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Efficient FPGA-based Sparse Matrix-Vector
Multiplication with Data Reuse-aware Compression
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Abstract—Sparse matrix-vector multiplication (SpMV) on FP-
GAs has gained much attention. The performance of SpMV is
mainly determined by the number of multiplications between
non-zero matrix elements and the corresponding vector values
per cycle. On the one side, the off-chip memory bandwidth limits
the number of non-zero matrix elements transferred from the
off-chip DDR to the FPGA chip per cycle. On the other side,
the irregular vector access pattern poses challenges to fetch the
corresponding vector values. Besides, the read-after-write (RAW)
dependency in the accumulation process shall be solved to enable
a fully pipelined design. In this work, we propose an efficient
FPGA-based sparse matrix-vector multiplication accelerator with
data reuse-aware compression. The key observation is that
repeated accesses to a vector value can be omitted by reusing the
fetched data. Based on the observation, we propose a reordering
algorithm to manually exploit the data reuse of fetched vector
values. Further, we propose a novel compressed format called
data reuse-aware compressed (DRC) to take full advantage
of the data reuse and a fast format conversion algorithm to
shorten the preprocessing time. Meanwhile, we propose an HLS-
friendly accumulator to solve the RAW dependency. Finally, we
implement and evaluate our proposed design on the Xilinx Zynq-
UltraScale ZCU106 platform with a set of sparse matrices from
the SuiteSparse matrix collection. Our proposed design achieves
an average 1.18x performance speedup without the DRC format
and an average 1.57x performance speedup with the DRC format
w.r.t. the state-of-the-art work respectively.

Index Terms—SpMV, FPGA, Data Reuse, Throughput

I. INTRODUCTION

SPARSE matrix-vector multiplication (SpMV) is a crucial
primitive in multiple areas such as machine learning and

economic modeling [1]. Specifically, SpMV is a kernel widely
used in iterative linear solvers [2] and sparse fully connected
layers in neural networks [3] [4] [5] [6]. With the increasing
problem scale, SpMV accounts for over 75% execution time
in these applications [7]. Thus, a high-performance accelerator
is required. With high design flexibility and large on-chip
memory, FPGA is a promising solution [8] [9] [10] [11]
[12] [13] [14] [15]. In this work, we mainly target SpMV
used in applications which require data in double-precision
floating-point type to achieve high computational precision.
The long delay of double addition aggravates the read-after-
write (RAW) dependence and thus the fully-pipelined accu-
mulator necessitates a dedicated design. Further, the data type
also directly affects the final performance. Consequently, we
target [8] which uses the same data type as the state-of-the-
art work instead of [11] [12] [13] [14] [15]. The dataflow
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approach [8] efficiently utilize the off-chip bandwidth in which
the execution of SpMV is fully pipelined to overlap the
computation latency with the off-chip memory access latency.
However, it failed to take advantage of large on-chip memories
which leads to bad performance.

Large on-chip memories of FPGAs can buffer the vector to
reduce off-chip traffic and facilitate the reuse of vector values.
The corresponding vector values of the transferred non-zero
matrix elements per cycle shall be timely fetched to perform
multiplications, thus ensuring effective utilization of the off-
chip memory bandwidth. However, typical on-chip memories
on FPGAs only have two access ports and thus two vector
values can be fetched. The throughput mismatch between the
off-chip memory bandwidth and the vector buffer stalls the
fully-pipelined accelerator, resulting in ineffective utilization
of the off-chip memory bandwidth. To solve the throughput
mismatch, there are mainly two solutions.

The first solution is to increase the throughput of the vector
buffer. To achieve higher throughput, the most straightforward
approach is holding multiple copies of the vector on-chip.
However, it cannot be applied to applications with large
vectors. A better approach is to partition the vector buffer
into multiple sub-banks. Each bank holds a part of the vector
and processes the corresponding memory accesses. Array
partitioning [16] [17] [18] has been widely studied for arrays
with regular access patterns. However, it is hard to find a fixed
pattern to partition the vector buffer for SpMV with irregular
access patterns. Overall, although the throughput mismatch
can be solved, data reuse is not exploited and repeated memory
accesses to a vector value are performed.

The other solution is that we can exploit the data reuse
to reduce the number of memory accesses. In this work, we
observe that repeated memory accesses to one vector value
can be omitted by reusing the fetched data and thus fewer
memory accesses are performed. Following this observation,
we propose a reordering algorithm to optimize data reuse.
Compared to the previous work [19], we propose a novel data
reuse-aware compressed format (DRC) to further exploit the
benefits of data reuse and a fast format conversion algorithm.
Our key contributions are as follows.

• We observe that repeated memory accesses to one vector
value can be omitted by reusing the fetched data and
propose a data reordering algorithm to exploit the data
reuse of vector values.

• We propose a novel data reuse-aware compressed format
(DRC) to take full advantage of data reuse. In addition,
a fast format conversion algorithm is proposed to shorten
the preprocessing time.
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(a) An example of SpMV
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Fig. 1: Sparse matrix-vector multiplication and conventional compressed formats

• We propose an HLS-friendly accumulator design to solve
the RAW dependency. We implement and evaluate the
hardware with a set of matrices from the SuiteSparse ma-
trix collection on Xilinx ZCU106 [20]. The experimental
results show that our design achieves an average 1.18x
performance speedup without the DRC and an average
1.57x performance speedup with the DRC w.r.t. the state-
of-the-art work [8] respectively.

II. BACKGROUND AND RELATED WORK

In this section, we introduce some background about SpMV.
Then, we analyze the challenges of DATAFLOW designs for
SpMV. At the last of this section, we discuss related work.

A. Sparse matrix-vector multiplication

As shown in Eqn. 1, SpMV refers to the multiplication of a
sparse matrix A by a dense vector x to generate a result vector
y. To lower storage requirements, sparse matrices are stored in
compressed formats which only hold nonzero matrix elements.
Since non-zero matrix elements are randomly distributed, their
row indices and column indices are required to locate the
corresponding result vector values and input vector values
separately. Thus, in general, compressed formats have three
arrays to store values (val), row indices (r_id), and column
indices (c_id) of non-zero matrix elements.

yi =

Row∑
i=0

Col∑
j=0

Aij ∗ xj if Aij ̸= 0 (1)

There are three commonly used compressed formats called
COOrdinate (COO), Compressed Sparse Row (CSR), and
Compressed Sparse Column (CSC). As shown in Fig. 1b, the
most straightforward one is COO. In this format, it holds all
the values, row indices, and column indices of non-zero matrix
elements. To further lower the storage requirement, CSR and
CSC are proposed. As shown in Fig. 1c, repeated row indices
are compressed in CSR format and the index of the first
element in each row is stored in r_ptr. For example, in Fig.
1c, the fourth element (whose value is 4) is the first element of
the third row and its index is 3. Thus, r_ptr[2] = 3. Further,
we need to traverse the compressed r_ptr array to retrieve row
indices of non-zero matrix elements. For example, in Fig. 1b,
the index of the nonzero matrix element whose value is 3 is
2. Since 2 is greater than r_ptr[1] and is less than r_ptr[2],

the row index of this element is 1. For CSC, nonzero matrix
elements follow column-major order and repeated column
indices are compressed. Both these two formats require extra
control logic to retrieve the target row index or column index.

B. DATAFLOW-based design for SpMV and its challenges

The DATAFLOW approach is a task-level optimization
directive and sub-modules of a DATAFLOW design run in
parallel. Since it can overlap the computation latency with
the off-chip memory access latency, it is an ideal approach
for memory-intensive applications like SpMV. Although CSR
and CSC further reduce the matrix size, additional cycles are
required to obtain the target row or column indices. Especially,
empty rows or columns make the time unpredictable, which
could block the whole pipeline. As shown in Fig. 2, 7
cycles are required to get all the row indices. Thus, COO is
preferred for FPGA designs using the DATAFLOW approach
since it does not incur any control overhead. To increase the
performance of SpMV, the existing challenges mainly include
the following.

1) The Throughput Mismatch: Although the vector can be
buffered on-chip to reduce the off-chip traffic, the limited
throughput of the vector buffer hinders the timely fetching
of the corresponding vector values of the transferred non-zero
matrix elements per cycle, leading to ineffective utilization
of the off-chip memory bandwidth. Thus, the main challenge
is to deal with the mismatch between the throughput of the
transferred non-zero matrix elements (i.e., the throughput of
the off-chip memory bandwidth) and the throughput of the
vector buffer. Traditional compressed formats only reduce the
storage and ignore the throughput mismatch.

2) The Size of Sparse Matrices: Given the fact that the
number of transferred non-zero matrix elements per cycle
determines the performance upper bound of SpMV. Conse-
quently, it is important to compress sparse matrices while
considering the throughput mismatch issue.

3) Inherent Read-after-write Dependence: The read-after-
write (RAW) dependence exists in the accumulation process
of SpMV. Due to the long delay of the double addition,
a dedicated fully pipelined accumulator design is required.
Meanwhile, rows that have more non-zero matrix elements
take more cycles to perform the accumulation. Although the
dependence cannot be eliminated, its impact can be mitigated
by reordering non-zero matrix elements.
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Fig. 3: The motivational example of intra-group reuse
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Fig. 2: Irregular control flow of CSR format

C. Related work
The importance of SpMV gains lots of attention. In [21], the

authors design an accelerator based on CSC format. However,
they assume that the memory access of the vector is sequential.
[10] proposes a framework that can generate a specific acceler-
ator for each matrix. However, this framework requires a quite
long preprocessing time. In [8], the authors propose a high-
performance dataflow engine for CPU-FPGA heterogeneous
platform. They utilize the CPU part to fetch the corresponding
vector values of non-zero matrix elements sequentially and the
FPGA part performs computations. However, this design relies
on a high-speed CPU counterpart that matches the speed of the
FPGA design. In addition, they transfer repeating 64-bit vector
values instead of 32-bit column indices which wastes lots of
memory bandwidth. The authors in [9] maximize the data
locality by clustering the randomly distributed non-zero matrix
elements. However, the proposed design consumes plenty of
logic resources and it is hard to apply this solution on a
single FPGA board. Further, the preprocessing time is pretty
long since it reorders the whole input vector and matrix. On
the other side, SpMV is an important application of graph
processing. In [11], the authors partition large-scale graphs
to fit into on-chip RAMs and exploit BRAM resources from
multiple FPGA boards. [12] vertically partitions the large-scale
graphs to enlarge the partition size. In [13], the authors propose
an HLS-based graph processing framework to facilitate the
adoption of FPGAs. However, these designs mainly consider
single-cycle addition and cannot be applied to SpMV with
double-precision floating-point data.

In this work, we propose to solve the throughput mismatch
by exploiting the data reuse of vector values. Further, we
propose a novel compressed format called DRC to take full
advantage of the data reuse and reduce the matrix size. To the
best of our knowledge, this is the first paper that exploits data
reuse for SpMV on FPGAs.

III. MOTIVATIONAL EXAMPLE

A. Definitions

In this subsection, we first define some concepts. We call the
non-zero matrix elements transferred in a cycle a group. If one
group has multiple accesses to a vector value, we only perform
one memory access and reuse the fetched data for the other
accesses. This kind of data reuse is called intra-group reuse.
Meanwhile, if the fetched data is reused in different groups,
we call the data reuse inter-group reuse. Since a reused vector
value is multiplied with non-zero matrix elements with the
same column index, a column with multiple non-zero matrix
elements is called a reusable column.

B. Motivational Example

In this subsection, we present motivational examples to
show the benefits of data reuse. We use the configuration of the
Xilinx UltraScale ZCU106 platform on which four non-zero
matrix elements are transferred to the FPGA chip per cycle.
Given the fact that the vector buffer has two memory ports and
hence up to two vector values can be fetched per cycle. We
show simulations of motivational examples to help understand.
Due to the limited page space, cycles for multiplications and
additions are omitted. Since the design is fully pipelined, the
correctness of simulations is ensured.

Since CSC and CSR require extra logic to get the target
column or row index, we use COO as our baseline. The
key observation is that repeated memory accesses of one
vector value can be omitted by reusing the fetched data. As
shown in Fig. 3a, column indices in the first group are [0,
0, 1, 0] and thus x[0] are accessed three times in Cycle 2.
Only the first memory access is served and the other two
accesses are omitted by reusing the fetched data. Thus, the
non-zero matrix elements in the first group can be paired with
the corresponding vector values. However, the COO format
does not ensure that all the non-zero matrix elements can be
paired. Specifically, x[5] and x[3] cannot be fetched in Cycle
4 as shown in Fig. 3a. To solve this problem, we observe
that x[2] is accessed in both Cycle 3 and Cycle 4. In other
words, the fetched vector value (i.e., x[2]) is not fully reused.
Consequently, we reorder the corresponding non-zero matrix
elements into one group. As shown in Fig. 3b, x[2] is only
accessed in the third group instead of two groups as in Fig.
3a. We also perform the same operations to the corresponding
non-zero matrix elements of x[0] and x[1]. Further, due to the
RAW dependency, Cycle 6 and Cycle 7 are used to consume
the remaining products as shown in Fig. 3a. As shown in Fig.
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3b, non-zero matrix elements in the fifth row are scheduled
to the former groups (e.g., the first group). After reordering,
only four cycles (Cycle 2 to Cycle 5) are required.
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(a) The execution simulation of intra-group reuse

Vector fetch

(c_id)

Accumulator

(r_id)

val

r_id

c_id

Vector fetch

(c_id)

Accumulator

(r_id)

val

r_id

c_id

1 2 3

Intra

0 0 0 4 0 3 3 3

0 1 2

1 2 3

Inter

0 0 3 3 0 3 1 4 0 3

2 4 3 1

4

1 2 4

2 5

5

0 5 2 4

1 2 4 10

0 1 2 4

0 0 0 4

7 6 8 9

3 2 3 4

0 3 3 3

3 5 11 12

1 2 4 5

1 2 5 3

4

1 2

2 4

4

3

5

1 2

5 3

4 5

6

3

2 4 6 9

1 2 2 4

0 0 3 3

7 8 3 10

3 3 1 4

0 3 1 4

1 12 5 11

0 5 2 4

0 3 2 5

3

Cycle

Cycle

RAW

Reuse

Reuse

Reuse

Reuse

RAW RAW

5 3

Memory Port 

limits 

(b) The execution simulation of inter-group reuse

Fig. 4: The motivational example of inter-group reuse
Further, only considering intra-group reuse is not enough

in some cases. As shown in Fig. 4a, we fully utilize the
throughput of the vector buffer and fully reuse the fetched
data in each cycle. However, it still cannot pair all the non-
zero matrix elements. For instance, the memory accesses in red
boxes are not served in Cycle 4 of Fig. 4a. Thus, we consider
reusing the fetched data in different groups (i.e., inter-group
reuse). For example, x[3] is reused in Cycle 2, Cycle 3, and
Cycle 4 in Fig. 4b. However, it is only reused in Cycle 3
and re-accessed in Cycle 5 in Fig. 4a. As a result, only three
cycles (Cycle 2 to Cycle 4) are required to fetch all the vector
values in Fig. 4b. Meanwhile, we also observe that not all non-
zero matrix elements are suitable for inter-group reuse. The
reused vector values shall be read at first and then reused in
the following groups. To fully utilize the memory bandwidth,
two non-zero matrix elements in each reusable column are
first scheduled as shown in Cycle 2 of Fig. 4b. If a reusable
column only has one extra element to be reused besides the
two elements, the final performance is the same as the case
that only considers intra-group reuse. For example, if we only
look at Cycle 2 and Cycle 3 in Fig. 4b, [0, 0, 3, 3] [0, 3,
1, 4] and [0, 0, 0, 1] [3, 3, 3, 4] are feasible. Thus, reusable
columns refer to columns that have more than three elements.

IV. HARDWARE ARCHITECTURE

In this section, we first show the overview of our proposed
hardware accelerator. Then, we detail each component.

A. Overview

As shown in Fig. 5, the matrix is preprocessed offline
and stored in the DDR. When the execution begins, non-
zero matrix elements are transferred to the FPGA chip per
cycle. After that, the decoder decodes and fetches the target
vector values. Then, the paired non-zero matrix elements and
vector values stream into Processing Elements (PEs). Once
PEs receive the paired data, they perform multiplications and

the products are pushed into the corresponding accumulators
according to their row indices. The accumulators sum all the
products up and write the final results back to the DDR.
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Fig. 5: Hardware Overview
B. Decoder

The decoder is the key part to solve the main challenge
of SpMV, i.e., the throughput mismatch. It consists of three
parts: the control unit, the data fetcher, and the mapper. When
a group arrives, the control unit first generates control infor-
mation according to column indices. The control information
includes target memory addresses which are sent to the data
fetcher and control instructions which are sent to the mapper.
We list control instructions in Table I. When the data fetcher
receives the memory addresses, it fetches values from the
Vector Buffer and streams them to the mapper. When the
mapper receives the control instructions and the fetched data,
it maps vector values to non-zero matrix elements according
to the control instructions. At last, the paired non-zero matrix
elements and vector values stream into PEs alongside their
row indices.

TABLE I: Control Instructions

Instruction Definition
REUSE1 Reuse the first data fetched in previous cycles
REUSE2 Reuse the second data fetched in previous cycles
LOAD1 Use the first data fetched in this cycle
LOAD2 Use the second data fetched in this cycle

BUFFER1 Use and buffer the first data fetched in this cycle
BUFFER2 Use and buffer the second data fetched in this cycle

Recall that we consider intra-group reuse and inter-group
reuse. For intra-group reuse, control instructions are directly
generated. For instance, if the input column indices are [2,
2, 2, 1], the control instructions [LOAD1, LOAD1, LOAD1,
LOAD2] are generated and memory addresses [2, 1] are sent
to the data fetcher. For inter-group reuse, the fetched vector
value and its address (i.e., the column index of non-zero matrix
elements) shall be buffered. We only buffer one value and its
index for each port in the decoder. The key reason is that
all the elements in reusable columns are reused to solve the
throughput mismatch and it is easy to replace the buffered
data if we only buffer one reusable column. Specifically, when
the current reusable column is exhausted, the buffered vector
value and its index are directly replaced by the new data.
Meanwhile, we use a fixed pattern of column indices (i.e.,
reuse_cindex1, reuse_cindex1, reuse_cindex2, reuse_cindex2)
to identify reusable columns. Using this pattern, the off-chip
memory bandwidth of the current group is fully utilized and
the control overhead is little. When the buffered data shall
be replaced, control instructions BUFFER1 and BUFFER2 are
generated.
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We use some specific examples to illustrate how the decoder
works. Assume that three groups sequentially stream into the
decoder whose column indices are [1, 1, 2, 2], [1, 2, 3, 4], [5,
5, 6, 6]. For the first group, the control unit sends the control
instructions [BUFFER1, LOAD1, BUFFER2, LOAD2] to the
mapper and memory addresses [1, 2] to the data fetcher. After
that, [1, 2] and [x[1], x[2]] are buffered in the control unit and
the mapper separately. When the second group arrives, the
control instructions [REUSE1, REUSE2, LOAD1, LOAD2] are
generated. As a result, [x[1], x[2], x[3], x[4]] are paired with
the non-zero matrix elements. When the last group arrives,
the same instructions as the first group is generated. Following
these instructions, the buffered data is replaced by [x[5], x[6]].

C. Processing Elements

In this work, PEs are double-precision floating point mul-
tipliers. Since this design is fully pipelined and the off-chip
memory bandwidth limits the number of transferred non-zero
matrix elements, the number of PEs equals the maximum
number of transferred non-zero matrix elements. Specifically,
there are NPE PEs in our design. Meanwhile, deploying more
PEs cannot improve the overall performance. In addition, since
non-zero matrix elements and vector values have been paired
and no dependence exists among different pairs, the workload
is equally distributed to the available PEs. Ideally, one PE
performs a multiplication per cycle.

void accumulator(double* input_stream,
double* output)

{
double buffer[6];
int index = 0;
while (!input_stream.empty()){

#pragma HLS PIPELINE II=1
#pragma HLS DEPENDENCE variable=buffer false

val_t input_data = input_stream.read();
buffer[index] += input_data;
index = (index == 5) ? 0 : index + 1;

}
*output = sum(buffer);

}

Fig. 6: Accumulator Implementation

D. Accumulators

The proposed fully pipelined design requires a dedicated
accumulator to solve the RAW dependency. Products belong-
ing to the same row are accumulated. However, the operation
delay of double-precision floating-point addition is more than
one cycle which means that the partial result is not ready when
the new input product arrives in the next cycle. Some RTL-
based designs have been proposed [22] [23] [24] and these
work focus on the circuit design within the adder. However, for
HLS-based designs, the adder cannot be optimized since the
addition is a meta operator in high-level languages like C/C++.
In this work, we propose an HLS-friendly accumulator.

We show the pseudo-code of the proposed accumulator in
Fig. 6. Since the final output is the sum of all the inputs, we
can first get some partial results and then sum these partial
results up. Note that the delay of double addition is 5 cycles
in our implementation. If an input arrives in Cycle 1, the partial
result can be read in Cycle 7. During Cycle 2 to Cycle 6, if a

new input arrives, another partial result is required. Thus, we
allocate a buffer that includes six elements in an accumulator.
With this buffer, we implement a fully pipelined accumulator.
For example, if three inputs stream into the accumulator from
Cycle 1 to Cycle 3, they are added with buffer[0], buffer[1],
and buffer[2] separately. When all the products from PEs are
consumed, we sum the six elements up to get the final result.

Each row requires one accumulator. However, the fully
pipelined accumulator consumes a lot of hardware resources.
Constrained by limited resources, we cannot deploy an accu-
mulator for each row. According to the number of accumula-
tors, the matrix is split into multiple sub-matrices along the
row and we call each sub-matrix a row batch. By default, we
deploy 32 accumulators. Due to the RAW dependence, only
one input can be consumed per cycle and a FIFO is required
to hold the other possible inputs. By default, we set the depth
of FIFOs 64. These two parameters can be adjusted if this
design is deployed on other platforms. Besides, a ping-pong
buffer is used to hide the computation latency of summing the
six elements up.

V. REORDERING ALGORITHM

A. Problem Formulation

Since the design is fully pipelined and the main bottleneck is
the throughput mismatch, the execution time is approximately
equal to the number of cycles spent on fetching the target
vector values in all the groups. Assume one group contains
Ng non-zero matrix elements and there are NG groups. The
total execution time of the proposed design can be formulated
as Eqn. 2.

TTotal = TC + TRAW + TPIPE (2)

where TC refers to the number of cycles of fetching vector
values, TRAW refers to the number of cycles of processing
the remaining products in accumulators when all the vector
values are fetched (i.e., the number of cycles to deal with the
RAW dependence), and TPIPE refers to the depth of the whole
pipeline which includes data transfer among sub-modules and
the latency of each sub-module.

TC =

NG∑
i=0

⌈len(Set({c|c ∈ CIi, c /∈ CIi−1}))/NPorts⌉ (3)

where CIi refers to the column indices in groupi, len(Set())
returns the number of unique column indices in groupi except
for reused ones and NPorts refers to the number of available
memory ports of the vector buffer.

TRAW = max({FIFODepthi|i ∈ NA}) (4)

where FIFODepthi refers to the remaining products in
Accumulatori when all the vector values are fetched and NA

refers to the number of accumulators.
For example, for the matrix in COO shown in Fig. 3a,

TC = ⌈1⌉ + ⌈0.5⌉ + ⌈1.5⌉ = 4 and TRAW = 2. For the
matrix reordered following our proposed algorithm shown in
Fig. 3b, TC = 1 + 1 + 1 = 3 and TRAW = 1. Although this
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problem can be formulated, the len(Set()) function cannot
be converted into mathematical equations. Thus, this problem
cannot be solved by mathematical solvers. Meanwhile, the
brute-force method is not applicable to large-scale problems.
For instance, there are over 108 combinations if we partition
100 elements into 25 groups. Thus, we propose a heuristic
algorithm to solve this problem.

B. Reordering Algorithm

In order to fully utilize the off-chip memory bandwidth
while considering the throughput of the vector buffer, the
biggest obstacle is columns that only have one element. For
example, the corresponding columns of x[3], x[4], and x[5]
shown in Fig. 3a have only one element. Non-zero matrix
elements in these columns must occupy one memory port
and the fetched data cannot be reused. Based on motivational
examples, we define three rules as follows.

• Rule 1 (Intra-group reuse): The available on-chip memory
throughput should be fully utilized and the fetched data
should be reused as much as possible in each group.

• Rule 2 (Inter-group reuse): The fetched vector values can
be reused in different groups which can further increase
the reusability of the fetched data.

• Rule 3: Non-zero matrix elements in longer rows should
be scheduled as early as possible.

TABLE II: Assignment of Capacity

Element number in a column (N ) N%3 ̸= 1
N%3 = 1

1 4 Others
Capacity N/3 -1 0 N /3-1

As shown in motivational examples in Sec. III, Rule 2 is
not necessary and thus we should determine whether Rule 2 is
required. Given the fact that the on-chip vector buffer only has
two memory ports and hence we should select non-zero matrix
elements from at most two columns to form a group. We call
one non-zero matrix element, two non-zero matrix elements,
and three non-zero matrix elements in one column single
element, 2-element block, and 3-element block separately. In
order to fully utilize the off-chip memory bandwidth, we
should form single elements with 3-element blocks. Thus, if all
the single elements are paired with 3-element blocks, Rule 2 is
not required. Otherwise, Rule 2 is required to consume extra
single elements. In other words, a column with more than three
non-zero matrix elements has a bigger capacity to hold more
single elements following Rule 2. We define a metric called
capacity to help determine whether Rule 2 is required. The
capacity can be obtained following Table II. A special case
is columns which have four elements. It can be split into two
2-element blocks or a single element and a 3-element block.
The total capacities in both cases are 0. Overall, if the sum of
all the capacities is greater or equal to 0 which means that all
the single elements can be consumed, Rule 2 is not required.

As shown in Algorithm 1, we first profile the original
sparse matrix to get statistics that include lengths of rows,
lengths of columns, and the total number of non-zero matrix
elements (line 1). Lengths of rows are used to guide the

algorithm to follow Rule 3 and the Capacity of each column
is calculated according to its length (line 3). For each row
batch, as we have proved, if totalCapacity is no less than 0,
Rule 2 is not required. Otherwise, we try to find reusable
columns and single elements (line 5). If we find any reusable
column, two elements of the column are scheduled at first
to match the pre-defined pattern mentioned in Section IV-B
(line 9). Then, each remaining element in the columns is
paired with single elements to form a group and the group
is appended to Mr (line 11-12). When reusable columns
are exhausted or totalCapacity is no less than 0, we begin
to reorder the remaining non-zero matrix elements following
Rule 1 and Rule 3 (line 16-20). Following Rule 3, we first
pop an element block from the longest row (line 17). Then,
we use a greedy algorithm to find its counterpart to efficiently
utilize the memory bandwidth (line 18). For example, if the
popped element block is single element, its counterpart could
be 3-element block, 2-element block, or another single element
in order of priority. In addition, once a group is formed, all
the statistics (e.g., lengths of rows and the total number of
elements) are updated (line 12, line 19).

Algorithm 1 Reordering Algorithm

Input:
Non-zero matrix elements in COO, Mcoo;

Output:
The reordered non-zero matrix elements, Mr;

1: Profile the original Mcoo of all the row batches;
2: for each row batch do
3: Calculate Capacity of each column and totalCapacity;
4: while totalCapacity < 0 do
5: Find reusable columns and single elements;
6: if reusable columns are not found then
7: break;
8: end if
9: Form the first group using reusable columns;

10: for each remaining element e in the columns do
11: Pair single elements with e into a group;
12: Append the group to Mr and update statistics;
13: Update reusable columns if necessary;
14: end for
15: end while
16: while the number of matrix elements > 0 do
17: Pop one element block from the longest row;
18: Found counterpart of the block;
19: Append the group to Mr and update statistics;
20: end while
21: end for

C. Discussion
1) Complexity of the algorithm: We first define N , Nnc,

and Ng to indicate the number of non-zero matrix elements,
the number of non-empty columns, and the number of groups
separately. The profiling (line 1) iterates all the non-zero
matrix elements and the complexity is O(N). After profiling,
the statistics are stored in dictionaries, e.g., row_length, ele-
ments_in_rows. For each row batch, finding reusable columns
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and single elements (line 5) iterates the lengths of columns in
the row batch. For the row batch, the complexity is O(Nnc).
In line 17, popping one element block from the longest row
finds the longest row in the row batch which includes 32 rows.
Note that we have profiled lengths of rows and thus it just
finds the maximum value of 32 values. Meanwhile, finding
the counterpart (line 18) performs similar operations. Thus,
the complexity of these two parts is O(Ng). For all the row
batches, the complexity of the algorithm is O(N) +O(Ng).

2) Direct array partition: Although array partitioning can
increase the throughput of the vector buffer, it fails to exploit
the data reuse which can further compress sparse matrices
mentioned in Section VI. Besides, since the access pattern
is irregular, a scheduling algorithm is required to solve the
throughput mismatch for each sub-bank.

VI. DATA REUSE-AWARE COMPRESSION

Although the proposed reordering algorithm solves the
throughput mismatch, it fails to fully exploit the benefits of
data reuse. In this section, we first introduce the proposed
data reuse-aware compressed (DRC) format. Then, we show
the format conversion algorithm and discuss its complexity.

A. DRC Format

With the exploration towards the data reuse of vector values,
we can further compress the data to transfer more non-zero
matrix elements via the limited off-chip memory bandwidth
and thus improve the performance. Following the proposed
reordering algorithm, fetched vector values are reused and
the data reuse is known before the accelerator starts. Con-
sequently, column indices of non-zero matrix elements whose
corresponding vector values are reused can be compressed.
Besides, constrained by the number of accumulators, 32 rows
are processed per batch. Thus, the bitwidth of row indices can
be reduced from 32 to 5.

1 0 0 0 0 0

2 3 0 0 0 0

4 5 6 0 7 8

0 9 10 11 0 0

0 0 12 13 14 15

0 0 0 16 17 18

0 1 2 3 4 5

0

1

2

3

4

5

Group 1

Group 2

Group 3

4 2 1,2,4,3,5,9 0,1,1,2,2,3 0,1 0,0,0,1,1,1

N M (N+M)*64 (N+M)*5 M*32 (N+M)*2

Val Rid Cid Map

4 2 6,10,12,11,13,16 2,3,3,4,4,5 2,3 0,0,0,1,1,1

4 2 7,14,17,8,15,18 2,4,5,2,4,5 4,5 0,0,0,1,1,1

Fig. 7: DRC Format

As shown in Fig. 7, the proposed DRC format consists of
groups. The length of a group equals the available off-chip
memory bandwidth. Within each group, it mainly consists of
the following data segments:

• N holds to the number of reused vector values
• M holds to the number of vector values to be fetched
• V al holds N +M values of non-zero matrix elements in

the group
• Rid holds N + M row indices of non-zero matrix

elements in the group
• Cid holds M memory addresses of vector values to be

fetched

• Map holds N +M mappings between non-zero matrix
elements and vector values

Since we manually exploit the data reuse, we can further
compress the data. For the reused vector values, we replace
their 32-bit addresses (i.e., column indices of the correspond-
ing non-zero matrix elements) with 2-bit mapping information.
As shown in Fig. 7, we hold two 32-bit addresses and six
2-bit mapping information instead of six 32-bit addresses in
each group. As a result, one group can hold up to 6 non-
zero matrix elements and up to 2 vector values are fetched
per cycle. Thus, N is 3-bit and M is 2-bit in this design.
Each row index is a 5-bit data. Meanwhile, since we buffer
two vector values, the mapping information has four possible
cases: the first unbuffered vector value, the second unbuffered
vector value, the first buffered vector value, and the second
buffered vector value. Thus, each item in Map is 2-bit. For
example, the Map in Group 1 is [0, 0, 0, 1, 1, 1] which means
that the first three non-zero matrix elements are paired with the
first unbuffered vector value and the last three non-zero matrix
elements are paired with the second unbuffered vector value.
As shown in Fig. 7, eighteen elements in DRC format can
be reordered into three groups and three cycles are required
to pair these elements with their corresponding vector values.
Instead, the process takes five cycles without DRC. When the
decoder receives a group, it first reads N and M . Then, it
reads the following segments according to N and M .

Algorithm 2 Format Conversion

Input:
Non-zero matrix elements in each row batch, Mori;

Output:
The matrix in DRC format, Mdrc;

1: Profile Mori to get the length of each column;
2: Sort columns according to their lengths;
3: buffered_value = false, buffered_cid = CB ;
4: longest_cid = CL, shortest_cid = CS ;
5: while there are remaining matrix elements do
6: if not buffered_value then
7: if NCL

+NCS
>=6 then

8: Select as many elements as possible from CS ;
9: Form a group with elements from CL;

10: CB = CL;
11: else
12: Form a group with elements from CL and CS ;
13: end if
14: else
15: if NCB

+NCS
>=6 then

16: Select as many elements as possible from CS ;
17: Form a group with elements from CB ;
18: else
19: Form a group with elements from CB and CS ;
20: Get the current shortest column CS ;
21: Fill the group with elements in CS ;
22: buffered_value = false;
23: end if
24: end if
25: end while
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B. Format Conversion

In this subsection, we propose a fast format conversion
algorithm. We observe that Rule 3 mentioned in Section
V achieves little performance speedup while increasing the
execution time of the preprocessing algorithm. The fast format
conversion algorithm aims to consume columns with fewer
non-zero matrix elements to solve the throughput mismatch.
Note that a group holds up to 6 non-zero matrix elements.
As shown in Algorithm. 2, we first profile and sort columns
according to their lengths (line 1-2). If there is no buffered
vector value, we form a group with non-zero matrix elements
from the longest column and the shortest column (line 7-
13). In order to consume short columns, we select as many
elements as possible from the shortest column and buffer the
corresponding vector value of the longest column if the longest
column has remaining elements (line 10). If the buffered vector
value is available, we try to form a group with elements from
the buffered column and the shortest column (line 15-23). If
the group has not been fulfilled, we use elements from the
current shortest column to fill it (line 21-22).

For the complexity of this algorithm, we first traverse all the
non-zero matrix elements in a row batch and the complexity is
O(Nnnz) where Nnnz refers to the number of non-zero matrix
elements in the row batch. Then, we sort non-empty columns
and the complexity is O(NnclogNnc) where Nnc refers to
the number of non-empty columns. Since we access the
longest and shortest columns in the remaining execution, the
complexity is O(1). Overall, the complexity of the algorithm
is O(Nnnz +NnelogNne).

C. Discussion

1) Application to ASIC Designs: This work first exploits
the data reuse to solve the throughput mismatch between the
on-chip vector buffer and the off-chip memory bandwidth.
Although the throughput mismatch can be solved by increasing
the throughput of the on-chip vector buffer in ASIC designs,
it fails to further compress the data. With the proposed DRC
format, the matrix is further compressed compared to the
CSR format as shown in Fig. 14 and more non-zero matrix
elements can be transferred via the available off-chip memory
bandwidth. Meanwhile, the data reuse still exists even if the
throughput mismatch is solved. Consequently, the proposed
idea can be applied to ASIC designs to speed up performance.

2) Limitations: Since we exploit the data reuse to solve
the throughput mismatch and compress the matrix size, the
performance of the proposed idea depends on the reusability
of vector values. As shown in experimental results, sparser
matrices have less performance improvement.

VII. EXPERIMENTAL RESULTS

In this section, we first detail our experimental setup. Then,
we show the experimental results and compare them with the
related work.

A. Experimental Setup

The experimental results are obtained on the Xilinx Zynq
UltraScale ZCU106 platform, which integrates a quad-core

ARM Cortex-A53 application processor, a dual-core Cortex-
R5 real-time processor, and an XCZU7EV-2FFVC1156 FPGA
chip. We design the accelerator using C++ and use Vivado
HLS v2018.3 to convert the C++ codes into an RTL design.
Vivado Design Suite v2018.3 [25] is used to generate the
final bitstream. The clock frequency in our design is 100
MHz and the available off-chip memory bandwidth is 6.4GB/s.
Table III shows the resource consumption. The number of PEs
(i.e., NPE) equals the maximum number of non-zero matrix
elements in each group. Thus, NPE is 6 if DRC is deployed.
Otherwise, NPE is 4. Meanwhile, we allocate the vector into
Ultra RAMs (URAM). Since the size of vectors is different
in each benchmark, the URAM consumption is not shown in
Table III.

TABLE III: Resource Consumption

LUTs(%) FFs(%) DSPs(%) BRAMs(%)
Without DRC 65.76 33.49 13.66 49.04

With DRC 76.26 38.72 14.93 49.04

We use the same benchmarks in [8] to ensure a fair com-
parison and show them in Table IV. The selected benchmarks
can all be found on the SuiteSparse matrix collection [20].

TABLE IV: Selected Benchmarks

Benchmark Cols/Rows Nonzero Density GFLOPs BU
raefsky1 3242 293409 2.79% 1.1796 0.18
consph 83334 6010480 0.09% 1.1820 0.18

cant 62451 4007383 0.10% 1.1825 0.18
pwtk 217918 11524432 0.02% 1.1796 0.18

rma10 46835 2329092 0.11% 1.1771 0.18
torso2 115967 1033473 0.01% 1.0050 0.16
t2d_q9 9801 87025 0.09% 1.0142 0.16
epb1 14734 95053 0.04% 0.8782 0.14

lns_3937 3937 25407 0.04% 0.6672 0.1
mac_econ 206500 1273389 0.003% 0.6621 0.1
dw8192 8192 41746 0.06% 0.5770 0.09

Since the off-chip memory bandwidth determines the upper
bound of the overall performance, we use the bandwidth
utilization [8] (BU) as the performance metric to make a fair
comparison. BU is formulated by the throughput (GFLOPs)
over the off-chip memory bandwidth (GB/s). The throughput
is calculated by 2 ∗Nnonzero over the execution time T . We
combine the two equations T = Cexec/Freq and GB/s =
Bandwidthcycle ∗ Freq to get the final equation of BU as
shown in Eqn. 5. Given a fully pipelined design, Nnonzero

Cexec
in

Eqn. 5 approximately equals the number of non-zero matrix
elements transferred to the FPGA chip. Consequently, the
theoretical upper limit of BU is 2 ∗ Nepc/Bandwidthcycle

where Nepc refers to the maximum number of non-zero matrix
elements processed per cycle.

BU =
GFLOPs

GB/s
=

Nnonzero ∗ 2
Bandwidthcycle ∗ Cexec

(5)

where Nnonzero refers to the number of nonzero matrix
elements, Bandwidthcycle refers to the available memory
bandwidth in bytes per cycle which is 64 on Xilinx ZCU106
and 60 on [8], and Cexec refers to the execution time in cycles.
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B. Performance Analysis

Fig. 8 shows the performance comparison between the
proposed design and the state-of-the-art work [8] (refer as
Base in Fig. 8). We summarize the comparison of off-chip
memory transactions in Table V. In the table, N and Nv refer
to the number of non-zero matrix elements and the number
of vector values. Since read transactions with DRC cannot be
formulated with N and Nv , we compare the overall matrix
size using DRC with that of CSR in Fig. 14.

Since at most four elements are processed per cycle with-
out DRC, the theoretical peak BU without DRC is around
0.125 (2*4/64). As we can see in Fig. 8, some benchmarks
(e.g., raefsky1) achieve almost the peak performance. In
[8], three elements are processed per cycle and its peak
performance is 0.1 (2*3/60). Compared to the baseline, we
reduce the off-chip memory traffic (which is around 4N -
8Nv) by transferring column indices instead of vector values
and achieve an average 1.18x performance speedup. Besides,
at most six elements can be processed with DRC per cycle
and thus the theoretical peak BU is around 0.1875 (2*6/64).
As shown in Fig. 8, denser matrices can achieve higher BU
with DRC. Overall, the performance speedup is around 1.57x
compared to the baseline.

TABLE V: Comparison of off-chip memory transactions

[8] Wo DRC With DRC
read (bytes) 20N 16N + 8Nv -
write (bytes) 8Nv 8Nv 8Nv

read + write (bytes) 20N + 8Nv 16N + 16Nv -
elements per cycle 3 at most 4 at most 6
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Fig. 8: Performance comparison on ZCU106

To help illustrate the performance speedup, we show the
percentage of non-zero matrix elements processed at different
speeds in Fig. 9. We can transfer up to 6 non-zero matrix
elements with DRC format. The benefits of DRC are fully
utilized in denser matrices. For example, almost all the non-
zero matrix elements are processed at a rate of 6 per cycle in
the left five benchmarks. As a result, the performance speedup
is high. For sparser matrices like dw8192, the benefit of data
reuse is not fully utilized and the performance improvement
is little.
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Fig. 9: Percentage of elements processed at higher speeds

Our performance is lower than the baseline on dw8192. We
show parts of the elements in the 250th row batch of dw8192
in Fig. 11. All the non-zero matrix elements belong to different
columns. Limited by the on-chip memory throughput and no
reusable columns exist, only two non-zero matrix elements
can be processed. Besides, [8] achieves the performance with
the help of a CPU counterpart. For standalone FPGAs, it is
quite hard to optimize these kernels without increasing the
throughput of on-chip memories.
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Fig. 10: Comparison with peak BU of [15] [26]

We also compare the performance with HiSparse [15] and
Serpens [26] that target HBM-based FPGAs. Both two work
hold multiple copies of the vector to solve the throughput
mismatch and fail to exploit the benefits of reusing fetched
vector values. It is hard to deploy their designs since they
do not support data in double. For example, HiSparse [15]
proposes row interleaving to support data in float and the
throughput degrades. Consequently, we compare with their
peak BU. According to their data formats, up to 5 non-zero
matrix elements with data in double can be transferred to
the FPGA chip via a 512-bit off-chip memory bandwidth. As
shown in Fig. 10, we achieve an average 1.18x performance
speedup for denser matrices. Since the platform is the same,
the comparison of BU is equivalent to that of the performance.
Sparser matrices do not fully utilize the benefits of the DRC
format due to native sparsity. In the future, we can extend to
consider array partition and replication to boost the perfor-
mance of sparser ones.
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Fig. 11: Distribution of dw8192’s partial nonzero elements

We further show the percentage of reused vector values to
help understand the performance speedup. As shown in Fig.
12, around 48% of vector values can be reused by reordering
on average. Further, around 65% of vector values can be
reused with DRC as shown in Fig. 13. Since the proposed
format conversion algorithm always follows Rule 2, more
vector values are reused following inter-group reuse for denser
matrices. Meanwhile, since more non-zero matrix elements
can be transferred per cycle with DRC, the number of reused
vector values following intra-group reuse increases and the
number of reused vector values following inter-group reuse
decreases for sparser matrices (e.g., lns_3937).
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Fig. 13: The percentage of the reused elements with DRC

C. Size of DRC

Without DRC, the matrix size after reordering is the same as
the COO format. With DRC, we compress addresses of reused
vector values (i.e., 32-bit column indices of non-zero matrix
elements) to the 2-bit mapping information. Meanwhile, we re-
duce the bitwidth of row indices from 32 to 5. As shown in Fig.
14, DRC reduces an average 15.64% matrix size compared to
CSR. Concretely, around 65% fetched vector values are reused
as shown in Fig. 13. Assume there are Nnonzero non-zero
matrix elements. For the COO format. the matrix size is around
128∗Nnonzero (64∗Nnonzero+32∗Nnonzero+32∗Nnonzero).
The matrix size in CSR format is around 96 ∗ Nnonzero

(64 ∗ Nnonzero + 32 ∗ Nnonzero) + 32 ∗ Nr where Nr refers
the number of rows. Instead, the matrix size in DRC format
is around 83 ∗Nnonzero (64 ∗Nnonzero + 5 ∗Nnonzero + 2 ∗
Nnonzero + 0.35 ∗ 32 ∗Nnonzero + 5/6 ∗Nnonzero).
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Fig. 14: Matrix size after compression

D. Preprocessing Time

We list the preprocessing time of Algorithm 1 and Algo-
rithm 2 in Table VI. Without considering Rule 3 in Section
V which incurs multiple sorts, the execution time significantly
reduces. Further, the algorithm can be optimized using multi-
ple threads. Although the complexity of Algorithm 1 is O(N),
lots of sorts in each row batch are required to find non-zero
matrix elements in the longest row.

TABLE VI: Preprocessing time of each benchmark

Benchmark cant t2d_q9 torso2 pwtk raefsky1 lns.
Algo. 1(s) 167 2 16 512 20 1
Algo. 2(s) 5 <1 1 10 <1 <1
Benchmark rma10 epb1 consph dw8192 mac.
Algo. 1(s) 107 1 330 <1 15
Algo. 2(s) 3 <1 9 <1 2

E. Summary of FPGA-based SpMV Accelerator

In summary, we show a holistic comparison between this
work and related literature in terms of system specification and
performance in Table VII. The main challenge of SpMV is
the throughput mismatch of the off-chip memory and on-chip
memories. To solve the throughput mismatch, [9], [15], [26],
and [27] hold multiple copies on their platforms to increase the
throughput of on-chip memories. Meanwhile, [8] deploys the
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CPU host to fetch vector values from caches and then transfers
them with the corresponding matrix elements to the FPGA
chip. However, they fail to explore data reuse of fetched vector
values. In this work, we explore the data reuse and propose
to compress addresses of reused vector values (i.e., column
indices of the corresponding matrix elements). Specifically, a
32-bit column index is replaced by one 2-bit mapping informa-
tion. As shown in Fig. 14, the proposed DRC format reduces
an average 15.64% matrix size compared to CSR. Instead, [26]
simply compresses the row index and column index into one
32-bit data and the reduction is little. Meanwhile, thanks to the
DRC format, we can transfer up to 6 elements per cycle via
a 512-bit memory bandwidth. As a result, we can achieve the
highest 0.152 BU (i.e. GFLOPs/GB/s) which is 1.61x ∼ 2.53x
compared to others. The absolute performance (i.e. GFLOPs)
is determined by the available memory bandwidth. Although
our available memory bandwidth is lower than [8], we can
achieve up to 1.18 GFLOPs as shown in Table IV which
is comparable to [8]. Besides, although [8] does not need
preprocessing, the solution requires a CPU counterpart that
matches the speed of the FPGA accelerator and can support
an efficient data transfer between them. In the future, we plan
to hold multiple copies of the vector to process sparse matrices
with low data reuse, e.g., dw8192.

TABLE VII: Summary of FPGA-based SpMV Accelerator

[9] [8] [27] [26] [15] Ours
Platform multi-F1 C1-F1 F1 F1 F1 F1

Main Memory DDR DDR DDR HBM HBM DDR
Bandwidth (GB/s) 19.2 12 6.4 273 268 6.4

Preprocessing? Yes No Yes Yes Yes Yes
Size vs CSR = > > < > <
#Vector Copy Multi No Multi Multi Multi One

Perf. (GFLOPs) 1.16 1.13 0.76 18.15 16.7 0.97
#Elements2 5 3 4 5 5 6

BU 0.06 0.094 0.118 0.066 0.062 0.152
1 C refers to CPU and F refers to FPGA.
2 The maximum number of elements transferred via a 512-bit memory

bandwidth.

VIII. CONCLUSION

In this work, we observe that repeated memory accesses
of vector values can be omitted by reusing the fetched data
and propose a data reordering algorithm to exploit the reuse
of vector value. Further, we propose a novel data reuse-
aware compressed format (DRC) to take full advantage of the
data reuse. In addition, a fast format conversion algorithm is
proposed which shortens the preprocessing time. Finally, we
design a customized hardware accelerator and the experimental
results show that our design achieves an average 1.18x perfor-
mance speedup without DRC and 1.57x performance speedup
with DRC w.r.t. the state-of-the-art work respectively.
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