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ABSTRACT In eXplainable Artificial Intelligence (XAI), instance-based explanations have gained impor-
tance as a method for illuminating complex models by highlighting differences or similarities between
the samples and their explanations. The evaluation of these explanations is crucial for assessing their
quality and effectiveness. However, the quantitative evaluation of instance-based explanation methods
reveals inconsistencies and variations in terminology and metrics. Addressing this, our survey provides a
unified notation for instance-based explanation evaluation metrics for instance-based explanations with a
particular focus on counterfactual explanations. Further, it explores associated trade-offs, identifies areas
for improvement, and offers a practical Python toolkit, CEval. Key contributions include a comprehensive
survey of quantitative evaluation metrics, facilitating practical counterfactual evaluation with the package,
and providing insights into explanation evaluation limitations and future directions.

INDEX TERMS Explainable artificial intelligence (XAI), instance-based explanation, contrastive explana-
tion evaluation, counterfactual explanation evaluation

I. INTRODUCTION

The popularity of machine learning methods has sped in
recent years, driven by their remarkable capabilities to solve
complex problems and make decisions autonomously. How-
ever, this wave in machine learning applications has also
raised concerns about the fairness, accountability, and trust-
worthiness of these systems, urging the need for eXplainable
Artificial Intelligence (XAI) methods. Numerous XAI tech-
niques have been proposed to shed light on the inner workings
of black-box models. Notably, Hvilshøj et al. [1] have cate-
gorized them into three primary groups: saliency, surrogate,
and instance-based methods. This article focuses specifically
on instance-based methods, with a particular emphasis on
counterfactual explanations (counterfactuals, in short).

Counterfactuals, a subset of instance-based XAI methods,
enhance the understanding of decisions made by models by
providing alternative scenarios and causal insights. Meeting
specific requirements, such as actionability, faithfulness, di-
versity, and interpretability, is crucial. In line with [2]–[4], we
want to underscore the importance of measuring the quality
of these explanations, allowing us to assess their effective-

ness and identify strengths and weaknesses and evaluation
metrics aid in method comparison and application suitability,
enhancing trust and utility, empowering informed decisions,
and mitigating potential biases or errors in machine learning
models. More technical information about instance-based ex-
planations (counterfactuals, semi-factuals, and alter-factuals)
can be found in Section II.

In the ever-developing field of XAI, there exists amultitude
of methods used for both qualitative and quantitative evalua-
tions. Our primary focus in this article is the quantitative eval-
uation of counterfactual methods, while our broader scope
encompasses instance-based methods. Within this domain,
however, we have observed inconsistencies and variations in
the terminology and metrics, which are closely intertwined.
Consequently, our objective is to provide a framework to con-
verge these metrics into a unified notation, explore trade-offs
and their applicability, address areas open to improvement,
and facilitate the practical use of existing metrics through the
development of a Python package.

To achieve this, we conducted a comprehensive survey
that gathers quantitative evaluation metrics and optimization
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methods, suitable for use in evaluating instance-based expla-
nations. It is crucial to emphasize that our survey aims at
gathering a comprehensive collection of evaluation metrics
rather than prescribing specific ones tailored to particular
scenarios. With the diverse nature of XAI applications and
the varied contexts in which these techniques are deployed,
our survey refrains from assigning hierarchical rankings or
subjective assessments of the metrics under consideration.
Instead, it proposes a user-centric approach to users, re-
searchers, and practitioners in selecting metrics tailored to
their requirements. This approach facilitates enhanced flex-
ibility and adaptability for the evaluation process, aligning
with the diverse needs of XAI research and practice.

This article makes several noteworthy contributions to the
field:

• Unified notation: We provide a unified notation for the
diverse set of metrics used to evaluate counterfactual
explanations and gather them under a single framework,
thereby enhancing clarity and consistency in the field.

• Comprehensive survey:Weconducted a thorough review
of 493 articles and included 66 that offer quantitative
evaluation metrics and optimization methods, categoriz-
ing these metrics into two groups: those assessing the
quality of a single explanation and those evaluating the
overall quality of an explainer, providing a comprehen-
sive overview of available evaluation metrics.

• Python package: We develop a Python package, CEval
toolkit, that makes employing existing counterfactual
metrics easier for researchers and practitioners in their
work, promoting practicality and accessibility in coun-
terfactual evaluation.

• Exploration of trade-offs: We explore the trade-offs in-
herent in various counterfactual metrics, offering in-
sights into their strengths and limitations, which can
aid researchers and practitioners in selecting appropriate
evaluation methods for their specific needs.

• Addressing areas for improvement: Our article identi-
fies areas within the existing counterfactual evaluation
metrics that are open to refinement, providing valuable
guidance for future research and development for both
generating high-quality instance-based explanations and
evaluation of their quality.

The rest of the article is organized as follows. Section II
provides a general overview of instance-based explanations
and a brief overview to related work. Section III presents
evaluation techniques for counterfactual explainers in the lit-
erature, while Section IV extends the overview to other types
of instance-based explainers. Section V details the provided
Python package, and In Section VI, we outline the advantages
and limitations of the evaluated metrics, addressing concerns,
deficits, and areas open for improvement. Finally, Section VII
concludes the article, summarizing the key findings.

II. BACKGROUND AND RELATED WORK

A. INSTANCE-BASED EXPLANATIONS/EXPLAINERS
Instance-based explainers can be defined as explainers that
provide insights into themodel’s decisions by highlighting the
differences or similarities between the decisions and relevant
instances, aiming to facilitate a clearer understanding of ma-
chine learning model behavior. Considering the literature, we
can group instance-based explainers under three subgroups,
Counterfactual Explainers (CE), Semifactual Explainers, and
Alterfactual Explainers.
Assuming f () is the prediction function, X is a set of

instances to explain, and x ∈ X . x = ⟨a1, ..., aρ⟩ while ρ
is the number of features, and y = f (x). explain(x) is the
explainer function that returns e, a set of explanations for x.
ei ∈ e and ei = {x′i , zi} while it is a single explanation of x,
where zi = f (x′i ).

1) Counterfactual Explanations
Counterfactual explanations (counterfactuals) involve the
generations of hypothetical scenarios to explain the behavior
of a machine learning model by providing meaningful and
actionable guidance [2]. A counterfactual offers an under-
standing of the interpretation behind a particular prediction
by proposing a hypothetical scenario, identifying minimal
changes in input features necessary to change the model’s
outcome [5], [6]. Counterfactuals are particularly valuable
in sensitive applications like healthcare or finance, where
understanding and justifying model decisions is critical for
trust and regulatory compliance. Various techniques have
been developed in the literature to create meaningful and
informative counterfactual explanations for different types of
machine learning models.
In short, a counterfactual is an explanation sample that

provides a hypothetical scenario to sample x while assuring
y′ ̸= y.
"If you were to increase your income by an additional $500,

your application would be approved."

2) Semi-factual Explanations
Similar to counterfactual explanations, semi-factual expla-
nations aim to offer a more comprehensive understanding
of model behavior, making them a promising avenue for
enhancing transparency in complex machine learning sys-
tems; however, while counterfactuals propose explanations to
answer the question "what if...", semi-factuals use "even if...,
still ..." kind of explanations. A semi-factual is an explanation
sample that provides a hypothetical scenario to sample x
while assuring there are changes in the attributes and y′ = y.
"Even if you were to increase your income by an additional

$300, your application would still not be approved."
"Even if you were to decrease your advance payment by

$25,000 more, your application would still be approved."

3) Alter-factual Explanations
While counterfactuals and semi-factuals concentrate on ac-
tionable features, alter-factuals concentrate on less effective
and less important features to show those attributes do not
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lead to any change in the decision-making for that instance.
Similar to semi-factuals, an alter-factual is an explanation
sample that provides a hypothetical scenario to sample x
while assuring there are changes in the attributes and y′ = y.
"Even if you were to change your name and birthplace,

your application would still be approved."

B. RELATED WORK
In the XAI literature, both qualitative and quantitative evalua-
tion methods for explainers have been extensively examined,
as evidenced by notable contributions [6]–[9]. Additionally,
several works have delved into discussions surrounding chal-
lenges, issues, and possibilities related to counterfactuals,
serving as valuable guidance for this paper and contributing
to the formulation of our road-map [1], [10], [11].

There is a recurrent observation in the literature regarding
the insufficient evaluation of explanation methods. Adadi and
Berrada [12], in 2018, noted that only 5% of XAI metrics had
conducted an evaluation. In a more recent study, Nauta et al.
[8] reported, in 2022, that only 33% of XAI methods were
evaluated with anecdotal evidence, 58% with quantitative
evaluation, and 22%with user studies. Moreover, Keane et al.
[11] found that 40% of counterfactual methods had conducted
an evaluation, with 21% involving user study evaluations
between 2016 and 2021. Notably, the fraction of papers with
evaluations increased over time.

Users stand out as the most influential group of stakehold-
ers in XAI applications [13]–[15]. Aligned with this perspec-
tive, employing user evaluations proves to be both effective
and efficient. However, it is crucial to acknowledge that
user evaluations come with significant drawbacks, primarily
their high cost and susceptibility to bias. To mitigate these
challenges, quantitative evaluation metrics offer a valuable
alternative, minimizing disadvantages and providing an easy-
to-use, cost-effective medium.

III. COUNTERFACTUAL EXPLANATION EVALUATION
With a systematic search of significant academic databases,
including IEEE Xplore, ACM Digital Library, and Google
Scholar, titles and abstracts were screened to identify po-
tentially relevant articles, followed by a full-text review to
determine eligibility for inclusion. Articles were included if
they presented quantitative evaluationmetrics or optimization
methods designed explicitly for instance-based explanations
or applicable across this domain. The final selection of arti-
cles was determined through consensus among the authors.
While striving for inclusivity, we made purposeful decisions
to exclude specific metrics that we or the community deemed
unreliable. Also, we intentionally included rarely mentioned
metrics in some cases to underscore their potential impor-
tance based on our current understanding. Additionally, we
cross-referenced the selected articles to ensure comprehen-
sive coverage of relevant metrics and methodologies in the
survey.

In this section, we provide a comprehensive overview of
the quantitative evaluation metrics of CE derived from our

TABLE 1. Unified Notation for the Rest of the Article

Symbol Description
x An instance to explain, x = ⟨a1, ..., aρ⟩.
ρ The number of attributes.
X Set of instances to explain, x ∈ X .
f () Prediction function.
y Prediction result for x, y = f (x).
explain() Explanation function, returns a set of counterfactuals for

an instance.
e Set of counterfactuals for x, e = explain(x) and e =

{e1, ..., em}.
m Number of counterfactuals that are provided for x.
ei ei = {x′i , zi}, ei ∈ e.
x′i x′i = ⟨a′i1, ..., a′iρ⟩
zi zi = f (x′i )
uz The number of unique class labels for the counterfactuals

generated for x.
l The number of unique class labels.
Rj Range of jth attribute.
k Number of neighbours.
kNN() kNN(x) finds k Nearest Neighbours to x.
kNLN() kNLN(x) finds k Nearest Like Neighbours to x.
NUN() Nearest Unlike Neighbour, NUN(x) returns the nearest

neighbour which is labelled different than x.
dist()∗ Distance function, quantifies the distance between two

instances.
P()∗ Perturbation function, P(x) returns perturbed version of

x, xp.
τ() τ(x′i , x, j) copies j

th attribute of x to jth attribute of x′i and
returns x′i .

A A = {1, 2, ..., ρ}
[A]l All subsets of A that have l elements. [A]2 = {{a, b} :

a, b ∈ A, a ̸= b}
S All possible subsets (power set) of A without ∅ and A

(super set). S =
⋃ρ−1
l=1 [A]l

|S| |S| = 2ρ − 2
τ ′() τ ′(x′i , x, s) copies s attributes of x to s attribute of x

′
i and

returns x′i .
1condition If condition is fulfilled, it returns 1.
∗ These functions can be defined in different ways.

systematic search, employing a unified notation for clarity
and consistency. To facilitate readers’ understanding and nav-
igation through the equations presented in this section, we
introduce Table 1 which compiles the symbols and their short
descriptions used in the equations and Table 2 which sum-
marizes presented metrics, their frequency in the literature,
applicability to different types of counterfactual explainers,
requirements to calculate them, and brief descriptions.
Our focus extends to the systematic categorization of quan-

titative evaluation metrics and optimization methods into two
groups. The first group is dedicated to assessing the quality
of individual explanations, while the second group is tailored
to evaluate the overall effectiveness of explainers.

A. MEASURING THE QUALITY OF A SINGLE EXPLANATION
The following metrics are nominated for evaluating an expla-
nation (e) which is generated for a sample (x) and e consists of
m counterfactuals (e = {e1, ..., em}) and background data is
the dataset representing the data distribution used for training
the model, comprising either the training data itself or a
sufficient amount of additional instances with ground truth.
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1) Validity (a.k.a. success rate, hit, recourse accuracy)
A valid counterfactual is a counterfactual that does not belong
to the same class as the sample explained (x). In the literature,
validity is a commonly used metric, and there is a consensus
about its definition [1], [2], [15]–[25]. Since the nature of
counterfactual explanations promises counter examples as
explanations, this metric can be used as an apriori evaluation.

For x, validity is calculated as Equation 1. The value inter-
val for validity is [0, 1], and the higher validity is considered
better since all explanation systems aim to propose valid
explanations.

validity =
1

m

m∑
i=1

1zi ̸=y (1)

In the package, we implemented it as in Equation 2, and in
this way, it is guaranteed the model and the explainer agree
that the counterfactual is valid.

validity =
1

m

m∑
i=1

1zi ̸=y1zi=f (x ′
i )

(2)

Ideally, zi = f (x′i ) shall always be true. However, in the
application scenarios, we need to consider inconsistencies
that might caused by themodel, the explainer, or other factors.

2) Proximity (a.k.a. dissimilarity, distance, cost)
Proximity is one of the most commonly used evaluation met-
ric for CE [1], [2], [10], [15], [16], [18], [19], [21]–[23], [25]–
[38], and computed as the mean of feature-wise distances (l2
norm) between sample (x) and their counterfactuals (x′i ).

proximity =
1

m

m∑
i=1

dist(x , x ′
i ) (3)

Distance function, dist(), can be implemented in many
different ways, and mostly Euclidean distance is used. How-
ever, Gower distance, proposed in 1971 [39] and a distance
measure applicable to mixed types of attributes, is another op-
portune option [18]. As shown in Equation 4 and Equation 5,
Gower distance supports numerical, categorical, and nominal
data types and normalizes numeric features.

gower_distance(x ′
i , x ) =

1

ρ

ρ∑
j=1

δ(a ′i
j , aj ) (4)

δ(a ′i
j , aj ) =

{
1
Rj

|a ′i
j − aj |, if aj is numerical.

1a′i
j ̸=aj

, if aj is categorical or ordinal.
(5)

In the package, the proximity metric is implemented with
both Euclidean distance and Gower distance functions.

3) Sparsity
Sparsity measures the average number of changed attributes
between an instance and its counterfactuals (l0 norm). Spar-
sity metric has taken big attention in the literature [2], [15],
[16], [18], [19], [21], [22], [25], [26], [30], [36], [38], [40]–
[42] because it encourages to generation of concise counter-
factual explanations. For example, Keane and Smyth define
a good counterfactual as a maximum two attribute change
between the instance and its counterfactual [40].

sparsity =
1

mρ

m∑
i=1

ρ∑
j=1

1a′i
j ̸=aj

(6)

4) Number of explanations
This metric counts how many counterfactuals are generated
for an instance [30].

number_of _explanations = |e| (7)

5) Diversity
Diversity for CE is a diverse set of counterfactuals for an
instance to offer different actions that can be taken to flip the
decision [2], [15]. However, the diversity metric is interpreted
in many ways in the literature. Wachter et al. [33] suggests
local optima as a source of diverse counterfactuals, while
Russell [43] says in most of the problems, there is only one
local minima exists and proposes a technique based on integer
programming to define diversity constraints. Commonly, it is
defined as average proximity between each pair of provided
counterfactuals for the instance [2], [15], [16], [16], [18], [21],
[25], [44]–[46].
Another way to capture diversity is to build on determinan-

tal point processes (DPP), which has been adopted for solv-
ing subset selection problems with diversity constraints [47].
Mothilal et al. [21] used the determinant of the kernel matrix
in Equation 9 to define diversity metric (see Equation 8).

diversity_dpp = det(K ) (8)

K =


1

1+dist(x ′
1 ,x

′
1 )

1
1+dist(x ′

1 ,x
′
2 )

... 1
1+dist(x ′

1 ,x
′
m)

1
1+dist(x ′

2 ,x
′
1 )

... ... 1
1+dist(x ′

2 ,x
′
m)

... ... ... ...
1

1+dist(x ′
m ,x

′
1 )

1
1+dist(x ′

m ,x
′
2 )

... 1
1+dist(x ′

m ,x
′
m)


(9)

In the package, we implemented two different diversity
metrics. The first one is Equation 9, and in the second one, we
made a slight change and proposed to use local coverage coef-
ficient (lcc), defined in Equation 10. uz represents the number
of unique class labels for the counterfactuals generated for
input x, while l denotes the number of unique class labels
in the application case. In Equation 11, the use of lcc in the
metric is to capture the representative power of the generated
counterfactuals.

4 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3410540

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Bayrak and Bach: Evaluation of Instance-based Explanations

lcc =
uz
l

(10)

diversitylcc = lcc ∗ diversity_dpp (11)

Across all discussed implementations of diversity, it is
considered that maximizing diversity leads to more desired
outcomes.

6) yNN
yNN metric measures the amount of support counterfactu-
als get from positively classified nearest neighbors in back-
ground data [19], and ideally, counterfactuals should be close
to positively classified individuals, which is a desideratum
formulated by Laugel et al. [10], [48].

This metric is only used for binary classification [18], [19];
however, we adopted it formulti-class classification and in the
package implemented it as in Equation 12.

yNN =
1

mk

m∑
i=1

∑
ψj∈kNN(x ′

i )

1zi=f (ψj ) (12)

According to Pawelczyk et al. [19], the expected behavior
of an explainer is to have a yNN value close to 1 because
it implies that the neighborhoods around the counterfactual
explanations consist of points with the same predicted label.
This indicates that the neighborhoods around these points
have already been reached by positively classified instances.

7) Feasibility (a.k.a. kNN distance, connectedness,
implausibility)
The feasibility of counterfactuals is another notable metric
and Ustun et al. [29] addresses the significance of feasibility
and relates it to user constraints, while Dandl et al. (2020) [49]
defines feasibility as a metric that considers the nearest neigh-
bors of counterfactuals, similar to yNN . It quantifies how
close the counterfactual example is to the nearest observations
in the background data. This metric has found application in
various articles [2], [8], [15], [18], [34], [49], [50] which are
implemented similar to Equation 13.

feasibility =
1

mk

m∑
i=1

k∑
ψj∈kNN(x ′

i )

dist(x ′
i , ψj ) (13)

According to Redelmeier et al. (2021) [18], a smaller score
indicates that the counterfactual example lies in a dense part
of the training data and is more feasible. In other words, a
smaller score corresponds to higher feasibility.

8) kNLN distance
kNLN distance combines yNN and feasibility metrics and
calculates the average distance of the counterfactuals to their
k-Nearest LikeNeighbor (NLN), as described in [27]. Smaller
values of kNLN indicate data points closer to the target class’s
distribution, suggesting higher accordance and a more refined
alignment with the characteristics of the target class.

kNLN_distance =
1

mk

m∑
i=1

k∑
ϑj∈kNLN(x ′

i )

dist(x ′
i , ϑj ) (14)

9) Relative Distance
The relative distancemetric quantifies the ratio of the average
distance between a sample and its counterfactuals to the dis-
tance between the sample and its NUN [51]. It is also known
as a measure reflecting plausibility [11], [52].

realtive_distance =
1

m

m∑
i=1

dist(x ′
i , x )

dist(NUN (x ), x )
(15)

The anticipated behavior for the relative distance value is
less than 1 because we expect the generated counterfactuals to
be closer than the existing ones. Lower values signify better
performance.

10) Redundancy
The redundancy metric measures the number of unnecessary
feature changes. In other words, how many features in the
generated counterfactual do not affect the classification result
[18], [19], [44], [53].
In the literature, redundancy has been formulated for

changing only one feature at a time. However, as mentioned in
[32], this approach is particularly applicable to independence-
based methods. In our package, to measure redundancy more
comprehensively and make it applicable to dependence and
causality-based methods, we formulated redundancy by con-
sidering all possible combinations of feature flips, except
for flipping all features simultaneously. In other words, our
implementation of redundancy encompasses switching back
all possible subsets of the features, excluding both the empty
set and the full superset (See Equation 16).
τ ′(x′i , x, s) is a function that copies s features of x to s

feature of x′i and returns x′i . S is a set of all possible subsets
(power set) of A without ∅ and A (super set) where A =
{1, 2, ..., ρ} and |S| = 2ρ − 2.

redundancy =
1

m|S|

m∑
i=1

∑
s∈S

1f (τ ′(x ′
i ,x ,s))=zi (16)

Since counterfactual generation aims to propose hypothet-
ical scenarios that alter the decision with minimal changes, a
lower redundancy value indicates better results.

11) Robustness (a.k.a. stability)
Robustness is a prominent objective in counterfactual gen-
eration [54], and this metric is considered relevant for user
trust [55]. Mishra et al. [56] define it as a collection of related
yet distinct measures assessing the extent to which explana-
tions for an AI model may change under certain restricted
changes to the system, while similarly, Sharma et al. [37]
consider robustness as the distance between the instances and
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their corresponding counterfactuals however we refer to it as
proximity. In the literature, various other approaches exist to
measure robustness. Guidotti’s recent works define it as the
ability to produce similar counterfactuals for similar instances
that belong to the same class [2], [57]. Alvarez and Jaakkola’s
recent works [58], [59] posit that a good explanation should
not only explain the given sample but also provide similar
explanations for a similar sample and use local Lipschitz
constant to quantify robustness. Although there is no con-
sensus on a universal formula to measure robustness, there
is consensus on the definition of robustness itself [8], [10],
[22], [27], [34], [35], [38], [50], [52], [55], [59]–[66]. We
have chosen one of the most flexible, common, and general-
ized definitions of robustness, which involves measuring the
distance between the explanation of x and the explanation of
a slightly perturbed version of x (refer to Equation 17) [38],
[62], [67] and propose a slight change as in Equation 18 to
normalize the robustness value and make it more comparable.

robustness =
1

m

m∑
i=1

dist(ei , explain(P(x ))) (17)

robustnessnorm =
1

m

m∑
i=1

dist(ei , explain(P(x )))
dist(x ,P(x ))

(18)

A smaller robustness value indicates a more robust coun-
terfactual. The lower, the better.

However, there is a concern in the literature regarding
whether closest counterfactuals are sufficiently robust and if
there exists a trade-off between the robustness and proximity
metrics [62], [63]. This concern is discussed in Section VI.

12) Plausibility (a.k.a. actionability)
Plausibility is considered as a crucial requirement for in-
formative counterfactuals [6], [36]. Karimi et al. [31] and
Verma et al. [42] introduce the concept of plausible expla-
nations, defining them as semantically meaningful, multi-
modal, actionable, immutable, and unbiased explanations. On
the other hand, Guidotti et al. [2] emphasize that a plausible
explanation should also adhere to feature-based norms, avoid-
ing the proposal of outlier values within the features of the
explanations, and Molnar [68] mentions proximity is a good
proxy for plausibility.

However, Keane et al. [11] offer a more comprehensive
perspective on plausibility, categorizing various definitions
of the term into two groups: Plausibility-As-Proximity, which
somewhat aligns with the proximity metric mentioned earlier,
and Plausibility-as-More-Good-Features, which corresponds
to the aspects highlighted by Karimi et al. and Verma et
al. [31], [42]. In line with Keane et al., it is possible to
use proximity and constraint violation metrics in accordance
with the Plausibility-As-Proximity and Plausibility-as-More-
Good-Features categorizations, respectively.

On the other hand, an alternative perspective suggests that
conforming to the data distribution serves as a more accurate

proxy for plausibility [36], [48], [50], [69], [70]. Pawelczyk
et al. [64] support this approach, proposing that a plausi-
ble counterfactual is an instance from a possible world. In
alignment with this perspective, our package implements the
plausibility metric, following Laugel et al. [10], utilizing the
Local Outlier Factor score (Breunig et al., 2000) [71] for
outlier detection. Plausibility is formulated as in Equation 19
considering k = 1. In this manner, the measure quantifies
the extent to which counterfactuals deviate from the ground
truth instances of the same class where NLN (x) is a function
that returns Nearest Unlike Neighbour of x and NUN (x) is a
function that returns Nearest Like Neighbour of x.

plausibility =
1

m

m∑
i=1

dist(x ′
i ,NLN (x ′

i ))

dist(NLN (x ′
i ),NUN (NLN (x ′

i )))

(19)

13) Discriminative Power (a.k.a. dipo)
Guidotti et al. [2], in line with [21], [72], define discriminative
power as the ability to differentiate between two distinct
classes solely through a naive approach using counterfactuals
and implemented the metric using following steps. Train a
1NN model using x and e, classify all instances in kNUN (x)∪
kNLN (x) set, and calculate the accuracy score, which will
be discriminative power. However, the authors underscore
that, in accordance with the definition, the discriminative
power relies on a subjective basis, making its quantification
challenging without experiments involving human subjects.

14) Vulnerability (a.k.a. unconnectedness, unjustification)
Vulnerability refers to how susceptible the counterfactual is
to manipulation. Measuring the vulnerability is approached
in various ways in the literature [41], [48], [67], [73]. For
example, Slack et al. [67] run adversarial attacks to show
vulnerability, claim that vulnerable counterfactuals are open
tomanipulation, and show that even themost popular counter-
factual methods are open to such manipulations. The authors
point out the relationship between vulnerability and reliability
and propose three ways to mitigate such threat: (I) adding
noise to the initialization of the counterfactual search, (II)
reducing the set of features used to compute counterfactuals,
and (III) reducing the model complexity. On the other hand,
with a similar approach, Laugel et al. [73] mention that the
lack of robustness of the classifier causes vulnerability issues.
They follow a procedure to analyze the unconnectedness
of classification regions as mentioned in [48] (Local Risk
Assessment (LRA) and Vulnerability Evaluation (VE)) and
show that state-of-the-art post-hoc counterfactual approaches
may generate justified explanations but at the expense of
counterfactual proximity. And their implementation can be
found at https://github.com/thibaultlaugel/truce.

15) Computational Complexity (a.k.a. cost)
Computational complexity refers to the cost for the explainer
to generate a single explanation, encompassing various re-
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sources such as time and memory. Efficiency is crucial for
practical applications where timely and resource-efficient
explanations are essential. In the literature, it is typically
measured by the average time required to generate a single
explanation [8], [15], [19], [27], [38], [42].

16) Constraint Violation (a.k.a. feasibility, user constraints,
actionability)
The constraint violation metric is used to quantify the count
of violated pre-defined constraints in generated counterfac-
tuals [2], [15], [18], [19], [21], [23], [43], [44], [49]. These
constraints can be set by users or experts for different rea-
sons like bias prevention, personal preferences, and domain-
related constraints.

B. MEASURING THE QUALITY OF THE EXPLANATION
SYSTEMS
The following metrics are nominated for evaluating a set of
explanations that are generated for a set of instances (X). To
emphasize, all the metrics discussed in the previous section
can be generalized for the entire system by applying them to
a set of instances (sufficient number of instances) and taking
the mean of the results.

1) Coverage (a.k.a. explanatory competence)
As Keane et al. mentioned [11], in the literature, a way to
measure the quality of counterfactual explanation systems is
to evaluate how well they cover the entire data distribution.
There are two main approaches to measuring the coverage of
a system. First, detecting the out-of-distribution counterfac-
tuals like IM1 and IM2 [70], [74]. Second, quantifying the
ability to generate valid counterfactuals across various types
of instances [40], [49].

In the package, we follow the second idea and formulate
coverage as:

coverage =
1

|X |
∑
x∈X

1|e|>0, e = explain(x) (20)

2) Rigidity (a.k.a. fidelity)
The rigidity metric, applicable to twin XAI systems, quanti-
fies the extent to which the explainer can faithfully replicate
the machine learning model for a specific instance [16], [75].
Bayrak and Bach [75] formulate rigidity as in Equation 21,
where acc represents the accuracy score of the model, and
supp denotes the fraction of instances where the explanation
system and themodel agree, relative to the total number of ex-
planations. The authors mention that lower rigidity indicates
better performance.

rigidity =
∣∣∣1− supp

acc

∣∣∣ (21)

IV. APPLICABILITY FOR SEMIFACTUALS AND
ALTERFACTUALS
In contrast to the extensive attention received by counterfac-
tual explanations in the literature, other types of instance-

based explainers have received comparatively less focus.
Nevertheless, it is noteworthy that certain metrics can be
adapted to evaluate these alternative explanation methods.
Validity, plausibility, complexity, diversity, number of expla-
nations, constraint violation and coverage metrics can be
applied to all instance-based explainers.

A. SEMI-FACTUAL EXPLANATION EVALUATIONS
Semi-factual explanations share several key characteristics
with counterfactuals. With the help of a survey conducted
by Aryal and Keane [76], which gathers metrics and prior
knowledge, and a recent work by Kenny and Huang [77]
introduces the ’Gain’ concept aiming to quantify how much
a user can benefit from the explanation, we define applicable
metrics for semi-factuals as follows: Proximity, higher values
are considered better, indicating that the semi-factual should
be distant from the instance. Sparsity, similar to counterfac-
tuals, making changes to fewer features can be important in
some cases. yNN and feasibility, similar to counterfactuals, to
measure the support from background data. Relative distance
and kNLN distance are applicable and also adapted as kNUN
distance since the goal is to generate an explanation from the
same class. For semi-factuals, staying close to the decision
boundary and proximity to NUN are crucial considerations.

B. ALTER-FACTUAL EXPLANATION EVALUATIONS
Even though the alter-factual thinking concept is discussed
in many psychology articles, it is relatively new in the XAI
field. Mertes et al. [78] introduced alter-factual explanations
in 2022. As this is the only application thus far and the
authors relied solely on user evaluations, we currently lack
information on the evaluation metrics used in the existing
literature. However, similar to semi-factuals, the proximity
metric and metrics measuring support from background data
can be applied, in addition to metrics suitable for all instance-
based explainers, as mentioned above. Moreover, since alter-
factuals provide alternate scenarios that do not affect the
decision-making process adversely, the redundancy metric
can be utilized and a higher redundancy value indicates better
results in that case.

V. CEval TOOLKIT
We provide an accompanying toolkit, a Python package, CE-
val4, designed to facilitate the evaluation of counterfactual
explanations. With a focus on adaptability, CEval toolkit can
be easily adjusted for various use cases, providing users with a
versatile solution. The package incorporates a comprehensive
set of 14 implemented metrics, as detailed in Table 2 and
Sect. III, ensuring a broad coverage of evaluation criteria.
Metrics included in the package are carefully selected based
on their applicability to diverse scenarios and their proven
effectiveness in evaluating the quality of explanations. For
instance, metrics that rely on specific explainers are omitted
to ensure compatibility with explainers implemented in var-

4https://pypi.org/project/CEval/
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TABLE 2. A summary table of quantitative evaluation metrics and their frequency in the literature (count), applicability to different types of
counterfactual explainers (applicable), requirements to calculate them (requires), and summarized description (short description).

Metrics Count Applicable Requires Short Description
Generated3 Existed3 Single3 Multi3 Data3 Model3

Validity 1 12 x x x x - x Whether the decision was altered.
Proximity 1 24 x x x x - - Mean of feature-wise distance between the instance

and its counterfactuals.
Sparsity 1 15 x x x x - - Mean number of altered features between the instance

and its counterfactuals.
# of counterfactuals 1 1 x x - x - - Number of counterfactuals generated for an instance.
Diversity 1 12 x x - x - - Mean proximity between counterfactuals generated

for an instance.
Diversity_lcc 1 12 x x - x x - Diversity with class coverage coefficient.
yNN 1 4 x x x x x x Amount of support that counterfactuals receive from

positively classified background data.
Feasibility 1 9 x x x x x - Mean proximity of the counterfactuals to their nearest

observations in the background data.
kNLN Distance 1 1 x x x x x - Mean distance of counterfactuals to their k-NLN.
Relative Distance 1 4 x - x x x - The ratio of the mean distance between the instance

and counterfactuals to the mean distance between the
instance and its NUN.

Redundancy 1 5 x x x x - x Mean count of unnecessary feature changes.
Robustness 2 25 x - x x x x Mean proximity between the explanation of the in-

stance and the explanation of a slightly perturbed
version of the instance.

Plausibility 1 12 x - x x x - The degree of credibility in the context.
Discriminative Power 3 x x - x x - The ability to differentiate two distinct classes through

a naive approach.
Vulnerability 4 x - x x x - The extent of susceptibility to manipulations.
Complexity 6 x x x x x x Cost for the explainer to generate a single explanation.
Constraints 1 9 x x x x - - Mean count of violated pre-defined constraints.
Coverage 2 5 x x x x - - The ability to generate valid counterfactuals across

various types of instances.
1This metric is implemented in the package.
2This metric requires explanation method/function to be calculated.
3Applicability to explainers that provide generated: counterfactuals that are generated, existed: counterfactuals that are selected from existing samples, single:
only one counterfactual explanation per sample, "multi": many counterfactuals explanation per sample.

ious programming languages. Moreover, metrics are chosen
for their clarity, interpretability, and ease of implementation,
enhancing the toolkit’s usability for both researchers and
practitioners.

Notably, the package is compatible with explainers imple-
mented in various languages, as it only requires the expla-
nations themselves, making it a solid integration for users.
Additionally, users can benefit from the examples provided,
which enhance the accessibility and utility of the toolkit.

While the CEval toolkit offers a comprehensive set of
evaluationmetrics, it may only cover some possible aspects of
counterfactual explanation evaluation. Users should be aware
that the toolkit’s effectiveness may vary depending on the
specific characteristics of the explanations and the underlying
data. Additionally, the toolkit’s performance may be influ-
enced by factors such as the complexity of the models being
evaluated and the quality of the explanations themselves. As
with any evaluation toolkit, users should exercise caution
and consider the limitations of the metrics provided when
interpreting the results.

VI. DISCUSSIONS AND FUTURE DIRECTIONS
In Section III, we introduced a suite of metrics with various
approaches sourced from the existing literature. While en-

hancing and proposing slight modifications to some of these
metrics in Sect. III, we strive to facilitate deeper reflections
and discussions and offer valuable recommendations in this
section.
We categorized these discussions into eight subcategories,

respectively addressing: (I) the use of validity as a criterion,
(II) interpretation of the level of sparsity, (III) exploration of
the relationship between proximity, plausibility, and robust-
ness, and determination of optimal values, (IV) the influence
of distance function selection and identification of the most
suitable function, (V) the implications of robustness across
diverse application cases, (VI) common challenges associated
with neighbor-based metrics such as yNN, feasibility, and
kNLN, and the impact of neighbor selection, (VII) exami-
nation of the pros and cons of different approaches to the
plausibility term and plausibility maximization, and (VIII)
consideration of the effect of presenting a diverse set of
hypothetical scenarios to users and strategies for determining
the optimal number of explanations.
Validity as a criterion. Since the intrinsic promise of coun-

terfactuals lies in their ability to provide counterexamples as
explanations, validity can be set as a crucial prerequisite in
explainers.
Sparsity. is a widely employed technique, and is often
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associated with the idea of changing the minimum number
of features mean higher quality [40]. However, we aim to
critically examine the question: ’Why do we need sparse
counterfactuals?’ In agreement with Virgolin and Fracaros
[79], we acknowledge the potential benefits of sparsity in en-
hancing the quality of counterfactual explanations. However,
it is important to note that relying solely on sparsity may not
be sufficient to measure the overall quality of counterfactuals.
Furthermore, we emphasize the significance of considering
the specific use case, as blindly rejecting correlated features
in certain application areas may lead to misinterpretations.
Proximity, plausibility, and robustness relationship. Using

proximity as a primary metric is extensive in the litera-
ture. However, several works discuss and highlight various
inquiries. Artelt et al. [62] and Dutta et al. [63] inquire
about a potential trade-off between plausibility/robustness
and proximity and question whether the closest counterfac-
tuals are sufficiently robust and plausible. Artelt et al. en-
dorse the use of plausibility over proximity, emphasizing
the plausible counterfactuals are more robust and the insta-
bility of the closest counterfactuals due to their sensitivity
to small perturbations. Similarly, diverse recent works [34],
[50], [64] posit that counterfactuals lying on the datamanifold
may exhibit greater robustness than the closest counterfactu-
als. While the literature frequently explores the notion of a
proximity-robustness or proximity-plausibility trade-off, par-
ticular works, including [22], [65], [66], propose algorithms
designed to identify counterfactuals that are both close and ro-
bust. These works indicate the feasibility of generating close
and robust explanations and proof on linear models. However,
Delaney et al. [36] demonstrate that counterfactuals with high
proximity might fall outside the data manifold, leading to
implausibility. To the best of our knowledge, counterfactual
generation is an optimization problem, and we agree with
Artelt et al. [62] that generating stable and robust counterfac-
tuals is still an open research problem.Moreover, tailoring the
counterfactual generation process according to specific use
cases and needs adds an additional layer of complexity to this
challenge.
Distance function selection. The chosen distance function

influences the effectiveness of evaluation or optimization.
While common functions like Euclidean and Minkowsky
are widely used, it is crucial to consider the nature of the
data. For example, Guidotti et al.’s adapted distance function
[2] and Gower distance support both nominal and numeric
features, which is valuable in terms of multimodality. A prac-
tical approach involves using the same encoding method as
the machine learning model combined with a distance met-
ric that supports numeric features. Additionally, considering
distance functions with normalization or encoding proves
beneficial for the proximity-plausibility trade-off. Domain
expertise is invaluable for explainers, and the involvement
of a domain expert or domain-related data can contribute to
defining a domain-specific distance function. Such tailored
distance functions provide a nuanced and reliable solution for
discussions surrounding the proximity-plausibility trade-off.

Robustness. Robustness is a frequently contemplated met-
ric, with Jiang et al. [24] highlighting recent studies showing
the potential lack of robustness of counterfactuals to changes
in machine learning models. These discussions prompt ques-
tions about their reliability in real-world applications. In
this paper, we used the definition of robustness that makes
perturbations in the instance, generates counterfactuals for
the perturbed instance, and assesses the distance between
counterfactuals. However, we emphasize a concern regarding
the perturbation of the instance, where the significance of
perturbing specific features is negligible. Real-world applica-
tions often lack clear decision boundaries, and perturbing an
instance may unexpectedly alter decisions, potentially lead-
ing to counterfactual generation for instances from another
class. Recent discussions on the importance of feature con-
tributions [26], [38] underline the significance of considering
these perturbations thoughtfully, anticipating more favorable
outcomes.
yNN, feasibility, and kNLN. The yNN, feasibility, and

kNLN distance metrics make measurements over the nearest
neighbors. Central to this assessment is the critical decision
of determining the number of neighbors, which should be
selected based on the specific application case. Also, for the
yNN metric, a higher value nearing 1 is considered indicative
of the surroundings of these points being explored by posi-
tively classified instances, suggesting a certain level of model
understanding. However, the challenge lies in recognizing
that class areas may not always exhibit consistent patterns
in real-world applications. This fact raises questions about
the appropriate selection of k , as an optimal choice should
consider broad class regions and accommodate the intrica-
cies of localized and specific decision boundaries. Achiev-
ing a balance between comprehensiveness and precision in
neighbor selection becomes pivotal for robust counterfactual
evaluation. Moreover, in the literature, feasibility is generally
associated with connectedness and actionability. Therefore,
combining constraint violations with a data-driven distribu-
tional approach might provide a more comprehensive assess-
ment.
Plausibility maximization. The plausibility term is exam-

ined through four distinct approaches: (I) Being close to the
decision boundary. In instances that have multiple decision
boundaries around them, proximity to the target class decision
boundary becomes crucial. Two key considerations arise: the
availability of ground truth data and defining the threshold
for proximity to the decision boundary. (II) Making changes
in the actionable features. Utilizing feature importance tech-
niques and predefined constraints is a common practice. In
this paper, it is treated as the constraint violation metric. (III)
Staying in the data manifold. A prevalent approach suggests
that falling into the data distribution is a good indicator
of plausibility [48], [50], [69], [70]. (IV) Originating from
existing data samples. In low-density distribution, originat-
ing from existing data samples might cause implausibility.
However, with a well-developed optimization method, this
effect can be minimized, as in Bayrak and Bach’s study [38]
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generating counterfactuals with a dynamic, iterative approach
between the instance and NUN. While we acknowledge the
significance of all four approaches, we assert that none in-
dividually defines plausibility adequately. Therefore, com-
prehensive consideration of these approaches and developing
domain-aware explainers contributes to enhanced plausibil-
ity.
Number of explanations. Many methods aim to generate

a set of diverse counterfactual explanations to explain an
individual instance withmany different approaches [21], [43],
[45], [46]. Proposing users multiple hypothetical scenarios
might be helpful, but we believe that counterfactuals should
be generated on purpose, and sometimes, providing an exces-
sive number of hypothetical examples might unintentionally
disrupt the targeted reasoning process for users. In alignment
with Karimi et al. [31], we argue that diversity should not be
misconstrued as repetition. Removal of duplications, akin to
considerations for validity, can also serve as a prerequisite in
explainers.

VII. CONCLUSION
In this work, we conducted a comprehensive survey focusing
on the evaluation of instance-based explanations, particularly
aimed CE. Our primary objective was to lighten up the intri-
cate landscape of CE evaluations, providing valuable insights
for both XAI practitioners and researchers. Alongside offer-
ing a standardized notation for metrics and an accompanying
Python toolkit, we extend our exploration to consider the
potential applicability of metrics to alter-factuals and semi-
factuals. Moreover, our work engages in critical discussions
concerning the trade-offs and considerations inherent in met-
ric selection, underscoring the necessity for a nuanced under-
standing of application-specific requirements. This contribu-
tion aims to heighten awareness regarding metric utilization
and counterfactual generation method development.

Acknowledging the open nature of instance-based expla-
nation evaluation, we propose future research directions that
look into concepts such as causality and optimality, particu-
larly in the context of instance-based explanations for multi-
modal data. Recognizing the inherent limitations of our ef-
forts to meet broad community requirements, such as provid-
ing a framework for both qualitative and quantitative evalu-
ations of explainers, our study strives to address discernible
gaps, thereby laying the groundwork for further explorations.

APPENDIX.
CEval UTILIZATION AND EXPERIMENTS
This appendix serves as a concise guide for installing and
using the package, offering straightforward instructions for
users to instruct themselves quickly on its functionalities. Ad-
ditionally, it presents reproducible experimental results show-
casing the package’s versatility across a set of open-source
explainers, datasets, and models. These results underscore
the package’s effectiveness in various scenarios, providing
users with valuable insights into its capabilities for supporting
diverse XAI tasks.

The CEval package is available for download from PyPI
and can be installed using the following command:

$ pip install CEval

To use the package, import it into your Python script:

from CEval import CEval

Create a CEval object (evaluator) and provide the
following arguments: samples to explain (X), label, back-
ground data (data), model, k, distance function (dist),
and a list of constraints:

evaluator = CEval(X, label, data, model, k, dist,

constraints)

Add explainers with explanations generated for X to the
evaluator. Provide explainer name, explanations, ex-
plainer type, and explanation mode arguments:

evaluator.add_explainer('Explainer-1', exp_res1,

exp_type='generated-cf', mode='1to1')

evaluator.add_explainer('Explainer-2', exp_res2,

exp_type='generated-cf', mode='1toN')

The CEval object (evaluator) maintains a DataFrame
named comparison_table that stores the results of the
evaluations for the added explainers:

display(evaluator.comparison_table)

To show the utilization of the CEval Toolkit, we con-
ducted a set of reproducible experiments to evaluate expla-
nations generated by utilizing three different CE methods
on the Breast Cancer Dataset5 and the South German Credit
Dataset6. These datasets exhibit distinct characteristics. We
used open-source CEs with different characteristics, CFNOW
[80], DICE [21], and CFSHAP [81]. The experiments en-
compassed a comprehensive analysis of the performance of
explainers on different machine learning models, including
Random Forest (RF), and Gradient Boost (GBC and XGB),
representing diverse applications.
Experiments were conducted with possible combinations

of the explainers, models, and datasets. The quality of expla-
nations was quantified through performance metrics imple-
mented and facilitated by the CEval Toolkit, as presented in
Table 3.
Indeed, it is essential to stress that the interpretation of

these results should be context-dependent, considering the
specific requirements and objectives of the users. For in-
stance, when selecting an explainer for a Breast Cancer Data
application where maintaining validity is essential, opting for
an explainer like DICE may not be advisable despite its high

5https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+
diagnostic

6https://archive.ics.uci.edu/dataset/522/south+german+credit
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TABLE 3. Experimental results. Evaluation of CFNOW, DICE, and CFSHAP explanations.

Breast Cancer Dataset Credit Dataset
CFNOW DICE CFSHAP CFNOW DICE CFSHAP

RF XGB RF XGB RF XGB RF GBC RF GBC RF GBC
validity 1.0 0.971 0.903 0.971 1.0 0.971 0.84 0.72 0.88 0.72 0.90 0.72
proximity 57.968 24.486 959.59 873.97 559.63 544.26 27.953 55.157 3177.4 3591.8 1932.2 1984.2
proximitygower 0.052 0.052 0.056 0.056 0.052 0.052 0.113 0.113 0.093 0.093 0.113 0.113
sparsity 0.410 0.346 0.056 0.056 0.999 0.999 0.189 0.204 0.093 0.093 0.443 0.436
# of CF - - 5 5 - - - - 5 5 - -
diversity - - 0.002 0.001 - - - - 0.0 0.0 - -
diversitylcc - - 0.003 0.001 - - - - 0.0 0.0 - -
yNN 0.109 0.143 0.517 0.536 0.646 0.646 0.0 0.0 0.0 0.0 0.0 0.0
feasibility 108.15 94.743 422.79 458.22 24.493 24.346 27.215 27.108 200.06 174.49 29.220 25.813
kNLN_dist 125.71 127.09 107.82 121.19 88.971 90.943 182.44 201.50 182.01 213.70 164.12 182.62
relative_dist 0.476 0.501 14.190 12.734 5.308 4.848 0.949 1.920 175.94 188.56 101.08 96.150
redundancy 7.400 6.400 3.851 2.846 29.400 29.086 1.120 1.48 0.468 0.52 6.980 7.80
plausibility 8.332 7.770 6.474 9.889 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0
constraint_violation 1.0 0.886 0.994 0.971 1.0 1.0 - - - - - -

diversity and feasibility scores. Similarly, when selecting an
explainer for Credit Data, CFNOW outperformed in proxim-
ity. However, if sparsity is more critical for that application,
we cannot simply advise CFNOW because DICE performs
significantly better in terms of sparsity, even though it may
not excel in proximity. Consequently, users should carefully
evaluate the trade-offs and select the most suitable explainer
based on their unique use case and application needs.
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