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Abstract

In this paper, we propose a new on-device class-aware pruning method for edge systems, namely
OCAP. The motivation behind is that Deep Neural Network (DNN) models are usually trained
with a large dataset so that they can learn more diverse features and be generalized to accurately
predict numerous classes. Some works reveal that some features (channels) are only related to some
classes. And edge systems are usually implemented in a specific environment, where classes the
system detects are limited. As a result, implementing a general-trained model for a specific edge
environment leads to unnecessary redundancy. Meanwhile, transferring some data and models to the
cloud for personalization will cause privacy issues. Thus, we may have an on-device class-aware
pruning method to remove the channels which are irrelevant for the classes the edge system observes
mostly, thereby reducing the model’s Floating Point Operations (FLOPs), memory footprint, latency,
improving energy efficiency and keeping a relatively high accuracy for the observed classes while
protecting the in-situ data privacy. OCAP proposes a novel class-aware pruning method based on
the intermediate activation of input images to identify the class-irrelevant channels. Moreover, we
propose a method based on KL-divergence to select diverse and representative data for effectively
fine-tuning the pruned model. The experimental results show the effectiveness and efficiency of
OCAP. In comparison with state-of-the-art class-aware pruning methods, OCAP has better accuracy
and higher compression ratio. Additionally, we evaluate OCAP on Nvidia Jetson Nano, Nvidia
Jetson TX2 and Nvidia Jetson AGX Xavier in terms of efficiency, where the experimental results
demonstrate the applicability of OCAP on edge systems. The code is available at https://
github.com/mzd2222/OCAP.

1. Introduction
Deep Neural Networks (DNNs) have achieved great

success in computer vision, such as target detection [40,
36, 39], image classification [11, 34, 17], and image seg-
mentation [35, 27]. Recently DNNs have been increasingly
implemented on resource-constraint devices, like embedded
systems and edge systems, to process data locally and
reduce communication overhead [19, 25], thereby paving
the way of ubiquitous Artificial Intelligence (AI). However,
DNNs are computation-intensive and memory-hungry, and
are becoming more deeper and wider. As a consequence,
adopting DNN models on edge systems encounters two
issues, poor performance and high power consumption,
which undermine the applicability of edge AI systems.

To reduce the complexity of DNN models and improve
the performance of DNN models on edge systems, some
novel and efficient DNN architectures are proposed, like
MobileNet [34], ShuffleNet [29] and GhostNet [8], while
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others strive to compress complex models [10, 26, 28, 24,
16]. Among several model compression techniques, model
pruning is a promising and widely-used technique to reduce
the complexity of DNN models. Since the seminar work of
model pruning, Deep Compression [10], was proposed, a
huge amount of efforts were made towards more effective
and efficient pruning methods [24, 20, 1]. However, the
majority of pruning works tend to reduce the redundancy
of the complex and over-parameterized DNN models for all
classes [26], but ignore that there is class redundancy when
implementing the model upon a specific environment, i.e.,
the number of classes the model is able to predict is more
than it needs in its adoption context.

Class redundancy is due to that when training the over-
parameterized DNN models for better accuracy, we usually
use a huge amount of data with numerous classes to learn
various diverse features. For example, the widely-known
ImageNet ILSVRC2012 [3] has 1.2M training images of
1k classes and Google’s private dataset JFT has 303M
images of 18k classes [14]. And vendors usually train a
large and general model that can recognize many classes
to meet the diverse needs of different users. Nevertheless,
when adopting DNNs in some specific contexts, the system
only needs to recognize a limited number of classes. For
instance, an intelligent camera implemented in a wild park is
expected to monitor wild animals, but rarely detects classes
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such as cars, football helmet2. Previous works [33, 13] have
found that some features of DNN models are only related
to certain classes, and removing these redundant classes
and the features pertaining to these classes do not affect
the accuracy of other classes. From our experiments on
Section 4, removing irrelevant features can even improve
the accuracy. Therefore, removing redundant classes and
the classes-related features enable us to further reduce the
complexity of models and improve the efficiency of DNN
models on edge systems .

Some works consider the class-aware pruning [33, 13].
These methods feature a design-time method, i.e., the pre-
dicted classes are known in prior, and then the model is tai-
lored for users at design time on a powerful server. However,
the design-time methods suffer from two problems. First,
as data privacy has gradually grown to a major concern for
the digital world, data privacy is an issue of the design-
time methods where models or sensitive data are prone to
be hacked or leaked during the transmission. Second, there
are some classes which can not be determined in advance
until the system operation. Therefore, on-device machine
learning which can protect local data and provide a flexible
way to update models has become an emerging trend [42, 5].
Considering the limits of design-time methods and merits
of on-device machine learning, it would be beneficial to
have an on-device method for the class-aware pruning, so
that the user can personalize the model in-situ to reduce
the inference and memory overhead while protecting private
data. It also can be used as the complement for other design-
time pruning methods to optimize the model according to
the run-time track.

A few methods implement run-time pruning. Lin et al.
[23] proposed a run-time pruning method, but this approach
prunes models for all classes instead of using class-aware
pruning. Moreover, it is based on complex reinforcement
learning which is inapplicable to resource-limited edge
systems. A complex pruning method drains battery quickly
and thus shortens the operational time. To this end, we,
in this paper, propose an On-device Class-Aware Pruning
(OCAP) method for DNN models on edge systems. Dif-
ferent from the prior class-aware pruning methods [33, 13]
which feature an offline method and rely on a complex
pre-processing procedure, OCAP exploits the intermediate
activation of inference data to effectively and efficiently
prune the model on the device at run-time. Our detailed
contributions are as follows:

• We propose OCAP, an on-device class-aware pruning
method, which prunes the DNN model according to
the objects the model observes at run-time. The novel
class-aware pruning method directly uses the interme-
diate activation of the input images observed at run-
time to prune the model in a class-aware fashion;

• The pruned models need a fine-tuning method to re-
tain the accuracy, which usually needs a huge amount
of data. However, edge devices are subject to limited

2The 560th class in ImageNet is football helmet

memory and computing resources, so we cannot store
a lot of data. Thus, we propose a novel and data-
efficient method based on KL-divergence to select
diverse and representative data from the input data
for effectively and efficiently fine-tuning the pruned
model to retain the accuracy;

• We extensively evaluate the proposed method in terms
of accuracy, compression ratio, and latency using
different DNN models with different datasets. OCAP
can increase the model accuracy by up to 20% when
only a few classes are remained and it also can reduce
the inference latency by more than 50%. Then we
evaluate the online pruning overhead of OCAP on
several edge systems to demonstrate its applicability
for resource limited systems. In addition, we conduct
a detailed ablation study for OCAP.

We have open-sourced the code at https://github.
com/mzd2222/OCAP. The reminder of this paper is
organized as follows: Section 2 discusses some related
work. Section 3 presents the details of OCAP. Section 4
shows the experimental results and Section 5 conducts the
ablation study of OCAP. Section 6 concludes this paper.

2. Related Work
Model pruning has been widely studied in recent years.

Han et al. [10] proposed Deep Compression, the seminal
work of DNN pruning, to remove the irrelevant weights and
quantize weights to significantly reduce the model size with
negligible accuracy loss. However, Deep Compression is
an unstructured pruning method, i.e., such pruning method
generates sparse and irregular patterns within the pruned
model. As a consequence, the pruned model cannot be
boosted without specialized hardware and software supports
[9].

Now, the majority of pruning methods exploit struc-
tured pruning, i.e., instead of removing individual weights
within the kernels of a model, structured pruning removes
irrelevant or redundant channels/filters of each layer [22].
Structured pruning reserves the regular pattern of DNN
models, so its pruning result can directly translate to the
speed-up of the compressed model on off-the-shelf devices.
In the past years, structured pruning receives more attention,
such as [22, 26, 2, 21, 6]. [22] introduces a criterion based
on the weights of convolution kernels. It uses the 𝓁2-norm
of each channel’s weights as the importance of the channel
for structured pruning within a layer. While [26] uses the 𝛾
of each BN-layer (the scaling parameter of each layer) as
the criterion to guide its structured pruning. Based on the
criterion of [22], [2] proposes a global criterion which adds
a learnable parameter to the importance of each layer and
sorts channels globally to prune. However, these pruning
methods target to identify and eliminate the redundant
channels for all classes and are inapplicable for class-
aware pruning. On the other hand, OCAP is a class-aware
pruning method which is based on the empirical observation
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Figure 1: The overview of OCAP. A pet detection camera
at home is considered in the figure. In this scenario, only
cats and dogs need to be detected. Therefore, after class-
aware, OCAP prunes the irrelevant channels (pink and gray
channels in the figure) to cats and dogs, then uses the
selected data to fine-tune the model after pruning.

of redundancy classes. Additionally, our experiments have
shown that class-aware pruning can significantly improve
accuracy while reducing model size, particularly in scenar-
ios with a small number of classes. To know more about the
normal model pruning, we refer interested readers to some
survey papers [25, 4].

As indicated in [33], most of DNN applications on
mobile devices only detect a limited number of classes
during its operation, in some cases only a couple of classes.
Thus, channels which are irrelevant to the classes of interest
can be removed to further reduce the model complexity,
thereby improving latency and energy efficiency. [33] and
[13] are the two works close to OCAP. [33] exploits grid
search and k-means to group the filters relevant to each
classes, and then selects the filters according to the classes
of interest. Similarly, [13] calculates a firing rate for each
filter when inferring different classes, and then prunes the
network according to the classes of interest and a predefined
threshold. OCAP differs from them in two ways: 1) both
are offline methods with the classes of interest known in
prior, whereas OCAP considers a practical situation where
the classes of interest are only known until its execution
and the users may not or cannot share their interests with
the server due to privacy concerns. Moreover, our method
can be considered and used as a complement for the design-
time method; 2) both approaches have a complicated pre-
processing that cannot be deployed on resource-limited
edge systems to conduct class-aware pruning at run-time. In
addition, they only evaluate their approaches on some old
models, AlexNet ([33]) and VGG ([33, 13]), which cannot
represent the state-of-the-art DNN models, like ResNet [11]
and MobileNet [34].

3. OCAP
In this section, we present the details of OCAP. Fig.

1 shows the overview of OCAP. The whole procedure is
completed on the device upon which the DNN model is
implemented. When the edge DNN system starts to operate

in its context and observes some target images, it generates
the predicted results. At the same time, the model is pruned
according to the observed images. Meanwhile, the observed
images form a diverse dataset for fine-tuning. More details
will be discussed below.

OCAP conducts an on-device pruning and targets the
resource-limited edge systems. Edge systems usually have
limited processing units and memory is shared among CPU,
GPU and accelerators. Hence, OCAP should have low
overhead and does not consume a lot of memory. As we have
discussed in Section 2, although the unstructured pruning
can greatly compress the model, the pruned model cannot
reduce its latency due to the irregular pattern [10]. There-
fore, in OCAP, we deploy the structured pruning (pruning
channels) that can boost the execution of the compressed
model on off-the-shelf platforms. OCAP consists of two
steps:

1) class-aware pruning: it selects the irrelevant chan-
nels and prunes the model according to the images obtained
by the system during its operation;

2) fine-tuning procedure: it fine-tunes the pruned
model from class-aware pruning with the selected images
to retain the accuracy after the pruning.

We proceed to the details of these two parts below.

3.1. Class-Aware Pruning
To have an effective and efficient pruning, we need to

first determine how to select the pruned channels. In OCAP,
our goal is to reserve the channels which are relevant for the
classes the model mostly detects or observes and to prune
those which are irrelevant to the classes of interest. And
then, the model can be compressed and the latency, FLOPs,
memory footprint, and energy consumption of the system
can be improved over its execution. For edge systems, such
reduction may have a significantly accumulative benefit
over long operation time.

A successful channel pruning relies on a good criterion
and pruning algorithm to select and prune the redundant
channels. The existing pruning works usually use the re-
construction error [28] or gradient-based methods [30] to
identify which channels can be removed without affecting
the accuracy. However, since they need to evaluate the
effect of removing each channel, these approaches suffer
from high computational overhead and are not suitable for
on-device operation, especially on resource-limited edge
systems. Therefore, we need to design a simple yet effective
method for our on-device pruning.

3.1.1. Class Relevance Masks
OCAP is based on the fact that different classes activate

different channels within a model to make the accurate
prediction [41]. Thus, some works like [41] exploit this
observation and attention mechanism [38] to magnify the
large (important) activation and suppress the small (unim-
portant) activation to further improve the model accuracy.
We are inspired by this and propose our class-aware pruning
method that uses the inputs the model observes at run-time
to efficiently determine the pruned channels.
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Many pruning methods use different and specific criteria
for determining channel importance [22, 24, 12, 2], and
use a binary mask to mark whether a channel should be
pruned. Since we consider a class-aware pruning, we define
the importance of each channel from the lens of predicted
classes and propose Class Relevance Value (𝐶𝑅𝑉 ), as
shown in Eq. (1), to compute the class relevance masks.

𝐶𝑅𝑉𝑖,𝑗 = ||𝐿𝑒𝑎𝑐𝑘𝑦𝑅𝐸𝐿𝑈 (𝒙𝑖,𝑗)||2 (1)

𝐿𝑒𝑎𝑘𝑦𝑅𝐸𝐿𝑈 (𝑥) =

{

𝑥 𝑥 ≥ 0
−𝑝𝑥 𝑥 < 0

(2)

where 𝐶𝑅𝑉𝑖,𝑗 is the CRV of the 𝑖th channel of the 𝑗th layer.
𝒙𝑖,𝑗 ∈ ℝ𝐻𝑗×𝑊𝑗 represents the activation values of the 𝑖th

channel of the 𝑗th layer, and || ⋅ ||2 indicates all values in the
matrix are squared and then summed up, i.e., the 𝓁2-norm,
and 𝐿𝑒𝑎𝑘𝑦𝑅𝐸𝐿𝑈 is a pre-processing function to process
the activation values, as shown in Eq. (2).

We design the CRV based on the following observations.
Most of the modern DNN models stack several layers to
form a block, including convolutional layer, batch normal-
ization (BN) layer [18], activation layer, and pooling layer.
While the convolutional (conv) layer extracts features from
its input and the activation layer (e.g., 𝑅𝑒𝐿𝑈 ) filters the
output from the conv layer, BN layer normalizes inputs for
fast and stable training performance and the pooling layer
downsamples inputs to reduce computation. As [15] points
out that low activation value may imply the less importance
of that channel, we exploit this feature to identify the
class-irrelevant features. We compute the 𝓁2-norm of BN
outputs to evaluate the importance of a channel. Before
computing the 𝓁2-norm of the BN layer, a pre-processing
function, 𝐿𝑒𝑎𝑘𝑦𝑅𝐸𝐿𝑈 , is applied to the BN output so
that it can avoid that 𝓁2-norm makes the negative value as
important as the positive value but still can reserve some
information from the negative value. The negative slope 𝑝
in Eq. (2) adjusts the importance of the negative value. And
the ablation study of 𝐿𝑒𝑎𝑘𝑦𝑅𝐸𝐿𝑈 and parameter 𝑝 is given
in Section 5.2.

Channel pruning are usually divided into global pruning
[2] and layer-based pruning [22, 26]. OCAP adopts a layer-
based pruning method. This is because class-aware pruning
usually prunes a lot of channels, especially if there are only
few classes reserved, and the use of global pruning for
OCAP will cause layer collapse phenomenon (pruning a
whole layer) [37], resulting in a sharp decrease of the final
accuracy. In addition, global pruning usually requires the
introduction of additional parameters and is more complex
than the layer-based pruning. Therefore, global pruning is
not suitable for an on-device pruning method.

Since we use a layer-based pruning method, after calcu-
lating the 𝐶𝑅𝑉 𝑠 of channels, OCAP sorts the 𝐶𝑅𝑉 𝑠 within
layers, and get threshold 𝑇𝑗 for each layer according to a
pruning ratio. Then the pruning is conducted by a binary

channel mask 𝑀𝑖,𝑗 :

𝑀𝑖,𝑗 =

{

1 𝐶𝑅𝑉𝑖,𝑗 ≥ 𝑇𝑗
0 𝐶𝑅𝑉𝑖,𝑗 < 𝑇𝑗

(3)

where 𝑀𝑖,𝑗 denotes the mask of the 𝑖th channel at the 𝑗th

layer, and 𝑀𝑖,𝑗 = 1 means the channel will be reserved and
𝑀𝑖,𝑗 = 0 indicates to remove the channel.  denotes the
mask set of all channels in a DNN model, but excluding
some earlier layers. As shown in literature [41], the earlier
layers are to extract the general features of inputs and
pruning these layers may significantly degrade the accuracy,
so we do not prune the earlier layers. Moreover, threshold 𝑇𝑗
in OCAP is not a fixed value and it depends on the reserved
number of classes and the target pruning ratio, and we will
introduce 𝑇𝑗 in detail later.

In addition, we need to decide how many images to be
reserved for each class to calculate 𝐶𝑅𝑉 𝑠. To determine the
number of images or design a good method to do so, we first
empirically evaluate the impact of the number of images
on 𝐶𝑅𝑉 𝑠, where we use different number of images with
the same reserved classes to calculate the masks of each
channel, as shown in Fig. 2. For each subfigure named x-
y_z (e.g. ResNet-101_6), x-y denotes the model name and
depth of the target model, and z denotes the layer index
of the model. For different layers of different models, we
have found that the masks generated for a single layer is
always the same or just changed slightly, regardless of how
much data the model has used. It suggests that the masks
of DNNs can be accurately estimated using only a small
portion of the input images, thus, we can use a small number
of images to calculate the masks to raise efficiency for our
on-device method. Our experiments in Fig. 3 show that
using an extremely small number of images to calculate
the mask (e.g. one) leads to a slight decrease in accuracy,
around 1%. On the other hand, increasing the number of
images beyond a certain threshold, 20 (for ResNet and
VGG) or 30 (for MobileNetV2), has no effect on the final
accuracy. Therefore, to strike a balance between accuracy
and efficiency in OCAP, we set the number of images used
to compute the mask to 20 (for ResNet and VGG) and 30
(for MobileNetV2) for each class.

3.1.2. Pruning Strategies
With the method to determine the irrelevant channels,

in this section, we present two proposed pruning strategies
which can be used when having different goals.

Fixed Ratio Pruning Strategy: For resource-limited
devices, we may have a target compression ratio to control
the resource utilization. Therefore, it is necessary for the
pruning algorithm to accurately reach the target compres-
sion ratio. To this case, we present a Fixed Ratio Pruning
Strategy called OCAP-FR, as shown in Algorithm 1. The
core of this algorithm is to precisely adjust the pruning ratio
of each layer to the target compression ratio 𝑃 , so that the
entire model can accurately reach the target compression
ratio. For each image, we first use the pruning ratio 𝑃 to
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Figure 2: The layer masks from different convolutional layers and architectures on CIFAR-10 with saving the first 5 classes.
For each subfigure, the x-axis represents the index of channels in the current layer, and the y-axis represents the number of
images for each reserved class to calculate the masks. The different colors denote different masks (True or False). As shown
in each subfigure, the mask of each channel is almost the same (the same color) or just changed slightly, regardless the
images numbers. Thus, using small number of images can calculate the masks effectively and efficiently. This also justifies
the applicability of 𝐶𝑅𝑉 .
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Figure 3: The relationship between the accuracy and the number of images for each reserved class to calculate the masks.
The experiment is conducted on CIFAR10 with 5 classes remained.

calculate the activation state (i.e., True or False) of each
channel (line 6-8), where 𝐶𝑇1 first sorts 𝐶𝑅𝑉 𝑠 within
layers, then uses 𝑃 to obtain the threshold of 𝐶𝑅𝑉 𝑠 of
each layer, and 𝐶𝑀1 uses threshold 𝑇1 and 𝐶𝑅𝑉 𝑠 to obtain
the mask of current image. After calculating masks for all
images (line 4-10), we merge the masks layer-by-layer (line
11-16). For each layer, the number of images that activates
the channel within the layer is used as the score (𝑁𝑇 ) for the
channel (line 12). Then we use 𝑃 to compute the threshold
𝑇2 for the current layer according to the sorted 𝑁𝑇 (line 13).
Using 𝑃 again within each layer can precisely control the

compression ratio of each layer, so that the pruned model
can reach the target compression ratio. Afterwards, 𝐶𝑀2
uses threshold 𝑇2 and 𝑁𝑇 to obtain the mask of the current
layer (line 14). After calculating the mask of each layer, the
calculated masks are used for pruning.

As OCAP-FR uses the fixed ratio, the actual pruning
rate is the same for each layer, but this is not optimal in
terms of accuracy. We conduct some experiments to reveal
the impact of the fixed ratio, as shown in Fig. 4. We use
Layer-x-y to represent the x layer with the number of y
channels. In this experiment, we input 256 images into the
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Algorithm 1: OCAP-FR
Input: Original model  , input data , remained classes

𝐶 , the number of layers , the pruning ratio
function 𝑃 from Eq. (4)

Output: The pruned model ̂
1 Initialize 𝐶𝑅𝑉 with 𝟎 /* CRV vector includes

the CRV value of each channel in
each layer */

2 Initialize 𝑀𝑎 with [] /* It includes the mask
of each image. */

3 Initialize ̂ with [] /* It includes the mask
of each layer. */

4 for 𝐷 ∈  do
/* each image 𝐷. */

5 𝑶 ←  (𝐷)
6 Compute 𝐶𝑅𝑉 for current image 𝐷 using Eq. (1)
7 𝑇1 ← 𝐶𝑇 1(𝐶𝑅𝑉 , 𝑃 (𝐶)) /* Compute the

threshold vector for each layer

*/
8 1 ← 𝐶𝑀1(𝐶𝑅𝑉 , 𝑇1) /* Obtain the mask

for current image */
9 Add 1 to 𝑀𝑎

10 end
11 for 𝑙 ∶= 1 to  do
12 Count the number of 𝑇 𝑟𝑢𝑒 (𝑁𝑇 ) for every channel in

current layer 𝑙 using 𝑀𝑎
13 𝑇2 ← 𝐶𝑇 2(𝑁𝑇 , 𝑃 (𝐶)) /* Compute the

threshold vector for current
layer 𝑙 according to the sort of
𝑁𝑇 */

14 2 ← 𝐶𝑀2(𝑁𝑇 , 𝑇2) /* Obtain the mask
for current layer 𝑙 */

15 Add 2 to ̂
16 end
17 return ̂ ← prune( ,̂)

model and count the activation times for each channel layer
by layer. For instance, if a channel is activated by 20 out of
256 images (i.e., 𝑀𝑖,𝑗 = 1 ), its activation count is set to 20.
After counting the activation times for each channel, we plot
the channel activation times for each layer, as shown in Fig.
4, where the x-axis represents the channel activation count,
and the y-axis represents the frequency (i.e., the number
of channels with this activation count), e.g., Layer-1-16 in
Fig. 4 (b), indicates that the first layer of ResNet-56 has 16
channels, of which there are 7 channels with activation times
of 0, and 9 channels with activation times of 256. Based on
the experiment results, we further classify the layers into
two types:

1) bottleneck layers [31]: All channels within these
layers are used, i.e., activated (𝑀𝑖,𝑗 = 1) by images at
least once. We highlight bottleneck layers using red
color in Fig. 4, such as Layer-21 of MobileNetV2,
Layer-27 of ResNet-56 and Layer-5 of VGG-16. All
the channels in these layers contain important infor-
mation and cannot be pruned.

2) non-bottleneck layers: Some channels in these lay-
ers are not used at all, i.e., no image activates (𝑀𝑖,𝑗 =
0) these channels, such as Layer-10 of MobileNetV2,
Layer-16 of ResNet-56 and Layer-12 of VGG-16 in
Fig. 4. It is not difficult to envision that the zero-
activated channels in these layers can be pruned.

We empirically find that for all three models, there are
some bottleneck layers and non-bottleneck layers. If we use
the fixed ratio for all layers, some important channels in
bottleneck layers will be pruned, resulting in a decrease
in pruned model accuracy. Moreover, for different non-
bottleneck layers, the number of zero-activated channels
that can be pruned are different as well.

Accuracy Best Pruning Strategy: Based on our previ-
ous observations, to set different pruning ratio for different
layers, we propose a novel class-aware pruning strategy
for better accuracy, called Accuracy Best Pruning Strategy
(OCAP-AB), which can automatically adjust the pruning
ratio and decide whether to prune the current layer and
how many channels should be pruned. The pseudo code
of OCAP-AB is given in Algorithm 2. We first calculate
the mask for an image using 𝑃 like OCAP-FR (line 5-
7), then merge the current mask  to the final mask ̂
channel-by-channel by using 𝑜𝑟 (

⋁

) operator (line 8). It
means that for each channel in the final mask, if there
is one image that activates the channel, this channel will
be activated (reserved) in the final mask. Different from
OCAP-FR, it is not easy to control the compression ratio of
the model pruned by Algorithm 2 to accurately reach at the
target compression ratio, because the masks of all channels
are merged by the

⋁

operator. Experiments in Section 5.1
show that OCAP-AB outperforms OCAP-FR in terms of
accuracy, but has higher pruning overhead.

Algorithm 2: OCAP-AB
Input: Original model  , input data , remained classes

𝐶 , the pruning ratio function 𝑃 from Eq. (4)
Output: The pruned model ̂

1 Initialize 𝐶𝑅𝑉 with 𝟎 /* CRV vector includes
the CRV value of each channel in
each layer */

2 Initialize ̂
3 for 𝐷 ∈  do

/* each image 𝐷. */
4 𝑶 ←  (𝐷)
5 Compute 𝐶𝑅𝑉 for current image 𝐷 using Eq. (1)
6 𝑇 ← 𝐶𝑇 (𝐶𝑅𝑉 , 𝑃 (𝐶)) /* Compute the

threshold vector for each layer

*/
7  ← 𝐶𝑀(𝐶𝑅𝑉 , 𝑇 ) /* Obtain the mask

for current image */

8 ̂ ← ̂
⋁

 /* Using 𝑜𝑟 (
⋁

) to merge
masks from different images */

9 end
10 return ̂ ← prune( ,̂)
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Figure 4: The activation times distribution diagram of layers of different models. The experiment is conducted on CIFAR-10
with 5 classes remained. For each subfigure, the x-axis represents the number of times that the channel is activated, and the
y-axis represents the number of channels corresponding to activation times.

3.1.3. Adaptive Pruning Ratio
In OCAP, we use a layer-based pruning, i.e., the chan-

nels within each layer are sorted in terms of 𝐶𝑅𝑉 𝑠 and
are pruned according to a given pruning ratio. Different
from other pruning methods which only have one fixed

pruning ratio, our pruning ratio is dependent on the number
of classes remained. It is not difficult to envision the more
classes the model remains, the more channels it should keep.
In OCAP, we deploy a simple linear function to formulate
the relationship between the number of remained classes 𝐶
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Model
(Original accuracy) 𝛼 𝛽

Accuracy of different number of
reserved classes

20% 50% 80%
VGG-16 (94%) -0.25 0.90 99.2% 95.7% 93.7%

ResNet-56 (94%) -0.51 0.85 98.0% 95.4% 93.9%
MobileNetV2 (88%) -0.75 0.78 95.5% 83.6% 80.9%

Table 1
The experimentally obtained values of 𝛼 and 𝛽, and their corresponding accuracy on CIFAR10.

and the pruning ratio 𝑃 , as shown in Eq. (4).

𝑃 = 𝛼𝐶 + 𝛽 (4)

where 𝛼 and 𝛽 are two constants that are related to the model
and its training dataset and can be determined at design-
time. Fig. 5 shows the estimated lines for three models
VGG, ResNet and MobileNetV2 with CIFAR10. Table 1
presents the 𝛼 and 𝛽 values obtained through multiple
experiments, along with their corresponding accuracy of
CIFAR10. VGG is known to be a redundant model, so
we can prune more channels. Whereas MobileNetV2 is a
compact model, so the pruning ratio is smaller than others.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Percentage of Reserved Classes

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pr
un

in
g 

Ra
tio

VGG
ResNet
MobileNetV2

0.88 0.85
0.78

0.70 0.68

0.80
0.75

0.60

0.45
0.40

0.70
0.62

0.40

0.17
0.10

Figure 5: The relationship between the number of remained
classes and pruning ratio for three models.

3.1.4. Pruning Procedure
Class-aware pruning is conducted as follows: we store

the inputs and the feature maps before the fully connected
layer obtained at run-time to form the fine-tuning dataset
later. If a pruning signal is triggered, we calculate the prun-
ing masks according to the stored inputs and the pruning
ratio obtained from Eq. (4). Then we prune the model
according to the pruning masks and the prune ratio. Various
ways can trigger the pruning procedure, such as the model
has accumulated a sufficient number of inputs, the system
has operated for a certain time, etc. Note that besides
convolutional layers, we also can prune the classifier (fully
connected layers) to further reduce the model complexity.

3.2. Fine-Tuning Procedure
After the pruning, OCAP only reserves the channels

which are relevant for the remained classes. However, the

pruning changes the structure and weights of the original
DNN model, so the pruned model needs to be fine-tuned
to retain its accuracy. If only a couple of classes are
remained, the fine-tuning procedure can be skipped. When
more classes are remained, the fine-tuning procedure is a
necessary step to retain the accuracy.

Since OCAP is expected to execute on edge devices,
the fine-tuning of OCAP should be simple and uses as few
data as possible. All existing pruning methods need a fine-
tuning process, where the pruned model is retrained with
all training data [10, 28]. Nevertheless, the whole training
data is too large to store for resource-limited systems. For
example, ImageNet [3] has 1.2M images of 1000 classes,
needs more than 100GB space to store all training data, and
a class contains 1300 images, needs about 150MB space
to store. In our setting, we do not know in prior which
classes are preferred or will be remained. Then, preserving
all training data is not practical and results in high memory
overhead. Thus, in OCAP, we strive to use the images
the systems obtain at run-time to form a small fine-tuning
dataset3. The advantage of this method is that we do not
have to keep all training data on device, but only need to
reserve the data the model infers. Hence, it can significantly
reduce the memory occupation.

Fine-tuning data selection plays a pivotal role in retain-
ing the competitive accuracy of the pruned model. Here, we
need to answer two questions: 1) what kinds of inputs should
we save for each class? and 2) how many inputs should we
reserve for each class?

3.2.1. Data Selection
When adding data for the fine-tuning procedure, we

need to select diverse data for each class. This is because
our pruning masks are determined by the inputs’ activation.
If the most of data is similar, e.g., the same color, the same
angle, etc, the model may be unable to predict the same
class with different characteristics. In OCAP, we employ
KL-divergence to facilitate the selection of diverse data. KL-
divergence measures the similarity of two statistic distribu-
tions. Some works exploit KL-divergence to measure the
similarity between images and use this feature for image
retrieval [7].

3Here, we have to consider that users may join to provide a correct
label for the new input or we only use the prediction images with high
prediction confidence.
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As shown in Algorithm 3, we design our data selection
mechanism as follows: Each class has one memory of size
𝑁 . The images are directly added to the class memory if
the class memory is not full. For each image, we use the
histogram of features to compute a KL-divergence score
𝐾𝑐 shown in Eq. (5). This KL-divergence score can be
deemed as the similarity measurement between the input
image and the existing images for this class. The larger the
KL-divergence score is, the more different the input image
is from the existing images.

𝐾𝑐 =

⎧

⎪

⎨

⎪

⎩

1
𝑁𝑐

∑𝑁𝑐
𝑘=0𝐾𝐿(𝑃 ||𝑄𝑘) if 𝑁𝑐 <

𝑁
𝑑

𝑑
𝑁
∑

𝑁
𝑑
𝑘=0𝐾𝐿(𝑃 ||𝑄𝑘) if 𝑁𝑐 ≥

𝑁
𝑑

(5)

𝐾𝐿(𝑃 ||𝑄) =
∑

𝑃 (𝒇𝒔) log
𝑃 (𝒇𝒔)
𝑄(𝒇𝒆)

(6)

where 𝒇𝒔 represents the feature of the current image 𝑥𝑠,
and 𝒇𝒆 represents the feature of a randomly selected image
𝑥𝑒 from the class memory. 𝑃 and 𝑄 represent the his-
togram distribution of 𝒇𝒔 and 𝒇𝒆 respectively. 𝑁𝑐 denotes
the number of images in the class memory. To reduce
the computation overhead, we do not compute the KL-
divergence of the input image with all existing images.
Instead, we consider two cases: 1) if 𝑁𝑐 <

𝑁
𝑑 , we compute

the KL-divergence of the input with all existing images;
2) if 𝑁𝑐 ≥ 𝑁

𝑑 , we randomly select 𝑁
𝑑 images from the

class memory to compute the KL-divergence score. Then,
if the class memory is full and a new image for this class is
coming, we compute the KL-divergence score and remove
the image with the lowest KL-divergence score to have a
diverse dataset. Note that 𝑑 (𝑑 ≥ 1) represents a divided
parameter for efficient computing and is changeable. If
the underlying hardware is more capable and has a large
memory, we can increase 𝑁

𝑑 to have more data to calculate
𝐾𝑐 more accurately. And confidence threshold 𝑇 is used
to select images with higher confidence, indicating that the
model is confident in correctly classifying these images. In
OCAP, we set 𝑇 = 0.9.

Additionally, to further enhance the efficiency of the
data selection, we use a parameter called 𝑁𝑅, i.e. the max
replacements number to constrain the image replacement
times for every remained class. For class 𝑖, after the class
memory for 𝑖 is full, we increment 𝑛𝑖 by 1 for every image
exchange. If 𝑛𝑖 is equal to 𝑁𝑅, we stop to select data for
class 𝑖. After 𝑛 of every class reaches to the threshold value
𝑁𝑅, the data selection process is done.

3.2.2. The Number of Images
The class memory size 𝑁 is another important factor

for the fine-tuning procedure. It is not difficult to envision
that the larger memory size may allow us to store more
data, thereby improving the fine-tuning performance. Fig. 6
shows the relationship between the accuracy and the number
of the remained images for each class. Ideally, we expect to
have as many data as possible for each class. Nevertheless,

it will be an issue for resource-limited edge systems in terms
of training cost and memory overhead. The experimental
results show that OCAP can retain a good accuracy without
reserving too many images. Therefore, in OCAP, to trade
off between the accuracy and fine-tuning cost, we set 𝑁 =
128 for ResNet and VGG, and 𝑁 = 256 for MobileNetV2
with 50 fine-tuning epochs. This decision is based on the
complexity of the implemented model. Meanwhile, a better
solution can be proposed further considering the target
hardware and the number of the remained classes.

4. Experiments
4.1. Experimental Setting

We extensively evaluate the effectiveness and efficiency
of OCAP on CIFAR-10/CIFAR-100 and ImageNet us-
ing different models, ResNet-56 [11], VGG-16 and Mo-
bileNetV2 [34]. For all experiments, we select images from
the corresponding training dataset as the models’ input, so
that we would not have data leakage on the validation data.
The experiments are conducted on five types of devices, a
PC with Nvidia RTX2080-Ti, a PC with Nvidia RTX2060-
Super and three low-power edge systems, Nvidia Jetson
Nano, Nvidia Jetson TX2 and Nvidia Jetson AGX Xavier.
And all the experimental results are obtained by randomly
selecting different reserved classes three times and then take
the average of Top-1 accuracy, time overhead and latency.
We implement OCAP using pytorch [32]. We compare
OCAP to CAPTOR in [33] and CAPNN in [13]. Since
they have not yet open-sourced their code and we cannot
reproduce the same results, we directly compare our results
to the numbers reported in their papers. In OCAP, we fine-
tune the pruned models for 50 epochs. The initial learning
rate is set to 1e-3 with learning rate decay after 20 and 40
epochs. We use an SGD optimizer with the momentum 0.9
and the weight-decay 5e-4. And we set 𝑑 = 4 in Eq. (5). In
addition, except for special instructions, all the experiments
are conducted using OCAP-AB. In addition, for CIFAR10
and CIFAR100, we use the pruning ratios shown in Figure
5. For ImageNet, a fixed pruning ratio 0.9 is used. And
since OCAP-AB automatically adjusts the pruning rate, we
introduce another parameter, related FLOPs Ratio, to reflect
the compression ratio and the complexity of the pruned
model, as shown in Eq. (7).

FLOPs Ratio =
𝐹𝑝

𝐹𝑜
(7)

where 𝐹𝑝 and 𝐹𝑜 represent the FLOPs of the pruned model
and the original model, respectively.

4.2. Experiments of CIFAR10
Fig. 7 shows the experimental results for CIFAR10.

In this experiment, we compare OCAP to CAPTOR and
CAPNN, which only show the experimental results of
VGG-16 on CIFAR10. The line Original Model in the figure
represents the accuracy of each original model reserving the
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Figure 6: The relationship between the accuracy and the number of images for each class memory. The experiment is
conducted on CIFAR100 with 50 classes remained.

same random classes as OCAP model. In other words, we
test the well trained model using the reserved classes.

We can see that in both ResNet-56 and VGG-16, OCAP
can improve the model accuracy with a lower FLOPs
ratio no matter how many classes are remained. Especially
for ResNet-56 and VGG-16 with two remained classes,
OCAP can achieve 98% accuracy with 43% relative FLOPs
ratio and 99% accuracy with 42% relative FLOPs ratio
respectively. And for MobileNetV2, when only reserving
a small number of classes for the models, OCAP can
improve the model accuracy. For example, MobileNetV2
can achieve 96% accuracy with 53% relative FLOPs ratio
when reserving two classes. As the number of reserved
classes increases, the accuracy gradually drops. That’s prob-
ably because that VGG and ResNet are both large and
redundant models, and they can be pruned more. However,
MobileNetV2 is a compact model which has fewer channels
and uses depth-wise separable convolution, thus it is hard
to prune while guaranteeing the accuracy. In the worst case
for MobileNetV2, the accuracy drops by 5% with 35%
FLOPs. We think this is acceptable since OCAP is an on-
device approach and it trades off the accuracy for efficiency.
Comparing to CAPTOR and CAPNN, our method can
achieve better accuracy and lower FLOPs ratio no matter
how many classes remained.

4.3. Experiments of CIFAR100
Fig. 8 shows the experimental results of CIFAR100. We

can see that for CIFAR100 results, the trend is similar to that
of CIFAR10. Since CAPTOR and CAPNN do not conduct

experiments on CIFAR100, we compare the OCAP results
with the original model.

For ResNet-56 and VGG-16, OCAP can improve accu-
racy while compressing the model, regardless of how many
classes are reserved. In particular reserving a small number
of classes for the models, OCAP can compress ResNet
by 40% with 15% accuracy increase and VGG by 30%
with 10% accuracy increase. For MobileNetV2, when less
than 40% of the classes are reserved, OCAP can improve
accuracy while compressing the model. With the increasing
number of reserved classes, the accuracy gradually drops.
The accuracy loss is up to 5% (the original 63% to 58% of
the pruned model) with 0.78 FLOPs ratio when 80% classes
are reserved.

4.4. Experiments of ImageNet
We also evaluate OCAP on VGG with ImageNet as

CAPNN does. For ImageNet, it is more challenging to
conduct OCAP on resource limited devices due to the
limited RAM and computing units. We evaluate OCAP
with 2-10 remained classes while CAPNN reports the 2-5
classes remained results of VGG on ImageNet. As CAPNN
does not mention the compression ratio or FLOPs, we only
compare the accuracy reported in their paper. Furthermore,
we follow the same setting in CAPNN and randomly select
10 classes from ImageNet to conduct this experiments. We
directly use the pre-trained VGG-16 model from Pytorch
model zoo and the accuracy for the original model is 75%.

Fig. 9 plots the experimental results. We can see that,
with 2 reserved classes, OCAP can compress the FLOPs
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Figure 7: Experimental results of CIFAR10. The results are obtained by randomly selecting different classes several times
and then take the average of Top-1 accuracy. The original accuracy of each model is indicated in parentheses.

10 20 30 40 50 60 70 80 90
% of classes

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

To
p-

1 
Ac

cu
ra

cy
 (%

)

(a) ResNet-56 (74%)
OCAP
Original Model
FLOPs Ratio

0.64

0.67 0.76

0.78

0.84

0.85
0.85

0.85 0.88

10 20 30 40 50 60 70 80 90
% of classes

75.0

77.5

80.0

82.5

85.0

87.5

90.0

(b) VGG-16 (75%)
OCAP
Original Model
FLOPs Ratio

0.67

0.69

0.75

0.80

0.82
0.83

0.84
0.85 0.85

10 20 30 40 50 60 70 80 90
% of classes

55.0

60.0

65.0

70.0

75.0

80.0

85.0
(c) MobileNetV2 (63%)

OCAP
Original Model
FLOPs Ratio

0.70

0.73

0.74

0.76
0.76

0.77
0.78

0.78 0.78

Figure 8: Experimental results of CIFAR100. The experimental setting is the same as that of CIFAR10.

of the original model by 65% under the current setting and
at the same time significantly increases accuracy (75% to
98%) comparing to the original model. With the increasing
number of reserved classes, OCAP can still achieve a con-
siderable compression ratio while maintaining the accuracy.
OCAP always outperforms CAPNN in terms of accuracy.

4.5. Time Overhead and Inference Time on
Different Devices

OCAP is an online method for edge systems, so we
evaluate the pruning overhead of three parts (including
pruning time overhead, data selection time overhead and
fine-tuning time overhead) of OCAP on different devices
(including one powerful device and three resource-limited
devices as shown in Table 2) to show the benefit of class-
aware pruning in terms of latency. The results are shown in
Table 3, Table 4 and Table 5.

Table 3 shows the results of different reserved classes
for CIFAR10. As the pruning procedure of MobileNetV2
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Figure 9: The experimental results for ImageNet.

with the deep-wise separable convolutional layers is much
more complex than VGG and ResNet with the normal
convolutional layers, the pruning overhead of VGG and
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Algorithm 3: Data Selection
Input: Input image set  , class memory size 𝑁 ,

reserved classes 𝐶 , the maximum number of
image replacements 𝑁𝑅, divided ratio 𝑑,
confidence threshold 𝑇

Output: dataset 
1 Initialize 𝐾𝑐 list 𝐾 with [] for each reserved class
2 Initialize image set 𝐷 with [] for each reserved class
3 Initialize the number of images 𝑁𝑐 with 0 for each

reserved class
4 Initialize the number of image replacements 𝑁𝑟

with 0 for each reserved class
5 Initialize total dataset  with []
6 for 𝑥𝑠 ∈  , do
7 𝑜𝑢𝑡, 𝑓𝑠 ← 𝐺𝑒𝑡(𝑥𝑠) /* Get model output

and feature map of current
image */

8 𝑙𝑠 ← 𝐴𝑟𝑔𝑚𝑎𝑥(𝑜𝑢𝑡) /* Predicted class
of 𝑥𝑠 */

9 if 𝑙𝑠 ∈ 𝐶 and 𝑀𝑎𝑥(𝑜𝑢𝑡) > 𝑇 then
10 if 𝑁𝑐 < 𝑁 then
11 Compute 𝐾𝑐 for 𝑥𝑠 by using 𝑓𝑠, 𝑑 and

Eq. (5)
/* Add image and label to

the corresponding image
set 𝐷 */

12 Add 𝑥𝑠, 𝑙𝑠 to D
/* Add 𝐾𝑐 to the

corresponding 𝐾𝑐 set 𝐾
*/

13 Add 𝐾𝑐 to K
14 𝑁𝑐 ← 𝑁𝑐 + 1
15 end
16 if 𝑁𝑐 = 𝑁 and 𝑁𝑟 < 𝑁𝑅 then
17 Compute 𝐾𝑐 for 𝑥𝑠 by using 𝑓𝑠, 𝑑 and

Eq. (5)
18 if 𝑘𝑐 > 𝑚𝑖𝑛(𝐾) then
19 Replace the image, label in 𝐷 with

the smallest 𝐾𝑐 by 𝑥𝑠, 𝑙𝑠
20 Replace the smallest 𝐾𝑐 in 𝐾 with

the new 𝐾𝑐 of 𝑥𝑠
21 𝑁𝑟 ← 𝑁𝑟 + 1
22 end
23 end
24 end
25 end
26 Add all image sets 𝐷 to 
27 return 

ResNet is much smaller, 13.51s and 13.99s respectively with
20% reserved classes on Jetson Nano, while the pruning
time of MobileNetV2 is 52.70s with 20% reserved classes
on Jetson Nano. On the other hand, compared to ResNet
and VGG, MobileNetV2 is a lightweight model and easier
to train, so the fine-tuning overhead of MobileNetV2 is

always smaller than ResNet and VGG. For instance, on
Jetson Nano, the fine-tuning time overhead of VGG-16 and
ResNet-56 is 891.75s and 1099.0s respectively with 20%
reserved classes, while the fine-tuning time overhead of
MobileNetV2 is 734.04s with 20% reserved classes.

All models can significantly benefit from the class-
aware pruning in terms of the inference time and the
inference time can be reduced by more than half with
20% reserved classes. For example, for VGG-16 with 20%
classes reserved, the inference time is reduced by almost
50% on Jetson Nano (277ms to 142ms) after pruning with
an acceptable time overhead (907s) which demonstrates the
effectiveness of OCAP. The system can benefit from the
inference time reduction over time. With the increase of
reserved classes, the inference time of pruned models grows
accordingly.

Table 4 shows the results of different reserved classes
for CIFAR100. As CIFAR100 is more complicated than
CIFAR10, the time overhead increases significantly. In CI-
FAR100, the pruning time of VGG-16 with 20% reserved
classes (20 classes reserved) is 99.62s in Jetson TX2, while
that in CIFAR10 is 9.95s. We think it is still acceptable
due to OCAP is an one-time pruning scheme on resources
limited devices and the benefit of inference time reduction
is considerable in the long run.

Table 5 shows the results of VGG-16 with 2 and 3
reserved classes of ImageNet on different devices. For
ImageNet, it is more challenging to conduct OCAP due to
the limited RAM and computing units. Storing intermediate
features for data selection consumes a lot of memory. So we
cannot conduct pruning for ImageNet on Jetson Nano with
a limited RAM of 4 GB and we increase the swap space of
Nvidia Jetson TX2 to cope with the memory consumption.
We can see that with 2 and 3 reserved classes, both Jetson
TX2 and Jetson AGX Xavier can achieve more than 50%
inference time reduction and RTX 2060 Super can achieve
more than 40% inference time reduction. Due to the using
of swap space, the time overhead of Nvidia Jetson TX2 is
relative high (1261s for 2 reserved classes and 2773s for 3
reserved classes). Some efficient training methods may help
us to improve the pruning efficiency and reduce memory
consumption for large inputs, like low-precise training and
early stopping [43]. We leave it for our future consideration.

5. Ablation Study
5.1. Different Pruning Strategies

To compare the two pruning strategies introduced in
Section 3.1.2, we test the accuracy and model compression
ratio of OCAP-FR and OCAP-AB under the same config-
uration. And we set a target FLOPs ratio (0.5 for VGG-16
and ResNet-56, 0.6 for MobileNetV2) to evaluate the two
algorithms. Table 6 shows the experimental results of two
different strategies. We can see that for all three models with
different reserved classes, OCAP-AB always achieves a
better accuracy, whereas OCAP-FR has lower pruning time
overhead. For instance, for VGG-16 with 50% of classes
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Nvidia Jetson Nano Nvidia Jetson TX2 Nvidia Jetson AGX Xavier GeForce RTX 2060 Super

AI Performance 0.47 TFLOPs 1.33 TFLOPs 32 TFLOPs 57 TFLOPs

GPU
NVIDIA Maxwell architecture

with 128 CUDA cores

NVIDIA Pascal architecture

with 256 CUDA cores

NVIDIA Volta architecture with

512 CUDA cores and 64 Tensor cores

NVIDIA Turing architecture

with 2176 CUDA cores

CPU 4-core ARM A57 @ 1.43 GHz
2-core Denver 2 64-bit CPU and 4-core

Arm® Cortex®-A57 MPCore processor

8-core NVIDIA Carmel Armv8.2

64-bit CPU 8MB L2 + 4MB L3
8-core Intel Core i7-10700F
@ 2.9GHz

Memory 4GB 64-bit LPDDR4 25.6GB/s 8 GB 128-bit LPDDR4 59.7GB/s 32GB 256-bit LPDDR4x 136.5GB/s 8GB 256-bit LPDDR6
448GB/s

Storage microSD 32 GB eMMC 5.1 32GB eMMC 5.1 512G SN730 NVMe SSD

Max Power 10W 15W 30W 200W

Table 2
The detailed specifications of experimental devices.

Model , % of classes Device Pruning Data Selection Fine-tuning Inference Time

VGG-16 , 20%

Jetson Nano 13.51s 1.78s 891.75s 277ms → 142ms
Jetson TX2 9.95s 1.77s 535.60s 111ms → 51ms

Jetson AGX Xavier 8.86s 1.89s 435.66s 37ms → 16ms
RTX 2060 Super 1.99s 0.30s 136.99s 11ms → 6ms

VGG-16 , 50%

Jetson Nano 33.59s 4.87s 1648.83s 277ms → 187ms
Jetson TX2 25.82s 4.56s 1010.97s 111ms → 71ms

Jetson AGX Xavier 22.36s 4.60s 644.33s 37ms → 23ms
RTX 2060 Super 4.82s 0.81s 219.68s 11ms → 7ms

VGG-16 , 80%

Jetson Nano 54.17s 7.93s 2324.64s 277ms → 197ms
Jetson TX2 42.44s 7.25s 1742.94s 111ms → 76ms

Jetson AGX Xavier 35.49s 7.49s 794.58s 37ms → 25ms
RTX 2060 Super 7.63s 1.32s 278.33s 11ms → 7ms

ResNet-56 , 20%

Jetson Nano 13.99s 1.63s 1099.00s 417ms → 246ms
Jetson TX2 10.07s 1.39s 685.36s 176ms → 100ms

Jetson AGX Xavier 9.35s 1.74s 471.77s 57ms → 41ms
RTX 2060 Super 2.21s 0.29s 153.92s 21ms → 16ms

ResNet-56 , 50%

Jetson Nano 34.72s 4.25s 2157.93s 417ms → 272ms
Jetson TX2 25.31s 3.90s 1263.93s 176ms → 124ms

Jetson AGX Xavier 23.56s 4.83s 714.66s 57ms → 42ms
RTX 2060 Super 5.39s 0.77s 271.76s 21ms → 17ms

ResNet-56 , 80%
Jetson TX2 40.79s 5.70s 1846.25s 176ms → 133ms

Jetson AGX Xavier 37.31s 8.10s 968.45s 57ms → 45ms
RTX 2060 Super 8.48s 1.23s 357.82s 21ms → 18ms

MobileNetV2 , 20%

Jetson Nano 52.70s 5.94s 734.04s 105ms → 55ms
Jetson TX2 37.64s 5.48s 529.52s 17ms → 11ms

Jetson AGX Xavier 17.62s 2.24s 260.11s 18ms → 11ms
RTX 2060 Super 7.52s 1.42s 157.84s 6ms → 5ms

MobileNetV2 , 50%

Jetson Nano 122.87s 15.10s 1179.47s 105ms → 65ms
Jetson TX2 69.21s 11.36s 765.43s 17ms → 11ms

Jetson AGX Xavier 43.75s 5.43s 374.54s 18ms → 11ms
RTX 2060 Super 17.90s 4.20s 250.49s 6ms → 5ms

MobileNetV2 , 80%

Jetson Nano 208.48s 24.54s 1607.68s 105ms → 70ms
Jetson TX2 101.83s 13.96s 782.00s 17ms → 11ms

Jetson AGX Xavier 69.83s 8.74s 462.54s 18ms → 11ms
RTX 2060 Super 28.63s 6.01s 432.81s 5ms → 5ms

Table 3
The time experiments on CIFAR10 on different devices with diverse reserved classed. All the experiments are run multiple
times, then we take the average values. Pruning presents the time overhead of pruning procedure including calculating masks,
pre-pruning and real-pruning. Data Selection is the time overhead of data selection procedure including calculating the image’s
𝐾𝑐 and choosing fine-tuning images. And Fine-tuning is the time overhead of fine-tuning procedure with 50 epochs. Inference
Time is the average inference time of the original model and pruned model with batch size 100.

remained, OCAP-AB achieves a 4.2% higher accuracy than
OCAP-FR with 50% fewer parameters. It demonstrates the
effectiveness of OCAP-AB in terms of accuracy. On the
other hand, we can see that OCAP-FR can always reach the
target FLOPs ratio accurately, while OCAP-AB can only

approach the target FLOPs ratio approximately. This is the
advantage of OCAP-FR, especially on edge devices with
strict resource constraints. Meanwhile, as using the 𝑜𝑟 (

⋁

)
operator to merge masks from different images channel-
by-channel, the pruning time overhead, especially the time
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Model , % of classes Device Pruning Data Selection Fine-tuning Inference Time

VGG-16 , 10% Jetson Nano 49.74s 9.72s 2112.38s 276ms → 163ms

VGG-16 , 20%
Jetson TX2 99.62s 18.55s 1978.01s 111ms → 85ms

Jetson AGX Xavier 46.75s 9.36s 813.67s 37ms → 28ms
RTX 2060 Super 18.63s 3.55s 691.32s 11ms → 8ms

VGG-16 , 50%
Jetson TX2 190.57s 54.38s 4263.76s 111ms → 98ms

Jetson AGX Xavier 115.62s 27.08s 1698.92s 37ms → 32ms
RTX 2060 Super 48.07s 10.27s 1339.06s 11ms → 9ms

VGG-16 , 80% Jetson AGX Xavier 187.63s 49.91s 2439.94s 37ms → 34ms
RTX 2060 Super 79.57s 18.66s 2040.00s 11ms → 10ms

ResNet-56 , 20%
Jetson TX2 106.71s 15.24s 2249.86s 175ms → 125ms

Jetson AGX Xavier 45.00s 8.89s 984.75s 57ms → 44ms
RTX 2060 Super 20.33s 3.36s 791.56s 23ms → 18ms

ResNet-56 , 50% Jetson AGX Xavier 115.62s 27.05s 2055.45s 57ms → 48ms
RTX 2060 Super 55.82s 10.73s 1622.80s 23ms → 20ms

ResNet-56 , 80% Jetson AGX Xavier 189.42s 49.00s 2892.79s 57ms → 49ms
RTX 2060 Super 68.33s 20.60s 2086.31s 23ms → 20ms

MobileNetV2 , 10% Jetson Nano 262.68s 31.74s 2402.13s 105ms → 70ms

MobileNetV2 , 20%
Jetson TX2 170.88s 34.75s 2822.97s 45ms → 31ms

Jetson AGX Xavier 172.51s 26.61s 1182.33s 18ms → 12ms
RTX 2060 Super 72.19s 15.60s 746.84s 6ms → 5ms

MobileNetV2 , 50%
Jetson TX2 1055.38s 156.15s 3699.86s 45ms → 32ms

Jetson AGX Xavier 424.59s 78.98s 3283.74s 18ms → 12ms
RTX 2060 Super 181.78s 41.41s 1598.19s 6ms → 6ms

MobileNetV2 , 80%
Jetson TX2 1632.13s 261.50s 5222.86s 45ms → 33ms

Jetson AGX Xavier 667.43s 102.47s 2329.35s 18ms → 13ms
RTX 2060 Super 284.90s 64.81s 2086.20s 6ms → 6ms

Table 4
The time experiments on CIFAR100 on different devices with diverse reserved classed. The experimental settings are the
same as Table 3.

Model, Number of classes Device Pruning Data Selection Fine-tuning Inference Time

VGG-16, 2
Jetson TX2 265.05s 22.39s 974.72s 681ms → 325ms

Jetson AGX Xavier 12.75s 2.75s 292.88s 344ms → 104ms
RTX 2060 Super 4.87s 1.56s 785.12s 66ms → 37ms

VGG-16, 3
Jetson TX2 532.94s 32.35s 2209.36s 680ms → 336ms

Jetson AGX Xavier 13.40s 3.19s 419.91s 344ms → 120ms
RTX 2060 Super 6.07s 2.27s 1039.06s 66ms → 41ms

Table 5
The time experiments on ImageNet on different devices with diverse reserved classed.

Model , % of classes Algorithm Accuracy FLOPs Ratio Parameters Ratio Remained Filters Ratio Pruning Time Overhead

VGG-16 , 50% OCAP-FR 90.49% 0.50 0.42 0.66 0.42s
OCAP-AB 94.70% 0.53 0.21 0.46 4.64s

VGG-16 , 80% OCAP-FR 87.35% 0.50 0.42 0.65 0.63s
OCAP-AB 91.99% 0.54 0.21 0.45 7.38s

ResNet-56 , 50% OCAP-FR 87.93% 0.50 0.50 0.61 0.83s
OCAP-AB 94.40% 0.54 0.70 0.47 3.90s

ResNet-56 , 80% OCAP-FR 83.38% 0.50 0.51 0.61 1.13s
OCAP-AB 89.00% 0.52 0.68 0.45 6.18s

MobileNetV2 , 50% OCAP-FR 79.69% 0.60 0.42 0.45 0.68s
OCAP-AB 83.63% 0.61 0.41 0.46 18.81s

MobileNetV2 , 80% OCAP-FR 77.97% 0.60 0.40 0.44 1.16s
OCAP-AB 80.99% 0.64 0.45 0.49 30.11s

Table 6
The experimental results of two different pruning strategies. The experiment is conducted on CIFAR10 with 5 and 8 classed
remained. For VGG-16 and ResNet-56 with OCAP-FR, we manually skip first three layers to get a better accuracy. And we only
test and compare the pruning time overhead not data selection time overhead nor fine-tuning time overhead, since different
pruning strategies only affect the time overhead of computing the mask, which is included in the pruning time overhead.
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Figure 10: The accuracy of pruned models using different pre-processing functions on CIFAR-10, with saving the first five
classes. For each subfigure. the x-axis represents the negative slope 𝑝 of 𝐿𝑒𝑎𝑘𝑦𝑅𝐸𝐿𝑈 , and the y-axis represents the Top-1
accuracy of pruned model using the corresponding pre-processing function. As shown in each subfigure, the 𝐿𝑒𝑎𝑘𝑦𝑅𝐸𝐿𝑈
with a special 𝑝 can always have the best accuracy for each model.

overhead of calculating masks of OCAP-AB is much more
than that of OCAP-FR. If the target system is sensitive to
pruning time overhead and system resources utilization, it is
suitable to use OCAP-FR. If there are no such restrictions,
OCAP-AB should be the first choice.

5.2. Pre-processing Functions
In our 𝐶𝑅𝑉 computing, we use 𝐿𝑒𝑎𝑘𝑦𝑅𝐸𝐿𝑈 , which

is one of the most used activation functions. In this section,
we justify the usage of 𝐿𝑒𝑎𝑘𝑦𝑅𝐸𝐿𝑈 . To evaluate the
effectiveness of the activation functions used to pre-process
the output feature maps of BN layer before calculating the
𝐶𝑅𝑉𝑖,𝑗 in Eq. (1), we use different pre-processing activation
functions, including 𝑅𝑒𝐿𝑈 , 𝐿𝑒𝑎𝑘𝑦𝑅𝐸𝐿𝑈 with different
negative slope 𝑝, 𝐸𝐿𝑈 , 𝑇 𝑎𝑛ℎ and 𝑆𝑖𝑔𝑚𝑜𝑖𝑑. Meanwhile, we
fix the reserved classes to 5 and make all hyper-parameters
the same. Furthermore, for regulating the model compres-
sion ratio easily, we use OCAP-FR and adjust the pruning
ratio to make sure that the pruned models which are pro-
duced by different pre-processing functions have the same
FLOPs and parameters.

The experiment results are shown in Fig. 10. For all the
models, the pre-processing function 𝐿𝑒𝑎𝑘𝑦𝑅𝐸𝐿𝑈 with a
special negative slope 𝑝 (for VGG-16 𝑝 = 0.12, for ResNet-
56 𝑝 = 0.40 ,and for MobileNetV2 𝑝 = 0.06), is able to

achieve the best accuracy, compared to other functions. It
means that the negative value does reserve some information
and the information is beneficial for pruning procedure. In
addition, the importance of the negative value varies from
model to model.

5.3. The Effectiveness Of Data Selection
To demonstrate the effectiveness of data selection in the

fine-tuning process, we evaluate the impact of data selection
on different datasets and models, as shown in Table 7.
We take the randomly selected dataset (𝑁𝑅 = 0) as the
baseline in the table. As shown in the table, data selection
can achieve an average accuracy improvement of 0.5%
compared to the baseline. Especially when the dataset is
more complex (like CIFAR100) and the number of reserved
images is small (e.g., 𝑁 = 16), data selection can obtain the
maximum accuracy improvement. For example, ResNet-56
can achieve the maximum accuracy improvement of 2.42%
when CIFAR100 with 20 classes reserved and 𝑁𝑅 = 2𝑁 .
We see that data selection process can effectively improve
the accuracy of the model after fine-tuning. These results
show the importance of data selection.
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Dataset Model , Number of classes 𝑁 𝑁𝑅 Top-1 Accuracy Δ-Accuracy

CIFAR10

VGG-16 , 5

16

0 (Baseline) 95.25% -
0.5𝑁 95.61% +0.36%
1𝑁 95.57% +0.32%
2𝑁 95.49% +0.24%

64

0 (Baseline) 95.35% -
0.5𝑁 95.49% +0.14%
1𝑁 95.65% +0.30%
2𝑁 95.49% +0.14%

128

0 (Baseline) 95.52% -
0.5𝑁 95.63% +0.11%
1𝑁 95.55% +0.03%
2𝑁 95.62% +0.10%

ResNet-56 , 5

16

0 (Baseline) 93.87% -
0.5𝑁 93.99% +0.12%
1𝑁 94.29% +0.42%
2𝑁 93.95% +0.08%

64

0 (Baseline) 94.53% -
0.5𝑁 94.60% +0.07%
1𝑁 94.63% +0.10%
2𝑁 94.61% +0.08%

128

0 (Baseline) 94.67% -
0.5𝑁 94.85% +0.18%
1𝑁 94.79% +0.12%
2𝑁 94.82% +0.15%

CIFAR100

VGG-16 , 20

16

0 (Baseline) 82.46% -
0.5𝑁 82.58% +0.12%
1𝑁 82.96% +0.50%
2𝑁 82.66% +0.20%

64

0 (Baseline) 83.58% -
0.5𝑁 83.71% +0.13%
1𝑁 83.96% +0.38%
2𝑁 84.04% +0.46%

128

0 (Baseline) 83.96% -
0.5𝑁 84.46% +0.50%
1𝑁 84.31% +0.35%
2𝑁 84.21% +0.25%

ResNet-56 , 20

16

0 (Baseline) 78.56% -
0.5𝑁 78.84% +0.28%
1𝑁 80.38% +1.82%
2𝑁 80.98% +2.42%

64

0 (Baseline) 83.33% -
0.5𝑁 83.41% +0.08%
1𝑁 83.84% +0.51%
2𝑁 83.56% +0.23%

128

0 (Baseline) 83.72% -
0.5𝑁 83.93% +0.21%
1𝑁 83.94% +0.22%
2𝑁 83.96% +0.24%

Table 7
The ablation study of data selection. The experiment evaluates the influence of data selection on the pruned model accuracy
under different datasets and different models. The 𝑁 represents the number of images for each class memory, and 𝑁𝑅
represents the maximum replacements number of constraining the image replacement times for every reserved class. 𝑁𝑅 = 0
means no redundant data selection, that is, the fine-tuning images are randomly selected. And we take 𝑁𝑅 = 0 as the baseline.
The experimental results show that data selection can effectively improve the pruned model accuracy.

6. Conclusion
In this paper, we propose OCAP, an on-device class-

aware pruning method. The main target of OCAP is to sup-
port an on-device pruning which can maximally protect the
privacy and reduce the model complexity on edge systems.
The experiments show that OCAP demonstrates its effec-
tiveness and efficiency over the original models comparing
with the state of the arts. The experimental results show that
class-aware pruning can improve the accuracy and compress
the model especially when only few classes are remained.
And it will not significantly degrade the accuracy even
when a large number of classes are remained. To further
improve the pruning efficiency, we may need to design low-
cost training libraries for edge systems. In OCAP, we target

the image classification models that are a backbone for
many other computer vision tasks, such as image detection
and image segmentation. Thus, in the future, we plan to
extend OCAP to these computer vision tasks. However, we
can envision that the extension is not trivial and may need
substantial modifications on the current OCAP methods.
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