒄1

𝒄2

]
?

= 𝑨C · 𝒓𝒎 + 𝑓 ·
[
0
𝒎

]
.

It outputs 1 if all conditions hold, and 0 otherwise.

We define the set
¯C in the full version of the paper.

The openings generated by Com form a subset of those accepted

byOpen, which is necessary for efficient zero-knowledge proofs on

BDLOP commitments. Observe that Open always accepts honestly

generated openings (except with negligible probability) by setting

𝑓 = 1. The following theorem follows from Baum et al. [7].

Theorem 3. The aforementioned commitment scheme is computa-

tionally hiding if theDKS∞
𝑛+𝑙𝑐 ,𝑘,𝐵Com

problem is hard, and the scheme

is computationally binding if the SKS2

𝑛,𝑘,16𝜎C
√
a𝑁

problem is hard.

Each commitment consists of 𝑛 + 𝑙𝑐 elements from 𝑅𝑞 and can

hence be represented using (𝑛 + 𝑙𝑐)𝑁 log
2
𝑞 bits.

2.3 Zero-Knowledge Proofs
Zero-Knowledge (ZK) proofs were first introduced by Goldwasser

et al. [25]. They are cryptographic protocols to show that a certain

statement is true, without revealing the witness. We use ZK proofs

in our constructions to achieve verifiability: protocol participants

show that they indeed followed the protocol steps correctly, while

not revealing any secret randomness that they used in the process.

Let L be a language, and let R be an NP-relation on L. Then, 𝑥 is

an element in L if there exists a witness𝑤 such that (𝑥,𝑤) ∈ R. We

let P, P∗,V andV∗ be polynomial time algorithms.

Definition 5 (Interactive Proofs). An interactive proof proto-

col Π consists of two parties: a prover P and a verifierV , and a setup

algorithm (Setup), where Setup, on input the security parameter 1
^
,

outputs public setup parameters sp. The protocol consists of a tran-
script T of the communication between P andV , with respect to sp,
and the conversation terminates withV outputting either 1 or 0. Let

⟨P(sp, 𝑥,𝑤),V(sp, 𝑥)⟩ denote the output of V on input 𝑥 after its

interaction with P, who holds a witness𝑤 .

We call an Interactive Proof a Zero-Knowledge proof
1
if it has

the following three properties:

Completeness: IfP has a valid witness𝑤 such that (𝑥,𝑤) ∈ R,
thenV accepts.

Knowledge Soundness: If P∗ can make an honest verifier

accept with large enough probability for statement 𝑥 , then

there exists a polynomial-time algorithm E that can, through

black-box access to P∗, extract𝑤 such that (𝑥,𝑤) ∈ R.
Honest Verifier Zero Knowledge: There exists a PPT algo-

rithm S, called simulator, that given only 𝑥 can create tran-

scripts whose distribution is indistinguishable from those of

an honest prover and verifier.

We give the formal definitions in the full version of the paper.

Note that an interactive honest-verifier zero-knowledge proof

protocol can be made non-interactive using the Fiat-Shamir trans-

form [23].

2.3.1 Linear relations among commitments. Assume that there are

�̂� BDLOP commitments

⟦𝒎𝑖⟧ =
[
𝒄𝑖,1
𝒄𝑖,2

]
, for 1 ≤ 𝑖 ≤ �̂� where 𝒄𝑖,2 ∈ 𝑅𝑙𝑐𝑞 .

For the public scalar vector 𝜶 = (𝛼1, . . . , 𝛼�̂�−1
) ∈ 𝑅�̂�−1

𝑞 the prover

wants to prove that the following relation holds:

RLin =

(𝑥,𝑤)
����

𝑥 = (pk, {⟦𝒎𝑖⟧}𝑖∈[�̂�] ,𝜶) ∧
𝑤 = (𝑓 , {𝒎𝑖 , 𝒓𝑖 }𝑖∈[�̂�]) ∧

∀𝑖 ∈ [�̂�] : Openpk (⟦𝒎𝑖⟧,𝒎𝑖 , 𝒓𝑖 , 𝑓) = 1

∧𝒎�̂� =
∑�̂�−1

𝑖=1
𝛼𝑖𝒎𝑖

 .

We will require proof of this relation at multiple points in our

constructions. In the full version of the paper

we provide a ZK proof ΠLin for this relation, which is a directly

extended version of the linearity proof in [7]. It works like a stan-

dard Σ protocol when adapted to lattices.

The relation RLin is relaxed because of the additional factor 𝑓

in the opening, which appears in the soundness proof. It does not

show up in protocol ΠLin, because an honest prover uses 𝑓 = 1.

The bound is 𝐵 = 2𝜎C
√
𝑁 and the protocol produces a proof tran-

script 𝜋Lin = (({𝒕𝑖 }𝑖∈[�̂�] , 𝑢), 𝛽, ({𝒛𝑖 }𝑖∈[�̂�])). Using the standard

Fiat-Shamir transform, we make ΠLin non-interactive.

2.3.2 Amortized Proofs of Boundedness. It is well-known that poly-

nomials in 𝑅𝑞 can be represented as vectors in Z𝑁𝑞 and multiplica-

tion by a polynomial 𝑎 in 𝑅𝑞 can be expressed as a matrix-vector

product with a nega-cyclic matrix in Z𝑁×𝑁𝑞 . Let 𝑨 be a publicly

known 𝑟 × 𝑣 matrix over 𝑅𝑞 , that is, a 𝑟𝑁 × 𝑣𝑁 matrix over Z𝑞 . We

will now consider how to prove generically in zero-knowledge that

𝒕𝑖 = 𝑨𝒔𝑖 for bounded 𝒔𝑖 and known 𝒕𝑖 over Z𝑞 . This is the same

as proving correct multiplication over the ring 𝑅𝑞 of the respec-

tive elements. We use proofs that are amortized, meaning that the

proof size is sublinear in the number 𝜏 of individual statements

that we prove. Both the BGV encryption and BDLOP commitment

can be expressed in this form and require bounds on inputs for

correctness, so this ZK proof can be used to show that encryptions

or commitments were honestly made.

1
More concretely, an Honest-Verifier Zero Knowledge Proof of Knowledge

1471

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, and Tjerand Silde

Let 𝑨 be a publicly known 𝑟 × 𝑣-matrix over 𝑅𝑞 , let 𝒔1, 𝒔2, . . . , 𝒔𝜏
be bounded elements in 𝑅𝑣𝑞 and let 𝑨𝒔𝑖 = 𝒕𝑖 for 𝑖 ∈ [𝜏]. Letting
𝑺 be the matrix whose columns are 𝒔𝑖 and 𝑻 be the same matrix

for 𝒕𝑖 , but defined over Z𝑁𝑞 instead of 𝑅𝑞 , then [6] give an efficient

amortized zero-knowledge proof of knowledge for the relation

RBnd =

{
(𝑥,𝑤)

���� 𝑥 = (𝑨, 𝑻) ∧𝑤 = 𝑺 ∧ ∀𝑖 ∈ [𝜏] :

𝒕𝑖 = 𝑨𝒔𝑖 ∧ ||𝑠𝑖, 𝑗 | |2 ≤ 2 · 𝐵Bnd

}
.

Let

𝜋Bnd ← ΠBnd (𝑺; (𝑨, 𝑻 , 𝜎Bnd)), 0 ∨ 1← ΠBndV ((𝑨, 𝑻 , 𝐵Bnd);𝜋Bnd),
denote the run of the proof and verification protocols, respec-

tively, where the ΠBnd-protocol, using Fiat-Shamir, produces a

non-interactive proof of the form 𝜋Bnd = (𝑪,𝒁), where 𝑪 is the

output of a hash function, and theΠBndV-protocol verifies the NIZK.

N𝜎Bnd is a Gaussian distribution over Z with standard deviation

𝜎Bnd, and 𝐵Bnd =
√

2𝑁𝜎Bnd. See the full version of the paper for

more details.

2.3.3 Exact Amortized Proofs of Shortness. As can be seen from

RBnd the non-exact amortized proof has the disadvantage of in-

troducing a “slack” factor 𝐵Bnd =
√

2𝑁𝜎Bnd, meaning that the

proven bound is substantially larger than what an honest party

would generate. This ultimately leads to larger parameters for any

application that uses ΠBnd, as one always has to assume that dis-

honestly provided encryptions or commitments only fulfills the

larger bound.

We will therefore also use a tighter ZK amortized proof of short-

ness which shows RBnd for the ℓ∞-norm and with 𝐵Bnd being 1.

The disadvantage of this proof, over ΠBnd, is that it does not scale

as well with the number of statements that are proven as ΠBnd.

For our exact amortized proof, we use a version of the protocol

from Bootle et al. [10]. They give an efficient amortized sublin-

ear zero-knowledge protocol for proving the knowledge of short

vectors 𝒔𝑖 and 𝒆𝑖 over Z𝑞 satisfying 𝑨𝒔𝑖 + 𝒆𝑖 = 𝒕𝑖 . We adapt their

techniques for the case where 𝒆𝑖 is zero and always prove that

∥𝒔𝑖 ∥∞ ≤ 1. Our amortized protocol will be denoted throughout

this work as (ΠSmall,ΠSmallV). These modifications are non-trivial

and require us to re-prove that the construction is a ZK proof. We

present more details in Section 4.

2.4 Verifiably Shuffling Ciphertexts
We construct a shuffle of BGV ciphertexts 𝒄1, . . . , 𝒄𝜏 as follows:

(1) The server creates encryptions 𝒄′
1
, . . . , 𝒄′𝜏 of 0 and commits

to each 𝒄′
𝑖
as Com(𝒄′

𝑖
). Then, by homomorphically adding 𝒄𝑖

to Com(𝒄′
𝑖
) we obtain commitments Com(𝒄𝑖) to the same

plaintexts as in 𝒄1, . . . , 𝒄𝜏 , with “fresh” randomness.

(2) The shuffle server reveals the openings 𝒄𝑖 , but in random

order. It then runs the verifiable shuffle protocol of [4] to

prove that these openings are indeed the correct openings

of the commitments.

To make the full construction verifiable, we use additional zero-

knowledge proofs: the shuffle server will have to show that the

Com(𝒄𝑖) are valid BDLOP commitments with bounded noise and

contain well-formed encryptions of 0 (i.e. have small noise as well).

For this, we use the ZK proofs introduced in the previous subsection.

But this is insufficient because the protocol of [4] only supports

BDLOP commitments of single elements from 𝑅𝑞 , while BGV ci-

phertexts consist of two elements from 𝑅𝑞 . We, therefore, extend

the shuffle protocol by Aranha et al. to verifiably shuffle vectors in

𝑅
𝑙𝑐
𝑞 . The full construction is described in Section 5.

2.5 Verifiable Decryption
We verifiably decrypt the BGV ciphertexts containing the votes in

the voting scheme. In order to avoid a single party that has the secret

decryption key (and could decrypt the inputs into the mix-net) we

secret-share the key among multiple decryption servers.

The decryption algorithm introduced in Section 2.1 is only pas-

sively secure, but we assume that attackers may act maliciously

in the voting scheme. We, therefore, modify the passively secure

decryption protocol as follows:

• During key generation, a BDLOP commitment to each share

is generated and published. The opening information is given

to the shareholder.

• Each decryption share will additionally contain a proof that

the decryption share is well-formed; the decryption algo-

rithm proves that the decryption share is generated using

the committed key share and that the randomness used is

bounded. We will use the ZK proofs in Section 2.3.

We fully describe these transformations and prove them secure

in Section 6. We do, however, not implement the (verifiable) key

generation for our construction, which can e.g. be obtained by

modifying a threshold key generation protocol such as [34].

3 THE VOTING SCHEME
The high-level architecture for the counting phase of our protocol

is shown in Figure 1. As it follows a standard design [37], we do not

describe its security properties further here, but refer the reader to

the full version of the paper for a more formal treatment. We also

have left out some aspects, such as voter authentication, to focus

on the core building blocks of our construction.

S1 S2
. . . Sb1

{𝒄 (0)
𝑖
} {𝒄 (1)

𝑖
} {𝒄 (2)

𝑖
}

𝜋S1
𝜋S2

𝜋Sb
1

D1

.

.

.

D𝑗

.

.

.

Db2

{𝑚𝑖 }

{𝒄 (b1)
𝑖
}

{𝒄 (b1)
𝑖
}

{𝒄 (b1)
𝑖
}

{(𝑡𝑖,1, 𝜋D1
)}

{(𝑡𝑖, 𝑗 , 𝜋D𝑗
)}

{(𝑡𝑖,b2
, 𝜋Db

2

)}

Figure 1: The high-level counting phase of our voting pro-
tocol. Each shuffle server S𝑘 receives a set of ciphertexts
{𝒄 (𝑘−1)

𝑖
}, shuffles them, and outputs a new set of ciphertexts

{𝒄 (𝑘)
𝑖
} and a proof 𝜋S𝑘 . When all shuffle proofs are verified,

each decryption server D𝑗 partially decrypts every cipher-
text and outputs the partial decryptions {𝑡𝑖, 𝑗 } and a proof
of correctness 𝜋D𝑗

. Votes {𝑚𝑖 } are reconstructed from the
partial decryptions.

1472

Verifiable Mix-Nets and Distributed Decryption for Voting from Lattice-Based Assumptions CCS ’23, November 26–30, 2023, Copenhagen, Denmark

The voting protocol requires a trusted set of players to run the

setup, a set of voters Voter𝑖 and their computers Comp𝑖 , a ballot box
Ballot, a collection of shuffle servers S𝑘 , a collection of decryption

servers D𝑗 and one or more auditors Audit. We will assume that

there are b1 shuffle servers and b2 decryption servers in total. The

voting protocol consists of a setup phase, a registration phase, a

casting phase, a counting phase as well as a verification algorithm

to check casting and counting.

Setup Phase. A trusted set of players runs the key generation

algorithm KGen of the PKE scheme with Distributed Decryption.

The key generation can either be done in a trusted fashion or dis-

tributed using the protocol by Rotaru et al. [34]. The derived public

parameters pk are given to every participant, while the decryption

key shares sk𝑗 are given to the decryption servers D𝑗 .

A key pair (sk𝐵, vk𝐵) for a EUF-CMA-secure signature scheme

is also generated and given to the ballot box. The verification key

vk𝐵 is given to every participant.

Casting phase. Each voter Voter𝑖 instructs its computer Comp𝑖
which ballot to cast. The computer encrypts the ballot under the

public key pk and creates a ballot proof, sending the encrypted ballot
and proof to the box Ballot. The ballot proof is tied to the voter’s

identity and is supposed to stop copy-and-paste attacks against

privacy. In the security proof, the ballot proof must allow us to

extract ballots from adversarially generated encryptions. Either we

can use an argument of knowledge, but to simplify the security

proof we often encrypt the ballot under two distinct keys and use an

argument of equality. The ballot box will check the proof and signs

the encrypted ballot and the proof using sk𝐵 . This signature 𝜎𝑖 is
sent to the voter’s computer. The computer verifies the signature

𝜎𝑖 from Ballot using vk𝐵 and only accepts if it is valid. It then

shows the voter the encrypted ballot, proof, and signature, which

constitutes the voter’s receipt. The voter Voter𝑖 accepts the ballot
as cast if and only if the computer accepts it with a receipt.

Counting phase. The ballot boxBallot sends the encrypted ballots
and ballot proofs that it has seen to the auditor Audit as well as
every decryption server D𝑗 . Ballot then sorts the list of encrypted

ballots {𝒄 (0)
𝑖
} and sends this to the first shuffle server S1 and every

decryption server. If some voter has cast more than one ballot, only

the encrypted ballot seen last is included in this list.

The b1 shuffle servers S1,S2, . . . ,Sb1
consecutively use the shuf-

fle algorithm on the input encrypted ballots {𝒄 (𝑘−1)
𝑖

}, passing the
shuffled and re-encrypted ballots {𝒄 (𝑘)

𝑖
} to the next shuffle server.

They also pass the shuffled re-encrypted ballots {𝒄 (𝑘)
𝑖
} and the

shuffle proof 𝜋S𝑘 to Audit and every decryption server.

Each decryption server verifies that the data from Ballot as well
as each shuffle server is consistent (input-output wise), and that

every shuffle proof 𝜋S𝑘 verifies for the respective ciphertexts. Only

then will they run the distributed decryption algorithm DDec with
their decryption key share sk𝑗 and send their partial decryption

shares 𝑡𝑖, 𝑗 of each ballot 𝒄
(b1)
𝑖

to the auditor as well as each recipient

of the output. To obtain the result, each recipient can then run Comb
on the partial decryption shares 𝑡𝑖, 𝑗 .

Verification. The auditor verifies the data from Ballot (it checks
that the ballot proofs of knowledge verify), that the encrypted

ballots received by the first shuffle are consistent with the data from

Ballot, that every shuffle proof verifies, and then runs the combining

algorithm Comb on the received partial decryption shares 𝑡𝑖, 𝑗 from

each D𝑗 . If all checks pass then the auditor accepts, otherwise, it

rejects. Finally, Audit outputs the list of messages, including public

key material, as its transcript.

One can easily design a verification algorithm that takes as input

a transcript, a result, and optionally a receipt, and either accepts

or rejects. The verification algorithm simply runs the auditor with

the public key material and the messages listed in the transcript

and checks if the auditor’s result matches the input. If a receipt

is present, it also verifies the signature 𝜎𝑖 using the ballot box’

verification key vk𝐵 , checks that the encrypted ballot and ballot

proof are present in the ballot box data set, and that the encrypted

ballots are present in the first shuffle server’s input.

Note that there are many variations of this protocol. It can be used

with so-called return codes, which allow human verification of the

vote cast and detect a cheating computer Comp𝑖 of the voter.
Many comparable schemes are phrased in terms of an ideal bul-

letin board, where every player posts their messages. Implementing

a bulletin board is tricky in practice, so instead, we have described

the scheme as a conventional cryptographic protocol passing mes-

sages via a network.

It is worth noting that for our concrete scheme, anyone can redo

the auditor’s work (since no secret key material is involved) by run-

ning the verification algorithm (and parts of the code algorithm) on

the public data, making the voting protocol (universally) verifiable.

4 EXACT AMORTIZED ZK PROOFS
Bootle et al. [10] give an efficient amortized sublinear zero-knowledge

protocol for proving the knowledge of short vectors 𝒔𝑖 and 𝒆𝑖 over
Z𝑞 satisfying𝑨𝒔𝑖+𝒆𝑖 = 𝒕𝑖 . For our setting, we adapt their techniques

for the case where 𝒆𝑖 is zero, and prove that ∥𝒔𝑖 ∥∞ ≤ 1
2
.

We explain the main idea of [10] for proving knowledge of a

preimage 𝒔 of 𝒕 = 𝑨𝒔 and then generalize to an amortized proof for

𝜏 elements with sublinear communication.

The approach follows an ideal linear commitments-technique

with vector commitments ComL (·) over Z𝑞 . The prover initially
commits to the vector 𝒔 as well as an auxiliary vector 𝒔0 of equal

length. Implicitly, this defines a vector of polynomials 𝒇 (𝑋) =

𝒔0 (𝑋) + 𝒔 for the prover. Now consider the vector of polynomials

𝒇 (𝑋) ◦ (𝒇 (𝑋) −1) ◦ (𝒇 (𝑋) +1), where ◦ denote the coordinate-wise
product, then the coefficients of 𝑋 0

are exactly 𝒔 ◦ (𝒔 − 1) ◦ (𝒔 + 1)
and therefore 0 if and only if the aforementioned bound on 𝒔 holds.
In that case, each aforementioned polynomial in 𝒇 (𝑋) ◦ (𝒇 (𝑋) −
1) ◦ (𝒇 (𝑋) + 1) is divisible by 𝑋 . Therefore, the prover computes

the coefficient vectors

1/𝑋 · 𝒇 (𝑋) ◦ (𝒇 (𝑋) − 1) ◦ (𝒇 (𝑋) + 1) = 𝒗2𝑋
2 + 𝒗1𝑋 + 𝒗0

and commits to these. Additionally, define the value 𝒅 = 𝒕 −𝑨𝒇 =

−𝑨𝒔0, which the prover also commits to.

2
The authors of [10] mention that this optimization is possible, but neither present

the modified protocol nor a proof.

1473

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, and Tjerand Silde

The verifier now sends a challenge 𝑥 , for which the prover re-

sponds with 𝒇 = 𝒇 (𝑥). The prover also uses the linear property of

the commitment scheme to show that:

(1) ComL (𝒔0) · 𝑥 + ComL (𝒔) opens to 𝒇 .
(2) ComL (𝒗2) ·𝑥2+ComL (𝒗1) ·𝑥 +ComL (𝒗0) opens to the value

1

𝑥 · 𝒇 ◦ (𝒇 + 1) ◦ (𝒇 − 1).
The prover additionally opens the commitment to 𝒅 and the verifier

checks that it opens to
1

𝑥 · (𝒕 −𝑨𝒇). Here, the first two commitment

openings allow us to deduce that the correct 𝑓 is sent by the prover

and that the values committed as 𝒔 are indeed commitments to

{−1, 0, 1}. Then, from opening 𝒅 we get that the committed 𝒔 is the
preimage of 𝒕 under 𝑨.

The ideal linear commitments in [10] get realized using an

Encode-then-Hash scheme. In this commitment scheme, the prover

commits to vectors 𝒙1, . . . , 𝒙𝑛 ∈ Z
𝑙msg
𝑞 :

(1) Sample 𝑛 random vectors 𝒓1, . . . , 𝒓𝑛 ∈ Z[𝑞
(2) Let Encode be the encoding function of an [𝑙, 𝑙msg+[, 𝑑] Reed-

Solomon Code with code-length 𝑙 , message length 𝑙msg + [
and minimal distance 𝑑 . Compute 𝒆𝑖 ← Encode(𝒙𝑖 ∥𝒓𝑖) for
each 𝑖 ∈ [𝑛].

(3) Construct matrix 𝑬 = RowsToMatrix(𝒆1, . . . , 𝒆𝑛) where 𝒆𝑖
is row 𝑖 .

(4) Commit to each column of 𝑬 using a hash, then compress all

commitments to Merkle root𝑀 .

(5) Send𝑀 to the verifier.

For the prover to show to the verifier that 𝒙 is an opening of the

linear combination

∑𝑛
𝑖=1

𝛾𝑖𝒙𝑖 :

(1) It computes 𝒓 =
∑𝑛
𝑖=1

𝛾𝑖 𝒓𝑖 and sends 𝒓 to the verifier.

(2) The verifier chooses a subset 𝐼 of size [from [𝑙].
(3) The prover opens the commitment for each column 𝑖 ∈ 𝐼 of

𝑬 and proves that it lies in the Merkle tree 𝑀 by revealing

the path.

(4) The verifier checks that Encode(𝒙 ∥𝒓) coincides at position 𝑖
with the respective linear combination of all 𝑛 opened values

in column 𝑖 of 𝑬 .

This is a proof of the respective statement due to the random choice

of the set 𝐼 . Intuitively, if each row of 𝑬 is in the code
3
, but they

do not sum up to 𝒙 , then the linear combination of the codewords

in 𝑬 must differ from Encode(𝒙 ∥𝒓) in at least 𝑑 positions, which

is the minimum distance of the code. By the random choice of 𝐼

and by setting [appropriately, the verifier would notice such a

disagreeing entry with high probability. At the same time, because

only [columns of 𝑬 are opened, this leaks no information about the

vectors 𝒙1, . . . , 𝒙𝑛 if the evaluation points of the output of Encode
are different from those of the input, i.e. if the code is not systematic.

For the case of more than one secret, the prover wants to show

that 𝒕𝑖 = 𝑨𝒔𝑖 for 𝜏 values 𝒕𝑖 known to the verifier, subject to 𝒔𝑖 again
being ternary vectors. The goal is to establish the latter for all 𝒕𝑖
simultaneously while verifying only one equation and sending only

one vector 𝒇 . Then the prover commits to 𝒔𝑖 as well as an additional

3
For the proof to work, the verifier additionally has to verify this claim or rather, that

all rows are close to actual codewords. One mechanism to achieve this is to commit to

an additional auxiliary row and also open a random linear combination of all rows,

including the auxiliary row.

blinding value 𝒔0. Let 𝑎1, . . . , 𝑎𝜏 ∈ Z𝑞 be distinct interpolation

points and define the 𝑖th Lagrange polynomial

ℓ𝑖 (𝑋) =
∏
𝑖≠𝑗

𝑋 − 𝑎 𝑗
𝑎𝑖 − 𝑎 𝑗

.

Additionally, let ℓ0 (𝑋) =
∏𝜏

𝑖=1
(𝑋−𝑎𝑖). Then every 𝑓 ∈ Z𝑞 [𝑋]/ℓ0 (𝑋)

can be written uniquely as 𝑓 (𝑋) =
∑𝜏
𝑖=1

_𝑖 ℓ𝑖 (𝑋) and any 𝑔 ∈
Z𝑞 [𝑋]/ℓ0 (𝑋)𝑏 as a linear combination of {ℓ𝑖 (𝑋)ℓ0 (𝑋) 𝑗 }𝑏−1

𝑗=0
. De-

fine the polynomial

𝒇 (𝑋) =
𝜏∑︁
𝑖=0

𝒔𝑖 ℓ𝑖 (𝑋),

and observe that 𝒇 (𝑋) ◦ (𝒇 (𝑋) − 1) ◦ (𝒇 (𝑋) + 1) is divisible by

ℓ0 (𝑋) if and only if all ℓ𝑖 (𝑋)-coefficients of 𝒇 (𝑋) for 𝑖 ∈ [𝜏] are 0.

Additionally, since ℓ𝑖 (𝑋) · ℓ𝑗 (𝑋) = 0 mod ℓ0 (𝑋) if 𝑖, 𝑗 ∈ [𝑛], 𝑖 ≠ 𝑗

this then also implies that the 𝒔𝑖 are ternary. Moreover, we only

have to commit to additional 3 · 𝜏 coefficients of {ℓ𝑖 (𝑋)ℓ0 (𝑋) 𝑗 }𝑏−1

𝑗=0

to prove well-formedness of any evaluation of 𝒇 (𝑋) sent by the

prover.

The protocol is described in detail in the full version of the paper.

As our construction substantially deviates from that of [10] we

show that the protocol indeed is a ZKPoK. In the full version of the

paper we show that the following holds:

Theorem 4. The amortized zero-knowledge proof of exact open-

ings is complete when the secrets 𝒔𝑖 has ternary coefficients, it is

special sound if the SKS2

𝑟,𝑣,1
problem is hard and the hash-function is

collision-resistant, and it is statistically honest-verifier zero-knowledge.

Towards defining the size of the proof, we see that the proof size

is dominated by the sending of the openings of the homomorphic

commitments (step 9 in Figure 4 in the full version) and the opening

of the column-wise commitments of 𝑬 via Merkle tree paths (step

11). More concretely:

• In step 9, prover sends polynomials which are openings to

the homomorphic commitments of total size 3𝑣𝑁 log
2
𝑞 and

additional randomness of total size 3[log
2
𝑞.

• In step 11, the preimages of the hash column commitments

(𝑬 |𝐼) have length (3𝜏 +2)[log
2
𝑞 while the Merkle tree paths

add another 2^[(1 + log
2
𝑙) bits.

This leads to a proof of size

(3𝑣𝑁 + (3𝜏 + 2)[) log
2
𝑞 + 2^[(1 + log

2
𝑙) bits (1)

in total. The second part is essentially independent of 𝜏 , which

decides how good the proof amortizes after fixing the lattice com-

ponents. We get the optimal result by setting 3𝑣𝑁 ≈ (3𝜏 + 2)[.

5 VERIFIABLE SHUFFLE OF CIPHERTEXTS
The recent work by Aranha et al. [4] presents an efficient protocol

ΠShuf for a shuffle of openings of the lattice-based commitments

from Section 2.2 using proofs of linear relations. The protocol of [4]

only supports committed secrets coming from 𝑅𝑞 . We now extend

their protocol to verifiably shuffle vectors in 𝑅
𝑙𝑐
𝑞 .

1474

Verifiable Mix-Nets and Distributed Decryption for Voting from Lattice-Based Assumptions CCS ’23, November 26–30, 2023, Copenhagen, Denmark

5.1 The Extended Shuffle for Commitments
To prove a shuffle, both the prover and verifier are given a list

of commitments ⟦𝒎1⟧, . . . , ⟦𝒎𝜏⟧ as well as potential messages

(�̂�1, . . . , �̂�𝜏) from 𝑅
𝑙𝑐
𝑞 . The prover additionally obtains openings

𝒎𝑖 , 𝒓𝑖 , 𝑓𝑖 and wants to prove that the set of plaintext elements is

the same set as the underlying elements of the commitments for

some secret permutation 𝜋 of the indices in the lists. More formally,

our goal is to prove the following relation

R
Shuf

𝑙𝑐 =

(𝑥,𝑤)

𝑥 = (⟦𝒎1⟧, . . . , ⟦𝒎𝜏⟧, �̂�1, . . . , �̂�𝜏),
𝑤 = (𝜋, 𝑓1, . . . , 𝑓𝜏 , 𝒓1, . . . , 𝒓𝜏), 𝜋 ∈ 𝑆𝜏 ,

∀𝑖 ∈ [𝜏] : 𝑓𝑖 · ⟦𝒎𝜋−1 (𝑖)⟧ = 𝑓𝑖 ·
[
𝒄

1,𝜋−1 (𝑖)
𝒄

2,𝜋−1 (𝑖)

]
= 𝑨C𝒓𝑖 + 𝑓𝑖 ·

[
0
�̂�𝑖

]
∧ ||𝒓𝑖 [𝑗] | | ≤ 4𝜎𝐶

√
𝑁

.

Towards proving this relation, we observe that it is sufficient to

let the verifier choose a random element ℎ
$← 𝑅𝑞 . Then instead of

proving a shuffle on 𝒎1, . . . ,𝒎𝜏 , the prover instead performs the

same proof on ⟨𝒎1, 𝜌⟩, . . . , ⟨𝒎𝜏 , 𝜌⟩ where 𝜌 = (1, ℎ, . . . , ℎ𝑙𝑐−1)⊤.
The problemwith this approach is that wemust also be able to apply

𝜌 to the commitments ⟦𝒎1⟧, . . . , ⟦𝒎𝜏⟧, without re-committing to

the inner product and proving correctness in zero-knowledge.

Since each commitment ⟦𝒎⟧ can be written as[
𝒄1

𝒄2

]
= 𝑨C𝒓 +

[
0
𝒎

]
we can write 𝒄1 = 𝑨C,1𝒓 and 𝒄2 = 𝑨C,2𝒓 + 𝒎. From this we can

create a new commitment ⟦⟨𝝆,𝒎⟩⟧ under the new commitment

key pk′ = (𝑨C,1, 𝜌𝑨C,2) where 𝒄′1 = 𝒄1 remains the same, while we

set 𝑐′
2
= ⟨𝜌, 𝒄2⟩. This does not increase the bound of the randomness

of the commitment. Since

𝑨C,2 =

[
0𝑙𝑐×𝑛 𝑰 𝑙𝑐

̂𝑨2

]
where ̂𝑨2 ∈ 𝑅𝑙×(𝑘−𝑛−𝑙𝑐)𝑞 ,

it holds that

𝒂′
2
= 𝝆𝑨C,2 =

[
0𝑛 𝝆⊤ 𝝆̂𝑨2

]
.

It is easy to see that breaking the binding property for pk′ is no
easier than breaking the binding property for pk.

Proposition 1. If there exists an efficient attacker Adv that breaks
the binding property on commitments under the key pk′ with proba-

bility 𝜖 , then there exists an efficient algorithm Adv′ that breaks the
binding property on pk with the same probability.

We can now construct the protocol Π𝑙𝑐
Shuf

:

(1) Initially, prover P and verifierV hold {⟦𝒎𝑖⟧, �̂�𝑖 }𝑖∈[𝜏] for
a public key pk = (𝑨C,1,𝑨C,2) while the prover additionally
hold secrets {𝒎𝑖 , 𝒓𝑖 }𝑖∈[𝜏] , 𝜋 ∈ 𝑆𝜏 .

(2) V chooses ℎ
$← 𝑅𝑞 and sends it to P. Both parties compute

𝝆 ← (1, ℎ, . . . , ℎ𝑙𝑐−1)⊤.
(3) P andV for each ⟦𝒎𝑖⟧ = (𝒄1,𝑖 , 𝒄2,𝑖) compute ⟦⟨𝝆,𝒎𝑖 ⟩⟧ =
(𝒄1,𝑖 , ⟨𝝆, 𝒄2,𝑖 ⟩) = (𝒄1,𝑖 , 𝒄′

2,𝑖
).

(4) P andV runΠShuf on input commitments {⟦⟨𝝆,𝒎𝑖 ⟩⟧}𝑖∈[𝜏]
and messages ⟨𝝆, �̂�𝑖 ⟩. P uses same permutation 𝜋 , random-

ness 𝒓𝑖 as before. The commitment key pk′ = (𝑨′C,1,𝑨
′
C,2)

is used by both.

(5) If ΠShuf accepts thenV accepts in Π𝑙𝑐
Shuf

, otherwise rejects.

We show the following in the full version of the paper:

Lemma 1. Assuming that the commitment scheme is binding and

that 𝜏 ≤ 1

2−2 exp(−𝑁 /𝑞) . Then the protocol Π𝑙𝑐
Shuf

is a HVZK PoK for

the relation R
Shuf

𝑙𝑐 with soundness error ^Γ = 2/𝑞𝑁 + 2𝜏/|C|𝜏 +
4(𝜏 + 1) · (𝜏 · (𝑙𝑐 − 1) + 1)/𝑞2𝑁

, where C is the challenge space of the

proof of linearity employed in ΠShuf.

5.2 Verifiable Shuffle of BGV Ciphertexts
We now implement the verifiable shuffle for ciphertexts that we

outlined in Section 2.4. To recap quickly, the idea behind the shuffle

of BGV ciphertexts 𝒄1, . . . , 𝒄𝜏 is as follows:

(1) The shuffle server creates encryptions 𝒄′
1
, . . . , 𝒄′𝜏 of 0 and

commits to each 𝒄′
𝑖
as Com𝒄′

𝑖
. Then, by homomorphically

adding 𝒄𝑖 to Com𝒄′
𝑖
we obtain commitments Com𝒄𝑖 to the

same plaintexts as in 𝒄1, . . . , 𝒄𝜏 , with “fresh” randomness.

(2) The shuffle server reveals the openings 𝒄𝑖 , but in random

order. It then runs the verifiable shuffle protocol from the

previous subsection to prove that these openings are indeed

the commitments’ correct (permuted) openings.

In the following, we describe the resulting approach in more detail.

Public parameters. Let 𝑝 ≪ 𝑞 be primes, let 𝑅𝑞 and 𝑅𝑝 be defined

as above for a fixed 𝑁 , and let 𝐵Key, 𝐵Err ∈ N be bounds for an

instance of our chosen PKE scheme. We assume properly generated

keys and ciphertexts according to the KeyGen and Enc algorithms

in Section 2.1.

The shuffle server S takes as input a set of 𝜏 publicly known

BGV ciphertexts {𝒄𝑖 }𝜏𝑖=1
, where the total noise in each ciphertext

is bounded by 𝐵Dec, i.e. each ciphertexts fulfills 𝑃sk (·).

Randomizing. First, S randomizes all the received ciphertexts.

Towards this it creates a new set of ciphertexts {𝒄′
𝑖
}𝜏
𝑖=1

:

𝒄′𝑖 = (𝑢
′
𝑖 , 𝑣
′
𝑖) = (𝑎𝑟

′
𝑖 + 𝑝𝑒

′
𝑖,1, 𝑏𝑟

′
𝑖 + 𝑝𝑒

′
𝑖,2),

where 𝑟 ′
𝑖

$← 𝑆𝐵Key and 𝑒
′
𝑖,1
, 𝑒′
𝑖,2

$← 𝑆𝐵Err as in fresh ciphertexts. This

corresponds to creating fresh, independent encryptions of 0. S will

not publish these 𝒄′
𝑖
.

Committing. S now commits to the 𝒄′
𝑖
. Towards this, we re-write

the commitment matrix from Section 2.2 for 𝑙𝑐 = 2 and add the

public key of the encryption scheme to get a (𝑛 + 2) × (𝑘 + 3) matrix

𝑨M, where 0𝑛 are row-vectors of length 𝑛, 𝒂1,1, 𝒂1,2 are column

vectors of length 𝑛, 𝒂2,3, 𝒂3,3 are row vectors of length 𝑘 −𝑛 − 2 and

𝑨1,3 is of size 𝑛 × (𝑘 − 𝑛 − 2). Then,
Com(𝑢′𝑖 , 𝑣

′
𝑖) = ⟦(𝑎𝑟

′
𝑖 + 𝑝𝑒

′
𝑖,1, 𝑏𝑟

′
𝑖 + 𝑝𝑒

′
𝑖,2)⟧ = 𝑨M𝒓 ′𝑖

=

𝑰𝑛 𝒂1,1 𝒂1,2 𝑨1,3 0 0 0

0𝑛 1 0 𝒂2,3 𝑎 𝑝 0

0𝑛 0 1 𝒂3,3 𝑏 0 𝑝

𝒓𝑖
𝑟 ′
𝑖

𝑒′
𝑖,1

𝑒′
𝑖,2

 ,
where 𝒓𝑖 ∈ 𝑅𝑘𝑞 is the randomness used in the commitment. Further,

let ⟦(𝑢𝑖 , 𝑣𝑖)⟧0 be the trivial commitment to (𝑢𝑖 , 𝑣𝑖) with no random-

ness. Then, given the commitment ⟦(𝑢′
𝑖
, 𝑣 ′
𝑖
)⟧ and ⟦(𝑢𝑖 , 𝑣𝑖)⟧0 we

can be compute a commitment

⟦(𝑢𝑖 , 𝑣𝑖)⟧ = ⟦(𝑢𝑖 , 𝑣𝑖)⟧0 + ⟦(𝑢′𝑖 , 𝑣
′
𝑖)⟧.

1475

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, and Tjerand Silde

Thus, the commitments ⟦(𝑢𝑖 , 𝑣𝑖)⟧ contain re-randomized encryp-

tions of the original ciphertexts.S can therefore open a permutation

of the (𝑢𝑖 , 𝑣𝑖) and prove correctness of the shuffled opening using

algorithm Π𝑙𝑐
Shuf

. To ensure correctness, we have to additionally

show that each 𝑢′
𝑖
, 𝑣 ′
𝑖
was created so that decryption is correct, i.e.,

it has small enough noise.

Proving correctness of commitments. Let𝑨M be the (𝑛+2)×(𝑘+3)
matrix defined above. Then S needs to prove that, for all 𝑖 , it knows

secret short vectors 𝒓 ′
𝑖
of length 𝑘 + 3 that are solutions to the

following equations:

𝒕𝑖 = 𝑨M𝒓 ′𝑖 = ⟦(𝑎𝑟
′
𝑖 + 𝑝𝑒

′
𝑖,1, 𝑏𝑟

′
𝑖 + 𝑝𝑒

′
𝑖,2)⟧,

𝒓 ′𝑖∞ ≤ 𝐵∞ .

To show this, S runs the ΠSmall-protocol on 𝑨M, {𝒓 ′
𝑖
}𝜏
𝑖=1

, {𝒕𝑖 }𝜏𝑖=1
.

S uses Fiat-Shamir to ensure the non-interactivity of the proof.

The full protocol. We summarize this protocol as ΠMix:

(1) S obtains ciphertexts {𝒄𝑖 }𝑖∈[𝜏] = {(𝑢𝑖 , 𝑣𝑖)}𝑖∈[𝜏] .
(2) S for each 𝑖 ∈ [𝜏] samples 𝑟 ′

𝑖
, 𝑒′
𝑖,1
, 𝑒′
𝑖,2

as above. It then creates

commitments {⟦𝑢′
𝑖
, 𝑣 ′
𝑖
⟧ = ⟦𝑎𝑟 ′

𝑖
+𝑝𝑒′

𝑖,1
, 𝑏𝑟 ′

𝑖
+𝑝𝑒′

𝑖,2
⟧}𝑖∈[𝜏] using

randomness 𝒓𝑖 for each such commitment.

(3) Let 𝒕𝑖 = ⟦(𝑢′𝑖 , 𝑣
′
𝑖
)⟧ and 𝒓 ′

𝑖
= [𝒓⊤

𝑖
, 𝑟 ′
𝑖
, 𝑒𝑖,1, 𝑒𝑖,2]⊤. Then S com-

putes 𝜋Small ← ΠSmall for matrix 𝑨M, input vectors {𝒓 ′
𝑖
},

target vectors {𝒕𝑖 } and bound 𝐵∞.
(4) Let 𝒄𝑖 = (𝑢𝑖 + 𝑢′𝑖 , 𝑣𝑖 + 𝑣

′
𝑖
) and 𝐿 be a random permutation

of {𝒄𝑖 }𝑖∈[𝜏] . Then S computes 𝜋Shuf ← Π𝑙𝑐
Shuf

with in-

put commitments {⟦(𝑢𝑖 , 𝑣𝑖)⟧}𝑖∈[𝜏] , commitment messages

{𝒄𝑖 }𝑖∈[𝜏] , randomness {𝒓𝑖 }𝑖∈[𝜏] and ciphertexts 𝐿.

(5) S outputs ({𝒕𝑖 }𝑖∈[𝜏] , 𝜋Small, 𝐿, 𝜋Shuf).
Given such a string ({𝒕𝑖 }𝑖∈[𝜏] , 𝜋Small, 𝐿, 𝜋Shuf) from S as well

as ciphertext vector {𝒄𝑖 }𝑖∈[𝜏] any third partyV can now run the

following algorithm ΠMixV to verify the mix:

(1) Run the verification algorithm of ΠSmallV for 𝜋Small on in-

puts 𝑨M, {𝒕𝑖 }𝑖∈[𝜏] and 𝐵∞. If verification fails: output 0.

(2) For ∀𝑖 ∈ [𝜏] set ⟦𝒄𝑖⟧ = ⟦𝒄𝑖⟧0 + 𝒕𝑖 .
(3) Run the verification algorithm of Π𝑙𝑐

ShufV
for 𝜋Shuf on input

{⟦𝒄𝑖⟧}𝑖∈[𝜏] , 𝐿. If the verification fails, then output 0. Other-

wise, output 1.

In the following, define noise bound 𝐵Mix to be the maximum

level of noise in ciphertexts 𝒄′
𝑖
, i.e. the maximal noise of the ran-

domness 𝑟 ′
𝑖
, 𝑒′
𝑖,1
, 𝑒′
𝑖,2

used to create the ciphertexts.

We want that the outputs of the mixing protocol fulfill the fol-

lowing relation RMix: (𝑥,𝑤)
𝑥 = (𝒄1, . . . , 𝒄𝜏 , 𝒄1, . . . , 𝒄𝜏 , ⟦𝒄′

1
⟧, . . . , ⟦𝒄′𝜏⟧),

𝑤 = (𝜋, 𝒓 ′
1
, . . . , 𝒓 ′𝜏 ,), 𝜋 ∈ 𝑆𝜏 ,∀𝑖 ∈ [𝜏] :

⟦𝒄′
𝑖
⟧ = 𝑨M𝒓 ′

𝑖
,
𝒓 ′

𝑖

∞ ≤ 𝐵Mix, 𝒄𝜋 (𝑖) = 𝒄𝑖 + 𝒄′𝑖

 .

If the noise-levels in all 𝒄𝑖 and 𝒄′
𝑖
are bounded by 𝐵Dec and 𝐵Mix

respectively, and (𝐵Dec + 𝐵Mix) < ⌊𝑞/2⌋, then all 𝒄𝑖 and 𝒄𝜋 (𝑖) will,
for some permutation 𝜋 , decrypt to the same message𝑚𝑖 under sk.
In the full version of the paper we analyze the guarantees of ΠMix

in more detail.

5.3 Communication of a BGV Shuffle
The mixing phase transcript contains 𝜏 new ciphertexts generated

by the server, which are of size 2𝜏𝑁 log
2
𝑞 bits.

The server must provide a proof of shuffle and an amortized

proof of shortness for 𝑟 ′
𝑖
, 𝑒′
𝑖,1
, 𝑒′
𝑖,2
. Both proofs prove a relation about

commitments to the randomization factors 𝑢′
𝑖
, 𝑣 ′
𝑖
added to the old

ciphertexts to get the new ciphertexts. Each commitment to 𝑢′
𝑖
, 𝑣 ′
𝑖

is of size (𝑛 + 2)𝑁 log
2
𝑞 bits. We denote the proof by 𝜋Small.

The shuffle proof consists of𝜏 commitments of size (𝑛+1)𝑁 log
2
𝑞

bits, 𝜏 𝑅𝑞-elements of size 𝑁 log
2
𝑞 bits and a proof of linearity per

ciphertext. This adds up to an overall size of ((𝑛+2)𝑁 log
2
𝑞+2(𝑘−

𝑛)𝑁 log
2
(6𝜎C))𝜏 bits for the proof of shuffle, and in total

((2𝑛 + 6)𝑁 log
2
𝑞 + 2(𝑘 − 𝑛)𝑁 log

2
(6𝜎C))𝜏 + |𝜋Small | bits.

6 VERIFIABLE DISTRIBUTED DECRYPTION
In this section, we provide a construction for a PKE scheme with

distributed decryption which is secure against active attacks. We

combine the distributed decryption protocol from Section 2.1 with

zero-knowledge proofs to achieve this. In a nutshell, the DDec
algorithm that we introduced in Section 2.1 first requires that each

decryption server chooses a uniformly random 𝐸 𝑗 from a bounded

distribution. Next, it outputs a linear combination 𝑡 𝑗 involving a

ciphertext element 𝑢, the decryption key share 𝑠 𝑗 , and 𝐸 𝑗 . To make

this actively secure, we will let the key generation algorithm output

a commitment to 𝑠 𝑗 . Then, to show that it computed 𝑡 𝑗 correctly

from𝑢, the decryption server will reveal a commitment to 𝐸 𝑗 as well

as two zero-knowledge proofs: i) it will show that 𝐸 𝑗 is bounded

as required, and ii) it will show that 𝑡 𝑗 is indeed computed using a

linear combination.

6.1 The Actively Secure Protocol
Let the ring 𝑅𝑞 , the statistical security parameter sec, and bounds

𝐵Err, 𝐵Com, 𝐵Dec be public information, together with the plaintext

modulus 𝑝 for the PKE scheme. Let 𝑨C be the public commitment

matrix of a BDLOP instance for message size 𝑙𝑐 = 1.

• KGen𝐴 (1^ , b2):
(1) Get (pk, sk, 𝑠1, . . . , 𝑠b2

) ← KGen(1^ , b2) as in the passive

distributed encryption protocol.

(2) ∀𝑗 ∈ [b2] compute (⟦𝑠 𝑗⟧, 𝒅 𝑗) ← Com(𝑠 𝑗).
(3) Output pk𝐴 = (pk, ⟦𝑠1⟧, . . . , ⟦𝑠b2

⟧) and finally sk𝐴 = sk
and sk𝐴,𝑗 = (𝑠 𝑗 , 𝒅 𝑗) for all 𝑗 ∈ [b2].

• Enc𝐴 and Dec𝐴 work just like the original Enc and Dec in
the passively secure threshold encryption scheme, ignoring

additional information in pk𝐴 .
• DDec(sk𝐴,𝑗 , {𝑐𝑖 }𝑖∈[𝜏]) where 𝑐𝑖 = (𝑢𝑖 , 𝑣𝑖):
(1) For each 𝑖 ∈ [𝜏] compute 𝑚𝑖, 𝑗 = 𝑠 𝑗𝑢𝑖 , sample uniform

noise 𝐸𝑖, 𝑗 ← 𝑅𝑞 such that

𝐸𝑖, 𝑗 ∞ ≤ 2
sec (𝐵Dec/𝑝b2) and

compute the decryption share 𝑡𝑖, 𝑗 =𝑚𝑖, 𝑗 + 𝑝𝐸𝑖, 𝑗 .
(2) For each 𝑖 ∈ [𝜏] compute (⟦𝐸𝑖, 𝑗⟧, 𝒓 ′′𝑖, 𝑗) ← Com(𝐸𝑖, 𝑗) and

use the ΠLin-protocol to compute a proof for the linear

relation 𝑡𝑖, 𝑗 = 𝑠 𝑗𝑢𝑖 + 𝑝𝐸𝑖, 𝑗 from

𝜋𝐿𝑖,𝑗 ← ΠLin (((𝑠 𝑗 , 𝒓 𝑗), (𝐸𝑖, 𝑗 , 𝒓 ′′𝑖, 𝑗));
(⟦𝑠 𝑗⟧, ⟦𝐸𝑖, 𝑗⟧, 𝑡𝑖, 𝑗), (𝑢𝑖 , 𝑝)) .

1476

Verifiable Mix-Nets and Distributed Decryption for Voting from Lattice-Based Assumptions CCS ’23, November 26–30, 2023, Copenhagen, Denmark

(3) Each commitment ⟦𝐸𝑖, 𝑗⟧ is of the form[
𝑰𝑛 𝒂1,1 𝑨1,2

0𝑛 1 𝒂2,2

]
· 𝒓 ′′𝑖, 𝑗 +

[
0

𝐸𝑖, 𝑗

]
=

[
𝑰𝑛 𝒂1,1 𝑨1,2 0

0𝑛 1 𝒂2,2 1

]
︸ ︷︷ ︸

𝑨D

[
𝒓 ′′
𝑖, 𝑗

𝐸𝑖, 𝑗

]
,

where

𝒓 ′′𝑖, 𝑗 ∞ ≤ 𝐵Com is the randomness used in the

commitments. Run the zero-knowledge protocol ΠBnd

on ({(𝐸𝑖, 𝑗 , 𝒓 ′′𝑖, 𝑗 }𝑖∈[𝜏]); (𝑨D, {⟦𝐸𝑖, 𝑗⟧}𝑖∈[𝜏])) to obtain the

amortized zero-knowledge PoK 𝜋Bnd𝑗
.

(4) Output ds𝑗 = ({𝑡𝑖, 𝑗 }𝜏𝑖=1
, 𝜋D𝑗

) with the decryption proof

𝜋D𝑗
= ({⟦𝐸𝑖, 𝑗⟧}𝜏𝑖=1

, {𝜋𝐿𝑖,𝑗 }𝜏𝑖=1
, 𝜋Bnd𝑗

).
• Comb𝐴 ({𝑐𝑖 }𝜏𝑖=1

, {ds𝑗 } 𝑗∈[b2]):
(1) Parse ds𝑗 as ({𝑡𝑖, 𝑗 }𝜏𝑖=1

, 𝜋D𝑗
).

(2) Verify the proofs 𝜋𝐿𝑖,𝑗 .

(3) Verify the proofs 𝜋Bnd𝑗
.

(4) If any verification protocol returned 0 then output ⊥. Oth-
erwise, compute

𝑚𝑖 = (𝑣𝑖 − 𝑡𝑖 mod 𝑞) mod 𝑝, where

𝑡𝑖 = 𝑡𝑖,1 + · · · + 𝑡𝑖,b2
for 𝑖 = 1, . . . , 𝜏,

and output the set of messages𝑚1, . . . ,𝑚𝜏 .

The randomness 𝒓 ′′
𝑖, 𝑗

has much smaller ℓ∞ norm than 𝐸𝑖, 𝑗 , and

hence, we will run the ΠBnd protocol with small standard deviation

𝜎Bnd for rows 1 to 𝑘 , while row 𝑘 + 1 will have large �̂�Bnd.This

trivially works for ΠBnd as all operations, also in the extractor for

the soundness-proof, are coordinate-wise.

The following theorems refer to definitions of threshold correct-

ness, threshold verifiability, and distributed decryption simulata-

bility given in Section 2.1. In the following theorems, let the noise

bounds 𝐵Dec and �̂�Bnd satisfy (1 + 𝐵Dec) · 2sec < 2�̂�Bnd < ⌊𝑞/2⌋.

Theorem 5. Let ciphertext-noise be bounded by 𝐵Dec, and let the

noise added in DDec be bounded by 2
sec𝐵Dec. Suppose the passively

secure protocol is threshold correct and the protocols ΠLin and ΠBnd

are complete. Then the actively secure protocol is threshold correct.

Informally, since 𝐵Dec + 2
sec𝐵Dec < 𝑞/2, it follows that decryp-

tion is correct. Furthermore, since (1 + 𝐵Dec) · 2sec < 2�̂�Bnd < 𝑞/2
and ΠLin and ΠBnd are complete, the arguments will be accepted,

which means that the decryption proof will be accepted.

Theorem 6. Let Adv0 be an adversary against threshold verifia-

bility for the actively secure protocol with advantage 𝜖0. Then there

exists adversaries Adv1 and Adv2 against soundness for ΠLin and

ΠBnd, respectively, with advantages 𝜖1 and 𝜖2, such that 𝜖0 ≤ 𝜖1 + 𝜖2.

The runtime of Adv1 and Adv2 are essentially the same as of Adv0.

We sketch the argument. We only consider ciphertexts with

noise bounded by 𝐵Dec, so we may assume that the noise in any

particular ciphertext is bounded by 𝐵Dec.

If the decryption is incorrect for a particular ciphertext, then for

some 𝑗 no relation 𝑡𝑖, 𝑗 = 𝑠 𝑗𝑢𝑖 + 𝑝𝐸𝑖, 𝑗 holds for an 𝐸𝑖, 𝑗 of the norm

at most 2�̂�Bnd. This can happen in two ways: Either the argument

for the linear combination of the commitments to 𝐸𝑖, 𝑗 and 𝑠 𝑗 is

incorrect or the bound on 𝐸𝑖, 𝑗 is incorrect. In the former case, we

trivially get an adversary Adv1 against soundness for ΠLin. Similar

for the case of ΠBnd.

Theorem 7. Suppose the passively secure protocol is simulatable

and ΠLin and ΠBnd are honest-verifier zero-knowledge. Then there

exists a simulator for the actively secure protocol such that for any

distinguisher Adv0 for this simulator with advantage 𝜖0, there exists

an adversary Adv4 against hiding for the commitment scheme
4
, with

advantage 𝜖4, and distinguishers Adv1, Adv2 and Adv3 for the simu-

lators for the passively secure protocol, ΠLin and ΠBnd, respectively,

with advantages 𝜖1, 𝜖2, 𝜖3, such that 𝜖0 ≤ 𝜖1+𝜖2+𝜖3+𝜖4. The runtime

of Adv1, Adv2, Adv3 and Adv4 are essentially the same as of Adv0.

We sketch the argument. Using appropriate simulators, the sim-

ulator simulates the arguments and the passively secure distributed

decryption algorithm. It replaces the commitment to the noise 𝐸𝑖, 𝑗
by commitments to zero.

The claim about the simulator follows from a straightforward

hybrid argument. We begin with distributed decryption.

First, we replace the ΠLin arguments with simulated arguments,

which gives us a distinguisher Adv2 for the ΠLin honest verifier

simulator. Second, we replace the ΠBnd arguments with simulated

arguments, which gives us a distinguisher Adv3 for the ΠBnd hon-

est verifier simulator. Third, we replace the commitments to the

noise 𝐸𝑖, 𝑗 with random commitments, giving us an adversary Adv4

against hiding for the commitment scheme. Fourth, we replace the

passively secure distributed decryption algorithmwith its simulator,

which gives us a distinguisher Adv1 for the simulator.

After four changes, we are left with the claimed simulator for

the actively secure protocol, and the claim follows.

6.2 Communication Complexity of DistDec
Each partial decryption consists of one element from 𝑅𝑞 , namely

the output ofDDec, which means that the output from the passively

secure protocol is of size b2𝜏𝑁 log
2
𝑞 bits.

Each decryption server outputs a commitment ⟦𝐸𝑖, 𝑗⟧ to the

added noise and proof of linearity per ciphertext, and an amortized

proof of shortness for all the added noise values. Each server has a

public commitment of their decryption key-share to be used in the

proof of linearity, but we neglect this as it is constant.

Each commitment ⟦·⟧ is of size (𝑛 + 1)𝑁 log
2
𝑞 bits, and each

proof of linearity is of size (𝑘 − 𝑛)𝑁 (log
2
(6𝜎C) + log

2
(6�̂�C) bits

because the partial decryption is given in the clear and one com-

mitment is re-used in all equations. Finally, each of the amortized

proofs is of size 𝑘�̂�𝑁 log
2
(6𝜎Bnd) + �̂� log

2
(6�̂�Bnd) bits because of

the different norms of the secret values as noted earlier. As the

bounds in the amortized proof depend on the number of commit-

ments in the statement, each amortized proof is for a batch of 𝑁

equations at once to control the growth of parameters.

The total size of the distributed decryption is

b2 ((𝑛 + 2)𝑁 log
2
𝑞 + (𝑘 − 𝑛)𝑁 (log

2
(6𝜎C) + log

2
(6�̂�C))

+𝑘�̂� log
2
(6𝜎Bnd) + �̂� log

2
(6�̂�Bnd))𝜏 bits.

7 PERFORMANCE
We provide an overview of parameters and descriptions in Table 1.

4
A more careful argument could allow us to dispense with this adversary. We have

opted for a simpler argument since the commitment scheme is also used elsewhere.

1477

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, and Tjerand Silde

Parameter Explanation Constraints

^ Computational security parameter At least 128 bits

sec Statistical security parameter 40 bits

𝑁 Degree of polynomial 𝑋𝑁 + 1 in 𝑅𝑝 , 𝑅𝑞 𝑁 a power of two

𝑝 Plaintext modulus 𝑝 a small prime

𝑞 Ciphertext and commitment modulus Prime 𝑞 = 1 mod 2𝑁 s.t. max∥𝑣 − 𝑠𝑢∥ ≪ 𝑞/2
𝑘 Portion of homomorphic commitment vector dedicated to binding

𝑛 Length of commitment vector

C Challenge space for Linear ZK proofs of commitments C =
{
𝑐 ∈ 𝑅𝑝 | ∥𝑐 ∥∞ = 1, ∥𝑐 ∥

1
= a

}
a Maximum ℓ1-norm of elements in C

𝑆𝐵 Set of elements of∞-norm at most 𝐵 𝑆𝐵 = {𝑥 ∈ 𝑅𝑝 | ∥𝑥 ∥∞ ≤ 𝐵}
𝐵Com Bound on the commitment noise —

𝐵Key Bound for secret key in encryption scheme Chosen as 1

𝐵Err Bound for noise in ciphertexts Chosen as 1

𝜎C Standard deviation in linear ZK proofs for one-time commitments Chosen to be 𝜎C = 0.954 · a · 𝐵Com ·
√
𝑘𝑁

�̂�C Standard deviation in linear ZK proofs for reusable commitments Chosen to be �̂�C = 22 · a · 𝐵Com ·
√
𝑘𝑁

𝜎Bnd Standard deviation for the one-time amortized proof in mixing Chosen to hide the commitment randomness 𝒓 ′′
𝑖, 𝑗

�̂�Bnd Standard deviation for the one-time amortized proof in mixing Chosen to hide the decryption noise 𝐸𝑖, 𝑗

�̂� Dimension of proof in ΠBnd �̂� ≥ ^ + 2

b1, b2 Number of shuffle- and decryption-servers

𝜏 Total number of messages/number of voters For soundness we need (𝜏𝛿 + 1)/|𝑅𝑞 | < 2
−^

𝑙 Encoding length in ΠSmall —

𝑙𝑐 Length of the committed message in ΠSmall —

[Randomness of encodings in ΠSmall —

𝑔 Dimension of Reed-Solomon Code in ΠSmall —

Table 1: System parameters and constraints.

7.1 Concrete Parameters and Total Size
We begin by fixing the rejection-sampling parameter as 𝑀 = 3,

leading to a general abort probability of 2/3 for each rejection

sampling proof. This allows us to define the standard deviations in

all proof instances.

We pick the noise in the BGV ciphertexts as well as in commit-

ments to come from ternary distributions, as this gives tight control

on the noise growth during the protocols.

To be able to choose concrete parameters for the mix-net, we

need to estimate howmuch noise is added to the ciphertexts through

the two stages of the protocol: 1) the shuffle phase, and 2) the decryp-

tion phase. This follows from a standard analysis that incorporates

the slacks of the ZK proofs involved in the protocols and will be one

lower bound on choosing 𝑞 as the noise should not wrap around

computations mod 𝑞.

For our example, we let the number of shuffle and decryption

servers be b1 = b2 = 4. We fix the plaintext modulus to be 𝑝 = 2,

statistical security parameter sec = 40 (a common choice in the

MPC literature), and need 𝑁 = 4096 when 𝑞 is chosen as outlined

above in order for the underlying lattice problems to be hard, see

details in Table 5. This allows for votes of size 4096 bits, which is a

feasible size for real-world elections representing a wide range of

voter options.

Finally, we must decide on parameters for the exact proof of

shortness from Section 4. The soundness of the protocol depends

on the ratio between the number of equations and the size of the

modulus. We choose to compute the proof in batches of size 𝑁

instead of computing the proof for all 𝜏 commitments at once and

will have to run each proof twice to achieve negligible soundness

error. After choosing appropriate parameters for code length and

the number of tested rows[, the total size of 𝜋Small, by instantiating

equation 1, is ≈ 20𝜏 KB.

We summarize the concrete sizes of each part of the protocol in

Table 2. Each voter submits a ciphertext size of approximately 80

KB. The size of the mix-net, including ciphertexts, commitments,

shuffle proof, and proof of shortness, is approximately 370𝜏 KB

per mixing node S𝑘 . The size of the decryption phase, including

𝒄 (𝑘)
𝑖

⟦𝑅𝑙𝑐𝑞 ⟧ 𝜋Shuf 𝜋𝐿𝑖,𝑗 𝜋Small 𝜋Bnd 𝜋S𝑖 𝜋D𝑗

80 KB 40(𝑙𝑐 + 1) KB 150𝜏 KB 35 KB 20𝜏 KB 2𝜏 KB 370𝜏 KB 157𝜏 KB

Table 2: Size of the ciphertexts, commitments, and proofs.

partial decryptions, commitments, proofs of linearity, and proofs of

boundedness, is approximately 157𝜏 KB per decryption node D𝑗 .

See Appendix A for more details on the choice of parameters.

7.2 Implementation
We developed a proof-of-concept implementation to compare with

previous results in the literature. Our performance figures were

collected on an Intel Kaby Lake Core i7-7700 CPU machine with

64GB of RAM running single-threaded at 3.6GHz, with Turbo Boost

disabled to reduce measurement variability. The results can be

found in Tables 3 and 4. Our research prototype is publicly available

at https://github.com/dfaranha/lattice-verifiable-mixnet.

First, we compare the performance of the main building blocks

with an implementation of the shuffle-proof protocol proposed

in [4]. That work used the FLINT library to implement arithmetic

involving polynomials of degree 𝑁 = 1024 with 32-bit coefficients,

fitting a single machine word. Their parameters were not compati-

ble with the fast Number Theoretic Transform (NTT) for polyno-

mial multiplication, so a CRT decomposition to two half-degree

polynomials was used instead. The code was made available, so a

direct comparison is possible.

In this work, the degree is much larger (𝑁 = 4096) and coeffi-

cients are multi-word (𝑞 ≈ 2
78
), but the parameters are compatible

with the NTT. We implemented polynomial arithmetic with the

efficient NFLlib [2] library using the RNS representation for coeffi-

cients and accelerated with AVX2 instructions. We observed that

our polynomial multiplication is around 19 times faster than [4]

(61, 314 cycles instead of 1, 165, 997), despite parameters being con-

siderably larger. We also employed the FLINT library for arithmetic

routines not supported in NFLlib, such as polynomial inversion,

but that incurred some non-trivial costs to convert representa-

tions between two libraries. We adapted [40] and [39] for Gaussian

sampling and adjusting the standard deviation 𝜎 accordingly. We

employ BLAKE3 [32] for fast hashing inside the various proofs.

Computing a commitment takes 0.45 ms on the target machine,

which is 2x faster than [4]. Opening a commitment is slower due to

conversions between libraries for performing the norm-test. Our

implementation of BGV encryption at 0.74 ms is much faster than

the 69 ms reported for verifiable encryption in [4], while decryp-

tion is improved by a factor of 10. Distributed decryption with

passive security costs an additional 1.56 ms per party, but the zero-

knowledge proofs for active security increase the cost. The shuffle

proof performance is 44.9 ms per vote, thus slower than the 27 ms

reported in [4] due to slower rejection sampling.

For the other sub-protocols, we benchmarked executions with

𝜏 = 1000 and report the execution time amortized per vote for

both prover and verifier in Table 4. In the case of ΠSmall, we im-

plement only the performance-critical polynomial arithmetic and

encoding scheme, since this is already representative of the overall

performance. From the table, we can compute the cost of distributed

1478

https://github.com/dfaranha/lattice-verifiable-mixnet

Verifiable Mix-Nets and Distributed Decryption for Voting from Lattice-Based Assumptions CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Primitive Commit Open Encrypt Decrypt DistDec

Time 0.45 ms 2.76 ms 0.74 ms 0.64 ms 1.56 ms

Table 3: Timings for cryptographic operations. Numberswere
obtained by computing the average of 10

4 executions mea-
sured using the cycle counter available on the platform.

Protocol ΠLin + ΠLinV Π𝑙𝑐
Shuf
+ Π𝑙𝑐

ShufV

Time (43.4 + 6.4)𝜏 ms (44.9 + 7.9)𝜏 ms

Protocol ΠBnd + ΠBndV ΠSmall + ΠSmallV

Time (92.7 + 23.9)𝜏 ms (112.3 + 5.0)𝜏 ms

Table 4: Timings for cryptographic protocols, obtained by
computing the average of 100 executions with 𝜏 = 1000.

decryption ΠDec with active security as (1.56+ 0.45+ 43.4+ 92.7) =
138.11 ms per vote, the cost of verification ΠDecV as (6.4 + 23.9) =
30.2ms per vote, the cost ofΠMix as (0.74+0.45+112.3+44.9) = 158.4

ms and the cost of ΠMixV as (5.0 + 7.9) = 12.9 ms per vote. This

result compares quite favorably with the costs of 1.54 s and 1.51

s per vote to respectively generate/verify a proof in the lattice-

based shuffle proof of [22] in a Kaby Lake processor running at a

similar frequency. Our total numbers are around 17 times faster

after adjusting for clock frequency, while storage overhead is much

lower.

8 CONCLUDING REMARKS
We have proposed a verifiable secret shuffle of BGV ciphertexts and

a verifiable distributed decryption protocol. Together, these two

novel constructions are practical and solve a long-standing problem

in the design of quantum-safe cryptographic voting systems.

Verifiable secret shuffles for discrete logarithm-based cryptogra-

phy has seen a long sequence of incremental designs follow Neff’s

breakthrough construction. While individual published improve-

ments were often fairly small, the overall improvement in per-

formance over time was significant. We expect that our designs

can be improved in a similar fashion. In particular, we expect that

the size of the proofs can be significantly reduced. While it is cer-

tainly straight-forward to download a few hundred gigabytes today

(compare with high-quality video streaming), many voters will

be discouraged and this limits the universality of verification in

practice. It, therefore, seems reasonable to focus further effort on

reducing the size of the proofs.

The distributed decryption protocol does not have an adjustable

threshold. In practice, this is not much of a problem, since the keys

will be shared among many key holders. Only when counting starts

is the key material given to the decryption servers. Key reconstruc-

tion can then be combined with a key distribution protocol.

Shuffles followed by distributed decryption is one paradigm

for the design of cryptographic voting systems. Another possible

paradigm is to use key shifting in the shuffles. This would then

allow us to use a single party for decryption (though it must still

be verifiable, e.g., using the protocols [24, 36]). Key shifting can be

done with many of the same techniques that we use for distributed

decryption, but there seems to be difficulties in amortizing the

proofs. This means that key shifting with just the techniques we use

will be significantly slower and of increased size, as we would need

additional proofs of linearity for each ciphertext in each shuffle.

Follow-upwork byHøgåsen and Silde [27] shows how our voting

protocol can be combined with a return-code mechanism to achieve

individual voter verifiability against a cheating ballot box.

Finally, we note that our scheme and concrete instantiation using

the NTT is optimized for speed, and that it is possible to slightly

decrease the parameters by instantiating the encryption scheme

based on the SKS2
and DKS∞ problems in higher dimensions 𝑘

using a smaller, but still a power of 2, ring-dimension 𝑁 . We leave

this as future work. We also remark that lattice-based cryptography,

and especially lattice-based zero-knowledge proofs such as the

recent work by Lyubashevsky et al. [29], continuously improves

the state-of-the-art, and we expect future works to improve the

concrete efficiency of our protocol.

REFERENCES
[1] Ben Adida. 2008. Helios: Web-based Open-Audit Voting. In USENIX Security 2008,

Paul C. van Oorschot (Ed.). USENIX Association, 335–348.

[2] Carlos Aguilar Melchor, Joris Barrier, Serge Guelton, Adrien Guinet, Marc-Olivier

Killijian, and Tancrède Lepoint. 2016. NFLlib: NTT-Based Fast Lattice Library. In

CT-RSA 2016 (LNCS, Vol. 9610), Kazue Sako (Ed.). Springer, Heidelberg, 341–356.

https://doi.org/10.1007/978-3-319-29485-8_20

[3] Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. 2014. Quantum At-

tacks on Classical Proof Systems: The Hardness of Quantum Rewinding. In 55th

FOCS. IEEE Computer Society Press, 474–483. https://doi.org/10.1109/FOCS.

2014.57

[4] Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, Tjerand Silde, and Thor Tunge.

2021. Lattice-Based Proof of Shuffle and Applications to Electronic Voting. In

CT-RSA 2021 (LNCS, Vol. 12704), Kenneth G. Paterson (Ed.). Springer, Heidelberg,

227–251. https://doi.org/10.1007/978-3-030-75539-3_10

[5] Thomas Attema, Vadim Lyubashevsky, and Gregor Seiler. 2020. Practical Product

Proofs for Lattice Commitments. In CRYPTO 2020, Part II (LNCS, Vol. 12171),

Daniele Micciancio and Thomas Ristenpart (Eds.). Springer, Heidelberg, 470–499.

https://doi.org/10.1007/978-3-030-56880-1_17

[6] Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël del Pino, Jens Groth,

and Vadim Lyubashevsky. 2018. Sub-linear Lattice-Based Zero-Knowledge Ar-

guments for Arithmetic Circuits. In CRYPTO 2018, Part II (LNCS, Vol. 10992),

Hovav Shacham and Alexandra Boldyreva (Eds.). Springer, Heidelberg, 669–699.

https://doi.org/10.1007/978-3-319-96881-0_23

[7] Carsten Baum, Ivan Damgård, Vadim Lyubashevsky, Sabine Oechsner, and Chris

Peikert. 2018. More Efficient Commitments from Structured Lattice Assump-

tions. In SCN 18 (LNCS, Vol. 11035), Dario Catalano and Roberto De Prisco (Eds.).

Springer, Heidelberg, 368–385. https://doi.org/10.1007/978-3-319-98113-0_20

[8] Rikke Bendlin and Ivan Damgård. 2010. Threshold Decryption and Zero-

Knowledge Proofs for Lattice-Based Cryptosystems. In TCC 2010 (LNCS, Vol. 5978),

Daniele Micciancio (Ed.). Springer, Heidelberg, 201–218. https://doi.org/10.1007/

978-3-642-11799-2_13

[9] Manuel Blum. 1984. How to Exchange (Secret) Keys. ACM Transactions on

Computer Systems 1 (1984), 175–193.

[10] Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler.

2021. More Efficient Amortization of Exact Zero-Knowledge Proofs for LWE. In

ESORICS 2021, Part II (LNCS, Vol. 12973), Elisa Bertino, Haya Shulman, andMichael

Waidner (Eds.). Springer, Heidelberg, 608–627. https://doi.org/10.1007/978-3-

030-88428-4_30

[11] Xavier Boyen, Thomas Haines, and Johannes Müller. 2020. A Verifiable and Prac-

tical Lattice-Based Decryption Mix Net with External Auditing. In ESORICS 2020,

Part II (LNCS, Vol. 12309), Liqun Chen, Ninghui Li, Kaitai Liang, and Steve A.

Schneider (Eds.). Springer, Heidelberg, 336–356. https://doi.org/10.1007/978-3-

030-59013-0_17

[12] Xavier Boyen, Thomas Haines, and Johannes Müller. 2021. Epoque: Practical End-

to-End Verifiable Post-Quantum-Secure E-Voting. In IEEE European Symposium

on Security and Privacy, EuroS&P 2021, Vienna, Austria, September 6-10, 2021. IEEE,

272–291. https://doi.org/10.1109/EuroSP51992.2021.00027

[13] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2012. (Leveled) fully

homomorphic encryption without bootstrapping. In ITCS 2012, Shafi Goldwasser

(Ed.). ACM, 309–325. https://doi.org/10.1145/2090236.2090262

[14] David Chaum. 1981. Untraceable Electronic Mail, Return Addresses, and Digital

Pseudonyms. Commun. ACM 24, 2 (1981), 84–88. https://doi.org/10.1145/358549.

358563

1479

https://doi.org/10.1007/978-3-319-29485-8_20
https://doi.org/10.1109/FOCS.2014.57
https://doi.org/10.1109/FOCS.2014.57
https://doi.org/10.1007/978-3-030-75539-3_10
https://doi.org/10.1007/978-3-030-56880-1_17
https://doi.org/10.1007/978-3-319-96881-0_23
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-642-11799-2_13
https://doi.org/10.1007/978-3-642-11799-2_13
https://doi.org/10.1007/978-3-030-88428-4_30
https://doi.org/10.1007/978-3-030-88428-4_30
https://doi.org/10.1007/978-3-030-59013-0_17
https://doi.org/10.1007/978-3-030-59013-0_17
https://doi.org/10.1109/EuroSP51992.2021.00027
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/358549.358563

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, and Tjerand Silde

[15] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2016.

A Homomorphic LWE Based E-voting Scheme. In Post-Quantum Cryptography

- 7th International Workshop, PQCrypto 2016, Tsuyoshi Takagi (Ed.). Springer,

Heidelberg, 245–265. https://doi.org/10.1007/978-3-319-29360-8_16

[16] Núria Costa, Ramiro Martínez, and Paz Morillo. 2019. Lattice-Based Proof of

a Shuffle. In FC 2019 Workshops (LNCS, Vol. 11599), Andrea Bracciali, Jeremy

Clark, Federico Pintore, Peter B. Rønne, and Massimiliano Sala (Eds.). Springer,

Heidelberg, 330–346. https://doi.org/10.1007/978-3-030-43725-1_23

[17] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and

Nigel P. Smart. 2013. Practical Covertly Secure MPC for Dishonest Majority - Or:

Breaking the SPDZ Limits. In ESORICS 2013 (LNCS, Vol. 8134), Jason Crampton,

Sushil Jajodia, and Keith Mayes (Eds.). Springer, Heidelberg, 1–18. https://doi.

org/10.1007/978-3-642-40203-6_1

[18] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. 2012. Multi-

party Computation from Somewhat Homomorphic Encryption. In CRYPTO 2012

(LNCS, Vol. 7417), Reihaneh Safavi-Naini and Ran Canetti (Eds.). Springer, Heidel-

berg, 643–662. https://doi.org/10.1007/978-3-642-32009-5_38

[19] Rafaël del Pino, Vadim Lyubashevsky, Gregory Neven, and Gregor Seiler. 2017.

Practical Quantum-Safe Voting from Lattices. In ACM CCS 2017, Bhavani M.

Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM Press,

1565–1581. https://doi.org/10.1145/3133956.3134101

[20] Jelle Don, Serge Fehr, and Christian Majenz. 2020. The Measure-and-Reprogram

Technique 2.0: Multi-round Fiat-Shamir and More. In CRYPTO 2020, Part III

(LNCS, Vol. 12172), Daniele Micciancio and Thomas Ristenpart (Eds.). Springer,

Heidelberg, 602–631. https://doi.org/10.1007/978-3-030-56877-1_21

[21] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. 2022. Effi-

cient NIZKs and Signatures from Commit-and-Open Protocols in the QROM. In

CRYPTO 2022, Part II (LNCS, Vol. 13508), Yevgeniy Dodis and Thomas Shrimpton

(Eds.). Springer, Heidelberg, 729–757. https://doi.org/10.1007/978-3-031-15979-

4_25

[22] Valeh Farzaliyev, Jan Willemson, and Jaan Kristjan Kaasik. 2023. Improved

lattice-based mix-nets for electronic voting. IET Inf. Secur. 17, 1 (2023), 18–34.

[23] Amos Fiat and Adi Shamir. 1987. How to Prove Yourself: Practical Solutions to

Identification and Signature Problems. In CRYPTO’86 (LNCS, Vol. 263), Andrew M.

Odlyzko (Ed.). Springer, Heidelberg, 186–194. https://doi.org/10.1007/3-540-

47721-7_12

[24] Kristian Gjøsteen, Thomas Haines, Johannes Müller, Peter Rønne, and Tjerand

Silde. 2022. Verifiable Decryption In TheHead. In Information Security and Privacy:

27th Australasian Conference, ACISP 2022, Wollongong, NSW, Australia, November

28–30, 2022, Proceedings (Wollongong, NSW, Australia). Springer-Verlag, Berlin,

Heidelberg, 355–374. https://doi.org/10.1007/978-3-031-22301-3_18

[25] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. 1985. The Knowledge

Complexity of Interactive Proof-Systems (Extended Abstract). In 17th ACM STOC.

ACM Press, 291–304. https://doi.org/10.1145/22145.22178

[26] Javier Herranz, RamiroMartínez, andManuel Sánchez. 2021. Shorter lattice-based

zero-knowledge proofs for the correctness of a shuffle. In Financial Cryptography

and Data Security. FC 2021 International Workshops: CoDecFin, DeFi, VOTING, and

WTSC, Virtual Event, March 5, 2021, Revised Selected Papers 25. Springer, 315–329.

[27] Audhild Høgåsen and Tjerand Silde. 2022. Return Codes from Lattice Assump-

tions. E-VOTE-ID (2022). https://doi.org/10.15157/diss/025

[28] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe,

Gregor Seiler, Damien Stehlé, and Shi Bai. 2020. CRYSTALS-DILITHIUM.

Technical Report. National Institute of Standards and Technology. avail-

able at https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-

cryptography-standardization/round-3-submissions.

[29] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plançon. 2022. Lattice-

Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More

General. In CRYPTO 2022, Part II (LNCS, Vol. 13508), Yevgeniy Dodis and Thomas

Shrimpton (Eds.). Springer, Heidelberg, 71–101. https://doi.org/10.1007/978-3-

031-15979-4_3

[30] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2013. A Toolkit for Ring-

LWE Cryptography. In EUROCRYPT 2013 (LNCS, Vol. 7881), Thomas Johansson

and Phong Q. Nguyen (Eds.). Springer, Heidelberg, 35–54. https://doi.org/10.

1007/978-3-642-38348-9_3

[31] C. Andrew Neff. 2001. A Verifiable Secret Shuffle and Its Application to e-Voting.

In ACM CCS 2001, Michael K. Reiter and Pierangela Samarati (Eds.). ACM Press,

116–125. https://doi.org/10.1145/501983.502000

[32] Jack O’Connor, Jean-Philippe Aumasson, Samuel Neves, and Zooko Wilcox-

O’Hearn. 2020. BLAKE3: one function, fast everywhere. https://www.blake3.io. ,

31 pages.

[33] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner,

Vadim Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler,

William Whyte, and Zhenfei Zhang. 2020. FALCON. Technical Re-

port. National Institute of Standards and Technology. available at

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-

cryptography-standardization/round-3-submissions.

[34] Dragos Rotaru, Nigel P. Smart, Titouan Tanguy, Frederik Vercauteren, and Tim

Wood. 2022. Actively Secure Setup for SPDZ. J. Cryptol. 35, 1 (jan 2022), 32 pages.

https://doi.org/10.1007/s00145-021-09416-w

[35] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz,

Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor

Seiler, and Damien Stehlé. 2020. CRYSTALS-KYBER. Technical Re-

port. National Institute of Standards and Technology. available at

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-

cryptography-standardization/round-3-submissions.

[36] Tjerand Silde. 2022. Short Paper: Verifiable Decryption for BGV. In Financial

Cryptography and Data Security. FC 2022 International Workshops - CoDecFin,

DeFi, Voting, WTSC, Grenada, May 6, 2022, Revised Selected Papers (Lecture Notes

in Computer Science, Vol. 13412), Shin’ichiro Matsuo, Lewis Gudgeon, Ariah

Klages-Mundt, Daniel Perez Hernandez, SamWerner, ThomasHaines, Aleksander

Essex, Andrea Bracciali, and Massimiliano Sala (Eds.). Springer, 381–390. https:

//doi.org/10.1007/978-3-031-32415-4_26

[37] Kristian Gjøsteen. 2022. Practical Mathematical Cryptography. CRC Press.

[38] Martin Strand. 2019. A Verifiable Shuffle for the GSW Cryptosystem. In FC 2018

Workshops (LNCS, Vol. 10958), Aviv Zohar, Ittay Eyal, Vanessa Teague, Jeremy

Clark, Andrea Bracciali, Federico Pintore, and Massimiliano Sala (Eds.). Springer,

Heidelberg, 165–180. https://doi.org/10.1007/978-3-662-58820-8_12

[39] Shuo Sun, Yongbin Zhou, Yunfeng Ji, Rui Zhang, and Yang Tao. 2022. Generic,

efficient and isochronous Gaussian sampling over the integers. Cybersecur. 5, 1

(2022), 10.

[40] Raymond K. Zhao, Ron Steinfeld, and Amin Sakzad. 2020. COSAC: COmpact

and Scalable Arbitrary-Centered Discrete Gaussian Sampling over Integers. In

Post-Quantum Cryptography - 11th International Conference, PQCrypto 2020, Jintai

Ding and Jean-Pierre Tillich (Eds.). Springer, Heidelberg, 284–303. https://doi.

org/10.1007/978-3-030-44223-1_16

A CHOOSING PARAMETERS CONCRETELY
We let the success probability of each of the zero-knowledge proto-

cols be 1/𝑀 ≈ 1/3. We will use the following parameters, where

we note that the commitments used in the shuffle and in the amor-

tized proofs are only used once, while the proof of linearity in the

decryption protocol depends on a commitment to the secret key

share each time. However, that is the only part that is reused, and

we can use a smaller standard deviation for the other commitment.

The proofs of linearity have two terms, and each of them must

have a success probability of 1/
√

3. This gives𝜎C = 0.954a𝐵Com
√
𝑘𝑁 .

For the re-usable commitments we get �̂�C = 22a𝐵Com
√
𝑘𝑁 . The

amortized proof also has two checks, and we get a standard de-

viation 0.954∥𝑺′𝑪 ′∥
2
, where 𝜎Bnd and �̂�Bnd are depending on the

norm of the elements in the rows of 𝑺′.
We let the noise bounds 𝐵Key = 𝐵Err = 1 for the encryption.

To be able to choose concrete parameters for the mix-net, we

need to estimate howmuch noise is added to the ciphertexts through

the two stages of the protocol: 1) the shuffle phase, and 2) the

decryption phase. Each part of the system contributes the following

amount of noise to the ciphertexts:

- Fresh ciphertext: 𝐵Start = 𝑝
𝑒𝑟 + 𝑒𝑖,2 − 𝑒𝑖,1𝑠∞ + ∥𝑚∥∞.

- Noise per shuffle: 𝐵Shuf = 𝑝 (∥𝑒𝑟 ′∥∞ +
𝑒′𝑖,2∞ + −𝑒′𝑖,1𝑠∞).

- Noise in partial decryption: 𝐵DDec = 𝑝b2

𝐸′𝑖, 𝑗 ∞ ≤ 2
sec𝐵Dec,

where 𝐵Dec = 𝐵Start + b1𝐵Shuf is the upper bound of the noise

added before the decryption phase. This means that we have the

following bounds on each of the noise terms above, when using

ternary noise:

∥𝑒 ∥
1
≤ 𝑁, ∥𝑟 ∥∞ ≤ 1,

𝑒𝑖,2∞ ≤ 1,
𝑒𝑖,1

1
≤ 𝑁,

∥𝑠 ∥∞ ≤ 1,
𝑟 ′∞ ≤ 1,

𝑒′𝑖,2∞ ≤ 1,

𝑒′𝑖,1
1

≤ 𝑁 .

We get the following upper bounds:

𝐵Start = 𝑝 (2𝑁 + 1) + ⌈(𝑝 − 1)/2⌉, 𝐵Shuf = 𝑝 (2𝑁 + 1),

1480

https://doi.org/10.1007/978-3-319-29360-8_16
https://doi.org/10.1007/978-3-030-43725-1_23
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1145/3133956.3134101
https://doi.org/10.1007/978-3-030-56877-1_21
https://doi.org/10.1007/978-3-031-15979-4_25
https://doi.org/10.1007/978-3-031-15979-4_25
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-031-22301-3_18
https://doi.org/10.1145/22145.22178
https://doi.org/10.15157/diss/025
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/10.1007/978-3-031-15979-4_3
https://doi.org/10.1007/978-3-031-15979-4_3
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1145/501983.502000
https://www.blake3.io
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/10.1007/s00145-021-09416-w
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/10.1007/978-3-031-32415-4_26
https://doi.org/10.1007/978-3-031-32415-4_26
https://doi.org/10.1007/978-3-662-58820-8_12
https://doi.org/10.1007/978-3-030-44223-1_16
https://doi.org/10.1007/978-3-030-44223-1_16

Verifiable Mix-Nets and Distributed Decryption for Voting from Lattice-Based Assumptions CCS ’23, November 26–30, 2023, Copenhagen, Denmark

𝑁 𝑝 𝑞 sec b1 b2 𝑛 𝑘

4096 2 ≈ 2
78

40 4 4 1 𝑙𝑐 + 2

a 𝐵Com �̂� 𝜎C �̂�C 𝜎Bnd �̂�Bnd �̂�Bnd

36 1 130 ≈ 2
12 ≈ 2

16.5 ≈ 2
13.5 ≈ 2

66 ≈ 2
72.5

Table 5: Concrete parameters estimated for ^ ≈ 168 bits of
DKS∞ security using the LWE-estimator and ^ ≈ 262 bits of
SKS2 security (by computing the Hermite root value to be
1.00225 from the dimension, modulus, and 2-norm of the
secret vector).

which for b1 shuffles gives us

𝐵Dec = (b1 + 1)𝑝 (2𝑁 + 1) + ⌈(𝑝 − 1)/2⌉ .
Finally, we need to make sure that 𝐵Dec + 𝐵DDec < 𝑞/2, where
𝐵DDec = 2𝑝b2�̂�Bnd because of the soundness slack of the amortized

proof of bounded values. A honestly generated value 𝐸𝑖, 𝑗 is bounded

by 2
sec (𝐵Dec/𝑝b2), but the proof can only guarantee that the values

are shorter than some larger bound 2�̂�Bnd (following Baum et al.

[6, Lemma 3]) that depends on the number of equations in the

statement. Define 𝑺′
1,𝑘

to be the first 𝑘 rows of 𝑺′ and define 𝑺′
𝑘+1 to

be the last row of 𝑺′. For batches of 𝑁 equations, we then get that:

𝐵Bnd ≤
√

2𝑁 · 𝜎Bnd ≤
√

2𝑁 · 0.954 ·max

𝑺′
1,𝑘

𝑪 ′

2

≤ 1.35 ·
√
𝑁 ·max

𝑺′
1,𝑘

1

·max

𝑪 ′∞
≤ 1.35 · 𝑘 ·

√
𝑁 · 𝑁 · 𝐵Com,

and, similarly,

�̂�Bnd ≤
√

2𝑁 · �̂�Bnd ≤ 1.35 ·
√
𝑁 · 𝑁 ·

𝐸𝑖, 𝑗 ∞,
with 𝐵Bnd for rows 1 to 𝑘 of 𝒁 and �̂�Bnd for the last.

We fix plaintext modulus 𝑝 = 2, statistical security parameter

sec = 40, and need 𝑁 = 4096 when 𝑞 is large to provide proper

security. This allows for votes of size 4096 bits, which should be a

feasible size for real-world elections. We let the number of shuffle

and decryption servers be b1 = 4. It follows that 𝐵Dec < 2
17

and

𝐵DDec < 2
76.5

. We then set 𝑞 ≈ 2
78
, and verify that

max

𝑖∈[𝜏]
∥𝑣𝑖 − 𝑠𝑢𝑖 ∥ < 2 · (217 + 2

76.5) < 𝑞.

Finally, we must decide on parameters for the exact proof of

shortness. The soundness of the protocol depends on the ratio

between the number of equations and the size of the modulus.

We choose to compute the proof in batches of size 𝑁 instead of

computing the proof for all 𝜏 commitments at once. Then we get

18𝑁 /(𝑞−𝑁) ≈ 2
−62

, and hence, we must compute each proof twice

in parallel to achieve negligible soundness. Furthermore, we choose

𝑔 ≈ 2
20, 𝑙 ≈ 2

20.3, [= 325 to keep the soundness ≈ 2
−62

. The total

size of 𝜋Small, by instantiating 1, is ≈ 20𝜏 KB.

We give a complete set of parameters in Table 5, and the concrete

sizes of each part of the protocol in Table 2. Each voter submits

a ciphertext size of approximately 80 KB. The size of the mix-net,

including ciphertexts, commitments, shuffle proof, and proof of

shortness, is approximately 370𝜏 KB per mixing nodeS𝑖 . The size of
the decryption phase, including partial decryptions, commitments,

proofs of linearity, and proofs of boundedness, is approximately

157𝜏 KB per decryption node D𝑗 .

B SECURITY IN THE QUANTUM RANDOM
ORACLE MODEL

In this work, we have chosen parameters for all primitives such

as to make our voting protocol secure against all known classical

attacks. Since we only use assumptions that are assumed to be

post-quantum secure, it is obvious to ask if our construction is also

post-quantum secure. We cannot answer this within this work, due

to the complexity of proving such a statement.

As a “second-best” approach, we can alternatively look at the

post-quantum security of the individual building blocks. Here, of

particular importance are the NIZKs that this work uses. We use

two different types of proofs, namely those exploiting the homomor-

phism of an underlying OWF (such as ΠLin,ΠBnd) and those that

rely only on commitments and a combinatorial argument (ΠSmall).

Both of these are made non-interactive in the ROM using the Fiat-

Shamir transform, which becomes the QROM in the quantum set-

ting. Here, the recent work of [21] could be used to show that

ΠSmall is online-extractable in the QROM and therefore still secure,

for adjusted parameters.

Unfortunately, the situation is a bit more problematic for the

homomorphism-based proofs. There, the most efficient QROM Fiat-

Shamir approach that we are aware of is [20], which applies to

Σ-protocols. Their work implies a large loss in parameters that

they show to be inherent, and this loss grows with the number of

rounds of the protocol. Even worse, new techniques would have to

be developed to prove the security of ΠBnd as it seems unlikely that

[20] applies to it. To achieve provable security of all these NIZKs in

the QROM, it would be better to replace the homomorphic OWF-

based protocols with Commit-and-Open-based proofs following

ΠSmall. We expect that this would come at a significant cost in

proof size as well as prover runtime, impacting the practicality of

our construction.

A more optimistic view, which we share, is that known coun-

terexamples in the QROM on NIZKs such as [3] are contrived and

that there are no known attacks (beyond Grover’s algorithm) for the

NIZKs that we use. One could therefore argue that our construction

is plausibly post-quantum. We leave a more detailed post-quantum

security analysis, which also includes parameter choices to with-

stand attacks based on Grover’s algorithm, for future work.

1481

	Abstract
	1 Introduction
	1.1 Our contributions
	1.2 Related work

	2 Building Blocks
	2.1 PKE with Distributed Decryption
	2.2 Commitments
	2.3 Zero-Knowledge Proofs
	2.4 Verifiably Shuffling Ciphertexts
	2.5 Verifiable Decryption

	3 The Voting Scheme
	4 Exact Amortized ZK Proofs
	5 Verifiable Shuffle of Ciphertexts
	5.1 The Extended Shuffle for Commitments
	5.2 Verifiable Shuffle of BGV Ciphertexts
	5.3 Communication of a BGV Shuffle

	6 Verifiable Distributed Decryption
	6.1 The Actively Secure Protocol
	6.2 Communication Complexity of DistDec

	7 Performance
	7.1 Concrete Parameters and Total Size
	7.2 Implementation

	8 Concluding Remarks
	References
	A Choosing parameters concretely
	B Security in the Quantum Random Oracle Model

