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Abstract—Edge intelligence systems, the intersection of edge
computing and artificial intelligence (AI), are pushing the frontier
of AI applications. However, the complexity of deep learning
models and heterogeneity of edge devices make the design of
edge intelligence systems a challenging task. Hardware-agnostic
methods face some limitations when implementing edge systems.
Thus, hardware-aware methods are attracting more attention
recently. In this paper, we present our recent endeavors in
hardware-aware design and optimization for edge intelligence.
We delve into techniques such as model compression and neural
architecture search to achieve efficient and effective system
designs. We also discuss some challenges in hardware-aware
paradigm.

I. INTRODUCTION

The rule of thumb when designing deep learning models is
the higher complexity, the better accuracy. This rule almost
applies to all deep learning models, such as convolutional
neural networks (CNNs) and large language models (LLMs)
which are widely exposed to public recently due to the
breakthrough success of ChatGPT. Meanwhile, models are
expected to be implemented at the edge close to data so that
some computation can be processed locally and expensive
communications can be avoided [1], [2]. Recently, new efforts
even strive to execute LLMs offline on mobile devices without
accessing powerful servers1.

To expedite complex models on the edge, numerous edge
accelerators were devised in past years and more are expected
in the near future [3]. Due to high data parallelism and rel-
atively simple operations, mainly addition and multiplication,
emerging accelerators feature many simple processing units
and deploy an advanced communication infrastructure, e.g.,
network on chips [4], to connect all processing units [5].
Model training and inference on accelerators involve loading
a huge amount of model’s weights to processing units and
transferring intermediate activation layer by layer via com-
munication infrastructure. Accelerators deploy diverse design
paradigms with different processing units and communication
infrastructure. As a result, this leads to significant performance
variations of the same model on different platforms [6] and in
turns propels to exploit hardware-aware design and optimiza-
tion [7].
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To unleash the full potential of an edge intelligence sys-
tem, a model should fully utilize the underlying hardware
resources so that the accuracy may be maximized while the
required performance is guaranteed. Hence, the model should
be customized for the target hardware platform. However, there
is a huge design space to explore when designing an edge
intelligence system, diverse hardware accelerators, various
intelligent applications with different datasets, and different
performance requirements. There are two ways to achieve this
goal: design or optimization.

• When an extant model is too complicated to implement
on an edge platform, compressing the model which is
designed in a hardware-agnostic fashion can tailor the
compressed model for the edge.

• We also can design a new and lightweight model to fit
an edge platform, where the optimal accuracy can be
retained and the required performance can be guaranteed.

Both methods should be conducted in a hardware-aware fash-
ion to guarantee that the optimized or newly designed model
can achieve or satisfy the expected performance requirement.
In this paper, we discuss our recent endeavors to design
and optimize edge intelligence systems in a hardware-aware
manner and we also outline some unaddressed challenges. In
our works, we take CNNs as the main target.

The remainder of this paper is organized as follows: Section
II discusses the modelling techniques needed for hardware-
aware methods. Section III briefly presents three efforts we
recently made in designing and optimizing edge intelligence
systems. Section IV further discusses some challenges that can
be addressed in this area. Section V concludes this paper.

II. HARDWARE AND CNN MODELLING

Designing and optimizing edge intelligence is a non-trivial
task due to a huge design space, spanning from model design
or selection to training configurations, optimization methods,
and hyper-parameters tuning. It is prohibitively expensive
to train each design point from scratch and evaluate it on
the target edge platform. This not only incurs a significant
training expenditure but also environmental sustainability issue
caused by high power consumption of servers. Thus, a more
common way to evaluate the quality of a specific design is to
model the target hardware, so that the performance or energy



consumption of one design can be quickly and approximately
obtained using a hardware model. In some cases, a model that
can predict accuracy of an input CNN model with different
configurations is also desired, e.g., model compression and
scaling, where such accuracy model can guide the optimiza-
tion. Hardware and accuracy models significantly narrow the
design space and boost the search procedure. In this section,
we discuss the hardware modelling technique as well as the
accuracy modelling technique used in our methods.

A. Hardware Modelling

The needs of hardware modelling are twofold: The inac-
curate proxy metrics–The direct performance metrics of a
model are latency, throughput, or energy consumption. These
metrics can be obtained by evaluating models on the target
platform. It is difficult to always evaluate models on the target
hardware, given a huge design space. Hence, many works tend
to use some proxy metrics, like FLOPs and MACs, to represent
real performance of a CNN model. The application of proxy
metrics is based on an assumption that there is a straight
mapping from real metrics to proxy metrics. Unfortunately,
this assumption does not always hold, and reduction on proxy
metrics cannot translate into real reduction in terms of latency
or energy [8], [4]. The second reason to have a hardware
model is that some literature reveals that hardware archi-
tectures have considerable impact on a model’s performance
[5]. Directly measuring the performance on the target device
is favorable but infeasible due to the aforementioned design
space and diverse ecosystems used by different edge hardware.
Such diversity usually requires a conversion from a general
framework, like PyTorch, to a specific format only supported
by a specific hardware. As a result, A large design space
accumulates to a non-negligible conversion overhead [9]. The
two reasons together propel the development of hardware
modelling.

Since CNNs have relatively simple operations, mainly ad-
dtion and multiplication, some strive to use look-up tables
(LUTs) to model performance of CNNs. However, LUTs are
unable to capture the complex data transmission occurred
within the target hardware, thereby leading to imprecision
when a model changes [8]. To address the inferiority of
LUTs, others, including our works, start to use machine
learning (ML) based methods to model performance of CNNs
on a hardware. ML-based methods require to collect some
operational data and train an ML model with the data. ML
models used to predict results can be simple multi-layer
perceptron (MLP) or more complex graph neural networks.
We found from our experiments, a simple MLP is already
able to achieve a relatively good result in terms of prediction
accuracy. Hence, in our methods, we mainly use MLP as
means to model hardware performance. Figure 1 shows one
result we obtained for Nvidia Jetson AGX Xavier, where the
left figure shows the results of our MLP-based modelling
and the right figure shows the comparison between our MLP
modelling (RSME2 = 0.41ms) and a LUT-based modelling
(RSME1 = 11.49ms).

Fig. 1. The comparison between MLP and LUT [8].

B. CNN Modelling

CNN modelling aims at modelling a model’s accuracy. It
is required, because the accuracy of a model can only be
evaluated after the model has been fully trained. Training
is known to be computation-intensive, especially for some
complex dataset. Some model-level modifications, like pruning
and compression, need to re-train the model to retain its
accuracy, and this tedious procedure and high cost prohibits
the possibility of exploring a large design space. As a result,
similar to hardware modelling, some works propose to model
the accuracy of different configurations of a CNN architecture
in order to shrink the large design space and speed up the
exploration procedure. Thanks to some interesting observa-
tions from the network design space exploration [10], CNN
modelling only needs to sample a small amount of models with
different configurations and train them with a small number of
epochs. We only use a CNN modelling in multi-dimensional
compression discussed in Section III-B, where it facilitates
the quick exploration of a large design space. However, we
envision that other design and optimization methods may also
benefit from a good CNN modelling.

III. HARDWARE-AWARE DESIGN AND OPTIMIZATION

In this section, we present three of our recent works in
hardware-aware design and optimization. We start with the
widely-studied model compression.

A. ZeroBN

The first work presented in this section is a pruning method,
namely ZeroBN. ZeroBN is motivated by two flaws of existing
pruning methods. Similar to what we discuss in Section II-A,
existing methods deploy proxy metrics to guide their pruning
procedures. This is difficult for a pruning method to achieve a
target latency which is paramount for many latency-sensitive
applications. To this end, these pruning methods have to
repeat a three-stage procedure, pre-training, pruning, and fine-
tuning, to guarantee the required latency, while maximizing the
accuracy of the pruned model. This drives us to think about
how we can prune a model to satisfy its latency requirement
in an efficient way.

ZeroBN is our answer for this question [11]. ZeroBN is
a learning-based pruning method to directly learn a compact
model that can satisfy the latency requirement. The main



advantage of ZeroBN is that it is a one-shot learning process,
i.e., by having a normal training-like process, it can derive
a pruned model with a competitive accuracy and latency
guarantee. The overview of ZeroBN is shown in Fig. 2, where
it takes as input a large redundant CNN without training and
outputs a compact and well-trained model that satisfies its
latency constraint.

ZeroBN divides a traditional training period into three
phases to implement the efficient pruning method, where the
three phases are 1) Initial Training (IT); 2) Zero Training
(ZT); and 3) Recovery Training (RT). The three phases are
similar to the three stages in normal pruning methods, pre-
training, pruning, and retraining. However, ZeroBN combines
all them into one training period.

IT phase is equivalent to the pre-training in normal pruning
methods, but IT is only conducted for several epochs at the
beginning of the whole procedure. IT aims to obtain some
initially trained weights for the input model so that we can
evaluate the importance of different channels in later phases.
One significant difference between ZeroBN and others in terms
of training is that we adopt sparsity training in the whole
ZeroBN process to impose sparsity regularization on scaling
factors which are used to identify redundant channels and
prune the model.

After several epochs of IT, ZeroBN proceeds to two it-
erative phases: ZT and RT. During these two phases, ZT
will ”soft-prune” the input model by temporarily excluding
some redundant channels based on their scaling factors and a
compression ratio which is determined according to the latency
constraint and a latency prediction model. The purpose of ZT
is to derive a compressed model, train and evaluate it. During
ZT, a latency predictor is integrated to efficiently calculate a
compression ratio which can guarantee the compressed model
meet its latency requirement. The latency predictor is the same
to what we introduced in Section II-A. ZeroBN exploits a
global pruning method, i.e., we rank all channels within the
model and determine redundant channels based on the global
ranking and the computed compression ratio.

ZT trains the ”compressed” model for a certain number of
epochs, and then RT restores the ”compressed” model to the
full model and trains it for a number of epochs. The rationale
behind RT is that although the compressed model generated by
a ZT phase can satisfy its latency constraint, it may be not the
optimal model in terms of accuracy due to insufficient training
and different training batches. Thus, after a ZT phase, we
introduce a RT phase that restores the compressed model back
to the full scale. RT can avoid a ZT phase from ending up with
a suboptimal model, thereby giving ZeroBN a chance to learn
a better compressed model. ZT and RT are interleaved after
the IT phase, and the whole procedure ends with a ZT phase
that generates the final compact model with latency guarantee.

Figure 3 shows the changes in the importance of all channels
during the ZeroBN process on an example model, where the
number of epochs for IT is 6, the compression ratio δ is set to a
constant 0.3, and ZT and RT both take 2 epochs for training.
From this figure, we can see how channels’ importance is

changed over the training procedure, where some channels
exhibit consistent importance and others vary significantly.
This justifies the necessity of RT.

ZeroBN has the same number of epochs as a normal
training, where we just split the training epochs into the
three parts introduced above. Thus, it does not add any
extra overhead in terms of training and pruning. From the
experiments [11], we found that ZeroBN is an efficient method
to design compact models for diverse hardware. It has been
open-sourced at https://github.com/HPInc/ZeroBN. We also
have explored the potential of such learning-based pruning
method in collaborated learning paradigm [12].

B. SmartScissor

ZeroBN provides a means to compress a redundant model
for edge systems, but it only considers one dimension of
CNN models, i.e., the width (the number of channels per
layer). Besides the width, there are two other dimensions
which can affect the complexity of a CNN model, i.e., the
depth (the number of layers) and the resolution (the size
of inputs). When it comes to edge systems, we have to
consider two factors, model complexity and computational
cost. Model complexity reflects the number of parameters and
weights, or MACs/FLOPs in a model, while computational
cost shows the execution complexity, mainly intermediate
activations generated by a model during its inference. The
implementation of complex models on memory-limited edge
systems is hindered by high model complexity and computa-
tional cost. Compressing width or depth is able to reduce both
model complexity and computational cost, while compressing
input size can significantly reduce computational cost. For
instance, as the MACs of a CNN reduce quadratically with
respect to the image input size, many works resize the input
images to a smaller resolution (e.g., 112×112) to reduce the
computational cost [13].

The three dimensions of CNN models present an oppor-
tunity to compress a complex model in a joint way, instead
of only compressing width as ZeroBN. EfficientNet [14] is
the pioneer work to explore the joint compression and finds
such joint compression can achieve better accuracy with lower
model complexity. However, there is no free lunch, and this op-
portunity also poses some challenges. Since three dimensions
can be tuned, it exhibits a huge design space. As discussed
before, once a small modification is applied to a model, the
modified model has to be re-trained to retain accuracy, thereby
resulting in high overhead. Thus, a more feasible way as did
in EfficientNet [14] is to have a compound shrinking2, i.e.,
finding one coefficient for all three dimensions and using it
to scale the three dimensions simultaneously. Nevertheless,
finding the optimal compound coefficient is a challenging task
that still needs significant effort.

When searching for the optimal compound coefficient, some
additional attention must be paid to resolution. Different

2We use shrinking to refer to compression throughout this session for
SmartScissor, because we have used shrinking in the original framework.
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Fig. 2. The process of ZeroBN [11].
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images demonstrate varying levels of classification difficulties.
As demonstrated in Fig. 4, easy samples with clear foreground
can be correctly recognized even at a small resolution. For
hard samples, as the foreground object only occupies a small
portion of the whole image, directly shrinking the image to a
small resolution will lose the details of the object, leading to a
misprediction. Nevertheless, if we can crop the foreground ob-
ject for inference, even hard samples can be correctly classified
at a lower resolution. However, existing image preprocessing
methods, e.g., ResizedCenterCrop (RCC), crop all images in
a static manner and cannot achieve such instance-aware fine
cropping. The efficiency of compounding shrinking and the
observation we obtained from image resizing shown in Fig. 4
motivate our work, namely SmartScissor.

The overview of SmartScissor is plotted in Fig. 5. The
general idea behind SmartScissor is to propose a method that
can effectively and efficiently identify objects in input images
such that it can facilitate the inference with low-resolution
images, and then a more effective compound shrinking (CS)
method can be determined under a complexity budget. In
SmartScissor, we propose a dynamic image cropping (DIC)
component to find the object of interest in an input image. DIC
first efficiently localizes the most discriminative foreground
of the input image with a lightweight foreground predictor,
then the detected foreground region will be preserved and the
redundant background will be discarded. DIC is capable of
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Fig. 4. The prediction results of our pretrained ResNet-50 model. For easy
samples, the network can still generate correct predictions at a small resolution
(e.g. 112 × 112 for ImageNet). For hard samples, simply resizing the images
to a small resolution can lead to misclassification, while the dynamic cropping
strategy can correctly classify hard samples at the small resolution [13].

generating fine-cropped images with less spatial redundancy,
i.e., low resolution, thereby improving the inference accuracy
even under low-resolution settings. The success of DIC at-
tributes to the following two factors.

• Data: for classification datasets like ImageNet, there is
no out-of-the-box position annotation for the foreground
object. Moreover, the position of the foreground object
varies in different images, which makes it difficult to
efficiently localize the foreground object. To address this
limitation, we have a bounding box generation before
DIC, where we use Grad-CAM [15] to automatically
generate the position annotations. Grad-CAM is deployed
to generate a salience map for each image, where a
well-trained CNN (e.g. ResNet50) is applied. Then, the
bounding box is gradually shrunk and determined based
on a threshold t. Figure 6 shows the cropped images
under different t, while Table I shows the different
accuracy under different t.

• Light-weight predictor: Although the foreground pre-
dictor we want is similar to object detectors and dozens
of object detectors have been proposed, such as SSD
and Faster R-CNN, these detector architectures are com-
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Fig. 6. By applying different values of the salience threshold t, we can obtain
different cropped images. The larger the threshold value, the more radical the
cropping [13].

Model #Params #MACs t Acc@1

ResNet50 25.6 M 4.1 B

0 (Baseline) 76.02 %
0.25 76.45 %
0.5 76.88 %

0.75 76.32 %
TABLE I

THE IMPACT OF USING DIFFERENT SALIENCE THRESHOLDS ON
PREDICTION ACCURACY. THE MODEL IS TRAINED AND EVALUATED ON
IMAGENET-1K. t = 0 MEANS USING THE ORIGINAL IMAGES WITHOUT

GRAD-CAM CROPPING [13].

pletely inapplicable to our task due to their high complex-
ity. Applying the existing object detector will undermine
the benefit of model compression, and an object detector
may be more complex than a CNN model itself. We
thus design a lightweight foreground predictor, whose
detailed architecture is summarized in Table II. It consists
of several residual bottleneck blocks [16] and a fully
connected layer as the single-box regressor. A residual
bottleneck contains two convolutional layers with 1×1
kernels and one convolutional layer with 3×3 kernels
in the middle. The computational cost mainly results
from the 3×3 convolutional layer. Therefore, to reduce
the cost and accelerate the predictor, we only stack two
residual bottleneck blocks in each stage, and each block
is only equipped with a small number of channels. The
proposed predictor only contains 0.27M parameters and
0.09B MACs, which are negligible compared to popular
object detectors (e.g., Faster R-CNN with 134.7M (499×)
parameters and 15.1B (167.8×) MACs) in terms of
model complexity. Moreover, the small overhead of the
foreground predictor will be mitigated by CS.

Once the predictor is trained, it can be directly applied to

chickadee trolleybus

Fig. 7. The bounding boxes generated with the salience threshold t = 0.5,
which accurately localize the key object in each image [13].

different classification backbones without any extra training
overhead. During inference, the trained predictor will quickly
localize the foreground object of an input image and generate
a finely cropped image, which allows CNN models to predict
the input image at lower resolution, thus significantly reducing
computational cost.

Stage Block Resolution #C #L
1 Conv 3×3 224 × 224 16 1
2 Residual Bottleneck 112 × 112 16 2
3 Residual Bottleneck 56 × 56 32 2
4 Residual Bottleneck 28 × 28 32 2
5 Residual Bottleneck 14 × 14 64 2
6 Pooling & Linear 7 × 7 4 1

#Params: 0.27M
#MACs: 0.09B

TABLE II
THE ARCHITECTURE OF THE PROPOSED BOX PREDICTOR. #C DENOTES

THE NUMBER OF CHANNELS AND #L DENOTES THE NUMBER OF LAYERS
[13].

The proposed DIC underpins the low-resolution prediction.
Now, we can look at the model complexity, width and depth.
As shown in EfficientNet [14], CS that jointly compresses the
three dimensions of a model promises higher accuracy over
single-dimension compression. The key of CS is to calculate
a shrinking coefficient for all dimensions according to their
trade-off between accuracy and model complexity. Given the
rule of thumb in CNN design, the more complex a model
is, the more likely it is to achieve higher accuracy. With a
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Fig. 8. The actual accuracy (blue dotted line) and the estimated accuracy
(yellow line) over MACs by separately shrinking the three dimensions. The
low root mean square error (RMSE) indicates that the accuracy estimator can
well fit existing data [13].

number of MACs as the constraint or target in SmartSissor, it
is favorable to have a just-enough shrinking, i.e., the number of
MACs of the model compressed by CS can be approximately
equal to the target number. Intuitively, shrinking different
dimensions has different impacts on accuracy and model
complexity. The shrinking coefficient needs to strike a good
balance among the three dimensions.

EfficientNet exploits a time-consuming and computationally
expensive grid search to determine the coefficient. To cal-
culate the shrinking coefficient efficiently, we first quantify
the trade-off of each dimension between accuracy and model
complexity. Here we use MACs as the metric to measure the
cost of models, because all three dimensions are related to the
MACs of a model while only the depth and width can affect
the model parameters. Given a MACs budget M, we first
obtain the accuracy drops resulting from separately shrinking
different dimensions, which can be represented as:

∆As(M) = A0 −As(M) (1)

where s ∈ {d,w, r} represents the shrunk dimension, As(M)
denotes the accuracy of the shrunk model, and A0 denotes
the accuracy of the original model. Based on our empirical
analysis, we design the following equation to determine the
shrinking coefficient for each dimension:

Cs(M) =
3
√
∆Ad(M) ·∆Aw(M) ·∆Ar(M)

∆As(M)
(2)

where Cs(M) denotes the shrinking coefficient of the dimen-
sion s (s ∈ {d,w, r}). Through Eq. (1) and Eq. (2), we are
able to efficiently calculate the coefficients once we obtain
the accuracy degradation of the three dimensions in the given
MACs regime.

However, the training cost of calculating the accuracy drop
is still non-negligible. To mitigate the training overhead,
we propose a dimension-wise accuracy estimator to quickly
estimate the accuracy of the compressed models and calculate
the accuracy degradation resulting from shrinking different
dimensions in the given MACs regime. First, we sample a
couple of models with different MACs by separately shrinking
the three dimensions. As demonstrated in Fig. 8, the accuracy
distribution of the three dimensions along MACs can be well
fitted by a quadratic polynomial. Therefore, we design a simple
yet effective polynomial estimator to predict the accuracy
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with respect to the target MACs M. The estimator can be
formulated as follows:

As(M) = as(M−M0)
2 + bs(M−M0) +A0 (3)

where M0 is the MACs of the original model. as and bs are
the hyperparameters to fit for dimension s (s ∈ {d,w, r}).
Figure 8 shows that the proposed estimator can well fit the
existing data. Due to the simple and intuitive design of the
estimator, we only need to sample and train very few models
to train the estimator, and this cost is a one-time cost. With
the accuracy estimator established, we are capable of directly
calculating the accuracy drop and subsequently the shrinking
coefficient across a wide range of MACs regimes. As a
result, the cost of determining the coefficients is significantly
reduced compared to directly training models to obtain the
coefficients. We have conducted extensive experiments on
different datasets in comparison with several state of the arts,
where SmartSissor can achieve higher accuracy with lower
computational complexity [13].

C. LightNAS

So far, we have discussed two frameworks that are able
to optimize complex and redundant CNN models for edge
systems. Another method to generate effective and efficient
models for edge systems is to design a model from scratch,
like MobileNet, ShuffleNet, etc, which best fit edge platforms.
These models are hand-crafted by experienced ML practition-
ers based on their rich skills and knowledge. Recently, neural
architecture search (NAS) has become an emerging technique
to replace time-consuming hand-crafted design and automate
the design of competitive CNNs. The well-established NAS
methods can be divided into reinforcement learning methods,
evolutionary methods, and gradient-based (a.k.a., differen-
tiable) methods. Among them, differentiable NAS has started
to take the stage of NAS research, thanks to its promising
search efficiency. In this section, when referring to NAS, we
mean differentiable NAS.

To design hardware-efficient models for resource-limited
edge systems, several hardware-aware NAS methods [2] have
been developed, which typically leverage the hardware per-
formance metrics (e.g., latency and energy) to guide the



Fig. 10. Illustration of the architecture search results under λ ∈ [0, 1] [8].

search process for hardware-efficient models. The optimization
objective can be formulated as follows:

minimize
α

Lvalid(w
∗(α), α) + λ · LAT (α) (4)

where α represents a specific architecture generated by NAS,
and w∗ denotes the weights of architecture α. LAT (·) is the
latency, and λ ≥ 0 is a constant to control the trade-off
magnitude between accuracy and latency. Generally, NAS is
to find an architecture α that can minimize the loss function
of L and latency regularization.
λ in Eq. (4) plays an unnoticed role in hardware-aware

NAS. Similar to ZeroBN and SmartScissor, NAS expects to
find the most complex model that can meet our performance
requirement. To search an optimal model for an edge platform
satisfying a given latency constraint, λ may need to be tuned
for several or many rounds so that the searched model satisfies
the specified hardware performance constraint. To show this,
we leverage FBNet [17] to repeat a plethora of architecture
search experiments under different settings of λ ∈ [0, 1]. As
shown in Fig. 10, λ is able to trade off between accuracy
and latency, which, unfortunately, is quite challenging to
tune. As a result, to find the required architecture around
the specified latency, the procedure has to repeat multiple
search experiments (empirically 10), significantly increasing
the search cost by 10× times.

To overcome such limitations, we propose a novel hardware-
aware NAS framework, dubbed LightNAS [8]. LightNAS aims
to find the required architecture that satisfies a specified
latency within one single search as shown in Fig. 9 (i.e., you
only search once). The optimization objective of LightNAS is
similar to Eq. (4) with a small modification as follows:

minimize
α

Lvalid(w
∗(α), α) + λ ·

(
LAT (α)

T
− 1

)
(5)

where T is the specified latency constraint. In LightNAS,
we use the hardware model discussed in Section II-A to
quickly evaluate the latency of architecture α. Different
from previous NAS methods, we set λ in Eq. (5) as a
learnable hyper-parameter instead of a tuneable constant.
Therefore, the tedious manual hyper-parameter tuning can be
replaced with an efficient learning procedure. And, LightNAS
automatically learns the optimal hyper-parameter configuration
for λ during the search process, which maximizes the accuracy

Fig. 11. Visualization of the search process under diverse latency constraints
[8].

while satisfying the specified latency constraint LAT (α) = T .
For simplicity, we use L(w,α, λ) to denote the objective
defined in Eq. (5). Subsequently, w and α are updated with
gradient descent, whereas λ is optimized using gradient ascent:{

w∗ = w − ηw · ∂L(w,α,λ)
∂w

, α∗ = α− ηα · ∂L(w,α,λ)
∂α

λ∗ = λ+ ηλ · ∂L(w,α,λ)
∂λ

= λ+ ηλ ·
(

LAT (α)
T

− 1
) (6)

where ηw, ηα, and ηλ are the learning rates of w, α, and λ,
respectively. After demonstrating what the proposed method
is, we then analyze why LightNAS searches for an architecture
α with LAT (α) = T . λ can adjust the complexity of the
searched architecture, thereby affecting its latency. A larger λ
derives the architecture with lower latency, whereas a smaller
λ generates the architecture with higher latency as shown
in Fig. 10. Then, during the search procedure, there are 2
possibilities.

• LAT (α) > T : The architecture does not meet the latency
requirement, so the gradient ascent scheme of λ increases
λ to reinforce the latency regularization magnitude;

• LAT (α) < T : The architecture meets the latency require-
ment. However, if the architecture’s latency is smaller
than the required latency, we may not get the most com-
plex model which can maximize the attainable accuracy.
Thus, the gradient ascent scheme then decreases λ to
diminish the latency regularization magnitude.

In both cases, the search engine will strive to make latency
LAT (α) towards latency constraint T , i.e., LAT (α) = T .
As a result, the search engine finally obtains an architecture
α with LAT (α) = T . Therefore, unlike previous hardware-
aware NAS methods that require multiple trial-and-errors to
find the desired architecture with latency T , LightNAS only
needs to search once, greatly improving the search efficiency.

Results: To demonstrate the effectiveness of LightNAS, we
visualize the search process under diverse latency constraints
for a representative edge platform, Nvidia Jetson Xavier, in
Fig. 11. The results clearly show that LightNAS is able to
search for the required architecture that strictly satisfies the
specified latency constraint in one single search, where the



Fig. 12. Illustration of the generality of LightNAS to energy-critical search
[8].

latency of the searched architecture gradually converges to
the required one. In addition, we also find that LightNAS
can be easily extended to deal with energy-critical tasks
shown in Fig. 12, where we use the same method to model
energy and replace the latency regularization with a new
energy regularization. Experimental results clearly show the
effectiveness of LightNAS over previous state-of-the-art NAS
methods [8].

IV. CHALLENGES

In this section, we discuss some possible and unaddressed
challenges in the field of edge intelligence especially in terms
of hardware-aware design.

A. Architecture-Aware Modelling

The hardware modelling techniques discussed in Section II
and most literature [2] feature a ’black-box’ fashion, i.e., the
modelling is unaware of what happens in the hardware and
why different models or architectures perform so differently
on the same hardware or on the same CNN model. Some
work starts to look at how CNN computations are mapped
into a underlying hardware and to analyze the performance
of a model from hardware’s perspective, like Timeloop [18].
Many factors can affect the performance from hardware’s
perspective:

• What are the key features of a target accelerator? Like,
the number of processing units, the processing unit type,
the underlying architecture, etc.

• What kind of underlying interconnect network does the
accelerator deploy [4]?

• How are computations mapped to the targeting accelera-
tors? In another word, what is the dataflow of the target
accelerator?

Although black-box modelling techniques can achieve rel-
atively good performance in terms of prediction accuracy,
they require to collect a huge amount of data. Also, the
black box methods may impede the portability of the built
model from one hardware platform to another. The procedure
of ’collecting-training-deployment’ has to be conducted for
every new hardware. Moreover, if a new CNN architecture,

new layers or new kernels are introduced, the existing pre-
diction model may need to repeat the ’collecting-training-
deployment’. This is mainly due to the lack of understanding
how the target hardware works with CNN models. If some
analytical methods based on hardware analysis can be inte-
grated, a more explainable model is possible. For example, an
analytical model for the processing unit may explain the reason
why a newly introduced operator performs in a certain way and
a communication analysis method can explain the rationale of
data movements between layers or processing units [4]. Such
architecture-aware models should be more precise, have lower
training overhead, and provide better portability.

B. Unified Integration
The methods discussed in Section III show different ways

to optimize and design CNNs for the edge. We can either
optimize an existing model or design a new model for a
hardware. However, there is no evidence or conclusion which
one is better or in which scenario a specific method should
be deployed. This in turn leaves a new design decision for
practitioners. If a task, a dataset, and an edge platform are
given, a question may be immediately raised for engineers:
which method should they use to implement the task on
that edge platform? Besides performance and accuracy, many
factors also have to be taken into account like training cost and
portability. It thus would be desirable to have a methodolog-
ical framework to integrate different design and optimization
methods, then having a unified framework, in which different
methods can be quantitatively compared in order to help
practitioners to select the optimal method for their own tasks
according to their requirements and consideration.

C. Beyond CNN
Most of works in edge intelligence focus on CNN-like

models [2], because the majority of applications at the edge are
vision-based. Prior to 2021, CNNs held a dominant position
in the field. However, since the introduction of transformer in
computer vision was first proposed in 2021, the landscape has
undergone a significant shift. Moreover, generative AI models
with strong capability are a new wave, like stable-diffusion
models and ChatGPT models. These models are much more
complex than CNN models, up to hundred billion parameters,
and also collect more sensitive data from users, e.g., some
personal information for generated images or dialogues, so
they may be subject to more rigorous data protection. Thus,
such models are expected to be increasingly implemented on
edge systems and executed offline without the need to access
remote servers. New models with architectures different from
CNNs lead to new challenges for edge intelligence engineers.
The concepts and insights we obtain for CNNs may still apply,
but these methods need to undergo significant modifications
or some new methods should be proposed for these emerging
models.

V. CONCLUSIONS

It is envisioned that more diverse AI applications will
emerge and be integrated into our daily life in the near



future. Edge as the new computing platform close to sensors
and actuators has been gradually becoming one important
hardware platform for AI applications. We briefly showcase
three hardware-aware methods and conclude this paper with
some existing challenges in edge intelligence research. We
hope this paper can bring a new perspective to the community.
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