
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ric

 E
ne

rg
y

M
as

te
r’s

 th
es

is

Eline Teigland Bakke

Investigating Sum of Squares
Applicability for Large Signal Stability
Certificates in Electrical Systems

A new approach for optimization of stability
features in wind energy conversion systems

Master’s thesis in Energy and Environmental Engineering
Supervisor: Gilbert Bergna-Diaz
February 2024

Eline Teigland Bakke

Investigating Sum of Squares
Applicability for Large Signal Stability
Certificates in Electrical Systems

A new approach for optimization of stability features
in wind energy conversion systems

Master’s thesis in Energy and Environmental Engineering
Supervisor: Gilbert Bergna-Diaz
February 2024

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electric Energy

Preface

I would like to express my gratitude to my supervisor, Professor Gilbert Bergna-Diaz, for all his

guidance, patience and support during this thesis. Thank you for all the sparring sessions in a

relatively uncharted narrow field. I have learned a lot, and gained a deeper understanding of some

very complex theory and its application.

I would also like to thank my friends and family for their support. My fellow students gave me

motivation, a generally good learning environment and for all the coffee breaks.

Abstact

This thesis continues the work started in the associated specialization project by further invest-

igating the Sum of Squares(SOS) method as a tool for obtaining large signal stability certificates

i.e., estimates of the region of attraction, for electrical systems of interest.

The power grid is required to operate in a safe and uninterrupted way. Mathematically, this can

be viewed from the lens of system stability. If the system is subjected to a potentially unexpected

disturbance, it will safely return to its nominal operating point. Most widely used stability analysis

tools are able to guarantee stable operation only when the system is subjected to a small disturb-

ance but fall short when the disturbance is large, as these analyses are based on linearization.

This thesis aims to overcome this limitation by performing the analysis directly in the nonlinear

system, by estimating a region of attraction using convex optimization and specifically the Sum

of Squares method. The estimate of a region of attraction is a strong stability certificate, as it

guarantees stability as long as the system’s initial conditions stay inside the estimated area; which

is estimated due to the difficulty of finding the actual area.

The Sum of Squares method is utilized for this estimation, and becomes central in our investigation,

hence large parts of this thesis will focus on its corresponding background and definitions introduced

to clarify the method. The method is thoroughly investigated, and all the steps are explained in

detail to make the method accessible and reproducible for future work. Another key part of the

method is based on a set containment equation based on the Positivstellensatz. This equation

states that a set is guaranteed to remain inside another if the equation holds. This is exploited to

ensure that the estimate of the region of attraction does not exceed the Lyapunov criteria for a

stable system. Moreover, the whole optimization problem in the SOS method is based on this set

containment equation. To solve this significant optimization problem, a V-s iteration is considered,

which consists of five steps to enlarge the estimate of the region of attraction iteratively and its

accompanying Lyapunov function.

To learn more about the application of the SOS method, and its programming in particular, the

method is first applied to two complementary systems, which are less complex than the wind energy

conversion system we want to apply it. This is to learn how to use the YALMIP toolbox well since

surprisingly there is so little information on this topic. This application encounters several issues,

such as stopping criteria for a while loops and definitions of variables and functions.

Furthermore, we turn our attention to a wind energy conversion system. We implement a leader-

follower philosophy where the generator and wind turbine can operate independently from the rest

of the system. This is to simplify the system, and give a better chance of the SOS method working.

We then apply a PI passivity-based controller to close the loop and control the speed for maximum

power extraction. The controller design is accompanied by a thorough equilibrium analysis, which

is subsequently used to define the incremental dynamics of our system. The SOS method is then

applied to this model since the original equilibrium point(zero) was uninteresting to investigate

from a large signal stability point of view. The testing on the complementary systems improves our

understanding of the toolbox enough to implement it on the WECS, and it is implemented with

some success. Immediately, the first optimization problem is infeasible, but this issue is solved by

linearizing the derivative of the Lyapunov function. After this, the method works until step four,

where the complementary systems encounteres the same issue.

All this results in a product that can be utilized to fill the gap in the implementation of the SOS

method on complex electrical systems.

Sammendrag

Denne masteroppgaven fortsetter arbeidet som ble startet i det tilhørende spesialiseringsprosjektet,

ved å videre undersøke Sum of Squares metoden som et verktøy for å oppn̊a stabilitetssertifikater,

dvs. Estimasjon av attraksjonsomr̊adet, for elektriske systemer av interesse.

Kraftsystemet m̊a kunne operere p̊a en trygg og uavbrutt m̊ate. Matematisk sett, kan dette bli

sett p̊a fra et systemstabilitets perspektiv. Dersom systemet er utsatt for en potensiell uforutsett

forstyrrelse, vil det trygt returnere til sitt nominelle driftspunkt. Stabilitets analyse verktøy blir

mest brukt for å kunne garantere stabil drift under sm̊a forstyrrelser men kommer til kort n̊ar for-

styrrelsen er stor, da disse analysene baseres p̊a linearisering. Denne oppgaven forsøker å overvinne

denne begrensningen ved å utføre analysen direkte p̊a det ikke-lineære systemet, ved å estimere

et attraksjonsomr̊ade ved å bruke konveks optimering og mer spesifikt Sum of Squares metoden.

Dette estimatet av attraksjonomr̊adet vil fungere som et sterkt stabilitetssertifikat, da det garan-

terer stabilitet s̊a lenge systemets startbetingelser holder seg innenfor the estimerte omr̊adet, som

er estimert p̊a grunn av vanskligheten av å finne the faktiske omr̊adet.

Sum of Squares metoden blir brukt til denne estimeringen og blir sentral i v̊ar undersøkelse. Og

store deler av denne masteroppgaven vil fokusere p̊a den korrespoderende bakgrunnen og definis-

joner som blir introdusert for å avklare metoden og dens bruk. Metoden blir grundig undersøkt,

og alle stegene i metoden blir nøye gjennomg̊att for å gjøre metoden tilgjenglig og reproduserbar

for fremtidig arbeid. En annen viktig del av metoden er basert p̊a inneslutningsligningen som

er basert p̊a Positivstellensatz. Denne ligningen sier at et sett garantert er inni et annet dersom

ligningen holder. Dette blir utnyttet for å forsikre at estimatet av attraksjonsomr̊adet ikke over-

skrider Lyapunov kriteriene for et stabilit system. Dessuten er hele optimeringsproblemet i SOS

metoden basert p̊a denne inneslutningsligningen, og for å løse det store optimeringsproblemet blir

V-s iterasjon vurdert. Denne best̊ar av fem steg for å forstørre estimatet av attraksjonsomr̊adet

iterativt og dens tilhørende Lyapunov funksjon.

For å lære mer om anvendelsen av SOS metoden, og dens programmering, blir metoden først

anvendt p̊a to komplementære systemer, som er mindre kompleks enn vindenergi omdannelses

systemet(WECS) vi ønsker å anvende det p̊a. Dette er for å lære hvordan YALMIP verktøykassen

virker siden det overraskende nok fins lite informasjon om dette temaet. Anvendelsen fører til flere

problemer, blant annet stoppkriteriet for while-løkkene og definisjoner av variabler og funksjoner.

Videre retter vi oppmerksomheten v̊ar mot et vindenergiomdannelsessystem. Vi implementerer en

leder-følger filosofi der generatoren og vindturbinen kan operere uavhegig av resten av systemet.

Dette ble gjort for å gjøre systemet enklere å h̊andtere, og gav en bedre sjanse for SOS metoden å

fungere. Deretter blir en PI passivitets basert regulator anvendt for å lukke løkken og kontrollere

hastigheten for maksimal kraftutvinning. Regulatordesignet blir supplert av en grundig likevekt-

sanalyse, som deretter ble brukt til å definere den inkrementelle dynamikken med hensyn til dette.

SOS metoden ble s̊a anvendt siden the originale likevektspunktet(null) var uintressant å undersøke

fra et stor signalfølsomhetsperspektiv. Testingen av komplementærsystemene forbedret forst̊aelsen

v̊ar av verktøykassen, nok til å implementere metoden p̊a WECS og det ble implementert med noe

suksess. Med en gang, ble det første optimeringsproblemet ikke løslig, men dette problemet ble

løst ved å linearisere den deriverte Lyapunov funksjonen. Etter dette fungerte metoden frem til

steg fire, som ogs̊a stoppet komplimentærsystemene.

Alt dette resulterte i et produkt som kan bli brukt til å fylle hulllet i implementeringen av SOS

metoden i komplekse elektriske system.

Table of Contents

List of Figures iii

List of Tables iii

List of Abbreviations v

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Objectives and Methodology . 3

1.3 Limitation of Scope . 3

1.4 Thesis Overview . 4

2 Background Information 5

2.1 Nonlinear Systems and Equilibrium Points . 5

2.2 Large Signal Stability . 6

2.3 Lyapunov Stability . 6

2.4 Region of Attraction . 8

2.4.1 Estimation . 9

2.5 Positivstellensatz . 9

2.6 The YALMIP Toolbox . 11

3 The Sum of Squares Method 13

3.1 Sum of Squares Theory . 13

3.1.1 Utilizing the S-Procedure . 15

3.2 Establishing the Set Containment Problem . 15

3.2.1 Applying the Positivstellensatz . 16

3.3 V-s Iteration . 17

i

3.3.1 Step One - Initialization . 18

3.3.2 Step Two - γ Step . 18

3.3.3 Step Three - β Step . 20

3.3.4 Step Four - V (x) Step . 21

3.3.5 Step Five - Convergence Step . 22

4 Complementary Systems 23

4.1 Time-Reversed Van Der Pol System . 23

4.1.1 V-s Iteration . 23

4.2 Constant Power Load System . 27

4.2.1 Incremental Model . 28

4.2.2 V-s Iteration . 28

5 Wind Energy Conversion System 34

5.1 System Information . 34

5.2 Leader Follower Philosophy . 36

5.3 Implementing PI Passivity Inspired Control . 37

5.4 Incremental Model . 39

5.5 Applying the Sum of Squares Method . 40

5.5.1 Step One - Initialization . 40

5.5.2 Step Two - γ Step . 42

5.5.3 Step Three - β Step . 45

5.5.4 Step Four - Update V (x) . 46

5.5.5 Step Five - Check for Convergence . 47

5.6 Results and Discussion . 48

5.6.1 Smaller Issues that were Solved . 48

5.6.2 The Unsolved Issue . 50

6 Conclusion and Future Work 52

6.1 Conclusion . 52

6.2 Future Work . 53

Bibliography 54

ii

List of Figures

3.1 Set Containment Sets . 15

5.1 Wind Energy Conversion System . 34

5.2 System with Implemented Control . 37

List of Tables

2.1 Content of the 6x1 solution to the solvesos() function 12

5.1 Nominal Values For System Parameters . 36

5.2 Equilibrium point . 41

iii

List of Codes

4.1 Time-Reversed Van Der Pol - Linearization . 24

4.2 Time-Reversed Van Der Pol - γ Step . 25

4.3 Time-Reversed Van Der Pol - β Step . 26

4.4 Time-Reversed Van Der Pol - Updating V (x) . 27

4.5 Time-Reversed Van Der Pol - Checking for Convergence 27

4.6 Constant Power Load - Initialization . 29

4.7 Constant Power Load - γ Step . 30

4.8 Constant Power Load - β Step . 31

4.9 Constant Power Load - Updating V (x) . 32

4.10 Constant Power Load - Checking for Convergence 33

5.1 WECS - Initialization . 40

5.2 WECS - γ Step . 43

5.3 WECS - β STep . 45

5.4 WECS - Updating V (x) . 47

5.5 WECS - Checking for Convergence . 48

5.6 WECS - Pseudocode for the Whole Setup . 48

iv

List of Abbreviations

2L-VSC Two-Level Voltage Source Converter

CPL Constant Power Load

d-axis Direct Axis

LCF Lyapunov Candidate Function

LF Lyapunov Function

LMI Linear Matrix Inequality

LSS Large Signal Stability

PBC Passivity Based Controller

pH port-Hamiltonian

PI Proportional Integral

PMSG Permanent Magnet Synchronous Generator

q-axis Quadrature Axis

ROA Region of Attraction

RoCoF Rate of Change of Frequency

SDP Semi Definite Programming

SOS Sum of Squares

TSA Transient Stability Analysis

WECS Wind Energy Conversion System

YALMIP Yet Another LMI Parser

v

Chapter 1

Introduction

This chapter gives an introduction, first with background and motivation to the work completed

in this master thesis. Then, the objectives and the methodology are presented to give information

on the contributions of the thesis and how these objectives are met. The scope of the thesis is

then limited by making certain simplifications. Lastly, the thesis structure is presented and gives

a chronological overview.

1.1 Background and Motivation

To achieve The Paris Agreement’s goal to hold “the increase in the global average temperature to

well below 2°C above pre-industrial levels” and pursue efforts “to limit the temperature increase

to 1.5°C above pre-industrial levels”[1], serious changes needs to be made. The general secretary

of the United Nations, António Guterres, said “Science tells us that limiting global heating to 1.5

degrees will be impossible without the phase out of all fossil fuels on a timeframe consistent with

this limit. This has been recognized by a growing and diverse coalition of countries” in his closing

statement at the UN Climate Change Conference COP28 in December 2023.[2] With the increasing

energy demand in the world due to the growing population and this out-phasing of fossil fuels, a

massive increase in renewable energy will be necessary. In this expansion of renewable energy, huge

advancements need to be made in the technology. Areas that have significant expansion potential

are solar and wind power, and the technology has considerable potential in these areas.

In today’s changing energy system, more and more renewable energy sources are integrated. One

of the most up-and-coming renewable energy sources is wind energy, and most of the expansion

is located in offshore wind energy.[3] According to the Global Wind Energy Council’s report from

2023[4], a total of 130GW offshore wind is expected to be added in 2023-2027, which will increase

the share of new installations up to 23% by 2027. This thesis will focus more on offshore wind

power, but the methods and stability theory that will be presented are easily transferrable to other

branches of energy production. This is because the focus is on the generator that the power source

is connected to more than the power source itself, which makes this stability theory interesting for

the entire industry, not just wind power. For this thesis, the focus will be on wind power, but as

mentioned previously, the theory readily applies to other areas of energy production.

Today’s energy system is changing, and the traditional setup for the power grid has a few large en-

ergy production sites. However, this setup is changing as smaller energy production sites, especially

renewable energy production, are connected to the power grid. Renewable energy production has

1

greatly increased in recent years, and wind energy itself is expected to reach 2TW by 2030[4]. The

power grid is not built for large-scale injection by this many small inputs. These small inputs risk

making the grid unstable and have unknown production due to variable wind and solar conditions,

which causes problems with the security of supply.

When connecting renewables, in this case wind energy conversion systems(WECS), it is important

to guarantee stability through a stability certificate. The certificate guarantees that the system

stays stable during large disturbances and can safely be connected to the power grid without

jeopardizing its stability.[5] The stability certificate often comes as a criterion where a tuning

variable has to be carefully selected for the certificate to hold. In this thesis however, a more

practical viewpoint is adopted where the control system has been pre-designed without being

necessarily backed up by a formal stability proof. Instead, we are interested in investigating how

large is the stability region of such given controller. Towards this end, the aim is to investigate the

so-called region of attraction(ROA) for the system in question(WECS).

Furthermore, in this context of ever-growing interconnection of renewable energy sources, Plug-and-

play features from a stability perspective are desirable, and facilitate their connection and power

grid integration. It will be much easier if the system has such a stability certificate. The title of

the associated specialization project is ”Plug-and-play control of PMSG-based Wind Turbines”,

and the general goal in this type of research is to allow plug-and-play features that allow for easy

integration of renewable energy sources into the power grid. This will again contribute to the rising

energy demand and help global warming and the larger picture.

With high penetration of renewables comes high input of power electronics in the form of converters.

These do little to contribute to the power grid’s inertia, which is important for transient stability in

the grid.[6] Inertia is used to absorb sudden changes in supply and demand in the grid and comes

from large synchronous generators, which are normally used at large energy production sites. “A

direct and widely reported consequence of increasing levels of non-synchronous generation (wind

and PV -variable RES generation, which is Power Electronics Interfaced to the system) is a decline

in power system rotational energy or system inertia, leading to higher RoCoF values.”[6] RoCoF

is defined as the Rate of Change of Frequency and refers to the speed of change of frequency in the

power grid. The key to a stable power grid and supply security is stable frequency, and the higher

the RoCoF, the more risk of instability in the system, which can lead to damage to the grid and

the equipment.

For offshore wind, the main focus of this thesis, two types of generators are commonly used: the

standard induction generator and the permanent magnet synchronous generator(PMSG). Where

the induction generator is simple, large, robust, and relatively cheap[7], the PMSG is compact,

relatively light, and highly efficient.[8] The PMSG also has self-excitation, which makes the normal

magnetizing current absent, and the generator is able to operate with a higher efficiency than other

generators.[9] Due to this higher efficiency, this thesis will investigate a wind energy conversion

system that includes a PMSG.

Implementing new energy sources to the power grid requires guarantees that the system can stay

stable under both minor and significant disturbances. Small signal stability investigates the system

stability under steady state and is helpful in many instances, but large signal stability is crucial

for the system’s stability. This large signal stability is increasing in popularity, and is researched

more and more, making it very relevant.

Large signal stability can be investigated in different ways. However, this thesis will focus on

estimating the region of attraction, which is a reliable measure of how significant disturbances a

system can handle without becoming unstable.[10] Usually, this region of attraction is estimated

using Lyapunov-based methods or utilizing polynomial optimization, and this thesis will combine

2

these two methods by utilizing the Sum of Squares method. This method employs Lyapunov

conditions and implements them into an optimization problem that optimizes a Lyapunov function

with the largest estimate of the region of attraction for the system.[11]

1.2 Objectives and Methodology

The main objective of this master’s thesis is to continue the work of the associated specialization

project on the Sum of Squares method for optimizing the estimate of the region of attraction by

using the Lyapunov stability theory. The known optimization toolbox, YALMIP, is explored and

utilized for the programming to achieve this objective.

The publications used as background, [11] and [12] to name a few, apply the Sum of squares

method on simple systems with very little information on the implementation of the technique

itself, possibly due to page limitation restrictions. This, arguably hinders the popularization of the

method in the electric power community where it is clearly needed to complement time-domain

simulations with more general large-signal stability studies. Thus, the main objective of this thesis

is to understand and explain all the theoretical and practical details related to the implementation

of the application of the sum-of-squares method to an (electric) system, including a fair amount

of code to make the method more accessible. We view this effort as a necessity for future related

(master) projects to get familiarized with such a complex topic within their allocated time.

Objective 1: Explain complex large-signal stability & control concepts in a clear and accessible

way and apply these to a wind energy conversion system.

Objective 2: Provide a clear and accessible explanation of the optimization of the estimate of the

region of attraction, utilizing the Sum of Squares method and V-s iteration.

Objective 3: Provide an accessible and reproducible explanation of how to use the YALMIP tool-

box for the application of the method.

Objective 4: Apply the method to two less complex complementary systems, a time-reversed van

der Pol system and a constant power load system, and identify and investigate challenges.

Objective 5: Introduce and apply the method to a wind energy conversion system, and identify

challenges for further investigation.

1.3 Limitation of Scope

Several assumptions regarding the system model under investigation limit the scope.

The external grid is modeled as a constant voltage source. This comes from the assumption

that the external grid is stiff. A stiff grid is characterized as stable and does not experience

significant changes in frequency or voltage. These changes will not impact the system significantly.

This assumption will become irrelevant when the later introduced leader-follower philosophy is

implemented since the external grid is part of the follower and does not affect the leader in any

way.

Furthermore, some simplifications are made regarding the model of the synchronous generator.

Primarily, the resistance and inductance are independent of frequency, magnetic saturation, and

hysteresis losses, which are neglected. Another assumption is that the magnetic field is evenly

3

distributed in the generator, and the field created by the magnets is sinusoidally distributed in

the generator. This is done to make the system easier to handle since this simplification will not

significantly affect the control of the generator.

A damping coefficient, d, is introduced in the equation for the synchronous generator. This damping

comes from the generator’s damper windings and represents the electromagnetic friction, damping

the speed of the generator. Damping caused by friction is neglected since this is insignificant in

comparison. To include the flux linkages affecting the damper windings would require a more

advanced model and is not studied in this specialization project.

Later, when applying a leader-follower philosophy, several assumptions are made. It is assumed

that there is reliable communication between the parts of the system, and the command structure

must be clear. The leader and follower are considered to be synchronized in operation and timing.

There is also an assumption regarding the follower’s ability to follow the leader’s command.

1.4 Thesis Overview

This master thesis builds on the work of the associated specialization project[13], and some of the

work is reproduced to provide a more complete view of the new contributions. It is divided into

six chapters, where the first three are focused on the theory and explanation of a method. The

following two are the application of both the theory and the method, and the last chapter contains

the conclusion and possible further work.

Chapter 1 Introduction: contains the introduction, outlining of the thesis objectives, the limitation

of the scope and an overview of the thesis.

Chapter 2 Theory: introduces several important theoretical terms, which are essential background

for the work conducted in the thesis. Lyapunov stability theory, Positivstellensatz and information

on the region of attraction are some of these.

Chapter 3 The Sum of Squares Method: provides a thorough investigation and explanation of the

Sum of Squares method and the steps in the V-s iteration.

Chapter 4 Complementary Systems: applies the SOS method to two complementary systems to

learn the method and investigate issues that arise. This chapter contains a lot of code to provide

an accessible and reproducible step by step explanation of how to use the YALMIP toolbox.

Chapter 5 Wind Energy Conversion System: introduces the wind energy conversion system and

implements the leader-follower philosophy and a PI Passivity Inspired Controller to the system.

An incremental model is applied to move the equilibrium point away from the uninteresting point

of zero. Then, the SOS method is applied, and it ends with a discussion on the application of the

method on all three systems and issues that arose.

Chapter 6 Conclusion and Further Work: The thesis is concluded with a conclusion and suggests

further work.

4

Chapter 2

Background Information

In this chapter, basic concepts and theories are introduced and examined. Most of the theory is

based on or reproduced from the specialization project. The theory is essential for understand-

ing the presented work. Some of it is improved and elaborated for a better understanding and

completeness. The chapter on the Positivstellensatz is new work that contributes to a deeper un-

derstanding of the Sum of Squares method. Lastly, there is an introduction to the chosen software,

the YALMIP toolbox in MATLAB, where some of the most central functions that will be utilized

later in the thesis is explained.

2.1 Nonlinear Systems and Equilibrium Points

Real-world systems are often simplified to linear systems within an operating range or around an

equilibrium point. This simplification makes working with the system, calculations, and simulations

much easier. The real-world systems are linearized since nonlinear systems are unpredictable and

potentially unstable than linear systems. Historically, control systems for electrical circuits have

assumed linearity to simplify design and analysis. These simplifications work when the system’s

state is close to equilibrium. A general, time-invariant nonlinear system is defined in equation

(2.1). Here u is the input, a system function, and y is the output.

ẋ = f(x) + g(x)u, y = h(x) (2.1)

An important topic throughout this thesis is the equilibrium point. In electrical power systems,

an equilibrium point represents a stable operating condition that ensures stability in the system.

Khalil’s book on Nonlinear systems[14] explains it as: “An equilibrium point is stable if all solutions

starting at nearby points stay nearby; otherwise, it is unstable. It is asymptotically stable if all

solutions starting at nearby points not only stay nearby, but also tend to the equilibrium point as

time approaches infinity.”

The equilibrium points are generally found through a steady-state analysis where the time deriv-

ative of the state variables of x is set equal to zero. A nonlinear system can have both none and

multiple equilibrium points, making it more complex and challenging to explore.

5

2.2 Large Signal Stability

When investigating stability, the industry has historically focused on small signal stability. Small

signal stability uses linearization to examine a system’s response to a minor disturbance. This topic

has been extensively researched, and the industry is well-versed in this. When analyzing small

signal stability, many assumptions are made. Some of the assumptions, are using linearization

and only looking at minor disturbances, making the result unreliable in the general case. This

thesis will explore large signal stability(LSS), where non-linear behavior will be considered. Small

signal stability is easier to understand and analyze while giving valuable insight into the system’s

dynamic behavior. It also only considers minor disturbances close to the equilibrium point. At

the same time, LSS can look closer at more significant disturbances that move the system further

away from the equilibrium point.

Another essential term specific to large signal stability that analyses the system’s ability to with-

stand severe disturbances is transient stability analysis(TSA). It looks into the dynamic behavior

of an electric system after a disturbance has occurred and checks its ability to maintain synchron-

ism.[11] TSA aims to look into a dynamic system’s behavior and investigate its characteristic

response as it returns to standard operation. Typical approaches to this analysis are based on

energy functions and Lyapunov functions. Therefore, the optimized Lyapunov function, which

gives the largest region of attraction, will be developed in the master thesis and will be a perfect

application for transient stability analysis.

2.3 Lyapunov Stability

The wind energy conversion system analyzed later in this thesis is a dynamic system, which is

defined as a system that consists of electrical and control components that respond to changes

in operating conditions and exhibit time-varying behavior. Lyapunov stability theory is universal

and can be applied to a wide range of dynamical systems, both linear and nonlinear, and is often

used in the context of nonlinearity.

In this thesis, Lyapunov stability analysis is utilized in a control and power system setting but can

also be used in other fields. Lyapunov stability can be used to model predictive control of economic

systems.[15] It can also be utilized in flight dynamics and aircraft to design control systems for

maneuverable and stable flight.[16]

Some advantages of Lyapunov stability theory include universality, rigid foundation, robustness

assessment, and design.[17] Universality means that it can be utilized in many different types of

systems, which can be applied in diverse fields. The rigid foundation focuses on the systematic

approach to analyze and prove stability, which provides the stability certificate. If a stability

certificate is obtained, i.e., the criteria hold for the Lyapunov function(LF), this contributes to

stabilizing the power grid. The power grid must maintain stability to avoid blackouts and de-

struction of equipment. The stability of the power grid also ensures reliable power supply, grid

resilience, system protection and grid efficiency. It also keeps the power grid from causing safety

hazards. In this thesis, the region of attraction will be investigated. This investigation is a way of

doing a robust assessment, which is an advantage of the stability theory. It can also be used when

designing control systems for an electrical system and allows engineers to stabilize the system.

Mathematically, the easiest way to describe a system is to do it linearly. This makes all the

calculations more effortless, making the system easier to manage. However, most real-life electrical

systems are nonlinear regardless of the system type. These systems are more challenging to handle

6

mathematically. Therefore, many assumptions are often made to simplify the nonlinear system to

a linear one when doing calculations. This makes the calculations less trustworthy and will only

be used in this thesis as a starting point in the V-s iteration discussed later in chapter 3.3.

Lyapunov stability theory provides a systematic framework for studying stability in nonlinear

systems. This framework is centered around a LF and some constraints. However, the Lyapunov

equation in (2.2) applies to a linear system, given the presence of the known A-matrix. This

equation will, however, be utilized in the later introduced Sum of Squares method for calculating

a starting LF. The equation is described by theorem 3.4 in [18] and is presented in equation (2.2),

where P,Q ∈ Sn and A ∈ Rn×m. If A is Hurwitz, which means that all the eigenvalues of the

matrix have negative real parts and Q > 0, there exists a unique solution P for (2.2), and this

solution satisfies P > 0 [18].

PA+ATP +Q = 0 (2.2)

The LF quantifies the energy of a system, and a stable system’s energy will decrease over time,

while the energy will remain the same or increase for unstable systems. Further, the stability

conditions for the LF are defined below:

V (0) = 0; V (x) > 0 ∈ Dn \ (0) V (0) = 0; V (x) > 0 ∈ Dn \ (0)
V̇ (0) = 0; V̇ (x) ≤ 0 ∈ Dn \ (0)︸ ︷︷ ︸

Global stability

V̇ (0) = 0; V̇ (x) < 0 ∈ Dn \ (0)︸ ︷︷ ︸
Global asymptotic stability

A LF, V (x), needs to satisfy three conditions to serve as a Lyapunov function, guaranteeing

stability. First, the function needs to be continuously differentiable. The second condition is

specified in the first line of the conditions, where it is specified that the LF needs to be equal

to zero at the equilibrium point and positive definite for all other values of x. The last criterion

revolves around the derivative of the LF, which should be negative semidefinite or negative definite,

depending on the type of stability, except at the equilibrium point, where it should be equal to

zero. If the conditions are fulfilled, this results in V being an LF for x = 0. This means the system

is asymptotically stable at equilibrium x = 0. In these conditions, D is defined as the set that

holds for V(x) > 0 and will be used further in this thesis.

An LF is constructed for a given system to analyze stability and behavior. If the candidate

function does not meet the conditions, it means that the search for a LF is not over and must be

continued. If the candidate satisfies the global stability conditions, minor disturbances will not

deviate the system significantly from the equilibrium point. Global asymptotic stability ensures

that the system converges to the equilibrium point over time, regardless of the starting point.

The Lyapunov function quantifies the energy of a system. Therefore, Lyapunov’s theory is often

used in context with port-Hamiltonian modeling, a mathematical way of representing physical sys-

tems described by first-order differential equations. This modeling is based on energy conversion

and passivity, which will be discussed in chapter 5.3, and is a standard way of expressing nonlin-

ear systems for stability analysis. However, this approach is more theoretical and requires more

extensive calculations. A port-Hamiltonian model is made from the differential equations that rep-

resent the system, and this model is used to create a Lyapunov candidate function. This candidate

function is then tested to see if the Lyapunov constraints hold. If this is the case, asymptotic

stability can be guaranteed for the Lyapunov candidate function, i.e., the system. This is called

Lyapunov’s direct method.

7

Lyapunov stability theory is still applicable when it is desired to expand the system, in this case

from a single wind turbine to a whole wind park, and investigate the stability of the expanded

system. It can also be expanded by removing the leader-follower philosophy and applying Lyapunov

stability to the original system which includes the back-to-back two-level voltage source converter

and the voltage source that mimics the power grid.

2.4 Region of Attraction

It is one thing to determine if a certain point is asymptotically stable. However, often it is more

interesting to determine how far from the equilibrium the trajectory can be and still converge to

the equilibrium point as the time approaches infinity. This can be determined by introducing the

term region of attraction(ROA). It is defined in Khalil’s book on nonlinear systems[14]:

Let ϕ(t;x) be the solution of ẋ = f(x), that starts at initial state x at time t = 0. Then, the

region of attraction is defined as a set of all points x such that ϕ(t;x) is defined for all t ≥ 0 and

limt→∞ ϕ(t;x) = 0

”For the large-signal stability analysis of the power system, the region of attraction (ROA) is a

reliable measure which can answer the question of how large deviations from the equilibrium point

under big disturbances in system.”[10] The motivation for finding a region of attraction(ROA) is

wanting to guarantee asymptotical stability or at least keep track of when it is stable. ROA gives

an area where stability is guaranteed if the system’s initial conditions stay inside this area. In this

case, the initial conditions are the state variables at the starting point of the analysis, i.e., when

the disturbance happens. This is useful for the industry when monitoring the power grid. Those

monitoring the power grid can detect when the system acts abnormally or when an error occurs.

In this case, they can monitor if the state variables are heading outside the ROA. If it is outside

the ROA, the system is disconnected from the power grid to protect the power grid, the system,

and the generator in particular.

The found estimation of the ROA will work as a strong stability certificate for the system. If

the initial conditions stay inside the ROA, the system is guaranteed to stay stable. Stability

is beneficial when the system is connected to the power grid and when the system experiences

significant disturbances from the connected power grid.

The Lyapunov stability theory discussed in chapter 2.3 will be used to find the attraction region.

Sum of Squares programming will be used to find the LF with the largest ROA.

When discussing stability robustness, finding a region of attraction is desired. A region of attraction

for an equilibrium point, or domain of attraction as referred to in Domain of Attraction, is defined

as ”The set of initial conditions from which the trajectory of the system converges to such a point.”

[18]

Khalil’s book on nonlinear systems[14] defines a region of attraction, RA, in equation (2.4) and

some properties of it are represented in Lemma 8.1: “If x = 0 is an asymptotically stable equilibrium

point for ẋ = f(x), then its region of attraction RA is an open, connected, invariant set. Moreover,

the boundary of RA is formed by its trajectories.”

RA = {x ∈ D | ϕ(t;x) is defined ∀ t ≥ 0 and ϕ(t;x) → 0 as t → ∞} (2.4)

In the Lemma, f describes the system dynamics, where x ∈ Rn. D contains the equilibrium point

0 and is defined as a subset: D ⊂ Rn. The solution of ẋ = f(x) is defined as ϕ(t;x) and starts at

8

x when the time is zero, t = 0. The equation states that x is inside the set D and is defined for all

t larger than zero. It also states that the solution of the differential equation needs to go towards

the equilibrium point when the time goes towards infinity. It is important to note that D is not

an estimate of RA, and there are no guarantees that an initial state in D will remain in D forever.

To avoid this problem, RA is defined as a subset of D.

2.4.1 Estimation

It can be difficult, and often impossible, to find the exact ROA in complex nonlinear systems.

This would be very complicated and time-consuming. In the industry, however, it is normal to

estimate a region of attraction instead. Here, the boundaries of the ROA are estimated and

provide valuable information that is used to analyze the stability and performance of the system in

question. Estimation can be achieved by simulations or creating Lyapunov functions and perform

stability analysis on these. One example of such a method is Zubov’s method[14]. In this thesis,

optimization will be used to find an estimate of the ROA.

This estimate of the ROA, Ω, is defined in equation (2.5) [12]. Where Ω is a subset of RA that

again is a subset of D, making Ω bounded and contained in D. c is defined as a constant c > 0,

and the intent is to find the largest c for which the set Ω is contained in D. This c will later be

referenced as γ, and is a part of the objective for the optimization problem in chapter 3.2.1.

Ω = {x ∈ Rn | V (x) ≤ c} (2.5)

2.5 Positivstellensatz

Lyapunov stability theory and region of attraction are based on positivity theory. The systems

that will be investigated in this thesis will be described using polynomials. Algebraic geometry

applies here since it deals with the solution set of a system of polynomial equations.[19]

Together, this can be combined, and the Positivstellensatz can be utilized. “The Positivstel-

lensatz gives an algebraic characterization of functions positive on certain semi-algebraic subsets of

Rn”[20]. In other words, this means that positivity theory can be used for algebraic geometry and

polynomial systems to prove the positivity need for the Lyapunov conditions described in chapter

2.3. The Positivstellensatz is described in the following theorem from [20].

Theorem 4.4.2 Let R be a real closed field. Let (fj)j=1,...,s, (gk)k=1,...,t and (hl)1,...,u be finite

families of polynomials in R[X1, ..., Xn]. Denote by P the cone generated by (fj)j=1,...,s, M the

multiplicative monoid generated by (gk)k=1,...,t, and I the ideal generated by (hl)1,...,u. Then the

following properties are equivalent:

1. The set

{x ϵ Rn | fj(x) ≥ 0, j = 1, ..., s, gk(x) ̸= 0, k = 1, ..., t, hl(x) = 0, l = 1, ..., u}

is empty

2. There exist f ϵ P, g ϵ M and h ϵ I such that f + g2 + h = 0

This theorem proves that the equation in the second property holds by proving that the set in

the first property is empty. This mathematically complex theorem can be applied to more general

9

problems, such as the set containment problem discussed later in this thesis. To reach this set

containment problem, Parillo’s PhD[19] starts with verifying that the following equation holds.

a(x) = 0 ⇒ b(x) ≥ 0 (2.6)

By setting f(x) = g(x) = b(x) and h(x) = a(x) this is true only if the following set is empty.

{x | − b(x) ≥ 0, b(x) ̸= 0, a(x) = 0}

Then the Positivstellensatz is applied, and the following equation appears, with the polynomials

s(x) and t(x) being sum of squares polynomials that are multiplied with each of the polynomials

in question, b(x) and a(x) respectfully. This is done to have some adjustable variables. These

polynomials can be changed to get the Positivstellensatz to work and prove the initial condition

in (2.6).

f + g2 + h = 0

−s(x)b(x) + b(x)2 + t(x)a(x) = 0

t(x) = b(x)r(x)

−s(x)b(x) + b(x)2 + b(x)r(x)a(x) = 0 | 1

b(x)

−s(x) + b(x) + r(x)a(x) = 0

b(x) + r(x)a(x) = s(x)

implementing that a(x) = 0 and b(x) ≥ 0 this results in the following

something negative+ a polynom · 0 = something positive

something negative = something positive

This does not hold and the proposed set is empty. By the Positivsellensatz, this proves that the

following equation holds.

b(x) + r(x)a(x) = s(x) (2.9)

This is one particular solution of the Positivstellensatz, which gives the set containment equation

in (2.9), that is used throughout the whole thesis.

10

2.6 The YALMIP Toolbox

To perform the actual optimization of the region of attraction, YALMIP, a toolbox for MATLAB,

will be utilized. YALMIP is a tool often used to model and solve optimization problems. It was

initially developed to model and solve semi definite programs(SDP) by interfacing with external

solvers, making developing and solving optimization problems very simply.[21] In the beginning, it

was intended for SDPs and LMIs, but it has since been developed and now supports several other

programming types. Some of these are linear programming, quadratic programming, second-order

cone programming, mixed integer programming, and semidefinite programs with bilinear matrix

inequalities. These are in addition to the Sum of Squares programming that will be utilized in this

thesis.

YALMIP is a high-level modeling language used to formulate MATLAB optimization problems.

From the name ”Yet another LMI parser”, it is clear that the focus is on optimization problems

with LMI constraints. It also gives an intuitive way to express semidefinite, convex, and non-

convex programming problems. The high-level modeling language ensures the program’s syntax is

accessible and user-friendly. Complex optimization problems are easily handled by the program’s

wide range of solvers and advanced functionalities. Another feature that makes dealing with

large-scale optimization problems is the program’s ability to create hierarchies of optimization

problems. This is accomplished by defining subproblems and connecting them using constraints

and objectives.

The YALMIP toolbox uses different solvers to solve the actual optimization problems. LMILAB,

which is a part of the robust control toolbox, is the solver that is initially used for the optim-

ization. However, this solver is not favored by YALMIP due to its lagging on general prob-

lems,[21], and the immediate response is to “Please do not use LMI Lab with YALMIP. Install

another semidefinite programming solver such as MOSEK, SEDUMI or SDPT3”. For this thesis,

MOSEK was downloaded and utilized for all the programming, and to implement this, the code line

ops=sdpsettings(’solver’, ’mosek’); was needed. Later, the variable ops was used in the solvesos()

function, which is explained later, to choose the solver in that particular optimization problem.

The idea is to use the YALMIP toolbox to solve the optimization problem, i.e., finding the largest

estimate of the region of attraction for a system, and this is achieved by utilizing this toolbox

and Sum of Squares programming. To utilize this toolbox in a good way, a few functions and

their characteristics need to be known. Therefore, the most important ones are mentioned in this

chapter.

The toolbox has a specific type of symbolic variable called sdpvar, which can be defined in many

different ways. The one utilized in this master is x = sdpvar(n,m), with 1x1 variables for all the

states in x. For the WECS, this is the different currents, generator speed, and controller variables.

Furthermore, the function [p, c, v] = polynomial(x, degreeMax, degreeMin) is utilized to create

an empty polynomial p, with the variables in x from degreeMin up to degreeMax. The vector c

contains all the constants in the form of the terms in the vector v and is set up in the way that

p = c′ · v. In this thesis, the degrees will normally be quadratic with degreeMax = 2 or 4, and

degreeMin = 2. The maximum degree could be increased to allow for higher degree polynomials

as solutions, but this would come at a computational cost in the optimization problem.

The constraint = sos(equation) is applied to transform equations into sum of squares constraints.

This function takes in an equation that should be positive, and the output is a constraint on the

form: Sum-of-square constraint (polynomial). This function is used on all the equations that should

be sum of squares and put in a vector to be the constraints of the optimization problem. This

gathering of constraints results in a constraint defined as a Ax1 lmi and contains A lmi constraints.

11

The function used for the actual optimization is

solution = solvesos(Constraints,Objective,Options,Decisionvariables), where the input is as shown,

the constraints, the objective, the options and the decision variables. In this thesis, the constraints

are made with the sos() function, and the objective mostly remains empty. This empty objective is

due to the fact that the solvesos() function is used for finding feasible solutions, and not for actual

optimization because of bilinearity in the constraints and will be discussed later in the thesis. The

options is in this thesis used to state which solver to use, MOSEK, and the decision variables are

often the constants in the vector c from the previously mentioned polynomial function. The output

of this function is quite helpful and can be studied and have several uses. It can be found in table

2.1 where it is displayed as a 1x1 struct with six fields, where the last two fields are studied and

give information on the feasibility and if there is an issue with the problem. The content is from

an example and an issue that arose during the programming.

Field Value

yalmipversion ’20230622’

matlabversion ’9.14.0.2337262 (R2023a) Update 5’

yalmiptime 0.215182799999999

solvertime 0.004817200000000

info
’Infeasible problem (¡a href=”yalmip.github.io/debuggingunbounded”

¿learn to debug¡/a¿) (MOSEK-SDP)’

problem 1

Table 2.1: Content of the 6x1 solution to the solvesos() function

This results in the value 1 instead of 0 for the solution.problem and can be utilized to check if

the optimization problem is feasible. In the thesis, this was used as a stopping criterion for while

loops as follows: while solution.problem == 0. The information in the solution.info says that

the problem is unbounded. This is the result of the primal problem being infeasible. The solver

immediately tries to solve the dual problem instead(normal procedure in optimization), which often

is solvable if the primal is not. If the dual can not be solved as well, the result will say that the

dual is unbounded, which is the information from the struct.

The P = lyap(A,Q) function, which is a part of the Control System toolbox, is used to find the

P matrix when the A matrix is known. This function uses the Lyapunov equation from (2.2) in

chapter 2.3, and the input is the known A matrix and a Q matrix, that will be set to the identity

matrix in this thesis.

Other helping functions are utilized for visibility and a good overall understanding during the

programming. value() is used to extract the numerical value of a decision variable.[21] And sdisplay

(symbolic display) tries to display a sdpvar object in symbolic MATLAB form.[21]

12

Chapter 3

The Sum of Squares Method

This chapter dives deeply into the Sum of Squares method and its application. For the application,

an iterative algorithm called V-s iteration is utilized, and the steps are thoroughly explained, with

information on how to utilize the software for the optimization to make the method straightforward

and accessible. The background and theory are reproduced from the associated specialization

project[13], and some of it is improved. It is reproduced due to its importance for understanding

the method and completeness.

3.1 Sum of Squares Theory

The Sum of Squares(SOS) method is utilized to find the largest estimate of the attraction region.

The SOS method is a mathematical optimization technique for solving specific optimization prob-

lems with polynomial constraints. It aims to minimize or maximize a polynomial function with

constraints on the variables, and it is beneficial when the positivity of polynomials is in question.

The SOS method proves non-negativity for polynomial functions, and to state that an expression

or a function is SOS is equivalent to stating that it is positive definite. This comes from the

simple fact that x2 is a positive term, and a sum of positive terms must also be positive. This is

very useful when discussing Lyapunov stability theory and the conditions that must be satisfied

to guarantee asymptotic stability. Morten Hovd explains what the SOS method does in coherence

with Lyapunov theory quite well: ”A set of arbitrary shape, which is inside a set with a Lyapunov

level set as the border, is progressively enlarged until the limit of negativeness of the derivative of

Lyapunov function is reached.”[12]

The Sum of Squares method can be utilized in various areas and in different ways. In this thesis,

the method is applied using programming, and it is utilized in control theory by optimizing a

Lyapunov function regarding power systems and their stability and robustness. Other areas include

signal processing, machine learning, robotics and autonomous systems, and general polynomial

optimization.[22] Regarding signal processing, SOS programming is used in signal reconstruction

and analysis. Analysis and design of machine learning models can utilize SOS programming,

especially to make convex relaxations on nonconvex optimization problems. SOS programming

can also aid motion planning for robotic systems and be utilized for trajectory optimization.

Equation (3.1) shows a general form of an optimization problem often utilized in SOS programming,

where g(x) and fi(x) are polynomials. fi(x) is defined for x = (x1, x2, ..., xn), which are the

constraints on the objective function g(x).

13

max (or min) g(x) s.t. (3.1a)

fi(x) > 0 for i = 1, 2, ...,m (3.1b)

This type of constraint fi(x) > 0, requires a specific kind of programming, which is called semi-

definite programming(SDP). SDP is a convex optimization technique that optimizes an objective

function with constraints, i.e., a linear matrix inequality(LMI).

The term used in reference to SOS is that a function or term is an SOS and is defined by Hovd in

[12] as follows: “For x ∈ Rn, a polynomial p(x) is an SOS if there exist some polynomials fj(x),

j = {1, 2, ...m}, such that

p(x) =

m∑
j=1

fj(x)
2 (3.2)

Lyapunov functions are commonly chosen as convex, but this is not a requirement as long as the

function satisfies the Lyapunov conditions defined in chapter 2.3. This is easiest if the function

is convex. In this thesis, the Lyapunov function is chosen to be convex, and therefore, when

optimizing the region of attraction, it is natural to use convex optimization.

A convex function is defined in [23]: “A function f : Rn → R is convex if the domain of f is a

convex set and if for all x, y ∈ the domain of f , and θ with 0 ≤ θ ≤ 1, we have

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) (3.3)

This definition means that the function lies below or on the line segment that connects any two

points on its graph. The convexity property is used when looking for global minimums, especially

when analyzing a system’s Lyapunov stability. It is also utilized in optimization, since convexity

makes an optimization problem significantly easier to solve. All these properties make convexity a

powerful tool for stability analysis and optimization.

SOS programming utilizes SDP, which in turn utilizes LMI’s. Linear matrix inequality is defined

as mathematical expressions that involve matrices and is often used in optimization and control

theory. An LMI is usually on the form in (3.4), where A is a linear function of the matrix variable

x and B is the value that A(x) needs to be smaller than or equal to.

A(x) ≤ B (3.4)

Semidefinite programming is an optimization technique used in accordance with the optimization

of linear objective functions subject to linear and semidefinite constraints. It is an extension of

linear and quadratic programming, and the decision variables are positive definite matrices. SOS

programming is related to SDP in the article the following proposition in Hovd’s article[12]: A

polynomial p(x) of degree 2d is an SOS if and only there exists a positive semidefinite matrix Q

such that

p(x) = zTQz (3.5)

where z is the vector of monomials of degree ut to d, i.e.,

14

z =
[
1, x1, x2, ..., xn, x

2
1, x1x2, ..., x

d
n

]T
(3.6)

3.1.1 Utilizing the S-Procedure

A procedure called S-procedure combined with the previously introduced Positivstellensatz(2.5),

will utilized to find the largest estimate of the region of attraction for the system. Furthermore,

several different optimization tools can be utilized to execute the actual optimization in the pro-

cedure, but the ones investigated are toolboxes for MATLAB called YALMIP and SOSTOOLS.

SOSTOOLS is a toolbox specifically designed to solve optimization problems with SOS and SDP

techniques.[24] YALMIP is a general tool for solving a wide range of optimization problems that

was useful and is therefore investigated further in this thesis. The S-procedure is used in several

steps of the SOS method, and the solvesos() function introduced in chapter 2.6 also utilizes the

S-procedure within the function itself while solving an optimization problem.

In [12] Hovd extends the S-procedure to handle rational polynomial dynamics, which some electric

components are, and could be useful in future investigations. Hovd extends the procedure to include

a controller design procedure in this article. This way, no controller needs to be implemented to find

the estimation of the ROA. If the controller is designed in the procedure, achieving an even larger

estimate of the ROA may be possible, but this will come at the cost of a simple controller. The

controller could be challenging to implement in the industry since the equation for the controller

would not develop a standard equation. A standard controller is utilized to make an eventual

implementation in the industry more likely.

3.2 Establishing the Set Containment Problem

A system can have infinite Lyapunov functions, and finding the Lyapunov function with the largest

region of attraction is desirable. To achieve this in this thesis, the S-procedure and V-s iteration

are utilized to optimize the estimation of the region of attraction. The particular Positivstellensatz

equation derived in chapter 2.5 is the base of the set containment problem consisting of three sets

contained inside each other as portrayed in figure 3.1. The sets are further explained below the

figure.

Figure 3.1: Set Containment Sets

15

• Set A (green): The largest set where V̇ (x) ≤ 0.

• Set B (blue): The middle set is described by a function V (x), which is the Lyapunov function.

This Lyapunov function needs to be smaller than γ.

• Set C (red): The Innermost set is described by a function p(x), which has to be smaller than

β. The shape of p(x) is arbitrary.

To optimize the Lyapunov function, the V-s algorithm will expand set C, which then expands set

B, and then start at set C again. This will continue until the limit of set A is reached and results

in the containment problem presented in equation (3.7).

max β, γ subject to Set C ⊆ Set B ⊆ Set A (3.7)

3.2.1 Applying the Positivstellensatz

This set containment problem in (3.7) needs expansion to actual equations to make it solvable, and

this is where the Positivstellensatz, which was introduced in 2.5, and the derived equation in (2.9)

is utilized. The first step is to alter the conditions into inequalities using the this set containment

equation.

First, two new sets, S1 and S2, and two associated polynomials, g1 and g2, are defined in (3.8). In

the definition, g1 and g2 are defined as negative polynomials and will be an important detail later

in the V-s iteration.

S1 = {x ∈ Rn : g1(x) ≤ 0} (3.8a)

S2 = {x ∈ Rn : g2(x) ≤ 0} (3.8b)

A new function λ(x) is introduced as a helping function. λ(x) must be a positive definite polyno-

mial, but the value or content is irrelevant. Later, this λ will be defined as an empty polynomial,

and the constants are the variables that can be changed in the optimization problem.

−g1(x) + λ(x) · g2(x) > 0 (3.9)

According to the spesific Positivstellensatz solution, this means that S1 is included in S2 if equation

(3.9) holds. To further make this a solvable set of equations, the set containment problem in (3.7)

is relaxed into SOS conditions since showing the positive definiteness can be quite difficult.

Using this set containment equation and the SOS relaxation on the set containment problem, the

optimization problem that will produce an optimized Lyapunov candidate function is formulated in

(3.10). This formulation is retrieved from Mazumder and Fuente’s paper on transient stability[11].

max β, γ s.t.

V (x)− L1(x) > 0 (3.10a)

−[∇V (x) · f(x) + L2(x) + s2(x)(γ − V (x))] > 0 (3.10b)

−[(V (x)− γ) + s1(x)(β − p(x))] > 0 (3.10c)

L1(x) = ε1x
Tx, L2(x) = ε2x

Tx. (3.10d)

16

From this formulation, the numbers ε1 and ε2 are any positive numbers, making L1(x) and L2(x)

SOS by construction. s1(x) and s2(x) are defined as SOS and represents the λ(x) in equation (3.8).

∇V (x) · f(x) is the outcome of V̇ (x). f(x) is defined as ẋ = f(x). (3.10a) is the first requirement

of a Lyapunov function, that V (x) must be positive definite. L1(x) is introduced as a margin to

compensate for numerical errors. It also ensures that V (x) cannot be zero anywhere except at the

origin. Equation (3.10b) ensures that the LF decreases along the system trajectory by ensuring

that V (x) < γ. L2(x) has the same task as L1(x), to compensate for numerical errors and ensuring

that V̇ (x) = 0 for only x = 0. (3.10c) ensures that set C stays inside set B.

This formulation, however, is complex and requires a lot of knowledge on the subject to understand.

Therefore, (3.10) is rewritten for easier understanding in equation (3.11), where the sets are used

instead of the equations to make the set containment more prominent. Otherwise, most variables

remain the same as in the original formulation. From this final formulation, it is possible to go

into the V-s iteration to optimize a Lyapunov function.

max β, γ s.t.

eq1 = V (x)− L1(x) > 0 (3.11a)

eq2 = −A− L2(x) + s2(x) ·B > 0 (3.11b)

eq3 = −B + s1(x) · C > 0 (3.11c)

L1(x) = ε1x
Tx, L2(x) = ε2x

Tx. (3.11d)

After this optimization problem is solved using the V-s iteration explained in the following chapter

3.3, the result will be an optimized Lyapunov function and an associated γ. In the definition of

set B, Figure 3.1 states that V (x) ≤ γ. Any system states that have initial conditions that satisfy

this set B, and its condition will remain stable. The condition that defines the set also defines the

estimate of the region of attraction, which is a reliable measure of stability in nonlinear electrical

systems.

3.3 V-s Iteration

The optimization problem in equation (3.11) has several variables that needs to be determined

in the optimization, whereas some of them are multiplied by each other. These terms are called

bilinear, and optimization problems that contain these terms can not be solved using regular SOS

optimization. This is because an SOS problem needs to be linear in the decision variables[25]. The

bilinear terms are s2(x) · γ in (3.11b) and s1(x) · β in (3.11c).

V-s iteration is introduced and expands an initial Lyapunov functions estimation of the region

of attraction to the Lyapunov function that has the largest possible estimation of the region of

attraction.[11] V-s iteration can be used in many different areas, and is for example used on flight

controllers.[16] A downside is that the iteration creates bilinear terms that the YALMIP toolbox

can not handle directly, and additional assistance is needed. The V-s iteration is executed by

following the five steps stated below, and the steps are elaborated on after.

17

1. Initialization: An estimation of the LF is calculated using linearization around the equi-

librium point to have a starting LF.

2. γ: For the specific V (x), maximise γ by solving (3.11b).

3. β: For the specific V (x) and γ, mazimize β by solving (3.11c).

4. V: Update V (x) by using the three first equations of (3.11), while keeping γ, β, s1(x) and

s2(x) fixed.

5. Check Convergence: Check if the change in p(x)− V (x) is significant. If this is the case,

set p(x) = V (x) and go to step 2. If not, terminate.

3.3.1 Step One - Initialization

The first step is to calculate and create a starting Lyapunov function to have a starting V (x) for the

optimization. This is executed by evaluating the system at the equilibrium point and linearizing

it there.

First, calculate the equilibrium point by setting the equations equal to zero, like in (3.12), and find

the values.

f(x) == 0 (3.12)

ẋ = A · x (3.13)

After the equilibrium point is found, the A matrix, which is defined in (3.13), is calculated by

evaluating the Jacobian of the system at this equilibrium point, as shown in equation (3.14).

A =
∂f

∂x
|x=eqpoint (3.14)

When all the real parts of the eigenvalues are negative, the matrix is Hurwitz. And asymptotical

stability is only possible if the A matrix is Hurwitz.[14] A system that does not have a Hurwitz

A matrix is not locally stable, and it would not be possible or interesting to try and increase the

stability area of something that is not stable in the first place. In this thesis, it is therefore assumed

that the A matrix is Hurwitz for all the systems in question. The A matrix can then be used in

the Lyapunov equation, which is repeated in (3.15) to find a P matrix used in (3.16) to find the

starting Lyapunov function.

PA+ATP +Q = 0 (3.15)

V (x) =
1

2
xTPx (3.16)

3.3.2 Step Two - γ Step

The γ step consists in short terms of ensuring that set B stays inside set A and is accomplished

by maximizing γ by using bisection to find s2(x) while holding γ fixed. The definition of s2(x),

which can be any polynomial as long as it is sum of squares, is exploited to the fullest in this step.

18

First, the relevant sets are defined in equation (3.17), where the content of set A is a way to portray

V̇ (x) and f(x) is the equations that define the system. Set B states that the Lyapunov function

needs to be smaller than γ as described in Figure 3.1.

A = ∇V (x) · f(x) (3.17a)

B = V (x)− γ (3.17b)

The two other parts are defined in equation (3.18) where L2(x) is added to compensate for numerical

errors. ϵ2 is any positive number and is, in this case, set as a very small value 10−6. This makes

L2(x) sum of squares by construction. s2(x) is defined as an empty polynomial containing all the

combinations of x, up to a degree of degreeMax. The coefficients in front of each part of the

polynomial remain empty until it is attempted to solve the optimization problem. v2 contains all

the monomials up to degree degreeMax as set in the polynomial function. Then, the vector c2
contains the coefficients of s2(x) and is set as the decision variables in the feasibility problem that

comes later in this step.

L2(x) = ϵ2x
Tx (3.18a)

[s2(x), c2, v2] = polynomial(x, degreeMax, degreeMin) (3.18b)

Further, the first complete optimization problem is stated in (3.19), where (3.19a) and (3.19b) are

the constraints, which are defined to be positive and sum of squares.

max γ s.t.

eq2 = −A− L2(x) + s2(x) ·B > 0 (3.19a)

s2(x) > 0 (3.19b)

Then this is implemented into the solvesos() function in equation (3.21) with the constraints below,

where the sos() function is used to transform a constraint to the correct form of sum of squares.

GammaConstraints =
[
sos(eq2) sos(s2(x))

]
(3.20)

solution = solvesos(constraints, objective, solver, decisionvariables) (3.21a)

GammaSolution = solvesos(GammaConstraints, [],mosek, c2) (3.21b)

This now becomes a feasibility problem since the objective remains empty because the solvesos()

function is not used to optimize anything in this case. But to find any feasible solution by changing

the constants in the c2 vector. This is done by using bisection in the form of a while loop in

MATLAB, where for each value of γ, a feasible solution is found, the γ is then increased, and a

feasible solution is found again. The γ is increased until finding a solution using the solvesos()

function is no longer possible. When it is no longer possible to find a feasible solution, the while

loop is terminated, and the last γ value that had a feasible solution is retrieved, and the feasibility

problem is executed one last time to find the corresponding s2(x). Then, the maximized γ and the

associated s2(x) are held fixed for the rest of the steps.

19

3.3.3 Step Three - β Step

The β step is very similar to the γ step, where the γ is exchanged with β and eq2 with eq3. γ is

kept constant at the optimized value found in the previous step. This step uses the same approach,

and the optimization problem will look almost identical.

Similarly, as in the γ step, the relevant sets are defined in equation (3.22), but now it is set B and

C instead. Set B is identical to the definition back in (3.17b). And set C in (3.22b) uses p(x),

which is defined as p(x) = V (x) in the first iteration, and states that p(x) needs to be smaller than

β.

B = V (x)− γ (3.22a)

C = p(x)− β (3.22b)

In this optimization problem, s1(x) is used instead of s2(x), and the definition is stated in (3.23).

s2(x) and s1(x) are defined and used in the exact same way in the optimization and feasibility

problems. This means that s1(x) is also defined as an empty polynomial containing all the com-

binations of x, up to a degree of degreeMax. c1 is also the empty vector containing the constants

of s1(x) and is the decision variable in the feasibility problem later in the step.

[s1(x), c1, v1] = polynomial(x, degreeMax, degreeMin) (3.23)

Further, the entire second optimization problem is defined below in (3.24), where (3.24a) and

(3.24b) are the constraints, which are defined as positive and sum of squares.

max β s.t.

−B + s1(x) · C > 0 (3.24a)

s1(x) > 0 (3.24b)

This optimization problem is then implemented into the solvesos() function in (3.26) with the

constraints defined in (3.25). Similarly to the γ step, the sos() function makes the content a Sum

of Squares constraint.

BetaConstraints =
[
sos(eq3) sos(s1(x))

]
(3.25)

BetaSolution = solvesos(BetaConstraints, [],mosek, c1) (3.26)

Similarly to the γ step, this becomes a feasibility problem because of the empty objective. β

remains constant, while the content of the v2 vector is the decision variable while the program

tries to find any feasible solution. This is done using bisection as a while loop in MATLAB, where

for each value of β. β is then increased after a feasible solution is found, and the feasibility problem

is performed again. This while loop continues until a feasible solution is no longer possible, and

the last β that gave a feasible solution is retrieved. The feasibility problem is executed again to

find the corresponding s1(x), and these values are kept fixed for the rest of the steps.

20

3.3.4 Step Four - V (x) Step

This step is quite different from the two previous steps. In this step, the Lyapunov function V (x)

is updated or found again. This is accomplished by first keeping γ, β, s1(x) and s2(x) constant.

Secondly, V (x) is defined again in the same manner as s1(x) and s2(x) in (3.27a). In this case, Cv

is the vector that contains the decision variables in the optimization problem. The L1 is defined

in the same manner that L2 was defined in the γ step. The definition of L2 is included as well for

completeness.

[
V (x), Cv, Vv

]
= polynomial(x, degreeMax, degreeMin) (3.27a)

L1(x) = ϵ1x
Tx (3.27b)

L2(x) = ϵ2x
Tx (3.27c)

The new V (x) defines the sets again in (3.28), impacting sets A and B. Most impact will happen

in set A, where a change in V (x) makes many changes in V̇ (x) since the content of Cv is now

numerous places in the whole set. Set C remains the same, and p(x) equals the old V (x) found in

the initialization step.

A = ∇V (x) · f(x) (3.28a)

B = V (x)− γ (3.28b)

C = p(x)− β (3.28c)

Now, the final feasibility problem is specified in equation (3.29), where this step has three con-

straints compared to the two constraints in the two previous steps. Correspondingly to the previous

steps, all the constraints are defined as strictly positive. This final problem has an empty objective,

and no function is optimized since the task is to find any feasible solution.

eq1 = V (x)− L1(x) > 0 (3.29a)

eq2 = −A− L2(x) + s2(x) ·B > 0 (3.29b)

eq3 = −B + s1(x) · C > 0 (3.29c)

To make the constraints able to be used in the solvesos() function, they need to be put into a

vector and be changed into sum of squares constraints using the sos() function as displayed in

(3.30).

V Constraints =
[
sos(eq1) sos(eq2) sos(eq3)

]
(3.30)

Then, the optimization problem becomes the feasibility problem in equation (3.31), with an empty

objective. The program will then search for any feasible solution by changing the decision variables

in Cv. Contradictory to the previous steps, the feasibility problem is only carried out once. This

is because there is only one variable, V (x), that needs to be found, and no bilinearity is present.

V Solution = solvesos(V Constraints, [],mosek, Cv) (3.31)

This now gives a new Lyapunov function that is compared to the old one in the last step.

21

3.3.5 Step Five - Convergence Step

This last step checks the change in the Lyapunov function, using the equation in (3.32). If the

change is insignificant, smaller than a given tolerance i.e. 10−3, then the iteration procedure should

be terminated. If it is significant, some minor changes need to be made and then go back to step

two, the γ step.

∆p(x) = p(x)− V (x) (3.32)

The first small change to be made before going back to the γ step is setting p(x) = V (x), so the

next step can compare the newest Lyapunov function to the one that will be found in the next

iteration. Then the variables that changes in each iteration of the while loops γ and β are reset to

one.

Suppose the change in the Lyapunov function is insignificant and the iteration is terminated. In

that case, this means that the Lyapunov function and the accompanying γ are optimized and set

B, V (x) ≤ γ defines the estimate of the region of attraction. This meant that any system that has

initial conditions that satisfy the condition in the set, will remain stable.

22

Chapter 4

Complementary Systems

In this chapter, the Sum of Squares method explained in the previous chapter, is applied to two

complementary systems. To learn how to use the toolbox, the method was first applied to two less

complex systems where many issues arose and were solved. However, there was an issue in step

four(Updating V (x)) that was not solved due to lack of time. The first system, a time-reversed

van der Pol system, was used due to a publication that had done a similar investigation, which

included results underway in the coding, and the results could be reproduced. The second system,

a constant power load, was chosen to proceed towards the more complex wind energy conversion

system. This chapter only contains new contributions and displays the basics, but for a thorough

breakdown and explanation, see chapter 5.5.

4.1 Time-Reversed Van Der Pol System

The van der Pol system is well-known in the industry and is a commonly used example in teaching.

Khalil describes the Van der Pol equations as a fundamental example in nonlinear oscillation

theory.[14] The fundamental example can be applied to many different fields, including chemistry,

biology, physics, and electrical.[26]

During research, an article that had an example with an optimized Lyapunov function for a time-

reversed van der Pol system and a good analysis and calculations along the way was found.[27]

This made this system an excellent system for learning the program by checking that the answers

were correct along the way. This article did not use the V-s iteration, but the Sum of Squares

method was used, and many of the desired results were there. The example in the article was

defined as f(x) in equation (4.1).

ẋ1 = −x2 (4.1a)

ẋ2 = x1 + (x2
1 − 1)x2 (4.1b)

4.1.1 V-s Iteration

Applying the SOS method described in chapter 3.3 to try and optimize a Lyapunov function for

this simple system.

23

Step One - Initialization

First, the equilibrium point is found by setting both the equations that describe the system equal

to zero in equation (4.2). This is solved and an equilibrium point is found in x1 = 0 and x2 = 0.

ẋ1 = −x2 == 0 (4.2a)

ẋ2 = x1 + (x2
1 − 1)x2 == 0 (4.2b)

Then the Jacobian of the system is found, and it is evaluated at the equilibrium point in (4.3).

A =
∂f

∂x
|x=0=

[
0 −1

2x1x2 + 1 x2
1 − 1

]
=

[
0 −1

1 −1

]
(4.3)

The A-matrix is assumed Hurwitz and inserted into the Lyapunov equation that was described in

equation (3.15) in chapter 3.3 to find a P-matrix, which is described in (4.4).

P =

[
1.5 −0.5

−0.5 1

]
(4.4)

This P-matrix is then implemented in standard Lyapunov function (4.5), and the initialization

is complete and ready to be optimized. Because the example does not multiply the Lyapunov

function with 1
2 , it is not done here either for comparison of results.

V (x) = xTPx =
[
x1 x2

] [1.5 −0.5

−0.5 1

][
x1

x2

]
= 1.5x2

1 − x1x2 + x2
2 (4.5)

The following code is included for completeness and a better understanding.

1 %Definitions

2 syms x1 x2 %defining the variables

3 x = [x1; x2];

4

5 f1= -x2; %Defining the system

6 f2= x1 + (x1^2 - 1)*x2;

7

8 f11= -x2 == 0; %setting up equations to solve for equilibrium point

9 f22= x1 + (x1^2 - 1)*x2 == 0;

10

11 F= [f1; f2];

12 f0 = [f11 , f22];

13

14 equilibriumPoint = solve(f0 , x); %finding the equilibrium point

15 jac = jacobian(F,x);

16

17 x1bar = double(equilibriumPoint.x1); %Making the eq -point double

18 x2bar = double(equilibriumPoint.x2); %Values instead of syms values

19 eq_var = [x1bar , x2bar];

20 A = double(subs(jac ,x,eq_var)); % A matrix - assuming Hurwitz

21

22 Q = eye(size(A)); %Identity matrix as Q

23 P = lyap(A', Q); %Finding the P matrix

Listing 4.1: Time-Reversed Van Der Pol - Linearization

24

Step Two - γ Step

In this step, the set containment is used to optimize or maximize γ by using equation (3.11b).

Several functions from the YALMIP toolbox and bisection are utilized in the following code to

accomplish this.

1 ops=sdpsettings('solver ', 'mosek '); %choosing to use MOSEK as the

solver

2

3 sdpvar x1 x2 %defining the variables in sdpvariables for the

optimization part

4 x = [x1; x2];

5

6 f1= -x2; %defining the system again , with the right type of variables

7 f2= x1 + (x1^2 - 1)*x2;

8 F= [f1; f2];

9

10 V = x' * P * x; %defining the LF with the P matrix found in the first

step

11

12 eps= 1E-6; %very small number

13 L2 = eps*(x'*x); %used to compensate for numerical errors

14 [s2 ,c2,v2]= polynomial(x,6,1); %defining an empty polynomial

15 gamma = 1; %starting value for gamma

16

17 gradV = jacobian(V,x);

18 A = gradV*F; %defining the sets

19 B = V-gamma;

20 eq2 = -A - L2 + s2*B; %defining the equation

21

22 GammaConstrains= [sos(eq2), sos(s2)] %making a vector with SOS

constraints

23 GammaSolution = solvesos(GammaConstraints , [], ops ,c2); %solving a

feasibility problem with c2 as a decision variable to have a

starting value in the loop

24

25 while GammaSolution.problem ==0 %checking that the problem is feasible

26 gamma = gamma +0.1 %gamma step

27 A = gradV*F; %defining sets and equation again in the loop

28 B = V-gamma; %to include the updated gamma value

29 [s2 ,c2,v2]= polynomial(x,6,1);

30 eq2 = -A -L2 + s2*B;

31 GammaConstraints= [sos(eq2), sos(s2)]; %defining constraints with

updated equations

32 GammaSolution=solvesos(GammaConstraints ,[],ops ,c2); %solving

feasibility problem

33 end

34 gamma=gamma -0.1 %go back and find the last gamma and the connected s2

(x)

35 A = gradV*F;

36 B = V-gamma;

37 [s2 ,c2,v2]= polynomial(x,6,1);

38 eq2 = -A -L2 + s2*B;

39 GammaConstraints= [sos(eq2), sos(s2)];

40 GammaSolution=solvesos(GammaConstraints ,[],ops ,c2);

Listing 4.2: Time-Reversed Van Der Pol - γ Step

The objective remains empty, because the solvesos() function is not used to optimize anything in

this case. However, to find any feasible solution by changing the numbers in the c2 vector. This is

25

done by using bisection in form of a while loop in MATLAB, where for each value of γ a feasible

solution is found, the γ is then increased and a feasible solution is found again. The γ is increased

until finding a solution using the solvesos() function is no longer possible. In this example, γ is

increased to 2.3, which is the optimized value in the first iteration.

Step Three - β Step

The β step is very similar to the γ step, where the γ is exchanged with β and eq2 with eq3. γ

is kept constant at the optimized value that is found in the previous step. The same approach is

used in the following code. The optimized value for β becomes 2.3, the same as γ.

1 beta = 1; %starting value

2 [s1 ,c1,v1]= polynomial(x,2,1); %empty polynomial with degree of two

3 p = V; %setting this as the starting point for the function p

4 %note the difference between p(function) and P(matrix form Lyapunov

equation)

5 B = V-gamma; %defining the sets

6 C = p- beta;

7

8 eq3 = -B + s1*C; %defining the equation

9

10 BetaConstraints= [sos(eq3), sos(s1)]; %making a vector with SOS

constraints

11 BetaSolution = solvesos(BetaConstraints ,[],ops ,c1); %solving

feasibility problem with c1 as the decision variable

12

13 while BetaSolution.problem == 0 %checking feasibility

14 beta = beta +0.01 %beta step

15 B = V-gamma; %define everything again in the loop

16 C = p- beta; %to include updated beta

17 [s1 ,c1,v1]= polynomial(x,2,1);

18 eq3 = -B + s1*C ;

19 BetaConstraints= [sos(eq3), sos(s1)];

20 BetaSolution=solvesos(BetaConstraints ,[],ops ,c1);

21 end

22 beta= beta -0.01 %finding the last feasible beta and the connected s1

(x)

23 B = V-gamma;

24 C= p- beta;

25 [s1 ,c1,v1]= polynomial(x,2,1);

26 eq3 = -B + s1*C ;

27 BetaConstraints= [sos(eq3), sos(s1)];

28 BetaSolution= solvesos(BetaConstraints ,[],ops ,c1);

Listing 4.3: Time-Reversed Van Der Pol - β Step

Step Four - V (x) Step

In this step the Lyapunov function V (x) is updated or established again. This is accomplished by

first keeping γ, β, s1(x) and s2(x) constant. Secondly, V (x) is defined again in the same manner

as s1(x) and s2(x) in the following code.

26

1 %Updating V(x)

2 L1 = eps*(x'*x); %nemrical error compensator

3

4 [Vnew ,C1 ,V1] = polynomial(x,4,1); %defining an empty V(x) as Vnew

5 gradV = jacobian(Vnew ,x); %finding the jacobian of the new V(x)

6 A = gradV*F; %defining the sets with the new V(x)

7 B = Vnew - gamma;

8 C= p - beta;

9 eq1 = Vnew - L1 ; %defining the sets

10 eq2 = -A - L2 + s2*B;

11 eq3= -B + s1*C;

12 VConstraints =[sos(eq1), sos(eq2), sos(eq3)]; %Setting the three

equations as SOS constraints

13 VSolution=solvesos(VConstraints ,[],ops ,C1); %solving the feasibility

problem with the vector C1 as the decision variable

Listing 4.4: Time-Reversed Van Der Pol - Updating V (x)

This is where an issue arose, and there was not enough time to solve it. Unfortunately, this same

issue arose for the WECS system and is discussed further in chapter 5.6.

Step Five - Checking for Convergence

Because of issues with the previous step, this step was not attempted, and the following code is a

pseudocode and is not exact. Nevertheless, if the difference is significant, p(x) should be changed

to p(x) = V (x), and the iteration should go back to step two(γ-step) and repeat. Before a possible

return to step two, remember to reset γ and β. If the change is small enough, then the Lyapunov

function, V (x), converges, and the iteration should stop, and an optimized function is found.

1 %Checking convergence

2 difference = p - Vnew ;

3 tolerance = ???

4

5 if difference < tolerance

6 jump out of loop

7 else

8 gamma =1; %reset gamma and beta

9 beta = 1;

10 go back to step 2 and go again

11 end

Listing 4.5: Time-Reversed Van Der Pol - Checking for Convergence

4.2 Constant Power Load System

The next step to implementing the method for the complex electrical system is to implement it on

a simple system that still has many similarities. This system has a generator, and the speed is the

variable in question. The constant power load(CPL) is presented in equation (4.6).

J
dω

dt
= −Dω + Tm − Pconst

ω
(4.6)

27

4.2.1 Incremental Model

Similar to the original complex electrical system(WECS), an incremental model is required for this

system. See chapter 5 for more detailed information and chapter 2.1 for theory on equilibrium

points. This is also because a speed of zero is not a realistic stable operating point, since this

means that the generator is turned off and will be stable by definition.

The desirable operating point is the equilibrium point, found in the same manner as it will be in

chapter 5.4. Defining the equation at zero in (4.7), where ω̄ is defined as the speed zero.

0 = Dω̄ + Tm − Pconst

ω̄
(4.7)

Now, this zero equation is subtracted from the original equation to find the incremental model in

equation (4.8).

dω̃

dt
= −D

J
ω̃ − Pconst

J
(

1

ω̃ + ω̄
− 1

ω̄
) (4.8)

This equation is simplified to compensate for the rational dynamics in the last part. The ω̃ + ω̄ is

replaced with ω̃, which results in equation (4.9).

dω̃

dt
= −D

J
ω̃ − Pconst

J
(
1

ω̃
− 1

ω̄
) (4.9)

Now, the incremental model is ready for use in the V-s iteration.

4.2.2 V-s Iteration

Applying the method described in chapter 3.3 to try and optimize a Lyapunov function for this

simple electrical system.

Step One - Initialization

The first step is to calculate and create a starting Lyapunov function, which is accomplished by

evaluating the system at the equilibrium point and linearizing it.

First, the equilibrium point is calculated by setting the equations equal to zero, like in (4.10) and

calculating the values. Two equations and two unknowns. Solving this gives an equilibrium point

when ω̄ = 200.

J
ω

dt
= −Dω̄ + Tm − Pconst

ω̄
== 0 (4.10)

Then, the Jacobian is defined by the partial derivative of the incremental model in equation (4.9).

Jacobian =
∂f(ω̃)

∂ω̃
= P

1

(ω̃ + 200)2
− 1

2
(4.11)

The next thing to do is to evaluate the Jacobian at this equilibrium point to find the previously

mentioned A-matrix.

28

A =
∂f(ω̃)

∂ω̃
|ω̃=200= −1

2
+ 20000

1

(ω̃ + 200)2
= −0.3750 (4.12)

Then, this A is assumed Hurwitz and implemented in the Lyapunov equation defined in equation

(3.15). This results in P = 1.33 and is implemented in the standard equation for a quadratic

Lyapunov function in (4.13) and a Lyapunov candidate is ready for use in the optimization steps.

V (ω̃) =
1

2
ω̃TPω̃ = 0.6666ω̃2 (4.13)

The following code is included for completeness and a better understanding of all the steps.

1 %definitions

2 syms omega omegabar omegatilde real

3

4 Tm = 200; %values based of WECS system in chapter five

5 omegaref = 200;

6 P = 20000;

7 J = 7.856;

8 D= 0.5;

9

10 eq = -D*omegabar + Tm - P/omegabar == 0; %equation to find equlibrium

point

11

12 equilibrium = solve(eq,omegabar); %finding the equilibrium point

13 equilibrium = max(equilibrium); %line 12 gives two equilibrium points ,

and the largest is chosen

14

15 f= -D*omegatilde - P*(1/(omegatilde+omegabar) -1/omegabar); %system

equation

16 jac = jacobian(f,omegatilde); %finding the jacobian

17 A = double(subs(jac , omegatilde , omegabar)); %making the A matrix -

assuming that A is Hurwitz

18

19 Q = eye(size(A)); %Identity matrix as Q

20 P = lyap(A', Q); %Finding the P matrix

Listing 4.6: Constant Power Load - Initialization

Step Two - γ Step

The set containment is used to maximize γ, by using (3.11b) the same way as for the time-reversed

van der Pol system. For a better understanding, the sets are defined in (4.14), and the rest of the

step is explained in the following code.

A = ∇V (ω̃)f(ω̃) = 2.6666ω̃ · (−D

J
ω̃ − P

J
(
1

ω̃
− 1

ω̄
)) =

2.666

J
· (−D +

P

ω̄
ω̃ −Dω̃2) (4.14a)

B = V (ω̃)− γ = 1.33333ω̃2 − γ (4.14b)

29

1 %definitions

2 ops=sdpsettings('solver ', 'mosek '); %choosing MOSEK as solver

3

4 sdpvar omegatilde %need the variable to be sdp instead of syms

5

6 f = -(D/J)*omegatilde -(Pmax/J)*(1/ omegatilde - 1/ omegabar); %defining

system equation

7

8 V= (1/2)* omegatilde ' * P * omegatilde; %defining LF by using the P

found in step one.

9

10 eps = 1E-6;

11 L2= eps*(omegatilde '* omegatilde); %numerical error compensator

12 [s2 ,c2,v2]= polynomial(omegatilde ,2,1); %empty polynom

13 gamma =1; %starting gamma

14

15 gradV = jacobian(V,omegatilde);

16 A = gradV*f; %defining the sets

17 B = V-gamma;

18 eq2 = -A - L2 + s2*B; %defining the equation

19

20 GammaConstraints= [sos(eq2), sos(s2)]; %defining SOS constraints

21 GammaSolution=solvesos(GammaConstraints ,[],ops ,c2); %finding starting

value for GammaSolution

22

23 while GammaSolution.problem == 0 %checking feasibility

24 gamma = gamma * 10 %gamma step

25 [s2 ,c2,v2]= polynomial(omegatilde ,2,1); %defining everything inside

26 A = gradV*f; %loop to include updated

gamma

27 B = V-gamma;

28 eq2 = -A -L2 + s2*B;

29 GammaConstraints= [sos(eq2), sos(s2)]; %Making SOS constraints

30 GammaSolution=solvesos(GammaConstraints ,[],ops ,c2); %solving

feasibility problem

31 end

32 gamma=gamma / 10 %finding the last feasible gamma and connected s2(x)

33 [s2 ,c2,v2]= polynomial(omegatilde ,2,1);

34 A = gradV*f1;

35 B = V-gamma;

36 eq2 = -A -L2 + s2*B;

37 GammaConstraints= [sos(eq2), sos(s2)];

38 GammaSolution=solvesos(GammaConstraints ,[],ops ,c2);

Listing 4.7: Constant Power Load - γ Step

With this code, γ continues to rise to γ = 1040, where the MOSEK toolbox gets an error: ”MSK

RES ERR HUGE AIJ (A numerically huge value is specified for an element in A.)” which makes

γ go back to 1039 for a feasible result. Newertheless at γ = 1013 the solver says: ”Although the

solver indicates no problems, the residuals in the problem are really bad. My guess: the problem

is probably infeasible. Make sure to check how well your decomposition matches your polynomial

(see manual). You can also try to change the option sos.model or use another SDP solver.” This

indicates that the problem became infeasible and the loop should have stopped here. However, this

did not happen, indicating that the code’s stopping criteria are not very good for this example. If

the γ value 1039 is used further in the β step and the optimization step, the problem immediately

becomes infeasible because of the too high value of γ. This also indicates that the while loop

should have stopped before this point, and that the loop needs to be created with testing and

failing instead of the standard method. This is a problem for further research.

30

The while loop was stopped manually by changing the stopping criteria to the last γ that gave a

feasible solution. Furthermore the following while loop replaced the original loop in the previous

code. This makes γ = 1012 the optimized γ to use in the following steps.

1 while gamma < 10^12 %stopping the loop manually

2 gamma = gamma * 10 %gamma step

3 [s2 ,c2,v2]= polynomial(omegatilde ,2,1); %defining everything inside

4 A = gradV*f; %loop to include updated

gamma

5 B = V-gamma;

6 eq2 = -A -L2 + s2*B;

7 GammaConstraints= [sos(eq2), sos(s2)]; %Making SOS constraints

8 GammaSolution=solvesos(GammaConstraints ,[],ops ,c2); %solving

feasibility problem

9 end

Constant Power Load - Alternative

Step Three - β Step

The β step is very similar to the γ step, where the γ is exchanged with β and lig2 with lig3. γ is

kept constant at the optimized value found in the previous step. The same approach is utilized in

the following code.

1 %Definitions

2 beta = 1;

3 [s1 ,c1,v1]= polynomial(x,2,1);

4 p = V; %setting p equal to V as a starting point

5 B = V-gamma;

6 C = p- beta;

7 eq3 = -B + s1*C;

8

9 BetaConstraints= [sos(eq3), sos(s1)]; %making the SOS constraints

10 BetaSolution= solvesos(BetaConstraints ,[],ops ,c1); %making a statring

value

11

12 while BetaSolution.problem ==0 %checking feasibility

13 beta = beta *10 %beta step

14 B = V-gamma;

15 C = p- beta;

16 [s1 ,c1,v1]= polynomial(x,2,1);

17 eq3 = -B + s1*C ;

18 BetaConstraints= [sos(eq3), sos(s1)];

19 BetaSolution=solvesos(BetaConstraints ,[],ops ,c1); %feasibility

problem

20 end

21 beta= beta / 10 %retrieving the last feasible beta and s1

22 B = V-gamma;

23 C= p- beta;

24 [s1 ,c1,v1]= polynomial(x,2,1);

25 eq3 = -B + s1*C ;

26 BetaConstraints= [sos(eq3), sos(s1)];

27 BetaSolution= solvesos(BetaConstraints ,[],ops ,c1);

Listing 4.8: Constant Power Load - β Step

With the manually procured γ from the last step, the while loop stops at β = 108 with a problem

status: Unknown. Moreover, the last feasible solution 107 is retrieved. However, the same type

31

of issue as the γ step arose at β = 4, and the loop should end here. This premature stop could

be because of the large γ, which is very large compared to the β. If the γ was smaller, the β

could be larger. It is strange with this large difference between the two variables compared to the

reversed-time van der Pol system where both γ and β were equal to 2.3. The while loop in the

following code replaced the previous one to stop the β value manually, and β = 4 was used further

in the steps.

1 while beta < 4 %stopping beta manually

2 beta = beta +1

3 B = V-gamma;

4 C = p- beta;

5 [s1 ,c1,v1]= polynomial(x,2,1);

6 eq3 = -B + s1*C ;

7 BetaConstraints= [sos(eq3), sos(s1)];

8 BetaSolution=solvesos(BetaConstraints ,[],ops ,c1);

9 end

Constant Power Load - Alternative

Step Four - V (x) Step

The Lyapunov function V (x) is updated or recreated in this step. This is accomplished by first

keeping γ, β, s1(x) and s2(x) constant. Secondly, V (x) is defined again in the same manner as

s1(x) and s2(x) in steps two and three.

1 %Updating V(x)

2 L1 = eps*(x'*x); %numerical error compensator

3

4 [Vnew ,C1 ,V1] = polynomial(x,4,1); %making and empty polynomial

5 gradV = jacobian(Vnew ,x); %new gradV with the new V

6 A = gradV*f; %defining the sets with Vnew

7 B = Vnew - gamma;

8 C= p - beta;

9 eq1 = Vnew - L1 ; %defining the equations

10 eq2 = -A - L2 + s2*B;

11 eq3= -B + s1*C;

12 VConstraints =[sos(eq1), sos(eq2), sos(eq3)]; %defining the SOS

constraints

13 Vsolution=solvesos(VConstraints ,[],ops ,C1); %Solving the feasibility

problem with C1 as decision variable

Listing 4.9: Constant Power Load - Updating V (x)

This is where the issue arises, and the feasibility problem becomes infeasible no matter what is

done. More information can be found in the discussion in chapter 5.6.

Step Five - Checking for Convergence

The same issue occurred in the van der Pol example. This step was not attempted due to the

stop in the previous step, and the code here is how it is imagined to be. Ideally, everything should

be put in a large while loop where the condition for the if-sentence is the condition for the loop.

However, it should work like this: If ∆p(ω̃) is significant, the p-function is changed to p(ω̃) = V (ω̃)

and the iteration goes back to step two(γ-step) and repeat. If the change is small enough, then

32

the Lyapunov function, V (ω̃), converges and the iteration should stop and an optimized function

is found.

1 %Checking convergence

2 difference = p - Vnew ;

3 tolerance = ???

4

5 if difference < tolerance

6 jump out of loop

7 else

8 gamma =1; %reset gamma and beta

9 beta = 1;

10 go back to step 2 and go again

11 end

Listing 4.10: Constant Power Load - Checking for Convergence

33

Chapter 5

Wind Energy Conversion System

This chapter first introduces the wind energy conversion system, which is the object of interest in

this thesis. Several things are applied and implemented to prepare the system for the application

of the Sum of Squares method. This part is reproduced from the associated specialization pro-

ject[13], but some improvements were made, and some errors from the project were corrected. The

application after this part are all new contributions. Then, the Sum of Squares method is applied

and tested on the system, and the wisdom from the complementary systems is implemented on a

more complex system. Lastly, the results and issues are discussed, and a alternative software is

suggested.

5.1 System Information

Figure 5.1: Wind Energy Conversion System

Figure 5.1 shows a model of a standard wind energy conversion system(WECS) and is the system

that will be investigated in this thesis. The system consists of a wind turbine, a permanent magnet

synchronous generator(PMSG), a back-to-back two-level converter(2L-VSC), and a voltage source.

The voltage source represents the grid that the system is connected to. The WECS is presented

34

using park transformation with d- and q-axes in the whole thesis. This is utilized to simplify the

complicated three-phase presentation.

The system is equipped with a PMSG, which differs from standard generators in the capacity that

instead of the rotor having direct current through coils that create the magnetic field, it has magnets

mounted on the outside of the rotor. These magnets have a natural magnetic field, and no outside

current is needed. This is what defines a permanent magnet generator. The permanent magnet

generator is superior to a typical induction generator regarding performance, torque density, and

weight [28].

The WECS is inspired by both [29] and [5], and the system equation derivation is found here. This

system is represented by the equations in (5.1).

Ψ̇d = Li̇d = −rid + Liq
P

2
ωm − u1Vc (5.1a)

Ψ̇q = Li̇q = −riq − Lid
P

2
ωm + ϕ

P

2
ωm − u2Vc (5.1b)

ρ̇ = Jω̇m = Tm − 3

2

P

2
ϕiq + d(ωref − ωm) (5.1c)

CV̇c = u1id + u2iq − u3i
G
d − u4i

G
q −GVc (5.1d)

LGi̇
G
d = −rGi

G
d + ωGLGi

G
q + u3Vc − V G

d (5.1e)

LGi̇
G
q = −rGi

G
q − ωGLGi

G
d + u4Vc − V G

q (5.1f)

In the above equations, Ψ is the flux linkage in the d and q axes. L is the inductance in the stator

windings, id and iq are the currents in the respective axes. r is the resistance of the generator, while

P represents the number of magnetic pole pairs in the generator. The rotor’s angular velocity is

represented by ωm, and ωref is the reference for the angular speed. The electromagnetic damping

effect from the damper windings is presented by d, ϕ represents the magnet’s magnetic flux, while

Vc is the voltage source on the DC-side which is a simplification of the grid. The u variables can

be interpreted as the duty cycles for the 2L-VSC, where u1 and u2 are for the d, and q duty cycles

and u3 and u4 are duty cycles for the grid side converter. ρ is the angular momentum, J is the

moment of inertia for the generator. Tm is the mechanical torque while C is the capacitance and

G is the conductance of the capacitor inside the 2L-VSC. Variables with the upper letter G are

with reference to the grid, as iGd is the d-axis current from the grid side converter and rG is the

grid resistance.

Further equation (5.1c) is multiplied by a factor 2
3 in equation (5.2) to make the system skew-

symmetric. Where ρ∗ = 2
3ρ, J

∗ = 2
3J , T

∗
m = 2

3Tm and d∗ = 2
3d. Further ρ, J , Tm, and d are used

for simpler notation.

ρ̇∗ = J∗ω̇m = T ∗
m − P

2
ϕiq + d∗(ωref − ωm) (5.2)

The parameters for the wind energy conversion system are listed in table 5.1 and are based on

the system investigated in [29]. Note that the value for irefq , was found in the equilibrium point

calculation later in the thesis.

35

Item Symbol Nominal Value

Synchronous resistance r 0.3676 [Ω]

Synchronous inductance L 3.55 [mH]

Inertia J 7.856 [kgm2]

Poles P 28

Permanent magnet flux ϕ 0.2867 [Wb]

Damping d 0.5 [Nm
rad/s]

Direct current irefd 0 [A]

Quadrature current irefq 49.82 [A]

Angular velocity ωref
m 200 [rpm]

Table 5.1: Nominal Values For System Parameters

5.2 Leader Follower Philosophy

It is very complex and challenging to perform large mathematical calculations on this system. The

leader-follower philosophy is implemented to apply a cascaded system architecture to make this

tractable. Subsystems are interconnected hierarchically, where one system is the leader, and the

other needs to adjust its behavior to track the leader’s signal. In this case, the wind turbine and

PMSG are decoupled from the rest of the system and defined as the leader. The new leader’s

output will be the input for the rest of the system. This way, the PMSG will be independent of

the system, and the follower has to act according to how the PMSG is operated. This makes the

system easier to work with. The leader is presented in equation (5.3), but simplifications need to

be made in the last terms in (5.3a) and (5.3b) to decouple it from the rest of the system.

Ψ̇d = Li̇d = −rid + Liq
P

2
ωm − u1Vc (5.3a)

Ψ̇q = Li̇q = −riq − Lid
P

2
ωm + ϕ

P

2
ωm − u2Vc (5.3b)

ρ̇ = Jω̇m = Tm − P

2
ϕiq + d(ωref − ωm) (5.3c)

Simplifications for the controller variable u1 and u2 are performed in equation (5.4). This is done

to make E1 and E2 the leader’s output and input for the follower.

u1 =
E1

Vc
, u2 =

E2

Vc
(5.4)

Implemented into (5.3), this results in equation (5.5) that describes the system. This leader will

be referred to as the system for the remainder of the thesis.

Ψ̇d = Li̇d = −rid + Liq
P

2
ωm − E1 (5.5a)

Ψ̇q = Li̇q = −riq − Lid
P

2
ωm + ϕ

P

2
ωm − E2 (5.5b)

ρ̇ = Jω̇m = Tm − P

2
ϕiq + d(ωref − ωm) (5.5c)

36

5.3 Implementing PI Passivity Inspired Control

Stability is often studied when the system has a closed loop, meaning it has feedback that compares

the system’s output with its desired output. This thesis will utilize a controller inspired by the

proportional-integral(PI) passivity-based controller(PBC).

Today’s industry uses PI controllers as a standard because of their straightforward design and

implementation. This controller has two types of correction: a proportional term that multiplies

the input with a gain constant, Kp, and an integral term that integrates the input and multiplies it

with a different gain constant, KI . A PI controller uses the error between a signal and its reference

as input, and the correction term is the output. The controller’s output is applied to the system

to reduce the system’s error. This controller is represented by u(t) in equation (5.6), where u is

the output, Kp and KI are adjustable positive gain constants. Meanwhile yp and yI are the errors

between the states, making them the controller input.

u(t) = Kpyp(t)−KI

∫
yI(t)dt (5.6)

Passivity-based controllers exploit the concept of passivity and energy storage in passive systems.

The concept of passivity involves energy dissipation and that a system, over time, will dissipate

or consume energy, making it bounded. Passivity uses energy balance, or physical systems with

passive components can not produce energy but transform it from mechanical energy to electricity

with some losses. PBC minimizes these losses. The stored energy, i.e., the energy delivered to

the power grid, equals the difference between supplied and dissipated energy. The PBC enforces

passivity in the closed-loop system by modifying this energy balance via control. Such a system

can be classified as passive, and stability can be guaranteed.

Energy control is implemented by controlling the currents of the generator since the energy is the

product of the current and the voltage. In this thesis, one of these currents, iq, is changed to control

the rotation speed of the generator, ωm in the integrator term. This allows the PMSG to follow

the speed of the wind, which in turn generates maximum torque. For this specific WECS system,

a PI-PBC-inspired controller is chosen. This controller combines a standard PI controller with

passivity-based control. This controller is especially efficient when working with nonlinear systems

since the integral part of PI compensates for nonlinearities. The PBC-inspired part regulates the

system’s energy and thus maintains stability more easily. Figure 5.2 shows how the controller is

implemented in the system.

Figure 5.2: System with Implemented Control

37

To implement this PI-PBC into the system, the definition of the PI controller in equation (5.6) is

used. First, the input terms are defined in (5.7).

yp =

[
id
iq

]
yI =

[
id
ωm

]
(5.7)

Furthermore, y and ẋc are defined in (5.8) and (5.9), respectively, where the reference values are

subtracted from the input values from the system. They are then implemented in (5.6) in equation

(5.10).

y = (yp − yrefp) =

[
id − irefd

iq − irefq

]
(5.8)

ẋc = (yI − yrefI) =

[
id − irefd

ωm − ωref

]
(5.9)

u = Kpy −KIxc (5.10)

Kp and KI are defined as 2× 2 matrices that only has diagonal elements in (5.11).

Kp =

[
K1 0

0 K2

]
, KI =

[
K1 0

0 K2

]
(5.11)

This results in the expanded version of the controller shown in (5.12)

u(1) = K1p · y(1) −K1I · xc(1) (5.12a)

u(2) = K2p · y(2) −K2I · xc(2) (5.12b)

Inserting this into the system, resulting in a new model for the system in equation (5.13). Here,

E1 and E2 are modified since these are the control variables, as E1 = u(1) and E2 = u(2).

Ψ̇d = −rid + Liq
P

2
ωm − (K1p · (id − irefd)−K1I · xc(1)) (5.13a)

Ψ̇q = −riq − Lid
P

2
ωm + ϕ

P

2
ωm − (K2p · (iq − irefq)−K2I · xc(2)) (5.13b)

ρ̇ = Tm − P

2
ϕiq + d(ωref − ωm) (5.13c)

ẋc(1) = −(id − irefd) (5.13d)

ẋc(2) = −(ωm − ωref
m) (5.13e)

38

5.4 Incremental Model

˙̃Ψd = −rĩd + L
P

2
(̃iqω̃m + ĩqω̄m + īqω̃m)− (K1pĩd −K1I x̃c(1)) (5.14a)

˙̃Ψq = −rĩq − L
P

2
(̃idω̃m + ĩdω̄m + īdω̃m) + ϕ

P

2
ω̃m − (K2p · ĩq −K2I · x̃c(2)) (5.14b)

˙̃ρ = −P

2
ϕĩq (5.14c)

˙̃xc(1) = −ĩd (5.14d)

˙̃xc(2) = −ω̃m (5.14e)

When operating with differential equations and stability, finding an equilibrium point expressed by

the system is desirable. A natural equilibrium point is when everything is zero, but this solution

concludes that the generator is turned off and is undesirable. A non-zero equilibrium point must

be found. An incremental model is used to find this point. In this thesis, the natural equilibrium

point, x̃, is the deviation of the actual operating point, x, and zero, which x̄ is defined as. This

results in the incremental model shown in equation (5.15).

x̃ = x− 0 = x− x̄ (5.15)

x̃ = 0 when x = x̄, ensuring the actual operating point is equal to 0, and Lyapunov theory can

be applied to analyse stability. Lyapunov stability theory was investigated in chapter 2.3. This

incremental model is applied to the system variables, as shown in (5.16).

ĩd
ĩq
ω̃m

x̃c(1)

x̃c(2)

 =

id − īd
iq − īq

ωm − ω̄m

xc(1) − x̄c(1)

xc(2) − x̄c(2)

 (5.16)

To understand the calculation better, the system is defined in the origin, x̄, by equation (5.17). In

this equation, all the system variables are replaced by 0, i.e., x̄. The last term in (5.13c) disappears,

since ω̄m = ωref at the origin.

0 = −rīd + Līq
P

2
ω̄m − (−K1p(̄id − irefd) +K1I · x̄c(1)) (5.17a)

0 = −rīq − Līd
P

2
ω̄m + ϕ

P

2
ω̄m − (−K2p · (̄iq − irefq) +K2I · x̄c(2)) (5.17b)

0 = Tm − P

2
ϕīq (5.17c)

0 = −(̄id − irefd) (5.17d)

0 = −(ω̄m − ωref
m) (5.17e)

The new equilibrium point is then implemented into the system by subtracting (5.17) from (5.13),

and the system at x̃ is presented in (5.18). Both iq, id and ωm will be replaced by ĩq + īq, ĩd + īd
and ω̃m + ω̄m respectively in the second term in both (5.18a) and (5.18b) for simplification. Tm

is crossed out due to its lack of a state variable. This results in a system that describes the

incremental model dynamics and will be used further in the thesis.

39

˙̃Ψd = −rĩd + L
P

2
(̃iqω̃m + ĩqω̄m + īqω̃m)− (−K1pĩd +K1I x̃c(1)) (5.18a)

˙̃Ψq = −rĩq − L
P

2
(̃idω̃m + ĩdω̄m + īdω̃m) + ϕ

P

2
ω̃m − (−K2p · ĩq +K2I · x̃c(2)) (5.18b)

˙̃ρ = −P

2
ϕĩq (5.18c)

˙̃xc(1) = −ĩd (5.18d)

˙̃xc(2) = −ω̃m (5.18e)

5.5 Applying the Sum of Squares Method

After the preliminary system configuration, the system is ready for application of the Sum of

Squares method described in detail in chapter 3.3. The application can happen directly, but the

overall optimization problem is repeated in equation (5.19) to refresh the memory. After this, the

V-s iteration can be directly applied and the steps are executed in the following steps.

max β, γ s.t.

eq1 = V (x)− L1(x) > 0 (5.19a)

eq2 = −A− L2(x) + s2(x) ·B > 0 (5.19b)

eq3 = −B + s1(x) · C > 0 (5.19c)

L1(x) = ε1x
Tx, L2(x) = ε2x

Tx. (5.19d)

The first thing to do is define the known constants from the previous chapter 5.1.

1 % define constants

2 r = 0.3676;

3 L = 3.55*10^(-3);

4 p = 28;

5 Tm = 200;

6 iqref = 49.82;

7 omegaref = 200;

8 idref = 0;

9 flux= 0.2867;

10 K1p = 70;

11 K1i = 100;

12 K2p = 70;

13 K2i = -100;

14 d= 0.5;

Listing 5.1: WECS - Initialization

5.5.1 Step One - Initialization

Using the method described in chapter 3.3.1, an initial Lyapunov function is created using lineariz-

ing at the equilibrium point. The original equations are used for the equilibrium calculation before

introducing the incremental model. In the code, the first thing to do is to define the different

40

variables, and using syms which is the standard variable when the goal is to calculate equilibrium

points. For easier writing of the code, xc(1), xc(2) is written as xc1 and xc2 respectfully. Instead of

writing idtilde on everything, the x̃ is neglected for the variables in x for easier writing.

1 syms iq id omega xc1 xc2 idbar iqbar omegabar xc1bar xc2bar real

2

3 x = [id, iq, omega , xc1 , xc2];

4 xbar = [idbar , iqbar , omegabar , xc1bar , xc2bar]

WECS - Initialization

Then, the equilibrium point is calculated by setting the original system equations equal to zero,

F (x) = 0, and using the solve() function that was introduced in chapter 2.6. This solves five

equations with five unknowns. The original variables are exchanged with bar variables for the

calculations so that the result will show the bar values. After the equilibrium point is located, the

values at this point are extracted and made into double values.

1 %Finding equilibrium point using original system equations

2 equation1 = -r*idbar + L*iqbar*(P/2)*omegabar - (K1p*(idbar -idref) -

K1i*xc1bar) == 0;

3 equation2 = -r*iqbar - L*idbar*(P/2)*omegabar + flux*(P/2)*omegabar - (

K2p*(iqbar -iqref) - K2i*xc2bar) == 0;

4 equation3 = Tm - (P/2) * flux * iqbar == 0;

5 equation4 = - (idbar - idref) == 0;

6 equation5 = - (omegabar - omegaref) == 0;

7

8 EquilibriumEquations = [equation1 , equation2 , equation3 , equation4 ,

equation5];

9

10 Equilibrium = solve(EquilibriumEquations , xbar);

11

12 %Extracting the equilibrium values since they are syms values after the

equilibrium calculation

13 idbar = double(Equilibrium.idbar);

14 iqbar = double(Equilibrium.iqbar);

15 omegabar= double(Equilibrium.omegabar);

16 xc1bar = double(Equilibrium.xc1bar);

17 xc2bar = double(Equilibrium.xc2bar);

18

19 barValues = [idbar , iqbar , omegabar , xc1bar , xc2bar];

WECS - Initialization

The results are displayed below, and the values are implemented in table 5.2.

īd = irefd , īq =
2Tm

Pϕ
, ω̄m = ωref

m

x̄c(1) =
r

K1I
irefd − L

Tm

ϕK1I
ωref
m

x̄c(2) =
2rTm

K2IPϕ
+

P

2K1I
ωref
m (Lirefd − ϕ) +

K2p
K2I

(
2Tm

Pϕ
− irefq)

īd īq ω̄m x̄c(1) x̄c(2)

0 49.82809308 ≈ 49.83 200 -4.952912452 ≈ -4.95 7.838766775 ≈ 7.84

Table 5.2: Equilibrium point

41

Next, the Jacobian is calculated using partial derivation and the jacobian() function. The system

equations used here are the incremental model and evaluated at the found equilibrium point in the

following code. Then, the A matrix from ẋ = Ax is established by changing the values from syms

to double. For a valid A matrix for stability analysis, it is assumed that the matrix is Hurwitz, as

mentioned in chapter 3.3.1.

1 % Define your system equations in the incremental model

2 f1 = -r*id + L*(P/2)*(iq*omega + iq*omegabar + iqbar*omega) - (K1p*id -

K1i * xc1);

3 f2 = -r*iq - L*(P/2)*(id*omega + id*omegabar + id_bar*omega) + flux*(P

/2)*omega - (K2p*iq - K2i * xc2);

4 f3 = -(P/2)*flux*iq + d*(omegaref -omega);

5 f4 = -id;

6 f5 = -omega;

7

8 %System Vector

9 F = [f1; f2; f3; f4; f5];

10

11 jacobianMatrix = jacobian(F,x);

12 jacobianAtEquilibrium = subs(jacobianMatrix , x, barValues); %is a syms

matrix

13

14 A = double(jacobianAtEquilibrium) %making it a double matrix

15 %assuming that the A matrix is Hurwitz

WECS - Initialization

The last thing to do in the initialization is to find the starting Lyapunov function in equation (5.21)

by using the Lyapunov equation in equation (3.15). This is coded by using the lyap() function

from the Control System Toolbox in MATLAB and setting the Q matrix as the identity matrix.

V =
1

2
xTPx (5.21)

1 %making the identity matrix

2 Q = eye(size(A));

3

4 P=lyap(A', Q); %finding the P matrix

5

6 V = (1/2) x' * P * x; %making the initial Lyapunov function

WECS - Initialization

5.5.2 Step Two - γ Step

Step two in the V-s iteration involves maximizing γ while keeping V (x) constant by using equation

(5.26b). The optimization problem to solve in this step is presented in (5.22). This problem was

previously stated in 3.3.2 but is repeated for completeness.

42

max γ s.t.

eq2 = −A− L2(x) + s2(x) ·B > 0 (5.22a)

s2(x) > 0 (5.22b)

Regarding the coding, the first thing to do is redefine the variables. To use the YALMIP toolbox

in MATLAB the variables must be redefined from syms to sdpvar introduced in chapter 2.6. Tee

system equations must also be reformulated so the program implements these changed variables

into the equations. In the following code, the tilde variables are still simplified in the code to just

id, iq, omega, xc1 and xc2, for easier code. The code still uses the defined values that were defined

before the first step for all the known values. The first line changes or chooses the solver that will

be utilized in the solvesos() function later in this step. The chosen solver for use in the YALMIP

toolbox is MOSEK, which was discussed in chapter 2.6.

1 % definitions

2 ops=sdpsettings('solver ', 'mosek '); % Choose your solver

3

4 id=sdpvar (1,1);

5 iq=sdpvar (1,1);

6 omega=sdpvar (1,1);

7 xc1=sdpvar (1,1);

8 xc2=sdpvar (1,1);

9

10 %combine all states into a vector

11 x= [id; iq; omega; xc1; xc2];

12

13 %incremental model

14 f1 = -r*id + L*(p/2)*(iq*omega + iq*omegabar + iqbar*omega) - (K1p*id -

K1i * xc1);

15 f2 = -r*iq - L*(p/2)*(id*omega + id*omegabar + idbar*omega) + flux*(p

/2)*omega - (K2p*iq - K2i * xc2);

16 f3 = -(p/2)*flux*iq + d*(omegaref -omega);

17 f4 = -id;

18 f5 = -omega;

19

20 % Combine all equations into a vector

21 F = [f1; f2; f3; f4; f5];

Listing 5.2: WECS - γ Step

The problem mainly consists of ensuring that set B always stays inside set A, i.e., that the Lyapunov

function is smaller than γ in set B, and that V̇ (x) in set A, always stays negative for in the given

set B. The sets are defined again in (5.23) for a clearer view of the relevant sets and variables.

The polynomials L2(x) and s2(x) are also defined in (5.23), where ϵ2 is any small positive number

since this polynomial is there to help with numerical errors. In this problem, it is set to 10−6.

The content of (5.23) is also implemented in the code below, where the Lyapunov function is also

defined again with sdpvariables in the x vector. In the following code, line 10 is included because

if the original nonlinear system is used, the problem is infeasible from the start. Therefore, the

linearized version is included to make the problem easier, and perhaps it is solvable. This is the

case for the initialization, at least, and it is discussed later in chapter 5.6.

43

A = V̇ (x) = ∇V (x) · f(x) (5.23a)

B = V (x)− γ (5.23b)

L2(x) = ϵ2x
Tx (5.23c)

[s2(x), c2, v2] = polynomial(x, 2, 2) (5.23d)

1 V=(1/2)* x' * P * x; %The P is the P matrix that was calculated in the

initialization step

2

3 eps= 1E-6;

4 L2 = eps*(x'*x);
5 [s2 ,c2,v2] = polynomial(x,2,2);

6 gamma = 1;

7

8 gradV= jacobian(V,x);

9 A = gradV*F; %has to be negative

10 A = (1/2)*x' * (P*A + (P*A)')*x %the linearized version

11 B = V-gamma; %has to be negative

12

13 eq2 = -A - L2 + s2*B; needs to be positive and sum of squares

WECS - γ Step

In this step, both γ and s2(x) are determined, but since these variables are multiplied in the

expression, this makes it bilinear, and the usual way of optimizing is no longer an option. To

overcome this, multiple solutions can be utilized. Bisection is one. Before initializing the bisection,

a starting value fir the variable solution is needed and procured in the following code, where the

constraints are established.

1 GammaConstraints = [sos(eq2), sos(s2)]; %making the constraints

2

3 GammaSolution = solvesos(GammaConstraints , [], ops , c2);

WECS - γ Step

The solution that will be explored in this thesis is somewhat brute force programming. In formula-

tion the problem, the value of s2(x) is irrelevant; it just needs to be positive or the sum of squares.

Therefore, an iterative approach is used in the following code, where γ is gradually increased. In

each iteration, YALMIP(or solvesos()) is utilized to check that there exists a s2(x) that is sum of

squares. if this is the case, γ is increased and so on until an s2(x) no longer exists. Then the last

γ and s2(x) are used further in the procedure. It becomes a feasibility problem, where YALMIP

is used to check if all the constraints hold while a while-loop is used to increase γ gradually.

44

1 %step 1 gamma step

2 while GammaSolution.problem ==0

3 gamma = gamma * 10

4 A = gradV*F;

5 B = V-gamma;

6 [s2 ,c2,v2]= polynomial(x,4,1);

7 eq2 = -A -L2 + s2*B;

8 GammaConstraints = [sos(eq2), sos(s2)];

9 GammaSolution=solvesos(GammaConstraints , [], ops , c2);

10 end

11 gamma = gamma / 10

12 A = gradV*F;

13 B = V - gamma;

14 [s2 ,c2,v2] = polynomial(x,4,1);

15 eq2 = - A - L2 + s2*B;

16 GammaConstraints = [sos(eq2), sos(s2)];

17 GammaSolution=solvesos(GammaConstraints , [], ops , c2);

WECS - γ Step

5.5.3 Step Three - β Step

Use the YALMIP toolbox to maximize β, while keeping V (x) and the γ found in step two constant.

The procedure is very similar to the γ step, but now there is a different equation and variable that

are used. The optimization problem is presented in (5.24).

max β s.t.

−B + s1(x) · C > 0 (5.24a)

s1(x) > 0 (5.24b)

The contents of the optimization problem are defined in (5.25) and implemented in the code below.

B = V (x)− γ (5.25a)

C = p(x)− β (5.25b)

[s1(x), c1, v1] = polynomial(x, 2, 2) (5.25c)

1 %definitions

2 beta = 1;

3 [s1 ,c1,v1] = polynomial(x,2,2);

4

5 gradV= jacobian(V,x);

6 B = V - gamma; %has to be negative

7 C = p - beta; %has to be negative

8

9 eq3 = -B + s2*C; needs to be positive and sum of squares

Listing 5.3: WECS - β STep

This optimization problem also encounters bilinearity in the term s1(x)·C which is, in fact, s1(x)·β,
and bisection is utilized in this step as well. Before initializing the bisection, a starting solution,

and constraints in the following code need to be computed.

45

1 BetaConstraints = [sos(eq3), sos(s1)]; %making the constraints

2

3 BetaSolution = solvesos(BetaConstraints , [], ops , c1);

WECS - β Step

Then, the bisection can start as a while loop where the stopping criteria is theBetaSolution.problem

being equal to zero. When this is not the case, the while loop stops, and the last β and s1(x) from

the last feasible solution are retrieved in line 11 and 17 in the following code.

1 %Step 2 beta step

2 while BetaSolution.problem ==0

3 beta = beta * 10

4 B = V-gamma;

5 C = p- beta;

6 [s1 ,c1,v1]= polynomial(x,2,1);

7 eq3 = -B + s1*C ;

8 BetaConstraints = [sos(eq3), sos(s1)];

9 BetaSolution=solvesos(sos1 ,[],ops ,c1);

10 end

11 beta= beta / 10

12 B = V-gamma;

13 C= p- beta;

14 [s1 ,c1,v1]= polynomial(x,2,1);

15 eq3 = -B + s1*C ;

16 BetaConstraints = [sos(eq3), sos(s1)];

17 BetaSolution= solvesos(sos1 ,[],ops ,c1);

WECS - β Step

5.5.4 Step Four - Update V (x)

This step updates the Lyapunov function V (x) by redefining it and solving a feasibility problem

with an empty objective where the redefined V (x) constants are the decision variables. The

feasibility problem is defined again in (5.26) where the optimized values for γ, β, s1 and s2 are

implemented. This feasibility problem has no bilineareties, and bisection in the form of a while

loop is unnecessary.

V (x)− L1(x) > 0 (5.26a)

−A− L2(x) + s2(x)B > 0 (5.26b)

−B + s1(x)C > 0 (5.26c)

Almost everything that depends on V (x), both set A, and B, needs to be redefined to update the

equations now that V (x) is defined as an empty polynomial in (5.27a). These definitions are also

implemented in the code below, but the equations are defined for clarity.

46

[
V (x), C1, V 1

]
= polynomial(x, 2, 2) (5.27a)

L1(x) = ϵ1x
Tx (5.27b)

A = ∇V (x) · f(x) (5.27c)

B = V (x)− γ (5.27d)

C = p(x)− β (5.27e)

1 %Updating V(x)

2 L1 = eps*(x'*x);
3

4 [V,C1,V1] = polynomial(x,4,1);

5 gradV = jacobian(V,x);

6 %defining the sets

7 A = gradV*F;

8 B = V - gamma;

9 C= p - beta;

Listing 5.4: WECS - Updating V (x)

Then the equations are defined again in the code, to include the latest sets in the optimization

problem in the following code.

1 eq1 = V - L1 ;

2 eq2 = -A - L2 + s2*B;

3 eq3= -B + s1*C;

WECS - Updating V (x)

Lastly, the constraints are set, and the consequent code solves the feasibility problem.

1 VConstraints =[sos(eq1), sos(eq2), sos(eq3)];

2

3 VSolution = solvesos(VConstraints ,[],ops ,C1);

WECS - Updating V (x)

5.5.5 Step Five - Check for Convergence

The last step checks if the change in p(x)−V (x) is insignificant, the optimized Lyapunov function

is found, and the Lyapunov function has converged. If not, go back to step 2 and start again.

Because of the issues that was encountered in step 4, updating V (x), this step was not implemented

but it should look similar to the following code.

47

1 %Checking convergence

2 difference = p - V

3 tolerance = ???

4

5 if difference < tolerance

6 jump out of loop

7 else

8 go back to step 2 and go again

9 end

Listing 5.5: WECS - Checking for Convergence

This code is not exact, more like pseudocode and several changes need to be made. All the steps

from two to five should be inside a large while loop that has the convergence check as a condition.

What it would look like is presented in the following pseudocode.

1 %define all the Sets and equations

2 %make starting conditions for all the solvesos () functions

3 %define difference and tolerance

4

5 %whileloop

6 while difference > tolerance

7 %do step two - the gamma step

8 find/optimize gamma and s2

9

10 %do step three - the beta step

11 find/optimize beta and s1

12

13 %do step four - the update V step

14 Update V

15

16 %do step five - check for convergence

17 difference = p - V

18 Reset gamma and beta

19 Set p equal to the new V

20 end

Listing 5.6: WECS - Pseudocode for the Whole Setup

5.6 Results and Discussion

The theory and background found in the publications were not very detailed due to page limitation

restrictions. This hinders information sharing and leaves many questions, especially regarding the

coding.

A significant problem was encountered in step four, which updates the Lyapunov function estab-

lished in the first step. More time would be needed to solve this problem; therefore, the largest

while loop and the last step were not attempted. The coding for the step itself needs to be com-

pleted, and new issues can arise in this step. However, along the coding journey, many issues arose

and were solved; this chapter will discuss these.

5.6.1 Smaller Issues that were Solved

The first step, initialization, went relatively fine after finding out which equations to use where.

The original equations without an incremental model while finding the equilibrium point, and the

48

incremental model while finding and evaluating the Jacobian at the calculated equilibrium point.

It also took some testing and changing the control variables to obtain an A matrix that satisfied the

Hurwitz condition. Nevertheless, it was accomplished using a negative gain on the term containing

the speed. This part of the controller differed from the typical controller, and the information on

the gain for this part was unknown. It ended up working with a negative value, and the issue was

solved. These values for all the different Kp and KI ’s were not tuned due to lack of time, and the

testing of values stopped as soon as an accepted A matrix was found. Further testing and tuning

would be a good topic for further investigation. Finding and using the proper format for the lyap()

function also took some time, and it was settled on P = lyap(A′, Q);, which got the correct result.

Utilization of the YALMIP toolbox

Step two, the γ step, introduced the YALMIP toolbox and its many new functions that cause many

issues. Even downloading and implementing the toolbox and the needed extra solver was tricky.

While running the yalmiptest file that tested that everything worked, there was an issue with the

type of solver used to solve optimization problems, especially the Sum of Squares kind. The solver

used was the original solver in MATLAB called LMILAB, which is a part of the Robust Control

Toolbox, and the YALMIP toolbox was incompatible with this one. It was necessary to download

an additional solver, and some of the options were MOSEK, GUROBI, SEDUMI, and SDPT3.

MOSEK was chosen. There were many issues with implementing MOSEK into MATLAB and

getting the YALMIP toolbox to choose MOSEK as a solver instead of LMILAB. The important

thing here was to remember where the files were saved and the path that needed to be added for it

to work. So, implementing YALMIP and MOSEK took a long time before it could even be used.

In the publications, [11] and [12], there was very little information on the variables s1(x) and

s2(x), and they were referred to as positive definite polynomials[11]. It said the content was

irrelevant if they were positive polynomials, i.e., SOS. This little information made it difficult to

determine how to define the variables in the code. After much research and testing, the function

[p, c, v] = polynomial(x, degreeMax, degreeMin) was used. This creates an empty parametrized

polynomial with p as the function, c as a vector containing the constants and v as a vector

containing the variables. More information on this function can be found in chapter 2.6 on the

YALMIP toolbox. The empty c vectors that this function created were used as decision variables

in all of the solvesos() functions. This function was also applied in step four, updating the

Lyapunov function V (x). In this step, V (x) was defined once more as an empty polynomial with

the polynomial() function.

Before entering the while loop for the first time, an initial solution = solvesos() needs to be carried

out to have an initial value for the while condition. This worked okay for the two less complex

systems, but an issue arose when the method reached this point in the code for the desired system.

The solution for the β step solution worked okay, but the solution for the γ step resulted in an

infeasible problem. This issue was further investigated, but the issue was found with set A, which

contains V̇ (x) = ∇V · F (x). A conclusion was drawn that the system was too complex when a

solution was found when the V̇ (x) was linearized. The issue was gone after the linearization, and

the next steps worked perfectly. A minor issue arose in the fourth step when finding set A with a

completely new V (x) and linearized system functions, F (x), was required. F (x) was replaced with

A · x to accommodate this.

The next issue to solve was the bilinearity in steps two and three, where γ and β were multiplied

with s2(x) and s1(x), respectively. This thesis uses bisection to solve this problem, but other

options could be explored. Although it could have been implemented better, our while loop is an

easy way to implement the bisection. An issue that arose when using a while loop was how big

49

each step in the iteration should be, i.e., how much to change the increasing values, γ and β in

steps two and three, respectively. In this thesis, the size of steps was decided by testing and failing,

and when the last step that gave a feasible solution is retried, it is not a specific optimized value.

The step length should be reduced, and a new while loop should be entered. This type of iteration

should be repeated until the steps are tiny. However, this would take a lot more coding and would

depend very much on the system and how significant the steps should be in the initial while loop.

The step length could be an interesting subject for further investigation.

Finding a while condition that would cause the loop to stop when the problem is no longer feasible

was difficult regarding the bisection and while loop. For explanation, the γ step is used as a

reference. See chapter 5.5.2 for more details. Firstly, the state of the decision variable vector

c2 was used as a condition, where any(isnan(value(c2))) was the condition. This condition

checked if any content of c2 was Nan, i.e., not a number. This was not an optimal condition,

and after some research the content of the result of the solvesos() function, see chapter 2.6 for

more information on this, a better condition was found in solution.problem. The condition was

changed to whilesolution.problem == 0, i.e., while there was not a problem with the optimization,

this stayed zero, and the while loop continued. This was the solution utilized in the thesis, but

this also made some issues when the problem was zero. However, the optimization printed: ”The

problem is probably unsolvable”, which caused the while loop to continue when the problem was

infeasible. The way to solve this problem was to go in manually in the result which is printed and

find at what value the problem stopped being feasible and changing the condition to stop at this

value. For example, γ step in the CPL had to be changed from: while solution.problem == 0 to

while gamma <= 10E5. There was not enough time to fix this issue, and it should be explored

more.

Another minor issue that was easy to solve was remembering to define the sets and equations in

each iteration in the while loop. This is to implement the newest γ and β values in the equations.

If this is not implemented, the optimization will only use the original γ and β values, and the

problem will always be feasible, which will cause the while loop never to stop.

5.6.2 The Unsolved Issue

Step four was the unsolved issue that needed more time to be solved, which updated the Lyapunov

function found in the initialization step. The publications lacked detailed information on this step.

Mazumder said: ”In this step, γ, β, s1(x) and s2(x) are hold fixed while V (x) is determined,”[11]

and the full optimization problem defined in equation 3.11 in chapter 3.2.1. This information gives

little information on how to execute the step, and the solution that was utilized was to define

V (x) once more in the same way s1(x) and s2(x) were. By using the polynomial() function.

Then, the new empty V (x) was implemented in the sets and equations. The equations were set as

constraints, and the feasibility problem was attempted to be solved with an empty objective. The

vector containing the empty V (x) constants was set as decision variables. This immediately gave

an infeasible problem, and the issues started.

The initially established Lyapunov function would be an obvious solution to the feasibility problem.

This was not the case, and the issue was not solved, but it was investigated and possible problems

could be:

50

• The Solver: It could be that the problem is with the YALMIP toolbox, and changing this

to, say, SOSTOOLS could solve the issue easily. This would be a good subject for more

investigation.

• Too many constraints: that lead to more complex feasibility problems. The new and

empty V (x) is used in two of the three sets and, therefore, in all of the equations that make

the constraints. This makes most of the optimization problem dependent on this new V (x)

instead of the previously relatively easy variables s1(x) and s2(x), which was not as involved

in the equations. This could be an issue.

• Wrong use of the polynomial() function: It was used to redefine V (x), another solution

should be chosen. This is the most likely issue, but no better option was found due to lack

of time. This is something to be explored further. One solution could be to keep the original

function but manage to go in and change the constants in the already established polynomial.

• Could be wrong values for γ and β: There are no references on what these values should

be for the WECS.

• Scaling of values: It attempted to scale the values for the time-reversed van der Pol system,

with no luck.

51

Chapter 6

Conclusion and Future Work

In this last chapter, the thesis concluded that the Sum of Squares method could apply to complex

electrical systems with more investigation and testing. Lastly, there are suggestions for future work

to investigate the method further, as well as possible investigations on the limitations of the scope

made in the first chapter.

6.1 Conclusion

In this master thesis, a comprehensive study was conducted on large signal stability analysis

through a systematic analysis of complex control concepts, answering the first objective of the

thesis.

Chapter 3 did a deep dive into the Sum of Squares method, both the theory that is utilized and

of the execution of the method itself. All the steps are explained thoroughly, and an idea of the

optimization and how to utilize the YALMIP toolbox for the programming. The thesis objective

two was to present and make the method accessible and clear for future related projects, which

was completed.

The Positivstellensatz, which is the background for the set containment equation, is established

in the theory, and the set containment equation is derived from the Positivstellensatz theorem.

Then, the equation is used as a framework for the whole method and in each of the steps of the V-s

iteration to establish an optimized Lyapunov function with the largest estimate of the region of

attraction. According to thesis objective four, the method was then applied and tested on a time-

reversed van der Pol system and a constant power load to learn the method and identify issues.

During both chapter 4 and especially chapter 5, thesis objective three is executed by including a

lot of code to make the programming accessible and provide a clear explanation of how to apply

the method using MATLAB and the YALMIP toolbox. This resulted in much information, and

numerous challenges were successfully addressed to get the method ready to apply to the wind

energy conversion system, which was the fifth objective.

To be able to apply the method to the wind energy conversion system, several preliminary steps

were made, first by applying the leader-follower philosophy to acquire a simpler system that would

make the system easier to work with and had a more significant chance of the SOS method working.

Then a PI Passivity Inspired Controller was implemented to be able to control the current in the

proportional term and the speed in the integral term. Choosing the speed as the controlled variable

in the integral part, differs from the norm in the industry but was utilized to have maximum

52

power extraction from the generator. An incremental model was applied to the system to move

the equilibrium point from zero, which wouldn’t be an interesting point to investigate stability for.

The Sum of Squares method was then applied, and it was immediately discovered that the system

is too complex for the method to work using this software. The derived Lyapunov function V̇ (x)

was linearized for the initial optimization problem to be feasible. The first steps worked okay, but

there was an issue with the stopping criteria, and a manual criterion was found by investigating

where the loop should have stopped. The issue that could not be solved due to lack of time,

appeared at step four, the V (x) step, where the Lyapunov function was redefined as an empty

polynomial and implemented into the original optimization problem with an empty objective, and

the constants in the new V (x) as decision variables. This feasibility problem was infeasible after a

lot of problem-solving and there was no time left to solve the issue.

However, this thesis has made the Sum of Squares method accessible and shown a lot of coding to

make it reproducible. With a few ”tweaks,” the issue should be solvable with more investigation

into the YALMIP toolbox or perhaps with another solver such as SOSTOOLS.

6.2 Future Work

An obvious future work would be to try and solve problems that were encountered in this thesis,

and there was not enough time to solve them. It would be very valuable to manage to get the Sum

of Squares method to work, because it could save many calculations and a lot of time if it were

possible to use optimization instead of extensive mathematical proofs. This method, if perfected,

would be very easily transferred to other systems, both other wind energy systems and others,

such as solar power and hydropower, and could make a lot of things a lot easier.

As mentioned in the discussion, a change of toolbox in MATLAB, or even a change in software,

could solve the issue, and a good alternative is the SOSTOOLS toolbox for MATLAB and could

be investigated. This would provide an estimate of the region of attraction and an accompanying

stability certificate that could guarantee large signal stability for smaller connections to the power

grid.

Other aspects to investigate further could be the simplifications or limitations of the scope made

in chapter 1.3, such as simplification on the generator model and the damping coefficient, d. Due

to their relative magnitude, the generator model was simplified by neglecting hysteresis losses and

magnetic saturation effects.

Moreover, tuning the different gains of the controller is left for future work due to lack of time.

This would also require an extensive investigation and much testing and could be a topic for further

investigation.

Further, the wind energy conversion system was simplified by implementing a leader-follower philo-

sophy, and removing this simplification would be a good place to start when the SOS method is

operational, making the system even more complex. The system was linearized in the second step,

and a logical step would be to remove this and get the method working for a nonlinear system. It

could also be expanded to include an entire wind park in the future.

53

Bibliography

[1] UNFCCC. The Paris Agreement. url: https://unfccc.int/process-and-meetings/the-paris-

agreement (visited on 29/06/2023).

[2] António Guterres. Secretary-General’s statement at the closing of the UN Climate Change

Conference COP28. url: https : / /www .un . org/ sg/ en/ content / sg/ statement /2023 - 12 -

13/ secretary - generals - statement - the - closing - of - the - un - climate - change - conference - cop28

(visited on 20/02/2024).

[3] Mehmet Bilgili, Abdulkadir Yasar and Erdogan Simsek. ‘Offshore wind power development in

Europe and its comparison with onshore counterpart’. In: Renewable and Sustainable Energy

Reviews 15.2 (2011), pp. 905–915. issn: 1364-0321. doi: https://doi.org/10.1016/j.rser.2010.

11.006. url: https://www.sciencedirect.com/science/article/pii/S1364032110003758.

[4] Feng Zhao Mark Hutchinson. ‘GLOBAL WIND REPORT 2023’. In: Global Wind Energy

Council (2023). url: https://gwec.net/globalwindreport2023/.

[5] Tutturen T.M. Nyhus-Solli J. ‘Towards Plug-and-Play Control of Wind Power Systems: Scal-

able stability certificate guaranteeing large signal stability for entire wind parks’. MA thesis.

NTNU, 2022.

[6] ‘Technical Shortfalls for Pan European Power System with High Levels of Renewable Gen-

eration’. In: 2020.

[7] Adolfo Dannier et al. ‘Doubly-Fed Induction Generator (DFIG) in Connected or Weak Grids

for Turbine-Based Wind Energy Conversion System’. In: Energies 15.17 (2022). issn: 1996-

1073. doi: 10.3390/en15176402. url: https://www.mdpi.com/1996-1073/15/17/6402.

[8] Marwa A. Abd El Hamied and Noha H. El. Amary. ‘Permanent Magnet Synchronous Gen-

erator Stability Analysis and Control’. In: Complex Adaptive Systems, 6 (2016).

[9] Md. Enamul Haque, Michael Negnevitsky and KashemM. Muttaqi. ‘A Novel Control Strategy

for a Variable-Speed Wind Turbine With a Permanent-Magnet Synchronous Generator’. In:

IEEE Transactions on Industry Applications 46.1 (2010), pp. 331–339. doi: 10.1109/TIA.

2009.2036550.

[10] Zhenxi Wu et al. ‘A Novel Method for Estimating the Region of Attraction for DC Microgrids

via Brayton-Moser’s Mixed Potential Theory’. In: IEEE Transactions on Smart Grid 14.4

(2023), pp. 3313–3316. doi: 10.1109/TSG.2023.3262166.

[11] Sudip K. Mazumder and Eduardo Pilo de la Fuente. ‘Transient stability analysis of power

system using polynomial Lyapunov function based approach’. In: 2014 IEEE PES General

Meeting — Conference Exposition. 2014, pp. 1–5. doi: 10.1109/PESGM.2014.6939524.

[12] Mohsen Vatani and Morten Hovd. ‘Lyapunov stability analysis and controller design for

rational polynomial systems using sum of squares programming’. In: 2017 IEEE 56th Annual

Conference on Decision and Control (CDC). 2017, pp. 4266–4271. doi: 10.1109/CDC.2017.

8264288.

54

https://unfccc.int/process-and-meetings/the-paris-agreement
https://unfccc.int/process-and-meetings/the-paris-agreement
https://www.un.org/sg/en/content/sg/statement/2023-12-13/secretary-generals-statement-the-closing-of-the-un-climate-change-conference-cop28
https://www.un.org/sg/en/content/sg/statement/2023-12-13/secretary-generals-statement-the-closing-of-the-un-climate-change-conference-cop28
https://doi.org/https://doi.org/10.1016/j.rser.2010.11.006
https://doi.org/https://doi.org/10.1016/j.rser.2010.11.006
https://www.sciencedirect.com/science/article/pii/S1364032110003758
https://gwec.net/globalwindreport2023/
https://doi.org/10.3390/en15176402
https://www.mdpi.com/1996-1073/15/17/6402
https://doi.org/10.1109/TIA.2009.2036550
https://doi.org/10.1109/TIA.2009.2036550
https://doi.org/10.1109/TSG.2023.3262166
https://doi.org/10.1109/PESGM.2014.6939524
https://doi.org/10.1109/CDC.2017.8264288
https://doi.org/10.1109/CDC.2017.8264288

[13] Eline T. Bakke. Plug-and-play control of PMSG-based Wind Turbines. Specialisation Project

in TET4510. Department of Electric Power Engineering, NTNU – Norwegian University of

Science and Technology, June 2023.

[14] Hassan K. Khalil. Nonlinear Systems. Vol. 3. Pearson Education Limited, 2015.

[15] Moritz Diehl, Rishi Amrit and James B. Rawlings. ‘A Lyapunov Function for Economic

Optimizing Model Predictive Control’. In: IEEE Transactions on Automatic Control 56.3

(2011), pp. 703–707. doi: 10.1109/TAC.2010.2101291.

[16] Peter Seiler Abhijit Chakraborty and Gary J. Balas. ‘Susceptibility of F/A-18 Flight Control-

lers to the Falling-Leaf Mode: Nonlinear Analysis’. In: JOURNAL OF GUIDANCE, CON-

TROL, AND DYNAMICS (2011).

[17] Aristide Halanay and Vladimir Rasvan. Applications of Lyapunov Methods in Stability. Feb.

1993. isbn: 978-94-010-4697-8. doi: 10.1007/978-94-011-1600-8.

[18] G. Chesi. Domain of Attraction Analysis and Control via SOS Programming. Springer, 2011.

[19] Pablo A. Parrilo. ‘Structured Semidefinite Programs and Semialgebraic Geometry Methods

in Robustness and Optimization’. PhD thesis. California Institute of Technology, 2000.

[20] Marie-Françoise Roy Jacek Bochnak Michel Coste. Real Algebraic Geometry. Vol. 36. Springer

Berlin, Heidelberg, 1998, p. 430. doi: https://doi.org/10.1007/978-3-662-03718-8.

[21] J. Lofberg. ‘YALMIP: a toolbox for modeling and optimization in MATLAB’. In: 2004 IEEE

International Conference on Robotics and Automation (IEEE Cat. No.04CH37508). 2004,

pp. 284–289. doi: 10.1109/CACSD.2004.1393890.

[22] Zachary Jarvis-Wloszek et al. ‘Control Applications of Sum of Squares Programming’. In:

Positive Polynomials in Control. Ed. by Didier Henrion and Andrea Garulli. Berlin, Heidel-

berg: Springer Berlin Heidelberg, 2005, pp. 3–22. isbn: 978-3-540-31594-0. doi: 10.1007/

10997703 1. url: https://doi.org/10.1007/10997703 1.

[23] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,

2004.

[24] Chen Zhang et al. ‘Synchronizing Stability Analysis and Region of Attraction Estimation of

Grid-Feeding VSCs Using Sum-of-Squares Programming’. In: Frontiers in Energy Research

8 (Apr. 2020), p. 56. doi: 10.3389/fenrg.2020.00056.

[25] Sudip K. Mazumder and Eduardo Pilo de la Fuente. ‘Stability Analysis of Micropower Net-

work’. In: IEEE Journal of Emerging and Selected Topics in Power Electronics 4.4 (2016),

pp. 1299–1309. doi: 10.1109/JESTPE.2016.2592938.

[26] U.L.P. Nguyen et al. ‘Efficient Implementation of Mixing Sequence- Based Van der Pol Duff-

ing System on the Modulated Wideband Converter Compressed Sensing Scheme’. In: Arabian

Journal for Science and Engineering 48 (2022), pp. 6717–6727. url: https://doi.org/10.1007/

s13369-022-07529-3.

[27] Fanwei Meng et al. ‘Application of Sum-of-Squares Method in Estimation of Region of At-

traction for Nonlinear Polynomial Systems’. In: IEEE Access 8 (2020), pp. 14234–14243. doi:

10.1109/ACCESS.2020.2966566.

[28] Hanejko F. INDUCTION VS. PERMANENT MAGNET MOTOR EFFICIENCY — AUTO

ELECTRIFICATION. url: https://www.horizontechnology.biz/blog/induction-vs-permanent-

magnet-motor-efficiency-auto-electrification (visited on 02/02/2024).

[29] Rafael Cisneros et al. ‘An adaptive passivity-based controller for a wind energy conversion

system’. In: 2019 IEEE 58th Conference on Decision and Control (CDC). 2019, pp. 4852–

4857. doi: 10.1109/CDC40024.2019.9030090.

55

https://doi.org/10.1109/TAC.2010.2101291
https://doi.org/10.1007/978-94-011-1600-8
https://doi.org/https://doi.org/10.1007/978-3-662-03718-8
https://doi.org/10.1109/CACSD.2004.1393890
https://doi.org/10.1007/10997703_1
https://doi.org/10.1007/10997703_1
https://doi.org/10.1007/10997703_1
https://doi.org/10.3389/fenrg.2020.00056
https://doi.org/10.1109/JESTPE.2016.2592938
https://doi.org/10.1007/s13369-022-07529-3
https://doi.org/10.1007/s13369-022-07529-3
https://doi.org/10.1109/ACCESS.2020.2966566
https://www.horizontechnology.biz/blog/induction-vs-permanent-magnet-motor-efficiency-auto-electrification
https://www.horizontechnology.biz/blog/induction-vs-permanent-magnet-motor-efficiency-auto-electrification
https://doi.org/10.1109/CDC40024.2019.9030090

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background and Motivation
	Objectives and Methodology
	Limitation of Scope
	Thesis Overview

	Background Information
	Nonlinear Systems and Equilibrium Points
	Large Signal Stability
	Lyapunov Stability
	Region of Attraction
	Estimation

	Positivstellensatz
	The YALMIP Toolbox

	The Sum of Squares Method
	Sum of Squares Theory
	Utilizing the S-Procedure

	Establishing the Set Containment Problem
	Applying the Positivstellensatz

	V-s Iteration
	Step One - Initialization
	Step Two - Step
	Step Three - Step
	Step Four - V(x) Step
	Step Five - Convergence Step

	Complementary Systems
	Time-Reversed Van Der Pol System
	V-s Iteration

	Constant Power Load System
	Incremental Model
	V-s Iteration

	Wind Energy Conversion System
	System Information
	Leader Follower Philosophy
	Implementing PI Passivity Inspired Control
	Incremental Model
	Applying the Sum of Squares Method
	Step One - Initialization
	Step Two - Step
	Step Three - Step
	Step Four - Update V(x)
	Step Five - Check for Convergence

	Results and Discussion
	Smaller Issues that were Solved
	The Unsolved Issue

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

