
REMARKS ON SOLITARY WAVES IN EQUATIONS WITH

NONLOCAL CUBIC TERMS

JOHANNA ULVEDAL MARSTRANDER1

Abstract. In this overview paper, we show existence of smooth solitary-wave solutions
to the nonlinear, dispersive evolution equations of the form

∂tu+ ∂x(Λ
su+ uΛru2) = 0,

where Λs,Λr are Bessel-type Fourier multipliers. The linear operator may be of low
fractional order, s > 0, while the operator on the nonlinear part is assumed to act
slightly smoother, r < s − 1. The problem is related to the mathematical theory of
water waves; we build upon previous works on similar equations, extending them to
allow for a nonlocal nonlinearity. Mathematical tools include constrained minimization,
Lion’s concentration–compactness principle, spectral estimates, and product estimates
in fractional Sobolev spaces.

1. Introduction

Many one-dimensional model equations for water waves can be written as

∂tu+ ∂x(Lu− n(u)) = 0, (1.1)

where u is a real-valued function of time and space, L is a Fourier multiplier and n is a
local, nonlinear function. This class of equations includes many well-known models, such
as the Korteweg–de Vries and Benjamin–Ono equations when the operator L is a positive-
order operator, and Whitham-type equations when L has negative order [10, 16]. We
restrict our attention here to operators L of positive order, which physically corresponds
to situations with surface tension and stronger dispersion [15].

In the present work, we consider a way to include frequency interaction also in the
nonlinear term. This is natural in the context of water waves, since exact modeling may
give rise to nonlocal nonlinearities [14, 15]. Recent years have seen an increased interest
in these types of equations, see e.g. [6, 7, 20] concerning traveling waves.

There has been extensive research on whether or not eq. (1.1) under different assump-
tions on L and n admits a type of solutions called solitary waves. These are localized
solutions that propagate at constant speed ν while retaining their original shape:

(x, t) 7→ u(x− νt) and u(x− νt) → 0 as |x− νt| → ∞.
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While their existence may be demonstrated in several ways [3,5,13,22], many constructions
of solitary waves are based upon Weinstein’s argument in [23], where solutions are found by
L2-constrained minimization with the help of Lions’ concentration–compactness method
[17], see e.g. [18] and references therein. Building upon [2] and [18], we shall investigate
how this technique may be modified to accomodate nonlocal nonlinearities. A variation
of Weinstein’s argument adapted to negative s, see [9], has later been developed and
applied to bidirectional systems with negative-order Fourier multipliers in nonlinear terms
[6, 7]. Nonlocal nonlinearities also arise in works where solitary waves are constructed
using a local variational reduction [8, 12]. In this paper, however, we will study nonlocal
nonlinearities in the one-dimensional setting for positive s.

Solitary-wave solutions to eq. (1.1) arise when dispersive effects due to the term Lu and
nonlinear effects due to n(u) are balanced [15, 16]. Typically, one can consider operators
L of order s, and nonlinearities with leading-order power p, and show that solitary-wave
solutions to eq. (1.1) exist for a range of parameters s, p. For positive-order operators L,

existence is shown for a given p if s is sufficiently high, s > p−1
p+1 [2, 18]. Contrariwise, the

fractional KdV equation does not admit solitary-wave solutions for s below this limit [16].
Thus, if one wishes to find solitary waves when the dispersion is weak, the nonlinearity
must be correspondingly weak.

In our case, instead of considering a range of powers p, we fix a cubic nonlinearity and
apply an operator of order r. Let Λα be the Bessel Fourier multiplier in space defined by

Λ̂αu(ξ) = (1 + ξ2)
α
2 û(ξ).

For real numbers s, r, we shall consider the equation

∂tu+ ∂x(Λ
su− uΛru2) = 0. (1.2)

It is also possible to replace Λs,Λr by more general operators, see Section 3. A motivation
for studying the cubic nonlinearity uΛru2 is that a variational formulation is readily avail-
able. This is not the case for the quadratic equivalent uΛru. To use a similar approach
for an equation with a quadratic nonlocal term, one needs to consider pseudo-products.
This was recently done by the author in [19]. The author is grateful to Douglas Svensson
Seth for pointing out helpful relationships in the variational formulation.

Observe that when r = 0, eq. (1.2) coincides with eq. (1.1) with L = Λs and n(u) = u3.
Note that the introduction of an operator in the nonlinear term affects the interplay
between dispersive and nonlinear effects. Just as the power of the nonlinearity p is bounded
above by the order of the dispersive operator s in [2, 18], r must be bounded above by s
in our work. We shall assume that s, r ∈ R satisfy

s > 0, r < s− 1. (1.3)

Here, r may be positive or negative. When r = 0, the lower bound for s that follows
agrees with p < 2s + 1 from [2]. However, if r is sufficiently negative, we will see that
there are solitary-wave solutions to eq. (1.2) for all s > 0. Thus the existence of solitary
waves in this type of equation does not depend directly on the power of the nonlinearity,
but rather on the strength of the nonlinearity in a general sense. Under the solitary-wave
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ansatz, eq. (1.2) becomes

−νu+ Λsu− uΛru2 = 0. (1.4)

Theorem 1.1. Let s > 0, r < s − 1. For every µ > 0, there is a u ∈ H∞(R) satisfying
1
2∥u∥

2
L2 = µ that solves the solitary-wave equation eq. (1.4). The corresponding solitary

waves are subcritical, that is, the wave speed satisfies ν < 1. Furthermore, for any fixed
µ0 > 0, the estimates

∥u∥L∞ ≲ ∥u∥
H

s
2
≂ µ

1
2 , 1− ν ≂ µ2. (1.5)

hold uniformly in µ ∈ (0, µ0).

We show existence of smooth solitary waves of any size, small or large. Here, the space
H∞(R) = ∩t∈RH

t(R), where Ht(R) are fractional Sobolev spaces, see Section 2.1. In
eq. (1.5), the implicit constants may depend on µ0, but µ0 does not need to be small.

While the upper bound on r in eq. (1.3) appears in the proof through embedding and
interpolation theorems, it is in fact related to properties of the equation and we cannot
expect to find solutions below s > r + 1. When r = 0 we get the special case of eq. (1.1)
under the solitary-wave ansatz that is most similar to our equation,

−νu+ Λsu− u3 = 0. (1.6)

In this case, our assumptions on r, s imply that s > 1. For the generalized fKdV-equation
with p = 3, the value s = 1 is the critical exponent below which solitary-wave solutions
are no longer stable [4], and the method we use yields a set of minimizers that form stable

sets of solutions [1, 2] As mentioned, existence of solutions to eq. (1.6) for s > p−1
p+1 = 1

2

was shown in [2], but then by appealing to a scaling argument at the cost of stability.
To keep the exposition clear and highlight what is new, our strategy in proving The-

orem 1.1 will be to outline the method for eq. (1.6) and discuss the changes that are
made to accommodate the nonlocal nonlinearity in eq. (1.4). This constitutes Section 2.
Equation (1.6) is treated in [2] and we mostly follow that paper. We will, however, also
refer to specific lemmas in [18] where some arguments have been considerably simplified.
We prove rigorously only the parts that are new for eq. (1.4). In Section 3, we discuss
possible generalizations.

2. Solitary-waves solutions to eqs. (1.4) and (1.6)

2.1. Formulation as a constrained minimization problem. In the classical case,
existence of solutions to eq. (1.6) is established via a related constrained minimization
problem. Let S ′(R) be the space of tempered distributions, and let Lp(R), 1 ≤ p < ∞ be
the standard Lebesgue spaces with norm ∥u∥pLp =

∫
R |u|p dx. We search for minimizers in

fractional Sobolev spaces,

Ht(R) = {u ∈ S ′(R) : ∥u∥Ht = ∥Λtu∥L2 <∞}.
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Define the functionals E ,Q,L,N : H
s
2 (R) → R by

E(u) = 1

2

∫
R
uΛsu dx︸ ︷︷ ︸

=L(u)

− 1

4

∫
R
u4 dx︸ ︷︷ ︸

=N (u)

and Q(u) =
1

2

∫
R
u2 dx.

Due to the Lagrange multiplier principle, minimizers of the constrained minimization
problem

Γµ = inf{E(u) : u ∈ H
s
2 (R) and Q(u) = µ}

will solve eq. (1.6) with wave speed ν being the Lagrange multiplier.
To formulate the corresponding minimization problem for eq. (1.4), we simply replace

N with Ñ incorporating the nonlocal operator:

Ẽ(u) = 1

2

∫
R
uΛsu dx︸ ︷︷ ︸

=L(u)

− 1

4

∫
R
u2Λru2 dx︸ ︷︷ ︸
=Ñ (u)

,

Γ̃µ = inf{Ẽ(u) : u ∈ H
s
2 (R) and Q(u) = µ}

It is easily verified that the Fréchet derivative of Ñ is uΛru2, and so a minimizer of Γ̃µ

solves eq. (1.4) with langrange multiplier ν:

L′(u)− Ñ ′(u)− νQ′(u) = −νu+ Λsu− uΛru2 = 0.

2.1.1. The infimum is well defined. To show that Γµ is bounded below, the strategy is to
bound N in terms of L to a power γ < 1. Then we would have

E(u) ≥ L(u)−N (u) ≥ L(u)− CL(u)γ > −∞,

since L(u) is positive and the first term dominates the last as L(u) → ∞. This is straight-
forward since N ≂ ∥u∥4L4 and L(u) ≂ ∥u∥2

H
s
2
and Sobolev embedding and interpolation

yields

∥u∥L4 ≲ ∥u∥
H

1
4
≲ ∥u∥1−

1
2s

L2 ∥u∥
1
2s

H
s
2
, (2.1)

and 1
2s <

1
2 as s > 1.

The same argument is directly applicable also to Γ̃µ as soon as we establish the inequality

∥u2∥2
H

r
2︸ ︷︷ ︸

≂Ñ (u)

≲ ∥u∥4−2γ
L2 ∥u∥2γ

H
s
2︸ ︷︷ ︸

≂L(u)γ

(2.2)

for some 0 < γ < 1. The nonlocal operator makes the argument more involved but has
the added benefit of ”weakening” the nonlinear part Ñ when r is sufficiently negative,
allowing us to go below the limit in the classical case, s > 1. To show eq. (2.2), we rely
on product estimates in fractional Sobolev spaces, see Proposition A.1 in Appendix A.

Lemma 2.1. For u ∈ H
s
2 (R), there is a γ < 1 such that

∥u2∥
H

r
2
≲ ∥u∥2−γ

L2 ∥u∥γ
H

s
2
.
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Proof. We treat the cases s > 1, s ≤ 1 separately and apply Proposition A.1.
Suppose s > 1. We assume that r > 0. Otherwise, we can apply the same method to

any r̃ such that 0 < r̃ < s− 1 and use that ∥u2∥
H

r
2
≤ ∥u2∥

H
r̃
2
. We pick a τ ∈ R satisfying

1 < τ < s− r

and apply Proposition A.1 (i) with t1 =
r
2 and t2 =

τ
2 :

∥u2∥
H

r
2
≲ ∥u∥

H
r
2
∥u∥

H
τ
2

Interpolation then yields the desired result,

∥u2∥
H

r
2
≲ ∥u∥2−

r+τ
s

L2 ∥u∥
r+τ
s

H
s
2
,

with γ = r+τ
s < r+s−r

s = 1.
Suppose now that s ≤ 1. If s = 1, we can pick s̃ satisfying r + 1 < s̃ < 1, apply the

same method to s̃ instead of s. Hence we can assume that s < 1. If r > −1, applying
Proposition A.1 (ii) with t1 = 0 and t2 =

r+1
2 yields:

∥u2∥
H

r
2
≲ ∥u∥L2∥u∥

H
r+1
2

≲ ∥u∥2−
r+1
s

L2 ∥u∥
r+1
s

H
s
2
,

which shows the result with γ = r+1
s < 1. If r ≤ −1, we pick r̃ satisfying −1 < r̃ < s− 1

and use r̃ instead of r. □

2.1.2. Upper bound for Γµ. To be able to estimate the sizes of the functionals L,N , Ñ ,

we also need an upper bound for Γµ, Γ̃µ. In [2], the author shows that Γµ < 0. However,
as remarked in a later version of that paper, that estimate only holds for large solutions
or if the symbol of the dispersive operator is homogeneous. Fortunately, only Γµ < µ is
needed to obtain the necessary estimates in the rest of the proof. We show this bound
using a long-wave ansatz for Γ̃µ, which of course implies Γµ < µ since that is a special
case with r = 0.

Lemma 2.2. The infimum satisfies Γ̃µ < µ.

Proof. For ϕ ∈ S(R) satisfying Q(ϕ) = µ and 0 < θ < 1, let ϕθ(x) =
√
θϕ(θx). Then

Q(ϕθ) = µ and by properties of the Fourier transform,

L(ϕθ) = µ+
1

2

∫
R
(⟨ξ⟩s − 1)

∣∣∣ϕ̂θ(ξ)∣∣∣2 dξ = µ+
1

2

∫
R
(⟨θξ⟩s − 1)

∣∣∣ϕ̂(ξ)∣∣∣2 dξ.
If s < 2, then ⟨θξ⟩s − 1 ≲ |θξ|2, while if s ≥ 2, then ⟨θξ⟩s − 1 ≲ |θξ|2 + |θξ|s. Since
0 < θ < 1 and ϕ ∈ S(R), this implies that there is a constant C1 > 0 such that

L(ϕθ) ≤ µ+ C1θ
2.

Noting that ⟨θξ⟩r ≥ min(⟨ξ⟩r, 1) for all ξ ∈ R, we can similarly conclude that

Ñ (ϕθ) =
1

4

∫
R
⟨ξ⟩r

∣∣∣ϕ̂2θ(ξ)∣∣∣2 dξ = 1

4
θ

∫
R
⟨θξ⟩r

∣∣∣ϕ̂2(ξ)∣∣∣2 dξ ≥ C2θ
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for some C2 > 0. Thus

E(ϕθ) ≤ µ+ C1θ
2 − C2θ,

and picking θ > 0 small enough ensures that

Γµ ≤ E(ϕθ) < µ.

□

2.2. Concentration–compactness. Although Γµ, Γ̃µ > ∞, minimizing sequences of

Γµ, Γ̃µ do not necessarily converge as R is not compact. To overcome this, we use Lions’
concentration–compactness principle [17]. Informally, any bounded sequence will either
vanish (the mass spreads out), dichotomize (the mass separates in space) or concentrate
(most of the mass remains in a bounded domain). The concentration–compactness prin-
ciple is stated in a form suitable for our purpose in [2, Lemma 2.6], but we explain what
needs to be shown in the next sections. We will apply the result to the sequence {1

2u
2
n}n∈N,

where {un}n∈N is a minimizing sequence for Γµ or Γ̃µ. The strategy will be to show that
any minimizing sequence will have a subsequence for which we can exclude both vanishing
and dichotomy. Then we show that concentration leads to convergence.

2.2.1. Excluding vanishing. By definition, the sequence {1
2u

2
n}n∈N vanishes if for all r <∞

lim
n→∞

sup
y∈R

∫ y+r

y−r
u2n dx = 0.

It turns out that if ∥u∥
H

s
2
< ∞ and ∥u∥Lq ≥ δ > 0 for some suitable q, then {1

2u
2
n}n∈N

cannot vanish, due to the following result.

Lemma 2.3 ([2, Lemma 3.4]). Let v ∈ H
s
2 (R) and suppose q satisfies q > 2 if s ≥ 1 and

2 < q < 2
1−s if s < 1. Given δ > 0, suppose that ∥v∥−1

H
s
2
, ∥v∥Lq ≥ δ. Then there is ε > 0

such that

sup
j∈Z

∫ j+2

j−2
|v|q dx ≥ ε. (2.3)

In [2] it is then shown that eq. (2.3) and ∥v∥−1

H
s
2
> δ implies

sup
j∈Z

∫ j+2

j−2
|v|2 dx ≥ ε,

which of course excludes vanishing when applied to un.
In the classical case, ∥un∥H s

2
<∞ follows easily from Γµ < µ and eq. (2.1) since

∥un∥2
H

s
2
≂ L(un) = E(un) +N (un) < µ+ µ1−γ∥un∥2γ

H
s
2
, γ < 1.

Using only that L(u) ≥ µ, Γµ < µ one can also easily deduce that there is a δ > 0 such
that N (un) ≥ δ, see e.g. [2, Lemma 4.2], passing to a subsequence if necessary. In the
classical case, this is all that is needed to apply Lemma 2.3, as ∥un∥4L4 ≂ N (un) ≥ δ and
q = 4 satisfies the assumptions (recall that s > 1 in the classical case).
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For the modified equation eq. (1.4), ∥un∥H s
2
< ∞ and Ñ ≥ δ hold by the same ar-

gument, since the arguments only relied on bounds on the functionals E ,L,N and Γµ.
The same bounds hold for the modified versions, so one may simply replace E ,N ,Γµ with

Ẽ , Ñ , Γ̃µ and obtain the same results.

When attempting to go from a lower bound on Ñ (un) to a lower bound on ∥un∥Lq , the
introduction of the nonlocal nonlinearity gives rise to two new problems. The first is that
the estimate ∥un∥4L4 ≳ Ñ (un) does not hold in general. The second, and bigger problem

is that q = 4 only satisfies the assumptions of Lemma 2.3 when s > 1
2 , while a sufficiently

negative r allows the minimization problem to be well-defined for s > 0. To overcome
this, we need the following lemma.

Lemma 2.4. Let u ∈ H
s
2 (R). When 0 < r < s− 1,

∥u2∥
H

r
2
≤ ∥u∥2(1−

r
s
)

L4 ∥u∥
2r
s

H
s
2
.

Furthermore, when s < 1, there is a q satisfying 2 < q < 2
1− s

2
such that

∥u2∥
H

r
2
≲ ∥u∥Lq∥u∥

H
s
2
. (2.4)

Proof. We show the estimate when 0 < r < s− 1 first. Interpolating, we find that

∥u2∥
H

r
2
≤ ∥u2∥1−

r
s

L2 ∥u2∥
r
s

H
s
2
.

Since s > 1, H
s
2 (R) is a Banach algebra. Hence ∥u2∥

H
s
2
≲ ∥u∥2

H
s
2
, and we conclude that

∥u2∥
H

r
2
≤ ∥u2∥1−

r
s

L2 ∥u∥
2r
s

H
s
2
= ∥u∥2−

2r
s

L4 ∥u∥
2r
s

H
s
2
.

The estimate when s < 1 is shown by a direct calculation, by appealing to Sobolev
embedding and Proposition A.2. If r > s

2 −1, set r̃ = r. Otherwise, pick r̃ ∈ ( s2 −1, s−1).
Let

p =
2

1− r̃
and q =

2
s
2 − r̃

.

Since s < 1 < 2 and r̃ < s−1 the denominater s
2−r̃ > 0. Furthermore, r̃ > s

2−1 guarantees

that q > 2. Clearly also q < 2
1− s

2
. By Sobolev embedding, valid since p < 2

2− s
2
< 2 and

r̃
2 − 1

2 = −1
p ,

∥u2∥
H

r
2
≲ ∥u2∥

H
r̃
2
≲ ∥u2∥Lp .

Now applying Proposition A.2 with t = s
2 and p, q as above gives eq. (2.4). □

When s ≥ 1, q = 4 satisfies the assumptions of Lemma 2.3. In that case, we can bound
∥un∥L4 from below in terms of Ñ (un) using the first part of Lemma 2.4 when r > 0 or
the simpler estimate ∥u2∥2

H
r
2
≤ ∥un∥L4 when r ≤ 0. When s < 1, we can instead use the

second part of Lemma 2.4 to find a lower bound for ∥un∥Lq , 2 < q < 2
1− s

2
< 2

1−s . In any

case, we can conclude that there is a δ > 0 and a suitable q such that ∥un∥Lq ≥ δ when

Ñ (un) ≥ δ̃ > 0 and use Lemma 2.3 to conclude that vanishing does not occur.
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2.2.2. Excluding dichotomy. The map µ 7→ Γµ is strictly subadditive:

Γµ1+µ2 < Γµ1 + Γµ2 . (2.5)

Subadditivity follows from subhomogeneity, Γtµ < tΓµ, t > 1 [2, Lemma 3.3], which in
turn follows directly from a scaling argument since L(u),N (u) are both homogeneous and

strictly greater than zero [2, Lemma 4.3]. For Γ̃µ, nothing changes.
The idea is now to show that dichotomy contradicts eq. (2.5). Here, we follow [18],

where the assumptions on the linear, dispersive operator allow for a considerably sim-

pler proof. If {u2n}n∈N dichotomizes, then it is possible to find sequences u
(1)
n , u

(2)
n with

(u
(1)
n )2 + (u

(2)
n )2 = u2n such that

Q(u(1)n ) → λ, Q(u(2)n ) → (µ− λ),

∫
suppu

(1)
n ∩ suppu

(2)
n

u2n dx→ 0 (2.6)

for some λ ∈ (0, µ) as n→ ∞ [18, Proposition 7]. In particular, one can pick two smooth
functions ϕ, ψ : R → [0, 1] with ϕ(x) = 1 when |x| ≤ 1 and ϕ(x) = 0 when |x| ≥ 2 and
ϕ2+ψ2 = 1, and find sequences {xn}n∈N, {Rn}n∈N ⊂ R, Rn → ∞ such that eq. (2.6) holds

for u
(1)
n = ϕnun and u

(2)
n = ψun =

√
1− ϕ2nun, where ϕn(x) = ϕ(x−xn

Rn
). We can assume

without loss of generality that xn = 0 for all n. Showing that E(un) eventually also

decomposes as u
(1)
n , u

(2)
n separate in space,

lim
n→∞

(E(un)) = lim
n→∞

(E(u(1)n ) + E(u(2)n )), (2.7)

gives the desired contradiction, since then

Γµ = lim inf
n→∞

E(un) ≥ lim inf
n→∞

E(u1n) + lim inf
n→∞

E(u2n) = Γµ̄ + Γ(µ−µ̄). (2.8)

In the classical case, N (un) is local and the decomposition for this part is automatic,

N (un) → N (u(1)n ) +N (u(2)n ) as n→ ∞. (2.9)

Since Λs is nonlocal, the same decomposition is not automatically true for L(un). However,
it holds because of the regularity of the symbol ⟨ξ⟩s (here, the symbol is smooth, but
continuously differentiable suffices). The key is the following commutator estimate.

Lemma 2.5 ([18, Lemma 6.1]). Let u, v ∈ H
s
2 (R) and let ρ ∈ S(R) be a non-negative

Schwartz function. Define ρR(x) = ρ(x/R). Then

|
∫
R
v(ρRΛ

su− Λs(ρRu)) dx| → 0

as R→ ∞.

With this estimate, it is an easy matter, see e.g. [18, Proposition 7], to show that

L(un) → L(u(1)n ) + L(u(2)n ) as n→ ∞. (2.10)

Since Ñ contains a nonlocal operator, eq. (2.9) but for Ñ is not automatic. We will
show it using a similar strategy as for L, beginning with a version of Lemma 2.5 with Λr

and u2. Since r can be negative and u2, v2 is not necessarily in H
s
2 (R) or even L2(R), the

proof is more involved than for Lemma 2.5.
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Lemma 2.6. Let u, v ∈ H
s
2 (R) and let ρ ∈ S(R) be a non-negative Schwartz function.

Define ρR(x) = ρ(x/R). Then

|
∫
R
v2(ρRΛ

ru2 − Λr(ρRu
2)) dx| → 0 as R→ ∞.

Proof. By Lemma 2.1, u2 ∈ H
r
2 (R). Using Plancherel’s and Fubini’s theorems,∣∣∣∣∫

R
v2(ρRΛ

ru2 − Λr(ρRu
2)) dx

∣∣∣∣
=

∣∣∣∣∫
R
v̂2(ξ)((ρ̂R ∗ ⟨·⟩rû2)(ξ)− ⟨ξ⟩r(ρ̂R ∗ û2)(ξ)) dξ

∣∣∣∣
≤

∫
R
|ρ̂R(t)|

∫
R

∣∣∣∣v̂2(ξ)∣∣∣∣ ∣∣∣û2(ξ − t)
∣∣∣ |⟨ξ − t⟩r − ⟨ξ⟩r|︸ ︷︷ ︸

D

dξ dt := I.

(2.11)

We split the domain of integration of the outer integral into |t| ≥ R− 1
2 and |t| < R− 1

2

and show that each part approaches zero as R → ∞. For the first part, |t| ≥
R− 1

2 , we apply the triangle inequality for a coarse upper bound for the difference D:

|⟨ξ − t⟩r − ⟨ξ⟩| ≤ ⟨ξ − t⟩r + ⟨ξ⟩r. Observe that ⟨ξ+t⟩
r
2 ≲ ⟨ξ⟩

r
2 ⟨t⟩

|r|
2 , so that ∥u(·−t)∥

H
r
2
≲

⟨t⟩
|r|
2 ∥u∥

H
r
2
. Combining these estimates, we find that∫

|t|≥R− 1
2

|ρ̂R(t)|
∫
R

∣∣∣∣v̂2(ξ)∣∣∣∣ ∣∣∣û2(ξ − t)
∣∣∣ |⟨ξ − t⟩r − ⟨ξ⟩r| dξ dt

≤
∫
|t|≥R− 1

2

|ρ̂R(t)|
∫
R

∣∣∣∣v̂2(ξ)⟨ξ − t⟩
r
2

∣∣∣∣ ∣∣∣û2(ξ − t)⟨ξ − t⟩
r
2

∣∣∣+ ∣∣∣∣v̂2(ξ)⟨ξ⟩ r
2

∣∣∣∣ ∣∣∣û2(ξ − t)⟨ξ⟩
r
2

∣∣∣ dξ dt
≲ ∥v2∥

H
r
2
∥u2∥

H
r
2

∫
|t|≥R− 1

2

⟨t⟩
|r|
2 R |ρ̂(Rt)| dt = ∥v2∥

H
r
2
∥u2∥

H
r
2

∫
|t|≥R

1
2

⟨ t
R
⟩
|r|
2 |ρ̂(t)| dt.

(2.12)

Since ρ ∈ S(R), this expression approaches zero asR→ ∞. For the second part, |t| < R− 1
2 ,

we can assume that |t| ≤ 1 since R− 1
2 → 0 as R→ ∞. With the mean value theorem, we

find a refined upper bound for D:

|⟨ξ − t⟩r − ⟨ξ⟩r| ≤ sup
θ∈(min(ξ−t,ξ),max(ξ−t,t))

|t| ⟨θ⟩r−1 ≲ |t| ⟨ξ⟩r−1.

Thus ∫
|t|<R− 1

2

|ρ̂R(t)|
∫
R

∣∣∣∣v̂2(ξ)∣∣∣∣ ∣∣∣û2(ξ − t)
∣∣∣ |⟨ξ − t⟩r − ⟨ξ⟩r| dξ dt

≤
∫
|t|<R− 1

2

R |ρ̂(Rt)| |t|
∫
R

∣∣∣∣v̂2(ξ)⟨ξ⟩ r−1
2

∣∣∣∣ ∣∣∣û2(ξ − t)⟨ξ⟩
r−1
2

∣∣∣ dξ dt
≲ ∥v2∥

H
r−1
2
∥u2∥

H
r−1
2

1

R

∫
R
|ρ̂(t)| |t| dt

(2.13)



10 JOHANNA ULVEDAL MARSTRANDER1

which also approaches zero as R → ∞. Combining eqs. (2.12) and (2.13) with eq. (2.11),
clearly I → 0 as R→ ∞. □

With this lemma, we can show that N (un) decomposes as n → ∞, that is, eq. (2.9)

holds for Ñ . Since (u
(1)
n )2 + (u

(2)
n )2 = u2n,

Ñ (un) = Ñ (u(1)n ) + Ñ (u(2)n ) +
1

2

∫
R
(1− ϕ2n)u

2
nΛ

rϕ2nu
2
n dx,

and we will show that the last term approaches zero as n → ∞. First, observe that
Lemma 2.6 still holds if we replace ρR with 1− ρR since∫

R
v2((1− ρR)Λ

ru2 − Λr((1− ρR)u
2)) dx = −

∫
R
v2(ρRΛ

ru2 − Λr(ρRu
2)) dx.

Applying this and Lemma 2.6 with ϕ2 as ρ and
√

1− ϕ2 as 1−ρ respectively, we find that

lim
n→∞

∫
R
(1− ϕ2n)u

2
nΛ

rϕ2nu
2
n dx = lim

n→∞
Ñ (ϕn

√
1− ϕ2nun).

By eq. (2.2), for some γ < 2,

Ñ (ϕn
√

1− ϕ2nun) ≲ ∥ϕn
√

1− ϕ2nun∥
4−2γ
L2 ∥ϕn

√
1− ϕ2nun∥H s

2
→ 0

where the limit as n→ ∞ follows from eq. (2.6). Thus we conclude that

Ñ (un) → Ñ (u(1)n ) + Ñ (u(2)n ) as n→ ∞.

Combining this with eq. (2.10), we see that eq. (2.7) and eq. (2.8) must hold for Ẽ , Γ̃µ and
we have the desired contradiction.

2.2.3. Convergence from concentration. Having excluded vanishing and dichotomy, we
conclude that a subsequence of {1

2u
2
n}n∈N concentrates. We can then show that it con-

verges in H
s
2 (R) to a minimizer of Γµ. Since a minimizing sequence of Γµ is bounded

in H
s
2 (R), it converges weakly – up to a subsequence – in H

s
2 (R) to some ω ∈ H

s
2 (R).

From this, one can use standard arguments to show that {un}n∈R converges – up to subse-
quences and translations – in L2(R) to ω, see e.g. [2, Lemma 4.6] or [18, Proposition 8]. In
the classical case, eq. (2.1) tells us that un → ω in L4(R) as well so that N (un) → N (ω).

Using this and the weak lower semi-continuity of the H
s
2 (R)-norm,

Γµ ≤ L(ω)−N (ω) ≤ lim inf
n→∞

(L(un)−N (un)) = Γµ.

Thus E(un) → E(ω). Since N (un) → N (ω), then L(un) → L(ω), which together with the

weak H
s
2 -convergence implies that un → ω in H

s
2 (R).

For Ñ (u), eq. (2.1) does not necessarily hold, so we need to show that Ñ (un) → Ñ (ω)

if un → ω in L2(R). Since Ñ (u) ≂ ∥u2∥2
H

r
2
, it suffices to show that u2n → ω2 in H

r
2 (R).

Lemma 2.7. Let u, v ∈ H
s
2 . Then there exists 0 < α ≤ 1 such that∥∥u2 − v2
∥∥
H

r
2
≲ ∥u− v∥αL2 ∥u− v∥1−α

H
s
2
∥u+ v∥

H
s
2
.
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Proof. For ū, v̄ ∈ H
s
2 (R), there is always 0 < α ≤ 1 such that

∥ūv̄∥
H

r
2
≲ ∥ū∥αL2∥ū∥1−α

H
s
2
∥v̄∥

H
s
2
.

This can be seen by applying Proposition A.1 to ūv̄ in the same manner as in the proof
of Lemma 2.1, using the lowest regularity t1 for ū and then interpolating only that part.

Noting that u2−v2 = (u−v)(u+v), we can apply the above equation to ū = u−v, v̄ =
u+ v to obtain the result. □

Since un, ω ∈ H
s
2 (R), Lemma 2.7 and the already established convergence in L2(R)

implies that u2n converges strongly to ω2 in H
r
2 (R). Since a minimizing sequence for Γ̃µ

satisfies the same properties as a minimizing sequence for Γµ, the other arguments are
unchanged. This concludes the proof of existence of solitary-waves solutions to eq. (1.4)
for any µ > 0.

2.3. Wave speed and regularity for µ > 0. We estimate the wave speed and regu-
larity for minimizers of Γ̃µ directly, based on similar results in [2, 18]. We show that the
wave speed ν is subcritical by multiplying eq. (1.4) with the solution u, integrating and
reshuffling:

ν =

∫
R uΛ

su dx−
∫
R u

2Λru2 dx∫
R u

2 dx
=

Ẽ(u)− Ñ (u)

Q(u)
<

Ẽ(u)
Q(u)

< 1. (2.14)

Here, we used that Ñ (u) > 0 and Γ̃µ = Ẽ(u) < µ.
A consequence of this is that the operator (Λs−ν) : Ht(R) → Ht−s(R) is invertible and

we can write eq. (1.4) as

u = (Λs − ν)−1(uΛru2). (2.15)

We only know that the solution u is in H
s
2 (R), but using the formulation above we can

show that the solution inherits regularity from the equation itself. We need the following
lemma.

Lemma 2.8. Let t ≥ s
2 and suppose u ∈ Ht(R). Then uΛru2 ∈ Hmin(t,t−r)(R).

Proof. Suppose first that t > 1
2 . Then Ht(R) is a Banach algebra and u2 ∈ Ht(R). This

implies in turn that Λru2 ∈ Ht−r(R). If r ≤ 0, then t − r ≥ t and we conclude that
uΛru2 ∈ Ht(R). If on the other hand r > 0, we use Proposition A.1 with t1 = t− r, t2 = t
to conclude that uΛru2 ∈ Ht−r(R).

If t < 1
2 , then Proposition A.1 with t1 = t2 = t implies that u2 ∈ H2t− 1

2 (R). Then

Λru2 ∈ H2t− 1
2
−r(R). Since by assumption s ≤ t, then 2t− 1

2 − r > 2t− s+ 1− 1
2 ≥ 1

2 > t

and uΛru2 ∈ Ht(R). Finally, if t = 1
2 , pick

s
2 < t̃ < t and do as above. □

Now assume that u ∈ Ht(R), t ≥ s
2 . Then by the above lemma, uΛru2 ∈ Hmin(t,t−r)(R)

which implies that u ∈ Hmin(t,t−r)+s(R) due to eq. (2.15). Since s is positive and larger
than r, this gives an improved regularity estimate for u. We start with t0 = s

2 and find
u ∈ Ht1(R), t1 = min(t0, t0 − r) + s, then u ∈ Ht2(R), t2 = min(t1, t1 − r) + s and so on.
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Repeating this procedure gives increasingly better regularity estimates for u ∈ H
s
2 . Since

we can continue indefinitely, we conclude that u ∈ H∞(R) = ∩t∈RH
t(R).

With this, we have shown the first part of Theorem 1.1 which holds for all µ > 0.

2.4. Estimates for norms and wave speed when µ ∈ (0, µ0). It remains to show
the estimates in eq. (1.5), which hold uniformly in µ ∈ (0, µ0) for any fixed µ0 > 0. The
argument is similar to that in Propositions 4, 9, and 10 in [18]. In the following, we fix
µ0 > 0.

To show that ∥u∥
H

s
2
≂ µ

1
2 , we first find a crude upper bound for Ñ (u). Using eq. (2.2)

and Lemma 2.2,

Ñ (u) ≲ µ2−γ ∥u∥2γ
H

s
2
≤ µ2−γ(Ñ (u) + µ)γ ≲ µ2 + µ2−γÑ (u)γ ,

for some γ ∈ (0, 1). This implies that

Ñ (u) ≲ µ2, and µ ≲ ∥u∥2
H

s
2
≂ L(u) ≤ µ+ Ñ (u) ≲ µ. (2.16)

for µ ∈ (0, µ0) with implicit constants depending on µ0.
We proceed to show the estimate of the wave speed in eq. (1.5). To do so, we need an

improved estimate for Ñ (u) in terms of µ. As in [18], we find an improved upper bound

for the infimum Γ̃µ and decompose u into high- and low-frequency components to estimate

Ñ (u) precicely.

Lemma 2.9. Let µ0 > 0 and µ ∈ (0, µ0). A minimizer u of Γ̃µ satisfies

Ñ ≂ µ3.

Proof. The first step is to show that there is a κ > 0 such that

Γ̃µ < µ− κµ3 (2.17)

Pick ϕ ∈ S(R) such that Q(ϕ) = 1, and define ϕµ,t(x) =
√
µtϕ(tx). Then Q(ϕµ,t) = µ.

In a similar manner as in the proof of Lemma 2.2, one may show that there are constants
C1, C2 > 0 such that

L(ϕµ,t) ≤ µ+ C1t
2µ,

Ñ (ϕµ,t) ≥ C2µ
2t.

Set t = C3µ, with C3 <
1
µ0
, such that t < 1 for all µ ∈ (0, µ0). Then

Ẽ(ϕµ,t) ≤ µ− µ3(C2C3 − C1C
2
3 ) = µ− κµ3,

where we can guarantee that κ > 0 by picking C3 sufficiently small.
The lower bound on Ñ (u) follows immediately from eq. (2.17),

Ñ (u) = L(u)− Ẽ(u) ≥ κµ3.
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To bound Ñ (u) from above, let χ denote the characteristic function equal to 1 on [−1, 1]
and 0 otherwise. Set u = u1 + u2, where û1 = χû, û2 = û. Then ∥u2∥H s

2
≂ ∥u2∥Ḣ s

2
and

L(u)− µ =
1

2

∫
R
(⟨ξ⟩s − 1) |û1 + û2|2 dξ ≂ ∥u1∥2Ḣ1 + ∥u2∥2Ḣ s

2
, (2.18)

since ⟨ξ⟩s − 1 grows like |ξ|s or |ξ|2 when |ξ| is large or small respectively, and û1, û2 have
disjoint supports. Now,

Ñ (u) ≂
∥∥(u1 + u2)

2
∥∥2
H

r
2
≲

∥∥u21∥∥2H r
2
+

∥∥u22∥∥2H r
2
+ ∥u1u2∥2H r

2
, (2.19)

and we estimate the three terms separately. Using Lemma 2.1 and eqs. (2.16) and (2.18),∥∥u22∥∥2H r
2
≲ ∥u2∥4H s

2
≂ ∥u2∥4Ḣ s

2
≲ (L(u)− µ)2 ≲ Ñ (u)2 ≲ µ

3
2 Ñ (u)

1
2 . (2.20)

Similarly,

∥u1u2∥2H r
2
≲ ∥u1∥2H s

2
∥u2∥2Ḣ s

2
≲ µ(L(u)− µ) ≲ µÑ (u) ≲ µ

3
2 Ñ (u)

1
2 . (2.21)

Estimating
∥∥u21∥∥2H r

2
requires a little more care. If r ≤ 0, then

∥∥u21∥∥2H r
2
≲ ∥u1∥4L4 , whereas

if r > 0, then ∥∥u21∥∥2H r
2
=

∥∥∥⟨·⟩ r
2 û1 ∗ û1

∥∥∥2
L2

≲
∥∥∥Λ r

2u1

∥∥∥4
L4
,

where we used that ⟨ξ⟩ ≲ ⟨ξ − η⟩ ⟨η⟩. Since ∥u1∥4L4 ≲
∥∥∥Λ r

2u1

∥∥∥4
L4

for r > 0, it suffices to

estimate the latter. We can use the Gagliardo-Nirenberg-Sobolev interpolation inequality,
eq. (2.16) and eq. (2.18) to find that∥∥∥Λ r

2u1

∥∥∥4
L4

≲
∥∥∥Λ r

2u1

∥∥∥3
L2

∥∥∥Λ r
2u1

∥∥∥
Ḣ1

≲ ∥u1∥3H s
2
∥u1∥Ḣ1 ≲ µ

3
2 (L − µ)

1
2 ≲ µ

3
2 Ñ (u)

1
2 . (2.22)

Combining eqs. (2.19) to (2.22) we conclude that

Ñ (u) ≲ µ3.

□

The estimate of the wave speed in eq. (1.5) is an immediate consequence of Lemma 2.9.

Using eq. (2.14), L(u) ≥ µ, Ẽ(u) < µ and Ñ (u) ≂ µ3,

1− ν =
µ− Ẽ(u) + Ñ (u)

µ
≥ Ñ (u)

µ
≂ µ2 ≂

2Ñ (u)

µ
≥ µ− L(u) + 2Ñ (u)

µ
= 1− ν.

Finally, we want to estimate ∥u∥L∞ , finishing the proof of eq. (1.5). This can be done by
estimating ∥u∥L∞ ≲ ∥u∥H1 and then using a similar bootstrap argument as in Section 2.3.
However, we need to ensure that the estimate ∥u∥H1 ≲ ∥u∥

H
s
2
is uniform in µ ∈ (0, µ0).

Increasing powers of µ in each iteration does not cause problems as we can always estimate
µ ≤ µ0, but we want to make sure that we do not lose any powers of µ when we estimate
u by uΛru2. We used that the operator (Λs − ν) was invertible, but the operator norm of
(Λs − ν)−1 will blow up as µ→ 0. Therefore, we instead rewrite eq. (1.4) as

(Λs − ν + 1)u = uΛru2 + u, (2.23)
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and note that the operator norm of (Λs − ν + 1)−1 : Hα(R) → Hα+t(R) is independent of
µ ∈ (0, µ0), ∥∥∥(Λs − ν + 1)−1

∥∥∥
Hα→Hα+t

= sup
ξ∈R

⟨ξ⟩s

⟨ξ⟩s − ν + 1
≤ 1,

since 1 − ν ≂ µ2 (see also Proposition 10 in [18]). Lemma 2.8 clearly also holds with
uΛru2 + u instead of uΛru2, and so the argument is exactly the same as in Section 2.3,
only using eq. (2.23) instead of eq. (2.15). We conclude that

∥u∥L∞ ≲ ∥u∥H1 ≲ ∥u∥
H

s
2
≂ µ.

3. Some comments on possible generalizations

In [2], [18], existence of solitary waves to eq. (1.1) is proved for a more general operator
than L = Λs. Likewise, the modifications due to the nonlocal nonlinearity presented in
this paper do not rely heavily on special properties of Λr. In fact, for the equation

∂tu+ ∂x(Lu− uNu2) = 0,

the proof of Theorem 1.1 will go through under the following assumptions on L and N .

(A1) The symbol m ∈ C(R) of the operator L is real-valued, positive, even and satisfies
the growth bounds

m(ξ)−m(0) ≂ |ξ|s for |ξ| ≥ 1,

m(ξ)−m(0) ≂ |ξ|s′ for |ξ| < 1,

with s > 1/2, s′ > 1. Furthermore, we require that ξ 7→ m(ξ)/⟨ξ⟩s be uniformly
continuous on R.

(A2) The symbol n ∈ C1(R) of the operator N is real-valued, even, and satisfies the
growth bounds

n(ξ) ≂ ⟨ξ⟩r for ξ ∈ R,∣∣∣∂n
∂ξ

(ξ)
∣∣∣ ≲ ⟨ξ⟩r−1 for ξ ∈ R.

where r < s− 1.

The assumptions on L are as in [18]. One may observe that m(ξ) = ⟨ξ⟩s satisfies these
assumptions with s′ = 2. We refer to [18] for a detailed discussion and comment only
on a few important changes. Since m can be homogenous, we use ∥u∥2

H
s
2
≂ Q(u) + L(u)

instead of ∥u∥2
H

s
2
≂ L(u), and the upper bound for the infimum becomes Γµ < m(0)µ

instead of Γµ < µ. The uniform continuity of m(ξ)/⟨ξ⟩s is used to exclude dichotomy.
For the symbol n, a similar regularity assumption to the one on m would allow us to

prove Lemma 2.6 and exclude dichotomy. However, while a Fourier multiplier is continuous
on L2(R) as long as it is uniformly bounded, a stronger assumption is needed to ensure
continuity on Lp(R), p ̸= 2. There are different criteria that guarantee this; continuous
differentiability and the bound on ∂n/∂ξ suffices [11, Theorem 5.2.7]. Unlikem, the symbol
n must be inhomogeneous to establish the upper bound on Γµ by a long-wave ansatz as
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is done here. A physical interpretation is that solitary waves arise when dispersive and
nonlinear effects are balanced, and inhomogeneity of n ensures that uNu2 is nonlinear in
the long-wave limit.

Under assumptions A1 and A2, the wave-speed estimate in eq. (1.5) would instead be

m(0)− ν ≂ µβ, where β =
s′

s′ − 1
.

This is the same estimate that was shown for an equation like eq. (1.1) with a local
nonlinearity with a cubic leading-order term in [18].
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Appendix A. Technical tools

Proposition A.1 (Products in Ht(R) [21, Theorem 4.6.1/1]). Assume that t1, t2 ∈ R
satisfy

t1 ≤ t2 and t1 + t2 > 0.

Furthermore, let f ∈ Ht1(R), g ∈ Ht2(R).
(i) Let t2 > 1/2. Then

∥fg∥Ht1 ≲ ∥f∥Ht1∥g∥Ht2 .

(ii) Let t2 < 1/2. Then

∥fg∥Ht1+t2−1/2 ≲ ∥f∥Ht1∥g∥Ht2 .

Proposition A.2 (Products in Lp(R) [21, Theorem 4.4.4/3]). Assume that t > 0 and
that 1 < p, q <∞ satisfy

1

p
<

1

q
+

1

2
,

1

p
>

1

q
+

[
1

2
− t

]+
, t >

1

q
− 1

2
,

where [a]+ = max(a, 0). Let f ∈ Lq(R), g ∈ Ht(R). Then

∥fg∥Lp ≲ ∥f∥Lq∥g∥Ht .
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