
Anna Sophie Nymoen Tveit

Leveraging a Convolutional Neural Network for Real-
Time Classification of Distributed Acoustic Sensing
Data alongside a Railway

Master’s Thesis in Electronic Systems Design and Innovation
Supervisor: Hefeng Dong
Co-supervisor: Kevin Growe
March 2024

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

ABSTRACT

The aim of this research was to create a framework for a live-monitoring system of rail-
ways using distributed acoustic sensing data and a convolutional neural network. To
achieve the goal, this work exploited a total of 70 minutes of distributed acoustic sensing
data from a 51 km long railway line section between Trondheim and Støren (Trøndelag,
Norway). A common pre-processing flow was followed by the computation of rolling RMS
windows of 60 seconds and 1.5 kilometer with 50 % overlap in both time and space. The
resulting data windows were normalized and fed to a convolutional neural network for
classification of 12 separate signal classes, such as trains, cars, various noise types and
unknown events. A dataset of 5,000 images per class was acquired by the use of manual
labeling and various augmentation techniques, resulting in a full dataset of 60,000 im-
ages. Extensive hyperparameter tests were conducted to increase the performance of the
network. The training of the convolutional neural network resulted in a general testing
accuracy of 84.98 %, with specific class accuracies ranging from 70.65 % to 98.13 %. Ad-
ditionally, live-classification of the final model was tested by applying a forward pass of
unseen data through the model every 30 seconds for each 1.5 kilometer long overlapping
segment along the entire 51 kilometer long railway line section.

i

ABSTRAKT

Formålet med dette forskningsprosjektet var å utvikle et rammeverk for et sanntidsover-
våkningssystem for jernbaner, ved bruk av "distributed acoustic sensing" data og et
konvolusjonelt nevralt nettverk. For å nå dette målet, ble totalt 70 minutter "distributed
acoustic sensing" data fra et 51 km langt jernbanelinjesegment mellom Trondheim og
Støren (Trøndelag, Norge) bearbeidet. En kjent preprosesseringsteknikk ble brukt, hvor
hensikten var å regne ut rullende RMS-vinduer på 60 sekunder og 1.5 kilometer med
50 % overlapp i tid og rom. De resulterende vinduene ble normalisert og matet inn i
et konvolusjonelt nevralt nettverk for klassifisering av 12 ulike signalklasser, inkludert
tog, biler, ulike støytyper og ukjente hendelser. Et datasett bestående av 5,000 bilder
per klasse ble fremstilt via manuell bildemerking (labeling) og ulike bildemanipulering-
steknikker, som resulterte i et totalt datasett bestående av 60,000 bilder. Treningen
av nettverket resulterte i en generell testnøyaktighet på 84.98 %, med spesifikke nøyak-
tigheter per klasse varierende fra 70.65 % til 98.13 %. I tillegg ble sanntidsklassifisering
av den endelige modellen simulert ved å sende usett data fremover i nettverket hvert 30.
sekund for hvert 1.5 kilometer lange overlappende segment langs hele the 51 kilometer
lange jernbanelinjesegmentet.

ii

PREFACE

This research is a result of the course "TFE4930 - Electronic Systems Design, Master’s
Thesis" as the final part of a 2-year Master of Science in Engineering programme at the
Norwegian University of Science and Technology (NTNU).

I am so grateful for having had the opportunity to delve into subjects like artificial intelli-
gence, distributed acoustic sensing and big data processing during this research period. I
would like to direct my gratitude towards my supervisor Hefeng Dong for helpful guidance
on and support through the research period. And to my co-supervisor, Kevin Growe, for
being an excellent collaborator in this research. So thank you both, for allowing me to
be part of your team during this research period. And thank you Robin, for your endless
support. Lastly, I acknowledge Bane NOR and Alcatel Submarine Networks for conduct-
ing the data acquisition for this project.

The entire code written for this research is stored as a GitHub Repository and can be
viewed upon request.

Trondheim
March 11, 2024
Anna Sophie Nymoen Tveit

iii

CONTENTS

Abstract i

Abstrakt ii

Preface iii

Acronyms vi

1 Introduction 1
1.1 Research Description . 3

1.1.1 Outline . 3

2 Theory 4
2.1 Distributed Acoustic Sensing . 4
2.2 Artificial Intelligence . 6

2.2.1 Artificial Neural Networks . 6
2.2.2 Convolutional Neural Networks 7

2.2.2.1 Convolutional Layer . 7
2.2.3 Activation . 8

2.2.3.1 Pooling Layer . 9
2.3 Normalization . 10
2.4 Model Training and Hyperparameter Tuning 10

2.4.1 Loss Function . 12
2.4.2 Backpropagation Algorithm . 13

2.4.2.1 Optimization and Gradient Descent 13
2.5 Model Performance Evaluation . 14

2.5.1 Learning Curves . 14
2.5.2 Confusion Matrices and Precision/Recall Scores 14

3 Methods 16
3.1 Data Acquisition . 17
3.2 Data Preprocessing . 18
3.3 Data Labeling . 19

3.3.1 Labeling Considerations . 24
3.4 Data Augmentation . 24
3.5 Model Building and Training . 26

3.5.1 Base Model Configurations . 26
3.5.2 Training . 27

3.6 Performance Evaluation and Hyperparameter Tuning 27

iv

3.6.1 Hyperparameter Tuning . 27
1. Model Iteration . 27
2. Learning Rates and Optimizer Iteration 29
3. Additional Hyperparameters 30
4. Final Run and Live-Classification 30

3.6.2 Performance Evaluation . 31

4 Results 32
1. Model Iteration . 33
2. Learning Rates and Optimizer Iteration 34
3. Additional Hyperparameters 35
4. Final Run and Live-Classification 36

4.1 Classification Results and Evaluation . 38
4.1.1 Confusion Matrix . 38
4.1.2 Manual Inspection of Incorrect Predictions 39

5 Discussion 40
5.1 Result Interpretations . 40

5.1.1 Class Diversity vs. Accuracy . 40
5.1.2 Vehicle Classes . 41
5.1.3 Incorrect Class Labels in Dataset 41

5.2 Implications . 42
5.3 Methods Assessment and Limitations . 43

5.3.1 Future Work . 44
5.3.1.1 Dataset Development . 45
5.3.1.2 Modeling and Training 45

6 Conclusions 46

References 46

Appendices 51
A BasicModelMediumParams Architecture 51
B Training and Validation Loops . 53
C Accuracy and Loss Curves for Different Models 55
D Learning Curves with Lower Learning Rate 57
E Additional Incorrect Predictions . 58

v

ACRONYMS

AI Artificial Intelligence

ANN Artificial Neural Network

C-OTDR Coherent Optical Time Domain Reflectometry

CNN Convolutional Neural Network

DAS Distributed Acoustic Sensing

FNN Feedforward Neural Network

IU Interrogator Unit

ReLU Rectified Linear Unit

RMS Root Mean Square

SGD Stochastic Gradient Descent

SNR Signal-to-Noise Ratio

vi

CHAPTER 1

INTRODUCTION

The field of Artificial Intelligence (AI) has seen great advancements in the recent years.
The sub-field of computer vision, and in particular deep learning is no exception of that.
Concepts such as ChatGPT, self-driving cars and voice assistants like Siri or Alexa are just
a few developments that have become very popular in recent times [1][2]. Similarly, Dis-
tributed Acoustic Sensing (DAS) has gained popularity and growth for its cost-effective
and versatile way of collecting acoustic or ground vibration data with high temporal and
spatial resolution [3][4].

The large amounts of data generated during DAS acquisition, often exceed several ter-
abytes per day. Manual processing of those amounts of data is not feasible, thus auto-
mated methods are required for the task. A solution can be the use of AI, in particular
the sub-fields that specialize in tasks like pattern recognition and categorization. With
this in mind, the use of DAS for data collection and AI for data organization and pattern
recognition opens up a wide range of applications. There are several relevant articles on
this topic. For instance, Kayan et al. used deep learning state-of-the-art methods on
DAS data for classification of various DAS signals in 2022 [5]. Peng et al. identified and
classified human movement using deep learning on DAS data in 2020 [6]. In 2023, Corera
et al. used machine learning methods for identification and classification of vehicles using
DAS data [7]. Additionally, Nayak and Ajo-Franklin used DAS methods to successfully
detect earthquakes in 2021 [8], while deep learning methods were used on DAS data for
the same purpose by Hernández et al. in 2022 [9].

Additionally, previous research indicates that Convolutional Neural Network (CNN)s are
well suited tools for processing of DAS data. For instance, Wu et al. used a CNN for
pattern recognition on DAS data in 2023 [10]. Rahman et al. used a combination of a
CNN and other learning methods for monitoring railway tracks using DAS data in 2024
[11]. Moreover, Wang et al. researched CNN application related to railway tracks using
DAS data in 2021 [12].

1https://sdgs.un.org/goals

1

https://sdgs.un.org/goals

2 CHAPTER 1. INTRODUCTION

There are several advantages in using DAS for data collection. Among other things, the
fiber often coincides with vehicle and railroads, making DAS easily available for data
acquisition. Besides, DAS is considerably cheaper than other conventional sensors (e.g.
geophones), making it a cost-effective option. The fiber is usually buried, thus the data
is not subject to any weather effects. Conversely to other sensors, the fiber itself does
not require any power supply, which benefits acquisitions over long distances. DAS is
sustainable and environmental friendly, making it a viable contribution to UN’s sustain-
ability goals1. All these benefits make DAS an attractive candidate for data collection.

There is currently a growing need for effective and accurate monitoring solutions [13].
Problems with animal crossings/collisions and other kinds of disturbance could be pre-
vented with a live-monitoring system along the railway line. One solution could be the
utilization of DAS and a CNN. Based on previous research and the inherent proper-
ties of both DAS and CNNs, a monitoring system integrating both technologies seems
promising. In order to assess the feasibility of such a system, this research aims to cre-
ate a framework for a live-monitoring system of railway DAS signals, by the use of a CNN.

If successful, this research could provide railway companies with a valuable tool, enabling
monitoring of trains, cars, noise and other events along entire railway lines. Moreover,
the methods developed in this research may have potential for even further development,
with potential applications like traffic analysis, event detection of railway or traffic acci-
dents, animal crossings, and possibly even anomaly detections of hazards like landslides.
Additionally, this research may turn out to be a valuable contribution to today’s growing
pool of research regarding the integration of AI and DAS. Even though the main focus of
this thesis is on railway monitoring, due to its adaptability, the developed workflow may
be applicable in other research fields and industries.

An additional benefit of this research is its contribution to the United Nations’ sus-
tainability goals. A number of the goals are highly relevant to this research, including
the development of sustainable monitoring practices and efficient resource management.
Other goals, such as improved hazard assessment and facilitation of early structural issue
detection may also be relevant. Strategic integration of AI and DAS technology may lead
to more effective and environmentally conscious monitoring solutions, which addresses the
challenges of infrastructure sustainability, urbanization and climate resilience, defined by
goals 9.11, 11.32 and 13.13 respectively.

1Develop quality, reliable, sustainable and resilient infrastructure, including regional and transborder infrastructure, to
support economic development and human well-being, with a focus on affordable and equitable access for all

2By 2030, enhance inclusive and sustainable urbanization and capacity for participatory, integrated and sustainable
human settlement planning and management in all countries

3Strengthen resilience and adaptive capacity to climate-related hazards and natural disasters in all countries

CHAPTER 1. INTRODUCTION 3

1.1 Research Description

The main goal of this research is to be able to classify different signal classes on a railway
in real-time, after building and training a CNN specialized for the given task. For this
goal, the research explores DAS data collected during 70 minutes on a railway in between
Marienborg and Støren in Trøndelag, on the 31st of August in 2021. A map of the fiber
placement is displayed in Figure 3.2 in the Methods section. This research builds on
the previous work by the author’s project report, "Leveraging Unsupervised Machine
Learning Methods for Distributed Acoustic Sensing" [14], finished in June 2023. Where
the earlier work was based upon the research of unsupervised learning, this work is based
on supervised learning. In this research, a method of labeling and augmenting training
data is developed, before the training data is passed through the specialized CNN for
classification. The results of the classification are listed and discussed, and the model
is further tested on a dataset unseen by the model as a simulation of live classification.
Based on the findings of the research, future work recommendations are given.

1.1.1 Outline

Chapter 2 includes basic theoretic explanations of the principles utilized throughout the
research.
Chapter 3 describes a full workflow ranging from data acquisition to the final training
of the CNN.
Chapter 4 displays all relevant findings/results from this research.
Chapter 5 contains a discussion which reflects around the project methods, results and
its relevance to research today, in addition to suggestions for future work.
Chapter 6 is a research summary.

CHAPTER 2

THEORY

The aim of this chapter is to provide the reader with all the necessary theoretical back-
ground needed in order to understand the following contents of the subsequent chapters
of this thesis.

2.1 Distributed Acoustic Sensing

There are multiple techniques for performing DAS [15]. One commonly employed tech-
nique involves the application of Coherent Optical Time Domain Reflectometry (C-
OTDR), which is based on the measurement of Rayleigh scattering [16].

Figure 2.1: Working principle of C-OTDR. In (a) the Interrogator Unit (IU) sends a laser
pulse into the fiber. (b) and (c) illustrates the fiber segment as L and the fiber elongation
as ∆L. This elongation is causing a phase shift, ϕ, which is measured by the interrogator
unit, illustrated to the left of the figure. Figure adapted from Lowrie and Fichtner [17].

Following the C-OTDR principle, an Interrogator Unit (IU) is placed at one end of the
fiber-optic cable, sending light pulses into it. Part of the light is reflected at the inherent
impurities within the fiber and is recorded by the IU. If a segment of the fiber is either
compressed or elongated, the change of position of the impurities between consecutive
interrogations results in a phase shift of the back-scattered laser pulse [18]. See Figure
2.1 for an illustration of C-OTDR.

4

CHAPTER 2. THEORY 5

The phase shift measured by the IU has a proportional relationship with the strain acting
on the cable [18], and can be calculated using the following set of formulas, adopted from
Taweesintananon et al. [19]. If c ≈ 3 ∗ 108 is the speed of light in vacuum, ng is the
refractive index of the fiber and ∆τ is the sampling period at the optical receiver, the
spatial sampling interval, or SSI, can be calculated using the following formula:

SSI =
c

2ng

∆τ (2.1)

Furthermore, the phase of the back-scattered light, ϕx, is calculated in Formula 2.2, where
x is the spatial sample location, or channel, and λ0 is the free space wavelength.

ϕx =
4πngx

λ0

(2.2)

The IU measures the time-differentiated phase change ∆ϕ̇ over a small subsection of the
fiber, the so-called gauge length (LG), as:

∆ϕ̇x = ϕ̇avg,x+LG/2 − ϕ̇avg,x−LG/2, (2.3)

where LG is set by the operator as a multiple of the SSI:

LG = N∆τ ∗ SSI (2.4)

Both the Signal-to-Noise Ratio (SNR) and the spatial resolution is dependent on the
gauge length. A larger gauge length will cause a higher SNR, while also lowering the
spatial resolution. If ζ is the strain-optic coefficient, a material parameter of the fiber,
the longitudinal strain-rate can then be computed using the following formula:

ϵ̇xx,x =
λ0

4πngζLG

∆ϕ̇x (2.5)

Finally, strain is more stable and less susceptible to noise than the strain rate, and is
commonly used instead:

ϵxx,x =

∫
ϵ̇xx,xdt (2.6)

6 CHAPTER 2. THEORY

2.2 Artificial Intelligence

Simply put, AI is the simulation of human intelligence, performed by machines. To
realize this, deep learning exists as a technique for the machines to achieve this simulated
intelligence [20]. Neural networks, like Artificial Neural Network (ANN)s or CNNs are
the foundation of deep learning algorithms.

2.2.1 Artificial Neural Networks

There are two broad types of ANNs: Feedforward Neural Network (FNN)s and recurrent,
or bidirectional, neural networks. The FNN is the basis of CNNs, which are commonly
used in image classification problems.

x1

x2

h1

h2

h3

y1

y2

Figure 2.2: A FNN with an input layer consisting of two nodes (x1 and x2), one hidden
fully connected layer with three nodes (h1, h2 and h3) and an output layer with two nodes
(y1 and y2).

A FNN, also known as a multilayer perceptron, consists of layers of interconnected neu-
rons, each layer processing information and passing it to the next layer. As the name
suggests, the layers form a network, which consists of functions in chain structures. For
instance, a network consisting of three functions, or layers, f 1, f 2 and f 3, can look like
this [21]:

f(x) = f 3(f 2(f 1(x))) (2.7)

The depth of the network is defined by the number of functions in the chain. Further,
the network has an input layer, x, one or more hidden layers, h, and an output layer,
y. FNNs process data in a forward direction, meaning information flows from the input
layer through the hidden layers to the output layer. Each neuron in a layer takes inputs,
applies weights, w, to those inputs, computes a weighted sum, adds a bias term, b, and
then passes the result through an activation function, a. This process is repeated layer
by layer until the final output is generated. The general formula for calculating one node
in a FNN follows. Here, yk is an output node for a certain class, k, b is the bias, a is
the activation function, while xi and wi point to the nodes on the previous layer and the
applied weights, respectively.

yk = a(b+
N∑
i=1

xiwi) (2.8)

CHAPTER 2. THEORY 7

Further, an example is given below, in which the hidden node h1 from Figure 2.2 is
calculated.

h1 = a(b+
2∑

i=1

xiwi) = a(b+ x1w1 + x2w2) (2.9)

2.2.2 Convolutional Neural Networks

In essence, CNNs are ANNs that use convolution in place of general matrix multiplication
in at least one of their layers [21]. As opposed to other ANNs, CNNs are especially well
suited for image classification. Generally, a CNN consists of a series of stacked layers of
different kinds. Typically, one or more layers consisting of three sub-layers, or stages, are
used. In the first stage, a number of convolutions are performed in parallel, producing
a set of linear activations, or activation maps, proportional to the input [22][23]. In
the second stage, each of these activations are fed to an activation function in order to
introduce non-linearity [24]. In the third stage, a pooling operation is performed [21], to
reduce the data to lower dimensionality. The next three sections explain each stage in
more detail. The output of the last convolutional layer is flattened into a 1D array and
fed to one or more fully connected layers, (alternatively with one or more dropout layers
inserted in between them) to obtain the final classification result [25]. See Section 2.4 for
an explanation of dropout.

2.2.2.1 Convolutional Layer

In a convolutional layer, one or more filters, also called kernels, are slid through all
spatial locations of an input image. The convolution operation is displayed in Formula
2.10. Throughout the sliding operation, the dot product between the filter and the image
is computed for all individual locations. These resulting dot products produce a feature
representation of the original input. Each filter applied to the input image generates an
output image, a so-called activation map or filter bank [26].

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (2.10)

Above is the convolution formula, where I is a two-dimensional image and K is a two-
dimensional filter/kernel. For simplicity reasons, it is more common to use the cross-
correlation operation, which is the same as convolution, but without flipping the kernel
[21]. The operation changes to the following equation:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (2.11)

8 CHAPTER 2. THEORY

The values within the kernels of the convolutional layers are learned by the model during
training. Depending on the values, each kernel detects a certain shape in the input image
[27]. Additionally, the size of the kernel decides the size of the shapes that are being
detected during the convolution, meaning a larger kernel size may be better at detecting
larger shapes, while a smaller size may be better at detecting smaller shapes, like textures
and finer details, in the input image.

nout =
nin + 2p− k

s
+ 1 (2.12)

Depending on the individual case, the convolutional operation is given specific parameters
by the operator, such as kernel size, image zero padding and stride. Among other things,
these parameters determine the resolution of the re-representation, as well as the number
of trainable parameters for that specific stage. Formula 2.12 computes the dimensions of
the output images, nout, from the convolution operation for the input dimensions, nin,
where the stride is s, the padding is p and the kernel size is k.

2.2.3 Activation

An activation function is a function used for calculating the output of a node. It maps
the node result into a certain value range. It further adds non-linearity to the network
which enables output complexity [28]. Without the non-linear activations, the entire fully
connected layers collapse to a simple matrix multiplication. In CNNs, using Rectified
Linear Unit (ReLU) as activation function is a popular choice due to its efficiency and
strong generalization properties, in addition to its ease of optimization [21].

Figure 2.3: ReLU activation function.

CHAPTER 2. THEORY 9

Figure 2.3 displays the plot of a ReLU function. In essence, what this activation function
does is transform all negative values to 0. By applying ReLU to the convolutional layer,
all negative values resulting from the convolution are converted to 0, while the positive
values are kept unchanged. The formula for ReLU is presented below, where x is any
input value:

f(x) = max{0, x} =

{
x if x > 0,

0 otherwise.
(2.13)

2.2.3.1 Pooling Layer

In the pooling stage, or layer, the pooling operation extracts the main features generated
by the convolutional layer of a model. This operation both reduces dimensionality and
makes the model more robust to positional variations of the input image features [21]. By
filtering the less important features and keeping the most representative ones, the model
will be able to generalize better, and the risk of overfitting1 will be reduced. The following
figure displays a popular variation of the pooling operation called max pooling [29]. The
principle is that by outputting the maximum value of a specified region and discarding the
other values, the resulting size of the output feature maps is reduced. Additionally, this
reduction causes a decrease in computational needs. Typically, the pooling operation is
performed for regions of size 2 x 2 [30]. Similarly to the convolutional layer, Formula 2.12
can be used in the pooling layer for computing the output from the pooling operation.

5 2 8 2

3 1 4 3

1 5 2 3

2 7 6 4

MaxPool
5 8

7 6

Figure 2.4: Visualization of a MaxPool operation, where the maximum value from each
region is retained.

1Overfitting occurs when a function fits too well with the training data (ie. it memorizes each data
sample instead of the data patterns, causing generalization error).

10 CHAPTER 2. THEORY

2.3 Normalization

Data normalization is often performed prior to training of a neural network, in order
to ensure stability and to avoid exploding or vanishing gradients, which can slow down
or prevent optimal training [31]. There exists various normalization techniques, and a
common technique is presented in Formula 2.14, where x is the data point, xnorm is the
normalized data point, µ is the mean of the dataset and σ is the standard deviation of
the dataset. As displayed, the normalization is performed by subtracting the mean of the
dataset and dividing each image by the standard deviation of the dataset. This results
in data that is centered around 0, with a standard deviation of 1.

xnorm =
x− µ

σ
(2.14)

2.4 Model Training and Hyperparameter Tuning

A common way to train an ANN is to split the dataset into three subsets; for training,
validation and testing. The training set is used to train the model and update its parame-
ters, or more specifically its weights and biases. During training, the process is evaluated
with an unbiased validation set. The evaluation metrics can then be examined by the
operator for use in the tuning of the model hyperparameters in an attempt of achieving
the most optimal model performance. After the tuning process, the model with its final
weights and biases can be tested with the last subset which has not yet been seen by the
model. The final evaluation of the model with the test set gives an indication of how well
the model generalizes, i.e. how well it handles new data [32].

In order to make the model training as efficient as possible, tuning of the different model
hyperparameters should be performed. The model hyperparameters are the parameters
that determine which weights and biases the model learns [33]. In order to manually
tune the model in the most optimal way, it is important to have an understanding of the
relationship between hyperparameters and computational resources, as well as training
and generalization error [21]. The tuning process is commonly based on the results from
model evaluation metrics, which are explained in Section 2.5. In the following, some
commonly examined hyperparameters are listed, before they are explained below.

• Train, test and validation set size

• Optimization technique

• Loss function

• Learning rate

• Regularization techniques

• Number of epochs

• Batch size

• Model configuration

• Activations

• Kernel parameters

• Pooling parameters

CHAPTER 2. THEORY 11

Train, test and validation set size
Commonly, the training, validation and testing set ratio in a neural network is set to
around 70 - 80 % for the training set, 10 - 20 % for the validation set and 10 - 20 %
also for the testing set. Depending on the nature of the specific problem, the optimal
subset ratio may differ. By the use of evaluation metrics, in particular learning curves,
on the training and validation sets of the training phase, it is possible to make some
considerations of whether the validation or training set size is unrepresentative [34]. See
Section 2.5.1 for theory on learning curves. Based on these considerations, one can then
change the ratio accordingly in order to improve the model performance.

Optimization technique
When choosing the ideal optimizer for a specific problem, the decision can be based on
the explanation given further down in Section 2.4.2.1.

Loss function
When choosing the ideal loss function for a specific problem, the decision can be based
on the explanation given further down in Section 2.4.1.

Learning rate
When choosing the ideal loss function for a specific problem, the decision can be based
on the explanation given further down in Section 2.4.2.1.

Regularization techniques
Regularization techniques are commonly employed as a way of improving stability and
overfitting prevention. Methods like L2 regularization, early stopping and dropout are
some popular choices of regularization technique. L2 regularization (also called weight
decay) is a method where a penalty is added to the loss function, based on the size of
the weights (larger weights cause larger penalty) [35]. By implementing early stopping
on the training phase, the training can stop when a certain criteria is met: often when
the loss stops decreasing. Loss is explained in Section 2.4.1. For the Dropout method,
some connections between nodes in fully connected linear layers are randomly switched
off during training iterations, enhancing the updates of the remaining weights.

Epoch number
Deciding the ideal number of epochs for a specific problem is important in order to
achieve the optimal performance and to prevent over- and underfitting. Depending on
for instance the learning rate and the complexity of the data, the optimal number of
epochs differs. Evaluation using learning curves can help the operator decide the optimal
epoch number. See Section Section 2.5.1 for theory on learning curves. For instance one
can use the point in the loss curves where the validation loss is starting to deviate from
the training loss as a guide for when to stop the training. Further, as mentioned above,
using early stopping during training can help to prevent overfitting.

12 CHAPTER 2. THEORY

Batch size
There are several considerations to make when deciding the model batch size. The batch
size is the amount of samples that the model learns from before it makes an update to
the weights and biases. The more batches you have, the less samples per batch, and the
more updates the model will make to the weights and biases per epoch, ie. batch size =
training dataset / batch number.

The batch (or mini-batch) size can be understood as a trade-off between performance
and computational need. Larger batch sizes usually need less time for training, which
can be explained by an increase in effectiveness, meaning larger portions of the data are
used each time the gradient is updated, leading to fewer overall updates [36]. However,
results with larger batch sizes may be less optimal than with smaller batches. One can
say that larger batch sizes degrade model generalizability, which has been observed by
among others Keskar et al. [37]. A possible explanation of this can be that the many
training samples within the same batch interfere with each other’s gradient, causing them
to cancel each other out [38]. A smaller batch size on the other hand allows the model
to learn more from each individual sample, as there are fewer samples in each update.
However, a smaller batch size may be more susceptible to random fluctuations in the
training data, as opposed to larger batch sizes. Moreover, small batch sizes can offer a
regularizing effect [21]. For reference see explanation of regularization above. Finally, the
batch size may also be limited by the computing power of the given GPU.

Model configuration
The model configuration is an important hyperparameter. Three important factors are
the model depth (number of hidden layers), width (number of nodes/filters in hidden
layers) and complexity in relation to data amount/complexity. As the complexity of the
data increases, the need for a deeper network is required [39]. It follows then that the
requirements of the dataset size is increased with increased network depth. Earlier expla-
nations cover considerations regarding model activations, as well as kernel and pooling
parameters, see Section 2.2.2.

2.4.1 Loss Function

The loss, or equivalently the cost, of the model is defined as the difference between ground
truth, which are the labels of the input, and the predicted output. For classification tasks,
the cross-entropy loss function is commonly used. If i is the class index ranging from 1 to
N , y is the true label, while ŷ is the predicted label, then the cross-entropy loss function
L can be expressed like this:

L(y, ŷ) =
N∑
i=1

yilogŷi (2.15)

CHAPTER 2. THEORY 13

Further, the average cross-entropy loss can be defined for a batch, B, where j is the index
for samples within the batch:

L(y, ŷ) =
1

B

B∑
j=1

L(yj, ŷj) (2.16)

2.4.2 Backpropagation Algorithm

The learning of neural networks requires computation of the gradients of complex high-
dimensional loss functions and updating of the network parameters in direction of the
negative gradient direction. This can be achieved by applying the back-propagation
algorithm [21]. According to Rumelhart et al., backpropagation repeatedly adjusts the
weights of the connections in the network so as to minimize the difference between the
actual and the desired output vector of the network [40]. By using the chain rule of
calculus displayed in Formula 2.17, the backpropagation algorithm can propagate the
prediction error backwards into the network, layer by layer, to single weights. The chain
rule of calculus states the following [21]:

dz

dx
=

dz

dy

dy

dx
(2.17)

In the above equation, x is a real number, and the functions y = g(x) and z = f(g(x)) =
f(y) are both mapping from and to real numbers.

2.4.2.1 Optimization and Gradient Descent

A common technique for updating the weights and biases of a network is gradient descent.
Here, the updated weights are computed iterativeley, while minimizing the loss until
convergence is reached. One step of the process can be defined as:

w′ = w − ϵ∇wL(w), (2.18)

where w is the initial weight, w′ is the updated weight, ϵ is the learning rate, and ∇wL(w)
is the gradient of the loss function with respect to the model parameters. The learning
rate determines the size of the steps taken during each iteration, deciding the movement
speed down the slope. When the gradient vanishes, a local or global minimum is found
[21].

As displayed in Formula 2.18, the choice of learning rate is an important factor in regards
to the performance of gradient descent. If the learning rate is too small (and there are too
few epochs), the algorithm may not reach convergence. However, if the learning rate is
too large, it can cause the training to overshoot and miss the optimal convergence point,
resulting in an increased loss.

There are different variants of gradient descent commonly employed in deep learning
networks. These variants are often called optimizers, and Stochastic Gradient Descent
(SGD) is one of the most popular of these. Here, the updates are computed using a

14 CHAPTER 2. THEORY

random subset of the training data, or more specifically using mini-batches, in each
iteration. This saves time, as the model only needs to compute the gradient for each
mini-batch of input data, rather than for every individual example. Moreover, computing
the gradients on mini-batches yields more stable and less noisy gradients, compared to the
gradients of single data samples. Additional popular optimizers include Adam, Adagrad
and RMSprop, which adapt the learning rate during training [21]. This adaptation helps
the algorithm to not overshoot the local minimum, by decreasing the learning rate based
on the steepness of the gradient.

2.5 Model Performance Evaluation

Model training can be evaluated in a number of ways. In order to evaluate the perfor-
mance of a model on given data, it is common to measure the accuracy or equivalently,
the error rate of the system [21]. These scores are commonly evaluated by plotting and
interpreting learning curves. Other popular methods for multi-class problems include
using confusion matrices, which are computed on the test set. From these matrices, pre-
cision/recall metrics can be computed.

2.5.1 Learning Curves

Generally speaking, learning curves display predictive performance relative to the amount
of learning effort [41]. It is common to plot curves for the training vs. validation loss
and accuracy per training epoch. The relationship between the curves can give valuable
information about the training. For instance, the curves can be used as an assessment
tool for overfitting, where the relationship between the training vs. validation curves
for both loss and accuracy gives an indication of whether the model overfits (large gap
between curves) or not (no gap) [42].

2.5.2 Confusion Matrices and Precision/Recall Scores

Confusion matrices are commonly computed from the testing set (data unseen by model
during training).

TP

P
os

it
iv

e

Positive

FN

Negative

FP

N
eg

at
iv

e

TNA
ct

u
al

V
al

u
e

Prediction Outcome

Figure 2.5: T = True, P = Positive, F = False and N = Negative. The prediction outcome
indicates the predicted values, while the actual value indicates the true labels.

CHAPTER 2. THEORY 15

A True Positive (TP) score indicates correct predictions of the positive truths. True
Negative (TN) indicates correct predictions of the negatives. On the other hand, False
Positive (FP) indicates incorrectly predicted truths (ie. model predicted a negative truth
to be positive). False Negative (FN) indicates incorrectly predicted negatives (ie. model
predicted a positive truth to be negative).

Out of all the positive predicted, the precision score indicates what percentage is truly
positive. Out of the total positive, the recall score indicates what percentage are predicted
positive.

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(2.19)

The accuracy is the number of correct predictions divided by the total number of predic-
tions.

Accuracy =
TP + TN

TP + TN + FP + FN
=

TP + TN

Total
(2.20)

CHAPTER 3

METHODS

In this chapter, the methods applied in this research are described and explained in-
depth. These methods were integrated into the workflow leading to the research results
presented in Chapter 4, and include the full process from the data collection, to the CNN
evaluation and live-classification. The flow chart in Figure 3.1 below displays the general
workflow of the research, with its core steps laying the foundation for this chapter.

live-classification

test set

validation set

train set

ml dataset

hyperparameter
tuning

performance
evaluation

model building
& training

data pre-
processing

data labeling

data acquisition

data aug-
mentation

Figure 3.1: Project workflow visualization. The blocks colored in red are the core steps of
the project. The green blocks represent the data blocks, while the blue block represents
the final model deployment phase. Notice the bidirectional arrows in the bottom red
blocks.

16

CHAPTER 3. METHODS 17

3.1 Data Acquisition

The data in this research was acquired using the OptoDAS IU from Alcatel Submarine
Networks1. The IU was placed at Marienborg station in Trondheim, interrogating a
fiber co-located with the 51 km long railway section between Trondheim and Støren. See
Figure 3.2 for a map of the fiber placement. The entire dataset of the experiment contains
continuous data collected through one week dated back to August 2021. This research
explores 70 minutes of DAS data during one day of that week, collected at a sampling
frequency of 2 kHz. The fiber length is 51 km, which implies that there are a total of 51
km / 1.02 m = 50,000 absolute channels along the fiber segment. In order to improve the
SNR the channels were stacked by a factor of four during the acquisition, yielding 12,500
channels with a spatial sampling interval of dxacq = 4 SSI = 4.08 m [43]. To ease the
data handling without losing too much information the channels were further stacked by
a factor of eight, resulting in a final spatial sampling interval of dx = 32.6 m and 1,563
channels. The gauge length (see Formula 2.4) was set to twice the initial spacing; 2 *
4.08 m = 8.16 m.

Figure 3.2: Map of railroad, courtesy of https://togkart.banenor.no/. Data collected
between Marienborg and Støren.

1https://web.asn.com/en/

https://togkart.banenor.no/
https://web.asn.com/en/

18 CHAPTER 3. METHODS

3.2 Data Preprocessing

The raw data was first converted from time-differentiated phase to strain rate and inte-
grated along the time axis to obtain strain, see Formula 2.6 for reference. Thereafter, the
data was downsampled to 500 Hz, the linear trend was removed from the data and a fifth
order bandpass filter was applied. Different frequency ranges were tested as illustrated
in Figure 3.3. The higher frequency band of 25 - 150 Hz was chosen since a lot of the
low frequency noise around the main signal was removed and it appeared clearer for the
classification. With a high cut frequency of 150 Hz and a sampling frequency of 500 Hz
it is ensured that the Nyquist theorem requirement is met [44].

Figure 3.3: Comparison of different bandpass filters applied to the DAS data.

Instead of using the raw strain data with both positive and negative amplitudes (com-
pression and extension of the fiber), its rolling Root Mean Square (RMS) was computed,
yielding sufficient information of the average absolute amplitude while drastically reduc-
ing the amount of data to handle. The rolling RMS is computed as:

RMSj =

√√√√ 1

Nw

Nw∑
i=1

d2i , (3.1)

where di is the strain amplitude at index i and Nw is the number of samples within the
window. The RMS was computed on each channel separately with a window length of
0.4 s with 50 % overlap, resulting in one RMS sample at a new time index j every 0.2
s. Finally, the dataset (70 mins x 51 km) was cut into 8,160 windows of 1 min and 1.5
km extent with 50 % overlap in both time and space direction. This approach allows for
later live-classification of events every 30 s at a spatial interval of 750 m along the entire
line. Moreover, prior to the data labeling, the windows were normalized, see Section 2.3
for reference.

CHAPTER 3. METHODS 19

Figure 3.4: RMS strain dataset alongside the 51 km railway line section. N and S mark
North (Marienborg, Trondheim) and South (Støren), respectively.

3.3 Data Labeling

The data labeling process was performed by manual inspection of the signals. Following,
a list of classes chosen for the dataset is presented. The characteristics of each class are
explained. Further, considerations made prior to the labeling process are discussed. For
reference, see Figure 3.4 and 3.5 for the full 70 minutes of data along the 51 km length
railway section, before and after the labeling process. See Table 3.2 for a view of the
number of labeled windows per class. Each of the 12 signal classes was selected based on
which events in the dataset were identified, as well as their potential usefulness for the
end user.

Table 3.1: Table displaying index and its corresponding class. Notice the directions
marked North to South (NS) and South to North (SN).

0 Ambient noise 6 Cargo train NS
1 Unknown noise 7 Cargo train SN
2 Artifact noise 8 Motor vehicle NS
3 Stationary noise 9 Motor vehicle SN
4 Passenger train NS 10 Motor vehicle NS, SN
5 Passenger train SN 11 Multiple objects

20 CHAPTER 3. METHODS

Figure 3.5: RMS dataset as in 3.4 with labeled data windows marked in red.

The passenger train classes include signals coming from passenger trains. Passenger
train signals are characterized by thin and long diagonal high amplitude lines. In Figure
3.4, multiple of these can be seen. One example is the line beginning at 0 km and approx-
imately 62 minutes. Following this line one can see it ending at 51 km and approximately
22 minutes. The curves in these signals are caused by velocity changes and stops at train
stations along the way. See Figure 3.6 for a detailed view of what a passenger train signal
can look like.

Table 3.2: Amount of labeled images per class. Total amount of labeled images is 1667.

Idx. Class Labeled Idx. Class Labeled

0 Ambient noise 188 6 Cargo train NS 159
1 Unknown noise 221 7 Cargo train SN 0
2 Artifact noise 64 8 Motor vehicle NS 114
3 Stationary noise 147 9 Motor vehicle SN 138
4 Passenger train NS 123 10 Motor vehicle NS, SN 175
5 Passenger train SN 163 11 Multiple objects 149

A similar approach was followed for the cargo train class. The class is characterized
by a similar diagonal line as the passenger train signal, however this line is wider, i.e.
the signal affects multiple channels simultaneously, and has a slightly higher amplitude.
Again looking at Figure 3.4, a cargo train signal is visible as the somewhat wide, high
amplitude line, ranging from approximately 10 km and 5 min to 51 km and 65 min. The
"jump" at 30 km is caused by the cargo train stopping. See Figure 3.6 for a detailed view
of what a cargo train signal can look like. Notice that there are no cargo trains going
from South to North in the dataset.

CHAPTER 3. METHODS 21

Figure 3.6: To the left: passenger train NS. To the right: Cargo train NS.

Figure 3.7: To the left: Vehicle SN. To the right: Vehicle crossing.

22 CHAPTER 3. METHODS

Further, all signals coming from motorized vehicles are included in the motor vehicle
classes. These signal classes are, similarly to the train signal classes, characterized by
diagonal lines. However, these usually have a lower amplitude and are apparent only in
certain channel ranges (around crossings or roads close to the train track). A subclass
within the motorized vehicle class consists of the crossings between the railway line and
vehicle road. As opposed to the vehicles traveling on roads parallel to the railway line,
these are cars traveling east-west and west-east. These signals are characterized by short
diagonal lines in both directions. The classes are divided into northbound and south-
bound directions, as well as both northbound and southbound directions in the same
frame. See Figure 3.7 for a detailed view of what two motor vehicle signals can look like.

Figure 3.8: To the left: Ambient noise. To the right: Artifact noise.

The data further features several noise classes. The ambient noise class consists of more
or less constant background noise, where little to nothing happens in each frame. See
Figure 3.8 for a detailed view of what an ambient noise signal can look like. Artifact
noise represents noise signals coming from the IU, which is characterized by thin, hori-
zontal, high amplitude lines on certain times, ranging over sections of channels across the
dataset. See Figure 3.8 for a detailed view of what an artifact noise signal can look like.
There is also stationary noise, which is characterized by vertical lines in the dataset,
differing in amplitude and channel width, usually ranging through the entire time axis.
See Figure 3.10 for a detailed view of what a stationary noise signal can look like. The
unknown noise class includes the rest of the signals that are unknown to the operator.
This can include construction noise (if not constant), or other unknown events. See Fig-
ure 3.9 for a detailed view of what two different unknown noise signals can look like.

CHAPTER 3. METHODS 23

Figure 3.9: Two examples of unknown noise.

Figure 3.10: To the left: Multiple objects (stationary noise and cargo train NS). To the
right: Stationary noise.

24 CHAPTER 3. METHODS

Lastly, the frames that contain more than one of the above signals (with similar ampli-
tude), were labeled as multiple objects. This class also includes train stops. See Figure
3.10 for a detailed view of what a multiple objects signal can look like.

In order to make the labeling process more efficient, a labeling script was created to
enable semi-automatic inspection and labeling of each image. Using the labeling script,
the entire dataset can be plotted in one image. Based on this image, channel and time
indexes were selected in such a way that the user could choose a class label based on what
was displayed in that specific time and channel index. Additionally, for each label, the
script prompts for a certainty, ranging from 0 (uncertain) to 1 (somewhat certain) and
to 2 (certain). Lastly, the labels were either confirmed or changed by a second operator
in order to reduce the human bias and the errors in the dataset.

3.3.1 Labeling Considerations

During the labeling process, the label for each window was chosen based on which signal
class displayed the highest amplitude within said window. Thus, windows containing
multiple objects were labeled as multiple objects unless one of the signal types was no-
tably more apparent than the other(s).

Additionally, there was a focus on acquiring an even and balanced dataset. An ap-
proximately equal number of windows were labeled per class (except "cargo train SN").
Besides, there was also a focus on labeling as many individual events as possible, given
all events occurring in the dataset.

Moreover, the signals were only labeled when clearly visible in the image. Accordingly,
if the identifiable part of the signal class was obscured (ie. signal was on an edge or in a
corner) it was ignored, and the remaining signal within the image was labeled instead. As
the real-time classification would be performed over longer time instances than the time
instances of the labeled images, the ignored signal would still be detected and classified
in an adjacent frame.

Lastly, after the labeling process, a filter with a set amplitude limit was applied to
a smoothed version of the labeled images. Images that did not exceed the amplitude
threshold after smoothing were subsequently assigned to the ambient noise class.

3.4 Data Augmentation

To balance the distribution among the classes and increase the general size of the dataset,
which is important to reduce generalization error of a model [21], each class label was
considered for data augmentation. It is good practice to have an even amount of data
samples in each class. A rule of thumb states that you would need approximately 5,000
images per class in order to sufficiently train a CNN. To generate this amount of data
samples, several data augmentation techniques can be used. According to Goodfellow et
al., classifiers can benefit from random translations, rotations and flips of the data [21].

CHAPTER 3. METHODS 25

A consideration made when selecting augmentation techniques for this data, was the at-
tempt to acquire "naturally occurring" results, which might have a chance of happening
in real-time. Thus, augmentation techniques such as shifting, flipping and Gaussian blur-
ring and adding noise were chosen.

Prior to augmentation, labels in the original dataset were flagged with a score from 0 to
2 (no, maybe, yes), based on how compatible the window would be with augmentation.
For instance, a window displaying a train signal should be as much in the center of the
window as possible for it to be compatible with shifting in both directions, while still
maintaining its original class label. As a safety measure, after augmentation, these shifts
were examined in order to see whether they were still in the correct class, or if the class
needed to be changed

The following augmentation methods were applied:

• Inverting (around x axis and y axis)

• Shifting (in time and distance)

• Adding Gaussian noise

• Gaussian blurring

In the first step of the data augmentation, all windows flagged with an augmentation
score of 1 (maybe) or 2 (yes) were shifted along both the time and the space axis, in both
positive and negative direction. Based on the nature of the data (ie. the dimensions of
each image), shifts of ±7 and ±15 s in time and ±7 and ±15 channels in space direction
were used. In this way, each original window would be able to generate up to eight subse-
quent windows. These nine windows (8 shifted + 1 orig.) formed the base of the windows
which in the next step were used for further augmentation. Axis inversions, Gaussian
blurring and Gaussian noise were applied. Subsequently, each originally labeled window
could generate up to 9 x 8 = 72 data examples. See Table 3.3 for resulting windows in
each class after shifting.

After augmentation, the total number of windows in each class was at least 5,000 (see
Table 3.3). Then, 5,000 windows were randomly selected from each class, which were used
for the classification task. This resulted in a total dataset size of 5,000 * 12 = 60,000
windows.

Table 3.3: Amount of augmented windows after shifting, as well as the amount after final
augmentation.

Idx. Class Shifted Final Idx. Class Shifted Final

0 Ambient noise 1137 13555 6 Cargo train NS 1103 6612
1 Unknown noise 1887 13658 7 Cargo train SN 0 6202
2 Artifact noise 577 6221 8 Motor vehicle NS 612 5328
3 Stationary noise 1148 7611 9 Motor vehicle SN 898 6353
4 Passenger train NS 893 7994 10 Motor vehicle NS, SN 1039 7933
5 Passenger train SN 1328 9737 11 Multiple objects 960 8316

26 CHAPTER 3. METHODS

3.5 Model Building and Training

Two of the main components of neural networks are the model and the training of the
model. The following sections explain the process of developing and training a number
of models for the acquired dataset.

3.5.1 Base Model Configurations

The model building was carried out in PyTorch1, which is a Python2 coding library for
deep learning. The base of all model configurations includes four convolutional layers
consisting of the three stages explained in Section 2.2.2. Additionally, the activation
function for all convolutional layers was selected to be ReLU. Moreover, all model ar-
chitectures feature a flattening and fully connected layer in the end. Besides, for each
architecture the very first three-stage layer had the pooling layer removed. This was done
in order for the dimension of the original input to decrease enough before it eventually
was passed into the first pooling stage. As the pooling operation commonly divides the
dimensions by two, the goal was to adjust the dimensions enough so that they would be
multiple times divisible by two, or in other words would be applicable for several pooling
layers. See Table 3.4 for a detailed view of all model architectures in addition to the
input dimensions to each layer. By adjusting the stride and padding parameters for each
layer according to Formula 2.12, the image dimensions were decreased from the original
300 x 50 to 37 x 6. For reference, all pooling parameters were equal for all models in this
research (padding = 0, stride = 1 and kernel size = 2).

Additionally, two of the base model configurations feature an additional convolutional
layer, and the reason for this is explained in Section 3.6. See Table 3.4 for placement
reference.

Table 3.4: Architecture of all tested models. The "Increasing" and "Large" models have
an extra layer colored in gray. See Section 3.6 for explanation of "Increasing" and "Large".
Input denotes the image/feature dimensions.

Layer Input

Conv2d 300 x 50
Conv2d 298 x 48
Maxpool2d 296 x 48
Conv2d 148 x 24
Conv2d 148 x 24
Maxpool2d 148 x 24
Conv2d 74 x 12
Maxpool2d 74 x 12
Flatten 37 x 6
Linear
Output 12 x 1

1https://pytorch.org/
2https://www.python.org/

https://pytorch.org/
https://www.python.org/

CHAPTER 3. METHODS 27

3.5.2 Training

The model training was performed by running a training loop and a validation loop within
the same for loop. All training was run on a computer with an AMD Ryzen 9 5900X
CPU at 4.26 GHz, and an NVIDIA GeForce GTX 3080 Ti GPU.

3.6 Performance Evaluation and Hyperparameter Tun-
ing

In order to achieve the most optimal model performance, hyperparameter tuning can
be utilized. This section will explain the hyperparameter tuning and model evaluation
process for this research.

3.6.1 Hyperparameter Tuning

A motive for the hyperparameter tuning process was to cross-test as many hyperparame-
ters as possible. In order to achieve this, a four step tuning process was developed, where
each step would optimally lead to better model performance. Following each step of
the process, the results were evaluated using maximum validation accuracy and learning
curves. See Section 2.5 for theory on evaluation. According to the evaluation, the best
results were selected for further tuning in the next process step. Following, a list con-
taining each of the four steps in the hyperparameter tuning process is displayed, before
each step is further explained below.

1. Iterate through models

2. Iterate through learning rates and optimizers

3. Investigate additional hyperparameters

4. Final run and live-classification

1. Model Iteration

As a first step in the hyperparameter tuning process, several models were trained on a cho-
sen set of initial hyperparameters. The initial hyperparameters were somewhat arbitrarily
chosen, but within standard ranges. See Table 3.7 for a display of the hyperparameter
values.

2 Train, test and validation set size

2 Optimization technique

2� Loss function

2 Learning rate

2 Regularization techniques

2 Number of epochs

2 Batch size

2 Model configuration

2 Activations

2 Kernel parameters

2 Pooling parameters

28 CHAPTER 3. METHODS

A total of 10 model architectures were built and utilized for this step. Based on the
layer configurations displayed in Table 3.4 in the last section, different combinations of
convolutional filter sizes and numbers were tested. In order to achieve a broad selection of
model architectures, a foundation of three model types was created; equal filter sizes for
all layers, increasing filter sizes and decreasing filter sizes. In the model type consisting
of equal filter sizes, a small, medium and large basic model was made up of filter sizes of
three, five and seven, respectively. See Table 3.5 for reference. In order to decrease the
number of trainable parameters and thereby decrease training time, a convolutional layer
with a filter size of 1 x 1 was added in the basic large and the increasing models [21][45].

Table 3.5: Kernel sizes for the different model architectures in this step. For all models,
there are two variations in the number of filters; fewer or more. The number of trainable
parameters for each model is in the bottom row, where "Fewer" and "More" refer to the
amount of filters applied in each convolutional layer, resulting in the given numbers of
trainable parameters. See Table 3.6 for number of filters per convolutional layer in each
model.

Basic Small Basic Medium Basic Large Increasing Decreasing

3 x 3 5 x 5 7 x 7 3 x 3 7 x 7
Filter 3 x 3 5 x 5 7 x 7 3 x 3 5 x 5
Size 3 x 3 5 x 5 7 x 7 5 x 5 3 x 3

/Layer 1 x 1 1 x 1
3 x 3 5 x 5 7 x 7 7 x 7 3 x 3

Fewer 1,069,836 1,758,476 778,604 1,444,012 1,103,884
More 2,913,804 5,667,340 2,289,772 5,091,660 3,047,436

For all five models, each model contains two versions, one with fewer filters, and one with
more filters. By iterating through these different models, the results were stored and
reviewed, before two of them were selected for Step 2 of the tuning process. As explained
earlier, the selection of the first model was based on the maximum validation accuracy
acquired out of all epochs. However, the selection of the second model was based on the
closest relationship between the training and validation accuracy. The assumption was
that the second model would not yet have reached training accuracy convergence, thus
having the most potential for further learning.

Table 3.6: Filter numbers per convolutional layer in the different models.

Basic Small Basic Medium Basic Large Increasing Decreasing

Fewer More Fewer More Fewer More Fewer More Fewer More
32 64 32 64 32 64 64 128 32 64

Filter 64 128 64 128 64 128 128 256 64 128
Amount 128 256 128 256 128 256 128 256 128 256
/Layer 32 32 32 64

256 512 256 512 64 64 128 256 256 512

CHAPTER 3. METHODS 29

Table 3.7 displays the additional hyperparameter values chosen for this step. The model
training and tuning was based on a training and validation set, while the final evaluation
was based on a test set. The training and test set was first split with a ratio of 9:1, before
the training set was re-split into training and validation with a ratio of 8.5:1.5. This
resulted in the dataset sizes in the table below. The batch size of 16 for this step was
chosen based on computing efficiency and GPU capacity, as a larger number of batches
(ie. a smaller batch size) increase training speed. The epoch number in this step was set
to be greater than the epoch of validation convergence, in order to capture the maximum
accuracy of each model run.

Table 3.7: Additional hyperparameters applied.

Hyperparameter Value

Train set size 76.5 %
Validation set size 13.5 %
Test set size 10.0 %
Optimizer SGD
Learning rate 0.025
Batch size 16
Regularization None
Number of epochs 15

2. Learning Rates and Optimizer Iteration

2 Train, test and validation set size

2 Optimization technique

2� Loss function

2 Learning rate

2 Regularization techniques

2 Number of epochs

2 Batch size

2� Model configuration

2� Activations

2� Kernel parameters

2� Pooling parameters

Step 2 of this process aimed to test different learning rates and optimizers. The two
selected models from Step 1 were retested using a nested loop of learning rates and op-
timizers, with a goal of cross-testing each learning rate with each optimizer. The tested
learning rates and optimizers are given in Table 3.8. Table 3.9 lists additional hyperpa-
rameter values applied in this step. In an attempt of performance increase, the batch size
was increased from 16 to 32 for both models, see Section 2.4 for theory.

The selection of the hyperparameter setup for further tuning in Step 3 followed a similar
process as the first model in Step 1. It was selected based on the maximum validation
accuracy acquired through all epochs for each training within the nested loop of learning
rates and optimizers.

30 CHAPTER 3. METHODS

Table 3.8: Learning rates and optimizers.

Learning rate Optimizer

1.0 x 10-4 SGD
5.0 x 10-4 RMSprop
1.0 x 10-3 Adagrad
5.0 x 10-3 Adam
1.0 x 10-2

2.5 x 10-2

5.0 x 10-2

7.5 x 10-2

Table 3.9: Additional hyperparameters.

Hyperparameter Value

Train set size 76.5 %
Validation set size 13.5 %
Test set size 10.0 %
Batch size 32
Regularization None
Number of epochs 15

3. Additional Hyperparameters

The remaining hyperparameters were tested manually using the selected result from Step
2. Depending on the evaluation results, hyperparameters were changed, potentially lead-
ing to better results. Similarly to prior steps, the goal was to improve the validation
accuracy as much as possible.

2 Train, test and validation set size

2� Optimization technique

2� Loss function

2� Learning rate

2 Regularization techniques

2 Number of epochs

2 Batch size

2� Model configuration

2� Activations

2� Kernel parameters

2� Pooling parameters

The items on the following list were tested:

1. Batch size: 16, 64 and 128.

2. Train/val/test ratio in percent: 10/9/81, 10/18/72.

3. L2 regularization: weight decay = 1e-2.

4. Final Run and Live-Classification

As a last step, the best resulting hyperparameter setup from all the hyperparameter steps
was selected for the final training of the model. Due to the properties of the training
configuration, there were random elements varying with each run of the model, lead-
ing to slightly different results each time. Accordingly, the same configuration was run
three times. The resulting model parameters achieving the maximum validation accu-
racy were tested using the testing set, before they were saved in order to be used for
live-classification. The live-classification was simulated using unseen data. A forward
pass through the network was applied every 30 s for each 1.5 km long overlapping seg-
ment along the entire 51 km long railway line section.

CHAPTER 3. METHODS 31

3.6.2 Performance Evaluation

The final evaluation of the model and its parameters was based on a confusion matrix, as
well as manual inspection of predictions. These evaluation methods are both well suited
for multi-class problems with image data.

CHAPTER 4

RESULTS

This chapter presents all relevant results achieved during this research. Similarly to
Section 3.6 in Methods, this chapter follows the same four steps, presenting the results
from each step in chronological order. Additionally, results from the final run of the
model on the testing set, along with evaluation of this final run and a simulation of
live-classification is presented.

1. Iterate through models

2. Iterate through learning rates and optimizers

3. Investigate additional hyperparameters

4. Final run and live-classification

Figure 4.1: Training and validation accuracies for the different CNN variants.

32

CHAPTER 4. RESULTS 33

1. Model Iteration

In the following, the results from Step 1 of the hyperparameter tuning in Methods Section
3.6.1 are presented. This includes Figure 4.1 displaying training and validation accura-
cies for the different models and Figure 4.2 displaying the learning curves for two selected
models, BasicMediumModelMoreParams (BMMMP) and BasicLargeModelFewerParams
(BLMFP).

Figure 4.1 displays the relationship between training and validation accuracies acquired
in Step 1. The accuracies displayed for each model on the x-axis are the maximum val-
idation accuracies acquired through 15 epochs, along with their corresponding training
accuracy from the same epoch. The highest validation accuracy belongs to BMMMP at
85.12 %. The closest relationship between training and validation accuracies belongs to
BLMFP, which also inhabits the lowest training accuracy.

Figure 4.2: Learning curves for the two selected models.

Figure 4.2 displays the training and validation accuracy curves for BMMMP and BLMFP.
Similar for both curves is an initial higher validation accuracy than training accuracy with
only minor improvements. Due to the properties of the training and validation loops, the
model updates its initial parameters before calculating validation metrics for each epoch,
which might explain why the validation metrics are initially better than training metrics.
Additionally, see Appendix B for the model training and validation script. The conver-
gence point is at around three epochs for both models, marking the point for further
overfitting. See Appendix C for learning curves of all models. Additionally, see Appendix
D for a plot displaying more "classic" learning curves (with lower learning rate).

34 CHAPTER 4. RESULTS

2. Learning Rates and Optimizer Iteration

In the following, the results from Step 2 of the hyperparameter tuning are presented.
Two models from Step 1 are reviewed, BMMMP and BLMFP. Table 4.1 lists the maxi-
mum validation accuracies for each model and optimizer, along with their corresponding
training accuracies and learning rates. Figure 4.3 displays the maximum validation ac-
curacies for BMMMP as a function of learning rate for different optimizers. Lastly, the
corresponding learning curves for BMMMP are displayed in Figure 4.3.

Table 4.1: Presentation of the highest validation accuracies for each optimizer for the two
models in Step 2, along with the corresponding training accuracies and learning rates.
The maximum validation accuracy for BMMMP is marked with bold text.

BasicLargeModelFewerParams BasicMediumModelMoreParams

Optimizer SGD RMSprop Adagrad Adam SGD RMSprop Adagrad Adam
Val. acc. 82.74 % 83.65 % 81.63 % 83.00 % 85.04 % 85.68 % 83.69 % 84.59 %
Tr. acc. 97.11 % 97.45 % 88.98 % 96.27 % 98.68 % 98.58 % 96.63 % 98.50 %
LR 0.025 0.0001 0.005 0.0001 0.025 0.0001 0.001 0.0001

Figure 4.3: Validation accuracies (bottom) and their corresponding training accuracies
(top) as functions of learning rater for different optimizers (see legends) for the BasicMedi-
umModelMoreParams model. The validation accuracies were selected as the maximum
achieved throughout 15 epochs. The right column shows a closeup of the lower learning
rates.

CHAPTER 4. RESULTS 35

Figure 4.3 displays the maximum validation accuracies and the corresponding training
accuracies out of 15 epochs for BMMMP as a function of learning rate for different opti-
mizers (see legend). See Appendix C for a similar plot of BLMFP. The two leftmost plots
display all iterations, while the rightmost are zoomed in on the lower learning rates. The
highest validation accuracy belongs to RMSprop on the lowest learning rate of 0.0001
(see Table 4.1). Note that the RMSprop curve is barely visible behind the Adam curve
for the higher learning rates. The SGD curve has higher accuracies on the higher learning
rates. Adam and RMSprop have higher accuracies on lower learning rates, before drop-
ping down to around 8 % on higher learning rates. This fast drop in accuracy for the
different optimizers on the higher learning rates might be an overshoot effect, where the
learning rate is so large that it overshoots the local minimum, leading to an increased loss.

Figure 4.4: Learning curves for BMMMP.

Figure 4.4 illustrates the learning curves for BMMMP using RMSprop and a learning
rate of 0.0001. The convergence point is around four epochs, at which point the model
starts to overfit to the training data. The general shape of the validation curves show
similar characteristics as the curves in Step 1 (see Figure 4.2).

3. Additional Hyperparameters

Following, the results from Step 3 of the hyperparameter tuning process are presented.
Based on the resulting hyperparameter settings from step 2 (RMSprop optimizer, learn-
ing rate 0.0001, batch size 32, 15 epochs and a training/validation/testing ratio of
76.5/13.5/10 % respectively), additional settings were tested, according to the list given
in Section 3.6.1 (hyperparameter values also given in Table 4.2).

Table 4.2: Additional hyperparameter testing results. WD stands for weight decay, while
Ratio is the training/validation/testing set sizes in %.

Batch Size Regularization Ratio

16 64 128 WD(1e-2) 9/81 18/72

Val. acc. 84.7 % 78.28 % 84.19 % 76.89 % 85.59 % 85.30 %
Tr. acc. 98.2 % 84.54 % 97.16 % 77.48 % 97.64 % 98.14 %

36 CHAPTER 4. RESULTS

4. Final Run and Live-Classification

The hyperparameter setup achieving the highest validation accuracy in the three previ-
ous steps of the hyperparameter tuning was acquired in Step 2. Accordingly, Table 4.3
lists all hyperparameters used for the final run of the model. See Appendix A for the
BMMMP architecture in Python.

Table 4.3: Additional hyperparameters applied.

Hyperparameter Value

Model BMMMP
Loss function Cross-entropy loss
Train set size 76.5 %
Validation set size 13.5 %
Test set size 10.0 %
Optimizer RMSprop
Learning rate 0.0001
Batch size 32
Regularization None
Number of epochs 15

For the final run, the testing dataset was passed forward through the final model con-
figuration, resulting in a test loss of 0.7730 and a general test accuracy of 84.98 %. See
Table 4.4 for specific class accuracies on the test set. Additionally, the result from the
simulated live-prediction is presented in Figure 4.5. The predicted class is plotted on top
of the corresponding signal region.

Table 4.4: Specific class testing accuracies.

Class index 0 1 2 3 4 5
Testing accuracy 75.05 % 72.41 % 94.46 % 92.51 % 92.81 % 92.95 %

Class index 6 7 8 9 10 11
Testing accuracy 97.21 % 98.13 % 78.78 % 83.23 % 70.65 % 72.62 %

CHAPTER 4. RESULTS 37

Figure 4.5: Live-classification results: The predicted class labels overlaying RMS DAS
data that has not been previously seen by the model. The red dots denote the train
stations.

38 CHAPTER 4. RESULTS

4.1 Classification Results and Evaluation

4.1.1 Confusion Matrix

In Figure 4.6, the computed confusion matrix from the final run on the testing set is
presented. The numbers in each window corresponds to the testing accuracy as decimal
fractions of 1 (corresponding to % if multiplied by 100). The accuracies are generally
high for the train classes and the stationary and artifact noise class. However, notice the
confusion between the vehicle classes, especially in the class with both directions. Adding
together all the predicted vehicle labels for "car NS SN" results in a total accuracy of 89
% (car SN: 96 %, car NS: 89 %). Moreover, the remaining classes (ambient and unknown
noise and multiple objects) all display similar characteristics, where the true class was
falsely predicted as other classes, seemingly at an even rate for almost all other classes.
Besides, notice that many of the classes have high prediction scores for unknown noise.

Figure 4.6: Confusion matrix from final model run

CHAPTER 4. RESULTS 39

4.1.2 Manual Inspection of Incorrect Predictions

In this section, a figure displaying incorrect predictions on the test set is presented.
The legend in each subplot indicates the true and predicted labels. See Table 3.1 for a
mapping between class names and indexes. From Figure 4.7, it is visible that the "lower
right" window has an incorrect label. This window, however, is displayed as correctly
predicted by the model. The true label of the "left center" window is multiple objects
(which contains train stop windows), while the model predicted it to be cargo train class.
Moreover, "upper center" and "right center" both display "edge cases" of the ambient
noise class, however, the model predicted the signal displayed in the corner of the image.
Moreover, the incorrect vehicle predictions "lower left", "true center", "upper right"
and "upper left" all display predictions of a different vehicle class. See Appendix E for
additional figures of incorrect predictions.

Figure 4.7: Exemplary windows with incorrect predictions

CHAPTER 5

DISCUSSION

In order to assess the feasibility of integrating DAS and CNNs for railway monitoring,
the aim of this research was to create a framework for a live-monitoring system of rail-
way DAS signals, by the use of a CNN. This chapter discusses both whether the goals
are met and the potential implications of the results in-depth. Additionally, future work
recommendations are given based on the discussed limitations.

A process of four steps was utilized in order to create a CNN for classification of DAS
railway signals and tune its hyperparameters. The dataset was manually labeled and
augmented using custom scripts. The four steps of the hyperparameter tuning resulted
in increasingly better general metrics (validation accuracies and losses), before a final
run with optimal hyperparameters was performed. This final run resulted in a general
testing accuracy of 84.98 %, with specific class accuracies ranging from 70.65 % to 98.13
%. Manual inspection of the incorrect predictions indicate labeling (or augmentation)
mistakes, along with edge-case mistakes in the dataset as being the main error types in
the test set prediction. The live-classification resulted in seemingly good results, indi-
cating that the method has potential for use as a live-monitoring tool by train companies.

5.1 Result Interpretations

Generally, the hyperparameter tuning did not lead to significantly higher validation ac-
curacies in either of the steps. With the initial lowest validation accuracy being 81.60 %
in Step 1, the increase to 85.68 % was the highest validation accuracy acquired during
the tuning. This is an increase of only 4.08 %. This marginal progress prompts a closer
examination of potential limitations in both the dataset and the model tuning.

5.1.1 Class Diversity vs. Accuracy

The separate classification accuracies on the test set displayed in Figure 4.6 and Table 4.4
reveal a potential correlation between class accuracies and class diversity. As displayed,
the results reveal lower specific testing accuracies in among others the unknown noise
class and the multiple objects class. Both of these classes inherent high diversity (ie. lots
of variations within the class). See Figure 3.5 and 3.4 for labeled and unlabeled windows,
respectively. On the other hand, for instance the signal type in one of the train classes
is more heavily represented in the entire dataset, as opposed to the many different signal
types in the multiple objects class. This is consistent with the results in the confusion
matrix and suggests that the model struggles more with classes that have higher diversity.

40

CHAPTER 5. DISCUSSION 41

This makes sense, as the model would need to learn more patterns and relationships in
these classes than the first (ie. there is dataset bias [46]). As a solution, simply increas-
ing the dataset size may not necessarily resolve the problem, as it would not decrease
the bias. However, a potential solution could be to apply augmentation techniques in
such a way that the resulting class diversities are evened out. By doing this to the lower
diversity classes, the diversity would be increased. A second solution could be to divide
the classes which inherent more diversity into additional sub-classes, effectively reducing
the diversity in each class. Moreover, an additional method could be researched, where
two models are trained for the lower and higher diversity classes separately [46].

5.1.2 Vehicle Classes

Further analysis of the confusion matrix in Figure 4.6 reveals inconsistencies and con-
fusion between the three vehicle classes, and in particular the bidirectional vehicle class
(car NS SN). This revelation indicates a potential issue with consistency in the labeling
process due to challenges with differentiating between slight differences in amplitude in
a consequent manner. This issue is further verified by analyzing the plotted incorrect
predictions in Figure 4.7, where several of the subplots presents this case. As a potential
solution, merging individual car classes into a unified class for all vehicles in all directions
could enhance the vehicle prediction accuracy. However, this solution would require care-
ful consideration, as the merging process would introduce increased diversity within the
unified class, potentially posing new challenges. Besides, the decision should align with
the end user’s specific needs and whether the primary goal is to detect the vehicle in any
direction or in a specified direction.

5.1.3 Incorrect Class Labels in Dataset

By analyzing the incorrect prediction results in Figure 4.7 and Appendix E, it is appar-
ent that a number of the images are incorrectly labeled. This would not be a big issue
if those were only a few of the augmented windows. However, if the mistake is made
prior to augmentation, one incorrect image could result in a total of 72 incorrect images,
which might be a bigger problem. Nevertheless, the model appears to make the correct
prediction despite the incorrect labels. This suggests the presence of a sufficient amount
of correctly labeled data. This method of evaluation (analysis of incorrectly predicted
images) should, however, be used with caution, since only a small selection of predictions
is presented and reviewed. This small selection of results may not be representative for
the entire set of results, which may lead to imprecise interpretations and conclusions.
Accordingly, it is a good practice having this in mind when making assumptions based
on only a small sample size of results.

42 CHAPTER 5. DISCUSSION

Still, a definitive conclusion that can be drawn from this evaluation method, is the fact
that there exist incorrect labels in the dataset. The exact magnitude of these, however,
remains challenging to quantify. The presence of incorrect labels emphasizes the potential
benefit from a revision of both the labeling and augmentation process. By implementing
additional checks during both the labeling and augmentation process, or by using only
the windows flagged with "yes" for augmentation compatibility for the augmentation pro-
cess, the amount of incorrect labels could be reduced. Moreover, the model developed in
this research may in itself play a role in identifying the mislabeled windows. By integrat-
ing a mechanism in the model to map the incorrect predictions to their unique ID and
additionally flag them with their predicted class label, these flags can then be manually
inspected. This could lead to a further reduction of incorrect labels in the dataset.

5.2 Implications

The results from both the test set confusion matrix and the simulated real-time classi-
fication results indicate that this tool may already be successful if used live as a train
and vehicle monitoring tool along railway lines. However, it should be approached with
caution if the tool is to be utilized for tracking the classes with lower testing accuracies,
like monitoring of a specific vehicle direction (NS, SN or NS SN). Additionally, as there is
generally low chances of the model classifying a real event as ambient noise (see predicted
label for ambient noise in confusion matrix), the tool might be successfully applied for
event detection. However, there would be a chance of false detection since the ambient
noise accuracy is 75.05 %.

Moreover, the model developed in this research may already be used for detection of
unknown events (unknown noise) for low stake applications. By using the tool in com-
bination with a human operator, unknown events and other events can be detected and
further investigated. Additionally, the methods developed are adaptable, making them
applicable for utilization (and further development) in locations with similar character-
istics (railway lines). The results from this research suggest that the integration of DAS
and a CNN has the potential to be a cost-effective monitoring tool for railway events,
which could have direct benefits for railway operators (like BaneNOR). The research
outcome additionally opens up an opportunity of further exploiting additional fibers co-
located with railway lines, enabling potential automatization of real-time railway traffic
monitoring. However, the reliability of the developed tool for practical use is still not
ideal, requiring additional research on potential refinements.

CHAPTER 5. DISCUSSION 43

5.3 Methods Assessment and Limitations

The generalizability of the results in this research is limited by utilizing data collected
within a limited area and time frame. Hence, by incorporating additional (similar)
datasets to the existing one, the tool might become more generalizable. Moreover, the
dataset used in this research completely lacks the "cargo train SN" class. For this re-
search, this entire class consists of augmented data, where the original data is sampled
from "cargo train NS". Whether this causes significant issues or not is difficult to say
without applying the model to testing data consisting of this class. Despite of lacking
examples in the "cargo train SN" class, the specific time frame was chosen for the dataset
since there were significantly less gaps (caused by the IU) present in the data compared
to other times. Gaps disrupt the real signals and create signals that cannot be naturally
present in the data and might thus distort the classifier. However, the magnitude of this
issue is unknown.

Lastly, the dataset does not provide definitive ground truths, as the labels are based on
what is visually inspected on the RMS strain signals. Passenger trains were verified using
the train schedule and the localized train stations. Additionally, several train and car
signals were logged during the data acquisition. However, the lack of ground truths is
especially true for the unknown noise class. Optionally, listening to the signals might
give confirmation or additional information to the visual information which is already
explored. Moreover, a different alternative could be setting up cameras along the fiber,
and if synchronized with the strain signal for a certain period of time, it can act as a
mapping for the window labeling process. The mapping from camera feed to data labels
could even be automized using a well established object detection method from computer
vision like YOLO [47]. In addition to the benefit of obtaining ground truths, this could
significantly reduce the manual labor required during the labeling process.

Within this work, only one type of data normalization was applied. Other methods, like
global contrast normalization, which is a common normalization method for image clas-
sification [48], or batch normalization, which is a popular technique for CNNs [49], could
be beneficial to try. Especially batch normalization, as it can be argued to enhance the
performance and stability of neural networks [50].

During the testing of hyperparameters, assessing the optimal settings from a large number
of potential values and their combinations poses a challenge. Attempting to test all pos-
sible combinations would likely be the most certain way to achieve the best performance
possible, but it would be extremely time-consuming and thus considered unfeasible. Nev-
ertheless, doing more research on how to tune a model in the best way would increase
the likelihood for better performance.

44 CHAPTER 5. DISCUSSION

By assessing the four step method utilized in this research, several potential flaws can be
found. For instance, there is the order of which hyperparameters were tuned first to last.
By stepwise eliminating some hyperparameter values based on performance in the current
step, better-performing combinations in the next step could potentially get lost in the
process. Using nested loops for iterating through combinations of hyperparameters (step
2) would help, but in order to test every combination, one would require extreme amounts
of processing, as the dimensionality would increase in the fold of number of tested values
per added loop. An additional flaw is the number of training runs performed in each
tuning step. With exception of the last step, the trainings in this research were only
run once per step. Due to the randomized elements introduced in the training process
(randomized weight initialization and dataset shuffling), performing only one run might
have led to non-optimal selections of hyperparameter values. Moreover, out of all existing
hyperparameters and values, the limited number of them tested in this research may not
have been the most optimal for the given dataset.

Additionally, the evaluation performed after each step of the tuning process may not have
been the most optimal. It was mainly based on maximum validation accuracy, which may
not have been the most accurate evaluation metric. By analyzing the resulting learning
curves from each step in the tuning process, it is evident that the model is overfitting to
the data. Despite this, the model performance on the test set did not seem to be signif-
icantly affected, achieving almost as good accuracy as the validation set. In hindsight,
evaluation based more heavily on the patterns of learning curves may have been more
successful in the attempt of finding the most optimal hyperparameter values (see 2.5.1).
This would include paying attention to the level of overfitting through the entire process
as well as for the final run, which might have resulted in overall better performance.

An additional aspect worth mentioning is the fact that for this research, the effect of
batch size on model performance does not fit with the theory given in Section 2.5. Ac-
cording to this theory, having smaller batches (or a higher batch size) should increase
model performance. Despite this, the optimal batch size in this research was found to be
32 (tested up to 128). However, according to several sources, the negative effect of having
too large batches might be counteracted by increasing the learning rate (or by not decay-
ing the learning rate [51]) [38]. Looking at Figure 3 in Appendix D, it is visible that a
lowered learning rate on a batch size of 32 decreases the accuracy, which strengthens this
hypothesis (ie. opposite way of increasing learning rate on a large batch). Nevertheless,
more research should be performed in order to make a certain conclusion.

5.3.1 Future Work

It is beyond the scope of this research to provide a fully developed railway monitoring-
tool. Instead, this research aim was to develop a framework, or a general method, of doing
so, and to assess its feasibility for further development. Even though railway companies
might already benefit from the developed monitoring tool, the results and discussion also
raises questions about certain aspects of the tool, meaning it could benefit from further
research. Based on all the work done in this research, recommendations for further de-
velopment of the method are proposed.

CHAPTER 5. DISCUSSION 45

5.3.1.1 Dataset Development

The varying accuracies among classes highlight the need for dataset refinement. Exploring
additional augmentation techniques and collecting more diverse training data, possibly
from different locations or time periods, can enhance the model’s generalizability.

Augmentation strategies may benefit from revision, by using them in such a way that the
image diversities across classes are equalized. Similarly, a re-evaluation of classes, (either
by splitting classes into sub-classes, or by merging others into one class) may benefit the
model training, resulting in higher accuracies.

The labeling process which was based on personal assessment, introduced uncertainties,
particularly in classes with multiple objects which can only be differentiated by slight
differences in amplitude. More emphasis should be put into developing effective labeling
"rules" in order to ensure correct labels. Additionally, with some modifications, this clas-
sifier may be used as a tool to re-label incorrect labels based on the prediction results.
(In that case the window IDs need to be mapped with the predicted windows.)

Moreover, additional preprocessing steps may be considered, for instance different nor-
malization techniques. Additionally, in order to increase the generalizability of the model,
collection of more data from other locations and periods of time should be considered.

5.3.1.2 Modeling and Training

Further research is needed to establish an optimal hyperparameter tuning method. The
four iterative tuning steps in this work may benefit from revision. For instance, adding
more hyperparameter testing, changing the order of the tests or expanding the tested
value range for each hyperparameter.

Additional research on the model should be considered, for instance exploring deepening
the fully connected layers, adding dropout, trying other activation functions or adding
weights based on certainties from the labeling process.

CHAPTER 6

CONCLUSIONS

The aim of this research was to provide a framework for a live-monitoring system of rail-
way DAS signals by the use of a CNN. The resulting general testing accuracy of 84.98 %,
in addition to the simulated live-classification of the CNN, suggest that DAS and CNN
integration is a viable option for railway signal classification. Moreover, extensive hy-
perparameter tests have been conducted to optimize the learning process of the network
and improve its accuracy. Despite of promising results, future work on reliability will be
necessary for the practical implementation of the monitoring tool. The large variety in
specific class accuracies ranging from 70.65 % to 98.13 % is an indication that further
work on both the dataset as well as the model is needed. However, the created frame-
work may already be utilized for low stake applications. With further improvements,
the findings of this research can open up an opportunity for a large scale exploitation
of fibers co-located with railway lines, potentially enabling automatization of real-time
railway traffic monitoring. Lastly, due to the inherent adaptability of the framework, the
results of this research may be beneficial for other research and applications even beyond
the field of DAS and geophysics.

46

REFERENCES

[1] Alexander S. “Tesla’s Use of AI: A Revolutionary Approach to Car Technology”. In:
(2023). url: https://www.linkedin.com/pulse/teslas-use-ai-revolutionary-
approach-car-technology-alexander-stahl/.

[2] “10 LATEST DEVELOPMENTS IN ARTIFICIAL INTELLIGENCE”. In: (2023).
url: https://moonpreneur.com/blog/latest-developments-in-artificial-
intelligence/.

[3] TechInsights Hub. “Distributed Acoustic Sensing (DAS) Market | Expected To Be
the Fastest Growing Industry 2036”. In: (2023). url: https://www.linkedin.
com/pulse/distributed-acoustic-sensing-das-market-expected-fastest-
evaof/.

[4] “Global Distributed Acoustic Sensing Market Insights”. In: (2024). url: https:
//www.skyquestt.com/report/distributed-acoustic-sensing-market#:~:
text=Global%20Distributed%20Acoustic%20Sensing%20Market%20Insights,
period%20(2023%2D2030)..

[5] Ceyhun Efe Kayan, Kivilcim Yuksel Aldogan, and Abdurrahman Gumus. “An In-
tensity and Phase Stacked Analysis of Phase-OTDR System using Deep Transfer
Learning and Recurrent Neural Networks”. In: (2022). doi: 10.1364/AO.481757.
url: https://arxiv.org/abs/2206.12484.

[6] Zhaoqiang Peng et al. “Identifications and classifications of human locomotion using
Rayleigh-enhanced distributed fiber acoustic sensors with deep neural networks”. In:
(2020). doi: 10.1038/s41598-020-77147-2. url: https://www.nature.com/
articles/s41598-020-77147-2.

[7] Iñigo Corera et al. “Long-Range Traffic Monitoring Based on Pulse-Compression
Distributed Acoustic Sensing and Advanced Vehicle Tracking and Classification
Algorithm”. In: (2023). doi: 10.3390/s23063127. url: https://www.mdpi.com/
1424-8220/23/6/3127.

[8] Avinash Nayak and Jonathan Ajo-Franklin. “Distributed Acoustic Sensing Using
Dark Fiber for Array Detection of Regional Earthquakes”. In: (2021). doi: 10.1785/
0220200416. url: https://pubs.geoscienceworld.org/ssa/srl/article-
abstract/92/4/2441/595405/Distributed-Acoustic-Sensing-Using-Dark-
Fiber-for?redirectedFrom=fulltext.

[9] Pablo D. Hernández, Jaime A. Ramírez, and Marcelo A. Soto. “Deep-Learning-
Based Earthquake Detection for Fiber-Optic Distributed Acoustic Sensing”. In:
(2022). url: https://opg.optica.org/jlt/abstract.cfm?uri=jlt-40-8-
2639.

47

https://www.linkedin.com/pulse/teslas-use-ai-revolutionary-approach-car-technology-alexander-stahl/
https://www.linkedin.com/pulse/teslas-use-ai-revolutionary-approach-car-technology-alexander-stahl/
https://moonpreneur.com/blog/latest-developments-in-artificial-intelligence/
https://moonpreneur.com/blog/latest-developments-in-artificial-intelligence/
https://www.linkedin.com/pulse/distributed-acoustic-sensing-das-market-expected-fastest-evaof/
https://www.linkedin.com/pulse/distributed-acoustic-sensing-das-market-expected-fastest-evaof/
https://www.linkedin.com/pulse/distributed-acoustic-sensing-das-market-expected-fastest-evaof/
https://www.skyquestt.com/report/distributed-acoustic-sensing-market#:~:text=Global%20Distributed%20Acoustic%20Sensing%20Market%20Insights,period%20(2023%2D2030).
https://www.skyquestt.com/report/distributed-acoustic-sensing-market#:~:text=Global%20Distributed%20Acoustic%20Sensing%20Market%20Insights,period%20(2023%2D2030).
https://www.skyquestt.com/report/distributed-acoustic-sensing-market#:~:text=Global%20Distributed%20Acoustic%20Sensing%20Market%20Insights,period%20(2023%2D2030).
https://www.skyquestt.com/report/distributed-acoustic-sensing-market#:~:text=Global%20Distributed%20Acoustic%20Sensing%20Market%20Insights,period%20(2023%2D2030).
https://doi.org/10.1364/AO.481757
https://arxiv.org/abs/2206.12484
https://doi.org/10.1038/s41598-020-77147-2
https://www.nature.com/articles/s41598-020-77147-2
https://www.nature.com/articles/s41598-020-77147-2
https://doi.org/10.3390/s23063127
https://www.mdpi.com/1424-8220/23/6/3127
https://www.mdpi.com/1424-8220/23/6/3127
https://doi.org/10.1785/0220200416
https://doi.org/10.1785/0220200416
https://pubs.geoscienceworld.org/ssa/srl/article-abstract/92/4/2441/595405/Distributed-Acoustic-Sensing-Using-Dark-Fiber-for?redirectedFrom=fulltext
https://pubs.geoscienceworld.org/ssa/srl/article-abstract/92/4/2441/595405/Distributed-Acoustic-Sensing-Using-Dark-Fiber-for?redirectedFrom=fulltext
https://pubs.geoscienceworld.org/ssa/srl/article-abstract/92/4/2441/595405/Distributed-Acoustic-Sensing-Using-Dark-Fiber-for?redirectedFrom=fulltext
https://opg.optica.org/jlt/abstract.cfm?uri=jlt-40-8-2639
https://opg.optica.org/jlt/abstract.cfm?uri=jlt-40-8-2639

48 REFERENCES

[10] Huan Wu et al. “Pattern recognition in distributed fiber-optic acoustic sensor using
an intensity and phase stacked convolutional neural network with data augmenta-
tion”. In: (2021). doi: 10.1364/OE.416537. url: https://opg.optica.org/oe/
fulltext.cfm?uri=oe-29-3-3269&id=446729.

[11] Md Arifur Rahman, Suhaima Jamal, and Hossein Taheri. “Remote Condition Mon-
itoring of Rail tracks using Distributed Acoustic Sensing (DAS): A Deep CNN-
LSTM-SW based Model”. In: (2024). doi: 10.1016/j.geits.2024.100178. url:
https://www.sciencedirect.com/science/article/pii/S2773153724000306.

[12] Shulun Wang, Feng Liu, and Bin Liu. “Research on application of deep convolutional
network in high-speed railway track inspection based on distributed fiber acoustic
sensing”. In: (2021). doi: 10.1016/j.optcom.2021.126981. url: https://www.
sciencedirect.com/science/article/pii/S0030401821002315.

[13] K.A. Gerardino. “DIGITALIZATION IN THE RAILWAY INDUSTRY”. In: (2022).
url: https://railway-international.com/market-overview/62652-digitalization-
in-the-railway-industry.

[14] Anna Sophie Nymoen Tveit. “everaging Unsupervised Machine Learning Methods
for Distributed Acoustic Sensin”. In: (2023).

[15] Arthur Hartog. An Introduction to Distributed Optical Fibre Sensors. 1st edition.
June 2017. doi: 10.1201/9781315119014.

[16] Yang Zhi, Shi Pengxiang, and Li Yongqian. “Research on COTDR for measuring
distributed temperature and strain”. In: (2011). doi: 10.1109/MACE.2011.5986993.

[17] W. Lowrie and A. Ficthner. Fundamentals of Geophysics. 3rd edition. Cambridge
University Press, Mar. 2020, pp. 423–428.

[18] Tom Parker, Sergey Shatalin, and Mahmoud Farhadiroushan. “Distributed Acoustic
Sensing - A new tool for seismic applications”. In: First Break 32 (Feb. 2014). doi:
10.3997/1365-2397.2013034.

[19] Kittinat Taweesintananon et al. “Distributed acoustic sensing for near-surface imag-
ing using submarine telecommunication cable: A case study in the Trondheimsfjord,
Norway”. In: 86 (Sept. 2021). doi: 10.1190/geo2020-0834.1.

[20] Michael Copeland. “What’s the Difference Between Artificial Intelligence, Machine
Learning and Deep Learning?” In: (2016). url: https://blogs.nvidia.com/
blog / whats - difference - artificial - intelligence - machine - learning -
deep-learning-ai/.

[21] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016.

[22] Pragati Baheti. “Activation Functions in Neural Networks [12 Types & Use Cases]”.
In: (2021). url: https://www.v7labs.com/blog/neural-networks-activation-
functions#:~:text=The%20linear%20activation%20function%2C%20also,
the%20value%20it%20was%20given..

[23] Ryan Holbrook and Alexis Cook. “Convolution and ReLU”. In: (2023). url: https:
//www.kaggle.com/code/ryanholbrook/convolution-and-relu.

[24] Wang Hao et al. “The Role of Activation Function in CNN”. In: (2020).

https://doi.org/10.1364/OE.416537
https://opg.optica.org/oe/fulltext.cfm?uri=oe-29-3-3269&id=446729
https://opg.optica.org/oe/fulltext.cfm?uri=oe-29-3-3269&id=446729
https://doi.org/10.1016/j.geits.2024.100178
https://www.sciencedirect.com/science/article/pii/S2773153724000306
https://doi.org/10.1016/j.optcom.2021.126981
https://www.sciencedirect.com/science/article/pii/S0030401821002315
https://www.sciencedirect.com/science/article/pii/S0030401821002315
https://railway-international.com/market-overview/62652-digitalization-in-the-railway-industry
https://railway-international.com/market-overview/62652-digitalization-in-the-railway-industry
https://doi.org/10.1201/9781315119014
https://doi.org/10.1109/MACE.2011.5986993
https://doi.org/10.3997/1365-2397.2013034
https://doi.org/10.1190/geo2020-0834.1
https://blogs.nvidia.com/blog/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/
https://blogs.nvidia.com/blog/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/
https://blogs.nvidia.com/blog/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://www.v7labs.com/blog/neural-networks-activation-functions#:~:text=The%20linear%20activation%20function%2C%20also,the%20value%20it%20was%20given.
https://www.v7labs.com/blog/neural-networks-activation-functions#:~:text=The%20linear%20activation%20function%2C%20also,the%20value%20it%20was%20given.
https://www.v7labs.com/blog/neural-networks-activation-functions#:~:text=The%20linear%20activation%20function%2C%20also,the%20value%20it%20was%20given.
https://www.kaggle.com/code/ryanholbrook/convolution-and-relu
https://www.kaggle.com/code/ryanholbrook/convolution-and-relu

REFERENCES 49

[25] Björn Lindqvist et al. “Chapter 12 - ARW deployment for subterranean environ-
ments”. In: Aerial Robotic Workers. Ed. by George Nikolakopoulos, Sina Sharif
Mansouri, and Christoforos Kanellakis. Butterworth-Heinemann, 2023. isbn: 978-
0-12-814909-6. doi: https : / / doi . org / 10 . 1016 / B978 - 0 - 12 - 814909 - 6 .
00018 - 4. url: https :/ / www. sciencedirect. com /science /article / pii/
B9780128149096000184.

[26] Andrej Karpathy. “CS231n Winter 2016: Lecture 7: Convolutional Neural Net-
works”. In: (2016). url: https://www.youtube.com/watch?v=LxfUGhug-iQ.

[27] Lauren Holzbauer. “Convolutional Neural Networks Explained. . . with American
Ninja Warrior”. In: (2019). url: https : / / blog . insightdatascience . com /
convolutional-neural-networks-explained-with-american-ninja-warrior-
c6649875861c.

[28] Sagar Sharma. “Activation Functions in Neural Networks”. In: (2017). url: https:
//towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6.

[29] Zhou and Chellappa. “Computation of optical flow using a neural network”. In:
IEEE 1988 International Conference on Neural Networks. 1988. doi: 10.1109/
ICNN.1988.23914.

[30] Ivan B. Djordjevic. “Chapter 14 - Quantum Machine Learning”. In: Quantum In-
formation Processing, Quantum Computing, and Quantum Error Correction (Sec-
ond Edition). Ed. by Ivan B. Djordjevic. Second Edition. Academic Press, 2021.
isbn: 978-0-12-821982-9. doi: https://doi.org/10.1016/B978-0-12-821982-
9.00007-1. url: https://www.sciencedirect.com/science/article/pii/
B9780128219829000071.

[31] Minhajul Hoque. “Demystifying Neural Network Normalization Techniques”. In:
(2023). url: https : / / medium . com / @minh . hoque / demystifying - neural -
network-normalization-techniques-4a21d35b14f8#:~:text=This%20can%
20help%20to%20prevent,in%20the%20input%20or%20weights..

[32] Tarang Shah. “About Train, Validation and Test Sets in Machine Learning”. In:
(2017). url: https://towardsdatascience.com/train-validation-and-test-
sets-72cb40cba9e7.

[33] Kizito Nyuytiymbiy. “Learning”. In: (2020). url: https://towardsdatascience.
com/parameters-and-hyperparameters-aa609601a9ac.

[34] Jason Brownlee. “How to use Learning Curves to Diagnose Machine Learning
Model Performance”. In: (2019). url: https://machinelearningmastery.com/
learning-curves-for-diagnosing-machine-learning-model-performance/.

[35] Dipam Vasani. “This thing called Weight Decay”. In: (2019). url: https : / /
towardsdatascience.com/this-thing-called-weight-decay-a7cd4bcfccab.

[36] Yash Agrawal. “The Underlying Dangers Behind Large Batch Training Schemes”.
In: 2022.

[37] Nitish Shirish Keskar et al. “On Large-Batch Training for Deep Learning: Gener-
alization Gap and Sharp Minima”. In: (2017). doi: 10.48550/arXiv.1609.04836.
url: https://arxiv.org/abs/1609.04836.

[38] Kevin Shen. “Effect of batch size on training dynamics”. In: 2018.

https://doi.org/https://doi.org/10.1016/B978-0-12-814909-6.00018-4
https://doi.org/https://doi.org/10.1016/B978-0-12-814909-6.00018-4
https://www.sciencedirect.com/science/article/pii/B9780128149096000184
https://www.sciencedirect.com/science/article/pii/B9780128149096000184
https://www.youtube.com/watch?v=LxfUGhug-iQ
https://blog.insightdatascience.com/convolutional-neural-networks-explained-with-american-ninja-warrior-c6649875861c
https://blog.insightdatascience.com/convolutional-neural-networks-explained-with-american-ninja-warrior-c6649875861c
https://blog.insightdatascience.com/convolutional-neural-networks-explained-with-american-ninja-warrior-c6649875861c
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://doi.org/10.1109/ICNN.1988.23914
https://doi.org/10.1109/ICNN.1988.23914
https://doi.org/https://doi.org/10.1016/B978-0-12-821982-9.00007-1
https://doi.org/https://doi.org/10.1016/B978-0-12-821982-9.00007-1
https://www.sciencedirect.com/science/article/pii/B9780128219829000071
https://www.sciencedirect.com/science/article/pii/B9780128219829000071
https://medium.com/@minh.hoque/demystifying-neural-network-normalization-techniques-4a21d35b14f8#:~:text=This%20can%20help%20to%20prevent,in%20the%20input%20or%20weights.
https://medium.com/@minh.hoque/demystifying-neural-network-normalization-techniques-4a21d35b14f8#:~:text=This%20can%20help%20to%20prevent,in%20the%20input%20or%20weights.
https://medium.com/@minh.hoque/demystifying-neural-network-normalization-techniques-4a21d35b14f8#:~:text=This%20can%20help%20to%20prevent,in%20the%20input%20or%20weights.
https://towardsdatascience.com/train-validation-and-test-sets-72cb40cba9e7
https://towardsdatascience.com/train-validation-and-test-sets-72cb40cba9e7
https://towardsdatascience.com/parameters-and-hyperparameters-aa609601a9ac
https://towardsdatascience.com/parameters-and-hyperparameters-aa609601a9ac
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
https://towardsdatascience.com/this-thing-called-weight-decay-a7cd4bcfccab
https://towardsdatascience.com/this-thing-called-weight-decay-a7cd4bcfccab
https://doi.org/10.48550/arXiv.1609.04836
https://arxiv.org/abs/1609.04836

50 REFERENCES

[39] Gregory Naitzat, Andrey Zhitnikov, and Lek-Heng Lim. “Topology of Deep Neural
Networks”. In: Journal of Machine Learning Research 21 (2020) 1-40 (2020). url:
https://jmlr.csail.mit.edu/papers/volume21/20-345/20-345.pdf.

[40] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning rep-
resentations by back-propagating errors”. In: Nature 323 (1986), pp. 533–536. url:
https://api.semanticscholar.org/CorpusID:205001834.

[41] Claudia Perlith. “Learning Curves in Machine Learning”. In: (2011). doi: 10.1007/
978- 0-387-30164- 8_452. url: https://dominoweb.draco.res.ibm.com/
reports/rc24756.pdf.

[42] “CS231n Convolutional Neural Networks for Visual Recognition”. In: (). url: https:
//cs231n.github.io/neural-networks-3/#sanitycheck.

[43] T. S. Hudson et al. “Distributed Acoustic Sensing (DAS) for Natural Microseismic-
ity Studies: A Case Study From Antarctica”. In: Journal of Geophysical Research:
Solid Earth 126.7 (2021). doi: 10.1029/2020JB021493.

[44] MJ Cunningham and GL Bibby. 11 - Electrical Measurement. Ed. by M.A. Laughton
and D.J. Warne. Sixteenth Edition. Oxford: Newnes, 2003. doi: 10.1016/B978-
075064637-6/50011-3.

[45] Min Lin, Qiang Chen, and Shuicheng Yan. “Network In Network”. In: (2014). doi:
10.48550/arXiv.1312.4400. url: https://arxiv.org/pdf/1312.4400.pdf.

[46] Adam Zewe. “Can machine-learning models overcome biased datasets?” In: (2022).
url: https://news.mit.edu/2022/machine-learning-biased-data-0221.

[47] Joseph Redmon et al. You Only Look Once: Unified, Real-Time Object Detection.
2016. arXiv: 1506.02640 [cs.CV].

[48] Anderson de Andrade. “This thing called Weight Decay”. In: (2019). doi: 10 .
48550/arXiv.1910.13029. url: https://arxiv.org/ftp/arxiv/papers/1910/
1910.13029.pdf.

[49] Griffin Hurt. “Normalization and Generalization in Deep Learning”. In: Rochester
Institute of Technology (2023). url: https://repository.rit.edu/cgi/viewcontent.
cgi?article=12521&context=theses.

[50] Yash Agrawal. “Batch Normalization in Neural Networks”. In: 2018.

[51] Samuel L. Smith et al. “Don’t Decay the Learning Rate, Increase the Batch Size”.
In: (2022). doi: 10.48550/arXiv.1910.13029. url: https://openreview.net/
forum?id=B1Yy1BxCZ.

https://jmlr.csail.mit.edu/papers/volume21/20-345/20-345.pdf
https://api.semanticscholar.org/CorpusID:205001834
https://doi.org/10.1007/978-0-387-30164-8_452
https://doi.org/10.1007/978-0-387-30164-8_452
https://dominoweb.draco.res.ibm.com/reports/rc24756.pdf
https://dominoweb.draco.res.ibm.com/reports/rc24756.pdf
https://cs231n.github.io/neural-networks-3/#sanitycheck
https://cs231n.github.io/neural-networks-3/#sanitycheck
https://doi.org/10.1029/2020JB021493
https://doi.org/10.1016/B978-075064637-6/50011-3
https://doi.org/10.1016/B978-075064637-6/50011-3
https://doi.org/10.48550/arXiv.1312.4400
https://arxiv.org/pdf/1312.4400.pdf
https://news.mit.edu/2022/machine-learning-biased-data-0221
https://arxiv.org/abs/1506.02640
https://doi.org/10.48550/arXiv.1910.13029
https://doi.org/10.48550/arXiv.1910.13029
https://arxiv.org/ftp/arxiv/papers/1910/1910.13029.pdf
https://arxiv.org/ftp/arxiv/papers/1910/1910.13029.pdf
https://repository.rit.edu/cgi/viewcontent.cgi?article=12521&context=theses
https://repository.rit.edu/cgi/viewcontent.cgi?article=12521&context=theses
https://doi.org/10.48550/arXiv.1910.13029
https://openreview.net/forum?id=B1Yy1BxCZ
https://openreview.net/forum?id=B1Yy1BxCZ

APPENDICES

A BasicModelMediumParams Architecture

class IncreasingModelMoreParams(nn.Module):
def __init__(self):

super().__init__()
self.model = nn.Sequential(

input ch1,300x50
nn.Conv2d(

in_channels=1,
out_channels=128,
kernel_size=(3,3),
stride=1,
padding=(0,0)
),

nn.ReLU(),

input ch64,298x48 -> 296x48
nn.Conv2d(

in_channels=128,
out_channels=256,
kernel_size=(3,3),
stride=1,
padding=(0,1)
),

nn.ReLU(),
nn.MaxPool2d(# 296x48

kernel_size=(2,2),
padding=0,
stride=2
),

input ch64,148x24
nn.Conv2d(

in_channels=256,
out_channels=512,
kernel_size=(5,5),
stride=1,
padding=(2,2)

51

),
nn.ReLU(),

input ch64,148x24
nn.Conv2d(

in_channels=512,
out_channels=64,
kernel_size=(1,1),
stride=1,
padding=(0,0)
),

nn.ReLU(),
nn.MaxPool2d(

kernel_size=(2,2),
padding=0,
stride=2
),

input ch128,74x12
nn.Conv2d(

in_channels=64,
out_channels=256,
kernel_size=(7,7),
stride=1,
padding=(3,3)
),

nn.ReLU(),
nn.MaxPool2d(

kernel_size=(2,2),
padding=0,
stride=2
),

input ch256,37x6
nn.Flatten(),
nn.Linear(256 * (37*6), 12)

)

def forward(self, x):
return self.model(x)

52

B Training and Validation Loops

training_start_time = time.time()

train_loss_vals, train_acc_vals = [], []
val_loss_vals, val_acc_vals = [], []
acc_loss_train_results_list, acc_loss_val_results_list = [], []

if __name__ == "__main__":
for epoch in range(num_epochs):

model.train()
total_train = 0
correct_train = 0
running_loss_train = 0.0
for batch in train_loader:

inputs, labels = batch
inputs, labels = inputs.to(device), labels.to(device)

train_preds = model(inputs)
loss = loss_fn(train_preds, labels)

optimizer.zero_grad()
loss.backward()
optimizer.step()

_, predicted_train = torch.max(train_preds.data, 1)
total_train += labels.size(0)
correct_train += (predicted_train == labels).sum().item()
running_loss_train += loss.item()

train_acc = correct_train / total_train
running_loss_train /= len(train_loader)

train_loss_vals.append(running_loss_train)
train_acc_vals.append(train_acc)

print('Epoch [{}/{}], '
'Training Loss: {:.4f}, '
'Training Accuracy: {:.2f}%'.format(

epoch + 1,
num_epochs,
running_loss_train,
(correct_train / total_train) * 100
)

)

train_results_dict = {

53

'model_name': model.__class__.__name__,
'epoch_nb': epoch + 1,
'train_accuracy': train_acc,
'train_loss': running_loss_train
}

acc_loss_train_results_list.append(train_results_dict)

model.eval()
running_loss_val = 0.0
correct_val, total_val = 0, 0
with torch.no_grad():

for batch in val_loader:
inputs, labels = batch
inputs, labels = inputs.to(device), labels.to(device)

outputs = model(inputs)

loss = loss_fn(outputs, labels)
running_loss_val += loss.item()

_, predicted = torch.max(outputs.data, 1)
total_val += labels.size(0)
correct_val += (predicted == labels).sum().item()

val_acc = correct_val / total_val
running_loss_val /= len(val_loader)

val_loss_vals.append(running_loss_val)
val_acc_vals.append(val_acc)

print(f'Epoch [{epoch + 1}/{num_epochs}], '
f'Validation Loss: {running_loss_val:.4f}, '
f'Validation Accuracy: {(val_acc) * 100:.2f}%\n')

val_results_dict = {
'model_name': model.__class__.__name__,
'epoch_nb': epoch + 1,
'validation_accuracy': val_acc,
'validation_loss': running_loss_val
}

acc_loss_val_results_list.append(val_results_dict)

model_time = (time.time() - training_start_time) / 60
print('Training finished, took {:.2f} minutes'.format(model_time))

54

C Accuracy and Loss Curves for Different Models

Figure 1: Accuracy curves for all models in Step 1.

55

Figure 2: Loss curves for all models in Step 1.

56

D Learning Curves with Lower Learning Rate

The figures below display learning curves using the hyperparameters listed in the following
table:

Table 1: Additional hyperparameters applied.

Hyperparameter Value

Train set size 76.5 %
Validation set size 13.5 %
Test set size 10.0 %
Optimizer RMSprop
Regularization None
Model BMMMP

The plots in Figure 3 look more like the "classic" learning curves one would often see.
The configuration does not achieve a higher accuracy than the ones achieved in Chapter
4.

Figure 3: Learning curves. Left: batch size 32. Right: 128.

57

E Additional Incorrect Predictions

58

	Abstract
	Abstrakt
	Preface
	Acronyms
	Introduction
	Research Description
	Outline

	Theory
	Distributed Acoustic Sensing
	Artificial Intelligence
	Artificial Neural Networks
	Convolutional Neural Networks
	Convolutional Layer

	Activation
	Pooling Layer

	Normalization
	Model Training and Hyperparameter Tuning
	Loss Function
	Backpropagation Algorithm
	Optimization and Gradient Descent

	Model Performance Evaluation
	Learning Curves
	Confusion Matrices and Precision/Recall Scores

	Methods
	Data Acquisition
	Data Preprocessing
	Data Labeling
	Labeling Considerations

	Data Augmentation
	Model Building and Training
	Base Model Configurations
	Training

	Performance Evaluation and Hyperparameter Tuning
	Hyperparameter Tuning
	1. Model Iteration
	2. Learning Rates and Optimizer Iteration
	3. Additional Hyperparameters
	4. Final Run and Live-Classification

	Performance Evaluation

	Results
	1. Model Iteration
	2. Learning Rates and Optimizer Iteration
	3. Additional Hyperparameters
	4. Final Run and Live-Classification

	Classification Results and Evaluation
	Confusion Matrix
	Manual Inspection of Incorrect Predictions

	Discussion
	Result Interpretations
	Class Diversity vs. Accuracy
	Vehicle Classes
	Incorrect Class Labels in Dataset

	Implications
	Methods Assessment and Limitations
	Future Work
	Dataset Development
	Modeling and Training

	Conclusions
	References
	Appendices
	BasicModelMediumParams Architecture
	Training and Validation Loops
	Accuracy and Loss Curves for Different Models
	Learning Curves with Lower Learning Rate
	Additional Incorrect Predictions

