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Summary

Abstract
Autonomous vehicle navigation in safety-critical operations is a complex task. In this
domain, integrations of auxiliary sensors, such as cameras, LiDAR, or radar, with
conventional sensors, such as Global Navigation Satellite System (GNSS), and Inertial
Measurement Units (IMUs), has spurred intense research focus. The reason for the
popularity is the enhanced accuracy and reliability of these systems, even in the face
of some sensor failures. This thesis presents a methodology to address the challenges
of an Integrity Monitor (IM) for these systems and of the identification of hazardous
situations. Some of the research questions that guide the development of the IM frame-
work are how to accommodate the IM for complex integrations with auxiliary sensors
and, potentially in the presence of multiple simultaneous faults, how to mitigate non-
Gaussian noise distributions, which are prevalent in challenging environments, and
how to cope with completely unknown noise models of some sensors. Motivated
by the need for scalable methods independent of specific navigation algorithms or
sensors, this thesis develops an innovative IM architecture. It is evaluated specific-
ally for a Visual Navigation (VN)/GNSS/IMU integration, where a camera serves as
the auxiliary sensor. Despite the development of IM modules specific to the camera
and the conventional sensors, the architecture is designed to scale, allowing for the
incorporation of additional auxiliary sensors.

The developed IM architecture facilitates fault detection and integrity risk assessment
by leveraging deep learning approaches and operating with raw measurements from
the camera sensor. The corresponding camera-specific IM modules function inde-
pendently of the presence of any other auxiliary sensors in the monitored integration.
Generally, this incorporation of modules tailored to each auxiliary sensor refines Pro-
tection Level (PL) computation methodologies. Effectively, it limits the hypothesis
space in fault-tolerant navigation systems and the need of uncertainty estimates from
the monitored navigation algorithm or noise model knowledge of the auxiliary sensors.
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Also, the aforementioned scalability of the architecture to various auxiliary sensors is
achievable by developing corresponding Fault Detection and Exclusion (FDE) and PL
inflation modules tailored to account for potential faults in each of those sensors.

Through experimentation on datasets collected during real-world car drives in urban
environments and simulation of sensor faults or non-Gaussian noise models, the IM
shows robust performance, comparable to methods where noise of all sensors is known.
Moreover, the architecture facilitates the identification of challenging environmental
conditions specific to individual sensors, enabling the recommendation of testing under
similar conditions during the navigation algorithm development phase. This advance-
ment, represents a significant step forward in the quest for a universal IM for navigation
methods and the development of navigation systems that adhere to standardized safety
requirements.
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Chapter 1

Introduction

Autonomous vehicle navigation in safety-critical operations has become a focal point
in research, particularly in the integration of various sensors such as cameras, GNSS,
and IMUs. The motivation for integrating these sensors arises from the need to exploit
their complementary capabilities, ensuring the system’s availability even in conditions
where one or more sensors might fail. This is particularly crucial in safety-critical op-
erations, where the failure of navigation sensors could have severe consequences. The
development of frameworks for monitoring these systems and identifying hazardous
situations has, however, been limited, often tied to specific navigation algorithms or
sensors. For this reason, the present thesis addresses this topic.

This chapter presents further background and motivation of the thesis, highlighting
the identified research questions. It also gives a brief overview of how the thesis is
organized and what methods are used.

1.1 Integrity monitoring of multi-sensor navigation systems: Frameworks
and challenges

The challenges in automotive navigation are manifold. Tall structures can impact
GNSS signals, leading to total denial or multipath issues. Feature-less environments
or light reflections can negatively affect feature extraction and association in camera
images. Meanwhile, inertial sensors will accumulate drift over time. While the fusion
of complementary sensors has shown factual improvements in navigation accuracy [1],
previous research has not investigated thoroughly the conditions of nominal behavior
of those sensors.

Integrity Risk of a positioning system refers to the probability that an unavoidable state
estimation error will cause the system’s estimate to deviate from the true value by more
than a predefined PL, potentially triggering an alert. The Stanford Diagram shown in
Figure 1.1 helps in distinguishing the times that the system is available or unavailable as

1
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Nominal 

System
Unavailable

PL

PE

AL

AL

PL<PE< AL

AL<PL<PE

PL<AL< PE

Figure 1.1: Stanford Diagram depicting a possible distribution of the points of a system (rep-
resented with the colored octagon), the system’s availability regions and the regions related to
integrity events. Modified version from [2].

well as two types of integrity events. The acronym PE refers to the true Position Error of
the given navigation system. The upper area in the diagram, where the PL overcomes
the Alert Limit (AL), is where the system becomes unavailable. Regarding the events of
interest, one category pertains to instances of misleading information, occurring when
𝑃𝐿 < 𝑃𝐸 < 𝐴𝐿 and 𝐴𝐿 < 𝑃𝐿 < 𝑃𝐸. Still, safety is not compromised. Conversely, the
Hazardous Misleading Information (HMI) event, denoted by the region highlighted in
red, involves scenarios where the PE exceeds the AL without triggering a PL alert. This
event holds particular significance and can compromise safety. The indicated region
of nominal system operation has 𝑃𝐸 < 𝑃𝐿 < 𝐴𝐿. It is worth noting that depending on
the navigation problem at hand, the vehicle travel directions differ, with PL computed
in each direction. For instance, in automotive navigation, the two directions of interest
are usually along the direction of motion and the cross-track direction. However, the
current thesis adopts the North-East-Down (NED) frame convention. One examined
IM problem concerns Unmanned Aerial Vehicle (UAV) navigation, while the majority of
examined problems relate to car navigation. In the latter case, the directions of interest
are solely the north and east.

A report from the European GNSS Agency [3] emphasizes that a well-established and
trustable framework to set integrity risks and compute PLs is mandatory for any safety
critical application that uses position estimates as input. Hence, the presence of an
integrity monitor stands as a fundamental requirement for the success of safety-critical
operations. This necessity is emphasized in various studies such as [4], [5], and [6].
Integrity monitors play a crucial role in ensuring safe autonomous system operation.
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Their implementation enables the quantification of system reliability, thus alleviating
the burden of trust placed on humans and facilitating better compliance with local
regulations. At the same time they can assist in understanding better the trade-off
among safety and system availability [5], [6] and eventually motivate the development
of more efficient navigation solutions. However, traditional methods for evaluating
integrity, such as Receiver Autonomous Integrity Monitoring (RAIM) and Multiple
Hypothesis Solution Separation (MHSS), have limitations, especially when dealing
with complex multi-sensor navigation systems . These methods, often developed for
specific sensor faults or sensor combinations, struggle to handle the complexities of
sensor fusion, correlated errors, inherent non-linearities, and the diverse nature of
noise and faults in different sensors and environments. The literature underscores the
challenges in guaranteeing safety when employing auxiliary sensors [7, 8].

The specific integration IMU/GNSS/camera is susceptible to numerous potential sensor
faults [9]. The probabilities of failure of all the individual sensors within the given in-
tegration are substantial and might exceed the acceptable integrity risk in safety-critical
operations. A precise quantification, found in existing literature, is discussed later in
the thesis.

Current methods aimed at evaluating the integrity of integrations involving auxiliary
sensors lack comprehensive categorization and assessment of the extended range of
potential sensor faults. Moreover, potential faults in IMU measurements are overlooked
in the vast majority of IMs.

Addressing the aforementioned limitations is essential for the continued development
and deployment of autonomous systems in safety-critical scenarios.

1.2 Background on integrity monitoring in the navigation of autonomous
vehicles

Frameworks for monitoring navigation systems in autonomous vehicles and identifying
hazardous situations have been constrained by their reliance on specific navigation
algorithms or sensors, as highlighted by [10].

Typical methods for evaluating integrity include the RAIM technique [11], which is
primarily designed for GNSS, and MHSS [12, 13], which considers multiple possible
scenarios or hypotheses regarding the source of errors or faults. MHSS has been pro-
moted several times as a promising framework for sensor-agnostic safety monitoring
(e.g. [14], [15]), as far as the error covariances due to each sensor can be estimated.
However, these covariances are often not available. In addition, traditional PL com-
putation formulas developed for GNSS/IMU systems might not be reliable. These
traditional formulas typically assume standard noise characteristics and known fault
models, which may not hold true in more complex integrations with auxiliary sensors.
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1.2.1 On MHSS and the benefits of MHSS vs Residual Based (RB) RAIM

Joerger et al. [16] designed a fault detector and a non-least-squares estimator in RAIM.
In the first part of their work they focused on multi-sensor faults and that is why they
derived analytical expressions of the worst-case fault magnitude and direction, along
with an expression for the PL. They proved the superiority of MHSS in comparison
to RB in terms of the detection statistic, something that is justified by the fact that
MHSS detection is directly related to the faulty measurement hypotheses. In addition,
the non-least-squares estimator, that they developed in the second part of their work,
achieved the optimization of the integrity risk, at the cost of lower accuracy. A for-
mulation of both the integrity and continuity risk was made in the subsequent work
of Joerger et al. [5], and from there they defined simple formulas for both the single
and multiple measurement fault case. Their theoretical proofs are very important in
the IM domain and their error bounding formulas are used also in the current thesis.
In the MHSS approach employed here, the corresponding formulations are derived
in the positioning domain. This makes MHSS more appropriate for a universal IM
as it facilitates scalability to multiple sensors and independence from the navigation
algorithm.

1.2.2 On multi-sensor IM

A large number of available navigation platforms and algorithms are multi-sensor
based. However, multiple modalities of the various measurements, as well as the
necessity for recursive estimation place many challenges to the classical integrity mon-
itoring methods. Multi-sensor IM has gained significant interest but, to the best of my
knowledge, proposed solutions in literature maintain some dependence on a specific
navigation algorithm.

Gupta and Gao [17] introduced the Particle RAIM framework. At each time the position
is weighted by incorporating its likelihood of generating the subset of measurements.
In a subsequent work, Mohanty et al. [18] explored a GNSS and camera integration with
the Particle RAIM framework. Due to the use of the visual sensor, they accounted also
for ambiguities during feature and image association, and for errors originating from
sensor fusion. The Particle RAIM framework leverages collaborative estimation and
integrity monitoring, and uses the full probability distribution over position, instead
of position point estimates. This means that this framework captures very well the
uncertainty in the state estimation algorithm.

Meng and Hsu [15] treated the system state propagation as an additional measurement
within an Extended Kalman Filter (EKF) navigation algorithm. In recursive meth-
ods such as the EKF, integrity risk can originate from the propagated state, which is
influenced by past epochs. Their approach allowed for the inclusion of the EKF’s tem-
poral connectivity in integrity risk calculations, something not feasible with traditional
snapshot-based methods. However, this method is not applicable to navigation sys-
tems that do not use Kalman Filter (KF)-based approaches. Otherwise, for scalability
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and due to the different nature of measurements, at each hypothesis a whole sensor
is considered as faulty and their method works directly on output position solutions.
A method to maintain navigation integrity despite the multiple-sensor measurements
was developed also by Appleget et al. [14]. They emphasized that traditional MHSS is
not that effective in handling sensor faults that result in insignificant differences in state
estimation between the uncorrupted and the fault-free filters. For this reason, their
algorithm employs the expected value of the covariance of the measurement residuals
in a moving average 𝜒2-test. Multiple filters are used, and residual covariance distances
are calculated for each sensor/ subfilter pair. The residual measurement is based on
the predicted states from the EKF.

Bhamidipati and Gao [19] utilized a linearized Graph-Simultaneous Localization and
Mapping (Graph-SLAM) framework for worst-case failure mode slope analysis and,
subsequently, integrity monitoring when there are multiple faults in both GNSS and
vision. The visual observations are used to distinguish Line Of Sight and Non Line Of
Sight satellites by recognizing the sky, formulating the GNSS measurement covariances.
The state vector updates are done before performing FDE, which depends on the
comparison with an empirical distribution of measurement residuals. Their method
is capable to monitor multiple faults in both GNSS and vision. Nevertheless, their
method was developed for specific sensors, applies measurement preprocessing, and
performs estimation and IM collaboratively. Thus, it is not directly extendable to other
sensor types or navigation algorithms.

1.2.3 On sequential estimation navigation integrity

Recursive integrity monitoring has been a topic of interest for many researchers, beyond
those who investigated multi-sensor fusion. For example, Arana et al. [20] presented a
method that can monitor multiple landmark association faults at different times. They
avoid assumptions in the nature of faults, as integrity is evaluated under the worst
combination of sensor faults. However, this is not a navigation algorithm-independent
method as it is based on the KF innovation vectors sequence. Nonetheless, they ac-
counted for the fact that the estimation error and the fault detection are affected by
faults back in time, and this is an important consideration also in the method in this
thesis.

1.2.4 On fault detection and threshold optimization

FDE is an important module in the IM process which improves the navigation solution
reliability. In the presence of redundant measurements, it is typical to identify meas-
urement faults by comparing positioning solutions when using the full measurement
set and different measurement subsets. Faults that can be isolated will be excluded and
will not be considered in the integrity risk evaluation.

He et al. [21] highlighted that a detection statistic should account for both optimal avail-
ability and integrity, and it should be independent of underlying statistical assumptions
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for the data distribution. Taking this into consideration, they tested a nonlinear optim-
ization algorithm for the fault detection bound, using the cumulative Log Likelihood
Ratio (LLR) statistic. LLR and most other Log-Likelihood based statistics do not rely
on the internal procedure of a navigation method, but only on the measurement set,
the position state estimations and the uncertainties.

In addition to FDE methods operating in the position domain, there is another popular
class of methods operating directly on sensor measurements [22]. More generally,
data-driven FDE methodologies, have been developed to cope with the circumstance
of insufficient knowledge about complex systems and unknown fault types. These
methodologies solve FDE problems using multivariate statistical methods and machine
learning models trained from historical input/output data. They can be more sensitive
to soft or slowly growing faults than the other FDE methods [23].

1.2.5 On integrity monitoring of smoothing-based navigation

IM of visual localization algorithms is quite challenging as there is a vast amount of
measurements (e.g. landmarks and features), and it is common that more than one
measurement are faulty at each time [7]. Visual localization is a typical example of
applications that are better solved with optimization instead of filter-based methods
due their flexibility in handling complex relationships of diverse measurements and
capacity for global optimization. It is therefore essential to test IM methods with an
optimization-based navigation approach too. In the existing literature, an IM method
targeted to a nonlinear pose optimization problem was developed by Li and Waslander
[7]. They emphasized that their method cannot guarantee that a proposed bound will
always be valid, as is true for any nonlinear system with outliers. They employed a
variation of the Parity Space Approach as statistical tests to remove multiple outliers
for a batch of measurements, before the PL calculation step. An assumption in this test
is that the noise of the measurement model follows a Gaussian distribution. This reli-
ance on Gaussian distribution highlights a notable gap in existing literature. A central
contribution of the presented method in this thesis is challenging this assumption by
accommodating sensor measurement noise that may not adhere to Gaussian distribu-
tion. Experiments validate the approach within an IM, specifically in scenarios where
at least one sensor exhibits time-correlated noise patterns.

1.3 Implications in auxiliary sensor navigation
The integration of auxiliary sensors in navigation systems presents several implica-
tions for navigation integrity, as discussed in recent literature. These implications are
pertinent especially in relatively emerging domains, e.g. autonomous car navigation,
where stringent requirements are set. However, current multi-sensor fusion techniques
lack measurement models with sufficient confidence, making difficult the computation
of integrity bounds down to the same low integrity risks that have been successfully
achieved in the more well-studied field of aviation. [24].
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Figure 1.2 lists potential fault sources related to the individual sensors in the integration
of IMU, GNSS, and camera, or in the fusion process. It is crucial to recognize that some
faults are deterministic and some non-deterministic.

Deterministic faults are those that can be predicted or occur in a consistent and re-
peatable manner. These faults are generally due to systematic errors that do not vary
randomly over time. Examples include calibration faults, deterministic scale factor
errors, and sensor misalignment. Such faults must be eliminated as the IM does not
accommodate them.

Non-deterministic faults, on the other hand, are stochastic in nature and involve random
variations that are not easily predictable. These faults arise due to random noise,
environmental changes, or other unpredictable factors. Examples include multipath
effects in GNSS, stochastic faults in IMU, and feature extraction faults in cameras. The
IM procedure is designed to monitor and mitigate these types of faults.

It is important to note that not all faults can be clearly categorized as purely determin-
istic or non-deterministic. Some faults may exhibit characteristics of both, depending
on conditions. For example, ionospheric delays in GNSS can be deterministic when
modeled using known conditions, but non-deterministic when influenced by unpredict-
able space weather. Similarly, feature extraction faults in cameras can be deterministic in
controlled environments, but non-deterministic in varying lighting conditions. Despite
the importance of understanding this distinction and its relevance to IM, the specific
categorization of faults is not paramount in the context of this thesis. The current work
assumes the absence of common deterministic faults in the sensor measurement sets
or integration systems utilized in the experiments.

One significant implication is the increase in potential sources of faults introduced by
auxiliary sensors. The IM process may be even more complicated if it is necessary
to account for faults originating from multiple sensors simultaneously. Moreover,
there is possibility of correlated faults from different sensors, which is a situation that
challenges traditional FDE techniques [25].

Another key consideration is that the error distribution might be non-Gaussian. While
the presence of auxiliary sensors can contribute to non-Gaussianity, conventional
sensors like GNSS can also exhibit non-Gaussian behavior due to environmental chal-
lenges encountered during navigation in urban environments. This deviation from
Gaussianity poses challenges for traditional navigation error modeling approaches,
such as Kalman Filters (e.g. KF and EKF), requiring novel methods to accurately char-
acterize and mitigate error sources. Additionally, achieving tight integrity guarantees
comparable to those in aviation becomes challenging due to uncertainties in measure-
ment models and reliability [25].

Furthermore, challenges might arise due to the reliance of an IM system on a variation
of a KF algorithm, relying on the estimation of uncertainties—specifically, the variances
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Figure 1.2: Examples of potential sensor and process fault sources in the integration of IMU,
GNSS, and Camera. Sources that most commonly cause non-deterministic faults are shown in
bold.

associated with the state estimates—to determine PLs. This is a very typical IM ap-
proach. However, the suboptimal uncertainty estimation raises concerns. In practice,
uncertainty estimates may be inconsistent, leading to inaccuracies in assessing naviga-
tion integrity. Moreover, fault detection becomes more intricate, especially in scenarios
involving multiple sensors, as traditional methods often assume one fault at a time.
Another source of faults is linear approximation [25].

1.4 Research questions
Addressing the challenges mentioned in the previous section requires advancements
in IM techniques capable of accommodating the complexities introduced by auxiliary
sensors while ensuring accurate and reliable navigation integrity across diverse real-
world scenarios. This necessitates a nuanced understanding of error sources, including
those from non-GNSS measurements, to achieve accurate integrity assessments. Addi-
tionally, new methods must be developed to address situations where multiple faults
occur simultaneously, and to account for non-Gaussian error distributions prevalent in
urban environments and other challenging scenarios.

The motivation for this research, therefore, stems from the need to develop a method
capable of accounting for faulty sensor measurements without exhaustive examination
of potential fault hypotheses. This method should identify sensor faults independ-
ently, reducing reliance on specific navigation algorithm prerequisites and ensuring
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scalability across various auxiliary sensors.

1.5 Publications and Contributions
The main contributions of the thesis are summed up below:

– Introduction of an IM architecture agnostic to navigation algorithm internals.

– Versatility to various sensors within the IM architecture.

– Development of a Deep Neural Network (DNN)-based method for early anom-
aly detection in visual-only SLAM systems, facilitating potential integration for
camera FDE in existing IMs.

– Enabling the utilization of traditional IMs without modification, and the direct
correlation of IM anomalies with camera image inputs, independently if other
auxiliary sensors are present. Analogous methods can be developed for inde-
pendent evaluation of other auxiliary sensors.

– Introduction of a PL computation approach for navigation systems integrat-
ing auxiliary with conventional sensors, isolating PL computation for auxiliary
sensors and enabling tailored safety assurances.

– The developed anomaly detection methodology, which relies directly on raw
camera inputs, demonstrates the added benefit of detecting hazardous environ-
mental conditions that cause these anomalies. An indirect contribution of this
thesis is, therefore, its potential to facilitate comprehensive testing during the de-
velopment of navigation or IM systems under challenging conditions. However,
it is worth noting that the detection process is based solely on statistical analysis.
This poses certain risks, such as sensitivity to statistical model assumptions and
limited context awareness of the operation environment and underlying causes
of anomalies.

The thesis is based on the following list of papers published in peer-review international
journals and conference proceedings:

• Paper 1: [26] V. Bosdelekidis, T.H. Bryne, N. Sokolova and T.A. Johansen, "Nav-
igation Algorithm-Agnostic Integrity Monitoring based on Solution Separation
with Constrained Computation Time and Sensor Noise Overbounding," Journal
of Intelligent & Robotic Systems 106, 7 (2022).
Contribution: The paper introduces a method of IM for the integrated navigation
of GNSS and IMU, laying the initial groundwork for the developed IM architec-
ture in the thesis for multi-sensor integrations. The method is designed to be
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agnostic to navigation algorithm internals and scalable to various sensors and
noise models. The paper proposes an MHSS IM algorithm that utilizes statistics
on Log Likelihoods to detect measurement faults. Also, it proposes overbounding
techniques to address underestimated uncertainties due to non-standard sensor
noise models, with good empirical results in the case of time-correlated noise.
Additionally, the architecture permits hybrid-MHSS, where some hypotheses are
evaluated with a navigation algorithm with known characteristics (referred to as
the standardized algorithm), while the all-sensor-in solution is evaluated with
the actual algorithm under monitoring (referred to as the monitored algorithm).
In this case an Error State Kalman Filter (ErKF) is used as standardized algorithm
and an implementation of Georgia Tech Smoothing and Mapping (GTSAM) as
monitored.

• Paper 2: [27] V. Bosdelekidis, T. A. Johansen and N. Sokolova, "DNN-based
anomaly prediction for the uncertainty in visual SLAM," 2022 17th International
Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore,
Singapore, 2022.
Contribution: The paper presents a method that offers potential benefits to IM
of navigation systems that include visual sensors. Specifically, it investigates
early anomaly detection in position estimates of a visual-only SLAM system by
leveraging a DNN. The DNN can predict statistically anomalous estimate errors
where the classification is done based only on features of sequential raw image
frames. This capability could facilitate testing of visual-based - in general - nav-
igation systems under identifiable challenging conditions, potentially integrating
the system for camera FDE in existing IMs. .

• Paper 3: [28] V. Bosdelekidis, T. A. Johansen, N. Sokolova and T. H. Bryne,
"Solution Separation-based Integrity Monitor for Integrated GNSS/IMU/Camera
Navigation: Constraining the Hypothesis Space With Deep Learning," 2023
IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey,
CA, USA, 2023.
Contribution: This paper uses the previously introduced visual navigation an-
omaly detection module and investigates refinement based on an IM test statistic
specific to the camera sensor. One contribution lies in the enhanced camera FDE
running in parallel to traditional IMs without modification. It becomes sufficient
to compute PLs considering only conventional sensor (e.g., IMU and GNSS) noise
and faults, even in navigation systems that incorporate a camera. This stream-
lined process is based on the assumption that the inclusion of a camera inherently
reduces uncertainty, where this uncertainty is consistent in the absence of faults.
Another significant contribution of the paper is that with the camera FDE there is
the capability to directly correlate IM anomalies with camera inputs. This meth-
odology of independent evaluation can be extended to auxiliary sensors other
than the camera, by developing FDE modules tailored to the other sensors.
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• Paper 4: V. Bosdelekidis, T. A. Johansen and N. Sokolova, "Sensor-Tailored Integ-
rity Monitoring for Multi-sensor Navigation: GNSS/IMU/Vision Factor Graph
Example," 2024 IEEE Transactions on Robotics (T-RO)(submitted).
Contribution: The paper introduces a PL computation approach for navigation
systems that integrate auxiliary with conventional sensors. The basic idea is
to isolate the PL computation for the auxiliary sensors, enabling tailored safety
assurances specific to each sensor. The PLs for the full system are computed
using an inflation process based on the individual PL factors. The investigation
in the paper is specifically for the example IMU/GNSS/Visual Navigation (VN)
integration with factor graphs. Therefore, in this paper we provide evaluation
results only for the camera as auxiliary sensor. Importantly, the method does not
impose assumptions about the internal architecture of the monitored navigation
algorithm, as it uses a dedicated risk assessment module for the camera and a
standard VN algorithm with known characteristics to compute the corresponding
PL. Additionally, the paper presents a method for computing the PL inflation
factor for faults in preintegrated IMU measurements, commonly used in Visual-
Inertial Odometry (VIO) navigation systems.

In summary, the papers introduce methodologies for FDE and PL computation within
an IMU/GNSS/VN system, supported by extensive experimental validation. The
IM architecture developed is readily adaptable to accommodate additional auxiliary
sensors. Moreover, the papers outline the methodology for computing PL inflation
terms, which adjust PLs to compensate for potential faults in noise modeling, i.e.
inaccuracies in sensor noise characterization, unmodeled time-correlated noise, or en-
vironmental factors affecting sensor performance. Additionally, they propose a method
for identifying hazardous conditions specific to a camera.

While the developed IM architecture showed very good performance in the experi-
mental evaluation, it should be regarded with humility as a work in progress rather
than a final solution in the domain of universal IM. Recognizing its current limita-
tions, particularly in terms of theoretical analysis in some parts, emphasizes the need
for further refinement to ensure consistent safety guarantees across all rare hazardous
conditions encountered in real-world scenarios. This acknowledgment underscores the
ongoing effort to enhance navigation system reliability and safety, where the proposed
IM architecture could be regarded as a very good base for future advancements in
universal IM.

1.6 Outline
The thesis is organized into seven main chapters, each building upon the reasearch ques-
tions and publications discussed earlier. The formulation of a universal IM framework
goes through exploration of related topics on variety of sensor noise, overconfidence
in covariance estimation, sensor fault sources and variety of multi-sensor integrations.
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It is, therefore, essential to explore these aspects early on in the thesis, on a theoret-
ical level. Then, each chapter systematically addresses the development of individual
modules, progressively tackling the challenges outlined earlier. The thesis introduces
relatively early-on the complete IM architecture for systems employing multiple auxili-
ary sensors, providing a high-level overview of its constituent modules. It subsequently
delves into the specifics of IMU/GNSS/Vision integration with Factor Graphs, present-
ing methodologies corresponding to each module in the IM architecture. The developed
IM approach remains, however, scalable to other sensor integrations and independent
from the monitored navigation algorithm’s internals. A final chapter is dedicated in
presenting overall results of applying the full IM in a real-world car driving scenario.
Specifically, the chapters are the following:

• Chapter 2: Navigation algorithm uncertainty and different sensor systems

Chapter summary: This chapter explores navigation algorithm uncertainty and
various sensor systems, providing insights into their theoretical backgrounds and
specific methodologies for uncertainty calculation and sensor effect analysis. It is
an important introduction to the development of an IM architecture tailored for
multi-sensor navigation systems, emphasizing the implications to consider.

• Chapter 3: Navigation algorithm-agnostic IM for multiple sensor noise models.

Publication: Paper 1.

Chapter summary: This chapter focuses on position domain operations with
a MHSS-based IM for a navigation system integrating an IMU alongside two
position-fixing sensors. One of the sensors is disturbed with time correlated
noise, and the chapter investigates a method to compute conservative PLs for this
case. Additionally, the hybrid IM approach of Paper 1 is explained, employing
a standard ErKF to assess fault-present hypotheses, independently of the type of
the monitored algorithm. This approach aims to tackle the challenge posed by
monitored algorithms that either do not provide outputs in the desired format
(i.e., position along with uncertainty estimates) or introduce time inefficiencies
during their fault-tolerant reexecutions in MHSS.

• Chapter 4: An IM designed for scalability to auxiliary sensors

Publication: Papers 2, 3 & 4.

Chapter summary: The chapter discusses the substantial failure probabilities of
individual sensors in integrated systems comprising conventional sensors, like
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IMUs and GNSS, alongside auxiliary sensors, like cameras, emphasizing the im-
portance of fault detection and integrity risk assessment. It investigates fault
modes specific to IMU preintegration and VN, deriving PL inflation factors as-
sociated with potential faults. In the proposed architecture, these factors are
derived independently from the monitored algorithm utilizing simplified integ-
rations and, then, they are corrected to correspond to conservative bounds for
the monitored state estimate errors. While the chapter outlines the overall IM
architecture, it defers the discussion of camera FDE to subsequent chapters.

• Chapter 5: Integration of conventional sensors with a camera and faults: A
DNN approach for navigation anomaly detection

Publication: Paper 2.

Chapter summary: The chapter proposes a DNN approach designed to pre-
dict anomalies in position estimate errors produced by a visual-based SLAM
algorithm, using data from a car driving in an urban environment. The DNN
is trained offline using sets of sequential image frames as input. It can therefore
assist in the detection of low-level image features or dynamic changes that might
cause anomalies in VN. This early investigation lays the groundwork for devel-
oping a camera FDE technique later in the thesis. Additionally, this approach can
be adapted for other auxiliary sensors by developing the corresponding anomaly
prediction modules.

• Chapter 6: Deep Hypothesis Testing for fault alarms in auxiliary sensors

Publication: Paper 3.

Chapter summary: This chapter extends the architecture of chapter 4 for de-
tecting faults in auxiliary sensors within multi-sensor navigation systems. The
investigation is specific for the camera. It proposes this approach to address the
challenge of estimating consistent position error covariance in systems that integ-
rate VN algorithms with the conventional sensors GNSS and IMU. Building upon
the DNN developed in the chapter 5 for the initial prediction of VN anomalies,
this approach expands to incorporate a method to refine these predictions using
an IM test statistic specific to the camera. The proposed method is contained in
a specific module, named camera Deep Hypothesis Testing (DHT). Other DHT
modules, designed for each auxiliary sensor, can potentially be developed sim-
ilarly. Operating independently, these modules enable efficient fault detection
without the need to modify existing IM frameworks.

• Chapter 7: Experimental evaluation
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Publication: Paper 3 & 4

Chapter summary: This chapter presents the experimental evaluation of the DHT
module separately for camera PL inflation and FDE, as well as PL inflation for
IMU preintegration faults. PL inflation involves adjusting PLs to account for
sensor faults, as detailed in Chapter 4, which also describes the PL inflation
methodologies for camera and IMU. The camera FDE is described in chapter
6. The evaluation chapter includes also a brief investigation of a few cases of
VN anomalies identified in the trajectories under evaluation, aiming to identify
potential environmental characteristics contributing to these anomalies.

• Chapter 8: Conclusion

Chapter summary: This concluding chapter summarizes the key findings and
contributions of the thesis, discusses potential future research directions, and
reflects on the implications of the study in the field of navigation systems.



Chapter 2

Navigation algorithm uncertainty
and different sensor systems

2.1 Introduction
Autonomous navigation through complex environments demands robust algorithms
capable of handling diverse sensor inputs. This chapter introduces the theoretical
background of navigation algorithm uncertainty, detailing the methodologies used to
calculate uncertainty for different sensor systems and explaining how each sensor’s
characteristics influence the overall system. The exploration commences with a general
analysis of sensor noise, leading into a discussion on covariance estimation in ErKF
and SLAM, both of which are navigation solutions utilized or monitored in the cur-
rent thesis. Another section introduces the concept of covariance inflation, a method
employed to account for atypical sensor noise and potential sensor faults. Theoretical
frameworks and mathematical formulations developed within that section contribute
to the foundation of the proposed IM architecture in later chapters. Another section
in the current chapter does a high-level exploration of loose and tight integrations of
multiple sensors. The last section examines the utility of model-based fault-detection
and IM with a Bank of KFs. All the concepts described in this chapter outline a high-
level procedural approach to develop the IM methodology. They serve as a guide for
identifying essential considerations and ensuring the robustness of the IM method in
addressing potential implications.

2.2 Sensor noise
This section investigates the critical gap in universal IM frameworks for non-linear
systems and sensor fusion applications, focusing specifically on the impact of sensor
noise. The emphasis of the developed IM architecture is on scalability, accommodating
diverse sensors and noise models.

15
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Sensor noise encompasses the random variations or fluctuations present in sensor
measurements, arising from factors such as environmental conditions, manufacturing
imperfections, and electronic interference [29]. For example, in GNSS receivers, sensor
noise may stem from satellite signal distortion, atmospheric conditions, and receiver
hardware limitations. Sensor noise can often be modeled as additive, where the noise
is directly added to the true sensor measurement or a related measurement. The latter
approach aids in practical application within navigation systems. For instance, in an
IMU used for navigation, although the sensor provides position, velocity, or attitude
measurements, the underlying sensing principle revolves around measuring linear
acceleration and angular velocity [30]. Recognizing this discrepancy is important,
as noise modeling is an essential aspect for deriving PLs in an IM system. All the
derivations in this thesis assume additive sensor noise.

Earlier, the thesis introduced RAIM, which serves as a fundamental IM methodology
for GNSS-based navigation. It is imperative to delve into how RAIM addresses sensor
noise in its computation of PLs, as this approach will be adopted in specific parts of
the current thesis. RAIM incorporates a FDE module and a module to compute PLs
bounding the position estimate errors. Given a navigation algorithm estimating vehicle
positions and uncertainties, the part of the PL that accounts for nominal sensor noise,
which is assumed to be overbounded by a Gaussian function, in the absence of sensor
faults, in one direction of travel, is given below:

𝑝𝐿0 = 𝑄
−1

(
𝐼REQ

2

)
𝜎0 (2.1)

where𝑄−1 is the inverse tail probability of the standard normal distribution, 𝐼REQ is the
preset integrity risk requirement allocation under the fault-free hypothesis and 𝜎0 is
the overbounding standard deviation of the error of a given navigation algorithm. The
intuitive interpretation of the equation is that, assuming that the position error follows
a standard normal distribution, then the factors𝑄−1

(
𝐼REQ

2

)
will bound the probability of

HMI. The equation includes the division by 2 because both tails of the error distribution
need to be accounted for.

Nevertheless, modern autonomous systems rely on advanced sensor fusion algorithms,
encompassing non-GNSS sensors like cameras or lasers. The integration of these
sensors introduces additional complexities, including unique noise characteristics,
which must be adequately addressed to ensure the reliability of the IM framework.
PL inflation is essential for mitigating the effects of sensor noise on the integrity of
position solutions, particularly in environments where traditional PL computations
may underestimate the true error bounds. A good example of such an approach is
presented in section 3.4, which formulates a time-correlated noise model added in a
position sensor’s measurements and the relative PL inflation module.
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2.3 Covariance estimation by different algorithms
Covariance stands as a key metric for quantifying uncertainty and error associated
with estimated parameters. In the context of navigation, covariance matrices provide
a quantitative measure of the accuracy of the estimated state variables. While specific
covariance computations are not an essential part of the thesis, it is worth providing
a brief description to understand the principles underlying uncertainty quantification.
These principles, including the concepts of overconfidence and underconfidence, are
closely related to understanding the process of computing safety bounds for navigation
solutions.

The ErKF is a common approach used for state estimation in navigation systems. A
standard ErKF implementation is employed throughout the thesis to derive PL inflation
terms for diverse sensor integrations, as was highlighted also in the contributions
section (1.5). In ErKF, the covariance matrix is dynamically updated based on the
system’s motion model and sensor measurements. It accounts for the propagation of
uncertainty through the state variables and sensor measurements. Appendix B includes
the derivation of the predicted covariance, in a similar manner as the classic KF. This
covariance is given as:

�̂�𝑃𝑃𝑘 |𝑘−1 = 𝐴𝐴𝐴𝑘 |𝑘−1�̂�𝑃𝑃𝑘−1|𝑘−1𝐴𝐴𝐴
𝑇
𝑘 |𝑘−1 +𝑄𝑄𝑄𝑑𝑘 |𝑘−1 , (2.2)

with 𝐴𝐴𝐴𝑘 |𝑘−1 being the error state dynamics matrix, which is given in equation (B.5),
𝑄𝑄𝑄𝑑𝑘 |𝑘−1 being the discrete time model definition of the covariance matrix of the process
noise, which is given in equation (B.7) and �̂�𝑃𝑃𝑘−1|𝑘−1 being the posterior covariance
estimate at step 𝑘 − 1.

The equation for the updated covariance will be:

�̂�𝑃𝑃𝑘 |𝑘 = (𝐼𝐼𝐼 −𝑊𝑊𝑊 𝑘𝐻𝐻𝐻)�̂�𝑃𝑃𝑘 |𝑘−1 , (2.3)

with 𝐼𝐼𝐼 being the unity matrix,𝑊𝑊𝑊 𝑘 being the kalman gain, and𝐻𝐻𝐻 being the measurement
matrix after linearization.

The thesis leverages popular existing implementations of visual- and visual-inertial
SLAM for evaluating the developed anomaly prediction methodology and deriving
PL inflation terms for integrations featuring a camera. Notably, SLAM estimated co-
variances are not utilized anywhere in the thesis in the IM development procedure;
however, a high-level understanding of the concepts is still helpful.

The goal of SLAM using a camera is to obtain global and consistent estimate of the
camera’s path, localization of the camera on a map and to reconstruct a consistent
map of the surrounding environment. Covariance in SLAM is typically computed
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by incorporating sensor measurements, feature observations, and the robot’s motion
model. The SLAM algorithm iteratively refines the covariance matrix to improve the
accuracy of the estimated trajectory and map. In constrast, Visual Odometry (VO) or
the form that uses inertial measurements, VIO, focuses on obtaining locally consistent
estimate of camera poses, achieving incremental estimates [31].

Mourikis and Roumeliotis [32] derived a closed form solution of the SLAM uncertainty,
relating it with sensor noise parameters and number of features being mapped. It is
also concluded that prior information about the spatial density of landmarks can be
used to compute a tight upper bound on the expected covariance of the positioning
errors.

Consider a robot performing SLAM in 2-D, by observing𝑁 stationary landmarks in the
environment. The robot uses velocity and orientation measurements to propagate its
state. Consider that 𝑹 is the covariance matrix of the measurements. It is a combination
of co-variances due to noise in bearing and range measurements to landmarks and due
to noise in orientation estimates. Define:

𝜎2
𝜌: the variance of the noise in the distance measurements.

𝜎2
𝜙: the orientation uncertainty.

𝜎2
�: the variance of the noise in the bearing measurements.

𝑄𝑄𝑄 is the power spectral density matrix of the noise of the input, and𝐻𝐻𝐻 is the measurement-
to-state matrix. The time evolution of the covariance of the position estimates will be:

¤𝑃𝑃𝑃(𝑡) = 𝑄𝑄𝑄(𝑡) − 𝑃𝑃𝑃(𝑡)𝐻𝐻𝐻𝑇𝑅𝑅𝑅−1𝐻𝐻𝐻𝑃𝑃𝑃(𝑡) (2.4)

The robot uses velocity and orientation measurements to propagate its state. The
equation (2.4) does not have a closed form solution. However, an upper bound has
been derived as:

¤̄𝑃𝑃𝑃(𝑡) = �̄�𝑄𝑄 − �̄�𝑃𝑃(𝑡)𝐻𝐻𝐻𝑇
0 �̄�𝑅𝑅
−1
𝐻𝐻𝐻0�̄�𝑃𝑃(𝑡), (2.5)

which is valid in case �̄�𝑄𝑄 ≥ 𝑄𝑄𝑄0(𝑡) and �̄�𝑅𝑅 ≥ 𝑅𝑅𝑅0(𝑡), ∀𝑡 > 0. The 𝑅𝑅𝑅0(𝑡) is a bound for
the covariance matrix aggregating the corresponding bound of the covariance of the
error due to the noise in the range measurements, of the covariance due to the error
in the bearing measurements, and of the covariance due to the error in the orientation
estimates. An expression of 𝑅𝑅𝑅0(𝑡) is given in the equation system (A.1) of appendix A.

These bounds for the individual terms should be

�̄�𝑅𝑅 = (𝜎2
𝜌 + 𝑁𝜎2

𝜙𝜌
2
0 + 𝜎2

�𝜌
2
0)𝐼𝐼𝐼2𝑁×2𝑁 , (2.6)



2.3. Covariance estimation by different algorithms 19

and

�̄�𝑄𝑄 =

[
�̄�𝐼𝐼𝐼2×2 0002×2𝑁
0002𝑁×2 0002𝑁×2𝑁 ,

]
(2.7)

with �̄� = 𝑚𝑎𝑥(𝛿𝑡2𝜎2
𝑉
, 𝛿𝑡2𝑉2𝜎𝜙2) being an upper bound for the covariance in the inputs,

assuming approximately constant velocity 𝑉 .

Then, the upper bound of the steady-state normalized covariance matrix (normalization
by dividing by �̄�), after mathematical operations, will be:

𝑃𝑃𝑃𝑛𝑆𝑆 =

[√
�̄�𝑟

𝑁 𝐼𝐼𝐼2×2 0002×2𝑁

000𝑁×2 0002𝑁×2𝑁

]
+ 111(𝑁+1)×(𝑁+1) ⊗

©«𝐽𝐽𝐽𝑇𝑃𝑃𝑃−1
𝐿𝐿0
𝐽𝐽𝐽 +

(√
�̄�𝑟

𝑁
𝐼𝐼𝐼2×2 + 𝑃𝑃𝑃𝑟𝑟0

)−1ª®¬
−1

, (2.8)

with 𝑟 = 𝜎2
𝜌+𝑁𝜎2

𝜙𝜌
2
0+ 𝜎2

�𝜌
2
0 , 𝑃𝑃𝑃𝑟𝑟0 being the initial covariance of the robot’s position es-

timate,𝑃𝑃𝑃𝐿𝐿0 being the initial map covariance, 𝐽𝐽𝐽 = 111𝑁×2⊗ 𝐼𝐼𝐼2×2 and ⊗ being the Kronecker
matrix product.

A more detailed derivation for the 1D and 2D case can be found in Appendix A.

2.3.1 Covariance estimation for map-based vision-aided navigation: A review

The challenges with dealing with covariance estimation for map-based vision-aided
navigation were highlighted in many research works.

A method to deal with the problem of covariance overconfidence in EKF for map-
based vision-aided navigation was presented by Zhu and Taylor [33]. Limitations in
measurement observability, linearity and uncertainty modeling result in inconsistent
estimated covariance. Inconsistency can also affect negatively feature processing of
the estimator itself. The Covariance Intersection (CI) technique yields conservative
uncertainty estimates even if the noise sources in the states and measurements (e.g.
landmark observations) are highly correlated. Unlike the EKF, CI does not assume that
the uncertainty in prediction is uncorrelated with the uncertainty of measurement, nor
does it assume that measurements are uncorrelated from each other. If correlations
exist, the EKF may exhibit over-optimism, as its error ellipse is positioned within the
overlap area between the ellipses of the prediction and the measurement. Tkocz and
Janschek [34] established a monocular SLAM initialization algorithm for a consistent
initial covariance, based on sensor measurements and their known uncertainties. They
were interested in investigating the consistent initialization of a loosely coupled visual
SLAM + IMU EKF framework aiming the scale determination. They emphasized the
challenge of newly discovered features in such filter approaches and that, instead,
closed-form solutions are appropriate to overcome this issue. In essence their work
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utilizes a closed-form solution for the initialization of the full filter state and covari-
ance and evaluates the initialization consistency which will affect the subsequent filter
process. Their method assumes a good feature extraction and outlier detection done
beforehand. The landmark’s projection onto the camera’s plane and the landmark’s
distance define the landmark position as 3 element vector.

Furthermore, Shetty’s et al. research was interested in the covariance estimation for
GPS-LiDAR sensor fusion. They used the Iterative Closest Point method to match the
laser’s point cloud with a pre-existing 3D city model in order to estimate the global pose.
The overall position error covariance is constructed as a combination of covariances
estimated due to different features in the point cloud (e.g. edges), however there are
many assumptions used about how the features affect the error, without providing
guarantees of consistency.

Finally, Carrillo et al. [35] explored various optimality criterions which can be used as
metrics for uncertainty in SLAM systems. The authors proposed that the D-optimality
criterion can provide the most meaningful information for robot SLAM tasks. Mathem-
atically, the D-optimality criterion aims to minimize the determinant of the covariance
matrix associated with the estimated parameters of the SLAM system (e.g. robot pose
and landmark positions). The D-optimality criterion effectively minimizes the volume
of the joint confidence ellipsoid of the unknown parameters.

2.4 Covariance inflation for atypical sensor noise and for sensor faults -
Loose and Tight Integration

Covariance inflation refers to the process of inflating the uncertainty of sensor measure-
ments or state estimates. This adjustment compensates for internal sensor faults, sensor
noise modeling faults or other elements in the environment that cause an undetectable
sensor fault, leading to inconsistent estimates of state error uncertainties. Sensor noise
modeling faults occur when the actual noise characteristics deviate from the assumed
model, such as when noise is non-Gaussian or time-correlated. Undetectable sensor
faults are subtle errors that escape detection by standard fault detection methods, often
caused by factors like multipath interference, signal blockage, or unexpected environ-
mental changes affecting sensor performance. Let’s use the term sensor fault to describe
any of the aforementioned faults. Usually, there is no knowledge of the magnitude or
the direction of a potential fault 𝑓𝑓𝑓 in a measurement set and we pursue the computation
of the worst-case fault. This is done by employing the concept of fault slope:

𝑆𝑙𝑜𝑝𝑒𝑆𝑙𝑜𝑝𝑒𝑆𝑙𝑜𝑝𝑒 𝑓 =
effect of fff on state estimation error
effect of fff on the IM test statistic

(2.9)

The 𝑆𝑙𝑜𝑝𝑒𝑆𝑙𝑜𝑝𝑒𝑆𝑙𝑜𝑝𝑒 𝑓 incorporates the magnitude as well as the direction of the worst case fault.
The presence of a probable fault can be captured from significant covariances of the
residual of expected and actual sensor measurements. This contrasts the typical case
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where covariance refers to the expected variability in non-fault situations. Addition-
ally, as for expected measurements, I refer to those resulting from recent navigation
state estimates or from measurements of other sensors. For example, in monitoring
KF-based algorithms, the innovation term is often utilized as the residual [36]. In this
thesis, the introduced IM method leverages the MHSS technique to generate residuals,
encompassing discrepancies among redundant position sensors (as discussed in sec-
tion 3.3), discrepancies between conventional sensors and VN state estimates (to be
detailed in section 4.5.2), and residuals between predicted and actual preintegrated
IMU measurements (to be elaborated in section 4.5.1). These residuals are crucial com-
ponents within the evaluated integration example of IMU, GNSS, and VN in this thesis.
Importantly, this thesis investigates fault slopes in specific directions and assumes that
the maximum fault slope is associated with one direction in the residual.

Where applicable, the fault in the sensor measurements (𝑆𝑙𝑜𝑝𝑒𝑆𝑙𝑜𝑝𝑒𝑆𝑙𝑜𝑝𝑒 𝑓 ) must be corrected to
reflect the caused navigation algorithm’s state error. In these cases, a Jacobian for the
rate of change between the state and the residual is utilized.

A high-level formulation of a PL inflation term due to one or multiple probable un-
detected faults can be expressed as follows:

PL_inflation_term = Undetected state error due to
sensor faults

× A penalty, given the probability
of false alarm of sensor faults,

Here, the first factor accounts for the 𝑆𝑙𝑜𝑝𝑒𝑆𝑙𝑜𝑝𝑒𝑆𝑙𝑜𝑝𝑒 𝑓 associated with the underlying faults
examined in each case, probably corrected to apply to the monitored algorithm. The
second factor addresses the continuity requirement of the navigation solution [37].
Continuity refers to the capability of the navigation system to provide position estimates
that satisfy the accuracy and integrity requirements without being interrupted during
the operational period. Specific formulations for this factor are detailed during the IM
development in subsequent sections of this thesis.

It is crucial to note that the method of covariance inflation and the implementation
of MHSS may have varying implications depending on the type of system integration
employed. Multi-sensor integration architectures typically fall into two categories:
loosely-coupled and tightly-coupled [38]. In loose integrations, the identification of
error sources is relatively straightforward, as the impact of individual sensors is more
apparent. Conversely, defining fault hypotheses in tight integrations poses greater
challenges due to the measurement coupling procedure performed internally in the
navigation algorithm. Moreover, evaluating the navigation algorithm in MHSS with
different subsets of sensor measurements, assumed fault-free under each hypothesis,
may not be directly feasible in tight integrations.

Figure 2.1 depicts generalized diagrams of the two types of integrations. These rep-
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(a) (b)

Figure 2.1: Diagrams depicting loosely- (a) and tightly-coupled (b) integration strategies of
IMU, GNSS and POS_SENSOR2. The dashed lines in (a) show that execution of the navigation
algorithm using either the GNSS or the POS_SENSOR2 is usually possible. Modified diagram
from [38]

resentations assume that in addition to the GNSS there is one more sensor providing
position measurements, named as POS_SENSOR2. Consequently, redundancy exists
with the GNSS sensor, allowing for IM using MHSS by assuming one of the two sensors
is faulty at any given time. The IMU provides linear acceleration and angular velocity
measurements, which are then processed through a mechanization procedure to derive
position, velocity, and attitude. This mechanization step may occur either internally
within the monitored navigation algorithm or externally. This step is not depicted in
the diagram.

In the diagram depicting loosely-coupled integration, dashed cyan lines illustrate that
when the navigation algorithm sufficiently functions with data solely from one position
sensor, the redundant sensor may be completely omitted from informing the naviga-
tion algorithm. Conversely, in the tightly-coupled integration, integrating lower-level
measurements from GNSS with IMU is imperative, a requirement that may extend to
other sensors. The way that sensor measurements are utilized is very specific to the
employed navigation algorithm.

In the context of this thesis, methods are investigated to define residuals associated
with each sensor independently from the monitored navigation algorithm, ensuring
greater adaptability and robustness across both loosely- and tightly-coupled integration
architectures.
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2.5 Bank of Kalman filters, Model-based Fault Detection for Multi-sensor
Data Systems

Corrupted data from sensors with failures can have a severe impact on navigation sys-
tem functionality, resulting in overall system performance degradation and a higher
risk. In multi-sensor integrations, sensor faults pose the primary risk. IMs employ
two main components to mitigate these risks: covariance inflation, which adjusts for
probable navigation state faults stemming from individual sensor faults without modi-
fying the input measurement set, and FDE techniques, which make binary decisions.
These decisions entail either confirming that everything is functioning correctly and
no action is needed, or identifying a fault and excluding one or more sensors or sensor
measurements. In most cases, both IM components are built by using the concept of
redundancy of independent information, which can be either hardware or analytical
redundancy. Methods that employ hardware redundancy generally require additional
hardware to generate duplicate measurements of the same quantities, such as duplicate
sensors of the same type. In contrast, methods that employ analytical redundancy are
generally more cost-efficient and rely on the already available hardware for the nav-
igation system. The two most popular methods to utilize analytical redundancy are
data-driven or model-based. Data-driven methods utilize data from the sensors to de-
termine system behavior. Nevertheless, the quantity of required data is usually big and
data-driven methods become inappropriate for online safety monitoring. Model-based
methods require only the navigation system model and work on the principle that ob-
served measurements are consistent with model-predicted measurements / outputs.
In this domain, KF-based techniques are the standard to compute required uncertainty
inflation terms in PL or FDE and there are different versions to be able to handle linear
or non-linear systems.

Figure 2.2 shows the general structure of a model-based fault diagnosis system, which
is made up of the residual generation and the residual evaluation components. Multi-
sensor fusion processes may involve raw sensor data input or state vector inputs. The
latter are estimates from systems that are informed by observations of one or more of
the sensors. There are two common architectures to integrate the various sensors, and
these architectures are shown in figure 2.3. In the figures we do not specify the data
fusion module, which might be implementations based on, e.g. Kalman filtering or
smoothing.

The figure shows two architectures; centralized fusion and distributed fusion. Central-
ized fusion uses the whole measurement set and achieves a high accuracy. However,
it might be computationally inefficient, estimating a large state vector, and it might be
unable to handle sensor inconsistencies and faults, or might result in complex failure
of the central module. Distributed fusion uses multiple local fusion modules with a
global fusion module. This architecture may achieve higher robustness to faults and
more accurate detection of the failing sensor.
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Figure 2.2: Model-based Fault Diagnosis [39].

Figure 2.3: Architectures for Data Fusion. Modified diagram from [40].
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There are also several algorithms for multi-sensor safety monitoring.

The first architecture, named here as information mixture, contains local fusion mod-
ules and an information mixture module analyzing local outputs, detecting faults,
quantifying inconsistencies and providing a global output / estimate.

MHSS is another notable algorithm, where multiple faulty measurement hypotheses
are constructed, including a fault-free hypothesis and hypotheses excluding one meas-
urement each. It evaluates disagreement between the estimation under the fault-free
hypothesis and estimations under fault hypotheses to identify faults or quantify in-
consistencies for inflation term computation. The MHSS can be modified to handle
multiple faults with a multi-layer approach, assuming one sensor faulty in the first
layer, two sensors faulty in the second layer, and so on [41].

The Statistical Testing method relies on residuals or innovation signals of the fusion
algorithm, where it focuses on measures like whiteness, mean and covariance of the
residual.

In the Interacting Multiple Model algorithm, the main approach is to construct a set of
possible candidate models for the true system. It consists of a bank of filters running
in parallel, each designed with a unique model, and the architecture allows someone
to accurately estimate the current operational mode and derive the overall correct state
estimation in the presence of a fault.

The duplication/comparison is another method and uses error detection and system
recovery to both detect and isolate the faulty sensors. Error detection helps to detect the
erroneous state of the system. In system recovery, an error-free state can be substituted
for an erroneous state. In data fusion, the duplication/comparison approach involves
using at least two redundant units to perform fusion of data collected from diversified
or redundant sensors to estimate system states and then comparing them to detect
abnormal system behavior.

Figures 2.4-2.6 show the information-mixture , MHSS and Duplicate-Comparison al-
gorithms.

Finally, the fault estimation method addresses the issue of distinguishing actual faults
from disturbances or biases in residual, for a good quality safety monitoring. Such
approaches are the one from Zarei and Shokri [44] that utilizes a Non-linear Unknown
Input Observer to generate a robust residual for FDE and the one from Pazera et al.
[45] which aims on simultaneous estimation of the system state and sensor faults for
fault-tolerant control.

2.6 Chapter Summary
This chapter provides a theoretical exploration of navigation algorithm uncertainty
and different sensor systems crucial for autonomous navigation in complex environ-
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Figure 2.4: The information-mixture technique [42] : 1) the measurements from 𝑀 sensors are
sorted into 𝑁 groups. 2) Each group of sensor yi,k is used to estimate the state through local
filter. 3) Each local xi,k,Pi,k estimate is sent to the information mixture, and global states are
calculated. 4) Finally, the global estimates Xm,k,Pm,k are sent back to local filters and each local
is updated. 𝛽𝑖 is the information distribution factor of the 𝑖 − 𝑡ℎ local filter, which is used to
weight the local.

Figure 2.5: MHSS-based fault detection in positioning domain. The green rectangle, orange
filled circle, orange circle and nested blue circle represent respectively ground truth posi-
tion, fullset-position estimate X(0) under fault-free hypothesis, position estimate X(i) under
fault-tolerant hypothesis that includes faulty sensor and position estimate under fault-tolerant
hypothesis without faulty sensor. Figure from [15].
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Figure 2.6: Duplication/comparison architecture [43].

ments. It introduces the theoretical background of navigation algorithm uncertainty
and presents methodologies for uncertainty calculation in ErKF and SLAM, which are
two popular algorithms in the domains of non-linear state estimation and VN. Also,
the evaluation of the IM methodology in the present thesis uses implementations of
these algorithms. The discussion delves into sensor noise and highlights its impact on
navigation solutions, particularly focusing on additive noise modeling and its implic-
ations for IM. Additionally, the chapter introduces the concept of covariance inflation
as a method to account for atypical sensor noise and potential sensor faults, laying the
groundwork for subsequent chapters’ IM architecture. The chapter continues with a
comparative analysis of loose and tight integrations of multiple sensors, emphasizing
their implications for IM methodologies and system robustness. The chapter concludes
with a discussion of model-based FDE and IM methods for multi-sensor data systems.
Overall, this chapter provides a comprehensive overview of the theoretical foundations
which I considered during the development of the presented IM methodology working
with multi-sensor navigation systems.
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Chapter 3

Navigation algorithm-agnostic IM
for multiple sensor noise models

3.1 Introduction
This chapter introduces an MHSS based framework for IM for the conventional GNSS/IMU
integration with a filter-based and a smoothing-based navigation algorithm. It builds
upon the preceding chapter and explores the complexities inherent in monitoring
multi-sensor systems with different characteristics in terms of uncertainty outputs.
In the controlled environment of the simple integration it explores also the complexit-
ies of non-standard noise, with a particular focus on time-correlated noise—a prevalent
scenario in real-world applications. To investigate this case, time-correlated noise is
introduced artificially in the experiments. Specifically, the chapter introduces an IM
architecture which takes into account that: 1) a multi-sensor system must account for
various sensor noise models which lead to inconsistent estimates of uncertainties, 2) a
module must be able to detect sensor failure or sensor noise mismodeling and suggest
better bound for the error, without being constantly conservative, 3) some algorithms
are computationally heavy to monitor in the MHSS setting or the provided covariances
cannot be interpreted in IM.

Most of the works that investigate the integrity of multi-sensor systems are constrained
by linearity assumptions (e.g. the research of Meng and Hsu [15]), or they attempt
to develop an algorithm that performs both the estimation and integrity monitoring
collaboratively (e.g. the research of Mohanty et al. [18]). It is desirable for a universal
IM framework to work with non-linear systems, that are commonly used today, and
be independent from the navigation algorithm. The current study extends an MHSS
method for IM to remove the linearity or Gaussian noise assumption. The evaluation of
the method is with a filtering-based, as well as a smoothing based, navigation algorithm.

29
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The development of a universal solution must account for the particular error models
of various sensors. There is no widely adopted approach that exists to account for time-
correlated errors with unknown parameters. The developed IM method in this chapter
adopts a method by Crespillo et al. [46] to account for time-correlations by introducing
overbounding hypotheses in a MHSS context. These hypotheses are used conditionally,
and the decision is made automatically by a log-likelihood based algorithm. This
leads to more reliable IM with tighter PLs in comparison to methods with continuous
overbounding.

In addition, the developed IM enables easy integration with existing navigation al-
gorithms. On a high-level, it utilizes a MHSS methodology, where a sensor is com-
pletely excluded in each hypothesis. Despite the limited number of fault hypotheses,
some navigation algorithms are still computationally heavy to execute repeatedly in a
MHSS setting, or do not provide absolute covariances, or do not provide covariances
at all. Experimentation was conducted with monitoring a smoothing-based navigation
algorithm. The IM method optionally uses an ErKF implementation as backend to eval-
uate faulty hypotheses, independently of the smoothing-based navigation algorithm
used in the all-source-in hypothesis.

The experimentation in this chapter uses one simulated UAV trajectory, and one real
trajectory from a car driven in an urban environment. The first experiments evaluate
the proposed IM on an ErKF implementation, which is a proper choice of a modern
non-linear estimator. Further experiments evaluate the IM on an algorithm based
on Factor Graph Optimization, which is a very popular algorithm in the domain of
smoothing-based navigation.

The main contribution of the work presented in this chapter is a novel IM architecture for
the IMU/GNSS integration, which is navigation algorithm-agnostic, in terms of internal
architecture, and is scalable to various sensors and sensor noise models. A limitation
is that the sensors should be capable to provide independent position solutions. More
specifically

• The experimentation demonstrates that an MHSS integrity monitoring algorithm
can employ statistics on Log Likelihoods of various measurement subsets for a
filter-based as well as a smoothing-based navigation algorithm. These metrics
can identify the presence of measurement faults and improve the understand-
ing of underestimated uncertainties provided by the navigation algorithm. The
chapter proposes a simple statistic based on the rolling standard deviation of the
Log Likelihood (LLRSD) of each subset, which can accurately detect inconsisten-
cies over time. This approach is likely applicable to a wide variety of navigation
algorithms, offering a simpler alternative to the more complex LLR method pre-
viously studied [21].

• Multi-sensor fusion must account for sensor noise models that can lead to under-
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estimated uncertainties and invalid bounds. This occurs because certain noise
models may not accurately capture the true variability and correlations present in
the sensor data, resulting in overly optimistic estimates of the system’s perform-
ance. This chapter proposes overbounding the common case of time-correlated
noise. We observe that overbounding techniques, previously derived for KF-
like methods, provide promising results with the MHSS-based architecture with
ErKF backend, even when the knowledge of noise model parameters is approx-
imate. This is an empirical result and theoretical guarantees of overbounding
are not provided. Nevertheless, a significant contribution of the proposed frame-
work is its adaptability: it allows for straightforward incorporation of different
sensor noise models by constructing hypotheses to apply appropriate overbound-
ing techniques. This is particularly useful, for example, when a sensor’s noise
distribution has been learned offline under nominal or non-nominal conditions.

• There is a wide variety of sensor fusion navigation algorithms, and in some cases,
position covariances are unavailable or cannot be interpreted in the absolute
coordinate system. For example, this can occur when using certain types of non-
linear filters or when sensor data is too sparse or irregular to generate reliable
covariance estimates. In these scenarios, the IM system might fail to accurately
assess the reliability and integrity of the position estimates. In addition, it can
be inefficient to execute a computationally heavy navigation algorithm multiple
times in the MHSS setting. This chapter goes in the direction of incorporating a
standardized algorithm for the evaluation of some hypotheses. It includes results
for a GTSAM algorithm for IMU and GNSS fusion, whose monitoring was done
with and without the ErKF for evaluation of faulty hypotheses.

The chapter begins with an analysis of the allocation of integrity risk concerning po-
tential faults associated with the utilized sensors. The subsequent sections present
the method for PL computation in the MHSS approach and the proposed IM system
with correlated noise overbounding. The last two sections introduce the data used for
evaluation of the proposed IM and discuss the experimental results.

The methology was first described in Paper 1.

3.2 Allocation of integrity risk
The concept of MHSS is closely related to the allocation of an integrity risk budget,
as the integrity risk tree demonstrates in figure 3.1. Instead of depicting a generic
allocation among all the various errors that can contribute, this figure demonstrates
the proposed, on sensor-level, allocation. It is worth mentioning that the sensor set in
the diagram serves only as an example, and the investigation is only for a subset of the
mentioned sensors. In the diagram, 𝑁𝑠𝑠 denotes the number of fault hypotheses. 𝐼𝑅𝐸𝑄
is the predetermined integrity risk requirement. The integrity risk is allocated equally
among all hypotheses. Here, as in many works, the integrity requirement is equally
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Figure 3.1: Example integrity risk allocation on sensor-level.

allocated to each hypothesis, something that may result in overly conservative bounds.

3.3 PL computation
Mathematically, the symbol 𝑝𝐿 refers to the PL in one direction of interest, with the
understanding that the study here concerns multi-dimensional navigation. It should
be guaranteed that the probability of the error exceeding the PL is smaller than the
integrity requirement. That is, under a fault hypothesis 𝑖 , the 𝑝𝐿 should satisfy the
following inequality:

𝑃(𝐻𝑀𝐼 | 𝐻𝑖) · 𝑃(𝐻𝑖) < 𝐼REQ𝑖
(3.1)

HMI is the event |(�̂�𝑖 − 𝑥)| > ℓ & 𝑝𝐿 < ℓ , where �̂�𝑖 is the estimated position state of
interest under hypothesis 𝑖, 𝑥 is the corresponding true state and ℓ is the alert limit.
𝐼REQ𝑖

stands for the preset integrity risk requirement allocated to the 𝑖-th hypothesis.
𝑃(𝐻𝑖) is the probability of a fault hypothesis, which is typically determined through
extensive simulation runs offline. However, in this work an arbitrary constant value of
𝑃(𝐻𝑖) = 10−5 was selected for all fault hypotheses. Then for the fault-free hypothesis, it
is 𝑃(𝐻0) = 1 −∑𝑁𝑆𝑆

𝑖=1 𝑃(𝐻𝑖).

By adding the contributions of each failure towards the integrity risk it is guaranteed
that the overall PLs will bound the error and, therefore, the safety of the method. In the
fault-free case, measurements follow a nominal distribution while the error is assumed
to follow a Gaussian distribution.

Let’s define the threshold for fault detection for a fault hypothesis 𝑖 as𝑇Δ𝑖 = 𝑄−1
(
𝑃𝐶𝑂𝑁𝑇
𝑁𝑆𝑆

)
𝜎Δ𝑖 ,

where 𝑄−1 is the inverse tail probability of the standard normal distribution, 𝑃𝐶𝑂𝑁𝑇 is
continuity risk allocated to the fault hypotheses and 𝜎2

Δ𝑖
= 𝜎2

𝑖
− 𝜎2

0 , with 𝜎2
0 being the

variance for the all-source solution, and 𝜎2
𝑖

being the variance of the fault-free solution
under the 𝑖 th hypothesis. In the case of passing the test, a simple formula for the 𝑝𝐿
calculation for the fault hypothesis 𝑖 is given by:

𝑝𝐿𝑖 = 𝐾𝑚𝑑𝑖𝜎𝑖 + 𝑇Δ𝑖 , (3.2)
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where the factor 𝐾𝑚𝑑𝑖 is the allowable missed detection threshold, which depends on
𝐼REQ𝑖

, and represents the number of standard deviations this threshold is away from the
mean of the standard normal distribution. The standard deviation 𝜎𝑖 of the fault-free
solution under the 𝑖 th hypothesis is used to scale the threshold.

Based on the definitions, the 𝐾𝑚𝑑𝑖 can be incorporated in formula (3.1), as follows:

𝑄(𝐾𝑚𝑑𝑖 ) · 𝑃(𝐻𝑖) < 𝐼REQ𝑖
(3.3)

By substituting 𝐾𝑚𝑑𝑖 from (3.2) into this inequality, we get:

𝑄(𝑝𝐿𝑖 − 𝑇Δ𝑖
𝜎𝑖

) · 𝑃(𝐻𝑖) < 𝐼REQ𝑖
(3.4)

To find the 𝑝𝐿𝑖 , convert the inequality to an equality, set the equally allocated requiremnt
𝐼REQ𝑖

=
𝐼𝑅𝐸𝑄
𝑁𝑆𝑆+1 and solve for 𝑝𝐿𝑖 . This yields the following formula:

𝑝𝐿𝑖 = 𝑄
−1

(
𝐼𝑅𝐸𝑄

𝑃(𝐻𝑖)(𝑁𝑆𝑆 + 1)

)
𝜎𝑖 + 𝑇Δ𝑖 (3.5)

(3.5) asserts that if the position error follows a standard normal distribution then the
factors 𝑄

(
𝐼REQ

𝑃(𝐻𝑖)(𝑁SS+1)

)
will bound the probability of HMI. The second term, 𝑇Δ𝑖 , can be

considered a fault isolation threshold which has to satisfy the continuity risk require-
ment.

The basic equation (2.1) for the PL in the fault-free case can be modified here to 𝑝𝐿0 =

𝑄−1
(

𝐼REQ
2(𝑁SS+1)

)
𝜎0.

3.4 Overbounding Time-Correlated Noise
It is a fact that the noise of some sensors is time-correlated and not white. The estimated
covariance from some navigation algorithms will be unreliable unless the correlated
noise is accounted for. Subsequently, in many cases the computed PLs will be unreliable.

A first order Gauss-Markov process (GMP) is the random process used in this work to
model correlated noise. These processes are fully defined by a time constant 𝜏, steady
state variance 𝜎2 and initial variance 𝜎2

0 . The discrete first-order Gauss-Markov process
is defined with the following equation for the discrete time step � [47]:

𝑦(�) = 𝛼𝑦(� − 1) + 𝑢(�), (3.6)

𝑦 denotes a random variable (in this case the correlated measurement noise), 𝑢(�) is a
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random variable that follows zero-mean Gaussian distribution with variance 𝜎2
𝑢 and 𝛼

is a coefficient in the range [0, 1].

The correlation time 𝑇 is the lag time corresponding to an autocorrelation coefficient of
1/𝑒, or:

"Autocorrelation coefficient"(𝑦(�), 𝑦(� + 𝑇)) = 1
𝑒

(3.7)

For two samples 𝑚, 𝑛 with 𝑚 > 𝑛 the auto-correlation of 𝑦(𝑛) is

"Autocorrelation coefficient"(𝑦(𝑚), 𝑦(𝑛)) = 𝑎(𝑚−𝑛)

⇒ "Autocorrelation coefficient"(𝑦(�), 𝑦(� + 𝑇)) = 𝛼𝑇
(3.8)

By combining with Eq. (3.7) it follows that: 𝛼 = 𝑒−1/𝑇 .

Crespillo et al. [46] designed a GNSS + INS integration scheme where noise processes
are correlated and the parameter values are known only to reside in a (wide) range of
values. Langel et al. [48] formulated a way to guarantee that the estimated covariance
from a KF overbounds the actual error distribution of the estimate. They based their
proof on the propagation of the error matrix 𝑬 = 𝚺 − 𝑷 , where 𝑷 is the estimated
covariance matrix of the KF and 𝚺 is the covariance matrix to define, so that 𝚺 ≥ 𝑷.
To achieve that, they concluded that the process noise power spectral density matrix
𝑸 (not to be confused with the tail probability 𝑄 of the standard distribution defined
earlier) should be populated with the upper bound values of its individual elements.
This requires to use the maximum time constant of the range and the upper bound for
the uncertain steady-state variance parameter of the correlated noise, inflated by the
ratio of the maximum and minimum values of the time constant:

𝜏 = 𝜏𝑚𝑎𝑥 (3.9)

𝜎2 = 𝜎2
𝑚𝑎𝑥(𝜏𝑚𝑎𝑥/𝜏𝑚𝑖𝑛) (3.10)

Finally, the initial variance of the GMP is determined in a way to satisfy the condition
𝑬(0) ≥ 0 which is another prerequisite to have that 𝚺 ≥ 𝑷 at all 𝑡 > 0:

𝜎2
0 ≥

2𝜎2
max

1 + (𝜏min/𝜏max)
(3.11)

Let 𝜎2
0 be equal to this lower bound. Formal proofs are provided by Langel et al. [48].



3.5. LLR and LLRSD for Fault Detection 35

Later sections of this chapter provide some empirical results after utilization of this
method with the IM with ErKF back-end. Specifically, in the simulation experiments
run, a position sensor, that behaves similarly to a GNSS, is used with noise that follows
a GMP. As the paper by Langel et al. [48] demonstrated, the GMP noise in each sensor
can be sufficiently accounted for by augmenting the state vector with additional bias
states and a subsequent inflation of the process noise covariance matrix 𝑸. Time-
correlated noise is just an example of the challenges that can deteriorate the quality of
IM. The proposed architecture is compatible with additional overbounding techniques
to handle other challenging cases.

Appendix B serves as an introduction to the ErKF implementation and the strategy to
use the GMP parameter values determined in Eq. (3.9), (3.10) and (3.11) to inflate 𝑸.

3.5 LLR and LLRSD for Fault Detection
He et al. [21] introduced a method to optimize the fault detection threshold with
the objective to be suitable for a non-Gaussian test statistic and to enhance system
integrity and availability. Their method uses the cumulative LLR and employs a genetic
algorithm to determine the fault detection threshold value under various availability
constraints, effectively identifying likely faulty sensors. An intuitive understanding
of how LLR can be used in fault detection is the following: In the absence of the
faulty measurement, one expects a better agreement of the remaining measurements
in comparison to the fault-free hypothesis, i.e. the LLR will be higher in this case.
This chapter shows empirically that a simpler metric (only the faulty hypothesis is
used in computations), called LLRSD, provides a better indication of the times when a
measurement is faulty. For completeness, the reader may consult Appendix C which
includes an introduction to the LLR metric. The formulation of the LLRSD metric
follows in this section.

For a time interval a to b , let us accumulate the Log- Likelihoods of a measurement
subset 𝑦 𝑗 containing all measurements except the 𝑗 th. This is the nominator of the LLR
metric too (Eq. (C.2)):

ℒℒ(𝑏,𝑗)𝑎 =

𝑏∑
𝑘=𝑎

ln 𝑝(𝑦 𝑗
𝑘
|𝑥𝑘) (3.12)

Then, similarly to Appendix C, at each time 𝑘 get the maximum,𝜓 𝑗

𝑘
= max

𝑘−𝑥+1≤𝑎≤𝑘

{
ℒℒ(𝑘,𝑗)𝑎

}
,

0 ≤ 𝑗 ≤ 𝑚, with 𝑥 the accumulation time window size and 𝑚 the total number of meas-
urements.

Using a window of configurable size 𝑁 it is attempted to find how much the maximum
log-likelihood of subset 𝑗 at current time (𝜓 𝑗

𝑘
) deviates from log-likelihoods at previous

times, inside the window.
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LLRSD𝑗

𝑘
=

√√√
1
𝑁

𝑘∑
𝑧=𝑘−𝑁

(
𝜓
𝑗
𝑧 − �

𝑗

𝑘

)2
(3.13)

where �𝑗
𝑘
=

∑𝑘
𝑧=𝑘−𝑁

𝜓
𝑗
𝑧

𝑁 is the mean of the maximum log-likelihoods in the window.

When using LLRSD, a valid hypothesis that excludes a faulty sensor would lead to low
LLRSD values, indicating that the maximum log-likelihoods at different time points
are closely clustered around their mean. This lower deviation implies a higher level of
agreement among the remaining measurements.

The experimental results, presented in section 3.6.4, showed a higher consistency in
correctly detecting a faulty sensor when using this metric than when using the LLR
metric.

3.6 Experiments
This section introduces the trajectories, sensor combinations and integration strategies
as well as the navigation algorithms that were evaluated with the developed IM method.
Table 3.1 will summarize the IM results for each trajectory and monitored navigation
algorithm.

3.6.1 Data

The experiments utilize two trajectories. The first trajectory corresponds to a 3D UAV
scenario with a GNSS and an IMU sensor with perfectly aligned reference frames.
The noise processes of the sensors follow a Gaussian distribution, and the trajectory
was created in MATLAB. This trajectory is given in Figure 3.2. The second trajectory
includes data collected from a car driving in an urban environment with, among
others, measurements from a GNSS receiver and an inertial sensor module. This
trajectory is included in the KITTI raw dataset [49]. It is shown in Fig. 3.3. The
experimentation is limited to a loose integration of position fix and IMU sensors.
The name POS_SENSOR1 is used for the purpose of the text and refers to the GNSS
sensor. The next section describes the navigation algorithms under evaluation. For
the testing of the fault detection method and the overbounding of correlated noise we
synthesize the measurements of an additional position sensor called POS_SENSOR2.
Specifically, the time correlation between successive position measurement errors is
modeled employing a Gauss-Markov process, as described earlier, according to the
Eq. (3.6), and this noise is added around the measurements of POS_SENSOR1. The
parameters of the noise are as follows:

𝑇 = 300𝑠
𝜎𝑢 = 0.3𝑚

The frequencies of each sensor measurements are:
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Figure 3.2: 3D simulated trajectory of a UAV in NED coordinates. The starting and ending
positions are indicated with a black circle and a red dot respectively.

IMU: 10 𝐻𝑧
POS_SENSOR1: 1 𝐻𝑧
POS_SENSOR2: 2 𝐻𝑧

The difference in frequency between the two position sensors was accounted for in the
measurement error matrices. Specifically, the measurement noise covariance matrix
for POS_SENSOR2, denoted as 𝑹pos2, was derived from the matrix for POS_SENSOR1,
denoted as 𝑹pos1, by scaling it with a factor of 2 to match the higher frequency of
POS_SENSOR2 [50]. That is, 𝑹pos2 = 𝑹pos1/0.5. The elements in 𝑹pos1 have been tuned
for the simple POS_SENSOR1 + INS integration and based on estimated uncertainty
consistency tests.

Figure 3.4 depicts the measurements of POS_SENSOR1 and POS_SENSOR2.

Both trajectories contain also Ground Truth (GT) measurements, with respect to the
NED frame, utilized for the computation of the estimate error.

3.6.2 Experimental Setup and Parameters

The experiments were conducted using the following parameters and settings to eval-
uate the performance of the ErKF and GTSAM algorithms for different sensor integra-
tions (POS_SENSOR1/POS_SENSOR2/IMU, POS_SENSOR1/IMU, POS_SENSOR2/IMU).

Sensor Noise Characteristics

KITTI Dataset

• POS_SENSOR1 (GNSS) Noise: Gaussian white noise with standard deviation 0.3
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Figure 3.3: 2D collected data in NED coordinates from a real car drive. Trajectory from the
KITTI raw dataset. An arrow indicates the starting position and direction, and the red dot
indicates the ending position. Thus, the starting and ending position of the car are almost the
same

m.

• IMU Noise (continuous): Accelerometer noise standard deviation 0.112 m/s2,
Gyroscope noise standard deviation 1.22 ∗ 10−7 rad/s.

UAV Dataset

• POS_SENSOR1 (GNSS) Noise: Gaussian white noise with standard deviation 0.3
m in North and East direction, and 0.5 m in Down direction.

• IMU Noise (continuous): Accelerometer noise standard deviation 0.022 m/s2,
Gyroscope noise standard deviation 1.22 ∗ 10−7 rad/s.

GMP noise injection for POS SENSOR2

• Lag time 𝑇: 300 s

• Desired discrete time step Δ𝑡: 0.5 s

• 𝛼 = 𝑒−Δ𝑡/𝑇

• Gaussian distribution noise scale: 0.3 m

PL Computation Parameters

• Integrity risk requirement: 2.7 ∗ 10−8 per hour

• Continuity risk requirement: 8 ∗ 10−6 per hour

• Probability of fault hypotheses: 10−5
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Figure 3.4: The measurements of POS_SENSOR1 and POS_SENSOR2. The coordinates were
converted to the NED system. (a) Measurements in the 3D UAV trajectory North vs East
direction (b) Measurements in the 3D UAV trajectory East vs Down direction (c) Measurements
in the 2D KITTI trajectory North vs East direction
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Fault Detection Configuration

• LLRSD Window Size: 10 samples

• LLRSD Threshold: 0.075 (empirically determined)

3.6.3 Navigation Algorithms Evaluated with the IM

The evaluation of the developed IM was on a loosely coupled sensor integration and
on two types of navigation algorithms. The first was an ErKF and the second one
was GTSAM, which is based on smoothing. Both will be described more analytically
promptly.

A fault hypothesis is constructed after considering the full measurement set of a sensor
as faulty, thus, excluding it. The MHSS-based IM executes the navigation algorithm
for the original measurement set (all sensors are fault-free) and for the subsets under
the fault hypotheses. The IMU is assumed fault-free in all cases to ensure redundancy
of measurements at each time. Therefore, there are totally three hypotheses in the
experiments:

• 𝐻0 (All-source): all sensors are assumed non-faulty and used in the navigation
algorithm.

• 𝐻1 (Out-POS_SENSOR1): exclusion of the POS_SENSOR1.

• 𝐻2 (Out-POS_SENSOR2): exclusion of the POS_SENSOR2.

ErKF

The ErKF is a successor of the original KF and the EKF for the cases when either the
process or the measurement model or both are nonlinear [51, 52]. In this approach, the
error in the states is estimated using a KF, instead of the state itself. The linearity in
the error state dynamics means that the application of KF is feasible. Thus, ErKF takes
advantage of KF’s optimal estimations [51]. This filter is typically used for the fusion
of IMU data with any other kinds of sensors. The experiments use this filter to loosely
integrate one or two position sensors with the IMU sensor and validate the proposed
IM. Appendix B serves as a brief introduction to the ErKF implementation.

GTSAM

GTSAM is a C++ library that implements smoothing and mapping (SAM) in robotics
and vision, using Factor Graphs and Bayes Networks as the underlying computing
paradigm rather than sparse matrices [53].

The experiments evaluate the IM with GTSAM with the IMU + position sensor integra-
tion. Although this integration is not state-of-the-art, it is a demonstrative example of
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Figure 3.5: Flowcharts comparing the steps in standard inertial integration (a) with those
implemented in GTSAM’s IMUFactor (b). Figure from Lupton and Sukkarieh [54].

the straight-forward applicability of the method with more complex integrations used
in smoothing-based navigation. The GTSAM experiments use the implementation of an
IMU factor as proposed by Lupton and Sukkarieh [54]. Figure 3.5 compares the steps
followed in standard inertial integration with those implemented in the IMU factor.
This architecture allows the reparameterization of the navigation frame and the pre-
integration of the inertial observations which facilitates the initialization of the system
(all initial conditions are linearly dependent on the estimated states). In addition, the
gravity vector must be considered after the observations are already integrated instead
of accounting it during integration of the inertial observations in the velocity equation.

Like most nonlinear optimization libraries, GTSAM optimizes for a change with respect
to a linearization point. This is very important to note, because in the case of GTSAM
the covariance matrices are given in relative, and not absolute, coordinates [53].

IM of the GTSAM Navigation Algorithm using the ErKF Backend

The final examination is about how the IM with ErKF backend behaves in the case of
the GTSAM navigation algorithm. Here, the ErKF performs the same integration as
described earlier, aiming to estimate the covariances used to compute the bounding PLs
of the estimation error in GTSAM. Specifically, the optimization procedure in GTSAM is



42 Navigation algorithm-agnostic IM for multiple sensor noise models

executed for the all-sensor input, while the ErKF estimates the covariances when leave-
one-out sensor input is utilized to simulate fault hypotheses. This is an alternative
implementation of the IM and, as mentioned before, can result in higher efficiency,
depending on the output format and time complexity of the monitored navigation
algorithm.

3.6.4 Results and Discussion

ErKF Experiments

Figures 3.6 and 3.7 present, for each of the trajectories (2 or 3 dimensions), the computed
PL and the position error of the estimates relative to the GT positions and for different
integrations of the POS_SENSOR1 and / or POS_SENSOR2 with the IMU. It is reminded
that the motivation for including the second position sensor is to enable the use of
typical multiple-hypothesis monitoring, which relies on measurement redundancy of
different sensors to evaluate different fault hypotheses. In this work, when solely the
POS_SENSOR1 or the POS_SENSOR2 is used with the IMU, the evaluation is limited
to the fault-free hypothesis. The filter has quite good knowledge of the noise of the
POS_SENSOR1 and the IMU, although the parametrization is not optimal. In the
case of the simulated trajectory, it is observed that the IM fails to calculate PLs that
reliably bound the error and ensure the integrity of the navigation solution when the
POS_SENSOR2 is used. This is especially visible in Fig. 3.6c, where the POS_SENSOR1
has been completely excluded. In the case of the KITTI trajectory, we observed that
the IM achieved sufficient bounds when MHSS was employed in the presence of both
POS_SENSOR1 and POS_SENSOR2.

The remaining analysis in this section aims to evaluate the ability of the LLRSD and
LLR metrics to detect the POS_SENSOR2 noise mismodeling fault.

Figure 3.8a shows for the UAV scenario the Pearson correlation coefficient of the LLRSD
or the LLR metric with the absolute position error. This analysis is done for the
integration of the POS_SENSOR1, the POS_SENSOR2, and the IMU, and for each
hypothesis (where either POS_SENSOR1 or POS_SENSOR2 is assumed fault-free). In
both cases, there is observable a weak to medium positive correlation among the metric
in hypothesis 𝐻1 and the error in hypothesis 𝐻0 on the East axis only. Additionally,
there is a weak negative correlation among the metric in hypothesis 𝐻2 and the error
in hypothesis 𝐻1.

Figure 3.8b depicts the mean and standard deviation values of the LLRSD and LLR
metric for each hypothesis, at the times when the PLs do not bound the error. The
advantage of using the LLRSD metric over the LLR metric is visible in this figure where
it is easy to identify that 𝐻2 is a valid hypothesis. In addition, the standard deviations
(shown with the black vertical lines on the bars) are in general lower for the LLRSD
metric and the 𝐻1 or 𝐻2 hypotheses. The lower standard deviations indicate that the
LLRSD is more consistent in detecting the specific noise mismodeling fault, throughout
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Figure 3.6: PL and absolute errors for various settings of POS_SENSOR1 + POS_SENSOR2
+ IMU loose integration with ErKF for the UAV simulated trajectory. The parts of the error
plot that exceed the corresponding PL are marked with green. Each column corresponds
to one direction, North (left), East (middle), Down (right). (a) Utilization of measurements
only from the POS_SENSOR1 and the IMU. (b) Utilization of measurements from both the
POS_SENSOR1 and POS_SENSOR2, along with the IMU. (c) Utilization of measurements only
from the POS_SENSOR2.

Figure 3.7: PL and errors for the POS_SENSOR1 + POS_SENSOR2 + IMU loose integration
with ErKF for the KITTI trajectory. (a) North axis (b) East axis.
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the experimentation time.

Figure 3.9 presents the results after applying the overbounding technique exclusively
for the uncertainty of the measurements of the position sensors (see Section 3.4 and
Appendix B), and for the times when the LLRSD value exceeds a preset threshold.
Overbounding means that a higher bound is computed for the hypothesis that includes
the faulty sensor. The LLRSD statistic can identify a faulty sensor, with the assumption
that at most one sensor is faulty at each time. It is noted that the LLRSD threshold used
is 0.075, selected empirically based on the LLRSD values obtained under each hypo-
thesis during the current experiments. This threshold was chosen for a good separation
of the values obtained during times of high estimated position error and low estimated
position error under the all-source hypothesis. A future analysis would ideally invest-
igate ways to set the LLRSD threshold with the objective to balance sensitivity to faults
with the risk of discontinuity in system operation.

The plots in Figure 3.9 indicate a significant improvement in the IM system’s ability
to bound the position error. Another observation is that the overbounding technique
generally avoids loose bounds during periods of low error.

Figure 3.10 presents the evaluation of LLR and LLRSD for the KITTI trajectory. The
figure and Table 3.1 show that overbounding did result in unnecessarily looser bounds.
This was expected as the monitored algorithm was already configured with large
enough measurement uncertainties for the IMU and POS_SENSOR1 sensors. This is an
important result that shows that overbounding might deteriorate the IM performance
depending on how the tuning of the parameters was done in the first place and how
uncertain are the correlated noise parameters.

GTSAM Experiments

Figure 3.11 depicts the PLs and errors for the UAV trajectory for the IMU + POS_SENSOR1
+ POS_SENSOR2 integration. It is apparent that it is overconfident to use the covari-
ance returned from the GTSAM software. However, the LLRSD is still a simple way
to detect that the noise of POS_SENSOR2 is mismodeled. This is confirmed by Figure
3.12 which shows the mean and standard deviation of the LLRSD and LLR metrics.

Experiments on GTSAM using the ErKF backend for IM

The reduction of the execution time was apparent when this implementation was used
instead of the GTSAM-based evaluation for all hypotheses, as Table 3.1 demonstrates.
Figure 3.13 shows that PLs bound quite well the error in contrast to the PLs computed
when purely GTSAM-based IM is used (Figure 3.11). However, the uncertainty is
underestimated around the end of the trajectory. It is emphasized again that the
overbounding technique was proven for KF-like algorithms.
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Figure 3.8: Comparison between the LLRSD and LLR metric for the POS_SENSOR1 +
POS_SENSOR2 + IMU integration in ErKF for the UAV trajectory. The analysis was done
for each hypothesis (denoted with H* in the labels) and each axis (North, East, Down) (a) Pear-
son correlation coefficient among the LLRSD or LLR metric and the absolute position error. (b)
Mean and standard deviation of the LLRSD or the LLR metric in the regions where bounding
failed (see Fig. 3.6). Each standard deviation is half the length of the black vertical line depicted
on top of the corresponding bar.

Figure 3.9: IM of the ErKF with conditional overbounding for the UAV trajectory. The PLs and
the true errors are shown for the (a) North axis (b) East axis (c) Down axis.
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Figure 3.10: Evaluation of IM of the ErKF with overbounding for the KITTI trajectory (a)
LLRSD (left column) and LLR (right column). Each row from top to bottom depicts the results
for the following hypotheses and axes: Out-POS_SENSOR1 & North axis, Out-POS_SENSOR2
& North axis, Out-POS_SENSOR1 & East axis, Out-POS_SENSOR2 & East axis (b) PL and error
for the POS_SENSOR1 + POS_SENSOR2 + IMU integration after conditional overbounding for
the North (top row) and East (bottom row) axes. The decision for overbounding was only based
on the LLRSD metric.
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Figure 3.11: PL and errors for the POS_SENSOR1 + POS_SENSOR2 + IMU loose integration
with GTSAM for the UAV trajectory (a) North axis. (b) East axis (c) Down axis.

Figure 3.12: LLRSD and LLR mean and standard deviation (black lines on the bars) for the
POS_SENSOR1 + POS_SENSOR2 + IMU loose integration with GTSAM for the UAV trajectory

Figure 3.13: PL and errors for the integration of the POS_SENSOR1, POS_SENSOR2 and IMU,
in GTSAM for the UAV trajectory. The experiment uses the ErKF for the computation of the
bounds in the fault hypotheses’ case. The filter underestimates the noise of the POS_SENSOR2.
We also use the conditional overbounding technique.
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3.6.5 Quantitative Evaluation of the IM Method

Li and Waslander [7] proposed a relaxed tightness metric to quantitatively evaluate the
performance of PL in terms of the proportion of time the position error of the navigation
solution is sufficiently bounded and the tightness of those bounds. They noted that in
nonlinear systems with outlier measurements, it is not feasible to guarantee that the
error will always be adequately bounded by a given PL. They proposed a novel Relaxed
Bound Tightness (RBT) metric which is calculated as follows:

–𝑍 =

√√√∑𝑁
𝑖=1 𝜌

(
𝑝𝐿𝑖−|𝑒𝑖 |

𝜎𝑖

)2

𝑁
, (3.14)

where 𝑝𝐿𝑖 and 𝑒𝑖 are respectively the PL and the error for a sample time i in one direction,
𝑁 is number of samples, 𝜎𝑖 is the error covariance for the sample. 𝜌 is a weight function
that should penalize bounding failures more than loose bounds. It is given as:

𝜌 =

{
1 if 𝑣𝑖 ≥ |𝑒𝑖 |
𝜏 if 𝑣𝑖 < |𝑒𝑖 |

(3.15)

To compute meaningful absolute RBT values the constant 𝜏 should be selected in a
way to minimize –𝑍 given an ideal bound 𝑣∗. After assuming that the error follows a
Gaussian distribution without outliers, the latter is calculated as the quantile function
for a Gaussian distribution, depending on the predefined minimum probability of error
bounding. However, in this study, 𝜏 takes a value in the range between 12 and 602 to
run the evaluation and compare the IM performance for different sensor integration
schemes and navigation algorithms. The selection of this range of values is intended to
compare the metric values when equal weight is given to bounding failures and loose
bounds, or a large to very large penalty is applied to bounding failures. The maximum
value of the range and the specific penalty values were not selected based on specific
criteria. Table 3.1 presents the results along with execution times.

Overbounding is justifiable in safety-critical applications where bounding the error
over long periods is a strict requirement, which corresponds to higher 𝜏. In contrast,
unconditional overbounding methods may be considered a hurdle when tighter PLs
are needed (lower 𝜏). In addition, one should consider that overbounding leads to
longer execution times when IM is run sequentially, mainly due to the evaluation of
more hypotheses. In the absence of bounding failures, the value of 𝜏 does not affect
the RBT value, as is confirmed from the results. Finally, Figure 3.14 plots the RBT
values for the simulated UAV trajectory for a few selected 𝜏 values in the range [1, 602].
The figure shows that additional criterium for the decision to utilize overbounding
or not should be the algorithm that is monitored. Overbounding becomes justifiable
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Figure 3.14: RBT values of examined IM algorithms, for various values of the unbounded error
penalty constant 𝜏, for the UAV simulation trajectory. (a) North axis (b) East axis (c) Down axis.

already for a value of 𝜏 = 500 for the ErKF case, whereas, for the GTSAM with ErKF
backend, it is not justifiable until a value of 𝜏 = 2000. This is because the position
error was generally lower in the GTSAM case. To generalize, the results highlight that
overbounding methods can be avoided in IM if the tuning of the noise parameters in
the navigation algorithm has been done optimally (i.e. the position error is low) or if
the noise parameters have been set conservatively (i.e. PLs will be already loose).

.

Table 3.1: Comparison of RBT values for two trajectories with various algorithms or IM setups

Trajectory ErKF GTSAM GTSAM +
ErKF hypotheses

w/o FDO with
FDO

w/o FDO with
FDO

w/o FDO with
FDO

UAV

Maximum RBT for 𝜏 = 122

11.4 +27.8% +349% +349% -10% +37.3%
Maximum RBT for 𝜏 = 602

46.96 -37.6% +445% +445% -46.2% -50%
Full estimation + IM Avg execution time per step (s)
0.1183 0.1483 0.2264 0.2718 0.1551 0.1482

KITTI

Maximum RBT for 𝜏 = 122

15.73 +12.7% +71% +71% +22% +31.3%
Maximum RBT for 𝜏 = 602

15.73 +12.7% +755% +755% +22% +31.3%
Full estimation + IM Avg execution time per step (s)
0.07 0.075 0.089 0.117 0.074 0.087
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3.7 Chapter Summary
This chapter focuses on designing an IM solution for multi-sensor navigation systems
operating in the position domain, using a MHSS approach. The IM system assumes an
entire sensor measurement set is faulty under each hypothesis and works directly with
the output position states and uncertainties from the underlying navigation algorithm.
Due to the computational demands of some monitored navigation algorithms and the
variability in how they provide covariances, the chapter proposes including a standard
and low-complexity filter in the IM as backend, specifically the ErKF, for evaluating all
but the fault-free hypotheses.

The IM is not dependent on the internal implementation of the navigation algorithm.
The challenge of having independent execution of the IM lies in the potentially unre-
liable uncertainties provided by the navigation algorithm, which may not be detected
by consistency checks. Although IM of solutions that run collaboratively with the
navigation algorithm are generally more efficient, the chapter proposes that measures
based on measurements’ log likelihood can provide a good understanding of sensor
measurement uncertainties. This is especially helpful when the navigation algorithm
has only a very approximate knowledge of the measurement noise models.

The proposed IM method includes also an overbounding technique which is applied
conditionally, based on the rolling standard deviation of log-likelihoods. Experimenta-
tion is done by synthesizing a measurement that includes time correlated noise, some-
thing that is unknown in the navigation algorithm. Instead, the algorithm has some
knowledge of broad ranges of values where the noise parameters lie. The results demon-
strate the effectiveness of log-likelihood based measurements in providing sufficient
indications of underestimated uncertainties. Theoretical results from previous literat-
ure on overbounding the error of KF estimates in presence of correlated sensor noise
were applied here with the ErKF. The results are promising: PLs that are bounding
increasing errors and that maintain tightness during periods of low error.

As the experiments confirmed, the proposed method’s architecture achieves the goal
of universality in terms of navigation algorithm’s internal architecture as well as com-
putational complexity, while it facilitates extendibility to a variety of sensors with
challenging noise models. A limitation of the method is that the included sensors
should provide independent position solutions which is not true in many occasions,
and, therefore, this remains a topic for future research.

The developed framework, working with a limited number of hypotheses on sensor-
level, serves as a strong foundation for further IM development in the current thesis,
particularly in handling the integration of IMU/GNSS/Camera in subsequent chapters.



Chapter 4

An IM designed for scalability to
auxiliary sensors

4.1 Introduction
Main motivation for an integrated system of conventional sensors, e.g. IMU/GNSS,
and a camera, is to exploit the complimentary capabilities of the sensors, i.e. availability
of the system in conditions where one or more of the sensors fail. Tall structures might
be affecting the quality of a GNSS signal (total denial, multipath), mostly feature-
less environments or light reflections might affect negatively the quality of feature
extraction and association in camera images, while un-aided inertial sensors accumulate
drift. Despite the factual improvements in the navigation accuracy due to fusion
of complimentary sensors [1], previous research has not investigated thoroughly the
conditions of nominal behavior of those sensors.

The probability of sensor failure in the GNSS/IMU/Camera integration is significant,
potentially surpassing acceptable risk levels in safety-critical operations. GNSS satellite
failure probability has been found to reach magnitudes of 10−3 [55], without accounting
for failures arising from signal environment or user segment equipment issues. Addi-
tionally, accounting for the state error due to undetected fault in IMU measurements in
the PL computation is also crucial, with the fault probability of IMU ranging in 10−3 to
10−5 per hour [56].

Most MHSS-based IMs for GNSS/IMU coupled integrations account only for GNSS
faults [56]. Looking into Visual-Inertial navigation systems, IMU preintegration [57, 58]
plays a pivotal role and faults in IMU measurements should be accounted for.

The inclusion of a camera increases substantially the number of sources of faults.
Among the most critical error sources in VN is the occurrence of incorrect feature as-
sociations, with Zhu et al. ([59]) concluding to a probability on the order of 10−1 for
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this type of fault, depending on the distance to and the complexity of the landmark.
More broadly, a few works, such as [60] and [61], have made efforts to categorize the
various faults related to VN, assess their impact, and explore methods for mitigation.
In addition, the camera introduces challenges in the definition of a nominal error model
(error distribution) during feature extraction as that model depends on the environ-
mental conditions while capturing images (e.g. different illumination conditions), the
VN method (direct vs feature based) and the specifics of the utilized feature detector
[62]. Therefore, a method for fault detection in the new sensor set is essential. Also,
typical RAIM methods are not well suited to account for the non-standard sensor noise
and extended set of undetected faults for PL computation.

This chapter includes the description of the IMU and VN models in the multi-sensor
integration, the respective residuals, and the PL inflation terms for IMU and VN.
Subsequent chapters will delve into the specifics of VN anomaly detection and camera
FDE. The proposed architecture addresses several limitations found in previous works
regarding multi-sensor navigation IM. All modules build upon the foundation laid out
by the IM system to ensure reliable navigation in complex urban environments and the
evaluation is based on real-world car drives. An overview of the evaluation datasets
throughout the thesis is provided in this chapter. The experimental results for the
developed IM architecture are presented collectively in the end of the thesis, in Chapter
7.

This chapter is primarily based on Paper 4, while also leveraging parts from Papers 2
and 3.

4.2 Motivation for a sensor-tailored approach to IM of multi-sensor integ-
rations

This section provides a concise overview of previous research addressing camera meas-
urement faults and their impact on output images and VN. It also reviews relative IM
approaches, both in the specific context of VN and in dealing with numerous sensor
fault modes, in general. The proposed IM architecture addresses several limitations
found in previous works regarding multi-sensor navigation IM.

The review of integrity methods for VN from Zhu et al. [62] separated the class of meth-
ods that try to guarantee integrity by exploiting visual measurements in very specific
navigation problems from those that consider the integrity of the VN itself. The former
class includes methods like the one investigating integrity during lane tracking [63]
or exploitation of synthetic visual-based range measurements to aid GNSS IM during
aircraft landing [64]. Nonetheless, more related to the work in this thesis is the latter
class of methods; Fu et al. [65] studied the integrity of stereo VO systems under various
conditions (e.g. environmental), implementing limit checks to identify landmark match
errors. They treated a 3D landmark matching pair as the visual measurement, with
the difference between pair members as residual, overbounded in a similar manner to
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ARAIM. They utilized innovation-like metrics by comparing a transformed represent-
ation of the local scene based on state estimates with the measured image. Gupta and
Gao [66] proposed a method for computing PLs using vehicular state estimates from
camera images and a 3D enviromental map obtained with a LiDAR. The process is
to construct local depth maps for multiple candidate states, comparing them with the
measured image to derive error distributions. Finally, some methods in the literature
employ outlier detection techniques for the feature point measurements in images and
a similar to MHSS framework for clustered feature points (e.g. the method from Wang
et al. [67]).

Zhu et al. [68] delved into the challenges posed by the substantial number of fault modes
in multi-sensor solutions, which can also depend on the operational environment.
Their method builds upon a wide array of previous greedy search based FDE methods.
However, their emphasis lies in evaluating the integrity performance after potentially
removing certain measurements.

Given an observation matrix, which stacks Jacobian matrices from all participating
sensors, it builds a residual based test statistic and a test threshold based on all meas-
urements. If the test fails, the method proceeds by excluding the measurements con-
tributing the most to the test statistic. The process iterates with a new threshold for the
remaining measurements. The authors of [68] acknowledged some limitations in their
method; Firstly, the utilized greedy FDE still needs to search over all fault modes and,
secondly, large variations in the magnitude of elements within the observation matrix,
stemming from different sensors, can lead to insufficient redundancy for effective fault
detection.

The literature highlights the challenges in robustly guaranteeing safety when employing
auxiliary sensors, primarily due to their non-standard noise characteristics, susceptib-
ility to various sources of faults, and inherent non-linearities. Most of the methods
are developed to address specific sensor faults or demand explicit fault descriptions.
Some of the methods are developed to work with very specific sensors or sensor com-
binations, relying on the low level measurements provided by those sensors. However,
such approaches can still hinder applicability when dealing with a wide array of auxil-
iary sensors. It should prove beneficial to develop a method capable of accounting for
faulty sensor measurements without necessitating exhaustive examination of all poten-
tial fault hypotheses. This method should also identify sensor faults independently of
redundancy with other sensors and reduce reliance on navigation algorithm prerequis-
ites, such as uncertainty estimation, or knowledge of sensor noise characteristics.

This chapter proposes a method for protection bound computation appropriate for
integrations of auxiliary sensors with conventional sensors, such as GNSS and IMU. The
method incorporates simple integrations of the participaring sensors in a multi-level IM
approach; It quantifies the effect that the various measurement subsets, corresponding
to the various fault modes, have on the integrity risk of standardized and simpler, than
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the monitored, navigation algorithms.

The method emphasizes the separation of the IM procedure for each auxiliary sensor
from other auxiliary sensors, facilitating the determination of safety guarantees specifically-
targeted to the sensor. Eventually, integrity risk bounds derived for simpler integrations
are corrected appropriately to correspond to conservative bounds for the position er-
rors of the original monitored algorithm. The correction procedure involves an offline
sensitivity analysis, focusing on how changes in the outputs of the simplified integra-
tion impact the outputs of the monitored algorithm. Both outputs exist in the position
space, simplifying the analysis. The sensitivity analysis must be conducted once for a
predefined set of trajectories and input measurement perturbations for any navigation
algorithm to be monitored. Two examples of this sensitivity analysis described in this
chapter are for perturbations in the IMU and in the camera measurements which will
be described in sections 4.5.1 and 4.5.2 respectively.

The experiments in chapter 7 validate the proposed PL computation procedures for a
GNSS/IMU/VN integration with factor graphs as an illustrative navigation method.
Notably, the IM does not impose any assumptions about the internal architecture of
the navigation algorithm, making it applicable to various algorithms. Briefly, the
advantages of the proposed IM architecture are:

• It eliminates the need to model specific sensor faults, focusing on their direct
impact on navigation.

• It enables the discovery of hazardous operating conditions for auxiliary sensors
through a dedicated risk assessment module for each sensor, along with evalu-
ations of dedicated standardized navigation algorithms relative to the sensor.

• Based on the above, it also offers applicability for various auxiliary sensors.

4.3 Hypothesis tree
Figure 4.1 shows the multi-level approach as a hypothesis tree, in the general case
of integrating an IMU with multiple position and auxiliary sensors. The monitored
navigation algorithm runs as normal for the full measurement set. The Conventional
Sensor Set (CSS) includes sensors that provide a measurement of the position (e.g.
GNSS) and inertial sensors (e.g. IMU). The integrity of this integration can be verified
via a typical MHSS method, validating the hypotheses 𝐻OUT_POS0 , 𝐻OUT_POS1 , ... of one
position sensor failing at a time. A bank of ErKFs is considered to be appropriate
for the integrations of the measurement subsets, to find inconsistencies among the
various position estimates. This chapter does not include a methodology for the CSS
IM, as it is a well examined topic [69], and one methodology has been proposed in
chapter 3. On the right side of the tree, the method validates the hypothesis 𝐻CC,
which considers as fault-free the camera and the CSS. The integrity of this integration
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Figure 4.1: Hypothesis tree.

can be validated in the DHT module, which is described analytically in section 4.4.3 of
this chapter and in section 6.3 in the chapter that focuses on camera FDE. In DHT for
camera, a typical VN algorithm, e.g. VIO, can estimate poses of the camera sensor. An
MHSS approach will validate the consistency of VN poses with CSS measurements,
in hypotheses 𝐻CC0 , 𝐻CC1 , ..., 𝐻CC𝑀

that assume subsets of the VN poses, in a limited
window of 𝑀 samples, as faulty. A bank of ErKFs is appropriate for this integration too
and to quantify inconsistencies in the outputs. The red arrows signify that the integrity
risk bounds computed on each level to account for faults in the simpler integrations are
corrected to correspond to conservative bounds in the monitored navigation algorithm.
Section 4.5.2 describes analytically the procedure for correcting the integrity risk bound
under 𝐻𝐶𝐶 . The figure shows also, with lower opacity, that the tree can be extended
to additional auxiliary sensors, where the validation happens for the measurement
subsets CSS & Auxiliary sensor 1, CSS & Auxiliary sensor 2 etc. under corresponding
hypotheses 𝐻𝐶𝐴1 , 𝐻𝐶𝐴2 , .... Finally, the method accounts for probable faults in IMU
preintegration with a residual-based method, that is not part of the hypothesis tree.
Section 4.5.1 describes that method.

4.4 Conventional and visual measurement integration
For the GNSS/IMU/VN integration, the proposed method investigates the four "on
sensor level" fault modes; 𝐹𝐹, 𝐺𝑁𝑆𝑆 − 𝐹, 𝐼𝑀𝑈 − 𝐹 and 𝑉𝑁 − 𝐹. Here, 𝐹𝐹 stands
for the Fault-Free mode, while the names of the other three modes include a sensor
identifier and the letter F, indicating that the underlying sensor is faulty. The current
work, for simplicity, does not consider cases where more than one sensors fail at the
same time and assumes that the presented fault modes are independent. The section
introduces first the sensor measurements and the coordinate frames. Then, it discusses
the measurement models within multi-sensor integrations, demonstrated in yellow
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rectangles in figure 4.1, specifically for the three sensors of interest; GNSS, IMU and
camera .

4.4.1 Notation and definitions

The origin of the body-fixed cooordinate frame (𝑏) is on the IMU sensor, and the x-axis
points towards the forward direction, the y-axis to the right of the vehicle, and the
z-axis towards the ground. Depending on the vehicle setup in different datasets, a
transformation of the data to this specific axis convention (Forward Right Down) has
to be carried out.

The world coordinate frame (𝑤) for the vehicle (local world frame) is fixed at the starting
location, and has the NED axis convention. The GNSS position measurements, as well
as all position estimates from the navigation algorithms evaluated here, are expressed
in this frame.

The camera coordinate frame (𝑐) has its origin on the camera sensor. Commonly,
camera pose estimates from a VN algorithm are relative to the first camera frame (𝑐0),
which is aligned with the camera position and orientation at the beginning of the image
sequence. A transformation of these estimates to the world frame (𝑤) is necessary, to
incorporate them into the bank of ErKFs within the "DHT for camera" module.

In the notation used for variables in all equations in this chapter, left-side subscripts
within parentheses represent the reference frame, while a combination of subscript
and superscript within parentheses signifies a transformation between two coordinate
frames. A superscript within parentheses on the right side indicates that the variable
is defined under a specific hypothesis. Subscripts on the right side of variables spe-
cify the sensor type (if applicable) associated with that variable and the step (e.g., of
measurement or estimation) at which the variable is defined.

Given the rotation (𝑤)(𝑏) 𝑅𝑅𝑅𝑘 of the frame (𝑏) to the frame (𝑤) at each step 𝑘, the models for
the linear acceleration and the angular velocity of the IMU follow below:

(𝑏)𝑎𝑎𝑎𝑘 =
(𝑤)
(𝑏) 𝑅𝑅𝑅

𝑇
𝑘
((𝑤)𝑎𝑎𝑎𝑘 − (𝑤)𝑔𝑔𝑔) + 𝑏𝑏𝑏𝑎𝑘 + 𝑛𝑛𝑛𝑎 (4.1)

(𝑏)�̃�𝜔𝜔𝑘 = (𝑏)𝜔𝜔𝜔𝑘 + 𝑏𝑏𝑏𝑤𝑘 + 𝑛𝑛𝑛𝑤 (4.2)

The terms 𝑏𝑏𝑏𝑎𝑘 and 𝑏𝑏𝑏𝑤𝑘 are, respectively, the random biases of the linear accelerations
and angular rates, while the terms 𝑛𝑛𝑛𝑎 and 𝑛𝑛𝑛𝑤 are white Gaussian noise vectors, and
(𝑤)𝑔𝑔𝑔 is the gravity vector.

Let (𝑤)𝑥𝑥𝑥𝐶 =

[
(𝑤)𝑝𝑝𝑝𝐶

(𝑤)𝜙𝜙𝜙𝐶

]
be the camera pose relative to (𝑤), where (𝑤)𝑝𝑝𝑝𝐶 is the camera

position, and (𝑤)𝜙𝜙𝜙𝐶 is the camera attitude vector. The measurement of an extracted
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feature point on the image plane is given as:

𝑧𝑧𝑧 𝑙 = 𝜋𝑙((𝑤)𝑥𝑥𝑥𝐶) +∨∨∨𝑙 + 𝑏𝑏𝑏 𝑙 , (4.3)

where 𝜋𝑙(𝑥𝑥𝑥𝐶) is the 2D projection of the feature 𝑙’s world coordinates on the image
plane, ∨∨∨𝑙 is zero-mean Gaussian noise, and 𝑏𝑏𝑏 𝑙 is a bias in the feature location. It is
worth noting that the variable 𝑥𝑥𝑥𝐶 is in the equation because the projection depends on
(𝑤)𝑝𝑝𝑝𝐶 and the rotation matrix between camera body frame and global frame.

4.4.2 IMU measurement model in multi-sensor integrations

It is possible to utilize IMU measurements, between any two camera image acquisition
times, to propagate position, velocity and orientation in the world frame at time 𝑗.
This propagation is achieved by combining these measurements into a single relative
motion constraint, with this integration procedure occurring in a local frame. The
key advantage is an enhancement in the efficiency of optimization-based systems, as
it avoids the need for re-propagating the states, even when there are changes in the
linearization point. The procedure is known as IMU preintegration.

Assuming that the IMU measurement biases at time 𝑖 are known, the compound IMU
measurements, expressed as relative motion constrains between the two times, are
written in the equation system (4.4) [58]. It is worth noting that from now on the text
simplifies the notation by omitting the coordinate frame scripts. The symbol𝑅𝑅𝑅 refers to
the rotation matrix from (𝑏) to (𝑤), all IMU measurements are expressed in (𝑏), while
gravity, position and velocity vectors are expressed in (𝑤).

Δ�̃�𝑅𝑅𝑖 𝑗 = Δ𝑅𝑅𝑅𝑖 𝑗 Exp(𝛿𝜙𝜙𝜙𝑖 𝑗)

=

[
𝑗−1∏
𝑘=𝑖

Exp
(
(�̃�𝜔𝜔′𝑘 − 𝑏𝑏𝑏𝑤,𝑘)Δ𝑡

) ]
Exp(𝛿𝜙𝜙𝜙𝑖 𝑗)

Δ�̃�𝜐𝜐𝑖 𝑗 = Δ𝜐𝜐𝜐𝑖 𝑗 + 𝛿𝜐𝜐𝜐𝑖 𝑗

=

[
𝑗−1∑
𝑘=𝑖

Δ𝑅𝑅𝑅𝑖𝑘(𝑎𝑎𝑎′𝑘 − 𝑏𝑏𝑏𝑎,𝑘)Δ𝑡
]
+ 𝛿𝜐𝜐𝜐𝑖 𝑗

Δ�̃�𝑝𝑝 𝑖 𝑗 = Δ𝑝𝑝𝑝 𝑖 𝑗 + 𝛿𝑝𝑝𝑝 𝑖 𝑗

=

[
𝑗−1∑
𝑘=𝑖

1
2Δ𝑅
𝑅𝑅𝑖𝑘(𝑎𝑎𝑎′𝑘 − 𝑏𝑏𝑏𝑎,𝑘)Δ𝑡

2

]
+ 𝛿𝑝𝑝𝑝 𝑖 𝑗 ,

(4.4)

for the relative rotation of the body frame from time 𝑖 to time 𝑗, Δ𝑅𝑅𝑅𝑖 𝑗 = 𝑅𝑅𝑅𝑇
𝑖
𝑅𝑅𝑅 𝑗 , and

the position and velocity evolution, Δ𝑝𝑝𝑝 𝑖 𝑗 and Δ𝜐𝜐𝜐𝑖 𝑗 . Additionally, Δ𝑅𝑅𝑅𝑖𝑘 = 𝑅𝑅𝑅𝑇
𝑖
𝑅𝑅𝑅𝑘 . The

integer 𝑘 = 𝑖 , ..., 𝑗 − 1 is the time step of IMU measurements. The formula assumes
white noise in individual IMU measurements, which is incorporated in the terms 𝛿𝜙𝜙𝜙𝑖 𝑗 ,
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𝛿𝜐𝜐𝜐𝑖 𝑗 and 𝛿𝑝𝑝𝑝 𝑖 𝑗 . This separation of the terms on the right hand side of (4.4) is possible
after isolating mathematically the noise terms 𝑛𝑛𝑛𝑎 and 𝑛𝑛𝑛𝑤 from 𝑎𝑎𝑎𝑘 and �̃�𝜔𝜔𝑘 in equations
(4.1). The two biased but non-noisy IMU measurements are indicated as 𝑎𝑎𝑎′𝑘 and �̃�𝜔𝜔′

𝑘
.

Finally, the term Δ𝑡 denotes the time interval between two inertial measurements.

Importantly, the above equations rely solely on IMU measurements between times 𝑖
and 𝑗 and not on the position and velocity at time 𝑖, which would indicate reliance on
the linearization point at time 𝑖.

4.4.3 MHSS for camera frames

This section discusses the VN model, and the relation of navigation faults to the
full GNSS/IMU/VN integration. The faults are associated with sequences of cam-
era frames, instead of individual frames.

For each image, the camera pose estimate is determined with respect to the reference
frame (𝑐0), that is, w.r.t. the first camera frame. A typical VN system will utilize a tech-
nique for feature extraction and matching to features in earlier images. Visual odometry
tracks matched features through sequences of frames, estimating the displacement of
the camera. The factors that can deteriorate the feature extraction and matching pro-
cedures are, among others, ambiguities in the scene, lack of texture, bad illumination
and occlusions. The big number of sources of possible faults would require to consider
hypotheses from a complex space. The first step in the method is, therefore, to simplify
the hypothesis space of faults by relating them with the drifts in camera pose estimates
that they might cause in VN algorithms.

The configurable parameter 𝑀, shown in figure 4.1, dictates both the number of VN
poses assessed for faults (as accumulated drifts within the window of VN poses) and
the frequency of the test, i.e., the method conducts the test every 𝑀’th image. In each
time step 𝑖 ∈ [1, 𝑀] inside the considered horizon, let 𝐿𝑖 be the total number of feature
correspondences obtained until that step in the horizon. The feature correspondences
are represented by their projections on each image. The complete vector of stacked fea-

ture projections at step 𝑖will be𝑍𝑍𝑍 𝑖 =


𝑧𝑧𝑧1
...

𝑧𝑧𝑧𝐿𝑖

 , or by grouping them in their 𝑖 corresponding

images:

𝑍𝑍𝑍 =


𝑍𝑍𝑍1
...

𝑍𝑍𝑍 𝑖

 , (4.5)

where 𝑍𝑍𝑍 𝑖′ , 𝑖′ = 1, ..., 𝑖 is a vector with feature point correspondences found in image
obtained at time 𝑖′.
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In the general case, the VN algorithm seeks a solution to the optimization problem

�̂�𝑥𝑥𝐶 = arg min𝑥𝑥𝑥 | |𝑧𝑧𝑧 − 𝜋(𝑥𝑥𝑥)| |2
ΣΣΣ−1
𝑢𝑢𝑢

, where �̂�𝑥𝑥𝐶 =

[
�̂�𝑝𝑝𝐶
�̂�𝜙𝜙𝐶

]
is the camera pose estimate at the

current step, which stacks the position �̂�𝑝𝑝𝐶 and attitude �̂�𝜙𝜙𝐶 vectors, 𝜋(𝑥𝑥𝑥) =

𝜋1(𝑥𝑥𝑥)
...

𝜋𝐿(𝑥𝑥𝑥)

 , and

ΣΣΣ𝑢𝑢𝑢 is the covariance matrix of the stacked noise vector 𝑢𝑢𝑢 =


𝑢𝑢𝑢1
...

𝑢𝑢𝑢𝐿

 . The number 𝐿 is the

number of feature correspondences used in the optimization problem and is something
determined internally in the navigation algorithm. Importantly, that number does not
affect the formulations.

The fault vector affecting the pose solution at step 𝑖 in the current horizon will be de-
termined by instantaneous or slowly growing faults (drifts), as well as pose corrections,
due to past feature correspondences. Without loss of generality, we limit the analysis
at the part of the fault that is due to the past 𝐿𝑖 feature correspondences and construct
the corresponding fault hypotheses.

Let �̂�𝑋𝑋𝐶,𝑀 represent the VN pose estimates assessed for faults in the current horizon of
size 𝑀. The method employs 𝑀 + 1 hypotheses, with each assuming that the subset
𝑋𝑋𝑋(𝐶𝐶,�) ⊂ 𝑋𝑋𝑋𝐶,𝑀 , � = 0, 1, ...𝑀 of VN poses remains fault-free. In this context, "fault-
free" signifies that camera measurements within the current horizon do not introduce
new erroneous drifts in the poses, specifically rapid drifts due to faulty image feature
extraction or association. However, these poses may still be affected by prior drifts or
faults that occurred prior to the current horizon. The rule for selecting VN poses to
include in 𝑋𝑋𝑋(𝐶𝐶,�) is the following:

𝑋𝑋𝑋(𝐶𝐶,�) = {�̂�𝑥𝑥𝐶,�+1−𝑀 , ..., �̂�𝑥𝑥𝐶,�} (4.6)

For example, under𝐻𝐶𝐶,0 all VN poses are excluded (as 0+ 𝑖 ≤ 𝑀 for any 𝑖 = 1, . . . , 𝑀).
Under 𝐻𝐶𝐶,1 only the 𝑀-th VN pose is assumed fault-free, while under 𝐻𝐶𝐶,𝑀 all VN
poses from index 1 to 𝑀 are included. The remaining text identifies the hypothesis
𝐻𝐶𝐶,𝑀 as the all-source hypothesis in DHT, and uses the simpler notation 𝐻𝐶𝐶 .

4.4.4 ErKF in integrations of VN with conventional sensors

The previous section defined a hypothesis set of faulty VN pose estimates, where these
faults appear predominantly as drifts spanning M previous estimates. This section
describes the method to test the hypotheses. The test is feasible by performing standard
loosely coupled integration of VN poses with conventional sensors in an ErKF. This
approach maintains computational simplicity. Notably, testing these hypotheses using
the actual monitored algorithm, without knowing the specifics of the GNSS/IMU/VN
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Figure 4.2: The DHT for camera.

integration, might be impossible.

The DHT module employs a bank of ErKFs to test the hypotheses𝐻𝐶𝐶,� , � = 1, 2, ..., 𝑀+
1, integrating the 𝑀 VN pose estimates with measurements from CSS, obtained in the
current horizon. The outputs from the bank of ErKFs are the position solutions and
estimated uncertainties under each hypothesis. The IM will use only the outputs at the
end of the horizon , as section 4.5.2 will describe. Figure 4.2 depicts the bank of ErKF
filters used in the DHT module. The measurement model assumes Gaussian white
noise 𝑛𝑛𝑛𝐶 ∼ 𝒩(0, 𝑅𝑅𝑅𝐶) in the VN pose fixes, with 𝑅𝑅𝑅𝐶 being a time-invariant covariance
matrix, and includes a time-varying fault vector 𝑓𝑓𝑓 𝐶 :

���𝐶 = ℎ𝐶(𝜒𝜒𝜒) + 𝑓𝑓𝑓 𝐶 + 𝑛𝑛𝑛𝐶 (4.7)

The above formulations omitted explicit notation for each step. Similarly, a GNSS fix is
modeled as:

���𝑃 = ℎ𝑃(𝜒𝜒𝜒) + 𝑓𝑓𝑓 𝑃 + 𝑛𝑛𝑛𝑃 , (4.8)

where 𝑛𝑛𝑛𝑃 is a noise factor in the GNSS position measurements, which is assumed to
be zero-mean Gaussian white noise, and 𝑓𝑓𝑓 𝑃 is a time-varying fault vector in the GNSS
position measurements. The 𝜒𝜒𝜒 denotes the state at each time, a vector which stacks the
position 𝑝𝑝𝑝, velocity 𝜐𝜐𝜐, attitude quaternion 𝑞𝑞𝑞, acceleration bias 𝑏𝑏𝑏𝑎 and angular velocity
bias 𝑏𝑏𝑏𝑤 vectors:

𝜒𝜒𝜒 = (𝑝𝑝𝑝,𝜐𝜐𝜐, 𝑞𝑞𝑞, 𝑏𝑏𝑏𝑎 , 𝑏𝑏𝑏𝑤) (4.9)

The non-linear functions ℎ𝐶 and ℎ𝑃 are mapping the state to a VN pose or GNSS
measurement, respectively.

A fault-tolerant ErKF under hypothesis 𝐻𝐶𝐶,� ignores in the integration the VN pose
estimates that are excluded under that hypothesis. At the start step 𝑖 = 0 of each
measurement horizon, comprising 𝑀 VN poses, all state and covariance estimates
across filters are reset to align with the filter operating under 𝐻𝐶𝐶 :
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�̂�𝜒𝜒(𝐶𝐶,�)
𝐶,�−𝑀 = �̂�𝜒𝜒𝐶,�−𝑀

�̂�𝑃𝑃
(𝐶𝐶,�)
𝐶,�−𝑀 = �̂�𝑃𝑃𝐶,�−𝑀 ,

(4.10)

∀� ∈ [1, 𝑀],∀� ∈ 𝐾𝐾𝐾, where𝐾𝐾𝐾 denotes the set of camera image indices when the method
performs the test. The reset occurs regardless of any fault detections in the previous
horizon.

Fundamentally, the ErKF propagates the error quantities 𝛿𝑝𝑝𝑝, 𝛿𝜐𝜐𝜐, 𝛿���, 𝛿𝑏𝑏𝑏𝑎 and 𝛿𝑏𝑏𝑏𝑤 in-
stead of estimating their actual values. 𝛿��� denotes the error in the attitude in an
angle-axis representation [70]. As the equations (4.7) and (4.8) relate the measurements
with the true states, an additional step is to relate the true state with the error state:

𝜒𝜒𝜒 =



�̂�𝑝𝑝 + 𝛿�̂�𝑝𝑝
�̂�𝜐𝜐 + 𝛿�̂�𝜐𝜐

�̂�𝑞𝑞 ⊗
[

1
1
2𝛿�̂��

]
𝑏𝑏𝑏𝑎 + 𝛿𝑏𝑏𝑏𝑎
𝑏𝑏𝑏𝑤 + 𝛿𝑏𝑏𝑏𝑤


, (4.11)

where ⊗ is the quaternion product. Now, the linearization for the VN and GNSS
measurement models is done about the error state 𝛿�̂�𝜒𝜒(𝐶𝐶,�) = 0 under each hypothesis.
This concludes the formulation of the measurement models and standard integration
of conventional and visual measurements in the ErKF.

4.5 Integrity Solution for integrations of convential and auxiliary sensors
Section 4.5.1 formulates the protection bound computation to account for IMU pre-
integration faults. Section 4.5.2 formulates the protection bound computation for
camera-only navigation faults, based on the VN model. Lastly, section 4.5.3 concludes
the methodology with the overall diagram, which indicates also the scalability of the
method to auxiliary sensors other than the camera.

The equations in the subsequent sections will utilize the check accent ( ˇ ) to indic-
ate variables associated with the actual monitored navigation algorithm, such as the
monitored algorithm’s state estimates.

4.5.1 PLs for IMU pre-integrated measurements

Formulating the residual of IMU preintegrated measurements, in relation to its ex-
pectation, and finding its contribution to the undetected position state estimate error
under the all-source hypothesis, is essential in computing PLs that bound that part of
the state estimate error. Let the index � identify the steps of camera image acquisition.
The predicted position estimate, in the body frame, under the all-source hypothesis at
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time 𝑗 = 𝑡�+1 of acquisition of an image frame, based on the estimate at the time of
acquisition of the previous image frame, 𝑖 = 𝑡�, is:

�̌�𝑅𝑅
𝑇

𝑖 �̌�𝑝𝑝 𝑗 = �̌�𝑅𝑅
𝑇

𝑖 (�̌�𝑝𝑝 𝑖 + �̌�𝜐𝜐𝑖𝑡𝑖 𝑗 −
1
2𝑔
𝑔𝑔𝑡2𝑖 𝑗) (4.12)

where 𝑡𝑖 𝑗 = 𝑡�+1 − 𝑡�. By rearranging the terms, the predicted position change due to
acceleration, between the two times will be:

Δ�̌�𝑝𝑝 𝑖 𝑗 = �̌�𝑅𝑅
𝑇

𝑖 (�̌�𝑝𝑝 𝑗 − �̌�𝑝𝑝 𝑖 − �̌�𝜐𝜐𝑖𝑡𝑖 𝑗 +
1
2𝑔
𝑔𝑔𝑡2𝑖 𝑗) (4.13)

Therefore, the residual 𝑟𝑟𝑟𝐵𝑗 of the observed preintegrated IMU measurement relevant
to the position state will be:

𝑟𝑟𝑟𝐵𝑗 = Δ�̌�𝑝𝑝 𝑖 𝑗 − Δ�̃�𝑝𝑝 𝑖 𝑗

= �̌�𝑅𝑅
−1
𝑖 (�̌�𝑝𝑝 𝑗 − �̌�𝑝𝑝 𝑖 − �̌�𝜐𝜐𝑖𝑡𝑖 𝑗 +

1
2𝑔
𝑔𝑔𝑡2𝑖 𝑗) − Δ�̃�𝑝𝑝 𝑖 𝑗

(4.14)

The residual, 𝑟𝑟𝑟𝐵𝑗 , affects the position state error of the monitored navigation algorithm
through the Jacobian 𝐽𝐽𝐽𝐵𝑗 that relates 𝑟𝑟𝑟𝐵𝑗 with the position state �̌�𝑝𝑝, at any estimation
step. The method to define the Jacobian 𝐽𝐽𝐽𝐵𝑗 resembles an offline sensitivity analysis
and may entail using outputs from a Monte Carlo simulation. This simulation intro-
duces symmetrical perturbations to IMU measurements, and Algorithm 1 describes
the perturbation method for one input in the simulation.

Algorithm 1 Computing perturbation for preintegrated IMU residual

Given: IMU measurements 𝑦𝑦𝑦𝐵𝑘 = [𝑎1 , 𝑎2 , 𝑎3 , 𝜔1 , 𝜔2 , 𝜔3]𝑘 , ∀𝑘
foreach 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙[𝑖 , 𝑗) between two frames 𝑖 and 𝑗

select randomly a perturbation 𝛿𝑦𝐵𝑗 for linear acceleration measurements, where
the maximum value of the perturbation is limited to one standard deviation of the
nominal IMU noise.

foreach IMU measurement 𝑦𝑦𝑦𝐵𝑘 obtained in interval [𝑖 , 𝑗) do
perturbed 𝑦𝑦𝑦+

𝐵𝑘
← 𝑦𝑦𝑦𝐵𝑘 + [𝛿𝑦𝐵𝑗 , 𝛿𝑦𝐵𝑗 , 𝛿𝑦𝐵𝑗0001×3]

perturbed 𝑦𝑦𝑦−
𝐵𝑘
← 𝑦𝑦𝑦𝐵𝑘 − [𝛿𝑦𝐵𝑗 , 𝛿𝑦𝐵𝑗 , 𝛿𝑦𝐵𝑗0001×3]

Then rerun the monitored navigation algorithms using as input the perturbed IMU
measurements 𝑦𝑦𝑦+

𝐵𝑘
and 𝑦𝑦𝑦−

𝐵𝑘
, ∀𝑘. Recompute the states �̌�𝑝𝑝𝑘 and �̌�𝜐𝜐𝑘 and predicted

motions Δ�̌�𝑝𝑝′𝑖 𝑗
Recompute the IMU preintegration terms Δ�̃�𝑝𝑝′𝑖 𝑗 , as in (4.4)
Recompute the residuals as in equation (4.14)
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The reader should pay attention to the alternation of subscripts 𝑘 and 𝑗 in all equations.
An IMU state and a PL are available at every estimation step 𝑘. However, preintegra-
tion and Jacobian computation occur at the time 𝑗 when an image frame is acquired,
considering the IMU measurements gathered between the previous image at step 𝑖 and
the current image at step 𝑗. Likewise, a preintegration fault is only available at step 𝑗,
and not at each step 𝑘.

The following equation gives the position state residual:

𝐽𝐽𝐽𝐵𝑗𝛿�̌�𝑝𝑝𝐵𝑘 = 𝑟𝑟𝑟𝐵𝑗 (4.15)

Now, position state errors 𝑓𝑓𝑓 𝑝𝐵𝑘 , might be caused by IMU preintegration nominal noise
𝑛𝑛𝑛𝐵𝑗 or faults 𝑓𝑓𝑓 𝐵𝑗 :

𝐽𝐽𝐽𝐵𝑗 (𝛿�̌�𝑝𝑝𝐵𝑘 + 𝑓𝑓𝑓 𝑝𝐵𝑘 ) = 𝑟𝑟𝑟𝐵𝑗 + 𝑛𝑛𝑛𝐵𝑗 + 𝑓𝑓𝑓 𝐵𝑗 (4.16)

Consider one of the axes in the local world frame (𝑤) (i.e., North or East axis for motion
on a 2D plane) and denote it as 𝑑. The test statistic 𝜏𝑑,𝐵𝑗 for the position state along the
direction of the axis 𝑑, affected by the 𝑞-th element in the fault vector 𝑓𝑓𝑓 𝐵𝑗 , represents
the detected portion of that fault. This test statistic is given by:

𝜏𝑑,𝐵𝑗 = 𝜎′𝑞,𝑟𝐵𝑗
, (4.17)

with 𝜎′𝑟𝑞,𝐵𝑗
denoting a value that is inversely proportional to the standard deviation of

the 𝑞-th residual element. This is obtained as the square root of the (𝑞, 𝑞) element in
the inverse of the covariance matrix of the residual 𝑟𝑟𝑟𝐵𝑗 .

The position state estimation error due to the faults follows from equation (4.16):

𝑓𝑓𝑓 𝑝𝐵𝑘
= 𝐽𝐽𝐽+𝐵𝑗 𝑓𝑓𝑓 𝐵𝑗 (4.18)

This equation utilizes the pseudoinverse 𝐽𝐽𝐽+
𝐵𝑗

= (𝐽𝐽𝐽𝑇
𝐵𝑗
𝐽𝐽𝐽𝐵𝑗 )−1𝐽𝐽𝐽𝑇

𝐵𝑗
of 𝐽𝐽𝐽𝐵𝑘 which exists always

and is unique.

The part of the position state residual, due to IMU preintegration faults, that remains
undetected is given as a ratio of the position state estimate error (due to the faults) and
the test statistic. This ratio defines the characteristic fault slope, as introduced in [37].
An assumption is that the maximum faults in the position states precisely correspond to
the maximum faults in 𝑟𝑟𝑟𝐵𝑗 . This means that the maximum fault directions coincide with
the axes in (𝑏𝑘), and explicit checks for the direction of maximum faults are obviated.
In one direction, and after replacing (4.17) and (4.18), the factors 𝑓𝑞,𝐵𝑗 cancel each other:
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𝑆𝑙𝑜𝑝𝑒𝑑,𝐵𝑘 =
𝑓𝑑,𝑝𝐵𝑘

𝑓𝑞,𝐵𝑗 .𝜏𝑑,𝐵𝑗
=

[𝐽+
𝐵𝑗
]𝑑𝑞

𝜎′𝑞,𝑟𝐵𝑗
, (4.19)

where the element (𝑑, 𝑞) of 𝐽𝐽𝐽+
𝐵𝑗

is symbolized as [𝐽+
𝐵𝑗
]𝑑𝑞 .

The PL computation incorporates the resulting fault slope in (4.19), factoring in the
continuity risk requirement associated with preintegrated IMU measurements.

𝑃𝐿𝑑,𝐵𝑘 = 𝑆𝑙𝑜𝑝𝑒𝑑,𝐵𝑘 .𝑄
−1{𝐶𝑅𝐸𝑄,𝐵}, (4.20)

with 𝑄−1 being the inverse tail probability of the standard normal distribution and
𝐶𝑅𝐸𝑄,𝐵 being the allocated continuity risk requirement. Thus, the term 𝑄−1{𝐶𝑅𝐸𝑄,𝐵}
in the above equation serves to constrain the PL, considering the probability of false
alarms of faults in preintegrated measurements under fault-free conditions.

4.5.2 PLs for VN faults

Camera faults might result in instantaneous or accumulating faults in the VN pose
trajectory. The position state estimate 𝑝𝑝𝑝𝐶𝐶,� under hypothesis 𝐻𝐶𝐶 , obtained after
a sequence of 𝑀 VN poses, will include an unknown fault with vector 𝑓𝑓𝑓 𝐶� . The
subscript � denotes that the fault is visible at step �, which is the time of acquisition
of the last camera measurement in the sequence to test. The PL computation cannot
exclusively account for individual camera image or VN pose faults in the sequence, as
these types of faults are inherently correlated to each other due to their continuous and
interdependent nature. Rather, according to the hypothesis space defined in section
4.4.3, the PL computation will account for the uncertainty in the resulting state (at
step �) introduced by the overall inconsistency in the input VN pose sequence. This
inconsistency is quantifiable by comparing the states under each DHT hypothesis.

Running the ErKF estimation under each DHT hypothesis 𝐻𝐶𝐶� , as is visualized in
figure 4.2, will result in a position state error 𝑓𝑓𝑓 (𝐶𝐶,�)

𝐶�
. The camera faults are resulting in

position state estimate errors 𝑓𝑓𝑓
(𝐶𝐶�)
𝑝𝐶𝑘

also for the actual monitored navigation algorithm,

and this error can be approximated via 𝑓𝑓𝑓 (𝐶𝐶,�)
𝐶�

as:

𝑓𝑓𝑓
(𝐶𝐶�)
𝑝𝐶𝑘

= 𝐽𝐽𝐽+𝐶� 𝑓𝑓𝑓
(𝐶𝐶,�)
𝐶�

, (4.21)

with 𝐽𝐽𝐽+
𝐶�

being the pseudoinverse of the Jacobian that relates the ErKF’s and monitored
navigation algorithm’s position state. The sensitivity analysis for Jacobian determina-
tion may involve various perturbations to camera measurements, as well as potentially
to other participating sensors. Algorithm 2 outlines the computation of perturbations
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in monitored and ErKF states for the example case of perturbing individual camera
measurements with motion blur. More sophisticated procedures for rendering motion
blur using the actual trajectory [71] are beyond the scope of this thesis.

Algorithm 2 Perturbing states in the monitored navigation algorithm and ErKF due to
artificial motion blur.

Given: Vehicle drive with CSS measurements and camera images in vector form,
���� ∈ R𝑚 , where 𝑚 is the image dimension and � is the image index.
Select and normalize the convolution kernel for simulating motion blur in the envir-

onment, E.g., a 3 × 3 horizontal kernel will be

0 0 0
1 1 1
0 0 0

 .

foreach � do
Compute the perturbed image ���+� as the convolution of ���� with the kernel ℎℎℎ:
���+�(𝑥, 𝑦) =

∑
𝑢

∑
𝑣 ℎ(𝑢, 𝑣)����(𝑥 − 𝑢, 𝑦 − 𝑣),

where 𝑥 and 𝑦 denote the pixel coordinates in the image, and 𝑢, 𝑣 are the coordinates
in the kernel.
Then rerun the monitored navigation algorithm with perturbed camera measure-
ments ���+� , ∀�.
Recompute the VN pose states 𝑦𝑦𝑦+

𝐶�
for the perturbed camera measurements .

Rerun the ErKF under 𝐻𝐶𝐶 with perturbed VN poses 𝑦𝑦𝑦+
𝐶�

while keeping the CSS
unchanged.

The test statistic for detectable faults takes into account the ErKF position solutions𝑝𝑝𝑝(𝐶𝐶�)
𝐶�

under the DHT hypotheses. Significant disparities in the estimated position posteriors
among different solutions indicate potential uncertainty in the position estimates under
hypothesis 𝐻𝐶𝐶 . Similarly to the theory in typical MHSS, define the residual in DHT
as:

𝑟𝑟𝑟
(𝐶𝐶�)
𝐶�

= |𝑝𝑝𝑝(𝐶𝐶�)
𝐶�
− 𝑝𝑝𝑝𝐶� | (4.22)

where 𝑝𝑝𝑝(𝐶𝐶�)
𝐶�

and 𝑝𝑝𝑝𝐶� are the estimated ErKF position states under 𝐻𝐶𝐶� and 𝐻𝐶𝐶 ,
respectively.

Then, the test statistic corresponding to the ErKF position state along an axis 𝑑 will be:

𝜏(𝐶𝐶�)
𝑑,𝐶�

=
1

𝜎(Δ𝐶𝐶�)
𝑑,𝑟𝐶�

, (4.23)
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where 𝜎(Δ𝐶𝐶�)
𝑑,𝑟𝐶�

=

√
𝜎(𝐶𝐶�)
𝑑,𝑟𝐶�

2
− 𝜎2

𝑑,𝑟𝐶�
.

For the derivation of the maximum fault slope, it is sufficient once again to assume that
the maximum position fault occurs in the same direction as the axes of the NED frame,
which is the reference for the ErKF position estimates. Therefore:

𝑆𝑙𝑜𝑝𝑒
(𝐶𝐶,�)
𝑑,𝐶𝑘

=
[𝐽+
𝐶�
]𝑑𝑑 . 𝑓 (𝐶𝐶,�)𝑑,𝐶�

𝑓
(𝐶𝐶,�)
𝑑,𝐶�

.𝜏(𝐶𝐶�)
𝑑,𝐶�

= [𝐽+𝐶� ]𝑑𝑑 .𝜎
(Δ𝐶𝐶�)
𝑑,𝑟𝐶�

(4.24)

Finally, the PL factor that accounts for camera faults will be:

𝑃𝐿
(𝐶𝐶,�)
𝑑,𝐶𝑘

= 𝑆𝑙𝑜𝑝𝑒
(𝐶𝐶,�)
𝑑,𝐶𝑘

.𝑄−1{𝐶(𝐶𝐶,�)
𝑅𝐸𝑄,𝐶

}, (4.25)

with 𝐶𝑅𝐸𝑄,𝐶 being the continuity risk requirement associated with faults in the VN
pose sequences.

4.5.3 Overview of the complete IM

Figure 4.3 shows a diagram of the proposed IM, making clear the inputs to each module,
as well as emphasizing that the only expected output from the monitored navigation
algorithm is the vehicle position estimate. Furthermore, the diagram suggests the
potential incorporation of a prediction module for auxiliary faults and the generation
of fault alerts. These parts are indicated with lower opacity. As mentioned before,
dedicated modules for the camera, concerning VN anomaly detection and camera
FDE, will be elaborated upon in subsequent chapters. The diagram also implies a
conditional inflation process if these alerts are utilized.

4.6 Datasets
The evaluation of various methods in this thesis relies on datasets collected from car
drives in urban environments, each posing several challenges. These datasets comprise
camera images, GNSS readings, and IMU measurements, facilitating the development
and validation of different algorithms and techniques.

4.6.1 UrbanLoco Dataset

The UrbanLoco dataset [72] offers rich sensor data captured during car drives in dense
urban environments. The data utilized in this thesis originates from a car navigating
through a city in California. The dataset is distributed with GT positions from a SPAN-
CPT module that integrates a GNSS and an INS. It encompasses scenarios with dynamic
objects, illumination changes, and repetitive patterns. It comprises sensor modalities
such as stereo cameras, GNSS, and IMUs.
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Figure 4.3: Diagram for the complete IM.

4.6.2 Robotcar Dataset

The Robotcar dataset [73] provides sensor data recorded by a car driving in Oxford,
UK, over the course of a year. This dataset captures various weather conditions and
road scenarios, allowing for robust testing of algorithms under different environmental
factors. It includes sensor data from cameras, GNSS, and IMUs. Lastly, it provides
a ground truth generated using post-processed raw GPS, IMU, and static GNSS base
station recordings [74].

4.6.3 KAIST Dataset

The KAIST dataset [75] features sensor data collected from car drives in urban areas,
including trajectories with complex traffic patterns and illumination variations. It
includes sensor data from stereo cameras, GNSS and IMU. The available data is from
multiple cities and countries, although the evaluations in the thesis use only data
captured in South Korea. KAIST provides reference data from a pose-graph SLAM
solution that fuses various sensors. Although we use the provided reference data for all
trajectories, the accuracy might vary and be significantly deteriorated under conditions
with GNSS unavailability [75]. In addition, an analysis of the GT revealed that the
reference does not cover some utilized trajectories completely, and, in these cases, it
was necessary to fill the gaps by the estimates from a simple integration of GNSS/IMU
in ErKF. Therefore, the reference for trajectories in this dataset is inaccurate in some
parts.
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4.6.4 4seasons Dataset

The 4seasons dataset [76] comprises sensor data recorded from car drives inside Mu-
nich, Germany, capturing instances of driving within the old town area. This dataset
offers multiple real-world runs along the same route, allowing exploration of diverse
weather and illumination conditions. It includes sensor inputs of cameras, GNSS, and
IMUs.

The utilization of these datasets in the evaluation of different methods throughout this
thesis provides an assessment of algorithm performance across diverse urban driving
scenarios. Each method leverages the unique characteristics of these datasets to address
specific challenges and achieve robustness in real-world applications.

4.7 Chapter Summary
In addressing the challenges of safety assurance in integrated navigation systems, the
study in this chapter introduces a method that redefines hazard assessment in the
presence of auxiliary sensors. Traditional approaches often struggle with dealing
with multiple sensor faults and scalability limitations. However, the proposed method
simplifies this by calculating protection boundaries for simpler and standardized sensor
integrations, and methodically using these boundaries to inflate the bounds for the
full integration. The introduced multi-level IM architecture eliminates the necessity of
modeling specific sensor faults. Instead, it focuses the attention on their direct influence
on standardized navigation algorithms linked to each auxiliary sensor. Moreover, it
streamlines the identification of hazardous operating conditions related to each sensor,
which is a significant step towards more efficient testing of autonomous vehicles under
specific environmental conditions.

The experimentation, presented in chapter 7, will demonstrate the method’s applic-
ability to GNSS/IMU/Vision integrations with factor graphs. However, the proposed
IM architecture is agnostic towards the internal architecture of the monitored nav-
igation algorithm. Furthermore, the experimentation will demonstrate the method’s
adaptability to diverse faults by quantifying their impact on integrity risk.



Chapter 5

Integration of conventional sensors
with a camera and faults: A DNN
approach for navigation anomaly
detection

5.1 Introduction
Estimating global positions from visual measurements entails many more sources of
error in comparison to estimating from GNSS/IMU measurements, for example raw
image noise or feature extraction and association errors [77]. Therefore, bounding the
true position error due to each sensor in the GNSS/IMU/Camera integration is chal-
lenging. The extension of the MHSS framework to navigation systems that are based on
auxiliary sensors (e.g. camera, LiDAR) is also challenging due to the additional com-
putational complexity, since in a MHSS framework a computationally heavy navigation
algorithm has to be executed multiple times at each step.

Another requirement to guarantee reliable safety monitoring is the identification of the
rare cases that cause a navigation system to fail, in order to conduct extensive testing
of the framework under those conditions. The requirements of real universality of IM
and identification of environment conditions that cause sensor faults or degradation,
without the need of efforteous manual selection of relevant features, inspired the work
presented in this chapter. The focus is on camera-based navigation, although the
method can be extended to any sensor.

SLAM is a very popular framework when it comes to VN. Consequently, there is
a variety of SLAM methods, and the development of a safety monitor that can be
integrated with a majority of these methods may be impossible. Methods that allow

69
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the uncertainty estimation in SLAM have been examined in section 2.3. However, many
existing SLAM implementations do not readily provide these uncertainty estimates. In
some cases, uncertainty estimation would require modifications in the internals of those
implementations, or, at least, to obtain some internal matrices to do the computations.

Previous methods in the literature that utilize covariance prediction attempted to relate
features of the sensor input to covariance matrices and managed to overcome, in a
large degree, the above limitations. An example is the method from Hu and Kantor
[78] who predicted the variation of covariance of a Gaussian error distribution. Later
contributions that use offline training, and the features are directly derived from the
input measurements, are promising to predict the exact error covariance, based solely
on the input measurements, without the requirement for manual identification of
relevant features (e.g. [79] and [80]).

A DNN-based anomaly detection approach gives a simpler solution to the problem, as
the model can be trained to learn when the distribution of estimated position errors
should have fatter tails than the normal distribution to reliably compute error bounds.
Anomaly detection in a DNN setting attempts to learn a feature representation of the
raw inputs in the dataset, in a way that anomalous instances are distinguishable from
normal instances. Other methods attempt to learn directly an anomaly score mapping
function 𝜏(.) : 𝑋 → R [81]. The most popular approach for learning-based anomaly
detection is to use autoencoders, where, in an unsupervised manner, the network is
trained to reconstruct normal data from their low dimensional representations. The
reconstruction error for anomalous data will be very high. The biggest disadvantage of
using this approach in the context of this work is that the knowledge of which data is
normal, in terms of not causing unbounded errors from a navigation algorithm, is very
limited.

Wen and Keyes [82] proposed an anomaly detection method based on Convolutional
Neural Networks (CNNs), utilizing transfer learning from a larger dataset, as the oc-
currence of anomalies is very rare. However, pre-trained models are usually available
for specific type of data, whereas the detection of anomalies that can affect negatively a
safety monitor is a problem that lacks similar data. Conventional neural network meth-
ods tend also to neglect past information, which makes them inappropriate for learning
long-term dependencies among sensor measurements that cause anomalies. DNNs are
more appropriate than previous methods to capture temporal dependencies as well as
correlations between observations in the data. Long Short Term Memory Networks
(LSTMs) are designed to model short-term as well as long-term data dependencies by
controlling the addition and forgetting mechanisms of new and old information [83].
LSTMs have found large utilization in recent studies on anomaly detection. The largest
focus was to detect abnormalities in sensor measurement time-series extending the
framework of autoencoders, as in [84] and [85], or in the time-series of a specific IM test
statistic (e.g. [86]). Literature on directly associating navigation faults with anomalies
in single-sensor readings is still lacking, whereas a few works have used neural network
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architectures for prediction of failures, based on sets of measurements and probable
actions undertaken by the system (e.g. [87]). Wyk et al. [88] tackled the problem
of identifying anomalous sensor readings during automated vehicle navigation, via
combined CNN and KF-based anomaly detection. However, a central assumption is
redundancy in sensor measurements and that a KF is applicable with the sensor input
at hand. An interesting conclusion of their experiments is the superiority of CNNs
in comparison to a combination of Recurrent Neural Networks (RNNs) with LSTMs,
when there are normal values between consecutive anomalous values. However, they
did not evaluate the combination of CNNs with LSTM, as is used in the current work.

In comparison to previous research, the presented approach in this chapter achieves
clearer quantification of anomalies associated with input images during SLAM navig-
ation, based on the error of position estimates to a reference trajectory.

An open research topic is dealing with the problem of labeling measurement anomalies
or outliers in a time-series without misclassifying inliers. The most relevant approaches
to this problem utilize hypothesis testing. An example is the work of Tong and Barfoot
[89] where their statistical testing approach deals also with the problem of misclassi-
fied inliers in a sequence of error samples that fail the test. Nonetheless, in the work
in the present thesis, the start and end of anomalies is identified with a simpler stat-
istical method. The automated detection of additional unseen anomalies in currently
unlabeled data ([90]) remains a subject for future investigation.

The main contributions and potential benefits of the work presented herein can be
summarized as follows:

1. Early anomaly prediction in the position errors of camera-based navigation, tak-
ing into account low-level image features and presence of dynamic objects.

2. The algorithm can classify one or more subsequent outliers and image features
that are likely the real origin of SLAM failures.

3. The method can benefit existing sensor- and navigation algorithm agnostic IM
systems by alarming for unbounded covariance. Although the DNN was de-
veloped for visual input, the same logic can be applied for any type of sensor.

4. The developed network expects raw sensor inputs and classifies the output of a
SLAM algorithm. Therefore, the robustness of various SLAM algorithms can be
evaluated objectively with the same network and under the challenging condi-
tions present in a standard dataset.

Section 5.2 describes the offline methodology to label the training dataset (5.2.1), the
utilized DNN model (5.2.2) and the bias initialization procedure to cope with the
class imbalance problem (5.2.3). Section 5.3 outlines the datasets used to evaluate the
model’s performance (5.3.1), the result of the statistical anomaly labeling for the creation
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of training data (5.3.2) and the performance of the model on the training, validation
and test sets (5.3.3). Section 5.4 concludes the chapter.

The chapter is based on the published paper 2.

5.2 DNN modeling for anomaly prediction in visual-based navigation
In the following, a raw measurement sample refers to 𝑀𝑣𝑖𝑠 sequential images. Let
𝐾 be a set of pairs of measurement samples and associated true errors of positions
estimated by a SLAM algorithm, at each time step 𝑖. The errors are assumed to
follow a normal distribution 𝒩(0,𝑹𝑖) in the nominal case, with 𝑹𝑖 the covariance
matrix at step 𝑖. Then, the objective is to optimize for the parameters of a DNN to
predict that specific features in input images will cause an error to fall outside the
distribution 𝒩 . For example, a sample 𝝃𝑖...𝝃𝑖 +𝑀𝑣𝑖𝑠 starting at image 𝑖 contains the
images 𝝃𝑘 ∈ R𝑚 , 𝑘 = 𝑖 , 𝑖 + 1, ..., 𝑖 +𝑀𝑣𝑖𝑠 stacked in a vector, with 𝑚 being the number
of pixels in the image (or a down-scaled version of it). Then a set of low dimensional
features are obtained, which are vectorized such that for each image 𝑓 (𝝃𝑘) ∈ R𝑟 , 𝑟 ≪ 𝑚.
Let 𝑾 be a weight matrix and 𝒃 a bias which can shift the neural network activation
function to the left or right and is also learned by the neural network. Then the
hypothesis for a sample 𝑖 will be:

ℎ𝑖(𝝃𝑖 , ..., 𝝃𝑖 +𝑀𝑣𝑖𝑠) = 𝑔(𝑾 · Λ( 𝑓 (𝝃𝑖), ..., 𝑓 (𝝃𝑖 +𝑀𝑣𝑖𝑠)) + 𝒃) (5.1)

The formula abstracts the specifics of the hidden layers that are applied between the
input and output layer. Λ is a function that combines features of all images in the
set and finds the relationship between each other. 𝑔 was selected to be the Sigmoid
function, as the desired range of values for the binary classification problem is [0, 1].
Section 5.2.2 will give an idea of the layers that compute function Λ. It is attempted to
estimate the parameters 𝑾 and 𝒃 by optimizing the cost function:

𝐽(𝑾 , 𝒃) = 1
𝐾

𝐾∑
𝑖=1

𝐶𝑜𝑠𝑡(ℎ𝑖 , 𝑦𝑖), (5.2)

with 𝑦𝑖 denoting the true label corresponding to sample 𝑖. The labeling of normal or
anomalous cases had to be done as a preprocessing step, and the procedure is described
in section 5.2.1. Section 5.2.2 describes the DNN architecture to learn relevant features,
while section 5.2.3 explains the method to initialize realistically the bias of the output
due to the imbalance of the two classes.

5.2.1 Isolation of anomalies in VN

The targeted problem is to identify feature levels in images that can cause a sudden
increase in the estimated absolute position error of a SLAM algorithm of interest. A GT
is therefore required for training the model. In that GT the input images are associated
with the label "anomaly - 1" or "normal - 0", depending if they cause an anomaly in the
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error distribution of the SLAM estimates. The SLAM algorithm should be executed
with the optimal calibration parameters for this purpose. However, sensor faults and
degradation may happen very rarely, and, many times, there is only a small effect by
challenging conditions of very short duration. Therefore, it is important to predict how
the SLAM algorithm would behave if some specific conditions were persistent. The
requirement to predict image features that cause suddenly or progressively an anomaly
creates a trade-off for the anomaly isolation algorithm.

The algorithm that is adopted in this work to detect anomalies in the error samples is
a modification of the peak detection algorithm of Brakel [91]. The detection depends
on the z-score of a position error sample, that is, the number of standard deviations
that the error sample is above the error mean [92]. Here, a moving average, that is
tolerant to outliers, is used as reference. The outliers affect the moving average in a
small degree, although a slow adaptation is allowed, assuming that only measurements
at the beginning of the peak cause the fault. In case of multidimensional positioning
the maximum among all axes errors is selected, and the anomaly labeling is done based
on that error.

Let 𝑁 be the number of error samples which coincides with the number of steps in the
estimated camera trajectory. Let 𝑒1 , 𝑒2 , ..., 𝑒𝑁 denote the sequence of error samples and
𝑒∗1 , 𝑒

∗
2 , ..., 𝑒

∗
𝑁

a sequence with weighted error samples, so that, for each 𝑗 ∈ [1, 𝑁]

𝑒∗𝑗 =

{
𝑒 𝑗 , if 𝑗 an outlier
𝛼𝑒 𝑗 + (1 − 𝛼)𝑒∗𝑗−1 , otherwise

, (5.3)

with 𝛼 being a parameter that sets the influence of an outlier to the mean. A reasonable
value for 𝛼 for non-stationary signals is in the range of [0.01, 0.1] and is expected to be
set as zero for a stationary signal.

Then at each step 𝑖 and for a configurable horizon of size 𝐿 samples the mean will be:

𝑚𝑖 = 𝑎𝑣𝑔(𝑒∗𝑖−𝐿+1 , ..., 𝑒
∗
𝑖 ) (5.4)

and the standard deviation:
𝜎𝑖 = 𝑠𝑡𝑑(𝑒∗𝑖−𝐿+1 , ..., 𝑒

∗
𝑖 ) (5.5)

A sample is flagged as an outlier when its z-score is above a threshold. This threshold
can be selected based on the assumption that the error follows a normal distribution
and the expected number of anomalous samples. Z-score tables, like the one in [93],
can be used to select a threshold based on the anticipated probability of anomaly.

It is seen that the outliers are included slowly in the computation of the moving mean.
In that way, the algorithm can classify subsequent outliers until the mean has been
adapted to include them. The algorithm will stop detecting after a sequence of outliers
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has adapted the mean value. Although this algorithm can prevent some false positives,
it is important to force an earlier finish of labeling anomalies.

The method uses a simple method for stopping the labeling of outliers based on the
dynamics of the error. Specifically when 𝐿 errors have been added in a sequence, with
the first element corresponding to the latest error, an anomaly is still valid if the error
appears to be still increasing. We evaluate if the maximum error is the current one or
at least one of the latest ones, to tolerate for noise:

arg max
𝑗∈𝑖 ,...,𝑖−𝐿+1

𝑒∗𝑗 < 𝑇𝑝 , (5.6)

where 𝑇𝑝 ∈ Z+ a positive integer used as threshold to tolerate that any of the latest
𝑇𝑝 errors is the maximum. In this way, the method labels as anomalies only the first
samples that lead to a peak in an error plot, while the method without the stopping
rule labels all images associated with an error peak.

5.2.2 Deep CNN

To learn the relationship of low-level image features and transient changes in the
environment, the DNN architecture of Figure 5.1 was implemented. All input images
are downsampled using the OpenCV library [94] to low-dimensional images of width
𝑊 and height 𝐻, where the downsampling method is bilinear interpolation.

A Time Distributed Layer (TDL) [95], shown as the large rectangle in Figure 5.1, was
selected to compare a set of 𝑀 sequential images and learn, in this way, the effect of
transient changes (e.g. dynamic objects) to the predicted output. In the TDL the same
layers are applied to each image to extract relevant features, but one set of optimal
parameters is produced for all images in the sample. The extraction of low level
features from the images is achieved by combining two convolutional layers with non-
linear activation function and two subsequent max-pooling layers. The TDL keeps a
1-1 relation of input image and corresponding output. The LSTM layer is introduced to
learn the temporal dependence among observations, e.g. image frames in chronological
order [95]. A flattening or pooling operation after the TDL is introduced since the
requirement is to have only one dimension per output from the Time Distributed
wrapping to insert them to the LSTM layer.

Finally, a fully connected layer of 256 units and a drop-out layer are added in the output.

5.2.3 Output bias initialization

The anomalies are significantly fewer than the normal cases, and this can be an apparent
issue if a strict anomaly labeling method is selected. Using a zero-bias can make it
difficult to obtain good convergence initially. In contrast, acknowledging the class
imbalance, an initial bias 𝑏0 can be obtained based on the probability of a positive class
[96]:
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Figure 5.1: DNN diagram. The indicated output dimensions might be inaccurate and they
depend on the padding and stride parameters used. Modified architecture from Liu et al. [79]
to use TDL. In that paper they used leaky rectify activation as non linear activation function.

𝑝0 = 𝑝𝑜𝑠/(𝑝𝑜𝑠 + 𝑛𝑒𝑔) = 1/(1 + 𝑒−𝑏0)

⇒ 𝑏0 = −𝑙𝑛( 1
𝑝0
− 1)

⇒ 𝑏0 = 𝑙𝑛
𝑝𝑜𝑠

𝑛𝑒𝑔
,

(5.7)

where 𝑝𝑜𝑠 and 𝑛𝑒𝑔 are respectively the number of positive (anomalous) and negative
(normal) examples in the training set.

5.3 Experiments

5.3.1 Training data and appropriability for the problem

The input to the CNN is sequential images and position error pairs {{𝝃𝑖 ...𝝃𝑖+𝑀𝑣𝑖𝑠
}, 𝑒𝑖 |𝑖 ∈

[1, 𝐾]}. The number of frames in each sample was pre-selected to be 𝑀𝑣𝑖𝑠 = 7. The
Visual SLAM algorithm ORBSLAM2 [97] is executed for the computation of the es-
timated camera positions. Then the errors to a reference trajectory can be computed.
The training can be done offline, for any SLAM algorithm, by using the same set of
data every time. The current dataset for training consists of three trajectories from two
different sources. In all cases a car is driving in an urban environment, with illumina-
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Figure 5.2: Example images from the experimentation datasets. Two trajectories are evaluated
from UrbanLoco and one from KAIST.

tion challenges, repetitive patterns and dynamic motion of pedestrians and other cars.
All the data are open-source and the sources are UrbanLoco [72] and Complex Urban
Dataset / KAIST [75]. The datasets were introduced in section 4.6.

The images’ aspect ratio varies between the datasets. Figure 5.2 shows some example
images from both datasets. A frame rate of 10 Hz is used for both datasets, where
downsampling is employed if necessary. This chapter evaluates the monocular SLAM
case. If a dataset contains data exclusively from a front facing stereo camera, then only
images from the left camera are used. Both datasets provide their own extrinsic and
intrinsic camera parameters.

Figures 5.3, 5.4 and 5.5 depict the GNSS, GT and estimated camera positions from
ORBSLAM2 (labeled as "cam" in the figures) relative to the initial position, in NED
coordinates, for the three trajectories. Computation of the optimal transform to align
the camera poses with the reference was achieved with the Umeyama method [98].
The gray arrow in the figures shows the starting position, and the red circle the ending
position.

Figure 5.6 compares the true absolute errors for the first UrbanLoco trajectory of the po-
sition estimates from three navigation solutions; using the camera alone in ORBSLAM2,
integrating an IMU and GNSS, or integrating an IMU, a GNSS and the camera position
estimates from ORBSLAM2. One can see that the inclusion of camera may deteriorate
the navigation performance some times, leading to large position errors. However,
many times a camera can complement the IMU and GNSS, showing comparable or
better performance than the IMU and GNSS integration. A camera can be very as-
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Figure 5.3: The first trajectory from UrbanLoco. GNSS, GT and estimated camera positions
from ORBSLAM2.

Figure 5.4: The trajectory from KAIST. GNSS, GT and estimated camera positions from
ORBSLAM2.

Figure 5.5: The second trajectory from UrbanLoco. GNSS, GT and estimated camera positions
from ORBSLAM2.
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(a) (b)

Figure 5.6: Position errors over time obtained for three navigation solutions. "css error" is the
error from the integration of GNSS and IMU in ErKF. In the "full error" the ORBSLAM2 camera
position estimates are integrated with the IMU and GNSS. "cam error" refers to the error of
position estimates from ORBSLAM2. The errors in (a) north and (b) east axis are shown.

(a) (b) (c)

Figure 5.7: For the first UrbanLoco trajectory (a) error distribution of the estimated camera
position, (b) marked anomalies with the anomaly ending rule, and (c) marked anomalies
without the anomaly ending rule.

sistive in cases of GNSS or IMU unavailability or faults. Therefore, the integration of
auxiliary sensors with conventional sensors (e.g. IMU and GNSS) may lead to superior
performance, although the detection of anomalous measurements independently from
each sensor is an essential prerequisite.

During the experimentation it is expected that the majority of the true position error
samples is concentrated in a small region. As the estimated camera position might be
prone to errors due to intrinsic calibration or alignment parameter inaccuracies, the
distribution is not necessarily concentrated close to zero. Figures 5.7(a) and 5.8(a) show
that distribution for the first UrbanLoco and KAIST trajectories respectively. Since the
problem is 2-dimensional, the illustrated error is the maximum observed among the
North and East axes at each time step.

5.3.2 Anomaly labeling result

The CNN is fed with GT labels that correspond to each image and show if it causes an
anomaly or not. The decision to label an image as anomalous or not depends on both
individual intuition and the labeling algorithm outlined in section 5.2.1. Figures 5.7(b),
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(a) (b) (c)

Figure 5.8: For the KAIST trajectory (a) error distribution of the estimated camera position,
(b) marked anomalies with the anomaly ending rule, and (c) marked anomalies without the
anomaly ending rule.

5.7(c), 5.8(b) and 5.8(c) illustrate for the two trajectories the samples that are labeled as
anomalous or normal, with or without the ending rule, together with the error plot and
the moving mean. The z-score threshold was selected as 4.5 and influence parameter as
𝛼 = 0.01. The anomaly ending rule is used in all further experiments and the threshold
used was 𝑇𝑝 = 4. Importantly, different parameters can lead to more or fewer labeled
anomalies, where, based on the given problem, one might select to be more or less
conservative.

5.3.3 Training and evaluation of the network

Each sample can contain subsequent images from the same trajectory. A set of 7400
samples of image sequences from the UrbanLoco and KAIST trajectories (1900 and
1000 samples from the two UrbanLoco trajectories and 4500 samples from the KAIST
trajectory) was split randomly in the training (66.6%) and test sets (33, 3%), with a fixed
seed so that the DNN never sees the test set during training. The samples that appear
as anomalies when labeling without the ending rule and as normal when applying the
ending rule (see figures 5.7 and 5.8) are not considered for training or validation in
the experiments. 30% of the training samples were selected for validation, using the
cross-validation method. The size of a batch was selected as 50 samples, and main
criterion is that enough positive examples are included, although large batch sizes
might cause memory exhaustion. The network is trained for 6000 epochs, binary cross-
entropy is used as the loss function and the optimization is accomplished with the
Adam optimizer with learning rate 10−5.

Figure 5.9 evaluates the evolution of the loss, recall and precision of the DNN during
training and validation. The two latter metrics indicate the presence of false alarms and
of missed anomalies, respectively. The DNN generalizes quite well to the validation
set, although the significant fluctuations indicate some sensitivity to noise. Despite
the continuous improvement of the precision and recall, the validation loss curve
seems to flatten after a while. This indicates that although the classifier makes correct
predictions, the margin between the calculated class probabilities does not become
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Figure 5.9: Evolution of the (a) loss, (b) precision and (c) recall of the DNN with TDL during
training, where, with cross-validation, 1/3 of the training samples are selected for validation.

Figure 5.10: AUPRC performance of the network for the train and test sets, where the precision-
recall points are obtained using various classification thresholds.

larger. Steps that can improve the method further are denoising, regularization and
increased dataset size. Finally, considering the context of the problem, someone might
want to improve further from the recall of 0.9 which was achieved until now for the
test set.

Figure 5.10 plots the Area Under Precision-Recall Curve (AUPRC). It shows the per-
formance that can be achieved for different values of the classification threshold. In this
problem, the presence of False Negatives is usually far more costly than the presence
of False Positives, although one would also like to avoid many false alarms that cause
an IM to stop the autonomous operation.

For a classification threshold of 0.5, Table 5.1 shows the confusion matrices of the
predictions of the model on the test set. In addition, the performance of the CNN
with TDL is compared with the performance of a CNN that does not take into account
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Table 5.1: Confusion matrix for the predictions of the test samples with and without TDL in
the network, where the counts for the latter architecture are shown in parentheses.

actual
value

Prediction outcome
p n total

p′ 283
(203)

31
(111) 314

n′ 42
(20)

1559
(1581) 1601

total 325 (223) 1590 (1692)

Table 5.2: Performance on the test set for different values of thresholds 𝑇𝑧 and 𝑇𝑝 . The percent-
ange of labeled anomalies to normal samples is also shown.

𝑇𝑧 𝑇𝑝 % anomalies Precision Recall

3 5 57 0.92 0.9

4.5 5 23 0.89 0.87
4.5 4 20 0.87 0.9
4.5 3 15 0.79 0.87
5 4 11 0.88 0.91

temporal dependence among frames, i.e. with the TDL removed. It is visible that the
CNN performs better in learning anomalies when the TDL is present.

Finally, Table 5.2 compares the performance of the model on the test set for different
values of the z-score threshold 𝑇𝑧 and anomaly ending tolerance threshold 𝑇𝑝 . The
performance is similar and remains good in all cases, at least for the recall metric. It is
observable that tuning the threshold parameters can lead to more or less distinguish-
able anomalies. Comparing the third and fifth rows of the table it is observable that
labeling using stricter thresholds (𝑇𝑧 = 5 and 𝑇𝑝 = 4) resulted in slightly better model
performance than using the originally selected parameter set (𝑇𝑧 = 4.5 and 𝑇𝑝 = 4).
However, one might select the thresholds that are not too conservative to avoid mis-
labeling anomalies as normal, even if the performance of the model is slightly worse
.
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5.4 Chapter Summary
This chapter investigated a deep CNN for associating anomalous increases of the es-
timation error from a visual SLAM algorithm to low level image features. The CNN
is trained in a supervised manner with several image trajectories captured by ground
vehicles in dense urban environments, whereas the class labels are specified based on
the statistical properties of the position error. A TDL is included to learn temporal de-
pendences among sequential image frames. This allows the investigation of the effect
that dynamic objects have on the accuracy of visual-based position estimates, as well
as the early prediction of anomalies. The results demonstrated a good performance of
the CNN on test data and a tangible improvement in learning anomalies in comparison
to a CNN without the TDL. The approach introduced here is a noteworthy addition to
VN anomaly prediction. The forthcoming chapter will build upon this methodology
to develop the camera FDE approach within the IM framework.



Chapter 6

Deep Hypothesis Testing for fault
alarms in auxiliary sensors

6.1 Introduction
The IM approach presented in section 3 relies on estimation of consistent position er-
ror covariance due to each sensor in the IMU/GNSS integration in the fault-free case.
The covariances of multi-sensor navigation systems, such as GNSS/IMU/Camera, are
frequently not readily accessible, often necessitating internal modifications within the
navigation algorithm to obtain them. Furthermore, the extension of traditional MHSS-
based IMs to the examined multi-sensor systems might be unrealizable due to a large
and intractable number of fault sources, resulting in many fault-tolerant hypotheses to
evaluate, or in the development of IMs that are undertested under challenging envir-
onmental conditions. In fact, the reliability of VN algorithms in non-ideal situations
is a topic which is researched very sparsely. One work from Bednář, Petrlík, Vivaldini
and Saska [99] concluded that different algorithms perform very differently in real en-
vironments depending on the orientation of the camera, the presence of sunlight and
the type of vehicle motion. Yet, an extensive set of conditions that characterize camera
performance is still not available.

A possible solution to overcome the above mentioned limitations is to limit the hypo-
thesis space of assumed fault-free sensor measurement subsets in MHSS, by evaluat-
ing the navigation faults that each auxiliary sensor causes, independently from other
sensors. This is achieved with the DHT module, introduced in chapter 4. We refer to a
navigation fault or anomaly as the event where the true error of a navigation solution is
not drawn from the typical distribution of errors. We denote as IM anomaly the event
that the true error of a navigation solution exceeds a calculated PL. IM anomalies are
usually happening due to violation of assumptions during PL computation, e.g. the
presence of non-linearities, or due to insufficient compensation for every sensor’s noise
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and faults. The main objective of the presented method is to prevent IM anomalies
originating from insufficient compensation due to unknown noise of some sensors or
due to the limited fault hypothesis space. The method proves that navigation anomaly
prediction, based on individual auxiliary sensor’s measurements, can be applied for
this purpose.

6.1.1 Prior work

The utilization of deep learning for anomaly detection in multivariate time-series data
has shown impressive results in past works [100]. Here, the emphasis is shifted towards
its application within IM contexts. Sun [101] utilized multi-layer LSTM to classify an
input sequence of GNSS measurements as faulty or fault-free, based on irregularities in
the distribution of observations of an IM test statistic. The model is trained with labeled
data which consist of raw GNSS measurements and the fault-alarm or fault-free label.
Kim and Cho [86] utilized a Time Delayed Neural Network to detect dissimilarities of
the current trend of an IM statistic compared to a past trend, where the system was
operating under normal conditions. Gupta and Gao [102] utilized deep learning to pro-
duce position error and error covariance estimates, that can be used in PL calculation,
for a camera + LiDAR navigation system. This is done by comparing static images with
a local depth map produced around the current state estimate and given the LiDAR
map. A shortcoming of the mentioned research is that they are very specific to the
sensors or the IM used. In addition they do not focus on understanding the direct effect
that environmental conditions have on navigation and IM anomalies due to sensory
faults.

It is worth noting that the majority of existing anomaly detection methods are trained to
find the best representation of normal data, requiring the availability of large datasets
that are free from anomalies. Methods that try to learn representations of normal data
might ignore the important features that differentiate normal from anomalous samples,
especially when learned features are redundant, noisy or refer to a specific subset of
the training set [103]. Research on supervised learning of anomalies are very few, due
to the difficulty of obtaining enough anomaly examples for training, and even in those
cases learning of anomalies would be limited to the already labeled anomalies. Here,
the presented IM method builds upon chapter 5, where training data was labeled in
few trajectories as normal or anomalous using statistical methods.

6.1.2 Contribution

At the start, the method utilizes a supervised Deep CNN model with a TDL, which
is trained offline, for the prediction of anomalies in the state estimate error, based on
features in the raw sensor input. Then, the method refines the predicted anomalies
based on an IM test statistic, which is directly related to the sensor of concern, without
the need to consider other auxiliary sensor measurements.

The first main contribution of the presented work is that, despite the extension to
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auxiliary sensors, the MHSS module computes the PLs informed solely by conven-
tional sensor measurements as before. In this way the IM scales to auxiliary sensor
measurements, without modification of existing IM methods and without important
computation burdens. An assumption is that the integration of more sensors in a nav-
igation system results in smaller estimation uncertainty, with the latter being consistent
in case of absence of sensor faults. Then, the PL will reliably bound the estimate error of
the monitored algorithm, which is informed by the full IMU/GNSS/Auxiliary sensor
measurement set. The second contribution is that the method can directly capture
the relation of anomalies in IM to raw inputs of individual sensors. This allows the
evaluation of environment features and conditions, including dynamic changes, that
cause specific sensor faults. At the same time, the initial anomaly detection quality
is independent from the quality of the IM, allowing a more objective evaluation of
different IMs. The eventual fault exclusion is informed by the IM and, therefore, the
DNN training can tolerate the presence of certain amount of image noise and incorrect
anomaly labels.

The thesis uses the proposed method to monitor the integrity of a navigation system
that integrates the GNSS and IMU sensors with a camera. The system uses car sensor
data collected in urban environments. Figure 6.1 shows example images from the
evaluated environments. The method employs a camera-only navigation algorithm to
estimate camera poses that are used in a loose integration with the other sensors. The
results show that, in the absence of faults in GNSS/IMU, for a system where the PL
computation is informed from GNSS and IMU noise only, the detected anomalies in
camera-only navigation correlate with IM anomalies. In addition, the results confirm
an improvement of the performance of the IM system in terms of the RBT metric,
when comparing it to the method that does not use camera FDE. Also, it remains
computationally efficient.

6.1.3 Chapter organization

The next sections present the methodology of predicting the IM anomaly due to camera
faults. They describe briefly the DNN model and the IM for collaborative learning of
anomalies (6.2), introduce the camera measurement samples tested for faults (6.3),
revisit the hypotheses initially introduced in chapter 4, which are tailored to test for
camera-faults (6.4) and, finally, define the ordinary distribution of IM test statistics and
the ordinality tests (6.5 and 6.6). Section 6.7 summarizes the chapter and discusses
future works. The evaluated datasets for the presented method, anomaly prediction
results and performance evaluation of the anomaly prediction and exclusion method
are presented in Chapter 7.

6.2 Detection of anomalies in the uncertainty of visual SLAM and in the
IM test statistic

The concept of the fault slope was introduced in equation (2.9).
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Figure 6.1: Example images from the urban navigation datasets examined here. The locations
are San Francisco (USA), Oxford (UK) and Dongtan (South Korea). The images are from the
UrbanLoco [72], Robotcar [73] and KAIST [75] datasets.



6.2. Detection of anomalies in the uncertainty of visual SLAM and in the IM test statistic 87

Using that definition, in the specific investigated case, the fault 𝑠𝑙𝑜𝑝𝑒 for camera meas-
urements can be computed as the ratio of the state estimate error caused by camera
measurement faults to the IM test statistic measure affected by the camera measurement
faults. In MHSS-based IM, the test statistic to detect faults in sensor measurements is
the difference in the state estimate under all-source hypothesis𝐻0 and under hypothesis
𝐻𝑗 , which is fault-tolerant to the sensor’s measurements:

|𝑥𝑥𝑥(𝑗)𝑝 − 𝑥𝑥𝑥(0)𝑝 | ≤ 𝑇𝑇𝑇𝑝,Δ𝑗 (6.1)

with 𝑥𝑥𝑥(𝑗)𝑝 and 𝑥𝑥𝑥(0)𝑝 denoting the position state under fault hypothesis 𝐻𝑗 and fault-free
hypothesis 𝐻0, respectively. The formulas include the subscript 𝑝 to highlight that
the vectors refer to the elements of the position state and drop the subscript when the
quantities refer to one direction of interest in the position state. 𝑇𝑇𝑇𝑝,Δ𝑗 is the detection
threshold, which takes into account the continuity risk 𝐶𝑅𝐸𝑄,𝑗 assigned to 𝐻𝑗 . In one
direction of interest, the equation for the fault 𝑠𝑙𝑜𝑝𝑒 in MHSS-RAIM can be simplified
to [5]:

𝑆𝑙𝑜𝑝𝑒 𝑓𝑗 = 𝜎2
Δ𝑗

(6.2)

where 𝜎2
Δ𝑗

= 𝜎2
𝑗
− 𝜎2

0 , 𝜎2
𝑗

and 𝜎2
0 are the estimated error covariances under 𝐻𝑗 and 𝐻0,

respectively.

So:
𝑇Δ𝑗 = 𝑄

−1(𝐶𝑅𝐸𝑄,𝑗)𝜎2
Δ𝑗

(6.3)

For clarity, let 𝐴𝑈 be the set of indices for hypotheses under which the measurement
set excludes the measurements from one sensor, auxiliary or conventional, but contains
measurements from other auxiliary sensors. This work considers that estimation under
hypotheses 𝐻𝑗 , for all 𝑗 ∈ 𝐴𝑈 is computationally inefficient, at least when the sensor
fusion algorithm of such integrations has a high computational load. In addition, there
is no assumption about the internal structure of the monitored navigation algorithm
which is informed by the measurement set under the all-source hypothesis 𝐻0. In this
case, the covariance of position estimates is assumed unavailable, something that pre-
vents the calculation of the detection threshold in (6.3). Therefore, the method performs
fault detection in each auxiliary sensor’s measurements individually. This is done via
anomaly prediction in the estimate error with a sensor-specific DNN model and refine-
ment based on an IM test statistic which is computed for a specialized measurement
set for the sensor of concern, that excludes all other auxiliary sensor measurements.
The latter procedure is implemented in the DHT module. For completeness, the sub-
sequent portion of this section repeats the principles of the DNN model, reiterates the
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Figure 6.2: Diagram of the proposed IM architecture for integration of GNSS/IMU with auxil-
iary sensors. Although the current work investigates only the case of the camera, the diagram
shows the general case, where the parts that refer to other auxiliary sensors are visualized with
higher transparency.

definition of relevant hypotheses in the IM and provides additional details about the
DHT module.

6.2.1 Architecture for auxiliary sensor FDE

Chapter 5 described the DNN model for anomaly prediction in the distribution of SLAM
state estimate errors. Any VN algorithm can be used instead of SLAM. According to
that work, an input sample consists of 𝑀 sequential images. During training, the
SLAM position estimate errors are assumed to be normally distributed around 0 with
a covariance matrix 𝑅, in the nominal case. Then, the DNN model parameters are
optimized to predict that specific low-dimensional image features and dynamic changes
within the image sequence will cause the SLAM position estimate error at the end of
the sequence to fall outside the normal distribution of errors.

The DNN combines the TDL with convolutional and max pooling layers, and the LSTM
layer. In this way the network learns the effect of non-recurrent features as well as of
transient changes to the predicted class output, via the extraction of features from all
images in a sample and by associating them chronologically. This is an important
characteristic in the context of IM as the model is powerful in capturing fault dynamics.

A diagram outlining the overall method is depicted in Figure 6.2, and readers can also
refer to the hypothesis tree in Figure 4.1.

In that tree, hypothesis𝐻𝐶𝑆𝑆 assumes all CSS sensors, comprising conventional sensors
like GNSS/IMU, are fault-free, while the remaining non-CSS sensors are presumed
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faulty and excluded. This configuration enables the execution of standard ErKF, as
discussed in Chapter 3. The "All-source" hypothesis𝐻0 assumes the fault-free operation
of the entire CSS sensor set and auxiliary sensors. In the proposed architecture, the
monitored navigation algorithm needs to run only once for that specific sensor set.

The DHT module is introduced in the general IM architecture, runs in parallel with
the IM of CSS sensors, and executes one instance of a specific navigation algorithm
for each auxiliary sensor. For example, this is a visual SLAM algorithm in the case
of the camera. Although the diagram in figure 6.2 illustrates the general architecture,
where many auxiliary sensors may be integrated with GNSS/IMU, the methodology
presented in this chapter is again specific to camera measurements. The detailed
explanation of the DHT module related to camera FDE follows.

6.3 Anomaly detection in DHT: Grouped image features
A predicted navigation anomaly from the previously described DNN model will initiate
DHT to detect the specific anomalous frames that cause IM hazards due to the camera.
Chapter 4 described the new hypothesis set of faults in sequential VN estimates. This
and the next section will restate these hypotheses and will describe how they are used
for camera FDE.

Consider that a navigation anomaly is predicted by the DNN at a step 𝑘∗. The method
searches for IM anomalies around 𝑘∗ in a horizon with pre-selected size 𝑀. Let us
denote the full set of image frames around the anomaly as 𝑌𝑘∗+𝑎

𝑐𝑎𝑚,𝑘∗−𝑏 , with 𝑎 − 𝑏 = 𝑀.
Then, we will denote each image frame obtained in the horizon at any step 𝑘 as 𝑐𝑘 ∈
𝑌𝑘
∗+𝑎

𝑐𝑎𝑚,𝑘∗−𝑏 . In a typical VN algorithm, the estimation of the camera pose w.r.t. to the first
frame is achieved by tracking features observed in subsequent frames.

Chapter 4 denoted the camera pose as:

(𝑤)𝑥𝑥𝑥𝐶 =

[
(𝑤)𝑝𝑝𝑝𝐶

(𝑤)𝜙𝜙𝜙𝐶

]
∈ R3+𝑟𝑚 (6.4)

with (𝑤)𝑝𝑝𝑝𝐶 ∈ R3 being the camera position in the global reference frame (𝑊) and (𝑤)𝜙𝜙𝜙𝐶
being the camera attitude vector parameterized with 𝑟𝑚 = 3 or 4 elements, depending
on the representation used. A 2D projection of a feature 𝑙 to the image plane was
symbolized as 𝜋𝑙(𝑥𝑥𝑥𝐶) and the pinhole camera model can be used for the formula of
𝜋𝑙(𝑥𝑥𝑥𝐶) [104]. The noisy measurement of a feature point extracted from the measurement
image was defined in equation 4.3 and is repeated here:

𝑧𝑧𝑧 𝑙 = 𝜋𝑙((𝑤)𝑥𝑥𝑥𝐶) +∨∨∨𝑙 + 𝑏𝑏𝑏 𝑙 , (6.5)

where ∨∨∨𝑙 is zero-mean Gaussian noise, and 𝑏𝑏𝑏 𝑙 is a bias in the feature location. Then,
𝐿𝑖 feature correspondences, in total, tracked in 𝑀 subsequent frames, are grouped into
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their respective image frames. The complete vector of stacked feature projections at

step 𝑖 is 𝑍𝑍𝑍 𝑖 =


𝑧𝑧𝑧1
...

𝑧𝑧𝑧𝐿𝑖

 , or grouped in their 𝑖 corresponding images:

𝑍𝑍𝑍 =


𝑍𝑍𝑍1
...

𝑍𝑍𝑍 𝑖

 , (6.6)

where 𝑍𝑍𝑍 𝑖′ , 𝑖′ = 1, ..., 𝑖 is a vector with feature point correspondences found in image
obtained at time 𝑖′.

This notation will facilitate also here to define hypotheses by associating them clearly
with image frames, which represent groups of feature correspondences potentially
containing faults.

6.4 Camera fault hypotheses definition
The input measurement set to the "DHT for camera" module in figure 6.2 consists of
camera and CSS measurements only. As the DHT module is part of the overall IM,
define as 𝐻𝐶𝐶 the hypothesis that is associated with the all-source measurement set in
the DHT module, i.e. 𝐻𝐶𝐶 is the hypothesis that all auxiliary sensors other than the
camera are faulty. In DHT, a VN system utilizes the image frames to estimate camera
poses, and those are compared with CSS measurements to detect inconsistencies. Such
inconsistencies guide the IM anomaly detection process, in a similar way as they guided
the PL inflation procedure in chapter 4.

For IM anomaly detection due to camera measurements, the method utilizes 𝑀 + 1
hypotheses, where under hypothesis 𝐻𝐶𝐶,�(� = 0, 1, . . . , 𝑀) from 0 to 𝑀 image frames
are assumed to be associated with an IM anomaly. Hypothesis testing is initiated if an
image frame 𝑐𝑐𝑐𝑘 is associated with an anomaly in the true error (after employing the
DNN predictor) with high probability. Then, under hypothesis 𝐻𝐶𝐶,�, the subset of
frames that inform the navigation solution is𝑋𝑋𝑋(𝐶𝐶,�) ⊂ 𝑋𝑋𝑋𝐶,𝑀 , � = 0, 1, ...𝑀 defined as:

𝑋𝑋𝑋(𝐶𝐶,�) = {�̂�𝑥𝑥𝐶,�+1−𝑀 , ..., �̂�𝑥𝑥𝐶,�} (6.7)

Figure 6.3 shows the diagram of the DHT module for camera measurements. It is
a slight modification of the figure 4.2, to include also the anomaly testing routine.
Importantly, when developing the DHT module for other auxiliary sensors, only the
VN algorithm needs to change to another sensor-specific algorithm.

Each hypothesis 𝐻𝐶𝐶,� is associated with a sequence with 𝑀 observations 𝑦𝑦𝑦(𝐶𝐶,�) =
(𝑦(𝐶𝐶,�)1 , . . . , 𝑦

(𝐶𝐶,�)
𝑀
), � = 0, . . . , 𝑀 of the values of an IM test statistic, which we refer to
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Figure 6.3: Diagram of the DHT module for fault detection in camera measurements. Different
instances of ErKF are running for each hypothesis, although the implementation of the filter is
always the same.
* Anomaly testing runs if either the DNN predicted a navigation anomaly or if the DHT is still
evaluating a previous anomaly.

as a process under hypothesis 𝐻𝐶𝐶,�. A new child process is possibly created after 𝑀
steps, if the system has not returned to ordinality (section 6.5).

A subset of observations does not include a fault when the observations follow the
ordinary distribution � of IM test statistics, while, if there is one or more faults, the
observation at any step 𝑘 ∈ [1, 𝑀] cannot be drawn from the ordinary distribution
with large likelihood. The next section introduces the ordinary distribution and the
ordinality test for the process under each hypothesis.

6.5 Ordinary distribution
According to equation (6.1), for the new hypothesis set tailored to camera measure-
ments, at each step 𝑘 the test statistic is defined as the difference between the position
solution under 𝐻𝐶𝐶 and hypotheses 𝐻𝐶𝐶,�:

𝜏𝜏𝜏𝑝𝐶𝐶,� = |𝑥𝑥𝑥(𝐶𝐶,�)𝑝 − 𝑥𝑥𝑥(𝐶𝐶)𝑝 | (6.8)

Zhang, Wang and Gao [105] analyzed the distributions of the MHSS test statistic for
different fault hypotheses and suggested that they vary due to the differences in the
underlying measurement subsets. The MHSS test statistics under each fault hypothesis
are normally distributed [106]. For one position direction of interest the distribution of
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the IM test statistic is:

𝜏𝐶𝐶,� = 𝒩( 𝑓Δ𝐶𝐶,� , 𝜎2
Δ𝐶𝐶,�
) (6.9)

Here

𝜎2
Δ𝐶𝐶,�

= 𝜎2
𝐶𝐶,� − 𝜎

2
𝐶𝐶

where

𝜎2
𝐶𝐶,�, 𝜎

2
𝐶𝐶

are the estimated variances in the direction of interest for the solutions under
𝐻𝐶𝐶,� and 𝐻𝐶𝐶 respectively, and

𝑓Δ𝐶𝐶,� = 𝑓𝐶𝐶 − 𝑓𝐶𝐶,�

where

𝑓𝐶𝐶 is the contribution of measurement faults to the position state of interest in the full
set solution under 𝐻𝐶𝐶 , and

𝑓𝐶𝐶,� is the contribution of faults of the fault-tolerant set of measurements under hypo-
thesis 𝐻𝐶𝐶,� to the position state of interest in the fault-tolerant solution.

The current work deals with a set of processes, where the measurement set informing
each process is different among the simultaneous processes running at each step as
well as between a parent and a child process possibly created after the test of ordinality
in equation (6.11). This means that a test statistic distribution determined to fit the
samples of a process does not necessarily represent a distribution of ordinality that can
be used for reliably testing the samples of any other new process. However, under
fault-free conditions, the distributions for all-hypotheses are expected to have zero
mean (according to equation (6.9), although with different variances. In this work, only
one distribution of ordinality is utilized per direction, computed with samples from all
processes. This distribution is found to follow a zero-mean normal distribution:

� ∼ 𝒩(0, 𝜎2
�𝑎
) (6.10)

where the subscript 𝑎 refers to the direction of interest, i.e. North or East.

To obtain the ordinary samples and the ordinary distribution, the complete IM system
with the monitored navigation algorithm is run for driving road vehicle trajectories with
labeled sections where the outputs appear ordinary, after utilizing statistical methods.
The labeling of ordinary sections is accomplished offline based on the sliding Z-score
metric. The methodology was also used to label anomalies in section 5.2.1, therefore a
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North axis

East axis

Figure 6.4: Ordinary distribution of IM test statistics, on each axis. It is computed from samples
of the metric that were selected as ordinary based on statistical tests. The samples were obtained
during IM of real trajectories in the case study.

definition in this chapter is omitted. Understandably, the formulation of the ordinary
distribution is an open topic for more research in the future. Figure 6.4 depicts the com-
puted ordinary distribution that was utilized in the experiments to decide anomalous
samples.

6.6 Test for anomalies
The method identifies the end of an anomaly by executing a test at the finishing step
𝑘1,� = �𝑀 of the current running processes, with � ∈ 𝒵+ a positive integer. Starting
from the hypothesis𝐻𝐶𝐶,𝑀−1, that assumes that only the 0th image frame is faulty, until
hypothesis 𝐻𝐶𝐶,0, that assumes all 𝑀 image frames are faulty, the test is:

𝑦
(𝐶𝐶,𝑗)
𝑖

∈ [𝐹−1
� (0.05), 𝐹−1

� (0.95)]
∀𝑖 ∈ [1, 𝑀], ∀𝑗 ∈ [0, 𝑀 − 1]

(6.11)
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where:

𝐹−1
� , 𝐹−1

� the inverse of the Cumulative Distribution Function of the ordinarily distrib-
uted variable �.

𝑓 (𝑦(𝐶𝐶,�)
𝑖

;�) the probability density function of sample 𝑦(𝐶𝐶,�)
𝑖

drawn from the ordinary
distribution �.

A new set of processes is created at time 𝑘1,�, until the ordinality test in equation (6.11)
succeeds.

6.7 Chapter Summary
The presented method constrains the space of sensor fault hypotheses in MHSS-based
IMs for multi-sensor navigation systems and is suitable for integrations of the con-
ventional GNSS and IMU sensors with auxiliary sensors. There are two important
modifications in the MHSS-based IM architecture of previous works. PL computa-
tion is only informed from the conventional sensors IMU/GNSS as before, while the
IM evaluates each auxiliary sensor for FDE individually, assisted by a DNN. In this
work the evaluated system is, specifically, the integration IMU/GNSS/Camera. The
proposed method is scalable to integrations with multiple auxiliary sensors and does
not rely on the availability of a noise model for each auxiliary sensor. An additional
contribution is that the initial anomaly prediction in the distribution of navigation
faults caused by the camera is done based on raw measurements. Hence, the method
can facilitate future researches to quantify the direct effect of various environmental
conditions on the performance of IM, via the effect on individual sensors. This may
allow the development of robust IMs that are tested in a predetermined set of challen-
ging simulated or real environmental conditions.The next chapter will delve into the
full IM system evaluation, exploring the camera fault alarm capabilities of the DHT
module individually. Additionally, it will compare the performance of the IM system,
with camera FDE but without the PL inflation of chapter 4, in terms of PL bounding
performance, to the typical MHSS-based IM, that is informed by the noise and faults of
all sensors.



Chapter 7

Experimental evaluation

7.1 Introduction
This chapter presents the experimental evaluation of the DHT module separately for
camera PL inflation and FDE, as well as PL inflation for IMU preintegration faults. It is
reminded that the PL inflation methodologies are described in chapter 4, while camera
FDE in chapter 6. The evaluation chapter includes also a brief investigation of a few
cases of VN anomalies identified in the trajectories under evaluation, aiming to identify
potential environmental characteristics contributing to these anomalies.

In the experiments, 𝐼𝑅𝐸𝑄 = 2.7 ∗ 10−8 and 𝐶𝑅𝐸𝑄 = 8 ∗ 10−6.

7.2 Anomaly detection and camera exclusion results

7.2.1 Trajectories and system setup

The first experiment concerns the VN anomaly detection and exclusion module presen-
ted in chapter 6. The performance of the proposed method is evaluated by utilizing
datasets from the UrbanLoco, Robotcar and KAIST, described in section 4.6. In each
dataset, the car completes one trajectory. We selected two datasets from UrbanLoco, re-
ferred to as UrbanLoco1 and UrbanLoco2 in the text, one dataset from Robotcar and one
dataset from KAIST. The trajectories in the datasets are split into segments of around
1500 to 2250 steps (150s - 225s) and the evaluation is done for one segment from each
trajectory, excluding some steps at the beginning to allow initialization. The segments
are:

• UrbanLoco1: Steps 0-1500 in the dataset CAColiTower20190828184706, collected
near Coit Tower, San Francisco: Very busy area at the beginning, many pedestrians
and pedestrian crossings, illumination challenges.
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• UrbanLoco2: Steps 0-1500 in the dataset CALombardStreet2019082819041, col-
lected near Lombard street, San Francisco: Not that busy area, a lot of shadows /
dark areas, hilly terrain.

• Robotcar: Steps 1000-3000 in the dataset 2015-08-14-14-54-57, collected in Oxford,
UK: not busy area, roadworks, severe illumination challenges.

• KAIST: Steps 4500-6750 Suburban area, a lot of car traffic, High rising buildings
with repetitive patterns, severe illumination challenges.

The experimentation utilizes the ORBSLAM2 algorithm [97] for camera pose estimation
for the UrbanLoco and KAIST trajectories. The Robotcar trajectory comes with official
estimation data that were obtained using a VO solution. In all cases, the Umeyama
method [98] is utilized to find the optimal transformation between the reference and
the corresponding camera pose estimates. In the following, the text uses the same term
VN for both camera pose estimation algorithms.

At this stage, splitting of the trajectories was important to limit learning navigation
anomalies occurring due to previous drifts induced by visual-only navigation. There
is future work to do to label the exact frames that associate with anomalies. This will
require to go from statistical methods in the overall trajectory error to relative error
methods and handling of the drift.

The number of frames to test each time was selected 𝑀 = 10. This number should be
selected to be at least equal to the number of image frames 𝑀𝑣𝑖𝑠 per input sample that
is fed to DNN. That number is 7, as noted in chapter 5. A key finding of that work was
that larger samples lead to better anomaly learning than smaller ones, although there
is an upper limit for the sample size due to limited hardware resources. A selection
𝑀 > 𝑀𝑣𝑖𝑠 , as in this evaluation, is done to account for probably anomalous segment
that begins a bit before a predicted anomaly from the DNN.

Figure 7.1 shows the reference trajectories, the evaluated segments and the aligned
estimated segments from the VN system.

The IM for CSS, informed by the IMU and GNSS noise, computes the PLs based on
the integrity requirement 𝐼𝑅𝐸𝑄 = 2.7 ∗ 10−8.The experiments employ a formula for the
computation of PLs that was previously utilized for RAIM [5]. The PL in each direction,
for the fault-free case, is computed as:

𝑝𝐿 = 𝑄
−1{𝐼𝑅𝐸𝑄/2}𝜎𝐶𝑆𝑆 (7.1)

where 𝜎𝐶𝑆𝑆 is the estimated variance of the state error under𝐻𝐶𝑆𝑆 in the respective dir-
ection. As there is no redundancy of the measurements in the utilized CSS, the PLs do
not compensate for possible faults in the measurements of those sensors. Nevertheless,
we tuned their noise parameters and confirmed that there are no significant faults by
utilizing consistency checks and IM.
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Figure 7.1: Evaluated trajectories. The figures show the
full reference trajectories, the evaluated segments of each
trajectory and the aligned camera poses for those segments,
estimated from the VN system.

Figure 7.2: PLs, informed by IMU
and GNSS nominal noise, and
residual errors before and after
integrating IMU/GNSS with the
VN system, for UrbanLoco1.

7.2.2 Anomaly detection results

This section analyzes the performance of IM anomaly detection after executing the DHT
module, with or without utilization of the DNN. If the DNN is not utilized, the DHT
runs uninterrupted for the detection of anomalies. Uninterrupted execution means
that:

1. Anomaly testing does not stop even if the ordinality test in equation (6.11) suc-
ceeds.

2. Camera measurements are not excluded even after the detection of anomaly.

For UrbanLoco1, figure 7.2 shows the result of the IM for the integrations IMU/GNSS
and IMU/GNSS/VN. In both cases, the PLs are only informed from GNSS and IMU
nominal noise, and are computed based on equation (7.1). Someone observes an
increase of the error at the North direction after the integration with VN, especially
after step 180. This results in many IM anomalies that last until approximately step 500.
For the same trajectory, figure 7.3 shows the minimum log Probability Density Function
(log PDF), as defined in equation (7.2) below. It also shows the DHT processes, that
the ordinality test in equation (6.11) identifies as anomalous, under hypotheses 𝐻𝐶𝐶,0,
𝐻𝐶𝐶,4 and 𝐻𝐶𝐶,9. In this evaluation, the DHT module runs uninterrupted.

The experiments use the minimum log PDF metric, that is defined here, to visualize
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𝐻𝐶𝐶,0 𝐻𝐶𝐶,4 𝐻𝐶𝐶,9

Figure 7.3: For UrbanLoco1, the plots show the values 𝑙𝐶𝐶,�(𝑦𝑦𝑦(𝐶𝐶,�);�) for � = 0, 4, 9 over time
and the processes that are detected anomalous (red) or pass the ordinality test (light blue).
Processes are shown as subsequent segments separated by a vertical line at the bottom of each
plot.

the likelihood that the various DHT processes under different hypotheses are ordinary.
Previously, the symbol 𝑦𝑦𝑦(𝐶𝐶,�) was used to denote the sequence of IM test statistics that
are obtained during a process executed under hypothesis 𝐻𝐶𝐶,�. The minimum log
PDF of the samples in 𝑦𝑦𝑦(𝐶𝐶,�), given the ordinary distribution �, is:

𝑙𝐶𝐶,�(𝑦𝑦𝑦(𝐶𝐶,�);�) = min {𝑙𝑛( 𝑓 (𝑦(𝐶𝐶,�)1 ;�)), ...,
𝑙𝑛( 𝑓 (𝑦(𝐶𝐶,�)

𝑀
;�))}

(7.2)

with 𝑓 (𝑦(𝐶𝐶,�)
𝑖

;�), 𝑖 = 1, ..., 𝑀 being the PDF around the sample 𝑦(𝐶𝐶,�)
𝑖

when it is drawn
from the ordinary distribution �.

By comparing with figure 7.2, it is observable that the sharp drops of the minimum
log PDF in the plots are quite precise in indicating the location of IM anomalies. In
addition, processes that do not include any or include few image frames (i.e. processes
under 𝐻𝐶𝐶,0 and 𝐻𝐶𝐶,4) appear anomalous more often than 𝐻𝐶𝐶,9, that includes most
of the image frames in the sequence. This is expected as for processes, like𝐻𝐶𝐶,9, where
the fault-free measurement set is very similar to that under 𝐻𝐶𝐶 , the IM test statistic
(equation (6.8)) is generally closer to zero. Additionally, the plots indicate that the effect
of individual image frames on the build-up of an anomaly may vary. An example is



7.2. Anomaly detection and camera exclusion results 99

around step 450, where the plot for 𝐻𝐶𝐶,9 in North direction shows that one of the
tested processes is anomalous. The sharp decrease in the min log PDF is likely caused
by the only image frame assumed non-faulty in the anomalous process. This is not the
case for the anomaly at around step 850. The anomaly is clearly visible in the plots for
𝐻𝐶𝐶,0 and 𝐻𝐶𝐶,4 but not in the plot for 𝐻𝐶𝐶,9. The anomaly seems to build up over
more than one image frames in the processes.

The next experiment introduces the DNN in the anomaly detection procedure. This
means that DHT initiates testing only after receiving a navigation anomaly alarm from
the DNN. Anomaly testing stops when the ordinality test succeeds. No fault exclusion is
implemented at this experiment. Figure 7.4 shows, for all evaluated trajectory segments,
the PLs per axis as computed in equation (7.1). Additionally, it plots the residual of
position state estimates under 𝐻0 to reference positions. These may be compared with
the PLs for bounding issues. The figure also annotates the VN anomalies detected
by the DNN. The detected IM anomalous segments are marked on the residual. The
DNN does not differentiate between anomalies in the North and East direction, as
training was done based on the maximum of the VN system’s estimate errors in the
two directions. Therefore, the VN anomalies are the same in both directions. The y-axis
location of VN anomalies indicates the magnitude of the VN estimate error (maximum
between the two axes). Lastly, a detection for IM anomaly may happen for any of the
two directions, but the method will alarm for an anomalous segment regardless.

Figure 7.5 shows, for UrbanLoco1, the result of fault exclusion using the proposed
method. The PLs and the residual can be compared with figure 7.2. The fault exclusion
leads to a reduction of the residual error and the prevention of some IM anomalies.
However, the exclusion is insufficient to prevent all anomalies.

A general conclusion from the figures is that the proposed method performs well in
identifying navigation and IM anomalies, in the vast majority of cases where there is
anomaly present. The DHT module was able to mitigate for false alarms from the
DNN, although there were also few cases where it falsely ignored them. Subsequently
the camera measurement FDE was unsuccessful to prevent all IM anomalies, as the
experimentation showed. Therefore, despite the very promising results, it is apparent
that further tuning is necessary to adequately prevent all anomalies, as well as limit
false positives, i.e. detection alarms for camera measurements that do not actually
cause anomalies. The quantitative evaluation of the method follows in the next section.

7.2.3 Numerical evaluation of the IM performance

This section evaluates the performance of the proposed camera FDE when monitoring
the GNSS/IMU/VN system and PLs are only informed by GNSS and IMU noise. Four
metrics are evaluated and these are:

1. The RBT metric, proposed by Li and Waslander [7] to quantify how much of
the time the error is sufficiently bounded, as well as the tightness of the bound.
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Figure 7.4: Detected anomalies, true position error of GNSS/IMU/VN integration and PLs
informed by the GNSS/IMU only. Each column shows the results for one trajectory. The
top row shows results for the North direction and the bottom row shows results for the East
direction.
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Figure 7.5: Results of IM for the IMU/GNSS/VN integration after utilizing the DHT module
for VN fault exclusion. The results are for the UrbanLoco1 trajectory.
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The thesis introduced the formulation of the RBT metric in section 3.6.5. In the
experiments 𝜌 = 64.

2. The percentage of time that the errors are bounded by the PLs.

3. The minimum position alert limit for 100% availability of the system (it is the
maximum PL).

4. The average execution time.

As described in section 6.6, DHT runs until the process under 𝐻𝐶𝐶,0 is found ordinary.
In the experiment, new anomalies are ignored if DHT is already running by the time
of their detection.

Table 7.1 summarizes the results for the various trajectory segments. As the table
compares the performance of the proposed method against different IM setups, it is
worth defining the names of these setups. The table and the text symbolizes as “IM
for CSS” the IM that is informed only by GNSS and IMU noise. Also, it symbolizes as
“GNSS/IMU/VN MHSS” the MHSS-based IM that is informed by GNSS + IMU + VN
noise and faults.

In the “GNSS/IMU/VN MHSS” setup, the IM does a simplistic assumption of white
noise in the VN estimates. Then, The IM compensates for the contributions of failures
in the GNSS measurements or VN estimates by defining the 𝑁𝑆𝑆 = 2 fault hypotheses
𝐻𝑗 (𝑗 = 1, 2), respectively fault tolerant to GNSS measurements or VN estimates. It
assumes equal distribution of the integrity risk 𝐼𝑅𝐸𝑄 and continuity risk to the fault-
free hypothesis 𝐻0 and the two fault hypotheses. The formulas for PL computation
under fault-free and fault hypotheses were introduced in Chapter 3 within the context
of MHSS-based IM for conventional integrations of position sensors with an IMU.
Similarly, here, the "GNSS/IMU/VN MHSS" setup considers the GNSS and VN as
redundant position sensors. Reiterating the equations from chapter 3, the PL under
each fault hypothesis, in each direction, is formulated as:

𝑝𝐿𝑗 = 𝑄
−1{

𝐼𝑅𝐸𝑄

𝑃(𝐻𝑗)(𝑁𝑆𝑆 + 1) }𝜎𝑗 + 𝑇Δ𝑗 (7.3)

where 𝜎𝑗 is the estimated variance of the state error under hypothesis 𝑗 and 𝑇Δ𝑗 is
given in equation (6.3). Under the fault-free hypothesis 𝐻0 the PL compensates for the
nominal noise of all three inputs:

𝑝𝐿0 = 𝑄
−1{

𝐼𝑅𝐸𝑄

2(𝑁𝑆𝑆 + 1) }𝜎0 (7.4)

The IM selects the maximum of the three PL bounds as the final PL.
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The first row in the table for each trajectory shows the performance of the proposed
method, which utilizes IM for CSS and the DHT module for camera FDE. It compares
it against the method where the DHT module runs continuously to find IM anomalies
and performs fault exclusion, independently if the DNN predicts anomalies (“DHT,
no DNN” at second row), as well as against the method which does not use the DHT
module (“IM for CSS” method at third row). The last row shows the performance
of the MHSS where PLs are also informed from camera faults (“GNSS/IMU/Camera
MHSS”). The table shows the average metrics across both North and East axes.

The method based on "IM for CSS" without camera FDE (third row) shows the worst
performance in terms of bounding the error, while, the proposed method, that uses the
IM for CSS + DHT, shows comparable results to the "GNSS/IMU/VN MHSS" (fourth
row) in terms of the execution time and the percentage of time with bounded error.
The integration of more sensors results in lower uncertainty which is consistent when
the sensors do not contain faults. The results are even better, in terms of prevention of
IM anomalies, when the method runs DHT and fault exclusion, without using alarms
from the DNN (second row), although with significantly higher computation time than
when using the DNN (proposed method). The "GNSS/IMU/VN MHSS" shows the
worst performance on the RBT metric due to very loose PLs. However, one should
pay attention when interpreting the differences in the RBT metrics obtained for the
IM setups compared here; The RBT metric rewards tighter PLs. It might be that the
exclusion of the camera, due to a false alarm, results in larger estimate error, still
bounded by the PL, and the estimated uncertainty increases too. RBT will indicate that
the result is better, although the navigation algorithm is less accurate.

We believe that the results are motivating, since, compared to the "GNSS/IMU/VN
MHSS" method, the proposed method scales better to integrations with more auxiliary
sensors. Also, it does not assume knowledge of the noise of auxiliary sensor measure-
ments. Finally, it achieves 100% availability for a lower AL, as it does not compensate
for noise and faults of the auxiliary sensors. Therefore, the proposed method should be
considered during the development of computationally efficient and sensor-agnostic
IMs, although further tuning is required to prevent anomaly misdetections and insuf-
ficient camera measurement exclusion.
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7.3 PL inflation methodology for IMU preintegration and VN faults
The remaining of the chapter evaluates the performance of the PL inflation method-
ology, presented in chapter 4, on the 4seasons dataset [107] which comprises sensor
data recorded from a car driving inside Munich, Germany. While the dataset includes
data for many trajectories, the experimentation focuses on instances of driving within
the old town area. Figure 7.6 displays a satellite image of the drive area, the trajectory,
shown in light blue and the start location. This dataset encompasses several real-world
drives along the same route, enabling the investigation of varied weather and illumin-
ation conditions. The validation tries to indicate safety hazards under some variations
in weather conditions, the challenge with sun reflection, and the performance of the
fusion of camera with GNSS and IMU in the presence of IMU biases. The validation
is for an example Factor Graph-based integration, optimizing for an ImuFactor with
preintegrated IMU measurements, a GNSS Factor and a VN factor that includes aligned
camera pose estimates from a SLAM algorithm. This implementation can be replaced
by another algorithm.

The next sections describe the experimental setup and validate the PLs under two fault
modes, namely the 𝐼𝑀𝑈 − 𝐹 and the 𝑉𝑁 − 𝐹, with respect to the true estimate error.
The PLs for these modes were computed in equations (4.20) and (4.25), respectively.
Furthermore, the IM accounts for the fault-free mode (𝐹𝐹) in relation to the CSS,
exclusively, given that the nominal noise of the camera is assumed unknown; In effect,
it accounts for the nominal noise of GNSS and IMU by integrating those sensors in ErKF,
as demonstrated on the left side of the tree in figure 4.1. It omits PL computation under
the𝐺𝑁𝑆𝑆−𝐹 fault mode due to lack of redundancy of GNSS with other position sensors.
Therefore, to avoid the presence of any GNSS faults in the data, the GNSS receiver
positions are substituted with fault-free reference positions, distorted by nominal GNSS
noise.

7.3.1 Fault modes and residual computation

In DHT residual computation, VN poses are derived using the DM-VIO algorithm
[108], in visual-inertial mode. The DHT employs the ErKF to validate hypotheses. The
monitored algorithm, implemented with the GTSAM Library [109], integrates the VN
poses with IMU and GNSS measurements. For preintegrated residual computation,
predictions of the preintergrated IMU measurements, based on the estimated position
state of the monitored algorithm, are compared with the observed ones. Those are
computed using the corresponding preintergration method in the GTSAM library [110].

7.3.2 Datasets

To enhance the accuracy of VN fault localization, the experimentation is conducted for
drive segments instead of full drives of the trajectory in figure 7.6. Table 7.2 summarizes
the selected drives and corresponding segments. The table includes also details for each
drive, such as capture date, time and prevailing conditions. The segments are initially
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Figure 7.6: Satellite image of the drive location in the old town of Munich.

established based on the first evaluated drive, and each segment spans 200 - 250 seconds,
including both driving and stationary time. The method generates corresponding
segments for other drives, ensuring consistent starting and ending locations. It is
important to note that the duration of those corresponding segments varies and might
be longer that 250 or shorter than 200 seconds. Corresponding segments in different
drives are mentioned with the same Id. Additional segment information includes the
steps of IMU data collected during driving on the segment and the driving duration in
seconds.

Figure 7.7 depicts the selected segments on the drives. An arrow and a dot indicate the
start and end locations, respectively, on "Old Town 1". These indicators offer insight
into the travel direction across segments and the full trajectory loop: the car initially
navigates segment 1, then proceeds to segment 2, concluding at a location slightly past
the starting point. Notably, all segments align almost perfectly, with the only noticeable
misalignment seen in the correspondence of segment 2, while the car travels from
location (750, -875) to (900, -500).

.

7.3.3 The scenario of car navigation in urban environment

Figure 7.8 shows the percentage rate of change of residual of preintegrated IMU meas-
urements to the corresponding position state estimated from GTSAM, for the segments
1 and 2 in Old town 1. For example, a value of 8 on the vertical axis in one of the
plots of figure 7.8 means that each change of 100% to the residual component in the
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Table 7.2: Evaluated drives in 4seasons.

Drives
Name Datetime Conditions

Old town 1 2021-01-07 10:49 winter,cloudy/snowy/sunny,morning
Old town 2 2021-02-25 12:34 winter,sunny,afternoon
Old town 3 2020-10-08 11:53 fall,cloudy,morning

Segments
Id Drive Steps Duration [s]
1 Old town 1 10000-30000 200
2 Old town 1 40000-65000 250
1 Old town 2 7244-26443 192
2 Old town 2 35558-75095 395.4
1 Old town 3 5907-33224 273.2
2 Old town 3 43884-82038 381.5

Figure 7.7: Drives and selected segments. The arrow and dot symbolize the start and end
locations, respectively, on the drive "Old Town 1".
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Figure 7.8: Rate of change of residual of preintegrated IMU measurements to the monitored
algorithm’s position state, for segment 1 (left column) and 2 (right column) in Old town 1. The
first row displays results for the North axis, while the second row displays results for the East
axis.

corresponding direction - North or East - leads to 8% change in the position state in
the same direction. The percentage rates are used for visualization purposes but the
absolute rates of change that correspond to these percentages are, in particular, the two
diagonal elements in the Jacobian 𝐽𝐽𝐽𝐵 in equation (4.19) in the North (𝑑 = 1) and East
(𝑑 = 2) directions affected by the two first elements in the preintegrated IMU measure-
ment residual (𝑞 = 1 and 𝑞 = 2). Throughout all the experiments in this chapter, the
values of 𝐽𝐵11 and 𝐽𝐵22 remain constant and have been derived using the perturbation
procedure in algorithm 1 for all drives and segments in table 7.2. The procedure assists
to obtain a value for the two Jacobian elements at each step in the drive segments. The
final utilized values are the mean of all samples, after removing outliers. These values
were found 𝐽𝐵11 = 1.74 and 𝐽𝐵22 = 0.98.

Figure 7.9 shows the result from the execution of the IM method on Segment 1 and 2 of
Old town 1. The figure shows the results for the PLs under 𝐻CSS, the PLs accounting
for pre-integrated IMU measurement faults, the error from the ErKF under 𝐻CSS, and
the error from the monitored navigation algorithm. As there is no redundancy in
the position sensors under 𝐻CSS, where only one GNSS is available, the method does
not perform MHSS, and the respective PLs account only for the nominal noise of the
sensors in CSS. It is noteworthy that, in most cases, the inflation of the PLs under
𝐻CSS, to account for probable pre-integrated IMU measurement faults, is unnecessary.
To elaborate, consider the example from the figures. A straightforward summation
of PLs for IMU pre-integration and PLs for CSS would suggest an inflation of the
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Figure 7.9: The error in position from the monitored GTSAM integration along with the error
of the ErKF running for the CSS and the PLs computed to account for CSS measurement noise
and for the preintegrated IMU measurement faults. The results are for Segment 1 (left column)
and 2 (right column) in Old town 1.

initial bound (approximately 4 meters) by about 1 meter along the North axis for
Segment 1 and by 3 meters along the North axis for Segment 2. This would significantly
decrease system availability if safety requirements remained constant, without the extra
conservativeness being necessary. However, the experimentation with the Segment 2
revealed an increased risk in the monitored integration of GNSS with the additional
sensors, especially for the position states along the East axis. In that case the PL
inflation term improves the ability to address that risk. It is interesting to examine also
the computed PLs for VN faults in that case.

Figure 7.10 demonstrates the inflated PLs, accounting for faults in the preintegrated
IMU measurement residual and in VN. Similarly to the computation procedure of 𝐽𝐽𝐽𝐵
mentioned earlier, the Jacobian relating the GNSS/IMU/VN ErKF states to the mon-
itored algorithm states has been derived using the perturbation procedure in algorithm
2 for multiple drives. This Jacobian remains constant in all experiments under faulty
conditions and is the mean of all samples, after removing outliers. Its values, referring
to the position directions North and East, were derived as:

𝐽𝐶,11 = 2.4, 𝐽𝐶,22 = 2.37

The figure shows that the inflation leads generally to relaxed error bounds. Across most
cases, the two individual PL terms, for IMU preintegration and VN, exhibit comparable
numerical values. However, a notable divergence occurs in the East direction during
driving on Segment 2. In this case, although both sets of PLs respond correctly to
the heightened risk present around step 200 with a similar increasing trend, the PLs
associated with VN display a much stronger response.



110 Experimental evaluation

Figure 7.10: Inflated PLs to account for faults in IMU preintegrated measurements and in camera
measurements. The figure shows also the true error from the monitored GTSAM integration.
The results are for Segment 1 and 2 in Old town 1.

7.3.4 Simulation of faults

This section analyzes the behavior of the system while PL inflation is necessary, in
the presence of substantial faults in IMU and VN estimated positions. The faults are
introduced artificially in the available data and span a variety of conditions. In the
following, the fault types under examination are;

• IMU constant bias; A consistent offset is added to the IMU linear acceleration
measurements at each time step during a time period to simulate a steady devi-
ation from the true acceleration values.

• IMU slowly growing and shrinking bias; Over a specified duration, a bias is
gradually increased and then decreased in the IMU linear acceleration measure-
ments to mimic a slowly growing and then diminishing deviation from the true
values.

• VN position slowly growing and shrinking drift: A gradual and continuous error
is introduced into the estimated positions over time, wherein the position errors
slowly increase and then decrease, simulating a drift in the estimated positions.

• VN position slowly growing drift: A gradual and continuous error is introduced
into the estimated positions over time. The drift does not diminish but stays
constant after reaching its peak.

• VN Constant Drift Rate: Abrupt drift in VN position estimates for a defined
duration.



7.3. PL inflation methodology for IMU preintegration and VN faults 111

Figure 7.11: PLs during execution of experiment IMU-GROWSHRINK for drive Old town 1.

The experiments, detailed in Table 7.3, feature various combinations of these fault
types. Figures 7.11 to 7.18 showcase the PL inflation process during various exper-
iments, where the inflation encompasses individual terms addressing pre-integrated
IMU measurement faults and VN position faults. These visualize the system’s response
to introduced biases and drifts during the relevant time periods, indicating moments
when the system may become unavailable for reasonably low alert thresholds. The
figures illustrate the time horizons of application of each fault as shaded areas, and
table 7.4 explains the representation.

A note is that the PL computation in all experiments utilizes the same Jacobian values
𝐽𝐽𝐽𝐵 and 𝐽𝐽𝐽𝐶 stated in section 7.3.3, which were calculated based on multiple drives run
under normal conditions.

It is worth looking at figure 7.12 as well, which depicts the residuals of GTSAM for the
integration of GNSS/IMU under the faulty conditions persisting in experiment IMU-
GROWSHRINK. A comparative analysis between Figure 7.11 and Figure 7.12 affirms
the increased impact of IMU faults on the simpler navigation system, which is reliant
on the infrequent GNSS fixes. In that scenario, the PL inflation is also larger due to
the larger influence of changes in the preintegrated IMU measurement residuals on the
estimator’s state. Although the integration of the camera in this experiment showed to
have a mitigating effect on the state estimate fault originating from IMU faults, further
investigation is necessary to better understand the consistency issues in the complex
GNSS/IMU/VN integration and the behavior of the IM system in such scenarios. This
requires exploring a very extensive set of sensor fault combinations during various
time-frames and evaluating various sensor frequencies. Such analysis is beyond the
scope of the thesis.

A general observation in all experiments is that the application of a constant IMU bias
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Table 7.3: Experiments with simulated faults

Name IMU constant bias IMU growing-
shrinking bias VN constant drift VN growing-

shrinking drift VN growing drift

IMU-GROWSHRINK 2 m/s2 0.4 m/s2/s - - -
(20s @ 1/10) (20s @ 4/10)

VN-SLOWGROW 2 m/s2 0.2 m/s2/s - - 0.1 m/s
(20s @ 1/10) (20s @ 4/10) (20s @ 6.5/10)

IMUVN-GROWSHRINK 2 m/s2 0.2 m/s2/s - 0.2 m/s -
(20s @ 1/10) (20s @ 4/10) (20s @ 6.5/10)

IMUVN-GROWSHRINK-EXT 2 m/s2 0.2 m/s2/s - 0.2 m/s -
(20s @ 1/10) (20s @ 4/10) (40s @ 6.5/10)

IMUVN_GROWSHRINK_VN_CONST - 0.2 m/s2/s 2 m 0.2 m/s -
(20s @ 4/10) (20s @ 1/10) (20s @ 6.5/10)

The table uses the notation (duration s @ drive proportion) which summarizes when the fault
is introduced and how long it lasts in total. For example, 20s @ 4/10 means that the fault is
introduced after 4/10 of the drive and lasts 20s.
The provided values for the growing and shrinking faults denote their respective rates of
change. Shrinking starts after half of the total duration and maintains an equivalent rate to
that of growing. It is important to note that, in all instances, the initial bias or drift is set at 0.

Table 7.4: Representation of areas with applied faults in the figures

Fault IMU constant bias IMU growing-
shrinking bias VN constant drift VN growing-

shrinking drift VN growing drift

Representation 8 ♦ 8 ♦ △

Figure 7.12: PLs during execution of experiment IMU-GROWSHRINK for drive Old town 1
where the monitored system integrates only the IMU and the GNSS in GTSAM.
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Figure 7.13: PLs during execution of experiment IMUVN-GROWSHRINK for drive Old town
1.

Figure 7.14: PLs during execution of experiment IMUVN-GROWSHRINK for drive Old town
2.
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Figure 7.15: PLs during execution of experiment IMUVN-GROWSHRINK for drive Old town
3.

Figure 7.16: PLs during execution of experiment VN-SLOWGROW for drive Old town 2.
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Figure 7.17: PLs during execution of experiment IMUVN-GROWSHRINK-EXT for drive Old
town 2.

Figure 7.18: PLs during execution of experiment IMUVN-GROWSHRINK-VN-CONST for drive
Old town 2.
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exerts only a minimal impact on the GTSAM’s error, without any tangible effect on PLs.
Conversely, the application of a slowly growing and shrinking IMU bias (figures 7.11
- 7.18) affects both PL inflation terms. However, as illustrated best in figure 7.11, the
effect on the PL associated with IMU preintegrated measurements is notably stronger,
as expected.

A similar trend is observed when applying a VN drift. In all cases, the IM exhibits a
stronger response in the PL term relevant to VN estimates.

In the VN-SLOWGROW experiment (figure 7.16), the drift does not diminish after
reaching its peak. Both PL terms are substantially affected. The error in the monitored
GTSAM reaches a peak shortly after the end of the drift application region. After this,
it does not exhibit substantial further increase. In contrast, the PL continues to rise
until the end of the experiment.

During the experiment IMUVN-GROWSHRINK-EXT on segment 2 of drive Old town
2 (figure 7.17), there was a time period of unbounded error. This is an important
observation, so let us compare with figure 7.15 as well. In contrast to the experiment
IMUVN-GROWSHRINK, in IMUVN-GROWSHRINK-EXT the PL stops increasing be-
fore the drift reaches its peak. This shows a tendency that the position errors of the
ErKFs in the DHT module do not differ that much as time progresses and the residuals
in (4.22) remain constant. Likely, the errors are not affected that much by the inclusion
or exclusion of VN estimates obtained during the latest horizon, but they are affected
more from the accumulated error under 𝐻𝐶𝐶 until that time. Future research could
explore the potential benefits of weighting more the residuals in DHT that persist over
extended periods, or comparing the residuals between position estimates under each
hypothesis in DHT and the position estimates under 𝐻𝐶𝑆𝑆. Eventually, there is no
hazardous situation in this specific case. While the error is underestimated in the East
direction while driving on segment 2, the PL on the North direction still bounds the
maximum error.

Finally, the results from the IMUVN-GROWSHRINK-VN-CONST experiment (figure
7.18) demonstrate that abrupt faults in the high-frequency VN fixes significantly impact
fusion errors. The PL term for DHT exhibits a rapid response to the fault.

To conclude, the IM demostrated on-time response to faults by efficiently inflating the
PLs. The PLs bounded the true error in all presented experiments, except of IMUVN-
GROWSHRINK-EXT. There was no hazardous outcome in any of the expreriments.
These results serve as a showcase of the performance of a system employing PL in-
flation separately for each sensor under specific fault combinations. They should be
perceived as experimental evidence of the benefit of the method for autonomous sys-
tems reliant on multiple sensors. However, ensuring consistent reliability across all
scenarios demands additional theoretical analysis.
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7.3.5 Discussion of identified VN faults

Table 7.5 provides a comprehensive overview of the observed metrics for the specific
drives and segments under evaluation, in the absence of any simulated faults. The
key metrics for assessing IM performance include the RBT [111] and the Max PL. In
the experiments under normal conditions there was no case of unbounded errors,
therefore, higher RBT values in the table indicate looser bounds. The RBT value shown
in the table is the maximum of the RBT value obtained for the PL along the North
axis and the PL along the East axis. Additionally, the table records the maximum PL
encountered during the run, along any axis, measured in meters. Alert limits below
this value will result in system availability lower than 100%. A final important piece
of information in the table is the true error of the VN system, presented as the mean
and standard deviation of Euclidean distances between DM-VIO positions and the
reference, measured in meters. The computation excludes position errors when the
vehicle remains nearly stationary.

Table 7.5: IM and weather

Drive Segments RBT Max PL (m) VN error

mean (m) std (m)

Old town 1 1 2.678 8.276 4.324 2.464
Old town 1 2 4.088 14.39 4.443 2.113
Old town 2 1 2.684 8.674 1.743 0.518
Old town 2 2 2.897 8.078 1.451 0.568
Old town 3 1 2.934 9.792 4.331 2.96
Old town 3 2 4.363 11.684 3.505 1.501

The results show significant discrepancies in the capability of VN to provide accurate
position estimates among different drives. The final part of the discussion in this chapter
provides insights into the prevailing scene features in some of these evaluation examples
that might be affecting negatively the performance of VN. Instead of exhaustively
examining every instance of substantial positional error, a developer in safety-critical
systems might be looking at those scene features where recurrent and abnormal -
momentary or slowly growing - errors originate. Such anomalies could stem from
specific scene features or conditions and could guide the developer to more efficient
testing of the VN and the IM under similar circumstances. Large VN position estimate
faults are indicative of camera measurement faults and should be detected or accounted
for in the PL computation. The evaluation herein is limited to very few cases and is not
exhaustive of all possible VN faults.

A statistical measure to delineate anomalous VN position errors is the Z-Score 𝑍 =

(𝑒𝑆 − �𝑆)/𝜎𝑆 of the VN error estimates 𝑒𝑆 in one direction to the reference. The mean
�𝑆 and standard deviation 𝜎𝑆 refer to the normal distribution of errors computed in a
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horizon around the sample, while already identified outliers in the horizon contribute
to the statistics in a smaller degree, as chapter 5 described. Figure 7.19 shows the true
VN position estimate error over time for the three drives of segment 2. That is, each
step in the plots represents instances where both VN position estimates and reference
positions are available. The plots annotate the detected anomalous samples too. An
examination of these plots, in conjunction with Table 7.5, reveals that the VN encounters
challenges with large errors with large variances during the Old Town 1 and Old Town
3 scenarios. In contrast, under the sunny conditions of the Old Town 2 scenario, the
VN demonstrates the best performance in terms of position accuracy. Interestingly,
Old Town 2 is the drive that presents the highest occurrence of statistically anomalous
errors.

(a) (b) (c)

Figure 7.19: VN position estimate errors for segment 2 within all drives, annotating abnormal
samples detected by their Z-Score within a constrained error sample horizon. (a) Old town 1,
(b) Old town 2, and (c) Old town 3.

In figure 7.19, it is possible to identify time frames, in any of the drives, that appear
particularly interesting for further analysis. After specifying the time frames of interest
within one drive, the subsequent step entails mapping zero, one, or more position
samples in the other two drives for the identified time frames. This mapping procedure
considers that the car traverses corresponding locations in each drive in the same
sequence, significantly reducing the likelihood of false mappings.

The analysis here considers three time frames of interest. The drives in bold letters
are the ones considered significant for analysis around the respective time frames. The
time frames in the other two drives were determined based on the mapping procedure.
The time frames of interest are the following:

• Old town 1: steps 1464-1576, Old town 2: steps 1714-1852, Old town 3: steps
1710-1838: significant increase of the error in Old town 2 and many anomalies in
Old town 2 and 3. The error is in a decreasing trend in Old town 1.

• Old town 1: steps 3355-3393, Old town 2: steps 3943-4025, Old town 3: steps
3832-3874: many anomalies in Old town 2 with an observable increase in the
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Figure 7.20: Example 1 for VN fault investigation.

error, many anomalies in Old town 3, but not significant increase in the error and
no anomalies in Old town 1 with observable, though, error increase.

• Old town 1: steps 3703-4091, Old town 2: steps 4369-4867, Old town 3: steps
4484-4968: anomaly in Old town 3 and significant increase of the drift afterwards
without recovery until the end. In contrast, Old town 1 and 2 observe a small
decrease in the error.

The figures 7.20-7.22 provide a comparative analysis for the three selected time frames.
The comparison includes images captured from the car’s front camera and the evolution
of VN residuals at specific steps within each time frame. The left side of the figures
shows captured images; The top row exhibits images captured at different steps during
the drive Old Town 1. The second and third rows display corresponding images from
Old Town 2 and Old town 3, respectively. Each column of corresponding images is
marked with a number and the time the image was captured while driving segment 2
in Old town 1. A specific color is assigned at each drive and each row with images is
also marked with the color. The subfigures on the right depict information about the
trajectory driven, the observed VN position residuals and the labeled anomalies during
the three drives. The plots, corresponding to each drive, use the same color scheme as
the images. The numbered markers on the plots show the exact location or step where
the images, of the corresponding column, were obtained. The trajectory is displayed up
to the location where the last image within the selected time frame was obtained. The
residuals’ plot is zoomed in around the locations of the images, showing information
about what happens slightly before and after those locations.

In the first examined time frame (figure 7.20), the initial anomalies in Old town 2 appear
to be due to the intersection and, probably, also due to unfavorable light conditions.
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Figure 7.21: Example 2 for VN fault investigation.

The time frame spans approximately 6.4 seconds in Old town 1 and 7.4 seconds in old
town 2. The latter is also the end of the anomalous region in Old town 2. Within this
time frame there are many indications of anomalies in Old town 2 and 3. In both cases
there is much heavier traffic than the one observed during Old town 1.

In the second examined time frame (figure 7.21) a long period of anomalous error
samples is observable in Old town 2. It could be attributed to halted vehicles ahead
and occlusion caused by the stationary bus/RV and van. This challenge in feature
extraction and matching in the VN is further compounded by the busy nature of the
intersection. The second time frame concludes as the car halts near the large vehicles.
The anomalous samples persist even beyond this point.

In the final analyzed time frame (figure 7.22), anomalies become evident in the plot for
Old town 3 at the commencement of the construction site (marker 0). Although the
anomalous region ends quickly, a drift initiates at marker 1 after the van parks on the
right, likely attributed to occlusion and mismatched features due to the construction
site. The drift continues to increase for a long period (marker 2).

7.4 Chapter Summary
This chapter presents the practical application of the DHT module within the IM and
evaluates the camera FDE, presented in chapter 6, and the PL inflation methodologies
for potential VN and preintegrated IMU measurement faults, presented in chapter 4.

The first section incorporates the VN anomaly detection and exclusion module across
datasets from UrbanLoco, Robotcar, and KAIST. The evaluation results show the sys-
tem’s ability to detect the vast majority of IM anomalies on-time. The IM system with
anomaly exclusion shows comparable results, in terms of PL bounding performance,
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Figure 7.22: Example 3 for VN fault investigation.

to the typical MHSS-based IM which, in contrast to the presented method, is informed
by the noise and faults of all sensors

The subsequent section focuses on validating the PL inflation methodology using the
4seasons dataset. The experiments highlight the methodology’s ability to maintain sys-
tem safety under the IMU-F and VN-F fault modes and in the presence of various types
of artificially added faults, albeit revealing instances of loose PLs in fault-free scenarios.
This suggests a potential for conditional inflation based on VN fault probabilities. Also,
there is additional theoretical analysis required to improve the methodology and en-
sure sufficient bounds under different challenging conditions. Nonetheless, the results
underscored the method’s versatility in handling a wide array of faults. This, coupled
with its ability to directly accommodate different auxiliary sensors and its independ-
ence from integration types, highlights its importance in accurately assessing the impact
of faults on integrity risk. Overall, it plays a crucial role in advancing the development
of a universal IM.

Moreover, the evaluation sheds light on some potentially challenging circumstances
for VN navigation, linking recurrent VN anomalies to specific scene features or condi-
tions. This is an enabler for the development of robust navigation systems capable of
adapting to dynamic environmental conditions and efficient testing in predetermined
challenging conditions.

In summary, the evaluation proved that the presented methodologies, in previous
chapters, represent a significant stride in VN fault detection within multi-sensor integ-
rations and the efficacy of the overall IM system.
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Chapter 8

Conclusion

This thesis has presented a methodology to address critical challenges in IM of integ-
rated navigation systems. The thesis began with a theoretical exploration of navigation
algorithm uncertainty and sensor noise modeling and associated challenges with the
utilization of auxiliary sensors (chapter 2). These challenges laid the groundwork for
the subsequent development of the IM architecture. In my opinion, the thesis has
made significant progress towards the establishment of an IM framework with scalab-
ility capabilities to multi-sensor integrations, independent from navigation algorithm
internals and specific output requirements. The developed architecture and the find-
ings in this thesis could serve as a base for future researches aiming the development
of a universal IM used across various autonomous vehicle types undertaking safety
critical operations.

Towards the development of the IM framework, chapter 3 extended MHSS frameworks
for IM of integrations of inertial with position sensors (e.g. GNSS) to handle the case of
time-correlated noise, detect sensor failures or mismodeling, and conditionally suggest
error bounds inflation. Importantly, the method remains agnostic to the internal work-
ings and computational complexity of the underlying navigation algorithm, allowing
for versatility and scalability across different sensor platforms and noise models.

The chapter 4 proposed a method for PL computation suitable for systems that integrate
a camera with conventional sensors, such as GNSS and IMU. This method involves a
multi-level IM approach that quantifies the effect of various measurement subsets on
integrity risk, allowing for safety guarantees specifically targeted to each sensor. The
chapter further discussed the IMU and VN models in multi-sensor integrations, along
with the respective residuals and PL inflation terms. The experimental validation
of the proposed PL computation procedures for a GNSS/IMU/VN integration with
factor graphs was presented in chapter 7, showcasing applicability of the developed
methodology in the presence of various types of biases in IMU measurements, and VN

123
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drifts.

Another central contribution was the development of a methodology for anomaly
prediction within a third-party visual SLAM system. The methodology in chapter
5, leveraged a deep learning technique to identify anomalies in the estimates of the
VN system, suggesting that similar approaches can be used for identifying anomalies
in other auxiliary-sensor based navigation systems. By using convolutional and time
distributed layers, the method achieved accuracy in predicting deviations from the
expected VN error distribution. The method helped to learn low-level image features
as well as dynamic changes in the visible area of the camera that potentially were
causing the VN to fail. Such adaptable approaches, trained with auxiliary sensor
measurements, have the potential to uncover correlations with anomalies in navigation,
facilitating proactive anomaly detection and mitigation across diverse sensor-based
navigation systems.

Furthermore, in chapter 6, the research investigated the relationship of VN fault de-
tection and IM challenges related to the GNSS/IMU/VN integration in various urban
environments. The experimentation was interested in a situation where the IM accoun-
ted for noise and faults in the CSS, but not in the camera measurements, assuming
that the computed PLs would bound the estimate error of the full integration, in the
absence of camera faults. This assumption is generally valid as the integration of more
sensors reduces the uncertainty of the navigation algorithm, with this uncertainty be-
ing consistent in the absence of sensor faults. Therefore, in this case, an IM anomaly,
i.e. a time instance with PLs that do not bound the position error, happens when a
camera fault, that affects significantly the integrated system’s error, is not detected and
excluded. The experimentation, presented in chapter 7, demonstrated the efficacy of
the developed camera FDE methodology in proactively excluding camera faults and
achieving a significant increase of time without IM anomalies.

The IM architecture introduced in this thesis offers several notable advantages, includ-
ing scalability to diverse sensor integrations, independence from monitored navigation
algorithm internals, and robust fault detection capabilities. By employing techniques
such as deep learning-based anomaly prediction and hypothesis testing individually
for each auxiliary sensor, the proposed framework enables early detection and mitig-
ation of hazardous risks in navigation associated with sensor faults. It also facilitates
the identification of high-level environmental conditions that potentially cause these
faults.

8.1 Future Directions
Looking ahead, several areas for future research emerge from this work. There is
a need to quantify the direct effects of a wide set of environmental conditions on
the performance of IM, particularly regarding individual sensors. This could include
conducting thorough investigations into how factors such as weather, illuminations,
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surrounding building characteristics and density, traffic and behavior of other users
impact sensor and IM accuracy.

Another important area for future work is the automatic detection of unseen anomalies
within the IM framework. The ability to automatically detect more unseen anomalies
in unlabeled data is essential for systems that utilize auxiliary sensors affected by
many environment particularities which are currently barely researched. This would
lead to better understanding and definition of specific datasets to test the navigation
system that utilizes a particular sensor to evaluate it in terms of integrity and continuity
requirements.

Evaluation to other multiple sensor integrations, including tightly-coupled, is another
aspect that requires attention in future research work. The IM framework should be
tested with integrations with multiple auxiliary sensors beyond the current scope.

Moreover, there is a need for continued research to improve sensor fault modeling tech-
niques within the IM framework. Refining these techniques is essential for enhancing
the accuracy of anomaly prediction and detection. Researchers can explore advanced
machine learning methods and incorporate domain-specific knowledge to better cap-
ture sensor behaviors and fault patterns. By developing more sophisticated models for
sensor fault detection and diagnosis, IM frameworks can effectively mitigate integrity
risks and improve overall system reliability.

Finally, enhanced performance evaluation is critical for validating the universality of
the IM framework under an extensive set of various real-world conditions. Further ex-
perimentation and evaluation is needed to assess the performance of the IM in different
environments, vehicle types, and sensor configurations. By conducting comprehens-
ive testing and validation procedures, researchers can gain valuable insights into the
strengths and limitations of the IM system, guiding its ongoing development.

8.2 Final remarks
In summary, this thesis represents a significant contribution to the field of IM of integ-
rated navigation systems, offering practical solutions to critical challenges and paving
the way for targeted testing, evaluation of IMs with objective criteria for universally
used datasets, and effective reporting of compliance to safety requirements to relevant
authorities. As we and other researchers continue to push the boundaries of innovation
in this domain, the insights and methodologies presented here will serve as valuable
foundations for future research and development efforts of universal IMs.
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Appendix A

Derivation of the positioning
uncertainty in SLAM

This appendix provides an analytical description of the closed-form solution for SLAM
uncertainty of Mourikis and Roumeliotis [32], briefly introduced in Section 2.3.

A.1 1D case
The state vector is the combination of the position of the robot and the position of the
𝑁 landmarks. Let the input be a measurement of the velocity of the robot, and this
measurement leads the propagation of the state. The dynamics of the covariance of the
position estimates 𝑃𝑃𝑃(𝑡) of the robot and landmarks is:

¤𝑃𝑃𝑃(𝑡) = 𝐺𝐺𝐺𝑞𝐺𝐺𝐺𝑇 − 𝑃𝑃𝑃(𝑡)𝐻𝐻𝐻𝑇𝑅𝑅𝑅−1𝐻𝐻𝐻𝑃𝑃𝑃(𝑡)

With𝐺𝐺𝐺 =
[
1 0001×𝑁

]𝑇 , 𝑞 the variance of the noise of the input (the variance is considered
constant, and the noise white-gaussian with zero mean), 𝑅𝑅𝑅 is the covariance matrix of
the noise (assumed white-gaussian with zero-mean) of the exteroceptive measurements
of the relative positions -to the robot- of the landmarks at each time, and 𝐻𝐻𝐻 the meas-
urement matrix (association to the state). 𝐻𝐻𝐻 can be viewed as the incidence matrix of a
directed graph with 𝑁 +1 vertices, where each of 𝑁 vertices (landmarks) are connected
with one edge to the vertex corresponding to the robot. The normalized covariance
can be defined as 𝑃𝑃𝑃𝑛(𝑡) = 1

𝑞𝑃𝑃𝑃(𝑡) ⇒ 𝑃𝑃𝑃(𝑡) = 𝑞𝑃𝑃𝑃𝑛(𝑡). With substitution and algebraic
manipulations we end up with the expression

𝑃𝑃𝑃𝑛(𝑡) =𝑈𝑈𝑈−𝑇(𝑄𝑄𝑄𝑛𝐿𝐿𝐿(𝑡) +𝐾𝐾𝐾(𝑡)𝑃𝑃𝑃0)(𝐾𝐾𝐾(𝑡) +𝑈𝑈𝑈−1𝐶𝐶𝐶𝑈𝑈𝑈−𝑇𝐿𝐿𝐿(𝑡)𝑃𝑃𝑃0)−1𝑈𝑈𝑈−1

which is equivalent to

𝑃𝑃𝑃𝑛(𝑡) =𝑈𝑈𝑈−𝑇𝑄𝑄𝑄𝑛𝐿𝐿𝐿(𝑡)𝐾𝐾𝐾−1(𝑡)𝑈𝑈𝑈−1 +𝑈𝑈𝑈−𝑇𝑀𝑀𝑀(𝑡)𝑈𝑈𝑈−1 ,
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with𝐶𝐶𝐶 = 𝐻𝐻𝐻𝑇𝑅𝑅𝑅−1𝐻𝐻𝐻, 𝑄𝑄𝑄𝑛 =

[
111 0001×𝑁

000𝑁×1 000𝑁×𝑁

]
,𝐿𝐿𝐿(𝑡) =

[
𝑒𝜌𝑡+𝑒−𝜌𝑡

2 0001×𝑁
0001×𝑁 𝐼𝐼𝐼𝑁×𝑁

]
,𝐾𝐾𝐾(𝑡) =

[
1
𝜌

(
𝑒𝜌𝑡−𝑒−𝜌𝑡

2

)
0001×𝑁

0001×𝑁 𝐼𝐼𝐼𝑁×𝑁

]
,

𝜌2 = 1111×𝑁𝑅𝑅𝑅−1
𝑛 111𝑁×1, 𝑃𝑃𝑃0 =𝑈𝑈𝑈𝑇𝑃𝑃𝑃𝑛(0)𝑈𝑈𝑈 ,𝑈𝑈𝑈 is the modal matrix of 𝐶𝑄𝐶𝑄𝐶𝑄𝑛 , 𝑃𝑃𝑃𝑛(0) =

[
𝑃𝑃𝑃𝑟𝑟 𝑃𝑃𝑃𝑟𝐿
𝑃𝑃𝑃𝐿𝑟 𝑃𝑃𝑃𝐿𝐿

]
the initial value of the covariance matrix (subscripts “r” and “L” for “robot” and “Land-
marks” respectively), and 𝑀𝑀𝑀(𝑡) = 𝐾𝐾𝐾−1(𝑡)𝑃𝑃𝑃0(𝐾𝐾𝐾(𝑡) +𝑈𝑈𝑈−1𝐶𝑈𝐶𝑈𝐶𝑈−𝑇𝐿𝐿𝐿(𝑡)𝑃𝑃𝑃0)−1.

The normalized covariance at steady state (at the limit 𝑡 →∞) will be computed:

𝑃𝑃𝑃𝑛𝑠𝑠 = lim
𝑡→∞

𝑃𝑃𝑃𝑛(𝑡) =
[ 1
𝜌 +𝑚𝑚𝑚𝑛𝑛 𝑚𝑚𝑚𝑛𝑛1111×𝑁
𝑚𝑚𝑚𝑛𝑛111𝑁×1 𝑚𝑚𝑚𝑛𝑛111𝑁×𝑁

]
With𝑚𝑚𝑚𝑛𝑛 = 1

𝑁2
∑(𝐹𝐹𝐹(∞)𝑉2∞(𝑈𝑈𝑈𝑇

2∞𝑉𝑉𝑉2∞)−1𝑈𝑈𝑈𝑇
2∞),

𝐹𝐹𝐹(∞) = 𝑃𝑃𝑃𝐿𝐿 − 𝜌
(

1
1 + 𝜌𝑃𝑃𝑃𝑟𝑟 − 2

𝜌 𝑟
𝑇𝑃𝑃𝑃𝐿𝑟 + 1

𝜌3 𝑟
𝑇𝑃𝑃𝑃𝐿𝐿𝑟

) (
𝑃𝑃𝑃𝐿𝑟 −

1
𝜌2𝑃𝑃𝑃𝐿𝐿𝑟

) (
𝑃𝑃𝑃𝑟𝐿 −

1
𝜌2 𝑟

𝑇𝑃𝑃𝑃𝐿𝐿

)
,

𝑟𝑟𝑟 = 𝑞𝑅𝑅𝑅−1111𝑁×1, and𝑈𝑈𝑈∞2 ,𝑉𝑉𝑉∞2 are matrices whose column vectors are basis vectors of the
left and right nullspace of

(
𝑞𝑅𝑅𝑅−1 − 1

𝜌2 𝑟𝑟
𝑇
)
𝐹1(∞). Finally, multiply with 𝑞 to find the

non-normalized covariance at steady state.

A.2 2D case
The authors treat the velocity and orientation of the robot as measurement inputs. The

covariance matrix of the process noise will be given by 𝑄𝑄𝑄(𝑡) =
[
𝑄𝑄𝑄𝑟(𝑡) 0002×2𝑁
0002𝑁×2 0002𝑁×2𝑁

]
, with

𝑄𝑄𝑄𝑟(𝑡) =
[
cos(�̂�𝜙𝜙(𝑡)) −𝑉𝑉𝑉𝑚(𝑡) sin(�̂�𝜙𝜙(𝑡))
sin(�̂�𝜙𝜙(𝑡)) 𝑉𝑉𝑉𝑚(𝑡) cos(�̂�𝜙𝜙(𝑡))

] [
𝜎2
𝑉

0
0 𝜎2

𝜙

] [
cos(�̂�𝜙𝜙(𝑡)) −𝑉𝑉𝑉𝑚(𝑡) sin(�̂�𝜙𝜙(𝑡))
sin(�̂�𝜙𝜙(𝑡)) 𝑉𝑉𝑉𝑚(𝑡) cos(�̂�𝜙𝜙(𝑡))

]𝑇
, 𝑉𝑉𝑉𝑚(𝑡)

being the velocity measurements, �̂�𝜙𝜙 being the robot’s orientation estimate, 𝜎2
𝑉

being
the variance of noise sequence affecting the velocity measurements, and 𝜎2

𝜙 being the
variance of noise of the error in the robot’s orientation estimate. Taking into account
that the measurements are correlated, the expression of the covariance matrix of all the
measurements performed by the robot can be written as a combination of the covariance
𝑅𝑅𝑅1(𝑡) of the error due to the noise in the range measurements, of the covariance 𝑅𝑅𝑅2(𝑡)
due to the error in the bearing measurements, and of the covariance 𝑅𝑅𝑅3(𝑡) due to the
error in the orientation estimates:

𝑅𝑅𝑅(𝑡) = 𝐷𝐷𝐷�̂�(𝑡)𝑇𝑅𝑅𝑅0(𝑡)𝐷𝐷𝐷�̂�(𝑡) (A.1)

𝑅𝑅𝑅0(𝑡) = 𝑅𝑅𝑅1(𝑡) +𝑅𝑅𝑅2(𝑡) +𝑅𝑅𝑅3(𝑡)

𝑅𝑅𝑅1(𝑡) = 𝜎2
𝜌𝐼𝐼𝐼2𝑁×2𝑁 −𝐷𝐷𝐷(𝑡) diag

(
𝜎2
𝜌𝑖

𝜌2
𝑖
(𝑡)

)
𝐷𝐷𝐷𝑇(𝑡)
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𝑅𝑅𝑅2(𝑡) = 𝜎2
�𝑖
𝐷𝐷𝐷(𝑡)𝐷𝐷𝐷𝑇(𝑡)

𝑅𝑅𝑅3(𝑡) = 𝜎2
𝜙𝑖
𝐷𝐷𝐷(𝑡)111𝑁×𝑁𝐷𝐷𝐷𝑇(𝑡),

where 𝐷𝐷𝐷�̂�𝜙𝜙(𝑡) = 𝐼𝐼𝐼𝑁×𝑁 ⊗ 𝐶(�̂�𝜙𝜙(𝑡)), 𝐶(�̂�𝜙𝜙(𝑡)) is the rotation matrix associated with the
robot’s orientation estimate �̂�𝜙𝜙, 𝜎2

𝜙 is the orientation uncertainty (an upper bound is
considered known in this case – the authors amplify with the distance between the
robot and corresponding landmark), 𝜎2

𝜌 is the variance of the noise in the distance
measurements, 𝜎2

�𝑖
is the variance of the noise in the bearing measurements, and

𝐷𝐷𝐷(𝑡) =

𝐽Δ�̂�1(𝑡)𝑇 . . . 0002×1

...
. . .

...

0002×1 . . . 𝐽Δ�̂�𝑁 (𝑡)

 diagonal matrix depending on the positions of the

robot and landmarks. The ⊗ denptes the Kronecker matrix product. Then the matrix
𝐻𝐻𝐻𝑇(𝑡)𝑅𝑅𝑅−1(𝑡)𝐻𝐻𝐻(𝑡) that appears in the covariance update equations of the Kalman Filter
depend only on the positions of the robot and landmarks and will be 𝐻𝐻𝐻𝑇(𝑡)𝑅𝑅𝑅−1

0 (𝑡)𝐻𝐻𝐻0
Finally, the Riccati differential equation for the evolution of the covariance:

¤𝑃𝑃𝑃(𝑡) = 𝑄𝑄𝑄(𝑡) − 𝑃𝑃𝑃(𝑡)𝐻𝐻𝐻𝑇
0 (𝑡)𝑅𝑅𝑅

−1
0 (𝑡)𝐻𝐻𝐻(𝑡)𝑃𝑃𝑃(𝑡),

which does not have a closed form solution. The authors derive an upper bound:

¤
𝑃𝑃𝑃(𝑡) = 𝑄𝑄𝑄 − 𝑃𝑃𝑃(𝑡)𝐻𝐻𝐻𝑇

0𝑅𝑅𝑅
−1
𝐻𝐻𝐻0𝑃𝑃𝑃(𝑡)

In case 𝑅𝑅𝑅 ≥ 𝑅𝑅𝑅0(𝑡) and 𝑅𝑅𝑅 ≥ 𝑅𝑅𝑅0(𝑡) for all 𝑡 > 0 Considering that the upper bound of the

individual terms should be 𝑅𝑅𝑅 = (𝜎2
𝜌 + 𝑁𝜎2

𝜙𝜌
2
0 + 𝜎2

�𝜌
2
0)𝐼𝐼𝐼𝑁×2𝑁 and 𝑄𝑄𝑄 =

[
𝑞𝐼𝐼𝐼2×2 0002×2𝑁
0002𝑁×2 0002𝑁×2𝑁

]
with 𝑞 = max(𝛿𝑡2𝜎2

𝑉
, 𝛿𝑡2𝑉2𝜎2

𝜙) assuming approximately constant velocity 𝑉 .

𝑃(0) =
[
𝑃𝑃𝑃𝑟𝑟0 0002×2𝑁

0002𝑁×2 𝑃𝑃𝑃𝐿𝐿0

]
The upper bound of the steady-state covariance matrix will be (after similar steps as
with the 1D case):

𝑃𝑃𝑃𝑛𝑠𝑠 =

[√
𝑞𝑟

𝑁 𝐼𝐼𝐼2×2 0002×2𝑁
000𝑁×2 0002𝑁×2𝑁

]
+ 111(𝑁+1)×(𝑁+1) ⊗

©«𝐽𝐽𝐽𝑇𝑃𝑃𝑃−1
𝐿𝐿0
𝐽𝐽𝐽 +

(√
𝑞𝑟

𝑁
𝐼𝐼𝐼(2×2) + 𝑃𝑃𝑃𝑟𝑟0

)−1ª®¬
−1

,

with 𝑟 = 𝜎2
𝜌 + 𝑁𝜎2

𝜙𝜌
2
0 + 𝜎2

�𝜌
2
0, 𝑃𝑃𝑃𝑟𝑟0 being the initial covariance of the robot’s position

estimate and 𝑃𝑃𝑃𝐿𝐿0 being the initial map covariance.
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Appendix B

ErKF and Gauss-Markov Process
Noise Overbounding

IMUs often suffer stochastic errors that cannot be estimated. It is common to model
these errors as the sum of random constant turn-on-bias, a time-correlated process
and a white Gaussian noise term [46]. Therefore, the angular rate and specific force
measurements responsible for the linear acceleration of the sensor can be expressed as:

�̃�𝑏 = 𝒘𝑏 + 𝒃𝑤,0 + 𝒃𝑤 + 𝒏𝑤 (B.1)

𝒇 𝑏 = 𝒇 𝑏 + 𝒃 𝑓 ,0 + 𝒃 𝑓 + 𝒏 𝑓 , (B.2)

where �̃�𝑏 and 𝒇 𝑏 are respectively the measured turn rates and specific forces in 3
axes with respect to the body frame 𝑏, 𝒘𝑏 and 𝒇 𝑏 their true values, 𝒃𝑤,0 and 𝒃 𝑓 ,0 are
respectively the turn-on random constant bias of the angular rates and the specific
forces, 𝒃𝑤 and 𝒃 𝑓 are the time-correlated biases, and 𝒏𝑤 and 𝒏 𝑓 are white Gaussian
noise vectors. The time-correlated biases are usually modeled with a Gauss-Markov
process.

The ErKF estimated error state 𝛿𝒙 consists of the errors in position 𝛿𝝆, velocity , angles
vector 𝛿𝜽, linear acceleration bias 𝛿𝒃𝑎 and angular velocity bias 𝛿𝒃𝑤 . In our experiments
the second position sensor is affected by time-correlated noise and, therefore, we have to
account for it as well. Generally, the state vector can be augmented with additional states
to account for additional time correlated errors, e.g. in position sensor’s measurements.
Therefore, in the general case, the state vector becomes:

𝛿𝒙 = (𝛿𝝆, 𝛿𝒗 , 𝛿𝜽, 𝛿𝒃𝑎 , 𝛿𝒃𝑤 , 𝛿𝒃pos1
, . . . , 𝛿𝒃pos𝑚 )

𝑇 ∈ R15+3𝑚 , (B.3)
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where 𝑚 is the number of position sensors. In our experiments 𝑚 = 2 and, therefore,
the total number of states will be 21.

Prediction

The continuous error state kinematics will be:

𝛿 ¤𝑥 = 𝐴(𝑥)𝛿𝑥 + 𝐺(𝑥)𝑛, (B.4)

where 𝒏 is the process noise with spectral density 𝑸 ∈ R(12+3𝑚)×(12+3𝑚) where the
velocity, orientation and bias estimates are modeled by white Gaussian processes.

The error state dynamics matrix 𝑨(𝒙) and error state noise matrix 𝑮(𝒙) are formulated
by means of first order-approximations:

𝑨 =



0 𝑰 0 0 0
0 0 −𝑅(𝒒)𝑆( 𝑓 − 𝑏𝑎) −𝑅(𝒒) 0
0 0 −𝑆(�̃� − �̂�𝑤) 0 −𝑰 015×3𝑚
0 0 0 −𝑝𝑏𝑎 𝑰 0
0 0 0 0 −𝑝𝑏𝑤 𝑰

−𝑝𝑏𝑝𝑜𝑠1 𝑰 0 0

03𝑚×15 0 . . .
...

0 · · · 𝑝𝑏(𝑝𝑜𝑠𝑚 )0


(B.5)

𝑮 =



0 0 0 0
−𝑅(𝒒) 0 0 0

0 −𝑰 0 0 015×3𝑚
0 0 𝑔𝑏𝑎 𝑰 0
0 0 0 𝑔𝑏𝑤 𝑰

𝑔𝑏𝑝𝑜𝑠1 𝑰 0 0

03𝑚×12 0 . . .
...

0 · · · 𝑔𝑏𝑝𝑜𝑠𝑚 𝑰


, (B.6)

with 0 and 𝑰 without subscript indicating a 3 × 3 matrix of zeros and the 3 × 3 identity
matrix respectively, the symbol 𝑆 denoting the cross-product operation, 𝒒 the attitude
quaternion, 𝑅(𝒒) the rotation matrix, 𝑝𝑏∗ are the inverse time constants of each sensor
and 𝑔𝑏∗ a component that will inflate the corresponding covariance of a bias state in 𝑸.
Then:
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𝑸 =



𝜎2
𝑎𝑰 0 0 0
0 𝜎2

𝑤𝑰 0 0
0 0 𝑰 0 012×3𝑚
0 0 0 𝑰

𝑰 0 0

03𝑚×12 0 . . .
...

0 · · · 𝑰


, (B.7)

where 𝜎2
𝑎 and 𝜎2

𝑤 the noise variance of the accelerometer and the gyroscope, respectively.

The FDO module conditionally selects to inflate the uncertainty that corresponds to a
sensor by setting 𝑝𝑏∗ = 1/𝑇𝑏∗ and 𝑔𝑏∗ =

√
2
𝑇𝑏∗
𝜎2
𝑏∗

with 𝑇𝑏∗ and 𝜎𝑏∗ given in equations (3.9)

and (3.10) as this design choice has been proven to lead in an estimated covariance �̂�
that is larger than the true covariance 𝑷 [46].

The propagation matrix 𝑨𝑘 and covariance matrix 𝑸𝑑 in the discrete time model can be
computed with the Van Loan’s method and the predicted covariance in discrete - time,
similarly to a standard KF becomes:

�̂�𝑘 |𝑘−1 = 𝑨𝑘 |𝑘−1�̂�𝑘−1|𝑘−1𝑨
𝑇
𝑘 |𝑘−1 +𝑸𝑑(𝑘 |𝑘−1) (B.8)

Update

The measurement model relates to the true state as:

𝒛 = 𝒉(𝒙𝑡) +𝒘 , (B.9)

denoting as 𝒙𝑡 the true state vector and 𝒘 the measurement noise modeled as a zero
mean Gaussian with covariance matrix 𝑹𝑘 .

However, as we aim for the estimation of the error state instead of the true state we
require the relationship between the true state and the error state. This is formulated
as:
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𝒙𝑡 =



𝝆 + 𝛿𝝆
𝒗 + 𝛿𝒗

𝒒 ⊗
[

1
1
2𝛿𝜽

]
𝒃𝑎 + 𝛿𝒃𝑎
𝒃𝑤 + 𝛿𝒃𝑤

𝒃pos1
+ 𝛿𝒃pos1
...

𝒃pos𝑚 + 𝛿𝒃pos𝑚


(B.10)

Substituting in eq. (B.4) and by linearizing around 𝛿𝒙 = 0 (error state is small):

𝒛 ≈ 𝒉(𝒙 ⊕ 0) + 𝜕𝒉(𝒙 ⊕ 𝛿𝒙)
𝜕𝛿𝒙

����
𝛿𝒙=0

𝛿𝒙 +𝒘 = 𝒉(𝒙) + 𝑯𝛿𝒙 +𝒘 , (B.11)

with 𝑯 denoting the Jacobian. Having this model, we can directly retrieve the updated
error state and covariance as in the EKF framework.

In the experiments presented in this paper, the fixes are directly the measurements from
the position sensors and the matrix 𝐻 for the position update from POS_SENSOR𝑖 will
be:

𝑯pos𝑖 =
[
𝑰 0 −𝑅(𝒒)𝑆(𝒓pos𝑖 ) 03×6

... 𝑯′pos𝑖

]
∈ R3×(15+3𝑚) (B.12)

where 𝒓pos𝑖 the lever arm from body to POS_SENSOR𝑖 and 𝑯′pos𝑖 is a 3 x 3m matrix
which is non-zero only for the elements that correspond to 𝒃pos𝑖 :

𝑯′pos𝑖 =
[
03×3(𝑖−1) 𝑰 03×3(𝑚−𝑖)

]
(B.13)

This completes an introduction to our ErKF implementation, where we focused on
showing the application of the overbounding method.



Appendix C

LLR for faulty sensor detection

Let:

𝑦0
𝑘

the subset that contains all measurements at time k.

𝑦
𝑗

𝑘
= [𝜌1

𝑘
, 𝜌2

𝑘
, . . . , 𝜌

(𝑗−1)
𝑘

, 𝜌
(𝑗+1)
𝑘

, . . . , 𝜌𝑚
𝑘
] the subset that contains all measurements except

the 𝑗-th (𝑚 the total number of measurements at time 𝑘).

We define the likelihood:

𝑝(𝑦 𝑗
𝑘
|𝑥𝑘) =

𝑚∏
𝑤=1 and 𝑤≠𝑗

1√
2𝜋𝑐𝑘

𝑒
𝜌
(𝑤)
𝑘
−�̃�(𝑤)
𝑘

2𝑐𝑘 , (C.1)

where 𝜌𝑘 is the observation from the sensor, �̃�𝑘 the algorithm’s estimation for the same
measurement.

For a time range 𝑎 to 𝑏, the cumulative LLR between two observation subsets is:

𝑆
(𝑏,𝑗)
𝑎 =

𝑏∑
𝑘=𝛼

ln

(
𝑝(𝑦 𝑗

𝑘
|𝑥𝑘)

𝑝(𝑦0
𝑘
|𝑥𝑘)

)
, 1 ≤ 𝑗 ≤ 𝑚 (C.2)

Define 𝛽
𝑗

𝑘
= max
(𝑘−𝑥+1≤𝑎≤𝑘)

{𝑆(𝑘,𝑗)𝑎 }, where 𝑥 is the accumulation time window size. And

𝛽𝛽𝛽𝑘 = [𝛽1
𝑘
, 𝛽2

𝑘
, . . . , 𝛽𝑚

𝑘
] is the test statistic.

So:

• If we have sensors that provide redundant measurements

• If we assume only up to one faulty sensor at each time
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Then having hypotheses with one sensor excluded at each, a hypothesis that correctly
assumes a sensor faulty will have much higher LLR than other hypotheses. Intuitively,
it can be seen as a measurement of better agreement of all sensors.
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