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Summary

A new Reinforcement Learning (RL) algorithm based on Model Predictive Con-
trol (MPC) has been recently proposed in which the optimal state (-action) value
function and the optimal policy can be captured by a parameterized MPC scheme
even if the system model underlying the MPC scheme cannot capture the real sys-
tem perfectly. However, the main idea above was investigated upon the Markov
Decision Process (MDP), where a full observation of the states of the real system
is needed. Moreover, the idea of using the MPC-based RL can be investigated for
other types of MPC schemes such as robust MPC and Linear Parameter Varying-
MPC (LPV-MPC).

To investigate the above mentioned ideas and develop new frameworks in the con-
text of MPC-based reinforcement learning, in the first part of this thesis, we in-
vestigate the use of the MPC-based RL framework in the context of Partially Ob-
servable Markov Decision Process (POMDP). We next show that the core idea of
modifying the MPC scheme by RL can also be used for modifying a Moving Ho-
rizon Estimation (MHE) scheme so that the MHE performance is improved even
if the system model underlying the MHE scheme is imperfect. Moreover, we pro-
pose an MHE/MPC-based RL in the context of LPV systems. In the second part of
the thesis, we investigate the use of the MPC-based RL for an approximate Robust
Nonlinear MPC (RNMPC). We then use a second-order Q-learning algorithm to
adjust a set of parameters attached to this approximate RNMPC scheme aiming to
achieve the best closed-loop performance.

In the context of POMDP, we propose an observer-based framework for solving
POMDPs, where the real system is partially observable. We first propose to use
a Moving Horizon Estimation-Model Predictive Control (MHE-MPC) scheme in
order to provide a policy for the POMDP problem, where the states of the real
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system are not fully measurable and necessarily known. We propose to parameter-
ize both the MPC and MHE formulations, where certain adjustable parameters are
regarded for tuning the policy. In this work, for the sake of tackling the unmodeled
and partially observable dynamics, we leverage the RL to tune the parameters of
MPC and MHE schemes jointly, with the closed-loop performance of the policy as
a goal rather than model fitting or the MHE performance.

To deal with the model-based state estimation problems with imperfect models, we
next present a reinforcement learning-based observer/controller using MHE and
MPC schemes, where the model used in the MHE-MPC scheme cannot accurately
capture the dynamics of the real system. We show how an MHE cost modification
can improve the performance of the MHE scheme such that a true state estimation
is delivered even if the underlying MHE model is imperfect. A compatible De-
terministic Policy Gradient (DPG) algorithm is then proposed to directly tune the
parameters of both the estimator (MHE) and controller (MPC) aiming to achieve
the best closed-loop performance.

The LPV models use a linear structure to capture time-varying and nonlinear dy-
namics of complex systems. These models then facilitate the formulation of com-
putationally efficient design algorithms for observers and controllers synthesis of
nonlinear systems. In the LPV framework, we propose an MHE/MPC-based RL
method for the polytopic LPV systems with inexact scheduling parameters (as
exogenous signals with inexact bounds), where the Linear Time Invariant (LTI)
models (vertices) captured by combinations of the scheduling parameters becomes
wrong. We first propose to adopt an MHE scheme to simultaneously estimate the
convex combination vector and unmeasured states based on the observations and
model matching error. To tackle the wrong LTI models used in both the MPC and
MHE schemes, we then exploit a Policy Gradient (PG) to learn both the estimator
(MHE) and controller (MPC) so that the best closed-loop performance is achieved.

In the context of robust MPC, we present an RL-based Robust Nonlinear Model
Predictive Control (RL-RNMPC) framework for controlling nonlinear dynamical
systems in the presence of disturbances and uncertainties. An approximate RN-
MPC of low computational complexity is used in which the state trajectory uncer-
tainty is modelled via ellipsoids. Reinforcement Learning is then used in order to
handle the ellipsoidal approximation and improve the closed-loop performance of
the scheme by adjusting the MPC parameters generating the ellipsoids.
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Chapter 1

Introduction

In this chapter, we briefly discuss the motivation behind the research accomplished
in this thesis. The main contributions in the context of learning-based control-
ler/observer framework are presented. We provide a list of the works published
during this PhD study. Finally, an outline of the thesis is presented.

1.1 Motivation
Reinforcement Learning (RL) is a powerful tool for solving Markov Decision Pro-
cesses (MDPs) without depending on a model of the probability distributions un-
derlying the state transitions. Recently, RL-based control algorithms are gaining
attention, as they can make good use of data to reduce the impact of uncertain-
ties and disturbances, without relying on a model that captures the real system
accurately. The RL algorithms typically rely on Deep Neural Networks (DNNs)
as function approximators.

Unfortunately, DNN-based RL methods do not provide formal tools to discuss the
closed-loop stability and constraint satisfaction. Moreover, providing the initial
weights of a DNN-based policy is difficult and often done randomly, which leads
to a lengthy learning process. In contrast, Model Predictive Control (MPC)-based
policies benefit from a large set of theoretical tools addressing those issues, and
could provide fairly effective policies by using the available system models.

MPC is a successful control strategy that employs a (possibly inaccurate) model
of the real system to generate input-state sequences that minimize a certain cost,
possibly under some constraints. The MPC problem is solved at every time instant,
in a receding-horizon fashion, delivering a policy for the real system. For many
applications, the building an MPC model able to capture the real system dynamics

1
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accurately is very difficult, especially if the real system is stochastic. For these
applications, the performance of the MPC scheme can be severely affected by this
lack of accuracy. Moreover, for computational reasons, simple models are usually
preferred in the MPC-scheme. Hence, the MPC model often does not have the
required structure to correctly capture the real system dynamics and stochasticity.
As a result, the MPC scheme can deliver a reasonable approximation of the optimal
policy, but it is usually suboptimal. Nevertheless, choosing the model parameters
that best fit the MPC model to the real system does not necessarily yield a policy
that achieves the best closed-loop performance.

In the context of learning-based MPC, some Machine-Learning (ML)-based MPC
algorithms have been recently developed to capture an accurate model of the real
system to be used in the MPC schemes [2, 3, 4, 5, 6, 7]. However, a core issue
with these ML-based MPC schemes is that the modelling is not directly related to
the control objectives. More specifically, the ML-based models are constructed to
deliver the best possible predictions, in the hope that this will turn into the best
possible MPC performances.

To address the problems above and leverage the advantages of both the MPC and
RL, an MPC-based RL framework was proposed in [8]. In this paper, it was shown
that by adjusting not only the MPC model parameters but also the parameters in
the MPC cost (terminal and stage costs) and constraints, the MPC scheme can, the-
oretically, generate the optimal closed-loop policy even if a simple and inaccurate
MPC model is used. Instead of DNN, a parameterized MPC scheme was used as
a function approximator required in both the Q-learning and policy gradient meth-
ods. The RL then helps to tune the parameters so that the long-term closed-loop
performance is improved. Moreover, the combination of RL and MPC is therefore
unique in the field of learning-based MPC as it does not focus on improving the
MPC model for more accurate predictions, but ties the MPC tuning directly to the
closed-loop optimality of the resulting policy.

In this thesis, we then use the fundamental principles behind the MPC-based RL
and address several open questions upon this new RL method. We investigate the
use of the main idea in the context of Partially Observable Markov Decision Pro-
cesses (POMDPs) as the existing theorem is only valid for MDPs assuming that a
full observation of the states of the real system is available. We additionally ex-
plore a theorem to modification of the Moving Horizon Estimation (MHE) scheme
such that the state estimation performance can be improved even if a simplified
and an imperfect model is used in the MHE scheme. In the Linear Parameter-
Varying (LPV) framework, we show that the MPC-based RL combined with an
MHE scheme can improve the closed-loop performance when an inaccurate model
of the polytopic LPV is used in the LPV-MPC schemes. In the context of robust
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Nonlinear MPC (NMPC), we propose an RL-based robust NMPC to adjust the
ellipsoidal-MPC scheme as an approximate method to robustifying a nonlinear
MPC scheme in the presence of uncertainties.

1.2 Contributions
In light of the above, the main contributions presented in this thesis can be split
into two parts. The first part of the thesis investigates the use of an observer com-
bined with the MPC-based RL, where one needs to estimate some states of the
real system in a partially observable environment. As a natural choice for the
MPC scheme, we propose to use an MHE scheme as an observer (estimator). We
then present a cost modification for the MHE scheme with imperfect model aim-
ing to achieve the best estimation performance. We also propose to formulate an
MHE/MPC-based RL method in the LPV framework for dealing with the poly-
topic LPV systems with inexact scheduling parameters. Finally, in the second
part of the thesis, we propose to combine an ellipsoidal nonlinear MPC as an ap-
proximate Robust Nonlinear MPC (RNMPC) with reinforcement learning. These
contributions are detailed in Parts I and II.

(I) Reinforcement Learning based on MHE-MPC
This part of the thesis consists of three chapters. In Chapter 3, we formulate
an RL method based on a combined MHE-MPC scheme when dealing with
POMDPs. Chapter 4 presents the central theorem behind the MHE cost
modification. In Chapter 5, we propose an MHE/MPC-based policy gradient
method when dealing with LPV systems.

(II) Reinforcement Learning based on Robust NMPC
Chapter 6 is the only chapter of this part, which investigates the use of the
MPC-based RL in the context of robust NMPC.

1.3 Publications
Ten articles in total were produced and published in peer-reviewed international
conferences and one peer-reviewed journal during the PhD. The author of this
thesis was the first author of five publications and contributed as a co-author of
five other papers.

This thesis has been written based on the following four publications:

Conference Publications

• H. N. Esfahani, A. B. Kordabad and S. Gros, "Reinforcement Learning
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based on MPC/MHE for Unmodeled and Partially Observable Dynamics,"
2021 American Control Conference (ACC), New Orleans, LA, USA, 2021,
pp. 2121-2126, doi: 10.23919/ACC50511.2021.9483399.

• H. N. Esfahani, A. B. Kordabad and S. Gros, "Approximate Robust NMPC
using Reinforcement Learning," 2021 European Control Conference (ECC),
Delft, Netherlands, 2021, pp. 132-137, doi: 10.23919/ECC54610.2021.9655129.

• H.N. Esfahani, S. Gros, "Policy gradient reinforcement learning for uncer-
tain polytopic LPV systems based on MHE-MPC," IFAC-PapersOnLine 55
(15) (2022) 1–6. 6th IFAC Conference on Intelligent Control and Automa-
tion Sciences, ICONS 2022.

Journal Publication

• H. N. Esfahani, A. B. Kordabad, W. Cai, and S. Gros, "Learning-based state
estimation and control using mhe and mpc schemes with imperfect models,"
European Journal of Control, p. 100880, 2023.

Publications not included in this thesis

• H. N. Esfahani, B. Aminian, E. I. Grøtli and S. Gros, "Backstepping-based
Integral Sliding Mode Control with Time Delay Estimation for Autonom-
ous Underwater Vehicles," 2021 20th International Conference on Advanced
Robotics (ICAR), Ljubljana, Slovenia, 2021, pp. 682-687.

• W. Cai, H. N. Esfahani, A. B. Kordabad and S. Gros, "Optimal Manage-
ment of the Peak Power Penalty for Smart Grids Using MPC-based Rein-
forcement Learning," 2021 60th IEEE Conference on Decision and Control
(CDC), Austin, TX, USA, 2021, pp. 6365-6370.

• W. Cai, A. B. Kordabad, H. N. Esfahani, A. M. Lekkas and S. Gros, "MPC-
based Reinforcement Learning for a Simplified Freight Mission of Autonom-
ous Surface Vehicles," 2021 60th IEEE Conference on Decision and Control
(CDC), Austin, TX, USA, 2021, pp. 2990-2995.

• A. B. Kordabad, H. Nejatbakhsh Esfahani and S. Gros, "Bias Correction in
Deterministic Policy Gradient Using Robust MPC," 2021 European Control
Conference (ECC), Delft, Netherlands, 2021, pp. 1086-1091.

• A. B. Kordabad, H. N. Esfahani, A. M. Lekkas and S. Gros, "Reinforcement
Learning based on Scenario-tree MPC for ASVs," 2021 American Control
Conference (ACC), New Orleans, LA, USA, 2021, pp. 1985-1990.
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• A. B. Kordabad, H. Nejatbakhsh Esfahani, W. Cai and S. Gros, "Quasi-
Newton Iteration in Deterministic Policy Gradient," 2022 American Control
Conference (ACC), Atlanta, GA, USA, 2022, pp. 2124-2129.

1.4 Outline
Chapter 2 provides a background on the basic concepts, including reinforcement
learning methods and learning-based MPC. Then, the proposed RL algorithms
based on the MHE-MPC scheme and the approximate robust nonlinear MPC are
detailed in Parts I (Chapters 3, 4, 5) and II (Chapter 6), respectively. Finally, in
Part III (Chapter 7), the works conducted in this thesis are concluded, and some of
the possible future research directions are provided .
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Chapter 2

Background

In this chapter, we first provide a brief summary on the Model Predictive Control
(MPC) and Moving Horizon Estimation (MHE). We then detail the Markov De-
cision Processes (MDPs), which is a crucial concept to formulate the Reinforce-
ment Learning (RL) problems. We next detail the RL algorithms, including classic
Q-learning and deterministic policy gradient methods. We finally discuss the core
idea of using MPC as an approximator in the context of RL as we use this idea to
develop our new learning-based estimator/controller frameworks in this thesis.

2.1 Model Predictive Control and Moving Horizon Estimation

2.1.1 Model Predictive Control

Model Predictive Control (MPC), also known as Receding Horizon Control (RHC),
has been widely adopted in industry as an effective optimal control approach to
deal with multivariable constrained control problems. The basic concept of MPC
is to use a dynamic model of the real system to predict its behavior, and optimize
the forecast to produce the best decision (the control move at the current time). At
each physical sampling time, an MPC scheme computes the control input and the
corresponding state sequence minimizing an objective function while satisfying
the constraints over a given prediction horizon [9]. In this thesis, we will mainly
look at the Nonlinear MPC (NMPC) schemes in a multiple shooting context. In
general, the NMPC scheme is not only related to a nonlinear dynamic but also to
the presence of general nonlinear constraints or a non quadratic objective function.
An NMPC scheme can be described by an Optimal Control Problem (OCP) as

7
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follows:

min
x,u

T (xk+NMPC) +

k+NMPC−1∑
i=k

L(xi,ui) (2.1a)

s.t. xi+1 = fMPC(xi,ui), (2.1b)

xk = x̂k, (2.1c)

h(xi,ui) ≤ 0, hf (xk+NMPC) ≤ 0 (2.1d)

for a given state estimation x̂k (or a system state sk), whereNMPC is the prediction
horizon length, L is the stage cost, T is the terminal cost, fMPC is a model of the
real system, h are the mixed input-state constraints and hf collects the terminal
constraints. Note that the initial states in the constraint (2.1c) are estimated using
an observer, e.g., an MHE scheme, at each time instant k.

2.1.2 Moving Horizon Estimation

In many practical applications, some states of the real system are estimated using
an observer since they can not be directly measured, and the real system is possibly
not fully observable. The Moving Horizon Estimation (MHE) is a well-known
model-based observer in order to estimate the states of processes. An MHE-based
observer scheme at the physical time k can be formulated as the following nonlin-
ear Least-Squares problem:

{x̂k−NMHE,...,k, ûk−NMHE,...,k−1} = argmin
x,u

Zk−NMHE

+
k∑

i=k−NMHE

∥ȳi − y(xi)∥2Q +
k−1∑

i=k−NMHE

∥ui − ūi∥2R (2.2a)

s.t. xi+1 = fMHE(xi,ui) (2.2b)

where ȳi, ūi are the measurements available at the physical time k while their cor-
responding values obtained from the MHE model read as y(xi),ui, respectively.
Let the mismatch between the model (observer) and the real system measurements
be explainable by the normal centered output noise νk as follows:

yk = h(x̂k) + νk (2.3)

The matricesQ andR then denote the inverse of the covariance matrices associated
to these noises on the plant output and control input measurements, respectively.

To compute the arrival cost, one can use its approximation ( approximate the in-
formation prior to k−NMHE) in which the arrival cost takes the form of a quadratic
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function weighted with inverse of the covariance matrix Πk−N as follows:

Zk−NMHE = ∥xk−NMHE − x̃k−NMHE∥
2
Π−1

k−N
(2.4)

where x̃ is the available estimation for the state at time k −NMHE.

x̃ = x̂k−NMHE|k−1 (2.5)

The prior weighting Πk−N is obtained from the Kalman filter covariance update
rule [10]:

Πk+1 =AkΠkA
⊤
k (2.6)

−AkΠkC
⊤
k

(
CkΠkC

⊤
k +R

)−1
CkΠkA

⊤
k

initialized with the covariance matrix of the initial state Π0. Let fMHE be a non-
linear model of the real system. The matrices Ak and Ck are then obtained by
linearization as follows:

Ak =
∂fMHE

∂x̂
|x̂k|k−1

, Ck =
∂h

∂x̂
|x̂k|k−1

(2.7)

2.2 Markov Decision Process

2.2.1 Formulation

RL problems are mathematically formulated in an MDP framework, where the
agent-environment interaction can be typically formulated as an MDP [11]. It is
worth noting that the MDP problems are described based on a fully observable
environment while the problems with a partially observable environment are for-
mulated as Partially Observable Markov Decision Processes (POMDPs) [12].

Definition 1. (MDP) A Markov decision process in a discounted setting is defined
as a tuple M = (γ,S,A,P, R/L) where γ ∈ (0, 1] is a discount factor, S is
the state space, A is the action space, P [s+|s,a] is the transition probability
(stochastic state transition dynamics) for a given state-action pair s,a ∈ S × A
and R/L is the reward/stage cost obtained when taking action a so that a trans-
ition from a state s to a successive state s+ is observed.

Definition 2. (Policy) A policy (decision rule) π is a mapping from states to action,
and it can be defined as deterministic π : S → A or stochastic π [a|s] denoting
the probability of taking action a at state s.
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Remark 1. In classic control, the model s+ = f (s,a) for some function f is a
special case of stochastic transition, by defining:

P [s+|s,a] = δ (s+ − f (s,a)) (2.8)

where δ reads as a Dirac measure. Solving MDPs is then interpreted as an optimal
control problem in which the aim is to find a policy π⋆ minimizing the total cost
(a.k.a performance index) as follows:

J (π) = E

[ ∞∑
k=0

γkL (sk,ak)

∣∣∣∣∣ak = π(sk)

]
(2.9)

where the expectation E is taken over trajectories of the real system subject to
policy π.

2.2.2 Value Functions and Bellman Equations

We next provide two crucial definitions, including state value function V π and
state-action value function Qπ in an MDP framework, which express how good
is to be in a given state and a given state-action pair, respectively. Note that we
consider the MDP frameworks in a discounted setting assuring a well-posed MDP
with a bounded optimal value function. The state (-action) value functions are then
defined as follows:

V π (s) = E

[ ∞∑
k=0

γkL (sk,ak)

∣∣∣∣∣ak = π(sk), s0 = s

]
(2.10a)

Qπ (s,a) = E

[ ∞∑
k=0

γkL (sk,ak)

∣∣∣∣∣s0 = s,a0 = a,ak = π(sk), ∀k ≥ 1

]
(2.10b)

where the expectation E is taken over the state trajectories, which is stochastic as
it follows the transition model P.

Example 1. Let s ∈ N and a ∈ N be the state-input pair locked on a grid [13]. The
stage cost is L (s, a) = 0.5

(
s2 + u2

)
, and we consider the following dynamics:

s+ = s+ a+ round (e) , e ∼ N (0, 1) (2.11)

and a = round
(
− s

10

)
. The state (-action) value functions are then depicted in

Figure 2.1.
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Note that the relation between (2.9) and (2.10a) can be described as:

J (π) = Es0∼p0(s0) [V
π (s0)] = Eτπ [L (s,a)] (2.12)

where p0 is the initial state distribution and τπ is the MDP distribution subject to
policy π. To find an optimal policy from solving an MDP, we next introduce the
Bellman’s Principle of Optimality described by the optimal Bellman equations.
Let V π⋆

(s) = V ⋆ (s) : S → R, Qπ⋆
(s,a) = Q⋆ (s,a) : S × A → R and

A⋆ (s,a) : S × A → R denote the optimal state value function, the optimal
state-action value function and the optimal advantage function, respectively. The
Bellman equations then read as:

Q⋆ (s,a) = L (s,a) + γE [V ⋆ (s+) |s,a] , (2.13a)

V ⋆ (s) = min
a
Q⋆ (s,a) , (2.13b)

π⋆ (s) = argmin
a
Q⋆ (s,a) , (2.13c)

A⋆ (s,a) = Q⋆ (s,a)− V ⋆ (s) (2.13d)

where the expectation E is taken over the distribution P [s+|s,a].

s

5 10 15 20 25 30 35 40

k

s

V  (s)=130.73

Q (s,a)= 102.46

Figure 2.1: Illustration of state (-action) value functions
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2.2.3 Dynamic Programming

Dynamic programming (DP) is a well-known, general-purpose method, and a fun-
damental to many reinforcement learning algorithms in order to find optimal con-
trol strategies based on an already given model of the real environment. Although
DP will deliver the exact solutions of MDPs, the use of this method for the complex
problems with higher state-action dimension is fairly challenging as an accurate
model of the complex real systems is difficult to obtain. Moreover, the DP-based
algorithms take a lot of memory to store the solutions of every iteration (subprob-
lem) without ensuring whether the stored values will be exploited in the next stage.
It is worth mentioning that the DP makes use of the Bellman equations discussed
in the previous section in order to construct iterative algorithms for both the policy
evaluation and improvement [14].

The policy evaluation is the task of computing the state value function V π for a
given policy π. Therefore, for a given policy with any arbitrary value function
V0 (s), the following iterative procedure is used [13]:

Vk+1 ← L (s,π (s)) + γE [Vk (s+) |s,π] , sweep over s (2.14)

Then, for γ < 1

lim
k→∞

Vk (s) = V π (s)

holds for any finite V0 (s). Notice that the state (-action) value function can be
computed jointly such that Q and V delivered from an iterative algorithm will
converge to V π and Qπ, respectively. Hence, one needs to sweep over s and a in
the following iteration:

Q (s,a)← L (s,a) + γE [V (s+) |s,a] (2.15a)

V (s)← Q (s,π (π)) (2.15b)

To find an exact solution to MDPs by solving the Bellman optimality equations,
there are two DP algorithms, including policy iteration and value iteration.
Policy Iteration:
In the policy iteration approach, the policy evaluation as an iterative algorithm for a
given policy π0 is first accomplished such that the sequences V π0

0 , V π0
1 , . . . , V π0

∞ =
V π0 are delivered. In the next stage, the policy improvement is achieved using
V π0
∞ = V π0 to generate a better policy, i.e., π1 and V π1 < V π0 . The next value

function V π1
∞ = V π1 is then computed and improved again to yield an even better

policy π2. More specifically, we can obtain a sequence of improving policies and
value functions as follows:

π0 −→
E
V π0 −→

I
π1 −→

E
V π1 −→

I
π2 −→

E
. . . −→

I
π⋆ −→

E
V ⋆ (2.16)
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where E and I denote the policy evaluation and the policy improvement, respect-
ively. Hence, The policy evaluation and improvement are accomplished using the
following updates:

Compute V πi
∞ : V πi

k+1 (s)← L (s,π (s)) + γE
[
V πi
k (s+) |s,π (s)

]
(2.17a)

πi+1 ← argmin
a
L (s,a) + γE [V πi

∞ (s+) |s,a] (2.17b)

with k and i denoting the iteration number in the policy evaluation and the policy
improvement stages, respectively. Note that the policy iteration will converge to
an optimal policy and optimal value function in a finite number of iterations since
a finite MDP has only a finite number of policies. However, the policy iteration
algorithm may require multiple sweeps over the state space since each policy it-
eration involves policy evaluation, which itself is an iterative procedure described
by equations (2.14) and (2.15).
Value Iteration:
Value iteration aims at finding the optimal action-value function for a given MDP
in which an iterative algorithm is used to improve an estimate of the optimal value
function until it converges to the true optimal value function. The algorithm starts
with an initial arbitrary value V ⋆

0 of the optimal value function and then repeatedly
applies the Bellman optimality equations in order to update the estimate until it
converges. Although this algorithm requires an infinite number of iterations to
converge exactly to V ⋆ = V ⋆

∞, one can stop the iteration when no further change
occurs within ±ϵ. The sequences of V ⋆

0,...,∞ are obtained as follows:

Q⋆
i (s,a)← L (s,a) + γE [V ⋆

i (s+) |s,a] (2.18a)

V ⋆
i+1 ← min

a
Q⋆

i (s,a) (2.18b)

Then, after convergence to the optimal value functions V ⋆ and Q⋆, the optimal
policy reads as:

π⋆ (s) = argmin
a
Q⋆ (s,a) (2.19)

2.3 Reinforcement Learning
To tackle some problems for solving MDPs with higher dimension and unknown
environment, the Approximate Dynamic Programming (ADP) and RL methods are
useful alternatives to DP . More specifically, they will provide an approximation
of the optimal value functions and policy only by interaction with environment
so that a model (an exact model) of MDP is not required. Therefore, we only
need to know which parameters in our model we want to optimize while for a DP
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algorithm one needs a deeper understanding of the environment. Moreover, the
complexity issue upon the DP-based algorithms discussed in the previous section
is addressed by using the RL techniques.

2.3.1 Classic Q-Learning

In this section, the Q-learning algorithm as a value-based reinforcement learning is
detailed. The goal of Q-learning is to indirectly learn a policy, which tells the agent
what action to take under what circumstances. It does not require any model of the
environment, and it can handle problems with stochastic transitions and rewards,
without requiring any adaptations.

In a classic Q-learning, one can use a tabular approximation where s,a is gridded.
We then learn the optimal action-value function Q⋆ starting from an arbitrary Q-
table Q̂⋆ as follows:

δ = L (s,a) + γmin
a+

Q̂⋆ (s+,a+)− Q̂⋆ (s,a) (2.20a)

Q̂⋆ (s,a)← Q̂⋆ (s,a) + αδ (2.20b)

where α > 0 is a step size small enough. However, an accurate representation
of the value functions and policy requires very fine grids. Moreover, in this basic
version of Q-learning, one needs to generalize/extrapolate for using this method
beyond the given state-action space. To generalize the tabular form above, one can
parameterize the action-value function and learn the attached parameters to capture
the optimal action-value function. In the next section, the Q-learning based on the
generic approximator is investigated. Note that there are some well-known func-
tion approximators such as Artificial Neural Networks (ANN) , polynomials and
Radial Basis Functions (RBFs) that might be used to formulate a parameterized
generic approximator.

Q-Learning based on Generic Approximator

Let us consider a linear function approximation, e.g., Qθ(s,a) = ϕ (s,a)⊤ θ for
some features ϕ. Q-learning then aims to update the parameters θ such as to
minimize the estimation error of the Q-function, which can be expressed by the
following Least Squares (LS) problem:

min
θ

E
[
(Q⋆(s,a)−Qθ(s,a))

2
]

(2.21)

where the expected value E is taken over the system trajectories and actions a.
However, as the true action-value function Q⋆(s,a) is generally not known, it can
be replaced by an approximation of the Bellman optimality equation as follows:

Q⋆(s,a) ≈ L(s,a) + γmin
a′

Qθ(s+,a
′) (2.22)
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where 0 < γ ≤ 1 is a discount factor. A classical approach to Q-learning is then
parameter updates driven by the Temporal Difference (TD) learning as follows:

δ = L(s,a) + γmin
a′

Qθ(s+,a
′)−Qθ(s,a), (2.23a)

θ ← θ + αδ∇θQθ(s,a) (2.23b)

where scalar α > 0 is a step-size and δ is the TD error. In the above TD learning
algorithm, a baseline stage cost L(s,a) is defined as a function of state-action
pair in order to provide an evaluation signal. Indeed, the baseline cost affects the
agent behavior and control policy via RL parameter updating, where the TD error
is appeared. Finally, Qθ⋆ reads as an approximation of the optimal action-value
function Q⋆ such that an approximation of the optimal policy reads as:

π̂⋆ (s) = argmin
a
Qθ⋆(s,a) (2.24)

Q-Learning based on Least Squares Temporal Difference

Least squares temporal difference-based reinforcement learning methods, e.g., Least
Squares Temporal Difference Q-learning (LSTDQ) make an efficient use of data
and tend to converge faster than more basic temporal-difference learning methods
[15]. To learn the action-value function Qπ, one can form the least squares of
Bellman residual error w.r.t θ as follows:

min
θ

E
[(
Qπ(s,a)− Q̂π

θ (s,a)
)2]

(2.25)

Considering the Bellman equation for the action-value function, let us define the
following approximation:

Qπ(s,a) ≈ L(s,a) + γQ̂π
θ (s+, π(s+)) (2.26)

where L(s,a) is the RL stage cost. By substituting (2.26) into (2.25), the least
square problem (2.25) for the first-order LSTDQ-learning can be solved for some
data acquired from the transitions as:

E
[
δQ∇θQ̂

π
θ (s,a)

]
= 0, (2.27a)

δQ = L(s,a) + γQ̂π
θ (s+, π(s+))− Q̂π

θ (s,a) (2.27b)

where δQ is the temporal difference error. Let us consider a linear parameterization
as follows:

Q̂π
θ (s,a) = ϕ (s,a)⊤ θ (2.28)
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where ϕ (s,a) : Rn×Rm → Rnθ are some basis functions. The LSTDQ equations
then become a linear system in θ such that:

E
[
ϕ (s,a) (ϕ (s,a)− γϕ (s+,π (s+)))

⊤
]
θ = E [L (s,a)ϕ (s,a)] (2.29)

One can also adopt a Newton method to solve (2.27) and extract the newton step
for the second-order LSTDQ scheme as follows:

θ ← θ − αA−1b, (2.30a)

A = E
[
δQ∇2

θQ̂
π
θ +∇θQ̂

π
θ (∇θδQ)

⊤
]
, b = E

[
δQ
∂Q̂π

θ

∂θ

]
(2.30b)

where scalar α > 0 is labelled the learning step-size.

2.3.2 Policy Gradient Method

This section presents the Policy Gradient (PG) method as a policy-based RL al-
gorithm that attempts to optimize a policy directly, rather than indirectly via a
value function. The policy is usually modeled with a parameterized function re-
spect to θ, πθ. In the PG methods, the parameterized policy function is either
stochastic or deterministic so that the policy type will determine whether the PG
algorithm is deterministic or stochastic [16]. In a stochastic PG, the policy function
πθ (·|s) is modeled as a probability distribution over actions A given the current
state s while the policy function in a deterministic case is regarded as a determin-
istic decision a = πθ (s), which dedicates a deterministic action to each state s.
However, the stochastic PG may require more data as the policy gradient is con-
structed by integrating over both state and action spaces [17]. In the present thesis,
we then use a deterministic PG in which the parameterized policy is delivered from
a parameterized MPC scheme.

Deterministic Policy Gradient

As discussed, the Q-learning methods seek the fitting of Qθ to Q⋆ using (2.25)
such that Qθ⋆ ≈ Q⋆ and consequently π̂⋆ ≈ π⋆. However, this policy approxim-
ation may not hold even if the previous approximation holds. To tackle this issue,
the policy gradient methods are useful as the policy is approximated directly. We
will focus on the Deterministic PG (DPG) method that formally maximizes the
policy performance based on the deterministic policy gradient theorem [17]. The
policy parameters θ can be directly optimized by the gradient descent steps such
that the best expected closed-loop cost (a.k.a policy performance index J) can be
captured by applying the policy πθ.

θ ← θ − α∇θJ(πθ) (2.31)
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The policy gradient then reads as:

∇θJ (πθ) = E
[
∇θπθ (s)∇aQ

πθ (s,a)
∣∣∣
a=πθ(s)

]
(2.32)

where the expectation E is taken over trajectories of the real system subject to
policy πθ. Note that ∇aQ

πθ (s,a) can be replaced by ∇aA
πθ (s,a), where

Aπθ (s,a) = Qπθ (s,a) − V πθ (s) denotes the advantage function. In the next
section, we will obtain an approximation of Aπθ . Then, a necessary condition of
optimality to πθ reads as:

∇θJ (πθ) = 0 (2.33)

Note that we use an MPC scheme as an approximator for πθ ≈ π⋆, where∇θπθ is
obtained by a sensitivity analysis on the MPC scheme [18, 8]. To captureQπθ , one
can use a parameterized Qw, e.g, either a linear parameterization or a compatible
function as an approximation of Qπθ detailed in the next section. The TD actor-
critic algorithm as a well-known approach in the context of DPG then uses the
following updating rules:

δk = L(sk,ak) + γQw(sk+1,πθ (sk+1))−Qw(sk,ak), (2.34a)

w← w + αwδk∇wQ
w(sk,ak) (2.34b)

θ ← θ − αθ∇θπθ (sk)∇aQ
w (sk,πθ (sk)) (2.34c)

where αw, αθ > 0 are the learning step-sizes for the action-value (critic) and
policy (actor) functions, respectively.

DPG using Compatible Approximator

Under some conditions detailed in [17], one can use a compatible approximation
of the action-value function Qπθ(sk,ak) in which a class of compatible function
approximator Qw(sk,ak) exists such that the policy gradient is preserved. There-
fore, the compatible function for a deterministic policy πθ can be expressed as
follows:

Qw(sk,ak) = (ak − πθ (s))
⊤∇θπ

⊤
θ (sk)w︸ ︷︷ ︸

Aw

+V ν (sk) (2.35)

The first term in the above compatible function as critic part is an approximation
for the advantage function Aw ≈ Aπθ and the second is a baseline function ap-
proximating the value function V ν ≈ V πθ . Both functions can be computed by
the linear function approximators as follows:

V ν (sk) = Υ (sk)
⊤ ν, (2.36a)

Aw (sk,ak) = Ψ (sk,ak)
⊤w (2.36b)
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where Υ (sk) is labelled the feature vector, and Ψ (sk,ak) is computed as follows:

Ψ (sk,ak) := (ak − πθ (s))
⊤∇θπ

⊤
θ (sk) (2.37)

The parameters w and ν of the action-value function approximation then become
the solutions of the following Least Squares (LS) problem:

min
w,ν

E
[(
Qπθ(s,a)−Qw(s,a)

)2]
, (2.38)

The problem above can be solved via an LSTD method, which belongs to batch
method, seeking to find the best fitting state (-action) value functions, and it is
more sample efficient than other methods [19]. The LSTD update rules then read
as:

ν = Ω−1
ν bν , (2.39a)

w = Ω−1
w bw, (2.39b)

θ ← θ − αbθ (2.39c)

where the matrices Ω(·) and the vectors b(·) are computed by taking expectation
(Em) over m episodes as follows:

Ων = Em

 Tf∑
k=1

[
Υ (sk) (Υ (sk)− γΥ (sk+1))

⊤
] (2.40a)

Ωw = Em

 Tf∑
k=1

[
Ψ (sk,ak)Ψ (sk,ak)

⊤
] , (2.40b)

bν = Em

 Tf∑
k=1

Υ (sk)L(sk,ak)

 , (2.40c)

bw = (2.40d)

Em

 Tf∑
k=1

[
(L(sk,ak) + γV ν (sk+1)− V ν (sk))Ψ(sk,ak)

] ,
bθ = Em

[ Tf∑
k=1

∇θπθ (sk)∇θπ
⊤
θ (sk)w

]
(2.40e)

where Tf is the final time instant at the end of each episode.

2.4 MPC-based Reinforcement Learning
The main idea of using MPC as a function approximator in the context of RL was
first developed in [8, 20]. Successful applications that build on this result include
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[21, 22, 23, 24]. In this section, we briefly discuss the fundamental principles
behind this concept aiming to use an MPC scheme in order to approximate the op-
timal value function and policy required in both the Q-learning and policy gradient
methods. It is worth mentioning that the MPC is a well-known control algorithm
in handling the state and input constraints such that this property is leveraged to
provide a safe RL paradigm. However, the MPC performance can be poor in pres-
ence of some process noise or model mismatch, where this performance degrad-
ation can be tackled by using a combined RL-MPC framework. More precisely,
the theorem developed in [8] showed that the terminal and stage costs of the MPC
shceme can be modified such that the value function associated to the MPC can
capture the optimal value function of the MDP even if the MPC model is imperfect.
In practice, a parameterized MPC scheme is used in the MPC-based RL providing
a parameterized state (-action) value function in the context of Q-learning Vθ, Qθ

and a parameterized policy πθ in the context of policy gradient.

Let us formulate a parameterized MPC scheme as follows:

Vθ(s) = min
x,u,σ

γN
(
V f
θ (xk+N ) +w⊤

f σk+N

)
+

k+N−1∑
i=k

γi−k
(
lθ(xi,ui) +w⊤σi

)
(2.41a)

s.t. xi+1 = fθ(xi,ui), (2.41b)

xk = s, (2.41c)

g(ui) ≤ 0, (2.41d)

hθ(xi,ui) ≤ σi, hf
θ(xk+N ) ≤ σk+N (2.41e)

σk,...,k+N ≥ 0 (2.41f)

where the parameterized functions lθ, V
f
θ , fθ,hθ,h

f
θ are the stage cost, the ter-

minal cost, the MPC model, the mixed constraints and the terminal constraints,
respectively. g is labelled the pure input constraints. In many real processes,
there are uncertainties and disturbances that may cause an MPC scheme to be-
come infeasible. Therefore, an ℓ1 relaxation of the mixed constraints (2.41e) is
introduced. An exact penalty is then imposed on the corresponding slack variables
σk with large enough weights w,wf such that the trajectories predicted by the
MPC scheme will respect the constraints. All elements in the above MPC scheme
are parameterized by θ, which will be adjusted by RL. The policy at the physical
current time k then reads as:

πθ(s) = u⋆
k (s,θ) (2.42)
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where u⋆
k is the first element of the input sequence u⋆

k, · · · ,u⋆
k+NMPC−1 solution of

(2.41). We next consider this optimal policy delivered by the MPC scheme as an
action a in the context of reinforcement learning, where it is selected according to
the above policy with the possible addition of exploratory moves.

2.4.1 MPC-based Q-Learning

An MPC-based approximator for the action-value function Qθ can be formulated
as:

Qθ(s,a) = min
x,u,σ

(2.41a) (2.43a)

s.t. (2.41b)− (2.41f) (2.43b)

uk = a (2.43c)

Note that the proposed approximators (2.41)-(2.43) satisfies the fundamental equal-
ities underlying the Bellman equations such that:

πθ(s) ∈ argmin
a
Qθ(s,a), Vθ(s) = min

a
Qθ(s,a) (2.44)

The parameter updating rule then becomes:

δ = L(s,a) + γVθ(s+)−Qθ(s,a), (2.45a)

θ ← θ + αδ∇θQθ(s,a) (2.45b)

Example 2. (MPC-based Q-Learning) In this example [8], we investigate the
MPC-based Q-learning detailed above, where the following optimization problem
as a parameterized MPC scheme is solved at each time instant k:

min
x,u,σ

θc +
γN

2

(
x⊤
k+NM

f
θ xk+N +w⊤

f σk+N

)
+

k+N−1∑
i=k

γi−k

2

(
c⊤Mθc+w⊤σi

)
+ f⊤c (2.46a)

s.t. xi+1 = Axi +Bui + b, (2.46b)

xk = s, (2.46c)

− 1 ≤ ui ≤ 1, (2.46d)[
0
−1

]
+ θ − σi ≤ xi ≤

[
1
1

]
+ θ̄ + σi (2.46e)

σk,...,k+N ≥ 0 (2.46f)



2.4. MPC-based Reinforcement Learning 21

where c = [xk,uk]
⊤ and the MPC parameters subject to the RL scheme are:

θ =
(
θc,M

f
θ , f ,Mθ, A,B,θ, θ̄

)
(2.47)

The positive semidefinite weighting matrices (Mf
θ , Mθ) are adjusted using the

constrained RL steps, e.g., a Semidefinite Programming (SDP) [22]. One can
choose a baseline stage cost used in the updating rule (2.45) as follows:

L(xk,uk) = l(xk,uk) +w⊤max(0,h(xk)) (2.48)

where l(xk,uk) is adopted as a quadratic function. The second term in the above
baseline is considered to penalize the constraint violations, where h ≥ 0 is pure
inequality vector of constraints on the states and w⊤ = [100, 100]. The step size
is α = 10−7. The real system has the following dynamics:

xk+1 =

[
0.9 0.35
0 1.1

]
xk +

[
0.0813
0.2

]
uk +

[
ek
0

]
(2.49)

and we choose an imperfect model for the MPC scheme as:

A =

[
1 0.25
0 1

]
, B =

[
0.0312
0.25

]
(2.50)

where the disturbance ek is random, uncorrelated and uniformly distributed vari-
able in the interval [−0.13, 0].

The first state of the real system x1 has a reference point and lower bound at zeros
shown in Figure 2.2. Hence, this state violates its constraint at the beginning stage
of the Q-learning due to the disturbance ek while the violation is tackled after some
state transitions, and the state keeps its distance as close as possible to the desired
point at 0.
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Figure 2.2: Evolution of the first state x1 and the action u. Constraint violation is observed
on the first state of the real system x1 when the Q-learning process starts.
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Figure 2.3: Q-Learning algorithm based on MPC-based value function approximator

2.4.2 MPC-based Deterministic Policy Gradient

In an MPC-based DPG algorithm, one needs to compute two terms, including com-
patible action value function Qw(sk,ak) and policy gradient ∇θJ (πθ). These
terms are constructed based on the policy sensitivity term ∇θπθ (sk), which can
be computed by using a sensitivity analysis on the MPC scheme. To this end, let
us define the primal-dual Karush Kuhn Tucker (KKT) conditions underlying the
MPC scheme (2.41) as follows:

R =
[
∇ζLθ,Gθ, diag (µ)Hθ

]⊤ (2.51)
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where ζk = {x,u,σ} includes the primal decision variables of (2.41) and the
term Lθ is the associated Lagrange function as follows:

Lθ(yk) = Φθ + λ⊤Gθ + µ⊤Hθ, (2.52)

where Φθ is the MPC cost (2.41a), Gθ gathers the equality constraints and Hθ

collects the inequality constraints of the MPC (2.41). Let λ,µ be the associated
dual variables. Argument yk reads as yk = {ζ,λ,µ} and y⋆

k refers to the solu-
tion of the MPC (2.41). Consequently, the policy sensitivity ∇θπθ can then be
obtained as follows [25]:

∇θπθ (sk) = −∇θR (y⋆
k, sk,θ)∇yk

R(y⋆
k, sk,θ)

−1 ∂yk

∂uk
, (2.53)

Example 3. Let us consider the previous Example 2. We then use an MPC-based
DPG algorithm in which the RL parameters are updated by using an LSTD method
detailed by (2.38)-(2.40).

Figure 2.4: Evolution of the states and control input. The blue lines show the results after
the learning progress is terminated. As observed, the constraint violation on the first state
x1 is disappeared.
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evolution of the policy parameters.
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This chapter proposes an observer-based framework for solving Partially Observ-
able Markov Decision Processes (POMDPs) when an accurate model is not avail-
able. We first propose to use a Moving Horizon Estimation-Model Predictive Con-
trol (MHE-MPC) scheme in order to provide a policy for the POMDP problem,
where the full state of the real process is not measured and necessarily known.
We propose to parameterize both MPC and MHE formulations, where certain ad-
justable parameters are regarded for tuning the policy. In this chapter, for the sake
of tackling the unmodeled and partially observable dynamics, we leverage the Re-
inforcement Learning (RL) to tune the parameters of MPC and MHE schemes
jointly, with the closed-loop performance of the policy as a goal rather than model
fitting or the MHE performance. Illustrations show that the proposed approach can
effectively increase the performance of close-loop control of systems formulated
as POMDPs.

3.1 Introduction
Reinforcement Learning (RL) is a powerful tool for solving Markov Decision Pro-
cesses (MDP) problems [11]. RL methods often use Deep Neural Network (DNN)
to approximate either the optimal policy underlying the MDP directly or the action-
value function from which the optimal policy can be indirectly extracted.

Recent publications are discussing RL for POMDPs. A neural network-based
computation of belief states (posterior distributions over states) was proposed to
aggregate historical information needed to estimate a belief state [26, 27]. An
RL algorithm tailored to POMDPs was proposed in [12] that incorporated spectral
parameter estimation within an exploration-exploitation strategy. A data-driven
algorithm based on approximate Dynamic Programming (ADP) was proposed in
[28] to stabilize a plant with partially observable dynamics. The authors used
an Action-Dependent Heuristic Dynamic Programming (ADHDP) algorithm, in-
cluding two neural networks as an actor-critic (AC) method to estimate both the
unmeasured state and the performance index. The proposed ADP-based approach
in [29] is similar to classic RL algorithms but requires only measurements of the
input/output data and not of the full system state.

In [30], a neural network-based actor-critic structure was proposed to approximate
the control policies where a full system state is not accessible. In [31], a fuzzy
neural network was used to find the local optimal policy. A Recurrent Neural Net-
work (RNN) was proposed in [32] to learn and infer the true state observations
from the noisy and correlated observations in a POMDP. Most of the proposed
RL-based control techniques in the above literature are based on DNN-based ap-
proximators.
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Model predictive control (MPC) is a popular and widely used practical approach to
optimal control. MPC is often selected for its capability to handle both input and
state constraints [9]. At each time instant, MPC calculates the input and corres-
ponding state sequence minimizing a cost function while satisfying the constraints
over a given prediction horizon. The first input is applied, and the optimal solution
is recalculated at the next time instant based on the latest state of the system.

In many practical applications, some states of the plant are estimated using an
observer since they can not be directly measured, and the plant is possibly not
fully observable. The Moving Horizon Estimation (MHE) is a well-known model-
based observer in order to estimate the states of processes. In this chapter, we use
this type of observer as a natural choice for the MPC scheme [33].

Recently, the integration of machine learning in model predictive control has been
presented, with the aim of learning the model of the system, the cost function or
even the control law directly [34, 35]. These approaches are based on DNN-based
approximation. The direct combination of RL and MPC has been investigated in
[36, 37, 38]. It is shown that a single MPC scheme can capture the optimal value
function, action-value function, and policy of an MDP, even if the MPC model is
inaccurate, hence providing a valid and generic function approximator for RL. The
applications of this new MPC-based RL framework have been recently presented
in [39, 40].

However, these approaches assume that the state of the process is known and can
be fully measured. For many applications this assumption is not fulfilled. To
address this issue, this chapter proposes to use a state observer such as an MHE
combined with the MPC scheme to build a policy based on the historic of the avail-
able measurements rather than on the full state of the system. MHE delivers state
estimations by fitting the process model trajectory to past measurements obtained
on the real system. We adopt an MPC-based Q-learning algorithm to tune the para-
meters included in the MHE-MPC scheme for the closed-loop performance of the
resulting policy.

This chapter is organised as follows. In Section 3.2, some background material
is given. Then the MPC and MHE schemes are detailed. The implementation of
the Q-learning algorithm for tuning both the MPC and MHE schemes together is
detailed in Section 3.3. An illustrative example is proposed in Section 3.4. Finally,
conclusions and future work are given in Section 3.5.

3.2 Preliminaries and problem formulation
In the context of reinforcement learning a partially observable real plant is de-
scribed by a discrete POMDP having (possibly) stochastic state transitions as fol-
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lows:

xk+1 = fplant(xk,uk, ζ) (3.1a)

yk = h(xk,η) (3.1b)

where the full state xk is not measurable or not even known and xk+1 is the next
plant state vector under stochastic transition with some random disturbances ζ.
The model outputs y are measured on the real system and delivered by the output
function h associated with some random measurement noises η. We present next
the MHE and MPC schemes and how they can be used to create the action-value
function approximation required in Q-learning.

3.2.1 Parameterized MHE Formulation

For a POMDP, the measurements available from the real process at a given time
instant do not constitute a Markov state. As a result, the full history of the measure-
ments becomes possibly relevant to the optimal policy. However, building a policy
based on the complete measurement history to solve the POMDPs is not realistic.
The RL community either considers a limited sequence of past observations as a
sufficient history or estimates a belief state using a recurrent neural network. In this
chapter, we propose a more structured solution to address this issue, by using MHE
as a model-based approach to build a state from the measurement history. The
complete measurement history is then transformed into a (possibly small) model
state that is compatible with the selected policy. The MHE-based observer at the
physical time k can be stated as the following Nonlinear Least-Squares problem:

{x̂k−NMHE,...,k, ûk−NMHE,...,k−1} =
argmin

x,u
∥xk−NMHE − x̃k−NMHE∥

2
Aθ

r

+
k∑

i=k−NMHE

∥ȳi − y(xi)∥2Qθ
E
+ ϕθ(xi) +

k−1∑
i=k−NMHE

∥ui − ūi∥2Rθ
E
+ ϕθ(ui)

(3.2a)

s.t. xi+1 = fMHE
θ (xi,ui) (3.2b)

where k is the current time instant, i is the time instant along the estimation horizon
window. ȳi, ūi are the measurements available at the physical time k while their
corresponding values obtained from the MHE model are y(xi),ui, respectively.
Let us consider the mismatch between the model (observer) and the real plant
measurements is explainable by normal centered output noise, then matrices Qθ

E

and Rθ
E are the inverse of the covariance matrices associated to these noises on

the plant output and control input measurements, respectively. The first term in
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(3.2a) is an arrival cost weighted with matrix Aθ
r , which aims at approximating

the information prior to k − NMHE, where x̃ is the available estimation for the
state at time k−NMHE. In practice, since the MHE fitting error is not only coming
from some normal centered output noise but also model error, more intricate noise,
and possibly unmodelled dynamics, it is very difficult to decide what symmetric
positive semi-definite weighting matrices Qθ

E , Rθ
E , Aθ

r ought to be used to obtain
the best closed-loop performance. To address this issue, we propose to adjust
them using the RL algorithm. Moreover, as the Least-Squares cost as a choice of
penalty in the MHE are not necessarily sufficient, we introduce a cost modification
ϕθ tuned by RL. Note that we consider a gradient form of the cost modification in
this chapter ϕθ(xi) = f⊤1 xi and ϕθ(ui) = f⊤2 ui, where f1 and f2 are labeled as
RL parameters θ.

3.2.2 Parameterized MPC Formulation

In this work we will consider the MPC scheme as a value function approximator
that can be formulated as:

Vθ(xk) = min
x,u,σ

γNMPC
(
V f
θ (xk+NMPC) +w⊤

f σk+NMPC

)
+

k+NMPC−1∑
i=k

γi−k
(
lθ(xi,ui) +w⊤σi

)
(3.3a)

s.t. xi+1 = fMPC
θ (xi,ui), (3.3b)

xk = x̂k, (3.3c)

g(ui) ≤ 0, (3.3d)

hθ(xi,ui) ≤ σi, hf
θ(xk+NMPC) ≤ σk+NMPC (3.3e)

σk,...,k+NMPC ≥ 0 (3.3f)

where lθ is the stage cost, V f
θ the terminal cost, fMPC

θ the MPC model (possibly
but not necessarily different from the MHE model), hθ the mixed constraints, g
the pure input constraints, hf

θ the terminal constraints. The MPC initial conditions
in (3.3c) are delivered by MHE scheme at the current time instant k. In many real
processes, there are uncertainties and disturbances that may cause an MPC scheme
to become infeasible. Therefore, an ℓ1 relaxation of the mixed constraints (3.3e) is
introduced. An exact penalty is imposed on the corresponding slack variables σk

with large enough weights w,wf such that the trajectories predicted by the MPC
scheme will respect the constraints. All elements in the above MPC scheme are
parameterized by θ, which will be adjusted by RL, as detailed in [36].
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Let us consider the policy at the physical current time k as:

πθ(xk) = u∗
k (3.4)

where, u⋆
k is the first element of the input sequence u⋆

k, · · · ,u⋆
k+NMPC−1 solution

of (3.3). We next consider this optimal policy delivered by the MPC scheme as an
action ak in the context of reinforcement learning where, it is selected according
to the above policy with the possible addition of exploratory moves [11]. Then, an
action-value function approximation Qθ can be formulated as:

Qθ(xk,uk) = min
x,u,σ

(3.3a) (3.5a)

s.t. (3.3b)− (3.3f) (3.5b)

uk = ak (3.5c)

Note that the proposed approximations (3.3)-(3.5) satisfies the fundamental equal-
ities underlying the Bellman equations [41]:

πθ(xk) = argmin
u
Qθ(xk,uk), Vθ(xk) = min

u
Qθ(xk,uk) (3.6)

3.3 MPC-MHE-based RL
In this section, we present the algorithmic details needed to implement a classic
Q-learning algorithm on the combination of MPC-MHE schemes.

3.3.1 Q-Learning for MPC-MHE

A classical off-policy Q-Learning algorithm is based on the temporal-difference
learning procedure [11] in which the updating rule for the RL parameters can be
expressed as follows:

δk = L(xk,uk) + γVθ(xk+1)−Qθ(xk,uk), (3.7a)

θ ← θ + αδk∇θQθ(xk,uk) (3.7b)

where scalar α > 0 is a step size, 0 < γ ≤ 1 is a discount factor and δk is the
Temporal Difference (TD) error at the physical time k. In the above TD learning
algorithm, a baseline stage cost L(xk,uk) (reward in the context of RL) is defined
as a function of state-action pair in order to provide an evaluation signal. Indeed,
the baseline cost affects the agent behavior and control policy via RL parameter
updating, where the TD error is appeared.
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The gradient of function Qθ needed in (3.7) requires one to compute the sensitiv-
ities of the optimal value of Nonlinear Programming (NLP) (3.5). This sensitivity
ought to be computed with care since the RL parameters θ impactQθ both directly
via the MPC scheme and indirectly via the MHE scheme, by modifying the state
estimation x̂k at the physical current time instant k that enters as an initial condi-
tion xk = x̂k in the MPC scheme. The gradient∇θQθ associated to the proposed
MPC/MHE scheme is given by the following total derivative:

dQθ

dθ
=
∂Qθ

∂θ
+
∂Qθ

∂x̂k

∂x̂k

∂θ
(3.8)

Figure 3.1 shows an overview of the proposed learning-based observer/controller.

Figure 3.1: An overview of the MHE/MPC-based Q-learning. Both the MPC and MHE
models are assumed to be partially observable dynamics. The state and action value func-
tions Vθ, Qθ are approximated by (3.3) and (3.5), respectively. The action a is selected
according to the policy πθ with the possible addition of exploratory moves. The state es-
timation x̂ is delivered by the MHE scheme (3.2). The SDP (3.14) is used to satisfy some
requirements in the RL steps.

We detail next how to compute the above sensitivities.
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3.3.2 Sensitivities of the MPC-MHE scheme

Let us define the Lagrange functions Lθ, L̂θ associated to the MPC and MHE
problems (3.2), (3.5) as follows:

Lθ = Φθ + λ⊤Gθ + µ⊤Hθ (3.9)

L̂θ = Φ̂θ + λ̂
⊤
Ĝθ (3.10)

where Hθ gathers the inequality constraints of (3.5) and Φθ, Φ̂θ are the costs of
the MPC and MHE optimization problems, respectively. Variables λ, λ̂ are the
Lagrange multipliers associated to the equality constraints Gθ, Ĝθ of the MPC
and MHE, respectively. Variables µ are the Lagrange multipliers associated to the
inequality constraints of the MPC scheme. Let us label the primal variables as
p = {X,U} and p̂ =

{
X̂, Û

}
for the MPC and MHE, respectively. The primal-

dual variables of the MPC and MHE schemes will be labeled as z = {p,λ,µ}
and ẑ =

{
p̂, λ̂

}
, respectively.

The sensitivities of the MPC scheme (3.5) required in (3.8) can be obtained by the
sensitivity analysis detailed in [42] as follows:

∂Qθ

∂θ
=
∂Lθ(xk, z

⋆)

∂θ
,

∂Qθ

∂xk
=
∂Lθ(xk, z

⋆)

∂xk
, xk = x̂k (3.11)

where z⋆ is the primal-dual solution vector of (3.5).

The sensitivity ∂x̂k
∂θ associated to the MHE scheme can be obtained via using the

Implicit Function Theorem (IFT) on the Karush Kuhn Tucker (KKT) conditions
underlying the parametric NLP. Assuming that Linear Independence Constraint
Qualification (LICQ) and Second Order Sufficient Condition (SOSC) hold [18] at
ẑ⋆, then, the following holds:

∂ẑ⋆

∂θ
= −∂Rθ

∂ẑ

−1∂Rθ

∂θ
(3.12)

where

Rθ =

[
∇p̂L̂θ
Ĝθ

]
(3.13)

are the KKT conditions associated to the MHE scheme (3.2). As x̂k is part of ẑ⋆,
the sensitivity of the MHE solution ∂x̂k

∂θ required in (3.8) can be extracted from
matrix ∂ẑ⋆

∂θ .
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3.3.3 Constrained RL steps

The adjustable weighting matrices in the proposed parameterization of both MPC
and MHE in (3.2), (3.3) and (3.5) are tuned using Q-learning. As a requirement, the
weighting matrices Qθ

E , Rθ
E , Aθ

r must be positive semidefinite. However, the RL
steps delivered by Q-learning do not necessarily respect this requirement, and we
need to enforce it via constraints on the RL steps throughout the learning process.
To address this requirement, we formulate a Semi-Definite Program (SDP) as a
least squares optimization problem:

min
∆θ

1

2
∥∆θ∥2 − αδk∇θQθ(xk,uk)

⊤∆θ (3.14a)

s.t. Qθ
E(θ +∆θ) ≥ 0 (3.14b)

Rθ
E(θ +∆θ) ≥ 0 (3.14c)

Aθ
r (θ +∆θ) ≥ 0 (3.14d)

where we assume that the weighting matrices Qθ
E , R

θ
E , A

θ
r are linear functions of

θ. Then, these matrices are updated in each time instant due to updating ∆θ,
which is a solution of the above SDP scheme. The proposed learning process is
described in the Alg. 1.

Algorithm 1 (MPC+MHE)-Based RL
Require: α, tol > 0,θ = θ0,x0,u0

while Iter do
1. Measure output yk from (3.1b) at current time k
2. Obtain x̂k,∂x̂k

∂θ from (3.2) and (3.12)
3. Obtain πθ(xk), Vθ(xk) from (3.3)
4. Exploration: uk = πθ(xk) + d, d ∼ N

(
µ, σ2

)
5. Obtain Qθ, ∂Qθ

∂θ from (3.5), (3.11)
6. Assemble dQθ

dθ from (3.8)
7. Apply uk to the real plant: (3.1a)
8. Evaluate baseline L(xk,uk)
9. RL update:

- Obtain ∆θ from (3.14)
- θ ← θ +∆θ

k ← k + 1
end while
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3.4 Numerical Example
In this section, we illustrate the performance of the proposed MPC/MHE-based RL
scheme, which is tested on a constrained two-mass-spring-damper system shown
in Figure 3.2, for which the MPC/MHE model ignores some of the dynamics.

u

x1 x2

k

b

m1
m2

Figure 3.2: Two-Mass-Spring-Damper

The control input acts on mass 1, and the position of mass 2 is measured. Let us
consider m1 = 0.8 kg, m2 = 0.5 kg, k = 25 N

m , b = 3 Ns
m and define the plant

dynamics as:


ẋ1
ẋ2
ẋ3
ẋ4

 =


0 0 1 0
0 0 0 1

− k
m1

k
m1

− b
m1

b
m1

k
m2

− k
m2

b
m2

− b
m2



x1
x2
x3
x4

+


0
0
1
m1

0

u
where x1, x2 are positions of masses 1, 2, respectively, and x3, x4 are correspond-
ing velocities. Variable u is the control input applied to the first mass. In this
simulation, we propose to formulate the MPC/MHE scheme based on a partially
observable model. More precisely, the adopted MPC scheme is presented based
on a 2-states model, capturing only the position and velocity of mass 1. The MHE
scheme is based on the same model, but is fed as measurements the position of the
mass 2 (y = x2). Let fMPC

θ in (3.3b) be a partially observable and inaccurate MPC
model as follows:[

ẋ1
ẋ3

]
=

([
0 1
0 0

]
+Abias

)[
x1
x3

]
+

([
0
1

m1+m2

]
+Bbias

)
u (3.15)

where Abias, Bbias are adjusted as model bias RL parameters θ via Q-learning in
order to tackle the inaccurate above MPC model. In this example, the follow-
ing optimization problem as a parameterized MPC scheme is solved at each time
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instant k:

min
x,u,σ

θc +
γNMPC

2

(
x⊤
NfM

f
θxNf +w⊤

f σNf

)
+

k+NMPC−1∑
i=k

γi−k

2

(
(c− θr)

⊤Mθ(c− θr) +w⊤σi

)
(3.16a)

s.t. xi+1 = fMPC
θ (xi,ui), (3.16b)

xk = x̂k, (3.16c)

− 1 ≤ ui ≤ 1, (3.16d)[
0
−10

]
+ θ − σi ≤ xi ≤

[
10
10

]
+ θ̄ + σi (3.16e)

σk,...,k+NMPC ≥ 0 (3.16f)

where Nf = k+NMPC, c = [xk,uk]
⊤ and the MPC parameters subject to the RL

scheme are:

θ =
(
θc,M

f
θ ,θr,Mθ, A

bias, Bbias,θ, θ̄
)

(3.17)

The positive semidefinite weighting matrices (Mf
θ ,Mθ,Qθ

E ,Rθ
E ,Aθ

r ) in both MPC
and MHE schemes are adjusted using the constrained RL steps in (3.14). One can
choose a baseline stage cost used in the RL scheme (3.7) as:

L(yk, uk) = l(yk, uk) +w⊤max(0,h(yk)) (3.18)

where l(yk, uk) is adopted as a quadratic function of the output and action de-
viations from their desired values. The second term in the above baseline is
considered to penalize the constraint violations, where h ≥ 0 is pure inequal-
ity vector of constraints on the states and w⊤ = [10, 10]. Note that different
step sizes α were used for the different parameters based on the problem scal-
ing. The desired values for the MPC model states (position and velocity of the
first body) x1, x3 are chosen at [0, 0]T , respectively. We apply a process noise
ζ ∼ N (µ = 0, (σ = 0.02)2) on the velocity of the second body and a measure-
ment noise η ∼ N (µ = 0, (σ = 0.05)2) on the position of second body. In this
simulation we choose γ = 0.9, and NMPC = NMHE = 8.

As this simulation is considered as a POMDP and uncertain scenario and there
are both process and measurement Gaussian noises, the violations are observed
on the states in Figure 3.6. We demonstrate that the proposed MPC/MHE-based
RL can attenuate these violations and increase the control performance even if the
controller/observer models are unmodeled and partially observable.
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In this example, we consider three different scenarios.

1) Without learning (MPC+MHE): In the first scenario, there are large violations of
the position and velocity constraints affecting the closed-loop performance (large
cost J) shown in Figure 3.6 and Figure 3.7.

2) MPC-based RL learning (MPC-RL+MHE): In the second scenario, the learning
is only performed on the MPC scheme. This MPC-based RL reduces the violations
and increases the closed-loop performance shown in Figure 3.6 by reducing the
discounted sum of the RL stage cost J over a receding horizon. There is also a
decrease of the baseline cost shown in Figure 3.8 after starting the MPC learning
while the MHE learning is not still activated.

3) MPC/MHE-based RL learning (MPC-RL+MHE-RL): Finally in the third scen-
ario, the performance is improved after allowing the MHE to be adjusted using
the Q-learning algorithm and there is a solid decrease in the TD-error and baseline
cost and an increasing closed-loop performance (decrease of J). The evolution of
MHE parameters are illustrated in Figure 3.9 and Figure 3.10. The evolution of
MPC parameters are depicted in Figures 3.3, 3.4, and 3.5.

Figure 3.3: MPC adjustment: Reference signals
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Figure 3.4: MPC adjustment: Constraints and stage cost

Figure 3.5: MPC adjustment: Model bias
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estimated 1

actual 2

actual 1

Figure 3.6: Positions of masses and closed-loop performance. The brown lines are shown
as lower bound (0 mm) and upper bound (10 mm) constraints on the positions. Position
references are (0 mm).

Figure 3.7: Control input and velocities of masses. The brown lines are shown as lower
bound (-10 mm/s) and upper bound (10 mm/s) constraints on the velocities.
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Figure 3.8: RL performance: Baseline cost (RL stage cost) and TD error

Figure 3.9: MHE adjustment: Arrival matrix and penalizing weights
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Estimated Output

Estimated Control

Figure 3.10: Evolution of the arrival cost and gradients in the MHE scheme.

3.5 Conclusion
This chapter proposed the combination of MPC-based Reinforcement Learning
with an MHE scheme to tackle POMDPs. The introduction of an MHE scheme
allows to deploy MPC-based Reinforcement Learning without a full state measure-
ment, and without necessarily holding a correct representation of the system state
in the MPC and MHE models. Furthermore, we propose to tune the MHE and
MPC schemes jointly, focusing directly on the closed-loop performance, as op-
posed to using indirect criteria such as decreasing the MHE output error. We detail
the application of Q-learning to this approach, and test it in a simulated spring
mass example operating under constraints, where only a part of the real system
dynamics are modelled in the MPC and MHE schemes. We show that the method
manages to tune the MHE and MPC scheme to reduce the constraints violations
and improve the closed-loop performance. Future work will propose an stability
and feasibility analysis on the proposed MPC/MHE-based RL scheme.
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Learning-based State Estimation
and Control using MHE and
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estimation and control using mhe and mpc schemes with imperfect models,"
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44 Learning-based State Estimation and Control using MHE and MPC Schemes with
Imperfect Models

This chapter presents a reinforcement learning-based observer/controller using
Moving Horizon Estimation (MHE) and Model Predictive Control (MPC) schemes
where the models used in the MHE-MPC cannot accurately capture the dynamics
of the real system. We first show how an MHE cost modification can improve the
performance of the MHE scheme such that a true state estimation is delivered even
if the underlying MHE model is imperfect. A compatible Deterministic Policy
Gradient (DPG) algorithm is then proposed to directly tune the parameters of both
the estimator (MHE) and controller (MPC) in order to achieve the best closed-
loop performance based on inaccurate MHE-MPC models. To demonstrate the
effectiveness of the proposed learning-based estimator-controller, three numerical
examples are illustrated.

4.1 Introduction
In the context of model-based control approaches, Model Predictive Control (MPC)
is a well-known control scheme, which uses a dynamic model to predict the fu-
ture behavior of the real system over a finite time horizon. At each time instant,
MPC calculates the input and corresponding state sequence minimizing a given
cost function while satisfying constraints over a given prediction horizon [9]. In
many real applications, a state estimator (observer) is needed to provide an estim-
ation of the current system states to the MPC scheme. In this chapter, we adopt a
Moving Horizon Estimation (MHE) scheme as a state observer, which is a simple
choice in combination with an MPC scheme. MHE is an optimization-based state
observer that works on a horizon window covering a limited history of past meas-
urements [33].

Accurate models of dynamical systems are often difficult to obtain due to uncer-
tainties and unknown dynamics. It is also worth noting that even if an accurate
model is available, it may be in general too complex to be used in MHE and MPC
schemes. However, if the model is imperfect, the inaccuracies can significantly
degrade the performance of the MHE-MPC scheme. To cope with this problem,
data-driven methods can be used in order to either improve the MPC and MHE
models [43, 44, 45, 46] or modify the MHE/MPC cost functions [8, 21].

The data-driven MPC/MHE schemes mentioned above often incorporate Machine
Learning (ML)-based techniques such as Reinforcement Learning (RL) and Gaus-
sian Process (GP). RL is a powerful ML method for Markov Decision Processes
(MDPs), which seeks to improve the closed-loop performance of the control policy
deployed on the MDPs as observations are collected [11]. Most RL methods use a
Deep Neural Network (DNN) to approximate either the optimal policy underlying
the MDP directly or the action-value function from which the optimal policy can
be indirectly extracted [47].
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The idea of using an MPC scheme as a value function/policy approximator in the
RL context was proposed in [8, 48]. Specifically, the motivation was to replace the
DNN-based approximators with the MPC schemes such that some challenging is-
sues in the context of RL, including stability guarantee and safety were addressed.
In an MPC-based RL, it was established that an MPC scheme can generate jointly
the optimal (action-) value function and optimal policy underlying an MDP even
if the MPC model does not capture the real system dynamics accurately. As a
data-driven MPC, the MPC-based RL framework has shown promising results for
different applications [22, 40, 23, 49, 24]. Inspired by the researches mentioned
above in the context of MPC-based RL, in the present chapter, we will use an
MHE-MPC scheme as a policy approximator for a deterministic policy gradient
algorithm.

In some real-world control applications, the measurements available from the real
system at a given time instant do not constitute a Markov state. In the context of
RL, these systems are then formulated as Partially Observable MDPs (POMDPs)
[50, 28]. To tackle a POMDP, one solution is to formulate a belief MDP where the
information about the current state is described as a probability distribution over
the state space a.k.a belief state. Hence, POMDPs can be regarded as traditional
MDPs using the concept of belief states as complete observable states [51].

Most previous works in the context of POMDPs rely on training a Neural Network
(NN) or a Recurrent Neural Network (RNN) to summarise past observations and
learn a policy based on DNN-based approximators [32, 52, 53]. An NN-based
framework (posterior distributions over states) was proposed in [26, 27] in order to
estimate a belief state based on historical information. These NN-based algorithms
are formulated as completely model-free approaches. Most recently, as a com-
bined model-based/data-driven technique for dealing with POMDPs, a Q-learning
method based on MHE-MPC with inaccurate models was developed in [21]. In
this research, the authors proposed to integrate MHE and MPC to treat the hidden
Markovian state evolution. More specifically, a structured solution by using MHE
as a model-based approach was proposed to build a state from the measurement
history.

In this chapter, we seek to improve the performance of MHE-MPC as a combined
observer/controller based on an inaccurate model. Assuming the real system is
fully observable and the MHE model has a correct state structure, we show that
both the arrival cost and the stage cost of the MHE scheme can be modified such
that a perfect state estimation is delivered even if the underlying model is imper-
fect. However, the proposed method can arguably perform well on an incomplete
model structure (partially observable), which is demonstrated by a numerical ex-
ample. To tackle the performance degradation of the MHE scheme due to the
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use of an imperfect model, we propose to modify the MHE cost function rather
than adapting the MHE model. An NN-based approximator is proposed to deliver
the modified MHE cost. To achieve the best closed-loop performance even if the
underlying MHE-MPC model is imperfect, we then propose to jointly tune the
MHE-MPC parameters using a compatible Deterministic Policy Gradient (DPG)
reinforcement learning algorithm.

The chapter is structured as follows. The central theorem upon the cost modi-
fication of the MHE scheme using an imperfect model is detailed in Section 4.2.
Section 4.3 describes a tractable approach for the MHE cost modification. Sec-
tion 4.4 is dedicated to the parameterization method upon the MHE cost and the
MPC scheme in order to formulate an adjustable and learning-based MHE-MPC
scheme. To achieve the best closed-loop performance for an MHE-MPC scheme,
a policy gradient-based RL algorithm is detailed in Section 4.5 to adjust the para-
meterized MHE cost function and learn a policy captured from a parameterized
MHE-MPC scheme. Section 4.6 provides three numerical examples: 1) a linear
system with model mismatch 2) a POMDP test case in which a smart building is
described as an imperfect dynamical model and its climate is controlled by the
proposed approach, and finally 3) a Continuous Stirred Tank Reactor (CSTR) as a
nonlinear system is investigated.

Notation. a is a scalar while a is a vector. For n vectors x1, . . . ,xn we define
col(x1, . . . ,xn) := [x⊤

1 , . . . ,x
⊤
n ]

⊤. R is the set of real numbers and I is the set of
integers.

4.2 Modified MHE with Imperfect Model
In this section, we first consider an ideal stochastic MHE, which is formulated as
a Full Information Estimation (FIE) problem. The FIE problems are fundament-
ally formulated based on an optimization problem in which the entire history of
the measurements is used at each time instant [54]. We then formulate an MHE
scheme using an imperfect model, and show that the stage cost function can be
modified so that the MHE delivers the same estimation as an ideal MHE. At the
end of this section, as opposed to the FIE version of the MHE, we will formulate
a finite version of the modified MHE scheme in order to make it computationally
tractable.

4.2.1 Stochastic MHE Scheme

To formulate an ideal stochastic MHE scheme, we consider discrete dynamical
systems evolving on a continuous state space over Rn, with stochastic states sk ∈
S ⊆ Rn, where k denotes the time index. Let ϱk be a probability measure associ-
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ated with the stochastic states as follows:

sk ∼ ϱk(.) (4.1)

We will consider a measure space for sk, which is equipped with the Lebesgue
measure as a reference measure, and the set of Lebesgue-measurable sets as σ-
algebra. Let us define stochastic dynamics as a conditional probability density as
follows:

ζ [sk+1 | sk,ak] (4.2)

where sk,ak ∈ A ⊆ Rm and sk+1 are the current state-input pair and subsequent
state, respectively, and A is the set of inputs available for the system.

Let us define a transition operator Tak
: M × A → M as the map from a

probability measure ϱk to its successor ϱk+1 under input ak, and M is the set
of probability measures over S such that the sequence of probability measures
ϱk ∈ M, k = 0, · · · ,∞. We then define the Law of Total Probability (LTP) with
stochastic dynamics (4.2) as follows:

ϱk+1(.) = Tak
ϱk(.) =

∫
S
ζ [. | sk,ak] ϱk(dsk) (4.3)

Let us label Esk∼ϱk [.] the expected value operator with respect to probability meas-
ure ϱk ∈ M. To formulate a stochastic MHE scheme a.k.a Full Information Es-
timation (FIE), its cost function can be derived using a functional stage cost where
this functional is either an expectation or the Maximum A Posterior (MAP) [55].
In the present chapter, we use an expectation to formulate a stochastic MHE under
some conditions detailed in the remainder of the chapter. We then define a value
functional associated with the stochastic MHE scheme as follows:

V [ϱk,ok] :=
k∑

i=−∞
γk−iEsi∼ϱi

[
L (si,ai−1,yi)

]
, (4.4)

where γ ∈ (0, 1] is a discount factor, yi ∈ Y ⊆ S, ok = col
{
a...,k−1,y...,k

}
∈ O

is the available history of measurements up to time k, L : S × A × Y → R
is a fitting function. It is worth noting that the discounting above ensures the
existence of the estimation problem on an infinite horizon for an MDP. However,
the basic Theorem on the cost modification structure detailed in the remainder of
this section also holds for the undiscounted setting, e.g., γ = 1. We assume that the
forward transition operator Tak

has a backward transition operator T −1
ai−1

such that
ϱi−1 = T −1

ai−1
ϱi,∀i ∈ I≤k. Note that we use the backward transition operator since

an MHE scheme at the current time k is formulated based on past information.
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Then the aim of the stochastic MHE scheme is to find the best probability measure
ρ⋆ as a function of ok that minimizes V [ϱk,ok]. More specifically:

ρ⋆k(ok) ∈ argmin
ϱk

V [ϱk,ok] (4.5)

However, we only have access to an imperfect model of (4.2) (typically determin-
istic). To cope with this issue, in the remainder of this section, we first develop the
central theorem on the modification of the stochastic MHE schemes with imperfect
models. We then propose a more practical formulation of the modified stochastic
MHE in which a deterministic state estimation can be delivered.

4.2.2 Modification of the MHE Cost Function

The main contribution of this chapter is described by the next theorem, where an
MHE scheme equipped with a modified stage cost function is proposed to tackle
the performance degradation due to an imperfect MHE model. It will be shown that
one can, under some assumptions, find a modified MHE cost such that a probability
measure equal to (4.5) is delivered even if the underlying model is inaccurate. In
this chapter, we define a cost functional Φ :M×A× Y → R such that this cost
functional linearly depends on the stage cost function as follows:

Φ [ϱi,ai−1,yi] = Esi∼ϱi [L (si,ai−1,yi)] (4.6)

Note that the above equality is valid under some conditions detailed in the next
section. Then, the value functional (4.4) can be rewritten as follows:

V [ϱk,ok] =
k∑

i=−∞
γk−iΦ [ϱi,ai−1,yi] , (4.7)

Let ζb [sk−1 | sk,ak−1] and ζ̂b [ŝk−1 | ŝk,ak−1] be a backward model of (4.2) and
an imperfect model of ζb, respectively. We then label T̂ −1

ai−1
the corresponding

imperfect backward transition operator. Now we propose to modify the MHE cost
Φ detailed in the next theorem in order to cope with the performance degradation
of an MHE scheme where the MHE model is imperfect. Hence, the corresponding
value functional for a modified stochastic MHE scheme is formulated as follows:

V̂ [ϱ̂k,ok] :=

k∑
i=−∞

γk−iΦ̂ [ϱ̂i,oi] (4.8)

where ϱ̂i−1 = T̂ −1
ai−1

ϱ̂i, ∀i ∈ I≤k and Φ̂ :M×O → R is an MHE cost functional
based on the measurement history for the model. Note that the arguments of the
stage cost Φ in (4.7) include ai−1,yi while they are shown as a measurement
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history oi for the arguments of the modified stage cost Φ̂ in (4.8). More precisely,
the modified stage cost will be a function of the measurement history at each time
step i, which is detailed in the proof of the next theorem.

Analogous to the previous, we define the best probability measure resulting from
the imperfect model, as follows:

ρ̂⋆k(ok) ∈ argmin
ϱ̂k

V̂ [ϱ̂k,ok] (4.9)

We then aim to propose Φ̂ such that ρ̂⋆k(ok) = ρ⋆k(ok). In the following, we make
mild assumptions on the boundedness of the discounted value function.

Assumption 1. There exists a non-empty set of probability measuresM0 ⊆ M,
including ϱ̂⋆k, such that for all ϱ̂k ∈M0 and for all γ ∈ (0, 1] it holds that

∣∣γNV [ϱ̂k−N ,ok−N ]
∣∣ <∞, ∀N ∈ I≥0 (4.10)

where ϱ̂k−N = T̂ −1
ak−N

. . . T̂ −1
ak−1

ϱ̂k.

Assumption 2. For a discount factor γ ∈ (0, 1] and ϱ̂k−N ∈M0, ∀N ∈ I≥0:

lim
N→∞

γNV [ϱ̂k−N ,ok−N ] = 0 (4.11)

Theorem 1. Under Assumptions 1, 2, there exists a modified stage cost functional
Φ̂ :M×O → R such that the following equalities hold for all ϱ̂k ∈ M0 and all
ok ∈ O:

V̂ [ϱ̂k,ok] = V [ϱ̂k,ok], ϱ̂⋆k(ok) = ϱ⋆k(ok) (4.12)

Proof. Let us define the modified stage cost functional Φ̂ as follows:

Φ̂ [ϱ̂i,oi] = V [ϱ̂i,oi]− γV
[
T̂ −1
ai−1

ϱ̂i,oi−1

]
(4.13)

By substituting the modified stage cost (4.13) in (4.8), the value functional then
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becomes a telescoping sum as follows:

V̂ [ϱ̂k,ok] =
k∑

i=−∞
γk−iΦ̂ [ϱ̂i,oi]

=

k∑
i=−∞

γk−i (V [ϱ̂i,oi]− γV [ϱ̂i−1,oi−1])

=V [ϱ̂k,ok]− γV [ϱ̂k−1,ok−1] +

γV [ϱ̂k−1,ok−1]− γ2V [ϱ̂k−2,ok−2] +

γ2V [ϱ̂k−2,ok−2]− . . .− lim
N→∞

γNV [ϱ̂−N ,o−N ]

=V [ϱ̂k,ok]− lim
N→∞

γNV [ϱ̂−N ,o−N ] (4.14)

for all ϱ̂k ∈ M0. Note that under Assumption 1 all terms in (4.14) are bounded
and the following equality holds:

V̂ [ϱ̂k,ok] = V [ϱ̂k,ok] (4.15)

and under Assumption 2,

argmin
ϱ̂k

V̂ [ϱ̂k,ok] = argmin
ϱ̂k

V [ϱ̂k,ok] (4.16)

implies ϱ̂⋆k(ok) = ϱ⋆k(ok) since ϱ̂⋆k ∈M0.

It is worth noting that the modified stage cost function (4.13) proposed as a cost
modification is constructed based on a full history of the measurements. Hence,
this fundamental observation can impact on the practical implementation of the
modified cost. More specifically, the central Theorem 1 aims to show that there
exists such a modification and to understand its structure. However, the proposed
modification structure above is not tractable in terms of implementation since it is
too complex to compute the modified stage cost (4.13) and apply it to the modi-
fied MHE scheme directly. To tackle this problem, we will provide a finite H-step
structure of the modified stage cost in the next section. Finally, we will propose to
construct an approximate structure of the modified stage cost using a Neural Net-
work (NN) and adopt a reinforcement learning algorithm to learn the parameters
of the NN in practice, which is detailed in the section 4.4.

Although Theorem 1 shows that the modified stochastic MHE scheme with the cor-
responding value functional (4.8) can deliver a correct estimation of the probability
measure using an imperfect model, this infinite-horizon model-based fitting prob-
lem requires an infinite amount of data, which makes this full information observer
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unsuitable in practice. To cope with this problem, we propose a more practical for-
mulation detailed by the next theorem, which provides a finite-horizon stochastic
MHE problem so that it delivers the same optimal density and value functional as
(4.8).

It is worth mentioning that the proposed modified state cost (4.13) has been con-
structed based on the value functionals, and then Assumption 1 ensures that all
intermediate terms (value functionals) appeared in the telescoping sum (4.14) can-
cel out. However, there are infinitely many intermediate terms in the telescoping
sum (4.14) that must be bounded while Assumption 1 may not be satisfied for a
situation with an arbitrarily large N , e.g., let us consider the case γ = 1, which
then imposes the condition limN→∞ V [ϱ̂k−N ,ok−N ] = 0. Hence, the additional
Assumption 2 is needed to establish the Theorem 1. To address this issue, one
can consider a milder assumption with a specific horizon window N to be used
in a finite-horizon MHE problem. We then provide the following assumption and
develop the corresponding theorem.

Assumption 3. There exists a non-empty set of probability measuresM1 ⊆ M,
including ϱ̂⋆k, such that for all ϱ̂k ∈M1 and for all γ ∈ (0, 1] it holds that∣∣γN0V [ϱ̂k−N0 ,ok−N0 ]

∣∣ <∞, 0 ≤ N0 ≤ N (4.17)

where ϱ̂k−N0 = T̂ −1
ak−N0

. . . T̂ −1
ak−1

ϱ̂k and N <∞ is labeled the horizon window.

Note that this assumption is weaker than Assumption 1, indeed we have M0 ⊆
M1.

Theorem 2. Consider the MHE scheme with a horizon window of N steps at the
current time k :

V̂ N [ϱ̂k,ok] :=γ
Nℓ[ϱ̂k−N ,ok−N ] (4.18a)

+
k∑

i=k−N+1

γk−iΦ̂ [ϱ̂i,oi] ,

ρ̂⋆,Nk (ok) ∈ argmin
ϱ̂k

V̂ N [ϱ̂k,ok] (4.18b)

where ℓ :M×O → R reads as an arrival cost functional. Then, under Assump-
tion 3, the following equalities hold for all ϱ̂k ∈M1 and all ok ∈ O:

V̂ N [ϱ̂k,ok] = V [ϱ̂k,ok] , ϱ̂⋆,Nk (ok) = ϱ⋆k(ok) (4.19)
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Proof. Let us define the modified stage cost Φ̂ as (4.13) and arrival cost ℓ as fol-
lows:

ℓ [ϱ̂k−N ,ok−N ] = V [ϱ̂k−N ,ok−N ] (4.20)

By substituting the modified stage cost (4.13) and the modified arrival cost (4.20)
in (4.18a), the value functional then becomes a telescoping sum as follows:

V̂ N [ϱ̂k,ok] =γ
NV [ϱ̂k−N ,ok−N ] +

k∑
i=k−N+1

γk−i (V [ϱ̂i,oi]− γV [ϱ̂i−1,oi−1])

=γNV [ϱ̂k−N ,ok−N ] + V [ϱ̂k,ok]− γV [ϱ̂k−1,ok−1]

+ γV [ϱ̂k−1,ok−1]− γ2V [ϱ̂k−2,ok−2] + . . .

+ γN−1V [ϱ̂k−N+1,ok−N+1]− γNV [ϱ̂k−N ,ok−N ]

=V [ϱ̂k,ok] (4.21)

for all ϱ̂k ∈M1, and

argmin
ϱ̂k
V̂ N [ϱ̂k,ok] = argmin

ϱ̂k
V [ϱ̂k,ok] (4.22)

delivers ϱ̂⋆,Nk (ok) = ϱ⋆k(ok), since ϱ̂⋆k ∈M1. Then it delivers (4.19).

As an observation in the proposed finite-horizon MHE scheme (4.18a), the modi-
fied stage cost still depends on the complete measurement history despite using an
arrival cost. Therefore, a practical modification of the stage cost will be detailed
in the next section.

4.3 Tractable Method for the MHE Cost Modification
Although Theorem 2 proposes the modified finite-horizon stochastic MHE as a
more practical scheme than an infinite problem, there are still two implementation
issues to address: 1) implementing a stage cost functional (4.13) is not tractable
in practice because it is constructed based on time-varying value functionals in
which the current distribution function ϱ̂k as given probability measure at the cur-
rent time k is difficult to model and calculate exactly. Then, it is reasonable to
consider a function version of the cost functional in the modified MHE scheme.
2) implementing a modified stage cost based on the full measurement history is
not tractable. In the rest of this section, we discuss the solutions to tackle these
problems.
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4.3.1 Modified Stage Cost Function

To construct a practical cost modification based on the above results, one can con-
sider a deterministic state estimation at the physical time k such that the modified
cost is then constructed based on a value function instead of a value functional.
Although this choice makes the implementation more practical, the estimation of
a single state rather than a probability measure will sacrifice the MHE capability
in order to explicitly describe the state estimation uncertainty. More specifically,
we replace a belief state with a unique state such that the MHE solution cannot
incorporate any information upon the uncertainty level of the current state.

In order to form an MHE scheme with a deterministic estimation of the state at time
k, the proposed structure entails significant characteristics established by the next
propositions. In the next Propositions 1,2, we first show that the backward trans-
ition operator T −1 is a linear transformation and the value functional V [ϱi,oi] is
linear in the probability measure.

Proposition 1. The inverse of a linear operator T is a linear backward transition
operator T −1 such that:

T −1 (ϱ+ ϱ̄) = T −1ϱ+ T −1ϱ̄ (4.23a)

T −1 (αϱ) = αT −1ϱ (4.23b)

where the probability measures ϱ, ϱ̄ ∈M and α ∈ C.

Proof.

T −1 (ϱ+ ϱ̄) = (4.24)

T −1
(
T
(
T −1ϱ

)
+ T

(
T −1ϱ̄

))
T −1

(
T
(
T −1ϱ+ T −1ϱ̄

))
= T −1ϱ+ T −1ϱ̄

and

T −1 (αϱ) = (4.25)

T −1
(
αT

(
T −1ϱ

))
T −1

(
T
(
αT −1ϱ

))
= αT −1ϱ

Then, the backward operator T −1 fulfills the requirements of a linear transforma-
tion.

Proposition 2. The value functional V [ϱi,oi] is linear in the probability measure.
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Proof. According to (4.4), the value functional V [ϱi,oi] at time step i is defined
as follows:

V [ϱi,oi] =
i∑

j=−∞
γi−jEsj∼ϱj

[
L
(
sj ,aj−1,yj

) ]
(4.26)

= Esi∼ϱi [L (si, ·, ·)] + γEsi−1∼ϱi−1 [L (si−1, ·, ·)] + . . .

First a backward transition T −1 is a linear transformation, as established by Pro-
position 1. We then conclude that each ϱj is linear in ϱi. Hence, each expected
stage cost term, appearing on the right-hand side of (4.26) is linear in ϱi. Then, the
summation of discounted expectations on the right-hand side of the above equation
will also be linear in the probability measure, which proves the proposition.

Now, in the next proposition, we will show a relation between the value functional
and the value function such that the following assumption must be satisfied:

Assumption 4. Let us assume that the expected value function v is bounded for
all ϱi ∈M and si ∈ S:

Esi∼ϱi [|v (si,oi)|] <∞ (4.27)

Note that the assumption above ensures that the expected value of the value func-
tion v (si,oi) will remain finite for all ϱi ∈ M and si ∈ S , a harmless restriction
in practice.

Proposition 3. Let the value function v (si,oi) be a Lebesgue measurable func-
tion (a.k.a Borel measurable) on the σ-algebra of Borel sets, and the probability
measure ϱi be a compactly supported continuous function. A value functional then
can be represented as an expected value function as follows:

V [ϱi,oi] = Esi∼ϱi [v (si,oi)] (4.28)

Proof. Under Assumption 4 and the linearity of V [ϱi,oi] in ϱi, see Proposition 2,
the proof follows the Riesz-Markov theorem, see [56], chapter 9, page 105, such
that:

V [ϱi,oi] =

∫
S
v (si,oi) ϱi(dsi) = Esi∼ϱi [v (si,oi)]

and a value function v (si,oi) can be found so that the equality above holds.
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Now we choose the probability measure at time k as a Dirac measure centered
at the current state such that ϱk = δsk(.). According to Proposition 3, the value
functional then becomes a value function:

V [ϱk,ok] = Esk∼δsk (.)
[v (sk,ok)] = v (sk,ok) (4.29)

Then, the ideal stochastic MHE scheme with the value functional (4.4) can be
rewritten as follows:

v (sk,ok) :=

k∑
i=−∞

γk−iEsi∼ϱi

[
L (si,ai−1,yi)

]
, (4.30a)

s⋆k(ok) ∈ argmin
sk

v (sk,ok) (4.30b)

where ϱi−1 = T −1
ai−1

ϱi and ϱk = δsk(·). We next show that the modified stage cost
functional (4.13) can be rewritten as stage cost function at each time step i, which
is constructed based on the value functions defined as (4.30a).

We first remind that the linear relation (4.6) between the stage cost functional
and the stage cost function is valid based on the same synthesis as Proposition
3 using two underlying conditions: 1) expected stage cost function is bounded
Esi∼ϱi [|L (si,ai−1,yi)|] < ∞ 2) stage cost functional Φ is linear in ϱi. Hence,
this relation also holds for Φ̂ in (4.13) considering the next remark.

Remark 2. The modified stage cost functional (4.13) is also linear in the probabil-
ity measures since it is defined based on a linear equation of the value functionals,
which are linear in the probability measures, see Proposition 2.

Now the modified stage cost functional can be described as:

Φ̂ [ϱ̂i,oi] = Eŝi∼ϱ̂i

[
L̂ (ŝi,oi)

]
(4.31)

where L̂ : S ×O → R reads the modified stage cost function.

By considering Proposition 3, equality (4.31) and adopting ϱ̂i = δŝi(·), one can
obtain a practical cost modification of (4.13) at each time step i as follows:

Eŝi∼δŝi (·)

[
L̂ (ŝi,oi)

]
= (4.32)

Eŝi∼δŝi (·)
[v (ŝi,oi)]− γEŝi−1∼ϱ̂i−1

[v (ŝi−1,oi−1)]

= v (ŝi,oi)− γEŝi−1∼ϱ̂i−1
[v (ŝi−1,oi−1)]

where ϱ̂i−1 = ζ̂b [· | ŝi,ai−1].
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Hence, the modified cost functional Φ̂ can then be replaced by the stage cost func-
tion L̂ at time step i in practice:

L̂ (ŝi,oi) = v (ŝi,oi)− γEŝi−1∼ϱ̂i−1
[v (ŝi−1,oi−1)] (4.33)

We then adopt the above-modified stage cost function to formulate a modified
MHE scheme using an imperfect model in practice. Hence, the modified stochastic
MHE scheme based on the value (stage cost) function instead of the value (stage
cost) functional (4.8) is formulated as follows:

v̂ (ŝk,ok) :=

k∑
i=−∞

γk−iEŝi∼ϱ̂i

[
L̂ (ŝi,oi)

]
(4.34a)

ŝ⋆k(ok) ∈ argmin
ŝk

v̂ (ŝk,ok) (4.34b)

where ϱ̂i−1 = T̂ −1
ai−1

ϱ̂i and ϱ̂k = δŝk(·).

Now, according to the developments above, we have shown that the modified MHE
scheme with a stage cost functional Φ̂ can be formulated as a tractable MHE (4.34)
in which the modified cost function L̂ (4.33) is practically constructed based on the
value functions instead of the value functionals. The following corollary shows
that the structure (4.34) can still preserve the property established by Theorem 1.

Corollary 1. By adopting the same approach as was detailed to prove Theorem 1
and under the assumption

γNEŝk−N∼ϱ̂k−N
[|v (ŝk−N ,ok−N )|] <∞, ∀N ∈ I≥0 (4.35)

one can show that the following equalities hold:

v̂ (·) = v (·) , ŝ⋆k = s⋆k (4.36)

Proof. By substituting the modified stage cost function (4.33) in the value function
associated to the problem (4.34) and using a telescoping sum argument, one can
observe that:

v̂ (ŝk,ok) =
k∑

i=−∞
γk−iEŝi∼ϱ̂i

[
v (ŝi,oi) (4.37)

− γEŝi−1∼ϱ̂i−1
[v (ŝi−1,oi−1)]

]
= v (ŝk,ok)

and

argmin
ŝk

v̂ (ŝk,ok) = argmin
ŝk

v (ŝk,ok) (4.38)

results in ŝ⋆k(ok) = s⋆k(ok).
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4.3.2 Tractable Modified Stage Cost

In the proposed modified stage cost function (4.33), the value functions captured
from the MHE scheme (4.30) are based on the complete measurement history, and
the amount of historical data is growing at each time instant. Hence, constructing
the corresponding modified stage cost is intractable in practice. We then propose
to formulate a finite version (H-step) of the optimization problem (4.30) so that the
corresponding value function reads as:

vH (sk,ok) := γHEsk−H∼ϱk−H
[Zk−H (sk−H ,ok−H)] (4.39)

+
k∑

i=k−H+1

γk−iEsi∼ϱi

[
L (si,ai−1,yi)

]
where ϱi−1 = T −1

ai−1
ϱi and ϱk = δsk(·).

Notice that the cost termZk−H (sk−H ,ok−H) is labeled the exact arrival cost func-
tion, which summarizes the effects of past information before time k −H . Then,
under an exact arrival cost, the stochastic MHE scheme based on the value function
(4.39) can be regarded as an ideal MHE scheme, i.e.,

vH (sk,ok) = v (sk,ok) , (4.40)

Now the modified stage cost (4.33) can be rewritten based on the value function
(4.39) as follows:

L̂ (ŝi,oi) = vH (ŝi,oi)− γEŝi−1∼ϱ̂i−1

[
vH (ŝi−1,oi−1)

]
(4.41)

Note that the expectation above is taken over the imperfect model whereas the
expected values appeared in the definition of the value functions vH (·) in (4.39)
are on the real system. Although the value function (4.39) is based on the full
measurement history, the implementation of the modified stage cost (4.41) will be
finally tractable for a finite MHE scheme with a horizon N proposed in the next
theorem. More specifically, the full history of the measurements due to the arrival
cost term of vH is transferred to the arrival cost Zk−N , which can be approximated
in practice. A practical implementation based on the mentioned argument above
will be discussed in detail in section 4.4. Now we develop the next theorem for a
modified MHE scheme based on the above-modified stage cost function. To this
end, let us consider the following assumption:

Assumption 5. There exists a non-empty set S0 ⊆ S such that for all ŝ ∈ S0 and
for all γ ∈ (0, 1] it holds that∣∣∣γN0Eŝk−N0

∼ϱ̂k−N0

[
vH (ŝk−N0 ,ok−N0)

]∣∣∣ <∞, (4.42)

0 ≤ N0 ≤ N
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where N is labeled a specific horizon window. Note that the expectation in the
above inequality is taken over the imperfect model density

ϱ̂k−N−1 = T̂ −1
ak−N−1

ϱ̂k−N

Then, the following theorem is defined under the above-mentioned assumption:

Theorem 3. There exists an exact arrival cost function, including some prior in-
formation as available observation Zk−N : S ×O → R and a modified stage cost
function L̂ : S × O → R. We then formulate the following finite stochastic MHE
scheme at the current time k:

v̂N (ŝk,ok) := γNEŝk−N∼ϱ̂k−N
[Zk−N (ŝk−N ,ok−N )] + (4.43a)

k∑
i=k−N+1

γk−iEŝi∼ϱ̂i

[
L̂ (ŝi,oi)

]
ŝ⋆,Nk ∈ argmin

ŝk
v̂N (ŝk,ok) (4.43b)

where ϱ̂i−1 = T̂ −1
ai−1

ϱ̂i, ϱ̂k = δŝk(·).

Then under Assumption 5, the MHE scheme above will deliver the following equal-
ities for all ŝk ∈ S0:

v̂N (ŝk,ok) = vH (ŝk,ok) , ŝ⋆,Nk (ok) = s⋆k(ok) (4.44)

Proof. Let us select the modified stage cost (4.41) and define the arrival cost Zk−N

as follows:

Zk−N = vH (ŝk−N ,ok−N ) (4.45)

By substituting the modified stage cost function (4.41) and the arrival cost function
(4.45) in the value function (4.43a), it then becomes a telescoping sum as follows:

v̂N (ŝk,ok) = γNEŝk−N∼ϱ̂k−N

[
vH (ŝk−N ,ok−N )

]
(4.46)

+
k∑

i=k−N+1

γk−iEŝi∼ϱ̂i

[
vH (ŝi,oi)− γEŝi−1∼ϱ̂i−1

[
vH (ŝi−1,oi−1)

] ]
= γNEŝk−N∼ϱ̂k−N

[
vH (ŝk−N ,ok−N )

]
+ vH (ŝk,ok)

− γEŝk−1∼ϱ̂k−1

[
vH (ŝk−1,ok−1)

]
+ γEŝk−1∼ϱ̂k−1

[
vH (ŝk−1,ok−1)

]
+ . . .

− γNEŝk−N∼ϱ̂k−N

[
vH (ŝk−N ,ok−N )

]
= vH (ŝk,ok)
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for all ŝk ∈ S0, and

argmin
ŝk

v̂N (ŝk,ok) = argmin
ŝk

vH (ŝk,ok) (4.47)

delivers ŝ⋆,Nk (ok) = s⋆k(ok).

Note that the horizon H is the length of the measurement history used in the mod-
ified stage cost in the MHE scheme (4.43) with a horizon of length N . In the next
section, we will describe how this measurement history of length H can be used
in the proposed convex neural network to modify the MHE stage cost in practice.
It is worth noting that the horizon H may be selected larger than N to capture the
modified stage cost accurately. However, one can choose a small length of H in
order to provide an acceptable trade-off between the computational effort and the
approximate value captured from the neural network.

4.4 Proposed Learning-based MHE-MPC Scheme

4.4.1 Practical Implementation

In what follows, we provide a practical version of the modified MHE scheme
(4.43). We then discuss the approaches in order to approximate both the arrival
cost Zk−N and the modified stage cost L̂ (ŝi,oi).

Learning-based Arrival Cost

To approximate the arrival cost, we adopt a common approach so that the arrival
cost takes the form of a quadratic function as follows:

Ẑk−N = ∥ŝk−N − s̃k−N∥2Π−1
k−N

(4.48)

where s̃k−N is obtained as:

s̃k−N = s⋆k−N |k−1 (4.49)

Note that s⋆k−N |k−1 is the first element of the horizon window at the previous
physical time k− 1. The prior weighting Πk−N is obtained from the Kalman filter
covariance update rule [10]:

Πk+1 =AkΠkA
⊤
k (4.50)

−AkΠkC
⊤
k

(
CkΠkC

⊤
k +R

)−1
CkΠkA

⊤
k
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initialized with the covariance matrix of the initial state Π0. Let f (ŝ,a) be a non-
linear model as a deterministic approximation of (4.2). The matrices Ak and Ck

are then obtained by linearization as follows:

Ak =
∂f

∂ŝ
|ŝk|k−1

, Ck =
∂h

∂ŝ
|ŝk|k−1

(4.51)

and R is the covariance of the output noise νk where the measurements are de-
livered as yk = h(ŝk) + νk. However, the approach detailed above is based
on classic Kalman filtering that may not be the best choice from a parameteriza-
tion standpoint where the model is imperfect. More specifically, the update rule
(4.50) cannot deliver a perfect approximation of Π since the matrices A,C cap-
tured, respectively, from the dynamical model f and the measurement model h are
imperfect. To tackle this problem, we propose to adopt reinforcement learning in
order to adjust the entries of the matrices Aθ

k , C
θ
k and the covariance matrix Rθ

used in (4.50), where θ will be parameters that can be adjusted via RL. Then, the
parameterized covariance update rule reads as:

Πk+1 =A
θ
kΠk

(
Aθ

k

)⊤
(4.52)

−Aθ
kΠk

(
Cθ
k

)⊤(
Cθ
kΠk

(
Cθ
k

)⊤
+Rθ

)−1

Cθ
kΠk

(
Aθ

k

)⊤
It is worth noting that the policy π captured from the MHE-MPC scheme will have
an extra state Πk, which is obtained from the above dynamics. More specifically,
Πk has its own dynamics in the MHE scheme such that the state estimation and the
policy delivered, respectively, from the MHE and MHE-MPC will depend on Πk.
We then consider the effect of Πk on the policy gradient in an MHE/MPC-based
reinforcement learning detailed in the next section.

Learning-based MHE Stage Cost

According to Theorem 3, a finite stochastic MHE scheme can deliver a true state
estimation using an imperfect model of the real system by adopting a cost modi-
fication.

Remark 3. In this chapter, we denote the true state estimation (perfect estimation)
by the estimation captured from the FIE problems with the correct model in (4.30)
and (4.39).

In this theorem, we have proposed to construct a modified stage cost (4.41) based
on the H-step value function (4.39), and we practically propose to approximate this
modified stage cost. To this end, let us consider the MHE scheme (4.43) and the
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value function (4.39) where ϱ̂i = δŝi(·). We then observe that all expected arrival
cost functions Zi−H , Zi−H−1, i = k − N + 1, · · · , k, including entire history
can be transferred to the arrival cost Zk−N . More precisely, the time step i used
in the modified stage cost of the MHE scheme (4.43) is in the interval i = k −
N + 1, · · · , k, and this stage cost defined in (4.41) is basically constructed based
on the value functions vH (ŝi,oi) and vH (ŝi−1,oi−1) captured from (4.39). The
corresponding arrival costs then read as Zi−H and Zi−H−1 for i = k − N +
1, · · · , k. Hence, the modified stage cost can practically be constructed based on a
finite history as follows:

L̂
(
ŝi,o

H
i

)
= L (ŝi,ai−1,yi) + Lh

(
ŝi−H,··· ,i−1,o

H
i−1

)
(4.53)

where the cost term Lh is constructed based on a finite history and

oHi = col
{
yi−H+1, . . . ,yi,ai−H , . . . ,ai−1

}
We then propose to somehow approximate this part of the modified stage cost L̂ in
practice.

As one practical solution to approximate Lh, one can use a Neural Network (NN)
as follows:

L̂θ

(
ŝi,o

H
i

)
≈ Lθ0 (ŝi,ai−1,yi) + LNN (Yi,θNN) (4.54)

where Lθ0 is a parameterized least-squares cost at the current time step i used for
an output noise MHE scheme [33] and

Yi = col
{
ŝi−H,··· ,i−1,o

H
i−1

}
(4.55)

oHi−1 = col
{
yi−H , . . . ,yi−1,ai−H−1, . . . ,ai−2

}
Note that oHi−1 ∈ OH ⊂ O is regarded as a finite history of the measurements
and Yi ∈ Rny is labeled the Neural Network (NN) input. To adjust the paramet-
ers θ0, θNN , we will use a reinforcement learning algorithm based on the policy
gradient method.

Neural networks are well-known universal function approximators so an NN, in-
cluding three layers is capable to approximate any continuous multivariate function
down to prescribed accuracy, if there are no constraints on the number of neurons
[57].

We then propose to use a convex class of NNs to approximate LNN in the MHE
stage cost (4.54). While enforcing convexity in the MHE stage cost does not imply
that the overall MHE problem is convex, using a non-convex stage cost will often
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require significantly more caution in providing an initial guess for the NLP solver
tackling the MHE scheme than if a convex stage cost is used. To preserve the
convexity of the MHE stage cost function (4.54), we then propose to compute LNN
using an Input Convex Neural Network (ICNN). In this type of neural network,
the partial weights meet certain constraints such that the output of the ICNN is a
convex function of the input [58, 59]. Compared to building conventional neural
networks, ICNN structures must meet two additional requirements: 1) activation
functions are convex and non-decreasing 2) the weights of NN are constrained
to be non-negative. As a form of ICNN, we choose a Fully Input Convex NN
(FICNN) architecture since the scalar output of the network is convex with respect
to all inputs.

Let us consider a l-layer FICNN over Yi in order to estimate LNN (Yi,θNN) as
follows:

zj+1 = gj

(
W

(z)
j zj +W

(y)
j Yi + bj

)
, (4.56a)

LNN (Yi, θ) = c · zl (4.56b)

s.t. W
(z)
1:l−1 ≥ 0,W

(z)
0 ≡ 0, z0 ≡ 0 (4.56c)

where j = 0, . . . , l − 1 and zj ∈ Rny×1 denotes the middle layers (layer activ-
ations). The neural network weights are W (z)

j ∈ Rny×ny ,W
(y)
j ∈ Rny×ny , bj ∈

Rny×1, c ∈ R1×ny . Note that c is considered as the connection weight between the
output layer and the last middle layer. Then, θNN =

{
W

(z)
1:l−1,W

(y)
0:l−1, b0:l−1, c

}
are the modifiable weights, and gj are nonlinear activation functions (convex and
non-decreasing, e.g., Rectified Linear Unit ReLU).

Then, the reformulated MHE scheme (4.43) reads as:

v̂N (ŝk,ok) := γNEŝk−N∼ϱ̂k−N

[
Ẑk−N

(
ŝk−N ,o

H
k−N

)]
+ (4.57a)

k∑
i=k−N+1

γk−iEŝi∼ϱ̂i

[
L̂θ

(
ŝi,o

H
i

) ]
ŝ⋆,Nk ∈ argmin

ŝk
v̂N (ŝk,ok) (4.57b)

where ϱ̂i−1 = T̂ −1
ai−1

ϱ̂i, ϱ̂k = δŝk(·).

In the remainder of this section, we practically formulate a deterministic version of
the above MHE scheme (4.57) with a fully parameterized cost function, including
arrival and stage cost. We then propose a parameterization for the MPC scheme to
deliver a policy approximation required in the context of policy gradient RL.
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4.4.2 Deterministic MHE Scheme with Adjustable Cost

As a result of theorem 3, a finite optimization-based state estimation scheme with
an imperfect model can deliver a true state estimation by modifying the stage and
arrival costs. As a practical approach, we proposed to leverage NN in approximat-
ing the modified stage cost function (4.54). One can also choose a parameterization
method on the arrival cost detailed in the previous section. Finally, a reinforcement
learning algorithm is used to adjust all parameters.

Note that the theory proposed is very generic so that the acquired result holds
e.g., for the states of a stochastic dynamical model being estimated by an MHE
scheme based on an inaccurate deterministic model. Hence, the transition model
ζ̂ [ŝi+1 | ŝi,ai] trivially includes deterministic models as:

ζ̂ [ŝi+1 | ŝi,ai] = δ
(
ŝi+1 − f̂

MHE
(ŝi,ai)

)
(4.58)

We then propose to formulate the following parameterized MHE scheme:

s⋆k−NMHE,...,k = argmin
ŝ

γNMHEẐθ (ŝk−NMHE , s̃)

+

k∑
i=k−NMHE+1

γk−iL̂θ

(
ŝi,o

H
i

)
(4.59a)

s.t. ŝi+1 = f̂
MHE
θ (ŝi,ai) (4.59b)

where Ẑθ = ∥ŝk−NMHE − s̃∥2Πk
and Πk is obtained from the parameterized updat-

ing rule (4.52) and s̃ is the available estimation s⋆k−NMHE
at time k−1. Note that in

the case of linear systems, another solution to adjust the arrival cost is to directly
modify the arrival cost by adjusting the corresponding positive weight matrix Πθ

using e.g., Semi-Definite Programming (SDP).

4.4.3 Parameterized MPC Scheme

Let us define the closed-loop performance of a parameterized policy πθ delivered
from an MHE-MPC scheme for a given stage cost L (yk,ak) as the following total
expected cost:

J (πθ) = Eπθ

[ ∞∑
k=0

γkL (yk,ak)

∣∣∣∣∣ak = πθ(s
⋆
k)

]
(4.60)

where the expectation Eπθ
is taken over the distribution of the Markov chain in

closed-loop with policy πθ. The cost L (yk,ak) reads as a baseline cost (RL stage
cost), which is a function of measurable states and actions at the current time k.
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It is worth noting that the initial conditions are defined by the environment (real
MDP), e.g., in the simulation section, the MDPs for test cases 1 and 2 are defined
with fixed initial conditions while the third test case has an MDP with random
initial conditions. We then seek the optimal policy parameters as follows:

θ⋆ = argmin
θ
J (πθ) (4.61)

As a learning-based control approach in this chapter, we propose to use a paramet-
erized MPC scheme as a policy approximation in order to deliver πθ required in a
policy gradient method. The MPC-based reinforcement learning then allows us to
leverage the capability of MPC in handling the state-input constraints. Although a
constraint violation may occur due to an imperfect MPC model, the constraints are
finally satisfied by letting RL adjust the whole MPC scheme, e.g., the constraints
can be adjusted in the case of constraint violation.

For a given estimated state s⋆k obtained from the MHE scheme, the policy delivered
by a parameterized MPC scheme is

πθ (s
⋆
k) = u⋆

0 (s
⋆
k,θ) (4.62)

where u⋆
0 is the first element of the control input sequence u⋆ delivered by the

following parameterized MPC scheme:

min
x,u,σ

γNMPC
(
Tθ(xk+NMPC) +w⊤

f σk+NMPC

)
+

k+NMPC−1∑
i=k

γi−k
(
lθ(xi,ui) +w⊤σi

)
(4.63a)

s.t. xi+1 = f̂
MPC
θ (xi,ui), (4.63b)

xk = s⋆k, (4.63c)

g(ui) ≤ 0, (4.63d)

hθ(xi,ui) ≤ σi, hf
θ(xk+NMPC) ≤ σk+NMPC (4.63e)

σk,...,k+NMPC ≥ 0 (4.63f)

where lθ and Tθ are the parameterized stage cost and terminal cost, respectively.
Note that the imperfect MPC model f̂

MPC
is possibly but not necessarily different

from the MHE model. We label hθ the mixed constraints, g the pure input con-
straints, and hf

θ the terminal constraints. The MPC initial conditions in (4.63c) are
delivered by the MHE scheme at the current time instant k. To relax the inequality
constraints, an ℓ1 relaxation of the mixed constraints (4.63e) is introduced. An
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exact penalty is then imposed on the corresponding slack variables σk with large
enough weights w,wf such that the MPC scheme will not be infeasible under
some constraint violations, which appears due to inaccurate MPC model, uncer-
tainties and disturbances.

4.5 Policy Gradient RL with MHE-MPC
In this section, we propose a new observer-based RL framework based on Determ-
inistic Policy Gradient (DPG), MPC, and MHE to deal with the partially observ-
able and imperfect dynamics.

4.5.1 Compatible Deterministic Actor-Critic

In the context of DPG-based RL algorithms, the policy parameters θ can be dir-
ectly optimized by the gradient descent step such that the best-expected closed-
loop cost (a.k.a policy performance index J) can be captured by applying the
policy πθ. More specifically, the policy parameters θ can be updated as follows:

θ ← θ − α∇θJ(πθ) (4.64)

for some α > 0 small enough as the step size. In the context of hybrid control-
ler/observer scheme MHE-MPC, the input signal can be interpreted as a sequence
of measurements ōk = col

{
ak−NMHE,...,k−1,yk−NMHE,...,k

}
∈ O at the physical

time k. Then, the intermediate variable s⋆k is delivered by the MHE scheme based
on the history of the measurements and fed to the MPC scheme to deliver the
control policy. Let us assume that the measurement history ōk of length No is
sufficient to determine the statistics of the next output yk+1 such that it remains
unaffected for any N̄o > No. It follows that ōk is a Markov state. We then con-
sider an input-output MDP based on ōk rather than on the state of the real system,
and consequently, this MDP can be described based on the state estimation s⋆k as an
implicit function of ōk. Therefore, the state estimation s⋆k also reads as a Markov
state, and one can use it in the state (-action) value functions. Let us define the
policy performance index by the following expected value:

J (πθ) = Eōk∼pk [Qπθ
(s⋆k,πθ (s

⋆
k))] = Eōk∼pk [Vπθ

(s⋆k)] (4.65)

where pk is the measurement distribution at the current physical time k, e.g., a
Gaussian distribution. Note that we remove ōk from the arguments of the state
(-action) value functions Qπθ

and Vπθ
above as s⋆k is implicitly constructed (de-

livered from the MHE scheme (4.59)) based on the history ōk. It also follows that
the control policy πθ (s

⋆
k) = u⋆

0 (s
⋆
k,θ) captured from the MHE-MPC reads as an

implicit function of the measurement history. The action-value function Qπθ
is

then defined as follows:

Qπθ
(s⋆k,ak) = L (yk,ak) + γEζ

[
Vπθ

(
s⋆k+1

)
|s⋆k,ak

]
(4.66)
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where the expectation Eζ is taken over the distribution of the Markov chain (4.2).
Based on the proposed DPG theorem by [17] and the fact that both the πθ and
Qπθ

are functions of s⋆k, the policy gradient equation is described as follows:

∇θJ(πθ) = Eπθ
[∇θπθ(s

⋆
k)∇ak

Qπθ
(s⋆k,ak)|ak=πθ

] (4.67)

where the expectation Eπθ
is taken over the distribution of the Markov chain res-

ulting from the real system in closed-loop with πθ. To represent the effect of the
parameterized MHE upon the policy gradient, the sensitivity of the policy w.r.t θ
can be updated such that the new policy gradient is described by the following
expectation:

∇θJ(πθ) = Eπθ

[
Ξ∇ak

Qπθ
(s⋆k,ak)|ak=πθ

]
(4.68)

where the Jacobian matrix Ξ is obtained by the following chain rule:

Ξ = ∇θπθ + (∇θs
⋆
k +∇θΠk∇Πk

s⋆k)∇s⋆k
πθ (4.69)

Hence, the Jacobian matrix above is constructed based on both the MHE and
MPC sensitivities where the optimal policy is delivered by a combined MHE-MPC
scheme. In this chapter, we adopt a compatible deterministic actor-critic algorithm
[17] in which the action-value function Qπθ

(s⋆k,ak) can be replaced by a class of
compatible function approximator Qw(s⋆k,ak) such that the policy gradient is pre-
served. Therefore, the compatible function for a deterministic policy πθ delivered
by the parameterized MHE-MPC scheme can be expressed as follows:

Qw(s⋆k,ak) = (ak − πθ)
⊤Ξ⊤w + V ν (s⋆k) (4.70)

The first term in the above compatible function as the critic part is an estimation
for the advantage function and the second term estimates a value function for the
history of the measurements delivered as a summarized variable s⋆k by the MHE
scheme. Both functions can be computed by the linear function approximators as
follows:

V ν (s⋆k) = Υ (s⋆k)
⊤ ν, (4.71a)

Aw (s⋆k,ak) = Ψ (s⋆k,ak)
⊤w (4.71b)

where Υ (s⋆k) is the summarized measurement feature vector in order to constitute
all monomials of the history of the measurements with degrees less than or equal
to 2. The vector Ψ (s⋆k,ak) := Ξ (ak − πθ (s

⋆
k)) includes the state-action features.

Considering (4.70), the policy gradient (4.68) is then rewritten as follows:

∇θJ(πθ) = Eπθ

[
ΞΞ⊤w

]
(4.72)
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Figure 4.1 shows an overview of the proposed learning-based MHE-MPC.

Figure 4.1: An overview of the MHE/MPC-based deterministic policy gradient. Both the
MPC and MHE models are assumed to be inaccurate (they cannot capture the real plant
perfectly). The deterministic MHE scheme (4.59) delivers the state estimation s⋆, and the
corresponding sensitivities are used in the LSTD-DPG method. The MPC scheme (4.63)
combined with the MHE scheme delivers the parameterized policy πθ. The action a is
then selected according to the policy πθ with the possible addition of exploratory moves.

In this chapter, the parameterized policy in the context of policy gradient RL is pro-
posed to be captured by the MPC scheme (4.63). To evaluate the policy gradient
(4.72), one needs to calculate some sensitivities upon the MPC and MHE schemes
in order to compute the Jacobian matrix Ξ. Hence, the Jacobian matrices ∇θπθ

and∇s⋆k
πθ can be computed by the sensitivity analysis for the parameterized MPC

scheme while the gradient ∇θs
⋆
k and the Jacobian matrices ∇θΠk,∇Πk

s⋆k are ob-
tained as sensitivity terms for the parameterized MHE scheme.

4.5.2 Sensitivity Analysis and LSTD-based DPG

Sensitivity Computation

We describe next how to compute the sensitivities (gradients) needed in the pro-
posed policy gradient RL framework based on MHE-MPC. To that end, let us
define the Lagrange functions L̂θ,Lθ associated to the MHE and MPC schemes
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(4.59), (4.63) as follows:

L̂θ (ẑ) = Λ̂θ + λ̂
⊤
Ĝθ (4.73)

Lθ (z) = Λθ + λ⊤Gθ + µ⊤Hθ (4.74)

where Λθ and Λ̂θ are the total parameterized costs of the MPC and MHE schemes,
respectively. The inequality constraints of (4.63) are collected byHθ whileGθ and
Ĝθ gather, respectively, the equality constraints in the MPC and MHE schemes.
We then label λ, λ̂ the Lagrange multipliers associated with the equality con-
straints Gθ, Ĝθ of the MPC and MHE, respectively. Variables µ are the Lagrange
multipliers associated with the inequality constraints of the MPC scheme. Let us
label Γ = {x,u,σ} and Γ̂ = ŝ the primal variables for the MPC and MHE, re-
spectively. The associated primal-dual variables then read as z = {Γ,λ,µ} and
ẑ =

{
Γ̂, λ̂

}
.

The sensitivity of the policy delivered by the MPC scheme (4.63) w.r.t policy para-
meters and the sensitivity of the estimated state associated with the MHE scheme
(4.59) can be obtained via using the Implicit Function Theorem (IFT) on the
Karush Kuhn Tucker (KKT) conditions underlying the parametric NLP. Assum-
ing that Linear Independence Constraint Qualification (LICQ) and Second Order
Sufficient Condition (SOSC) hold [18] at z⋆ and ẑ⋆, then, the following holds:

∂z⋆

∂θ
= −∂κθ

∂z

−1∂κθ
∂θ

, (4.75a)

∂ẑ⋆

∂θ
= −∂κ̂θ

∂ẑ

−1∂κ̂θ
∂θ

(4.75b)

where

κθ =

 ∇ΓLθ
Gθ

diag (µ)Hθ

 , κ̂θ =

[
∇Γ̂L̂θ
Ĝθ

]
(4.76)

are the KKT conditions associated with the MPC and MHE schemes, respectively.
As πθ and s⋆k are, respectively, part of z⋆ and ẑ⋆. Then, the sensitivity of the MPC
policy∇θπθ and the sensitivity of the MHE solution∇θs

⋆
k required in (4.72) can

be extracted from gradients ∂z⋆

∂θ and ∂ẑ⋆

∂θ , respectively.

LSTD-based Policy Gradient

In the context of compatible DPG, one can evaluate the optimal parameters w and
ν of the action-value function approximation (4.70) as solutions of the following
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Least Squares (LS) problem:

min
w,ν

E
[(
Qπθ

(s⋆k,ak)−Qw(s⋆k,ak)
)2]

, (4.77)

In the context of RL, the Least-Squares Temporal Difference (LSTD) algorithms
offer efficient use of data and tend to converge faster than other methods [22]. The
LSTD update rules for a policy gradient RL are then obtained as follows:

ν = Ω−1
ν bν , (4.78a)

w = Ω−1
w bw, (4.78b)

θ ← θ − αbθ (4.78c)

where the matrices Ω(·) and the vectors b(·) are calculated by taking expectation
(Em) over m episodes as follows:

Ων = Em

 Tf∑
k=1

[
Υ (s⋆k)

(
Υ (s⋆k)− γΥ

(
s⋆k+1

))⊤] (4.79a)

Ωw = Em

 Tf∑
k=1

[
Ψ (s⋆k,ak)Ψ (s⋆k,ak)

⊤
] , (4.79b)

bν = Em

 Tf∑
k=1

Υ (s⋆k)L(yk,ak)

 , (4.79c)

bw = (4.79d)

Em

 Tf∑
k=1

[(
L(yk,ak) + γV ν

(
s⋆k+1

)
− V ν (s⋆k)

)
Ψ(s⋆k,ak)

] ,
bθ = Em

[ Tf∑
k=1

ΞΞ⊤w

]
(4.79e)

where Tf is the final time instant at the end of each episode.

4.6 Simulation Results
In this section, we illustrate the performance of the proposed learning-based con-
trol and estimation algorithm to deal with three types of problems. In the first test
case, we consider a linear system evaluating a model mismatch problem where
the MHE model in a combined MHE-MPC scheme is wrong and cannot capture
the real system. In the second test case, we show that the proposed framework
achieves a better closed-loop performance for the control of systems using inac-
curate models where a reduced model is used for both the control and estimation
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goals. We implement our algorithm for a smart building in order to maintain the
room temperature in its comfort range even if there is no sufficient knowledge
about the building dynamics. Finally, we investigate the proposed learning-based
framework applied to a Continuous Stirred Tank Reactor (CSTR) as an example
with nonlinear dynamics.

4.6.1 Test Case 1

In this case study, we consider a model mismatch upon the MHE and evaluate
a set-point tracking using an MHE-MPC for a two states linear system xk+1 =
Axk + Buk where x1 is selected as measurement. The real system and MPC
model are chosen as:

A =

[
1 0.25
0 1

]
, B =

[
0.0312
0.25

]
, (4.80)

while the MHE model is selected as:

x̂k+1 =

[
0.9 0.35
0 1.1

]
x̂k +

[
0.0813
0.2

]
uk (4.81)

We then use the MHE scheme (4.59) where the arrival cost is adjusted based on
the updating rule (4.52) and the stage cost is approximated based on the paramet-
erization (4.54). The input convex NN has two hidden layers with 15 neurons and
both the MHE and MPC horizons are set to 8. We use a smooth version of ReLU
as an activation function gj in ICNN (4.56).

gj(x) = log (1 + exp(x)) (4.82)

Note that in this example only the MHE scheme is learned by RL and the MPC
scheme is not parameterized. Figure 4.2 shows that the model mismatch on the
MHE scheme can affect both the estimation performance and the set-point tracking
performance. Indeed, the MHE model mismatch causes a large estimation error
on x2 and the set-point 0.8 on x1 cannot be tracked. As it is shown in Figure 4.3,
the mentioned problems due to model mismatch have been solved and a correct
state estimation is delivered where the proposed modification of the MHE cost
is implemented. Figure 4.4 shows the learning progress, including the system
states x1, x2 and their estimations during 60 RL steps such that the closed-loop
performance J(πθ) is improved by the MHE cost modification, and the correct
state estimations shown in Figure 4.3 are delivered.

4.6.2 Test Case 2

Building Model

Let us select a model of the real system of a house floor heating system connected
to a ground source-based heat pump shown in Figure 4.5. We consider a dynamical
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Figure 4.2: Test Case 1: Real system behavior and state estimations for a set-point track-
ing (xd1

= 0.8 and xd2
= 0) in the presence of the model mismatch on the MHE. The

solid lines of blue color indicate the states while the estimations are indicated as dashed
lines of red color. The correct states and estimations without model mismatch are shown
in green.
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Figure 4.3: Test Case 1: Real system behavior and state estimations for a set-point track-
ing (xd1

= 0.8 and xd2
= 0) where the MHE scheme is modified. The solid lines of blue

color indicate the states while the estimations are indicated as dashed lines of red color.
The correct states and estimations without model mismatch are shown in green.
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Figure 4.4: Test Case 1: Closed-loop performance and evolution of states and their estim-
ations during reinforcement learning.
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model with four states for the building as the real system under control, which is
described by a set of ordinary differential equations as follows [60]:

Cwa
dTwa

dt
= Kwa,a (Ta − Twa) +Kwa,r (Tr − Twa) (4.83a)

Cr
dTr
dt

= Kwa,r (Twa − Tr) +Kf,r (Tf − Tr) (4.83b)

Cf
dTf
dt

= Kf,r (Tr − Tf ) +Kb (Tw − Tf ) (4.83c)

Cw
dTw
dt

= Kb (Tf − Tw) + ηWc (4.83d)

where the control input u =Wc is the power used by the heat pump. The states of
the real system xr = [Twa, Tr, Tf , Tw]

⊤ are labeled the wall temperature, the room
temperature, the floor (pavement) temperature, and the water pipeline temperature,
respectively. The coefficients Cwa, Cr, Cf , and Cw read as the corresponding heat
capacities of the above-mentioned temperatures. We label Kwa,a, Kwa,r, Kf,r

and Kb the overall heat transfer coefficients between the {Twa, Ta} wall-ambient,
{Twa, Tr} wall-room, {Tf , Tr} floor-room and {Tf , Tw} floor-water pipeline, re-
spectively. The Coefficient of Performance (COP) η for heat pumps varies with

Figure 4.5: Test Case 2: Building climate control [1] using a heat pump floor heating
system. The dashed line represents the floor heating pipelines.

type, outdoor ground temperature, and condenser temperature. In this chapter, we
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then adopt a stochastic COP shown in Figure 4.6 to make the simulations more
realistic. To implement a POMDP scenario, we assume that the building dynam-
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Figure 4.6: Test Case 2: Stochastic COP of heat pump sampled from the last RL step.

ics can be modeled by a reduced model considering the room and water pipeline
temperatures (Tr, Tw) as the only measurable states used in the state-space model.
Hence, the dynamics of wall inertia and floor are removed from the real system
(4.83), and then a partially observable model with two states is adopted for both
the MHE and MPC schemes. To reduce the order of a state-space model captured
from the real model of the building (4.83), we propose to use ¨modred¨ with option
¨MatchDC¨ as a built-in function in MATLAB. By eliminating the states Twa, Tf
from the real system, the frequency response of the reduced model is affected so
that it can no longer follow the real response shown in Figure 4.7.

The parameters of the building model adopted in this simulation are given in the
following table.

Table 4.1: Building Parameters

Cwa 24.2× 106[ JK ] Kwa,a 56[WK ]

Cr 6× 106[ JK ] Kwa,r 386[WK ]

Cf 24.8× 106[ JK ] Kf,r 594[WK ]

Cw 20.7× 106[ JK ] Kb 506[WK ]
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Figure 4.7: Test Case 2: Bode plot of the frequency response.

Simulation Settings

As we propose to adopt a reduced model of the real system (4.83) as a POMDP
scenario, we label xm = [Tr, Tw]

⊤ the model states (measurements) used in both
the MHE and MPC schemes. We then use a parameterized MHE scheme as (4.59)
to estimate the model states from the noisy measurements ȳ = xm. The stage cost
L̂θ

(
ŝi,o

H
i

)
in this MHE scheme consists of two cost terms expressed in (4.54) so

that LNN (Yi,θNN) is approximated using an input convex neural network defined
in (4.56). This NN consists of two hidden layers and each layer has 26 neurons
where a smooth version of ReLU is used. The cost term Lθ0 is selected as a least
square problem parameterized as follows:

Lθ0 = ∥ȳi − h (x̂m
i )∥2Qθ

+ G⊤θ x̂m
i (4.84)

Note that the second term in the cost above reads as a gradient modification term.
The adjustable weighting matrix Qθ in the equation above is tuned using RL. As
a requirement, this weighting matrix must be symmetric and positive semidefinite.
However, the RL steps delivered by the LSTD-based DPG do not necessarily re-
spect this requirement, and we need to enforce it via constraints on the RL steps
throughout the learning process. To address this requirement, we then formulate
a Semidefinite Programming (SDP) as the following least squares optimization
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problem:

min
∆θ

1

2
∥∆θ∥2 − d⊤∆θ (4.85a)

s.t. Qθ(θ +∆θ) ≥ 0, (4.85b)

W
(z)
1:l−1 ≥ 0 (4.85c)

where θ = {Qθ,W
(z)
1:l−1} and d = −αbθ. We assume that the weighting matrix

Qθ is a linear function of θ. Then, it is updated at every RL step (epoch) due to
updating ∆θ, which is a solution of the above SDP scheme. Note that the second
term in the objective function (4.85a) ensures that ∆θ is obtained in the direction
of the policy gradient at every RL step.

To keep the room temperature in a comfortable range, we formulate an economic
MPC scheme as follows:

min
xm,u,σ

γNMPC (wfσk+NMPC)

+

k+NMPC−1∑
i=k

γi−k (pu,iui + wσi) (4.86a)

s.t. xm
i+1 = f̂

MPC
(xm

i , ui), (4.86b)

xm
k = x̂⋆,m

k , (4.86c)

θ + Tmin
r,i − σi ≤ Tr,i ≤ θ̄ + Tmax

r,i + σi, (4.86d)

∆umin ≤ ∆ui ≤ ∆umax, (4.86e)

umin ≤ ui ≤ umax, (4.86f)

σk,...,k+NMPC ≥ 0 (4.86g)

where x̂⋆,m
k is the current state estimation delivered by the approximate MHE

scheme, pu is the cost coefficient for the electricity prices, and f̂
MPC

is captured
from a model reduction approach. To adjust the constraints upon the room tem-
perature, we consider two parameters (θ, θ̄) and let RL tune them. As a result of
the theorems developed in this chapter, we propose to modify the stage cost of
the MHE scheme with a reduced model to tackle POMDPs. To that end, we let
RL adjust the NN weights θNN and some parameters of the first stage cost term
Lθ0 , including inverse of the covariance matrixQθ and gradient term Gθ in (4.84).
Hence, all RL parameters θ =

{
θNN, Qθ,Gθ, θ, θ̄

}
are adjusted by the proposed

LSTD-based DPG reinforcement learning. We adopt a baseline stage cost in the
proposed LSTD-based RL algorithm as follows:

L(yk, ak) = pu,k.ak + w.max (0, h (Tr,k)) (4.87)
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where ak = πθ
(
x̂⋆,m
k

)
= u⋆0

(
x̂⋆,m
k ,θ

)
with the possible addition of occasional

random exploratory moves. Note that u⋆
0 is the first element of the control input

sequence u⋆ delivered by the MPC scheme (4.86). We use the weight w = 100
where h (Tr,k) collects the inequality constraints upon indoor temperature Tmin

r,k ≤
Tr,k ≤ Tmax

r,k .

We choose a sampling time 15min and a forecast 24h for the ambient disturb-
ances and electricity prices. Therefore, the prediction and estimation horizons
(NMPC, NMHE) are set to 96. The ambient temperature and electricity prices are
forecasted for 10 days starting from the first day of January 2021 in Trondheim,
Norway where the data used in this simulation is provided by Nord Pool Spot as
an electricity market operator.

Discussion

In practice, it is very difficult to make an accurate model of a building for the
model-based control approaches, i.e., an MPC scheme since there are some com-
plex dynamics and uncertainties that may not be captured. To address this com-
plexity, a common solution is to adopt some simplified and reduced models in
this context. Although these simplified models are useful to be used in an MPC
scheme in order to reduce computational complexity, they can affect the control
performance in a building climate control system. In this simulation, we use a
super-simplified and realistic building model where its dynamics include only two
measurable states Tr, Tw while the aim is to control the indoor temperature in a
real model (4.83). As it is shown in Figure 4.8, the first evolution (No learning is
used) of Tr in blue color cannot perfectly respect the lower variable constraint and
there is a heavy violation since the model is not truly captured.

The evolution of estimated Tr is depicted in Figure 4.9 in red color and it can be
observed that the first evolution of this estimation is not able to follow the first
evolution of the real Tr in blue color. This estimation error, where there is still
no adopted learning mechanism upon MHE and MPC, can be clearly observed in
Figure 4.11. To address these problems induced by adopting a reduced model,
we let an LSTD-based DPG reinforcement learning adjust the parameters of both
the MHE (cost modification) and MPC (constraint adjustment) schemes shown
in Figure 4.10 in order to capture a correct state estimation and deliver a learned
policy to tackle this model inaccuracy.

To conclude the proposed learning-based state estimation and control, we can ob-
serve that the proposed theorem of cost modification in an MHE scheme with
imperfect model works since we achieve a perfect closed-loop performance by ap-
plying that theorem in order to modify the MHE cost depicted in Figure 4.10. It is
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worth noting that, the learned policy is optimally captured from the MPC scheme
so that the heat pump power has its highest value in lower electricity prices and
it has a minimum peak for times that the electricity is expensive shown in Figure
4.8.

Figure 4.8: Test Case 2: Evolution of the building temperatures Tr, Tf , Twa (black color)
and trained optimal policy u where both the estimator (MHE) and controller (MPC) use an
imperfect model. The comfort Tr is captured (green color) after 185 learning steps (epoch)
for the adjustment of MHE and MPC schemes.

4.6.3 Test Case 3

CSTR Nonlinear Model

In this section, the proposed learning-based MHE-MPC scheme is applied to a
Continuous Stirred Tank Reactor (CSTR), where the dynamical system is non-
linear and may not be modeled accurately. In this chemical reactor, the reaction
(A → B) is accomplished by means of an irreversible and exothermic chemical
reaction, and the aim is to control the concentration of A, Ca, and the reaction
volume, V , by manipulating the output process flow rate, qs, and the coolant flow
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Figure 4.9: Test Case 2: Evolution of the real states as measurements (temperatures
Tr, Tw in blue color) and their estimations (red color) used in the inaccurate models of
MHE and MPC as POMDPs. The estimations in light blue color are captured from the
trained MHE estimator.
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rate, qc, see [61]. The CSTR dynamics are described as follows:

V̇ (t) = qo − qs(t), (4.88a)

Ċa(t) =
qo
V (t)

(Cao − Ca(t))− k0e
−E

RT (t)Ca(t), (4.88b)

Ṫ (t) =
qo
V (t)

(To − T (t)) + k1e
−E

RT (t)Ca(t) (4.88c)

+ k2
qc(t)

V (t)

(
1− e

−k3
qc(t)

)
(Tco − T (t)) ,

k1 =
−∆Hk0
ρCp

, k2 =
ρcCpc

ρCp
, k3 =

hA

ρcCpc
(4.88d)

where V (t), Ca(t), T (t) are the reaction volume, the concentration of A, and the
reactor temperature, respectively. We consider V (t) and T (t) as measurable states
since it is not usually easy to measure the concentration Ca directly. The meas-
urement noises are selected as N (0, Q) with Q = diag(2.52, 2.52). The control
inputs are qs and qc. The constant parameters given in Table 2 are the process flow
rate qo, the feed concentration Cao , the reaction rate k0, the activation energy term
E/R, the feed temperature To, the inlet coolant temperature Tco, the heat of reac-
tion ∆H , the heat transfer term hA, the liquid densities ρ, ρc and the specific heats
Cp, Cpc. To investigate the performance of the proposed modification of the MHE

Table 4.2: CSTR Model Parameters

qo 100[ l
min ] Cao 1[mol

l ]

To 350[K] Tco 350[K]

∆H −2× 105[ calmol ] ρCp 1000[ callK ]

k0 7.2× 1010[ 1
min ] E/R 1× 104[K]

ρcCpc 1000[ callK ] hA 7× 105[ cal
minK ]

scheme, we adopt the correct model (4.88) in the MPC scheme while the MHE
scheme is formulated using an imperfect model of the real system as follows:

V̇ (t) = qo − qs(t), (4.89a)

Ċa(t) = 0.93
qo
V (t)

(Cao − Ca(t))− 1.2k0e
−E

RT (t)Ca(t), (4.89b)

Ṫ (t) = 0.93
qo
V (t)

(To − T (t)) + 1.3k1e
−E

RT (t)Ca(t) (4.89c)

+ 0.8k2
qc(t)

V (t)

(
1− e

−0.8k3
qc(t)

)
(Tco − T (t))

The constraints on the states and control inputs are 90 ≤ V ≤ 110, 0 ≤ Ca ≤
0.35, 400 ≤ T ≤ 480, 80 ≤ qs ≤ 120 and 75 ≤ qc ≤ 140.
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Simulation Settings

In this simulation, both the modification step H and the horizon N are set to 10.
The number of neurons in the hidden layers of the ICNN is set to 18, and we
consider a sampling time 0.1min. In the reinforcement learning setting, the para-
meterized MHE scheme is adjusted during 800 episodes (RL steps), where each
episode includes a 4min (40 time steps) of running the real system. Hence, in this
simulation scenario, we use a total of 3.2 × 104 learning samples to modify the
MHE scheme with the imperfect model (4.89), and improve the closed-loop per-
formance. Note that the initial conditions are randomly selected for episodes of
length 40. The set-point tracking goal is set as V d = 105 l, Cd

a = 0.12 mol/l,
T d = 433.72K, qds = 100 l/min and qdc = 110 l/min.

Discussion

Figure 4.12 depicts the evolution of the system states and their estimation dur-
ing the learning progress. As it is observed, the correct state estimations (orange
circles) are delivered after 800 RL steps so that the system states (blue lines) can
track the corresponding set points accurately. Figure 4.13 shows the evolution of
the control inputs in black color during the learning progress, and it is observed
that the optimal control inputs shown as stairs in blue color track the corresponding
set-points while the constraints are guaranteed. The results depicted in Figure 4.14
provide a comparative analysis between the proposed learning-based MHE-MPC
and one without learning. It can be observed that the system states in black color
are struggling to track the references since the imperfect model (4.89) is used in the
MHE scheme, and the wrong estimation is delivered, shown as blue circles. The
proposed learning-based modification of the MHE scheme then adjusts the MHE
stage cost function so that the state estimations (red circles) perfectly match the
correct estimations. Note that the correct estimations are those captured from the
MHE scheme with the perfect model (4.88). The closed-loop performance J(πθ)
is illustrated in Figure 4.15, and it is observed that the best performance is achieved
after 500 episodes, and the norm of policy gradient steps∇θJ moves towards zero
since the policy parameters converge to the optimal parameters.

4.6.4 Computation time

To investigate the computation time of solving the proposed modified MHE-MPC
scheme, the choice of the modification step H and the number of neuron used in
the hidden layers of ICNN in the modified MHE scheme are regarded as crucial
issues since they determine the number of the parameters required in the proposed
modification. Although, the horizon H could be larger than N to approximate the
modified stage cost accurately, we may choose a small size ofH even smaller than
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Figure 4.12: Test Case 3: Evolution of the CSTR states and their estimations during the
learning progress. The system states and their estimations at the learning stage are shown
as black and green lines, respectively. The orange circles and blue lines, respectively,
represent the correct state estimations and the system states delivered after 800 RL steps.
The set points are shown as red dashed lines.
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Figure 4.13: Test Case 3: Evolution of the CSTR control inputs during the learning pro-
gress. The control inputs at the learning stage are shown as black lines while the optimal
control inputs delivered from the MHE-MPC after 800 RL steps are shown as blue stairs.
The constraints and set points are shown as red-dashed and yellow-dashed lines, respect-
ively.
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N in order to provide an acceptable trade-off between the computational effort and
the approximate value captured from the NN. To mitigate the computational ef-
forts for all three numerical examples, the horizon length of the modification step
H has been set to the same value as the prediction/estimation horizon N . For-
tunately, the training stage of the proposed MHE/MPC-based RL can be accom-
plished offline, and it is worth mentioning that the MPC parameterization is quite
flexible so that the MPC cost can be parameterized from a numerical perspective
that makes the MPC implementation as tractable and effective as possible. How-
ever, the MHE/MPC-based RL combined with NN in the loop may struggle a bit
in the real-time applications, in particular those cases with very small sampling
times and large estimation/prediction horizons. Nonetheless, the progress in the
optimization algorithms and in the computational hardware makes the deployment
of real-time MHE/MPC possible for most of the real applications. The computa-
tion times for three test cases above are provided in the following table. Note that
we do not use real-time solvers in the present chapter.

Table 4.3: Computation time

Time Baseline MHE-MPC Modified MHE-MPC
Test Case 1 0.89 sec 1.68 sec
Test Case 2 10.2 min 19.47 min
Test Case 3 1.23 sec 2.15 sec

4.7 Conclusion
In this chapter, we have shown how an MHE scheme can be modified such that its
performance degradation due to using an imperfect MHE model is tackled. The
stage cost modification in both versions of the stochastic and deterministic MHE
schemes is proposed so that a correct probability measure and state estimation can
be delivered even if the underlying model cannot capture the real system. A prac-
tical implementation of the proposed approach upon the MHE cost modification
is discussed. To achieve the best closed-loop performance for a combined MHE-
MPC scheme using an imperfect model of the real system, we detail a parameter-
ization method for both the deterministic MHE and MPC schemes and develop an
MHE/MPC-based policy gradient reinforcement learning algorithm. The effect-
iveness of the proposed learning-based estimator/controller has been established
for three examples, including a model mismatch problem, a climate control of
smart building where the building model used in the MHE-MPC is simplified and
different from the real dynamics, and a CSTR estimation/control problem. Further
work will aim to implement a modified stochastic MHE scheme proposed in this
chapter.
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Chapter 5

Policy Gradient Reinforcement
Learning for Uncertain Polytopic
LPV Systems based on
MHE-MPC

• H.N. Esfahani, S. Gros, "Policy gradient reinforcement learning for uncer-
tain polytopic LPV systems based on MHE-MPC," IFAC-PapersOnLine 55
(15) (2022) 1–6. 6th IFAC Conference on Intelligent Control and Automa-
tion Sciences, ICONS 2022.
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In this chapter, we propose a learning-based Model Predictive Control (MPC)
approach for the polytopic Linear Parameter-Varying (LPV) systems with inex-
act scheduling parameters (as exogenous signals with inexact bounds), where the
Linear Time Invariant (LTI) models (vertices) captured by combinations of the
scheduling parameters becomes wrong. We first propose to adopt a Moving Hori-
zon Estimation (MHE) scheme to simultaneously estimate the convex combination
vector and unmeasured states based on the observations and model matching er-
ror. To tackle the wrong LTI models used in both the MPC and MHE schemes,
we then adopt a Policy Gradient (PG) Reinforcement Learning (RL) to learn both
the estimator (MHE) and controller (MPC) so that the best closed-loop perform-
ance is achieved. The effectiveness of the proposed RL-based MHE/MPC design
is demonstrated using an illustrative example.

5.1 Introduction
Model predictive control (MPC) is an advanced control approach and widely used
to many control problems due to its capability to handle both input and state con-
straints by making explicit use of the process model to predict the future evolution
of the system [9]. However, in most applications some of the model parameters are
uncertain at design time so that the prediction model may not be accurate enough to
capture the true dynamics of a real system that this issue can affect the closed-loop
performance [62].

In many real applications of MPC, an accurate model of the (possibly nonlinear)
real system may not be available so that the simplified linear models are com-
monly adopted as the prediction models, which are captured at a specific operation
point of the real system. However, these identified models may not work for some
uncertain systems where some parameters of the dynamics vary or not be known
perfectly at different operation points. Therefore, the Linear Parameter-Varying
(LPV) framework is usually adopted to address the issue above in which the linear
models with parametric uncertainties (i.e, exogenous scheduling parameters) are
represented by the LPV models [63].

The use of polytopic LPV prediction models has been proven to be an effective
approach to develop the MPC schemes for both the linear and nonlinear systems,
e.g., see [64, 65, 66]. In most of the MPC-based polytopic LPVs, a multi-model
approach is used to represent a convex combination of the vertices as Linear Time
Invariant (LTI) models in which the uncertainty (exogenous/endogenous schedul-
ing parameter with known bounds) is associated to the convex combination vector.
However, if the scheduling parameters are not known and constantly change, the
robust MPC schemes, i.e, a tube MPC can be used [67].
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Several solutions were proposed to incorporate the LPV model scheduling para-
meter dynamics within the MPC-LPV prediction, e.g. by the analysis of paramet-
ers’ rate or by a parameter prediction policy [68, 69]. Because of the unavailability
of the future scheduling parameters, the MPC design can be challenging since the
recursive feasibility and closed-loop stability of the moving horizon requires an
MPC which is robust against all possible future scheduling variations [70]. To
address this issue, authors in [71] proposed to benefit from a recursive extrapol-
ation method in order to estimate the future trajectory of the quasi-LPV (qLPV)
scheduling parameters. In [72], authors modeled the uncertainties that arise due
to the unavailability of the scheduling trajectory along the prediction horizon as a
bounded interconnection in the form of a Linear Fractional Transformation (LFT).
An optimal online tuning scheme for design-related scheduling parameters of ad-
aptive LPV systems was proposed in [73], where an MPC scheme was leveraged to
generate the optimal sequence of the scheduling parameters. In [74], authors pro-
posed a data-driven LPV predictor based on the behavioral system theory in order
to generate the future scheduling parameters. The proposed predictor only requires
reasonably short recorded trajectories of the system input, output and scheduling
signals, to represent the complete dynamic behavior of the system. The MPC-LPV
scheme then exploits this predictor model as an equality constraint.

As an alternative approach, as we consider in this chapter, the combination vector
of the scheduling parameters is assumed to be constant or changing slowly, which
can be estimated by a parameter estimation scheme [75, 76]. As an interesting
method to concurrently estimate this vector and some unmeasured states, a Moving
Horizon Estimation (MHE) was adopted in [77]. However, the LTI models used as
vertices of the polytopic LPV may not be exact due to the inexact selection of the
scheduling parameter bounds and then, these wrong models used in both the MHE
and MPC schemes can decrease the closed-loop performance. As a solution to
address this problem, a learning mechanism, i.e, a Reinforcement Learning (RL)
can be leveraged to learn these schemes with the aim of increasing the closed-loop
performance.

Reinforcement Learning (RL) is a powerful tool for solving Markov Decision Pro-
cesses (MDP) problems [11], which has been recently combined with the MPC
and MHE schemes in order to improve their performance where the adopted pre-
diction/estimation models may not capture the real system dynamics perfectly, e.g.,
see [21, 40, 23].

Motivated by this observation in the context of the MPC-based RL, in this chapter,
we propose to use an MHE scheme to deliver the convex combination vector
needed in the MPC scheme and deal with the polytopic LPV systems with possibly
inexact vertices (wrong LTI models) by adopting a Deterministic Policy Gradi-
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ent (DPG) RL to adjust a certain number of the parameters in the parameterized
MHE and MPC schemes. It is worth highlighting that the proposed compatible
deterministic policy gradient reinforcement learning based on a combined MHE-
MPC scheme is a central contribution in this chapter. Although this learning-based
(state-parameter) estimator/controller scheme is developed and employed in the
context of the LPV systems in this chapter, the proposed algorithm can be readily
used to control many other applications, i.e, partially observable systems in which
a combined estimator/observer-MPC is needed.

It is noted that the proposed MHE-based MPC-LPV is not a pure data-driven MPC-
LPV as we do not exploit any identification method to fit the model to the data.
We rather propose a data-driven assisted MHE-based MPC-LPV framework us-
ing RL aiming at improving the closed-loop performance even if the scheduling
parameters are inexact. However, the proposed method can be used in the con-
text of data-driven MPC-LPV where the LPV model is constructed based on any
identification method. Then, the proposed learning-based control approach can be
leveraged to indirectly compensate the effect of the possible model-mismatch in
the identified LPV model. For example, the Koopman operator theory and Artifi-
cial Neural Networks (ANNs) can be used to identify an LPV model in state-space
form [78, 79].

In what follows, the polytopic LPV model is introduced in Section 5.2, and the
parameterized MHE and MPC schemes are detailed in Section 5.3. The MHE/MPC-
based policy gradient reinforcement learning is then developed in Section 5.4.
Simulations on a mass-spring-damper case study are reported in Section 5.5, and
finally, conclusions and future work are given in Section 5.6.

5.2 Uncertain Polytopic LPV
In this chapter, we focus on the classic (pure) LPV systems, in which the uncertain
dynamical model of the system can be described as follows:

xk+1 = A (ρk)xk +B (ρk)uk (5.1a)

yk = C(ρk)xk (5.1b)

where the scheduling parameters ρ ∈ P ∈ Rp are considered as some exo-
genous signals applied to the real system. The vectors x ∈ Rn, u ∈ Rm are
states and control inputs, respectively. The system measurements is labeled by
yk ∈ Re. Hence, the system (5.1) can be represented by a polytopic approxima-
tion [A (ρk) , B (ρk) , C (ρk)] ∈ Ω, where a polytope Ω is defined as a convex hull
upon the Linear Time Invariant (LTI) models as follows:

Ω = Co {[A1, B1, C1], [A2, B2, C2], · · · , [Aℓ, Bℓ, Cℓ]} (5.2)
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where ℓ = 2p is the number of vertices and Co{·} reads a convex hull. Indeed,
the LTI matrices are delivered by combinations of the scheduling parameters at
their bounds ρ, ρ̄. We then evaluate the variable matrices in (5.1) as a convex
combination of the LTI models (a.k.a vertices) as follows:

A (ρk) =
ℓ∑

i=1

βiAi, B (ρk) =
ℓ∑

i=1

βiBi, (5.3a)

C (ρk) =
ℓ∑

i=1

βiCi (5.3b)

where Ai, Bi, Ci are known matrices of appropriate size and βi, i = 1 · · · ℓ is the
unknown weight of each vertex (a.k.a convex combination vector) such that:

χ =

{
β ∈ Rℓ :

ℓ∑
i=1

βi = 1, 0 ≤ βi ≤ 1

}
(5.4)

Assumption 6. By [80], the convex combination vector βk is assumed to be con-
stant or changing slowly with respect to the dynamics and there exists an estimator
to compute the estimate of this vector such that β̂k ∈ χ for all k ∈ Z0+.

Note that the stability and constraint satisfaction of the MPC schemes for the poly-
topic LPV systems under Assumption 1 was detailed and established in [75] and
by Lemma 2 and Theorem 1 in [80]. We then focus on this kind of the LPV
system where its vertices may not be known and exact. As discussed, the ver-
tices in a polytopic LPV may have a wrong model because of the inexact bounds
of the scheduling parameters, some parametric uncertainties and the linearization
approximation effects. Then, the wrong LTI models in the polytope Ω can be in-
troduced by the inexact vertices as follows:

Ω̂ = Co
{
[Â1, B̂1, Ĉ1], [Â2, B̂2, Ĉ2], · · · , [Âℓ, B̂ℓ, Ĉℓ]

}
(5.5)

In the context of MPC schemes for the polytopic LPVs, under Assumption 1, one
needs to evaluate an estimation of βi, i = 1 · · · ℓ [75, 77]. In this chapter we
propose to adopt an MHE scheme to deliver these unknown weights while some
unmeasured states are estimated. However, the inexact vertices in Ω̂ can affect
parameter/state estimations, the policy captured from the MPC and the closed-
loop performance, subsequently. In addition to this inexact polytope issue, the
partially measurable states can be challenging since the MHE scheme as an estim-
ator of βi,k needs to capture all states as measurements and minimize a distance as
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a model matching error between these measurements and those states delivered by
the uncertain LPV model.

To cope with these problems, we propose to parameterize both the MHE and MPC
schemes and adopt a reinforcement learning to adjust them in order to achieve
the best closed-loop performance even when using some wrong LTI models in a
polytopic LPV system. More precisely, it is possible to generate the optimal policy
based on a wrong model by learning the MHE and MPC schemes.

5.3 Adjustable MHE-MPC in a LPV Framework
Under Assumption 1, an obvious choice for the combination vectors used in the
MPC scheme would be βj|k = βk, for all j ∈ Zk,...,k+N . As discussed in [80],
this choice could not be proper because if the entire β-parameter prediction vector
suddenly changes, the MPC value function may not be decreasing. Hence, un-
der Assumption 1, one can select a N -step delay in this parameter prediction as
follows:

βj|k = β̂k−N+j , ∀j ∈ Z0,...,N (5.6)

We then adopt an MHE-based estimator to deliver these weights needed in an MPC
scheme. Let us formulate a parameterized MHE scheme as β-parameter and state
estimator, where the vertices of the polytopic LPV are inexact and the real system
states are not fully measurable.{

β̂k−N...k, x̂k−N...k

}
= argmin

β,x
γN
∥∥xk−N − x̃k−N

∥∥2
Aθ

+
k∑

j=k−N+1

γk−j

(∥∥µj

∥∥2
Rθ

+
∥∥∥∆βj|k

∥∥∥2)
s.t. xj+1 = Â

(
ρj

)
xj + B̂

(
ρj

)
ūj , (5.7a)

Â
(
ρj

)
=

ℓ∑
i=1

βj,iÂi, B̂
(
ρj

)
=

ℓ∑
i=1

βj,iB̂i, (5.7b)

ȳj =

(
ℓ∑

i=1

βj,iĈi

)
xj + µj , (5.7c)

ℓ∑
i=1

βj,i = 1, 0 ≤ βj,i ≤ 1 (5.7d)

∆βj|k = βj|k − βj|k−1, βj = Col {βj,1, . . . , βj,ℓ} (5.7e)

where γ ∈ Z(0,1) is a discount factor and ȳj , ūj are the measurements available
at the physical time k. We label Rθ as an adjustable weight matrix penalizing the
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deviation between some estimated states captured from the LPV model and their
corresponding measurements. The first term in the above least squares problem is
an arrival cost weighted with matrix Aθ, which aims at approximating the inform-
ation prior to k −NMHE, where x̃ is the available estimation x̂k−N at time k − 1.
We then detail a policy gradient RL in order to adjust the combination vectors βi,
where the LTI models (vertices of the polytope) are wrong.

This chapter proposes a learning-based estimation and control for a polytopic LPV
system with possibly inexact LTI models at the vertices, where the control policy
is delivered by a parameterized MPC scheme as follows:

min
x,u,σ

γN
(
Tθ(xk+N ,βk+N ) +w⊤

f σk+N

)
+

k+N−1∑
j=k

Gθ(xj ,uj) +
k+N−1∑
j=k

γj−k
(
lθ(xj ,uj) +w⊤σj

)
(5.8a)

s.t. xj+1 = Â
(
ρj

)
xj + B̂

(
ρj

)
uj , (5.8b)

xk = x̂k, βj|k = β̂j−N (5.8c)

Â
(
ρj

)
=

ℓ∑
i=1

βj,iÂi, (5.8d)

B̂
(
ρj

)
=

ℓ∑
i=1

βj,iB̂i, (5.8e)

g(uj) ≤ 0, (5.8f)

hθ(xj ,uj) ≤ σj , hf
θ(xk+N ) ≤ σk+N (5.8g)

σk,...,k+N ≥ 0 (5.8h)

where Tθ and lθ are the parameterized terminal and stage costs, respectively. The
function Gθ is labeled the cost modification term, which can be, i.e, in a form
of gradient f⊤[xj ,uj ]

⊤. However, the polytopic LPV model is uncertain with
wrong vertices that could cause some violations in its constraints and bring the
MPC in an infeasible region. To avoid such an infeasibility, we introduce some
slack variables σ penalized by enough large weights w,wf . We also propose to
have some adjustable parameters upon inequality constraints hθ, h

f
θ. Then, we let

RL to tune the MPC parameters (a.k.a policy parameters). Note that, the proposed
parameterization of the MHE and MPC is a general form of a rich parameterization
and one may take into account some of these parameters to be adjusted by RL.

Note that the parameterized terminal cost in the MPC scheme (5.8) is defined as a
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function of the terminal states and the convex combination vector as follows:

Tθ = x⊤
k+N

(
ℓ∑

i=1

βk+N,iPi

)
xk+N (5.9)

where the matrices Pi > 0, i ∈ Z1,...,ℓ are adjusted by RL. However, the initial
values for these matrices can be computed offline via a Linear Matrix Inequal-
ity (LMI) based on a parameter-dependent Lyapunov function and a parameter-
dependent linear control law detailed in [75].

5.4 MHE/MPC-based Policy Gradient RL
Let us define the closed-loop performance of a parameterized policy πθ for a given
stage cost L (x,a) as the following total expected cost:

J (πθ) = Eϱs

[ ∞∑
k=0

γkL (xk,ak)

∣∣∣∣∣ak = πθ(xk)

]
(5.10)

where the expectation Eϱs [·] is taken over the distribution of the Markov chain ϱs
in the closed-loop under policy πθ. We then seek the optimal policy parameters
as follows:

θ⋆ = argmin
θ
J (πθ) (5.11)

As a learning-based control approach in this chapter, we propose to use a para-
meterized MPC scheme as a policy approximation in order to deliver πθ. As an
advantage to use a MPC-based policy approximation instead of DNNs, it can offer
a learning-based controller so that all the state-input constraints are satisfied and
the closed-loop performance is improved by adjusting the policy parameters.

For a given estimated state x̂k and parameter β̂k delivered by the MHE scheme,
the policy captured by a parameterized MPC scheme is

πθ

(
x̂k, β̂k

)
= u⋆

0

(
x̂k, β̂k,θ

)
(5.12)

where u⋆
0 is the first element of the control input sequence u⋆ delivered by (5.8).

In this section, we propose a policy gradient RL framework based on MPC and
MHE to deal with the polytopic LPV systems with wrong LTI models.

5.4.1 Compatible Deterministic Actor-Critic

In the context of DPG-based RL algorithms, the policy parameters θ can be dir-
ectly optimized by the gradient descent steps such that the best expected closed-
loop cost (a.k.a policy performance index J) can be captured by applying the
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policy πθ.

θ ← θ − α∇θJ(πθ) (5.13)

for some α > 0 small enough as the step size. In the context of hybrid control-
ler/observer scheme MHE-MPC, the input signal can be interpreted as a sequence

of measurements y =
[
y10,··· ,k, · · · , y

ny

0,··· ,k

]⊤
at the physical time k, where ny is

the number of system states selected as measurable outputs. Then, the intermedi-
ate variables x̂k, β̂k are delivered by the MHE scheme based on the history of the
measurements and fed to the MPC scheme to deliver the control policy. Assuming
that this history constitutes a Markov state, one can define a policy performance
index by the following expected value:

J(πθ) := Eπθ

[
Qπθ

(
x̂k,πθ

(
x̂k, β̂k

))]
(5.14)

where the expectation Eπθ
is taken over the distribution of the Markov chain res-

ulting from the real system in closed-loop with πθ. The action-value functionQπθ

is then defined as follows:

Qπθ
(x̂k,ak) = L (yk,ak) + γEπθ

[Vπθ
(x̂k+1) |x̂k,ak] (5.15)

where, L (yk,ak) reads as baseline cost (RL stage cost), which is a function of
measurable states and actions at the current time k. Based on the proposed DPG
theorem by [17] and the fact that both the πθ and Qπθ

are functions of x̂k, the
policy gradient equation is described as follows:

∇θJ(πθ) = E [∇θπθ(x̂k)∇uQπθ
(x̂k,ak)|ak=πθ

] (5.16)

To represent the effect of the parameterized MHE upon the policy gradient, the
sensitivity of the policy w.r.t θ can be updated such that the new policy gradient is
described by the following expectation:

∇θJ(πθ) = E
[
Ξ∇uQπθ

(x̂k,ak)|ak=πθ

]
(5.17)

where the Jacobian matrix Ξ is obtained by the following chain rule:

Ξ =
(
∇θπθ +∇θx̂k∇x̂k

πθ +∇θβ̂k∇β̂k
πθ

)
(5.18)

In this chapter, we adopt a compatible deterministic actor-critic algorithm [17] in
which the action-value functionQπθ

(x̂k,ak) can be replaced by a class of compat-
ible function approximator Qw(x̂k,ak) such that the policy gradient is preserved.
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Therefore, the compatible function for a deterministic policy πθ delivered by the
parameterized MHE-MPC scheme can be expressed as follows:

Qw = (ak − πθ)
⊤Ξ⊤w + V ν (x̂k) (5.19)

The first term in the above compatible function as critic part is an estimation for the
advantage function and the second term estimates a value function for the history
of the measurements delivered as a summarized variable x̂k by the MHE scheme.
Both functions can be computed by the linear function approximators as follows:

V ν (x̂k) = Υ (x̂k)
⊤ ν, (5.20a)

Aw (x̂k,ak) = Ψ (x̂k,ak)
⊤w (5.20b)

where Υ (x̂k) is the summarized measurement feature vector in order to constitute
all monomials of the history of the measurements with degrees less than or equal
to 2. The vector Ψ (x̂k,ak) := Ξ

(
ak − πθ(x̂k, β̂k)

)
includes the state-action

features. Considering (5.19), the policy gradient (5.17) is then rewritten as follows:

∇θJ(πθ) = E
[
ΞΞ⊤w

]
(5.21)

In this chapter, the parameterized policy in the context of policy gradient RL is
proposed to be captured by the MPC scheme (5.8). Figure 5.1 shows an overview
of the proposed learning-based control algorithm.

Figure 5.1: An overview of the MHE/MPC-based deterministic policy gradient method
where the MPC model is represented in the polytopic LPV framework. The MHE scheme
(5.7) delivers both the state estimation x̂ and the combination vector β̂. The corresponding
sensitivities are then used in the LSTD-DPG method. The MPC-LPV scheme (5.8) com-
bined with the MHE scheme delivers the parameterized policy πθ. The action a is then
selected according to the policy πθ with the possible addition of exploratory moves.
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To evaluate the policy gradient (5.21), one need to calculate some sensitivities upon
the MPC and MHE schemes in order to compute the Jacobian matrix Ξ. Hence, the
Jacobian matrices ∇θπθ, ∇x̂k

πθ and ∇β̂k
πθ can be computed by the sensitivity

analysis for the parameterized MPC scheme while the gradients ∇θx̂k and ∇θβ̂k

are obtained as a sensitivity term for the parameterized MHE scheme.

5.4.2 Sensitivity Analysis and LSTD-based DPG

Sensitivity Computation

We describe next how to compute the sensitivities (gradients) needed in the pro-
posed policy gradient RL framework based on MHE-MPC. To that end, let us
define the Lagrange functions L̂θ,Lθ associated to the MHE and MPC schemes
(5.7), (5.8) as follows:

L̂θ (ẑ) = Λ̂θ + λ̂
⊤
Ĝθ (5.22)

Lθ (z) = Λθ + λ⊤Gθ + µ⊤Hθ (5.23)

where Λθ and Λ̂θ are the total parameterized costs of the MPC and MHE schemes,
respectively. The inequality constraints of (5.8) are collected by Hθ while Gθ and
Ĝθ gather, respectively, the equality constraints in the MPC and MHE schemes.
We then label λ, λ̂ the Lagrange multipliers associated to the equality constraints
Gθ, Ĝθ of the MPC and MHE, respectively. Variables µ are the Lagrange mul-
tipliers associated to the inequality constraints of the MPC scheme. Let us label
Γ = {x,u,σ} and Γ̂ =

{
x̂, β̂

}
the primal variables for the MPC and MHE, re-

spectively. The associated primal-dual variables then read as z = {Γ,λ,µ} and
ẑ =

{
Γ̂, λ̂

}
.

The sensitivity of the policy delivered by the MPC scheme (5.8) w.r.t policy para-
meters and the sensitivity of the estimated state associated to the MHE scheme
(5.7) can be obtained via using the Implicit Function Theorem (IFT) on the Karush
Kuhn Tucker (KKT) conditions underlying the parametric NLP. Assuming that
Linear Independence Constraint Qualification (LICQ) and Second Order Sufficient
Condition (SOSC) hold [18] at z⋆ and ẑ⋆, then, the following holds:

∂z⋆

∂θ
= −∂κθ

∂z

−1∂κθ
∂θ

, (5.24a)

∂ẑ⋆

∂θ
= −∂κ̂θ

∂ẑ

−1∂κ̂θ
∂θ

(5.24b)
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where

κθ =

 ∇ΓLθ
Gθ

diag (µ)Hθ

 , κ̂θ =

[
∇Γ̂L̂θ
Ĝθ

]
(5.25)

are the KKT conditions associated to the MPC and MHE schemes, respectively.
As πθ and (x̂, β̂) are, respectively, part of z⋆ and ẑ⋆. Then, the sensitivity of the
MPC policy∇θπθ and the sensitivity of the MHE solution (∇θx̂,∇θβ̂) required
in (5.21) can be extracted from gradients ∂z⋆

∂θ and ∂ẑ⋆

∂θ , respectively.

LSTD-based Policy Gradient

In the context of compatible DPG, one can evaluate the optimal parameters w and
ν of the action-value function approximation (5.19) as solutions of the following
Least Squares (LS) problem:

min
w,ν

E
[(
Qπθ

(x̂k,ak)−Qw(x̂k,ak)
)2]

, (5.26)

In the context of RL, the LSTD-based algorithms offer an efficient use of data and
tend to converge faster than other methods, e.g., see [22]. The LSTD update rules
for a policy gradient RL are then obtained as follows:

ν = A−1
ν bν , (5.27a)

w = A−1
w bw, (5.27b)

θ ← θ − αbθ (5.27c)
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where the matrices Ω(·) and the vectors b(·) are calculated by taking expectation
(Em) over m episodes as follows:

Aν = Em

 Tf∑
k=1

[
Υ (x̂k) (Υ (x̂k)− γΥ (x̂k+1))

⊤
] (5.28a)

Aw = Em

 Tf∑
k=1

[
Ψ (x̂k,ak)Ψ (x̂k,ak)

⊤
] , (5.28b)

bν = Em

 Tf∑
k=1

Υ (x̂k)L(yk,ak)

 , (5.28c)

bw = (5.28d)

Em

 Tf∑
k=1

[
(L(yk,ak) + γV ν (x̂k+1)− V ν (x̂k))Ψ(x̂k,ak)

] ,
bθ = Em

[ Tf∑
k=1

ΞΞ⊤w

]
(5.28e)

where Tf is the final time instant at the end of each episode.

5.5 Illustrative Example
To demonstrate the effectiveness of the proposed learning-based control approach,
we choose a stabilization problem for a mass-spring-damper system where the
spring and damper coefficients are considered as the exogenous scheduling para-
meters.

d

dt

[
x1
x2

]
=

[
0 1

−k/m −d/m

] [
x1
x2

]
+

[
0

1/m

]
u (5.29)

Then, the LPV model can be represented as a linear system with polytopic uncer-
tainty, including four vertices (LTI models), which are constructed based on the
scheduling bounds 1 ≤ k ≤ 2, 0 ≤ b ≤ 0.5 shown in Figure 5.2.

A1 =

[
0 1
−1 0

]
, A2 =

[
0 1
−1 −0.5

]
(5.30)

A3 =

[
0 1
−2 0

]
, A4 =

[
0 1
−2 −0.5

]
and B1,...,4 = [0, 1]⊤. On the other hand, we select the scheduling bounds used
in the real system different from those adopted in four LTI models 0.5 ≤ k ≤
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2, 0 ≤ b ≤ 0.2. The position of the mass (x1) is selected as measurement while
the velocity (x2 = ẋ1) is estimated. We consider a constraint on the control input
−1 ≤ u ≤ 1. As it can be observed in Figure 5.3, the stabilization scenario is af-

0 50 100 150 200 250 300 350 400

Time Step

0

0.5

1

1.5

2

2.5

k (model)

b (model)

k (real system)

b (real system)

Figure 5.2: Mass-Spring-Damper with variable spring constant and damping factor as
scheduling parameters.

fected since the scheduling parameters violate their correct values used in four LTI
models. We then adopt a policy gradient RL to adjust the MHE-MPC parameters in
order to cope with this problem and improve the closed-loop performance J(πθ).
The evolution of some RL parameters and the closed-loop performance are shown
in Figure 5.4. The evolution during learning shows that the optimal policy (Figure
5.3: πθ in black color) can be delivered after 35 RL step and the stabilization goal
is perfectly achieved. Note that the system’s behavior in terms of β-parameters
and control policy without learning is highlighted in red color shown in Figure
5.3. It is obvious that the estimated combination vector β is improved by adjusting
the MHE scheme under wrong LTI models. As a comparative study shown in Fig-
ure 5.5, the performance of the stabilization has been dramatically improved after
learning the MHE-MPC scheme where the LTI models cannot capture the correct
polytope based on the scheduling bounds used in the real system.
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Figure 5.3: The blue lines show the evolution of the states, policy and β-parameters during
reinforcement learning. The red lines show the evolution of the combination vectors β1,...,4
and the policy πθ without learning while the black lines show the results obtained by the
proposed method when the learning progress is terminated after 35 RL steps.

5.6 Conclusion
In this chapter, an MHE-MPC scheme was proposed to deal with the linear sys-
tems with polytopic uncertainty in the context of the LPV systems with exogenous
scheduling parameters. However, the performance of the adopted multi-model
approach can be affected where the bounds of the scheduling parameters are dif-
ferent from their real values applied to the real system. To address a data-driven
MHE-MPC approach for the polytopic LPV systems with inexact LTI models, we
proposed to adopt a policy gradient reinforcement learning to capture the optimal
policy and achieve the best closed-loop performance by adjusting the MHE and
MPC schemes.
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Figure 5.4: As observed, the closed-loop performance J(πθ) is improved by learning
the combined MHE-MPC scheme. Some parameters of the DPG method are: the weight
matrix Aθ of the arrival cost, the weight matrix Rθ, the parameters of the MPC cost modi-
fication f and the parameters of the value function ν.
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Figure 5.5: Comparative analysis. The blue lines show the evolution of the sates where
the LTI models used in the MPC-LPV scheme are inexact. The black dashed lines show
the results obtained from the MHE-MPC with exact LTI models used in the MPC-LPV
scheme. The red lines depict the evolution of the states using the proposed MHE/MPC-
based DPG where the wrong LTI models are used in the MPC-LPV scheme.
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We present a Reinforcement Learning-based Robust Nonlinear Model Predictive
Control (RL-RNMPC) framework for controlling nonlinear systems in the pres-
ence of disturbances and uncertainties. An approximate Robust Nonlinear Model
Predictive Control (RNMPC) of low computational complexity is used in which
the state trajectory uncertainty is modelled via ellipsoids. Reinforcement Learn-
ing is then used in order to handle the ellipsoidal approximation and improve the
closed-loop performance of the scheme by adjusting the MPC parameters gener-
ating the ellipsoids. The approach is tested on a simulated Wheeled Mobile Robot
(WMR) tracking a desired trajectory while avoiding static obstacles.

6.1 Introduction
Nonlinear Model Predictive Control (NMPC) is an optimization based control ap-
proach operating in a receding horizon [9], which is often adopted for its ability
to handle linear/nonlinear state and input constraints. MPC offers rigorous the-
oretical properties (such as recursive feasibility, constraint satisfaction and stabil-
ity), assuming that an accurate model of the plant is available. There are many
autonomous systems (such as ground vehicles, marine robots and unmanned aerial
vehicles) for which NMPC-based algorithms have been adopted [81], [82], [83].

Reinforcement Learning (RL) is a powerful tool for tackling Markov Decision
Processes (MDP) without depending on a model of the probability distributions
underlying the state transitions of the real system [11]. Indeed, most RL methods
rely purely on observed state transitions, and realizations of the stage cost in order
to increase the performance of the control policy.

Recently, the integration of machine learning in MPC has been invesstigated, with
the aim of learning the model of the system, the cost function or even the con-
trol law directly [34, 35]. For computational reasons, simple models are usually
preferred in the MPC scheme. Hence, the MPC model often does not have the
structure required to correctly capture the real system dynamics and stochasticity.
As a result, MPC delivers a reasonable but suboptimal approximation of the op-
timal policy. Choosing the MPC parameters that maximises the closed-loop per-
formance for the selected MPC formulation is a difficult problem. Indeed, e.g.
selecting the MPC model parameters that best fit the model to the real system is
not guaranteed to yield the best closed-loop performance that the MPC scheme
can achieve [25]. In [25, 84], it is shown that adjusting the MPC model, cost and
constraints can be beneficial to achieve the best closed-loop performances, and
Reinforcement Learning is proposed as a possible approach to perform that ad-
justment in practice. Further recent research have focused on MPC-based policy
approximation for RL [2, 85, 86, 40, 21], where it is shown that a single Model
Predictive Control (MPC) scheme can capture the optimal value function, action-
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value function, and policy of an MDP, even if the MPC model is inaccurate, hence
providing a valid and generic function approximator for RL.

Model-plant mismatch and disturbances can be treated via Robust NMPC (RN-
MPC) techniques. For linear MPC models and polytopic disturbance models and
constraints, tube-based MPC techniques provides computationally effective tech-
niques [87], [88]. Treating nonlinear MPC models or generic disturbances and
constraints is more challenging [89]. Researchers in [90] proposed to use a tube-
based MPC with a Min-Max differential inequality. Multi-stage or Scenario-tree
NMPC scheme was proposed in [91, 92] as a real-time NMPC that accounts for
the uncertain influence and generates decisions to control a nonlinear plant in a
robust sense. These approaches remain challenging for problems that are not of
small scale.

In this chapter, we model the propagation of perturbations in the state dynamics via
ellipsoids, based on the linearization of the system dynamics and constraints on the
nominal trajectories and using a Gaussian disturbance model. We propose to adjust
this scheme using the RL method in order to tailor this inaccurate uncertainty
model to the real system and achieve a better closed-loop performance. A fast
convergence of the adjustable parameters of RNMPC is achieved via a second-
order Least Square Temporal Difference Q-learning (LSTDQ).

This chapter is organised as follows. In Section 6.2, the proposed approximate
robust NMPC is formulated. The combination of the RL algorithm and RNMPC
is detailed in Section 6.3. A mobile robot under uncertainties is adopted in Section
6.4 to be controlled by the proposed RL-RNMPC for a trajectory tracking scenario
associated to elliptic static obstacle avoidance in presence of model uncertainty.
Finally, conclusions and future work are given in Section 6.5.

6.2 Ellipsoidal-based Robust NMPC
We consider a model based on the nonlinear dynamics

x+ = f (x,u,d) (6.1)

where d is a stochastic variables affecting the state evolution. We assume that the
real system is unknown and imperfectly represented by (6.1). A nominal NMPC
scheme based on (6.1) reads e.g. as:

min
x̄,ū

T (x̄N ) +

N−1∑
k=0

L (x̄k, ūk) (6.2a)

s.t. x̄k+1 = f (x̄k, ūk,dk) , x0 = s (6.2b)

h (x̄k, ūk) ≤ 0, hf (x̄N ) ≤ 0 (6.2c)



114 Approximate Robust Nonlinear MPC using RL

where L (x̄k, ūk) and T (x̄N ) are the stage and terminal costs, respectively. s is
the current system state while the nominal NMPC predicted trajectories are x̄ and
ū. We label h and hf as the nominal stage and terminal inequality constraints, re-
spectively. We will model the model error and real system stochasticity via the un-
certain sequence dk of disturbances, and we will approximate its effect on the state
dynamics in a computationally effective way. More specifically, we will model the
sequence dk via an i.i.d Gaussian model with mean d̄k and covariance Λ i.e.

dk ∼ N
(
d̄k,Λ

)
(6.3)

The first-order deviation of the model state xk from its nominal trajectory x̄k is
then given by:

∆xk+1 =
∂f

∂x

∣∣∣∣
xk,uk

∆xk +
∂f

∂u

∣∣∣∣
xk,uk

∆uk (6.4)

+
∂f

∂d

∣∣∣∣
xk,uk

∆dk

where ∆x0 is a given deviation of the initial state and ∆dk = dk−d̄k. We observe
that for E [∆x0] = 0, d̄k = E [dk] and ∆uk = 0. The expected value of the state
deviation is E [∆xk] = 0. We consider a linear feedback over the state deviations
for the input deviation ∆uk as:

∆uk = −Kk∆xk (6.5)

where Kk is a control gain matrix typically based on Linear Quadratic Regulator
(LQR) techniques. Then the state deviation dynamics read as:

∆xk+1 =

(
∂f

∂x
− ∂f

∂u
Kk

)∣∣∣∣
xk,uk

∆xk +
∂f

∂d

∣∣∣∣
xk,uk

∆dk

Let us define the time-varying matrices as follows:

Ak =
∂f

∂x
−Kk

∂f

∂u

∣∣∣∣
xk,uk

, Bk =
∂f

∂d

∣∣∣∣
xk,uk

Then, the covariance of the state deviation reads as:

Σk+1 = E
[
∆xk+1∆x⊤

k+1

]
= E

[
(Ak∆xk +Bk∆dk) (Ak∆xk +Bk∆dk)

⊤
]

= E
[
Ak∆xk∆x⊤

k A
⊤
k +Bk∆dk∆d⊤

k B
⊤
k

]
= AkΣkA

⊤
k +BkΛB

⊤
k
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where Λ is the covariance of the process noise. We observe that the matrices
Σk describe ellipsoids of state uncertainty propagations defined by the confidence
regions:

Rk :=

{
∆xk

∣∣∣∣ 12∆x⊤
k Σ

−1
k ∆xk ≤ σk

}
(6.6)

where σk is a Mahalanobis distance (the radius of the ellipsoids as the confidence
regions). More specifically, we observe that for a Gaussian disturbance dk as in
(6.3) with n-dimensional mean vector d̄k, the state deviation approximation ∆xk
is also Gaussian, given by the following density:

ρ (∆xk) = (2π)−
n
2 (det (Σk))

− 1
2 e−

1
2
∆x⊤

k Σ−1
k ∆xk (6.7)

such that at time k, a state deviations ∆xk has a probability density larger or equal
to (2π)−

n
2 (det (Σk))

− 1
2 e−σk to belong to Rk in (6.6).

The probability of the state deviation to belong to the ellipsoid described by (6.6)
is given by:

P[∆xk ∈ Rk] =

∫
Rk

ρ (∆xk) d∆xk =
γk

(
n
2 ,

σ2
k
2

)
Γk

(
n
2

) (6.8)

where, Γk is the Gamma function and γk is the lower incomplete Gamma function
describing the probability content for a n-dimensional multinormal distribution
[93]. Imposing that the ellipsoids described by (6.6) are contained within the MPC
feasible set for some sequence σk then becomes a way to approximately satisfy the
MPC constraints with probability (6.8). In the next section, we detail how to build
an inexpensive Robust MPC scheme that ensures the ellipsoids described by (6.6)
are contained within the MPC feasible set.

6.2.1 Inclusion constraint

Consider the constraint

hi (xk,uk) ≤ 0 (6.9)

for some index i and suppose that we want to formulate a computationally tractable
constraint requiring that (6.9) is satisfied for all state deviations in the ellipsoid
(6.6). For nonlinear constraints, this is unfortunately very difficult. As a result, in
line with the philosophy above, we will consider the approximation resulting from
linearizing the constraint on the nominal trajectory x̄k, ūk of the MPC scheme.
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More specifically, we will consider imposing the constraint:

hi (x̄k, ūk)+

(
∂hi

∂x
− ∂hi

∂u
Kk

)∣∣∣∣
x̄k,ūk

∆xk ≤ 0, (6.10)

∀∆xk ∈ Rk

Fortunately, this requirement takes a closed form. Indeed, we can simply seek the
∆xk ∈ (6.6) that gives the worst (highest) value to hi. Let us label

bi =

(
∂hi

∂x
− ∂hi

∂u
Kk

)⊤

Then (6.10) can be (tightly) enforced by imposing that:

hi +
√
2σk

(
b⊤
i Σkbi

) 1
2 ≤ 0 (6.11)

which is a constraint mixing h and its derivative, the dynamics of Σk and the given
σk.

6.2.2 Robust MPC formulation

We can now formulate an approximate robust NMPC scheme:

Vθ(s) = min
x̄,ū,ζ,Σ

γN
(
Tθ (x̄N ) +w⊤

f ζN

)
+

N−1∑
k=0

γk
(
lθ (x̄k, ūk) +w⊤ζk

)
(6.12a)

s.t. x̄k+1 = fθ (x̄k, ūk,dk) , x̄0 = s (6.12b)

Σk+1 = AkΣkA
⊤
k +BkΛB

⊤
k , Σ0 = S0 (6.12c)

hi (x̄k, ūk) +
√
2σk

(
b⊤
i Σkbi

) 1
2

∣∣∣∣
x̄k,ūk

≤ ζk (6.12d)

hf
i (x̄N ) +

√
2σN

(
b⊤
i ΣNbi

) 1
2

∣∣∣∣
x̄N

≤ ζN (6.12e)

ζ0,...,N ≥ 0 (6.12f)

where, 0 < γ ≤ 1 is a discount factor and Tθ is an adjustable terminal cost
function. The slack variables and initial guess for the covariance matrix of the
state deviation are labeled by ζ and S0, respectively. Although we initialize S0
at zero in this chapter, One can use an observer scheme to estimate this initial



6.2. Ellipsoidal-based Robust NMPC 117

matrix. The adjustable stage cost function in the above RNMPC scheme is defined
as follows:

lθ (x̄k, ūk) = L (x̄k, ūk) + φθ (x̄k, ūk,Σk) , (6.13)

where, φθ (x̄k, ūk,Σk) = Tr
(
∂2L(x̄k,ūk)

∂x̄2
k

MΣk

)
is proposed to adopt as a cost

modification term in the stage cost L (x̄k, ūk) of the RNMPC scheme. This term
is considered to deliver the impact of the uncertainty on the adopted stage cost. We
propose to use a quadratic form for this term, which includes the adjustable matrix
M as an RL parameter. fθ is the nonlinear dynamics, which could be adjusted by
RL through the model bias parameters. Because the robust NMPC scheme (6.12)
uses approximations and a possibly inaccurate model of the system dynamics and
disturbances, it may become infeasible. To address that issue, an ℓ1 relaxation
of the inequality constraints is introduced in (6.12f). If the weights w,wf are
chosen large enough, then the solution of the RNMPC scheme (6.12) respects the
constraints when it is feasible to do so.

We ought to specify here that the proposed approximate RNMPC may be inter-
preted either as a genuine approximate robust NMPC scheme or an approximate
stochastic NMPC scheme depending on the nature of the real system disturbances.
Indeed, even if the real system does not yield any approximation in (6.12), i.e. the
disturbances are Gaussian and the system dynamics and constraints are linear, then
this scheme ensures the constraint satisfaction in the sense of the probability (6.8),
and shall therefore be seen as a stochastic NMPC scheme. If the disturbances are
bounded and properly covered by the ellipsoidal model used in (6.12), then the
proposed scheme can be seen as a robust NMPC scheme. In both cases, the choice
of parameters in (6.12) to model the ellipsoids so as to achieve the given control
objectives is difficult.

The NMPC parameters θ =
{
M, d̄k,Λ, σk

}
will be adjusted using LSTDQ-

learning. We propose to use (6.12) as an approximator for the true value function
V⋆, i.e. we will seek the robust MPC parameters θ that best achieve Vθ ≈ V⋆. Let
us define the control policy as:

πθ(s) = ū⋆
0 (6.14)

where, ū⋆
0 is the first element of the input sequence ū⋆

0, · · · , ū⋆
N−1 solution of

(6.12). We next consider this optimal policy delivered by the RNMPC scheme
as an action a in the context of reinforcement learning where it is selected ac-
cording to the above policy with the possible addition of exploratory moves [11].
As a result in [25], a parameterized NMPC scheme can be used as an (action)-
value function approximator in the context of the reinforcement learning. Then,
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we propose to use the parameterized RNMPC scheme (6.12) to deliver the value
function needed in the proposed second-order LSTDQ-learning algorithm. Then,
the action-value function in (6.15) results from solving the same RNMPC scheme
with its first input constrained to the delivered action a.

Qθ(s,a) = min
x̄,ū,ζ,Σ

(6.12a) (6.15a)

s.t. (6.12b)− (6.12f) (6.15b)

ū0 = a (6.15c)

6.3 RL-based Robust NMPC
In this section, we propose to use RL to tune the approximate robust NMPC
scheme. Indeed, the proposed robust NMPC scheme is based on coarse approxim-
ations of the state uncertainty propagation, which are likely to yield suboptimality
and even constraints violations in practice. Finding the parameters that yield the
best closed-loop performance for the real system in terms of cost and constraints
violations is a difficult problem. We propose to use RL to find these parameters.
More specifically, RL is used to tune the sequences of σk and the expected value of
the noise d̄k, the process noise Λ and the matrix M in the cost modification φθ in
order to improve the Robust NMPC scheme. RL allows one to perform this tuning
based on observed state transition, and without any knowledge of the real system
stochasticity.

In this section, we first present the algorithmic details needed to implement a
second order LSTDQ-learning algorithm on the ellipsoidal RNMPC scheme. Then
the sensitivity analysis needed in the reinforcement learning scheme is described.

6.3.1 Second-Order LSTDQ Learning

LSTDQ-based reinforcement learning methods make an efficient use of data and
tend to converge faster than more basic temporal-difference learning methods. Let
us form the least squares of Bellman residual error w.r.t θ as:

min
θ

E
[
(Q⋆(s,a)−Qθ(s,a))

2
]

(6.16)

where Qθ obtained from the RNMPC scheme in (6.15) is an approximation of the
true action-value function Q⋆. Let us consider the following approximation of the
Bellman optimality equation, which is used in the Temporal Difference (TD)-based
learning approaches.

Q⋆(s,a) ≈ L(s,a) + γmin
a′

Qθ(s+,a
′)︸ ︷︷ ︸

Vθ(s+)

(6.17)
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where a′ = π(s+) and L(s,a) is the baseline cost in the RL scheme. Substitut-
ing (6.17) into (6.16), the least square problem (6.16) for the first-order LSTDQ-
learning can be solved for some data acquired from the transitions s,a → s+ as:

E [δ∇θQθ(s,a)] = 0, (6.18a)

δ = L(s,a) + γVθ(s+)−Qθ(s,a) (6.18b)

where δ is the temporal difference error. Both value and action-value functions,
respectively, Vθ(s) and Qθ(s,a) are obtained from the RNMPC schemes (6.12)
and (6.15). In this chapter, we adopt a Newton method to solve (6.18) and extract
the newton step for the second-order LSTDQ scheme as follows:

θ ← θ − αA−1b, (6.19a)

A = E
[
δ∇2

θQθ +∇θQθ∇⊤
θ δ
]
, b = E

[
δ
∂Qθ

∂θ

]
(6.19b)

where, the scalar α > 0 is the step size. Figure 6.1 shows an overview of the
proposed RNMPC-based RL.

Figure 6.1: An overview of the RNMPC-based LSTDQ-learning. The state and action
value functions Vθ, Qθ are approximated by (6.12) and (6.15), respectively. The action a
is selected according to the policy πθ with the possible addition of exploratory moves. The
SDP (6.22) is used to satisfy some requirements in the RL steps.
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6.3.2 Sensitivity Analysis

The gradient and Hessian of the function Qθ needed in (6.19) require one to com-
pute the sensitivities of the optimal value of NLP (6.15). Let us define the Lagrange
function Lθ associated to the RNMPC problem (6.15) as follows:

Lθ = Φθ + λ⊤Gθ + µ⊤Hθ (6.20)

where Hθ gathers the inequality constraints of (6.15) and Φθ is the cost of the
RNMPC optimization problem. Variable λ is the Lagrange multiplier vector asso-
ciated to the equality constraints Gθ of the RNMPC. Variable µ is the Lagrange
multiplier vector associated to the inequality constraints of the RNMPC scheme.
Let us label the primal variables for the RNMPC scheme as p = {X,U}, where
X,U are the state and control input trajectories predicted by (6.15). Then, the
primal-dual variables read as z = {p,λ,µ}.

The sensitivity analysis of optimization problems detailed in [42] delivers the
Gradient∇θQθ and Hessian∇2

θQθ (H(Qθ)) terms needed in (6.19) as follows:

∂Qθ

∂θ
=
∂Lθ(s,a, z⋆)

∂θ
, (6.21a)

H(Qθ) =
D

Dθ

(
∂Lθ(s,a, z⋆)

∂θ

)
≈ ∂2Lθ(s,a, z⋆)

∂θ2 (6.21b)

where z⋆ is the primal-dual solution of (6.15) and D is the total derivative. The
Hessian term H(Qθ) can improve the search direction using the curvature inform-
ation and thus make more progress per step in comparison with the first-order
LSTDQ learning relying only on the gradient calculation.

6.3.3 Constrained RL steps

In the proposed RL-RNMPC scheme, there is a matrix Λ in the dynamics (6.12c),
which is adjusted using the reinforcement learning method. As a requirement, this
disturbance covariance matrix must be positive semidefinite. However, the RL
steps delivered by second-order LSTDQ learning do not necessarily respect this
requirement, and we need to enforce it via constraints on the RL steps throughout
the learning process. To address this requirement, we formulate a Semi-Definite
Program (SDP) as a least squares optimization problem:

min
∆θ

1

2
∥∆θ∥2 − F⊤∆θ (6.22a)

s.t. Λ(θ +∆θ) ≥ 0 (6.22b)

where we assume that the above matrix is linear function of θ and the gradient
term F = −αA−1b is delivered by the second-order LSTDQ-learning algorithm
(6.19).
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6.4 Numerical Example
To illustrate proposed RL-RNMPC, we consider a simulated Wheeled Mobile Ro-
bot (WMR) tracking trajectories while avoiding static obstacles avoidance, and
affected by model uncertainties and disturbances. Let us define the WMR model
as:

f(x,u) =

cos(ψ) 0
sin(ψ) 0

0 1

u (6.23)

where x = [x, y, ψ]⊤ and u = [v, ω]⊤ are the state and control input vectors, re-
spectively. The position coordinates of the WMR are labeled x, y andψ is the robot
orientation angle. The initial position of the mobile robot is x0 = [−1, 2, 0]⊤. The
control inputs v and ω are the linear and angular velocities, respectively. To dis-
cretize the above continuous model, we adopt a fourth-order Runge-Kutta (RK4)
integrator providing discretized function fd of the WMR model. We will consider
that the real system evolves according to the dynamics:

x(k + 1) = fd (x(k),u(k) + Γ1(k)) + Γ2(k) (6.24)

where the two variables Γ1,Γ2 in the above equations model the uncertainties as:

Γ1(k) = v(k)

[
d1(k)
d2(k)

]
, Γ2(k) = Tsv(k)

 0
0

d2(k)

 (6.25)

where d1(k) ∼ N
(
0,Σ2

1

)
and d2(k) ∼ N

(
0,Σ2

2

)
. The sampling time is Ts= 0.2 s

and disturbance variances Σ1 and Σ2 are set as 0.2 and 0.4, respectively. We initial-
ize the adjustable process noise covariance matrix (3×3) as Λ = diag(Σ2

1,Σ
2
2,Σ

2
2).

The expected value of the process noise d̄ and the matrix M as an RL parameter in
the cost modification term φθ are initialized at zero. According to (6.8), the prob-
ability of the uncertainties in the ellipsoids can be obtained from the Gamma func-
tions. Since the simulated mobile robot has three states, there is a 3-dimensional
multinormal distribution n = 3. To ensure a large enough probability of the un-
certainty propagation in the ellipsoids (confidence regions), we set σk = 2.65.
Therefore, with pair n = 3, σk = 2.65 we will have the probability of the state
deviations to belong to the ellipsoids P[∆xk ∈ Rk] ≈ 93%.

The RMPC model will be based on the real system dynamics, assuming that we
know them perfectly. More specifically, the nominal model used in the RNMPC
scheme is based on the expected value of the exact distribution of the disturbances
d1, d2, and the structure according to which the disturbances enter the system is
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assumed known. We further observe that by assuming the disturbances are Gaus-
sian, we are considering an ideal setup for the approximate robust MPC to perform
well. Hence any gain of performance achieved by RL in this simulation setup is
done through handling the approximations introduced in the robust MPC scheme.
As it is proposed to adopt the RL approach in order to adjust the RNMPC para-
meters, we formulate a second-order LSTDQ scheme with a batch size equal to
100 data samples and let RL to update the parameters based on the collected data
in the batch. In this simulation, the number of transitions (iterations) is 8000 and
thus the number of RL steps is 80. The step size is set as α = 10−6. We adopt a
baseline stage cost used in the LSTDQ scheme as:

L(xk,uk) = l(xk,uk) +w⊤max(0,h(xk)) (6.26)

where l(xk,uk) can be expressed as a quadratic function of the state and action
deviations from their desired values. The second term in the above baseline is
considered to cope with the violations, where h ≥ 0 is pure inequality vector of
constraints induced by the obstacles. The penalty weights are w⊤ = [30, 30, 30].

The obstacles are represented as ellipsoids (see Fig. 6.2). The reference trajectory
shown in Fig. 6.2 is an eight-shaped path, which intersects the obstacles or comes
very close to them.

In Fig. 6.3, we compare the closed-loop performance of the nominal NMPC scheme
(6.2), the approximate robust NMPC without learning, and with learning. The
second-order LSTDQ-learning algorithm improves the performance of the robust
NMPC scheme in comparison with the classic NMPC and RNMPC without learn-
ing.

Since the approximate RNMPC scheme is built based on an exact knowledge of
the disturbance statistics and structure, and system model, the improvement of
performance observed in Fig. 6.3 results purely on improving the approximation
performed in the RNMPC scheme via modifying the robust NMPC parameters
θ =

{
M, d̄k,Λ, σk

}
. For majority of the ellipsoids, the dimension of the ellipsoid-

shaped confidence regions Rk is changed by RL to be modelled as larger than
the originally selected σk in order to reduce the risk of constraints violation, see
Fig. 6.6. For some situations that the risk of hitting is not high, this dimension is
decreasing using the RL. Indeed, there is a trade-off made by the RL between the
avoidance and tracking accuracy in this proposed RL-RNMPC. The adjustment of
the RNMPC can also contribute the mobile robot to avoid hitting the obstacles 1,2
due to possible drifting (as an uncertainty) in the road bend shown in Fig. 6.2. The
RL scheme additionally modifies the uncertainty model via d̄ and Λ, see Fig. 6.5,
in order to gain performance.
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NMPC

RNMPC

RL-RNMPC

Desired Path

1 2

3

Figure 6.2: A comparative study: Trajectory tracking and obstacle avoidance for a WMR
under uncertainties.
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NMPC

RNMPC

RL-RNMPC

Figure 6.3: Average Closed-Loop performance index for 25 elapsed trajectories (laps).
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Figure 6.4: Matrix M is adjusted as a RL parameter θ in the cost modification term
φθ (x̄k, ūk,Σk).
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Figure 6.5: Tuning the expected values of the process noises applied to the three states for
a prediction horizon N = 15. The RL then modifies the uncertainty model via d̄.

Figure 6.6: Tuning the ellipsoidal confidence region (adjustment of the radius σk). For
majority of the ellipsoids, the confidence regions (Rk in (6.6)) is changed by RL to be
modelled as larger than the originally selected σk in order to reduce the risk of constraints
violation. For some situations that the risk of hitting is not high, this dimension is decreas-
ing using the RL.
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6.5 Conclusion
In the context of the Robust Nonlinear Model Predictive Control (RNMPC), the
formal RNMPC techniques are difficult to implement on nonlinear systems, and
thus it is common to use approximate RNMPC methods instead. In this chapter we
proposed to describe the propagation of the uncertainties using the ellipsoidal tubes
in which the disturbances and state deviations are modeled as a Gaussian noise.
However, the approximated models and constraints used in this kind of RNMPC
can affect the closed-loop performance and thus we adopted an LSTDQ learning as
a fast RL algorithm to adjust some crucial parameters of the approximate RNMPC.
In this chapter, we used the proposed RNMPC as a value function approximator
for the LSTDQ algorithm. AS a future work, we will propose to embed a Linear
Quadratic Regulator (LQR) in the proposed RNMPC in order to deliver the first
guess of the control gain matrix for the adopted linear feedback over the state
deviation. Furthermore, we will investigate the proposed RL-RNMPC for a large-
scale application.
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Chapter 7

Conclusions, Limitations and
Future Possibilities

7.1 Conclusion
The combination of MPC and RL has shown promising results for a wide range of
applications such as autonomous ships, mobile robots, smart buildings, chemical
reactors, and smart grids. For Autonomous Surface Vessels (ASVs) and mobile
robots, the objective of the MPC-based RL is to find an optimal policy that min-
imizes the closed-loop performance of a mission such as collision-free path fol-
lowing, autonomous docking, and a skillful transition between them. To control
the indoor temperature of smart buildings, an accurate building model plays a cru-
cial role in the the model-based control approaches. However, it is very difficult
to provide such an accurate model required in, i.e., an MPC scheme since there
are some complex dynamics, uncertainties and external disturbances that may not
be captured. Hence, the MPC-based RL allows one to use a simplified model
while the degradation of control performance can be compensated by letting RL
adjust the entire MPC scheme. Given the difficulties posed by highly uncertain
user demand and stochastic local power consumption/production in smart grids,
the MPC-based RL method is adopted to seek an optimal smart-grid policy that
minimizes the long-term economic costs, including the spot-market cost and the
peak-power cost.

In practice, all the states of a dynamical system may not be measurable for the
applications above, and one needs to use an observer (estimator) to capture those
unmeasurable states. These problems then cannot be formulated as MDPs so that
the classic RL methods are no longer able to solve these problems. These prob-
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lems are then formulated as POMDPs, where a policy is constructed based on the
historic of the available measurements rather than on the full state of the system.
To provide a framework in the context of MPC-based RL to solve POMDPs, we
then use an MHE scheme combined with the MPC-based RL. The MHE scheme is
a well-known state estimator that optimizes a moving finite-horizon cost based on
a model of the real system in order to find the best estimations of the unmeasurable
states. Similar to the concept that RL can adjust the MPC parameters, RL methods
can also be used to adjust a parameterized MHE scheme to compensate for the
possible model mismatch.

In Part I of the thesis, we showed that a combined MHE/MPC-based RL can be
used to solve POMDPs even if the underlying models used in both the MHE and
MPC schemes cannot capture the real system perfectly. Moreover, we showed that
the proposed learning-based observer-controller framework is able to deal with the
reduced models, where the dimension of the state space model of the real system
does not match the real system (all the states of the real system are not available for
the MHE-MPC models). To deeply investigate the learning-based state estimation
problems, we studied the case that the MHE scheme cannot deliver the best state
estimation due to an imperfect model of the real system. We then presented the
novel idea of modifying the MHE cost function so that the estimation performance
is enhanced even if the MHE model is imperfect. We practically established that
the proposed modification of the MHE cost can be achieved using RL. Finally,
we used the proposed MHE/MPC-based RL algorithm for the systems formulated
in the LPV framework with inexact scheduling parameters (as exogenous signals
with unknown bounds). We first proposed to adopt an MHE scheme to simultan-
eously estimate the convex combination vector and unmeasured states based on
the observations and model matching error. To tackle the wrong Linear Time In-
variant (LTI) models (vertices) used in both the MPC and MHE schemes, we then
proposed a policy gradient method based on the MHE-MPC scheme in order to
learn both the estimator (MHE) and controller (MPC) schemes.

In Part II of the thesis, we proposed to combine an approximate robust NMPC with
RL to achieve the best closed-loop performance by adjusting the parameters used
in the robust MPC. More specifically, the proposed RNMPC is constructed based
on an approximate model of the propagation of perturbations in the state dynam-
ics. This approximate model describes ellipsoids of state uncertainty propagation,
which are constructed based on the linearization of the system dynamics and con-
straints on the nominal trajectories and using a Gaussian disturbance model. We
then proposed to adjust this scheme using the RL method in order to tailor this
inaccurate uncertainty model to the real system and achieve a better closed-loop
performance. We also proposed to use a second-order Least Square Temporal
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Difference Q-learning (LSTDQ) to achieve a faster convergence of the adjustable
parameters of RNMPC.

7.2 Limitations
In this section, we discuss the restrictions of the proposed learning-based con-
trol/estimation approaches and provide some potential solutions for addressing
them.

• In this thesis, we adopted the core idea of using MPC as function approxim-
ators to develop an MHE/MPC-based reinforcement learning method. The
central theorem in [36] showed that the MPC scheme can deliver the optimal
policy and value functions even if the underlying MPC model is inaccurate.
In this thesis, we also showed that a true state estimation can be obtained
by modifying the MHE state cost function using an imperfect MHE model.
However, these observations raise the natural question about the role of the
models used in both the MHE and MPC schemes if they do not need to be
accurate. Hence, this issue restricts the use of any model in the MHE-MPC
scheme so that one needs to take some requirements into consideration for
exploiting the simplified models. As discussed in [94], Assumption (13)
of Theorem 1, the most obvious insight lies in the finite value function for
all the model trajectories such that it resembles the stability of the model
under the optimal policy. Analogously, we made the mild Assumption (1)
in Chapter 4, in equation (4.10), to address the requirement above for the
modified MHE scheme with imperfect model. Furthermore, one can also
use the Robust MPC schemes to build safe policies in RL. However, more
work is required to investigate the concept of a robust estimation/control ap-
proach for the combined MHE-MPC scheme aiming at providing a safe RL
framework.

• In Chapter 3, we proposed an MHE/MPC-based RL method for POMDPs.
Although the results establish the efficacy of the proposed approach in im-
proving the closed-loop performance, it is not trivial to mathematically ex-
plain the role of the modified MHE scheme, where a full state-space model
is not used in the MHE and MPC schemes. However, in Chapter 4, we
showed that a true state estimation can be obtained by modifying the MHE
stage cost function, but more work is necessary to interpret a modification
of the MHE scheme for POMDPs. Furthermore, it should be investigated
how the estimation error due to reduced model can be quantified and incor-
porated into the proposed RL framework for POMDPs aiming at improving
both the state estimation and the closed-loop performance.
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• In this thesis, the proposed MHE/MPC-based RL methods cannot be used
for the large-scale networked and multi-agent system in a cooperative or dis-
tributed manner. More specifically, the proposed method should be extended
to Multi-Agent Reinforcement Learning (MARL) framework to deal with
multi-agent systems in particular for cooperative control systems with coup-
ling constraints. One potential solution is to develop a cooperative MARL
based on Distributed MPC (DMPC) scheme, which can be formulated in
both the Q-learning and Policy Gradient (PG) frameworks. More precisely,
the structure of the DMPC can be leveraged to introduce some local MPC-
based value function approximators required in a cooperative reinforcement
learning. In the context of PG, one can readily use the same structure to
capture the local optimal policies, which are delivered from the local MPC
schemes.

• The proposed MHE/MPC-based RL methods are gradient-based methods
that require frequent evaluations of computationally expensive MPC schemes.
Hence, these methods may struggle a bit in the real-time application, in par-
ticular for those cases with very short sampling times. More precisely, the
real-time computational burden comes mostly from solving the MPC (com-
puting the sensitivity is inexpensive). Nonetheless, the progress in the op-
timization algorithms and in the computational hardware makes the deploy-
ment of real-time MPC possible for most of the real applications. Moreover,
in the proposed algorithms, we verified the effectiveness of our proposed ap-
proach where a simplified model is used in both the MHE and MPC schemes
such that the corresponding optimization problems are no longer computa-
tionally expensive. In the context of learning from existing big data, it is a
challenging issue to use RL methods based on the MHE-MPC scheme. More
specifically, performing RL for MHE-MPC on big data can be impractical
due to amount of computational time required. This issue was partially ad-
dressed in [95], where the task of learning a high-performing MPC scheme
from data was reduced to a supervised learning problem and it is solved at
a low computational expense as compared with the existing MPC-based RL
methods. However, more work is required to fully address the computational
complexity of RL based on the combined MHE-MPC, in particular for those
cases that neural networks are incorporated into the MHE-MPC scheme.

7.3 Future Works
Some of the possible future research directions are provided below:

• MPC-based RL in the LPV Framework using Data-Driven Models:
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In this thesis, we used the MHE/MPC-based RL in the LPV framework for
a simple example, where an imperfect model of the real system was used in
both the MHE and MPC schemes. However, providing an even simplified
LPV-State Space (LPV-SS) model of the underlying system may be challen-
ging in particular for large-scale nonlinear systems affected by uncertainties
and external disturbances. Despite decades of research to acquire compre-
hensive knowledge of real-world systems, uncertainty remains and observed
phenomena still cannot be sufficiently described by knowledge-based mod-
els. To address this problems, the data-driven methods have been recently
used for the LPV-SS model identification. However, the distribution of the
data in the application environment can be different from the distribution
of the training data, and thus the accuracy of the model may decrease for
applications. Moreover, the data may not represent the behaviors of the sys-
tem due to the limitation of data collection, which results in the model un-
certainty. To tackle the closed-loop performance degradation due the model
mismatch (the mismatch between a data-driven model of a system and its ac-
tual dynamics), one can then use the MPC-based RL in order to efficiently
tune the parameters of observer/controllers.

• MPC-based RL in the LPV Framework using Tube-based MPC:

In the LPV framework, the current scheduling parameters ρk can be meas-
ured for all times k while the future behavior of ρ is basically not known
exactly at time k. Solving a predictive control problem under uncertainty
then requires the on-line optimization over feedback policies, leading to a
so-called min–max feedback control problem. Another different paradigm
devised to reduce complexity with respect to the min–max solution, is tube-
based MPC. This robust MPC scheme has been recently used in the LPV
framework. However, to be able to construct tube-based controllers for LPV
systems that can achieve better complexity/performance trade-offs, new ap-
proaches for designing parameterized tube can be adopted. Then, one can
investigate the use of the MPC-based RL for adjusting this parameterized
tube.

• Data-Driven Ellipsoidal MPC Combined with RL:

In the context of ellipsoidal MPC as an approximate robust MPC, a mean-
ingful extension could be to complement RL with some more classic identi-
fication methods, i.e. use the data to refine the ellipsoidal model and account
for the fact that the construction is based on a linearization of the trajectories.

• Safety-Critical Stochastic MPC-bsed RL using Control Barrier Func-
tion:
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As another extension for the ellipsoidal robust MPC, one can use this scheme
in a stochastic setting combined with a stochastic Control Barrier Func-
tion (CBF) introduced as a chance-constraint in the MPC scheme. Then
this stochastic CBF can be approximated by a deterministic ellipsoidal con-
straint so that we can cope with the problems induced by the uncertain-
ties in both the MPC and CBF models. However, the proposed stochastic
framework is constructed based on the approximate model of the uncertainty
propagation via a deterministic model of the stochastic chance-constraint
CBF. Moreover, one can assume that the CBF model used in the MPC
scheme cannot capture the true CBF in the real environment. To tackle these
problems, a parameterized version of the stochastic CBF and MPC scheme
is then introduced, where the corresponding parameters are adjusted by RL
to improve the closed-loop performance in the presence of model uncertain-
ties and unknown CBFs.
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