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Abstract

This thesis gives a proof of Picard’s little theorem by using a modular function,
analytic continuation and Liouville’s theorem. After some necessary prepara-
tions, we start the construction of the modular function with a Riemann map-
ping from a modified vertical strip in the upper half-plane to the unit disk.
Then by using some möbius transformations and Schwartz reflection principle,
we get a mapping from a set in the upper half-plane to the twice punctured
complex plane. The inverse of this mapping is almost everything we need to use
Liouville’s theorem, except that it won’t be continuous because of the reflec-
tion of the borders. This is solved by repeating the domain of the constructed
mapping by defining a modular function on a möbius group. Then by using
analytic continuation on the composition of an inverse of the modular function
with an entire function with two lacunary points, we get an entire function by
the monodromy theorem, which maps the complex plane to a region contained
in the upper half-plane. After using one more möbius transformation that maps
the upper half-plane to the unit disk, we can then finally use Liouville’s theorem
to conclude that the entire function must be constant, hence proving Picard’s
little theorem.

Sammendrag

Denne oppgaven gir et bevis av Picard’s lille teorem ved å bruke en modulær
funksjon, analytisk fortsettelse og Liouville’s teorem. Etter noen nødvendige
forberedelser, starter vi konstruksjonen av den modulære funksjonen med en
Riemann avbildning fra en modifisert vertikal stripe i det øvre halv-plan til
enhetsdisken. Ved å bruke noen möbius transformasjoner og Schwartz reflek-
sjonsprinsipp, f̊ar vi s̊a en avbildning fra en mengde i det øvre halv-plan til det
dobbelt punkterte komplekse plan. Inversen av dette er nesten alt vi trenger for
å kunne bruke Liouville’s teorem, bortsett fra at den ikke vil være kontinuerlig
p̊a grunn av refleksjonen av randen. Dette problemet er løst ved å repetere
domenet av den konstruerte avbildningen ved å definere en modulær funksjon
p̊a en möbius gruppe. S̊a bruker vi analytisk fortsettelse p̊a komposisjonen av
en invers av den modulære funksjonen med en hel funksjon med to lakunære
punkter for å f̊a en hel funksjon ved monodromi teoremet som sender det kom-
plekse planet til en region i det øvre halv-plan. Med én möbius transformasjon
til som sender det øvre halv-plan til enhetsdisken, kan vi deretter endelig bruke
Liouville’s teorem for å konkludere at den hele funksjonen m̊a være konstant,
som dermed beviser Picard’s lille teorem.
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4.1 The möbius group . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 A subgroup Γ of G . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 The modular function λ . . . . . . . . . . . . . . . . . . . . . . . 26

5 Proof of Picard’s little theorem 30

2



1 Introduction

Picard’s theorem has two versions: Picard’s great theorem and Picard’s little
theorem. In this thesis, I will prove Picard’s little theorem. It states that all
non-constant entire functions attain all values in the complex plane, with at
most a single exception. This implies that all equations of the form f(z) = z0,
where f is an entire, non-constant function, has at least one solution in C except
for possibly one value of z0. The theorem extends to functions meromorphic in
the entire plane, but then it allows for two exceptions. Picard’s little theorem
also follows from Picard’s great theorem, which is a lot stronger. It states that
if a function is holomorphic in a punctured neighborhood of an essential singu-
larity, then it attains all values in the complex plane infinitely often, again with
at most a single exception. This implies that if f is an entire non-polynomial
function, then f(z) = z0 has infinitely many solutions in C, except for possibly
one value of z0. This theorem extends to functions meromorphic in the entire
plane except on a set of isolated essential singularities, but then allows for two
exceptions, just like the little version. For most of this thesis, I will be following
the book Real and complex analysis by Walter Rudin [1].

This thesis will show a clear and concise way to prove a composite and com-
plex theorem in abstract mathematics, which could be useful in education in
universities. That, in turn, helps with achieving the UN’s fourth Sustainable
Development Goal: Quality education.

Terminology and notation

• Lacunary points are points not in the range of a function. [2] (p. 97-98)

• Entire functions are functions that are holomorphic in the entire com-
plex plane. [3] (p. 630)

• Holomorphic functions on a region are functions that have a complex
derivative everywhere within that region. [4] (p. xv)

• A function is biholomorphic if both it and its inverse are holomorphic.
[4] (p. 206)

• A meromorphic function is holomorphic everywhere within a region,
except on a set of isolated singularities that are poles. [5] (p. 138)

• Analytic functions are functions that can locally be represented by a
convergent Taylor series. [3] (p. 172) A famous result in complex analysis
is that all holomorphic functions are analytic. [5] (p. 82-83)

• A Laurent series is a Taylor series representation of an analytic function,
but where you allow for all integer powers of z. [3] (p. 708-709)

• The principal part of a Laurent series are the terms with a negative
power of z. [3] (p. 708-709)
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• ∞ is used to denote complex infinity at the north pole of the Riemann
sphere.

• Ĉ = C ∪ {∞} denotes the Riemann sphere.

• Π+ denotes the open upper half-plane. That is, all z such that Im(z) > 0.

• I will use D(α, r) and C(α, r) to denote the open disk and circle centered
at α with radius r, respectively.

• ∂U is the boundary of a set U .

1.1 Definitions

Definition 1.1. For a function f : X → Y , we call X the domain of f , where
f is defined for all x in X. We call Y the codomain of f , where for all x
in X, f(x) is in Y . The set of all points in Y that gets mapped to from a
set S ⊆ X by f , denoted f(S), is called the image of S, and is defined as
f(S) = {y ∈ Y : ∃s ∈ S, f(s) = y}. The image of the domain is called the range
of f and is always contained in the codomain.

Definition 1.2. Let f : X → Y be a function.

• If for all y in f(X), there is at most one x in X so that f(x) = y, then f
is injective.

• If for all y in Y , there is at least one x in X, so that f(x) = y, then f is
surjective.

• If f is both injective and surjective, it is bijective.

An equivalent definition of surjectiveness, is that the range equals the codomain.

Definition 1.3. A set is connected if it cannot be written as the union of two
open and disjoint sets.

If a set is both connected and open, there must exist a continuous curve
from any point to any other.

Definition 1.4. A region in the complex plane is a non-empty, open and con-
nected set. [1] (p. 197)

The next term I will need to define is simply connectedness. There are
many possible formulations of this, but the one that gives the best intuitive
understanding, is that a region is simply connected if for any closed curve in the
region, you can continuously transform it to a point. That is to say, the region
has no holes. Here is another equivalent definition:

Definition 1.5. A region in the complex plane is simply connected if the com-
plement on the Riemann sphere is connected.
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Lastly, a very useful transformation I will need, is möbius transformations.
I will come back to its properties and motivations later. For now, I will simply
state its definition:

Definition 1.6. Let a, b, c, d ∈ C and ad−bc ̸= 0, then a möbius transformation
is a map of the form

φ(z) =
az + b

cz + d

1.2 Open mapping theorem

This theorem is needed for some technical arguments later on:

Theorem 1.1. If U is a region, and f is a function holomorphic on U , then
f(U) is either a region or a point. [1] (p. 214)

1.3 Cauchy’s integral theorem

Theorem 1.2. Let U be a simply connected region, let f be holomorphic on U
and let γ be a closed and simple curve in U . Then∮

γ

f(z) dz = 0

1.4 Morera’s theorem

Theorem 1.3. Let U be a simply connected region. If∮
γ

f(z) dz = 0

for all closed, continuous, and simple paths γ in U , then f is holomorphic in U .

This is the converse of Cauchy’s integral theorem.

1.5 Residue theorem

Let γ be a closed curve with a positive orientation (counter-clockwise). Let f
be holomorphic on and within γ except on a set of isolated singularities within
γ. Let a1, a2, · · · , an be those singularities of f within γ. Let W (γ, z) denote
the winding number of γ at z, that is, the number of times γ goes around the
point z, and let Res(f, z) denote the residue of f at z. The residue theorem
then states: ∮

γ

f(z) dz = 2πi

n∑
k=1

W (γ, ak)Res(f, ak)

[4] (p. 76-77)
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1.6 The ML-inequality

This is also known as the Estimation lemma, and says that a complex contour
integral is bounded by the maximum of the absolute value of the integrand on
the contour, multiplied by the length of the contour.∣∣∣∣∫

γ

f(z) dz

∣∣∣∣ ≤ max
z∈γ

|f(z)| ∗ Length(γ)

Here we call M the maximum, and L the length, hence the name ”ML-inequality”.

1.7 Cauchy’s integral formula

This formula is very useful in much of complex analysis and gives a way to find
the n′th derivative of a function using a closed contour integral. This integral
can then be computed using the residue theorem, or be bounded by the ML-
inequality to prove a certain derivative is zero. Let r > 0 and γ = {z : |z−z0| =
r}. Cauchy’s integral formula is then as follows: [4] (p. 47-48)

f (n)(z0) =
n!

2πi

∮
γ

f(z)

(z − z0)n+1
dz

Proof. Let γ be a circle centered at w with radius r, and let f be a function
holomorphic on and within γ. Then we have that∮

γ

f(z)

z − w
dz =

∮
γ

f(z)− f(w) + f(w)

z − w
dz (1)

=

∮
γ

f(z)− f(w)

z − w
dz + f(w)

∮
γ

1

z − w
dz (2)

=

∮
γ

f(z)− f(w)

z − w
dz + 2πif(w) (3)

(2) follows from the linearity of integrals, and to get (3), one can compute the
integral of 1/(z − w) directly by substituting z = reit + w:∮

γ

1

z − w
dz =

∫ 2π

0

ireitdt

(reit + w)− w
=

∫ 2π

0

idt = 2πi

Subtracting 2πif(w) from both sides of (3) and taking the absolute value, we
then get:∣∣∣∣∮

γ

f(z)

z − w
dz − 2πif(w)

∣∣∣∣ =

∣∣∣∣∮
γ

f(z)− f(w)

z − w
dz

∣∣∣∣ (4)

≤ max
z∈γ

∣∣∣∣f(z)− f(w)

z − w

∣∣∣∣ ∗ 2πr (5)

= max
z∈γ

|f(z)− f(w)| ∗ 2π → 0 as r → 0 (6)
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We get (5) by the ML-inequality, and since z ∈ γ, we know that |z − w| = r,
which gives us the first part of (6) from (5). The limit in (6) is due to the
continuity of f , since f is holomorphic. Because the integral remains unchanged
for all r > 0, we get that (4) is zero, which gives us cauchy’s formula for n = 0:

f(w) =
1

2πi

∮
γ

f(z)

z − w
dz

Finally, to get the general formula for all n > 0, we can differentiate with respect
to w:

f ′(w) =
1

2πi

∮
γ

f(z)

(z − w)2
dz

f ′′(w) =
2

2πi

∮
γ

f(z)

(z − w)3
dz

f ′′′(w) =
2 ∗ 3
2πi

∮
γ

f(z)

(z − w)4
dz

...

f (n)(w) =
n!

2πi

∮
γ

f(z)

(z − w)n+1
dz

For each step, the exponent of (z − w) increases, and we get new incremental
factors, which gives us the factorial. You also get a negative sign from the
exponent, but then another negative from the chain rule, so the sign never
changes.

1.8 Isolated singularities

Let f be holomorphic in a punctured neighborhood of z0. If f is not defined
at z0 or not holomorphic there, then z0 is an isolated singularity of f . Isolated
singularities are classified into three types. Let the following be the Laurent
series of f centered at z0:

f(z) =

∞∑
n=−∞

an(z − z0)
n

Definition 1.7. If an = 0 for all negative n, then z0 is a removable singularity.

Definition 1.8. If an = 0 for all n < −m < 0, and a−m ̸= 0, then z0 is a pole
of order m.

Definition 1.9. If ∀N < 0,∃n ≤ N , such that an ̸= 0, then z0 is an essential
singularity.

[5] (p. 102-103)
In other words, if the principle part of the Laurent series of f , centered at z0,
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has an infinite number of terms, then z0 is an essential singularity of f . This can
be thought of as a pole of order ∞. There is also a corresponding classification
of zeros:

Definition 1.10. If an = 0 for all n < m where m > 0 and am ̸= 0, then z0 is
a zero of order m.

A pole or zero of order 1 is called a simple pole or a simple zero, respectively.
As for removable singularities, as the name suggests, can be removed by defin-
ing the function as its limit value there, and thereby becoming holomorphic at
z0. This is always possible, because if you have that z0 is a removable singu-
larity, you can simply define f(z0) := a0 from its Laurent series centered at z0.
This also means that f is bounded near removable singularities. The converse
however, is slightly less trivial:

Theorem 1.4 (Riemann removable singularity theorem). Let U be a region. If
z0 ∈ U ⊂ C, and f is a function holomorphic and bounded on U\{z0}, then z0
is a removable singularity of f . [5] (p. 105)

Proof. Let f be a bounded and holomorphic function on U\{z0}, where U is a
region. Then |f(z)| ≤ M,∀z ∈ U\{z0} for some M ≥ 0. Let f have a Laurent
series as described above. Then for all n > 0, for sufficiently small r > 0,

a−n =
1

2πi

∮
γ

(z − z0)
n−1f(z) dz

where γ is a circle centered at z0 with radius r. By the ML-inequality, we have
that

|a−n| ≤
1

2π
∗ rn−1M ∗ 2πr = rnM → 0 as r → 0

Thus a−n = 0 for all n > 0.

A similar, but more powerful and useful result, which will prove to be es-
sential in the final proof of Picard’s little theorem, is Liouville’s theorem. If f
is entire and bounded globally, then f ′ is zero everywhere.

1.9 Liouville’s theorem

Theorem 1.5. If a function is entire and bounded, then it is constant.

Proof. Let f be an entire and bounded function, so that |f(z)| ≤M ≥ 0,∀z ∈ C.
By Cauchy’s integral formula, we have that

f ′(z0) =
1

2πi

∮
γ

f(z)

(z − z0)2
dz

where γ is a circle centered at z0 ∈ C with radius R > 0. We can then use the
ML-inequality and get a bound for the absolute value:

|f ′(z0)| ≤
1

2π
∗ M
R2

∗ 2πR =
M

R
→ 0 as R→ ∞

Since f is entire, this bound holds for all R, and thus f ′(z0) = 0, and since this
result holds for all z0, we get that f ′(z) ≡ 0, and thus f must be constant.

8



1.10 Extending Picard’s little theorem

Picard’s little theorem is a very strong and rich theorem that says that all
entire functions are almost surjective in the complex plane. It can only miss
one point. This one exception is like the Achilles heel of holomorphic functions,
so close to being surjective. If it wasn’t for this missing point, we could always
guarantee a solution for equations only involving entire functions. There is
unfortunately nothing we can do to salvage this. However, we can extend the
family of functions Picard’s little theorem works with, to meromorphic functions.
This allows us to almost always solve equations that also include poles. For
example, using the Riemann sphere, we can solve equations like 1/z = 0 by
simply using the well-defined complex infinity ∞. A regrettable consequence
with extending to meromorphic functions however, is that we then need to
allow for two lacunary points. To show this, I will first need a result concerning
constant compositions:

Theorem 1.6. If f and g are holomorphic on a region U , and f ◦ g is constant
on U , then at least one of f and g must be constant on U .

I will prove this in the next chapter.

Theorem 1.7. Meromorphic functions on the complex plane are either con-
stant, or have at most two lacunary points.

Proof. Let f be a meromorphic function, and let φ be a möbius transformation:

φ(z) =
az + b

cz + d

Suppose that f omits three points w1, w2, w3. We can then find coefficients for
φ so that:

φ(0) = w1

φ(1) = w2

φ(∞) = w3

Here is one possibility:

a = w3

b = w1 ∗ d
c = 1

d =
w2 − w3

w1 − w2

Let g = φ−1 ◦ f . Since f omits w3, g is entire, and since f also omits w1 and
w2, g has two lacunary points. By Picard’s little theorem, g must therefore be
constant, and then by Theorem 1.6, f must be constant.

9



So entire functions have at most one lacunary value, and meromorphic func-
tions have at most two, but when we have essential singularities, we still have
at most only one, as seen with Picard’s great theorem. Functions that are
holomorphic everywhere, except at a set of isolated singularities, are therefore
always almost surjective with at most two lacunary points. A well known ex-
ample of an entire function with a lacunary point, is the exponential function
exp(z) = ez. It attains all values in the complex plane except 0. Extending the

domain to Ĉ, exp(z) also has a lacunary point at ∞, which is also an essential
singularity. This means that exp(1/z) has an essential singularity at 0. In this
case, Picard’s great theorem tells us that around 0, it attains all values in the
complex plane infinitely often. I will here prove a weaker version of this, called
the Casorati-Weierstrass theorem.

1.11 Casorati-Weierstrass

Theorem 1.8. Let U be a region. If f is holomorphic in U\{z0}, where z0 is
an essential singularity of f , then the image of any punctured neighborhood of
z0 within U is dense in the complex plane. [4] (p. 86-87)

In other words, you can get arbitrarily close to any point in C from around
an essential singularity.

Proof. Let f be holomorphic on U\{z0} where z0 is an essential singularity of f .
Assume that there exists a value w that f cannot get close to. More precisely,
that for an ε > 0, ∃w ∈ f(U\{z0}), such that |f(z)− w| > ε,∀z ∈ U\{z0}.
Let

g(z) =
1

f(z)− w

We see that g must be holomorphic on U\{z0} and that it is bounded by 1/ε.
By Theorem 1.4, z0 must therefore be a removable singularity of g. This means
that the limit of g at z0 must exist.
Let

λ = lim
z→z0

g(z)

If λ = 0, f has a pole at z0, if λ ̸= 0, f has a removable singularity at z0. Either
case contradicts that z0 was an essential singularity of f . Hence the assumption
must be false, and such a w cannot exist.

Another nice way to make use of an essential singularity, is proving Picard’s
little theorem using Picard’s great theorem. The proof makes use of the essential
singularity at ∞ of non-polynomial entire functions.

10



1.12 Picard’s little theorem follows from Picard’s great
theorem

Proof. Let f be an entire function. This means that f must have a Taylor series
at 0.

f(z) =

∞∑
n=0

anz
n

If this series is finite, f is a polynomial, but if the series is infinite, the principal
part of the Laurent series for f

(
1
z

)
has an infinite number of terms:

f

(
1

z

)
=

∞∑
n=0

an
zn

Then by definition, f
(
1
z

)
has an essential singularity at 0, which in turn means

that f(z) has an essential singularity at ∞.

• If f is a polynomial, then Picard’s little theorem follows from the funda-
mental theorem of algebra.

• If f is not a polynomial, by Picard’s great theorem, the image of any punc-
tured neighborhood of ∞ on Ĉ by f , attains all complex values infinitely
often, with at most one exception. This proves Picard’s little theorem.

This also proves that if you have an equation of the form f(z) = z0, where
f is an entire, non-polynomial function, it has infinitely many solutions, except
possibly for one value of z0, as stated in the introduction.

2 Analytic continuation

In the proof of Picard’s little theorem, in order to be able to use Liouville’s
theorem, I will need to analytically continue functions to the entire plane. I will
need Schwarz reflection principle, the identity theorem, and the monodromy
theorem, the last of which, relies on analytic continuation along curves.

2.1 Schwarz reflection principle

Theorem 2.1. Let L be a segment on the real axis, Ω+ a region in Π+, and
every t ∈ L be the center of an open disc Dt, such that Dt ∩Π+ ⊂ Ω+ for all t.
Let Ω− be the reflection of Ω+:

Ω− = {z : z̄ ∈ Ω+}

If f is a function holomorphic in Ω+, and Im(f(z)) → 0, as z → t ∈ L, then
there exists a function F that is holomorphic on Ω+∪L∪Ω−, with f(z) = F (z)
when z ∈ Ω+, and where F satisfies the following: F (z̄) = F (z). [1] (p. 237-
238)
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2.2 Identity theorem

Definition 2.1. A limit point z0 of a set S, which may or may not be in S, is
a point where all neighborhoods in S around z0 also include points from the set.

All regions must therefore contain uncountably infinitely many points which
must all be limit points. This definition becomes useful when considering points
in a discrete set, for example the zero-set of a function, that is, the set of all
zeros.

Definition 2.2. If z0 ∈ S, and z0 is not a limit point of S, then z0 is an isolated
point of S.

Theorem 2.2. If f ̸≡ 0 is a function holomorphic on a region U , then all zeros
of f in U are isolated.

Proof. A function with an infinite order zero would have a taylor series identi-
cally equal to zero. Thus the only holomorphic function with an infinite order
zero, is the zero function. [5] (p. 88) Let f ̸≡ 0 be a holomorphic function on a
region U , with a zero at z0 of finite order m. Then f(z) = (z − z0)

mg(z) where
g is a holomorphic function on U that is nonzero at z0. Since g is continuous, it
is also non-zero in a neighborhood of z0. Thus z0 has a positive distance to all
other zeros f−1(0)\{z0}. In other words, z0 is an isolated point of the zero-set
of f in U .

Theorem 2.3. Let f and g be functions holomorphic on a region U ⊆ C, and
let {zn} ⊂ U be a sequence with a limit point. If f(zn) = g(zn) for all n, then
f = g in all of U . [5] (p. 89)

Proof. Let f and g be holomorphic functions on a region U , and suppose they
agree on a subset of U that has a limit point. Then (f − g)−1(0) has a limit
point. In other words, f − g has a non-isolated zero, and then by Theorem 2.2,
f − g must therefore be the zero function. Thus f = g on U .

This theorem allows us to do the proof of Theorem 1.6 which stated that if
f ◦ g is constant, then at least one of f and g is constant:

Proof. Let f and g be holomorphic functions on a region U ⊆ C, and suppose
their composition is constant, that f(g(z)) = z0,∀z ∈ U . If g is constant, this
holds, and we are done. If g is not constant, then there exists two distinct
values α and β, such that g(α) ̸= g(β). Since U is a region and g(U) is not
a single point, by the Open mapping theorem, g(U) must also be a region.
Therefore there must exist a continuous path in g(U) from g(α) to g(β). g(U)
must therefore contain a limit point, and since f(z) = z0 for all z ∈ g(U), by
the Identity theorem, f ≡ z0 in all of U .
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2.3 Monodromy theorem

To be able to state the monodromy theorem, I will first need to define analytic
continuation along curves.

Definition 2.3. A function element is an ordered pair (f,D), where D is an
open disc, and f is holomorphic on D. [1] (p. 323)

Definition 2.4. A direct continuation between two function elements, denoted
(f0, D0) ∼ (f1, D1), is the relation where D0 and D1 are not disjoint and where
f0(z) = f1(z) on D0 ∩D1. [1] (p. 323)

Definition 2.5. A chain C = {D0, D1, . . . , Dn} is a finite sequence of open
disks, where Di ∩Di+1 ̸= ∅ for all i = 0, 1, . . . , n− 1.

Since all continuous curves in an open set can be covered by a chain, we can
now define analytic continuation along a curve:

Definition 2.6. Let z0, z1 ∈ C be the centers of two open disks D0, Dn, let γ
be a curve from z0 to z1, and let C be a chain that covers γ with n open disks.
C = {D0, . . . , Dn}. If the function element (f0, D0) is given, and there exists
function elements (fi, Di) such that (fi, Di) ∼ (fi+1, Di+1) for i = 0, 1, . . . , n−1,
then (fn, Dn) is the analytic continuation of (f0, D0) along the curve γ, and
along the chain C.

Theorem 2.4. If (f,D) is a function element, and γ is a curve starting at the
center of D, and ending in a point z1 ∈ C, then there is at most one analytic
continuation along γ. [1] (p. 324-325)

I can now state the monodromy theorem:

Theorem 2.5. Let U be a simply connected region and (f,D) a function ele-
ment with D ⊂ U . If (f,D) can be analytically continued along all curves in U
that start at the center of D, then there exists a function g holomorphic in U
and where g(z) = f(z) within D. [1] (p. 326-327)

The proof of this is outside the scope of the thesis and will not be proven
here. A proof can be found in [1].

3 Conformal maps

Definition 3.1. A mapping is conformal if it preserves angles locally.

This is equivalent to being holomorphic and having a non-zero derivative
everywhere within its domain, if the domain is a region. [1] (p. 278)
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3.1 Möbius transformations

Recall, a möbius transformation is a ratio of two linear functions where a, b, c, d ∈
C and ad− bc ̸= 0:

φ(z) =
az + b

cz + d

This map is also called a linear fractional transformation. [1] (p. 279) We see
that this mapping has a simple pole at −d/c and a simple zero at −b/a. Taking
a look at its derivative;

φ′(z) =
a(cz + d)− (az + b)c

(cz + d)2
=

ad− bc

(cz + d)2

we see the motivation for the requirement on the constants, which makes φ have
a non-zero derivative everywhere, which then means it is conformal everywhere.

3.1.1 Möbius transformations are bijective

From the definition of φ, we can find the inverse directly:

az + b

cz + d
= w

az + b = w(cz + d)

az − wcz = wd− b

z =
dw − b

−cw + a

We see that φ−1 is of the same form as φ, where a and d have swapped places,
and b and c have swapped signs. Since the inverse is defined everywhere except
at a/c, φ is almost surjective with a/c as the only lacunary point. Extending

the domain and codomain to Ĉ allows us to reach it: φ(∞) = a/c. Hence φ is
surjective. What remains to be shown, is that it is injective:

az1 + b

cz1 + d
=

az2 + b

cz2 + d

(az1 + b)(cz2 + d) = (az2 + b)(cz1 + d)

acz1z2 + adz1 + bcz2 + bd = acz2z1 + adz2 + bcz1 + bd

adz1 + bcz2 = adz2 + bcz1

adz1 − bcz1 = adz2 − bcz2

(ad− bc)z1 = (ad− bc)z2

z1 = z2

Therefore φ is bijective on Ĉ, and indeed also biholomorphic.
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3.1.2 Fixed points

Another topic of interest, is the fixed points of möbius transformations. Assum-
ing z ̸= −d/c, we can set φ(z) = z and solve for z:

az + b

cz + d
= z

az + b = z(cz + d)

cz2 + (d− a)z − b = 0

We can see the number of solutions depend only on the constants a, b, c, d. We
can categorize it like this:

1. c ̸= 0: One or two fixed points: z = 1
2c (a− d±

√
(a− d)2 + 4bc)

2. c = 0:

(a) a ̸= d: One fixed point: z = b
d−a

(b) a = d:

i. b ̸= 0: No fixed points

ii. b = 0: This is the identity map φ(z) ≡ z.

In conclusion, except for the trivial identity map, möbius transformations can
have at most 2 fixed points.

3.1.3 Möbius transformations preserve lines and circles

To show this, I will first show that any möbius transformation can be written
as the composition of the following transformations:

• f1(z, β) = z + β (Translation)

• f2(z) = 1/z (Inversion)

• f3(z, α) = αz (Scaling and rotation)

φ(z) =
az + b

cz + d

=
a

c

z + b/a

z + d/c

=
a

c

z + d/c+ b/a− d/c

z + d/c

=
a

c

(
1 +

b/a− d/c

z + d/c

)
=

a

c

1

ac

bc− ad

z + d/c
+
a

c

=
bc− ad

c2
1

z + d/c
+
a

c
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We see that φ(z) = f1(f3(f2(f1(z,
d
c )),

bc−ad
c2 ), ac ). The only exception to this

formula, is if c = 0. In this case, it is easy to see that φ has no inversion, and
is only a composition of translation with scaling and rotation. What remains
to be shown is that the individual transformations preserve lines and circles. In
R2, all points lying on lines or circles satisfy the following quadratic equation:

A(x2 + y2) +Bx+ Cy +D = 0 (1)

An equivalent equation for C can be deduced by substituting x = 1
2 (z + z̄) and

y = 1
2i (z − z̄) and using that x2 + y2 = zz̄ when z = x+ yi:

Azz̄ +B

(
z + z̄

2

)
+ C

(
z − z̄

2i

)
+D = 0 (2)

Azz̄ +
B

2
z +

B

2
z̄ +

C

2i
z − C

2i
z̄ +D = 0 (3)

Azz̄ +

(
Bi+ C

2i

)
z +

(
Bi− C

2i

)
z̄ +D = 0 (4)

Azz̄ +B′z + C ′z̄ +D = 0 (5)

In (2), I have made the subtitutions from (1). In (3), I have expanded the
paranthesis from (2). In (4), I have grouped the terms with z and z̄, which we
can see are simply some different constants, which we can relabel, like in (5).
Also, notice that B′ is always the complex conjugate of C ′. I will now use the
exact same strategy for the transformations:
Translation:

A(z + β)(z + β) +B(z + β) + C(z + β) +D = 0

⇐⇒ A(zz̄ + zβ̄ + βz̄ + ββ̄) +Bz +Bβ + Cz̄ + Cβ̄ +D = 0

⇐⇒ Azz̄ + (Aβ̄ +B)z + (Aβ + C)z̄ + (Aββ̄ +Bβ + Cβ̄ +D) = 0

Scaling and rotation:

A(αz)(αz) +B(αz) + C(αz) +D = 0

⇐⇒ (Aαᾱ)zz̄ + (Bα)z + (Cᾱ)z̄ +D = 0

For inversion, we know that 0 gets mapped to ∞, and if z ̸= 0, we can multiply
both sides of the equation with zz̄:

A
1

zz̄
+B

1

z
+ C

1

z̄
+D = 0

⇐⇒ A+Bz̄ + Cz +Dzz̄ = 0

⇐⇒ Dzz̄ + Cz +Bz̄ +A = 0

This proves that all the constituent transformations preserve lines and circles,
and hence so do all möbius transformations.
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Using the equations above, I have also been able to find two corresponding
quadratic equations after a möbius transformation by composing the above
equations in the order described at the beginning of this section. One for when
c ̸= 0, and one for when c = 0. Using those equations, I found a shortcut for
finding the center and radius of the image of a curve described by (1). If c ̸= 0,
this will always be a circle, as long as the curve does not go through the pole.
Let A,B,C,D be the coefficients of (1), and a, b, c, d be the coefficients of a
möbius transformation. Let z0 ∈ C be the center and r > 0 be the radius of the
image.
Center:

z0 =
A d̄

c̄ − 1
2 (B − Ci)

c2

bc−ad (A
∣∣d
c

∣∣2 −BRe(dc )− CIm(dc ) +D)
+
a

c

Radius:

r2 = |z0|2 −
∣∣∣a
c

∣∣∣2 + Re( ac
bc−ad )(B − 2ARe(dc ))− Im( ac

bc−ad )(C − 2AIm(dc ))−A∣∣∣ c2

bc−ad

∣∣∣2 (A ∣∣d
c

∣∣2 −BRe(dc )− CIm(dc ) +D)

Notice how the center and radius both go to infinity when the point (Re(−d/c), Im(−d/c))
is in (1). As mentioned, this is because the image is a line when the pole −d/c
is on the curve. On the other hand, when c = 0, we get ∞/∞. In this case, the
formulas you get simplify somewhat:
Center:

z0 =
b

d
−

1
2 (B + Ci)

A d
a

Radius:

r2 = |z0|2 +
BRe( ba ) + CIm( ba )−A

∣∣ b
a

∣∣2 −D

A
∣∣ d
a

∣∣2
Notice, similar to before, if A = 0, both the radius and center to go infinity.
This is because if c = 0, φ has no inversion, and the image is therefore a circle
whenever the input curve is too. The only singularities here besides A = 0, is
when a = 0 or d = 0. But since we have assumed c = 0, we know that d ̸= 0,
and if a = 0, φ would be a constant.

3.1.4 Useful examples

A very useful example of a möbius transformation is the case when a = 0, b =
r > 0, c = 1 and d = −z0:

φ1(z) =
r

z − z0

This is a biholomorphic mapping from the complement of an open disk on the
Riemann sphere with radius r and center z0 to the closed unit disk. To see this,
notice that when z ∈ Ĉ\D(z0, r), then |z − z0| ≥ r, and thus |φ1(z)| ≤ 1.
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Another useful example is the mapping from the upper half-plane Π+, to the
unit disk:

φ2(z) =
z − i

z + i

[1] (p. 281)
If z ∈ Π+, then |z − i| < |z + i|, and thus |φ2(z)| < 1. These examples
are so useful, because if you had an entire function that omitted a disk or a
half-plane, you could compose one of these transformations with it to get an
entire and bounded function, and then by Liouville’s theorem conclude that
the composition must be constant, which means the original function must be
constant.

3.1.5 Möbius transformations can map any triple to any triple

Möbius transformations have 4 free variables, but only 3 degrees of freedom.
Let φ(z) = (az + b)/(cz + d) be a möbius transformation. Notice that

φ(z) =
a
c z +

b
c

z + d
c

It therefore makes sense that φ can map any three distinct points to any three
distinct points. I will now deduce an explicit formula. Suppose that φ maps the
triple (z1, z2, z3) to (w1, w2, w3), where z1 ̸= z2 ̸= z3 ̸= z1 and w1 ̸= w2 ̸= w3 ̸=
w1. We then get 3 equations and we need to solve for 4 variables, but where
one of them is just a scalar for the other three. From the algebra that follows,
it is easiest to let c be the free variable.

φ(z1) = w1 =⇒ az1 + b = w1(cz1 + d)

=⇒ b = w1(cz1 + d)− az1

φ(z2) = w2 =⇒ az2 + b = w2(cz2 + d)

=⇒ az2 + (w1(cz1 + d)− az1) = w2(cz2 + d)

=⇒ a(z2 − z1) + w1(cz1 + d) = w2(cz2 + d)

=⇒ a =
w2(cz2 + d)− w1(cz1 + d)

z2 − z1
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For the last equation, φ(z3) = w3, we can substitute the formulas for b and then
for a, and then expand the terms with d, to finally solve for d.

φ(z3) = w3

=⇒ az3 + b = w3(cz3 + d)

=⇒ az3 + (w1(cz1 + d)− az1) = w3(cz3 + d)

=⇒ a(z3 − z1) + dw1 − dw3 = cw3z3 − cw1z1

=⇒ w2(cz2 + d)− w1(cz1 + d)

z2 − z1
(z3 − z1) + d(w1 − w3) = cw3z3 − cw1z1

=⇒ (dw2 − dw1 + cw2z2 − cw1z1)(z3 − z1) + d(w1 − w3)(z2 − z1)

= (cw3z3 − cw1z1)(z2 − z1)

=⇒ d(w2 − w1)(z3 − z1) + (cw2z2 − cw1z1)(z3 − z1)

+d(w1 − w3)(z2 − z1) = (cw3z3 − cw1z1)(z2 − z1)

=⇒ d =
(cw3z3 − cw1z1)(z2 − z1)− (cw2z2 − cw1z1)(z3 − z1)

(w2 − w1)(z3 − z1) + (w1 − w3)(z2 − z1)

Notice that d has a common factor of c. Hence so does a and b. These formulas
work as long as the points are distinct, as described in the beginning.

3.2 Riemann mapping theorem

Biholomorphic mappings like the ones shown in the previous section that map to
the unit disk, always exists as long as the set is non-empty, simply connected,
open, and is not the whole complex plane. [1] (p.283). This is called the
Riemann mapping theorem. The reason for why we can’t allow the whole plane,
is that the mapping would then be constant, by Liouville’s theorem.

Theorem 3.1 (Riemann mapping theorem). For every non-empty, simply con-
nected, open and proper subset U ⊂ C, there exists a biholomorphic mapping
from U to the open unit disk. [5] (p. 142)

Definition 3.2 (Simple boundary point). Let U ⊂ C be a region, and β ∈ ∂U ,
then β is a simple boundary point if for every sequence {αn} ⊂ U , where αn → β
as n → ∞, there is a continuous curve γ : [0, 1] → C, where γ(t) ∈ U when
t ∈ [0, 1), and a sequence {tn} ⊂ [0, 1) where tn → 1 and tn < tn+1, such that
γ(tn) = αn for all n ∈ N. [1] (p.289)

In other words, a boundary point is simple if all sequences converging to
it, can be connected by a continuous curve. This also extends to a boundary
point at infinity. If you have a sequence in a region that converges to infinity,
and a continuous curve within the region connecting them that also converges
to infinity, then the boundary point there is simple. An example of a region
with non-simple boundary points is an open disk with radius 1, centered at zero,
with the segment [0, 1) removed. For points on this segment, you could have
a convergent sequence that jumped above and below the segment, so that any
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continuous curve connecting them, would have to go around 0 infinitely often.
Such a curve would not be continuous in the end points, and those boundary
points are therefore not simple. Another theorem I will need later on for the
proof of Picard is the following:

Theorem 3.2. If U is a bounded and simply connected region, and if every
boundary point of U is simple, then every conformal mapping of U onto the
open unit disk D, extends to a bijective and continuous map from U onto D.
[1] (p. 290)

Theorem 3.3. Let U be an unbounded and simply connected region, where
every boundary point of U is simple, including at ∞, and let φ be a möbius
transformation. If φ(U) is bounded and φ(∞) is a simple boundary point of
φ(U), then every bijective and conformal mapping of U onto the open unit disk
D, extends to a bijective and continuous map from U to D.

Proof. Let U be an unbounded, simply connected and open region with simple
boundary points, also at ∞. Let D be the open unit disk, let φ be a möbius
transformation where φ(U) is bounded, and let φ(∞) ∈ ∂φ(U) be a simple
boundary point. Since every finite boundary point of U is simple, the same is
true for φ(U). Let f be a bijective and conformal mapping from U to D. Since
f is bijective, so is f−1, and f−1(D) = U . Then φ ◦ f−1 maps D to φ(U), and
so (φ◦f−1)−1 maps φ(U) to D. Since ∂φ(U) is simple and φ(U) is bounded, by
theorem 3.2, this extends to a bijective and continuous map g from φ(U) to D.
Then g−1 maps D to φ(U), and φ−1 ◦ g−1 maps D to U . Finally, (φ−1 ◦ g−1)−1

maps U to D.

4 Construction of a modular function

The final piece I will need for the proof of Picard’s little theorem, is a specific
modular function λ which will help transform the range of an entire function
with two lacunary points to the upper half-plane. Then, by using analytic
continuation on the composition, I will end up with an entire function that
maps the entire plane to just a region in the upper half-plane. Then by using a
möbius transformation, as mentioned in chapter 3.1.4, we get an entire function
from the plane to the unit disk, which implies the function is constant, by
Liouville’s theorem. Almost everything of this chapter is following the book
of Rudin [1] (p. 328-332), but with more explanations, intermediary steps and
some graphics to help visualize the regions described.

Definition 4.1. A modular function f is a function that is invariant under
möbius transformations from a group G. That is, for all φ ∈ G,

f ◦ φ = f

To define λ, we will first take a look at a special möbius group with integer
coefficients, and determinant 1.
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4.1 The möbius group

This is the group G of all möbius transformations

φ(z) =
az + b

cz + d

where a, b, c, d are integers, and ad− bc = 1. As shown in the previous chapter,
all such φ have an inverse:

φ−1(z) =
dz − b

−cz + a

We see that φ−1 also has integer coefficients, and that da− (−b)(−c) = 1 ⇐⇒
ad− bc = 1. Thus ∀φ ∈ G,∃!φ−1 ∈ G. I will now show that G is closed under
compositions. Let φ1, φ2 ∈ G.

φ1 ◦ φ2 =
a1

a2z+b2
c2z+d2

+ b1

c1
a2z+b2
c2z+d2

+ d1

c2z + d2
c2z + d2

=
a1(a2z + b2) + b1(c2z + d2)

c1(a2z + b2) + d1(c2z + d2)

=
(a1a2 + b1c2)z + a1b2 + b1d2
(c1a2 + d1c2)z + c1b2 + d1d2

The coefficients consists of products and sums of integers, and are therefore also
integers. Lastly, we must confirm the determinant is still 1.

ad− bc = (a1a2 + b1c2)(c1b2 + d1d2)− (a1b2 + b1d2)(c1a2 + d1c2)

= a1a2c1b2 + a1a2d1d2 + b1c2c1b2 + b1c2d1d2

− (a1b2c1a2 + a1b2d1c2 + b1d2c1a2 + b1d2d1c2)

= a2d2(a1d1)− a2d2(b1c1) + b2c2(b1c1)− b2c2(a1d1)

= a2d2(a1d1 − b1c1) + b2c2(b1c1 − a1d1)

= a2d2 + b2c2(−1)

= 1

Hence φ1 ∈ G∧φ2 ∈ G =⇒ φ1 ◦φ2 ∈ G. Thus, G is a group with composition
as the group operation and with the identity map as the identity element.

4.2 A subgroup Γ of G

Let Γ be the subgroup of G generated by the following transformations:

τ(z) = z + 2

σ(z) =
z

2z + 1

As proved in the previous section, since τ, σ ∈ G, Γ is a subgroup with com-
position as the group operation. It is under this group that λ will be defined.
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Following [1] (p. 329), I will need an explicit formula for the imaginary part of
φ in the upcoming proofs. Though since the coefficients are real, we can find
this without much effort:

φ(z) =
az + b

cz + d

cz̄ + d

cz̄ + d

=
aczz̄ + adz + bcz̄ + bd

|cz + d|2

Identifying the imaginary part:

Im(φ(z)) = Im

(
adz + bcz̄

|cz + d|2

)
=

Im(z)(ad− bc)

|cz + d|2

We now also see the motivation for the requirement that ad− bc = 1:

Im(φ(z)) =
Im(z)

|cz + d|2
(1)

Let Q be the set of all z = x+ yi satisfying the following inequalites:

y > 0, −1 ≤ x < 1, |2z + 1| ≥ 1, |2z − 1| > 1

Figure 1: Q

Theorem 4.1. Let Γ and Q be as above.

(a) If φ1, φ2 ∈ Γ and φ1 ̸= φ2, then φ1(Q) ∩ φ2(Q) = ∅

(b)
⋃

φ∈Γ φ(Q) = Π+

(c) If φ ∈ Γ and φ(z) = (az + b)/(cz + d), then φ ∈ G where a, d are odd
integers, and b, c are even integers.

[1] (p. 329)
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(a) and (b) means that Q is a fundamental domain of Γ, while (c) is used to
prove (a).

Proof. Let Γ1 be the group described in (c), and let (a’) be the statement
(a) for Γ1. From the previous section, in the proof that G is closed under
composition, we see that the coefficients a, d remain odd and b, c remain even
after compositions, so Γ1 is indeed a group. Notice that proving (c) is the same
as proving that Γ = Γ1. For τ , we see that a = d = 1, b = 2, c = 0. For σ,
a = d = 1, b = 0, c = 2. Therefore τ and σ are in Γ1. This must mean that
Γ ⊆ Γ1, as Γ1 contains the generators of Γ.

I will now show that (a’) ∧ (b) =⇒ (c). Suppose that this isn’t true. That we
have (a’) and (b), and yet Γ ⊂ Γ1. This means that there is a ψ ∈ Γ1 where
ψ /∈ Γ. By (b), the images φ(Q) where φ ∈ Γ cover Π+. By (1), we see that
since Q ⊆ Π+, ψ(Q) ⊆ Π+. Thus ψ(Q) intersects φ′(Q) for some φ′ ∈ Γ. But
this contradicts (a’), and thus ψ cannot exist, and Γ = Γ1. Also, notice that if
you have (a’) and (c), you automatically also get (a). Therefore, proving (a’)
and (b) is enough to prove the whole theorem.

To prove (a’), there is one more simplification we can do. Let φ1, φ2 ∈ Γ1,
where φ1 ̸= φ2, and let φ = φ−1

1 ◦ φ2. (a’) then states that φ1(Q) ∩ φ2(Q) = ∅.
Suppose that z ∈ φ1(Q) ∩ φ2(Q). Then φ−1

1 (z) ∈ φ−1
1 (φ1(Q) ∩ φ2(Q)). And

since the image of an intersection is a subset of the intersection of the images,
we get that φ−1

1 (z) ∈ φ−1
1 (φ1(Q))∩φ−1

1 (φ2(Q)) = Q∩φ(Q). Therefore, proving
(a’) is equivalent to proving that for all φ ∈ Γ1 except the identity map, the
following must hold:

Q ∩ φ(Q) = ∅ (2)

To justify the last step, notice that for any two sets A and B and function f ,
A ∩ B ⊆ A =⇒ f(A ∩ B) ⊆ f(A), and similarily, f(A ∩ B) ⊆ f(B). Thus
f(A ∩B) ⊆ f(A) ∩ f(B).

I will now prove (a’) by considering three cases. Let φ ∈ Γ1 and φ ̸≡ z.

• If c = 0, then ad − bc = 1 =⇒ ad = 1 =⇒ a = d = ±1, since the
coefficients are integers. Then φ(z) = z+ b = z+2n, n ∈ Z. Since Q only
includes its left border, and since the width of Q is 2, shifting Q by any
even integer does not intersect Q. Hence (2) holds.

• If c = 2d, then ad− bc = 1 =⇒ d(a− 2b) = 1 =⇒ d = ±1 =⇒ c = ±2.
In this case,

φ(z) =
az + b

2z + 1
=

(2n+ 1)z + (2m)

2z + 1

and letting n = 2m then gives us

φ(z) =
4mz + z + 2m

2z + 1
= σ(z) + 2m,m ∈ Z
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Since σ has a pole at −1/2, and since −1/2 /∈ ∂Q, we know that ∂σ(Q)
only consists of semicircles. Using the explicit formulas found in chapter
3.1.3, or just by finding the image of three points on each of the boundaries
of Q to find the corresponding circle, we get that the left vertical border
of Q gets mapped to the upper half of C( 34 ,

1
4 ), the left semicircle gets

mapped to the right semicircle which is the upper half of C( 12 ,
1
2 ), the

right semicircle gets mapped to the upper half of C( 16 ,
1
6 ), and the right

vertical border gets mapped to the upper half of C( 5
12 ,

1
12 ). Travelling

along the border of Q counter-clockwise, the interior is on the left, and
travelling along the semicircles mentioned, in the same order, we see that
the left side gives the area between the semicircles.

Figure 2: σ(Q)

We see that σ(Q) ⊆ D( 12 ,
1
2 ), and since D( 12 ,

1
2 )∩Q = ∅, φ(Q)∩Q = ∅ by

the same argument as above. Hence (2) holds.

• Finally, we can let c ̸= 0 and c ̸= 2d. To show (2), I will make a con-
tradiction using (1). To do this, I will need to show that |cz + d| > 1

for all z ∈ Q. Notice that |cz + d| > 1 ⇐⇒ z /∈ D(−d
c ,

1
|c| ). From the

description of Q, one can see that if α ∈ R and α ̸= −1/2 and r > 0, then
D(α, r) ∩Q ̸= ∅ only if at least one of the points −1, 0, 1 is in D(α, r).

(a) Not intersecting (b) Intersecting

Figure 3: The closure of a disk on R intersects Q iff -1, 0 or 1 is in the disk

Let α = −d/c and r = 1
|c| , then D(−d

c ,
1
|c| ) ∩ Q ̸= ∅ ⇐⇒ w ∈

D(−d
c ,

1
|c| ) ⇐⇒ |cw + d| < 1 where w is one of -1, 0 and 1. But this

is impossible, because since c is an even integer, and d is an odd integer,
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|cw + d| ≥ 1. Hence D(−d
c ,

1
|c| ) ∩ Q = ∅ and |cz + d| > 1 for all z ∈ Q.

From (1), we therefore get that for all z ∈ Q:

Im(φ(z)) < Im(z) (3)

Notice that if c = 2d, then −d/c = −1/2, and w ∈ D(− 1
2 , r) only if the

open D(− 1
2 , r) ∩ Q ̸= ∅. Thus the inequality would not be strict. As

for φ−1(z) = (dz − b)/(−cz + a), from (1), we get that Im(φ−1(z)) =
Im(z)/| − cz + a|2. Since c ̸= 0, we know that −c ̸= 0, but we can’t
guarantee −c ̸= 2a. The inequality is therefore not strict for the inverse
in general. If there was a point z ∈ Q where also φ(z) ∈ Q, we could use
the inequality with the inverse on the point φ(z):

Im(z) = Im(φ−1(φ(z))) ≤ Im(φ(z)) (4)

But now we get that Im(φ(z)) is both greater and strictly smaller than
Im(z). A contradiction. Thus such a z cannot exist and (2) holds.

This completes the proof of (a’).
What remains to be shown, is (b). Let Σ =

⋃
φ∈Γ φ(Q). We want to show that

Σ = Π+. By (1), we know that Σ ⊆ Π+. We also see that τn(Q) ⊆ Σ,∀n ∈ Z
where τn(z) = z + 2n.

Figure 4:
⋃
τn(Q)

Since σ maps |2z + 1| = 1 to |2z − 1| = 1, we see that Σ also contains the right
semicircle boundary of the shifted Q regions. Therefore, Σ contains all z ∈ Π+

satisfying all inequalities

|2z − (2m+ 1)| ≥ 1,m ∈ Z (5)

Fix w ∈ Π+. Since c, d are integers, there are only finitely many pairs of c, d
such that |cw + d| is below a given bound. We can therefore choose φ0 so that
|cw + d| is minimized. Hence by (1), we have:

Im(φ(w)) ≤ Im(φ0(w)) ∀φ ∈ Γ (6)

Let z = φ0(w). (6) is then equivalent to Im(φ(φ−1
0 (z))) ≤ Im(z) by substitution.

For any φ′ ∈ Γ, φ′ = (φ′ ◦ φ0) ◦ φ−1
0 and since Γ is a group, we know that

φ′ ◦ φ0 ∈ Γ. We therefore get

Im(φ(z)) ≤ Im(z) ∀φ ∈ Γ (7)
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I will now show that z satisfies (5). Consider the following compositions (n ∈ Z):

(σ ◦ τ−n)(z) =
(z − 2n)

2(z − 2n) + 1
=

z − 2n

2z − 4n+ 1
(8)

(σ−1 ◦ τ−n)(z) =
(z − 2n)

−2(z − 2n) + 1
=

z − 2n

−2z + 4n+ 1
(9)

By (1) we have

Im(σ ◦ τ−n)(z) =
Im(z)

|2z − 4n+ 1|2
(10)

Im(σ−1 ◦ τ−n)(z) =
Im(z)

|2z − 4n− 1|2
(11)

and since they are both in Γ, we can use (7) to get

Im(σ ◦ τ−n)(z) ≤ Im(z) =⇒ |2z − 4n+ 1| ≥ 1 (12)

Im(σ−1 ◦ τ−n)(z) ≤ Im(z) =⇒ |2z − 4n− 1| ≥ 1 (13)

We see that z therefore satisfies (5), and thus z ∈ Σ. There must therefore be a
point z0 ∈ Q and φ ∈ Γ where φ(z0) = z = φ0(w) =⇒ w = φ−1

0 (φ(z0)). Since
Γ is a group, we know that φ−1

0 ◦φ ∈ Γ. Thus w ∈ Σ. This completes the proof
of (b), and hence the theorem is proved.

4.3 The modular function λ

This theorem and proof is from Rudin [1] (p. 330-331). Let Γ and Q be as in
the previous section.

Theorem 4.2. There is a function λ holomorphic on Π+, where

(a) λ ◦ φ = λ, ∀φ ∈ Γ

(b) λ is injective on Q

(c) λ(Π+) = C\{0, 1} =: Ω

(d) λ has R as its natural boundary

Proof. Notice that by (a), λ(Q) = λ(φ(Q)),∀φ ∈ Γ. And by Theorem 4.1 (b),⋃
φ∈Γ φ(Q) = Π+. Hence λ(Q) = λ(Π+).

Let Q0 be the open right half of Q, i.e that for z = x+ yi,

y > 0, 0 < x < 1, |2z − 1| > 1

By theorem 3.1 (Riemann mapping theorem), since Q0 is non-empty, open and
simply connected, there exists a biholomorphic function f : Q0 → D where
D is the unit disk centered at 0. Recall from the previous section that σ(Q) is
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Figure 5: Q0

bounded. Since Q0 ⊆ Q, σ(Q0) is also bounded. We see that every finite bound-
ary point of Q0 is simple, but also that every sequence in Q0 that converges to
∞ on Ĉ, can be connected by a continuous curve within Q0 that also converges
to ∞. Thus the boundary of Q0 is simple. Hence, by Theorem 3.3, f extends
to a bijective and continous function from Q0 to D. Since 0, 1,∞ are on the
boundary of Q0, f(0), f(1), f(∞) are on the boundary of D, and since f is injec-
tive, they are distinct. Travelling along ∂Q0 counter-clockwise, the interior is on
the left, hence travelling along ∂D counter-clockwise, the interior must also be
on the left. Therefore f(0), f(1), f(∞) must be mapped to, counter-clockwise.
Consider ψ(z) = (z− i)/(z+ i). Since |z− i| < |z+ i|,∀z ∈ Π+, this maps Π+ to
D. Also, ψ(0) = −1, ψ(1) = −i, ψ(∞) = 1. Let φ be the möbius transformation
that maps f(0), f(1), f(∞) to −1,−i, 1 respectively. Since φ maps three points
on the unit circle to three points on the unit circle, the unit circle is preserved.
And since −1,−i, 1 are also ordered counter-clockwise, the interior of the disk
is preserved.

Let h = ψ−1 ◦ φ ◦ f . Then for example h(1) = ψ−1(φ(f(1))) = ψ−1(−i) = 1.
We see that 1 is a fixed point of h. The same is true of 0 and ∞. We also see
that h(Q0) = Π+, which means that h(∂Q0) = R. Thus h : Q0 → Π+ ∪ R with
0, 1 as fixed points and h(∞) = ∞.

Let iR+ denote the positive imaginary axis. Since h is real on ∂Q0, h(0) = 0,
h(1) = 1, and because h is continuous and injective on ∂Q0, we see that
h(iR+) = R−, the semicircle centered at 1/2 gets mapped to (0, 1) and h(1 +
iR+) = (1,∞). Therefore by the Schwartz reflection principle,

h(−x+ yi) = h(x+ yi) (1)

extends h to be holomorphic on interior(Q) and injective and continuous in Q.
Since h is real on ∂Q0, using (1), we see that

h(−1 + yi) = h(1 + yi) = h(τ(−1 + yi)), (y ≥ 0) (2)

h(−1

2
+

1

2
eiθ) = h(

1

2
+

1

2
ei(π−θ)) = h(σ(−1

2
+

1

2
eiθ)), (θ ∈ [0, π]) (3)
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From these observations, since the left boundaries was in Q, we see that h(Q)
contain (1,∞) and (0, 1), and because iR+ ⊂ Q, h(Q) also contain R− =
(−∞, 0). Thus h(Q) = C\{0, 1} = Ω. I will now define λ:

λ(z) = h(φ−1(z)) z ∈ Π+, φ ∈ Γ (4)

By theorem 4.1, ∀z ∈ Π+,∃!φ ∈ Γ, z ∈ φ(Q). Thus (4) defines λ uniquely in
the upper half-plane. If z ∈ Q, then the corresponding φ−1 is the identity map.
Thus λ(z) = h(z) in Q, and since h is injective in Q, so is λ. Hence (b) holds.
And since then λ(Q) = h(Q) = Ω, (c) holds if (a) holds. I will now prove
(a). Let z ∈ Π+ and let φ ∈ Γ be the unique möbius transformation where
z ∈ φ(Q). Then λ(z) = h(φ−1(z)). Let ψ be any möbius transformation in
Γ, and let φ′ ∈ Γ be the unique möbius transformation where ψ(z) ∈ φ′(Q).
Then λ(ψ(z)) = h(φ′−1(ψ(z))). But from theorem 4.1, we know that for a fixed
w ∈ Π+, ∃!Φ ∈ Γ where Φ−1(w) ∈ Q. Therefore φ−1 = φ′−1 ◦ ψ and thus
λ(z) = λ(ψ(z)), and (a) is proved.

Since h is holomorphic on interior(Q), λ is holomorphic on all interior(φ(Q))
for φ ∈ Γ, by (a). For z ∈ τ−1(Q), λ(z) = h(τ(z)), and on −1 + iR+ ⊂ Q,
λ(z) = h(z). Hence by (2), λ is continuous on Q∪τ−1(Q). Similarily on σ−1(Q),
λ(z) = h(σ(z)), and on the left semicircle border of Q, λ(z) = h(z). Hence by
(3), λ is continuous on Q ∪ σ−1(Q). Together, this tells us that λ is continuous
on Q∪ τ−1(Q)∪σ−1(Q). Therefore, λ is also continous on an open set V which
contains Q.

Let γ1 be a triangular path outside Q, but within V , where one side is close
to and parallel to the line −1 + iR+. Let γ2 be a triangular path in Q with
one side close to and parallel to the same line. Both γ1 and γ2 are oriented
counter-clockwise. Since V is simply connected, and λ is holomorphic in the
interior of Q and outside Q, by cauchy’s integral theorem,∮

γ1

λ(z) dz = 0 =

∮
γ2

λ(z) dz

But since λ is continuous on V , this still holds even if we move γ1 and γ2
together, so that the sides parallell to the line coincide on the line. On these
overlapping segments, γ1 goes upwards, and γ2 goes downwards, thus their
contribution to the sum of the contour integrals is zero. Let γ be a triangle
constructed in this way when excluding the overlapping sides. Then the closed
contour integral of λ over γ is zero for all triangles γ on the line. Hence, by
Morera’s theorem, λ is holomorphic also on the line. By the use of a möbius
transformation ψ, you can move the left semicircle of Q to the line. This shows
that λ(ψ(z)) is holomorphic on the left semicircle, which means that λ is also
holomorphic on the left semicircle. Thus λ is holomorphic in all of V , and since
φ(V ) covers Π+ by theorem 4.1 (b), where φ ∈ Γ, and since λ ◦ φ = λ, we can
conclude that λ is holomorphic in all of Π+.
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(a) γ1 and γ2 (b) γ

Figure 6: The contour integral remains zero because λ is continuous

What remains to be shown, is that λ has the real axis as its natural boundary.
This means that it cannot be analytically continued there. Notice that λ(b/d) =
h(φ−1(b/d)) = h(0) = 0. And since λ ◦ φ = λ, every fraction b/d is a zero. But
this is a dense subset of R, thus if λ could be analytically continued to R, its
zeros would have a limit point, and therefore λ would be identically equal to
zero by the identity theorem, but this is not possible, as λ is not constant.

The fact that R is a natural boundary of λ, is why we can’t use the proof
of Picard for entire functions that omit only one point. To do that, one would
have to extend the domain of λ to a region containing 0 or 1, which would then
make it constant.

One might think that h would be enough to prove Picard, since it maps some-
thing in the upper half-plane to Ω, which means that h−1 would map Ω to
something in Π+. You could then use a möbius transformation to get a map-
ping from Ω to a region contained in the unit disk. Then composing with
an entire function that maps to Ω to get a constant by Liouville’s theorem.
However, because of the reflection of the boundaries of Q, h−1 is actually not
continuous, and Liouville’s theorem would therefore not apply. Recall, h maps
Q0 to Π+, the open left half of Q gets mapped to Π− (the lower half-plane),
both semicircle boundaries of Q to (0, 1), and both vertical boundaries of Q to
(1,∞). This means that if D ⊂ Ω is a disk that intersects (1,∞), then h−1

would map the open upper half of D to a region in Q0 adjacent to the right
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vertical boundary of Q, and D∩ (1,∞) and the lower half of D would map to a
set in the left half of Q adjacent to and on the left vertical border of Q. Notice
that neither part of h−1(D) include 0 or 1, since 0 and 1 are fixed points of h,
and since D ⊂ Ω.

Figure 7: h−1(D) where D is a disk in Ω that intersects (1,∞)

5 Proof of Picard’s little theorem

Theorem. If f is an entire function that omits two distinct values in C, then
f is constant. [1] (p. 332)

Let f be an entire function that omits two values. If f omits α and β, with
α ̸= β, we could consider f−α

β−α which omits 0 and 1. We can therefore assume
without loss of generality that f omits 0 and 1.

Let Q,Γ, h, λ,Ω be as in chapter 4. (Ω = C\{0, 1}) For each disk D1 ⊂ Ω,
and for each φ ∈ Γ, there is a region V1 ⊂ Π+ where λ is injective on V1 and
λ(V1) = D1. If D1 does not intersect (0, 1) or (1,∞), then V1 is a branch
of λ−1(D1) and is contained in φ(Q). If D1 does intersect (0, 1) or (1,∞),
then h−1(D1) is disjoint, and since λ−1 = φ ◦ h−1,∀φ ∈ Γ, each branch of
λ−1(D1) = φ(h−1(D1)) is disjoint. But since the transformations φ ∈ Γ map
the two pieces from Q to countably infinitely many sets in Π+ that are adjacent,
the images of the pieces can be glued together at the boundaries of the sets φ(Q)
to create regions. V1 is in this case one of these glued pieces. Since 0 and 1 are
not in D1, D1 can intersect at most one of the intervals (−∞, 0), (0, 1), (1,∞).
Hence by the mapping properties of h−1, V1 intersects exactly one of the images
of a vertical border of Q, a semicircle border of Q and the positive imaginary
axis in Q by φ. Thus V1 intersects exactly two of the sets φ(Q). Since λ is mod-
ular, it makes no difference if we consider V1 to be the glued pieces from the left
half or the right half of φ(Q). In fact, we see that λ(φ(h−1(D1))) = λ(V1) = D1

for all φ ∈ Γ, even though φ(h−1(D1)) is disjoint, and V1 is not.
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Figure 8: Possible choices of V1 (in red) from the glued pieces of the branches of
λ−1(D1) where D1 ⊂ Ω is a disk that intersects (1,∞). These regions are open,
but is shown with a full border here, to make it easier to see. This figure is also
only 2 layers deep. There are countably infinitely many choices of V1 within
each vertical strip. All figures in this thesis have been constructed in Geogebra
version 5.

For each choice of V1, there is an inverse ψ1 holomorphic onD1 so that ψ1(λ(z)) =
z for all z ∈ V1. Let D2 be another disk in Ω, where D2 ∩D1 ̸= ∅. Then there
is a corresponding inverse ψ2 and region V2 where V2 ∩ V1 ̸= ∅. The function
elements (ψ1, D1) and (ψ2, D2) are then direct analytic continuations of each
other. Since λ : Π+ → Ω, we know that the codomain of ψi is Π+, and in
particular that ψi(Di) ⊂ Π+.

Since f(C) = Ω, there is a disk A0 ⊆ C centered at 0, so that f(A0) ⊆ D0 ⊂ Ω,
where D0 is a disk. Choose V0 ⊂ Π+ and ψ0 as above, so that ψ0 is holo-
morphic on D0, λ is injective on V0, λ(V0) = D0 and ψ0(λ(z)) = z for all
z ∈ V0. Let g = ψ0 ◦ f in A0, and let γ be any continuous curve in C start-
ing at 0. We can then choose chains of disks A0, A1, . . . , An in C that covers
γ, and D0, D1, . . . , Dn in Ω so that each f(Ai) is contained in the disk Di,
where Ai ∩ Ai+1 ̸= ∅ and Di ∩ Di+1 ̸= ∅ for all i = 0, . . . , n − 1. We can
then also choose regions Vi so that Vi ∩ Vi+1 ̸= ∅ and the corresponding ψi

so that (ψi, Di) ∼ (ψn+1, Dn+1) for all i = 0, . . . , n − 1. This gives the an-
alytic continuation (ψn, Dn) of (ψ0, D0) along the chain D0, . . . , Dn, and the
analytic continuation (ψn ◦ f,An) of (g,A0) along the chain A0, . . . , An. Since
ψi(Ω) ⊂ Π+, we know that ψn(f(C)) ⊂ Π+.

Since the function element (g,A0) can be analytically continued along any curve
γ in the complex plane, and since the plane is simply connected, by the mon-
odromy theorem, g can be extended to an entire function G which then also
must map to the upper half-plane. This is how we circumvent the problem
mentioned in chapter 4.3. By using analytic continuation on an inverse of λ,
we get a function with the same mapping properties as h−1 ◦ f , mapping C to
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something contained in Π+, but this time being continuous and entire. G(C)
will be a region similar to one of the φ(Q) sets. As alluded to in chapter 3.1.4,
we now get that F := (G− i)/(G+ i) maps the complex plane to a region con-
tained in the open unit disk, which is therefore also bounded. And since G is
entire, so is F , and then by Liouville’s theorem, F is constant in all of C. Since
(z − i)/(z + i) is not constant, by theorem 1.6, G is constant in all of C, which
must mean that g is constant on A0. Since ψ0 is injective on D0 ⊇ f(A0), and
since ψ0 is non-constant, f must be constant on A0. And then finally, since A0

is a non-empty open disk, by the Identity theorem, f is constant in all of C.

QED
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