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Abstract

Physics-based white-box models are employed for es-
timating building loads and for sizing energy systems
at a high level of accuracy. However, these models
can become computationally demanding, or might
require high technical expertise to be constructed.
Therefore, they can become unsuitable for advanced
control applications, such as in a model predictive
controller (MPC) or for online training of reinforce-
ment learning agents, where simulation speed is cru-
cial. Alternatively, grey-box and black-box models
can be employed that require less computational ef-
fort while achieving sufficient performance in predict-
ing relevant control signals. Even though black-box
models can theoretically represent any dynamical sys-
tem by implicit inclusion of epistemic unknowns, they
lack physical interpretability and require an extensive
data set to converge to a suitable model. This work
describes the formulation of an ensemble of grey-box
models derived from the output of a white-box model
from the design phase of a real building. Thus, it
presents a novel method to select representative mod-
els able to describe the most distinct load curves.
As a result, we can reduce the model complexity
while maintaining comparable performance at a sig-
nificantly lower computational cost suitable for con-
trol applications.

Highlights

• The study proposes a method for model order
reduction to describe a nonlinear system of un-
known structure, which does not require expert
knowledge to operate.

• A set of most representative second-order grey-
box models is generated from the original white-
box models.

• The identified grey-box models capture the sys-
tem dynamics with an error ranging from 0.33K
to 0.51K, while reducing the computational time
by a factor of 100.

• The clustered approach yields better results in
terms of RMSE than finding a single general
model on the entire data set.

• The proposed method is flexible and can be ap-
plied to different white-box models or real sys-
tems, with adjustments made to the input vector
and RC model structure.

Introduction

Thermal modelling and simulation play a key role in
the initial design phase of a building and during its
operation. Design models are often formulated know-
ing the physical properties associated with each build-
ing element, and the resulting simulations are used
to design and size various systems, including heat-
ing, ventilation and air conditioning (HVAC) systems
(Farzaneh et al., 2019). On the other hand, the mod-
els and simulations used for building operations are
essential for predicting future internal thermal con-
ditions, which can be used to optimise the control
strategy, such as in the case of model predictive con-
trol (Drgoňa et al., 2020) or reinforcement learning
(Perera and Kamalaruban, 2021). Both applications
require an accurate model of the indoor thermal envi-
ronment. However, building model development and
calibration are often cited as the biggest obstacle to
the widespread adoption of model-based control solu-
tions in buildings (Drgoňa et al., 2020). The existing
modelling techniques can be divided into three cat-
egories: white-box, grey-box and black-box models.
They differ based on the data and physical insights
included in the model formulation. White-box mod-
els are primarily based on physical knowledge. On the
opposite side of the spectrum, black-box models rely
only on measured data. Between these two extremes,
grey-box models combine the information from phys-
ical insights and measured data. This approach per-
mits a more straightforward calibration and greater
scalability than white-box models, which addresses
one of the commonly cited limitations of MPC, i.e.
the significant resources, in terms of both time and
expert knowledge, required to provide a reliable con-
trol model (Drgoňa et al., 2020). One of the reasons
why the grey-box approach is often preferred over
the black-box is the lack of physical interpretation of
the black-box results. The grey-box model has bet-
ter generalisation capabilities even if the test data is



significantly different from the training data (Arendt
et al., 2018). White-box models formulated in the
building design phase are often too complex to be ma-
nipulated without expert knowledge or too heavy for
computationally intensive HVAC control approaches,
due to computational resource limitations or simula-
tion configuration settings, such as real-time simula-
tion, or when a large number of simulations need to
be performed quickly. Model order reduction aims
to lower the computational complexity of such prob-
lems by reducing the degrees of freedom of the model
and therefore approximating the original model. The
main qualities of low-order models are a small ap-
proximation error compared to the full-order model
and the conservation of the properties and dynamic
characteristics of the full-order model. In the liter-
ature, several model reduction techniques focus on
linear systems and assume the full-order model is
known (Schilders et al., 2008). The method that
we propose is based on identifying low-order resistor-
capacitor network (RC) models using the data gener-
ated by the full-order model. The novelty of our work
lies in the selection of representative models cross-
validated with a large ensemble of individual models,
thus achieving high generality for distinct load curves.
Simulations show that the prediction of the indoor
temperature is close to the one generated by the full-
order model, with an average root mean square er-
ror (RMSE) of less than half a degree kelvin while
reducing the computation time by a factor of 100.
This study considers the white-box model used in the
design phase of the NEST HiLo (High performance
- Low emissions) building, which is a recently built
research office facility in Zurich, Switzerland (Block
et al., 2017). Within HiLo, we focus on Office 1, a
22.75m2 zone, which faces towards the southwest, as
shown in Figure 1. The white-box model of this zone
is used to carry out this study.

Figure 1: External view of the HiLo unit from the
south-west. Office 1 is located on the HiLo bottom
floor.

Methodology
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Figure 2: The plot shows the daily overlay of the vari-
ables in the data set and their average values. From
the top, the subplots represent the room indoor tem-
perature, the outdoor temperature, the solar gains to
the room, the water mass flow rate through the TABS,
and the TABS water supply temperature. The heating
and cooling scenarios are represented in red and blue,
respectively.

Before getting to model order reduction, we first de-
scribe the full-scale nonlinear model, including its in-
puts and outputs and the software used. Next, we de-
scribe the data set generated by the white-box model,
the formulation of reduced order grey-box models
from this data, and finally, our approach to identify
representative models.

White-box model description

TRNSYS was chosen as the base for the white-box
model because of its robustness and broad use in re-
search. TRNSYS is a software environment for sim-
ulating transient system behaviour. The program is
mostly used in the building domain, although it may
also simulate other systems (e.g. traffic flow or biolog-
ical processes) (Bradley and Kummert, 2005; Duffy
et al., 2009).

The nonlinear physics-based TRNSYS model mT(·)
maps the indoor temperature Ti,k and the input vec-
tor vk at the current time-step k to the indoor tem-
perature Ti,k+1 at subsequent time-step k + 1. The
external disturbances of the system, i.e. variables
that cannot be controlled, correspond to the vec-
tor dk formed by the outdoor temperature To,k, the

solar gains to the zone Q̇s,k, the Thermally Acti-
vated Building System (TABS) inlet water temper-
ature Tws,k. The water mass flow rate of the TABS
ṁk can be controlled by acting on the valve open-
ing uk. The input vector aggregates the disturbances
and the manipulated variable and can be expressed
as vk = [dk, ṁk]

′ = [To,k, Q̇s,k, Tws,k, ṁk]
′. The de-
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b)

Figure 3: RC representation of the two considered
models. a) shows the first-order model, b) shows the
second-order model.

scribed relationship can be denoted as:

Ti,k+1 = mT(Ti,k, vk, θ) (1)

where θ is the vector collecting the internal param-
eters of the model. We used this white-box model
implementation to generate a data set for the model
order reduction process. The original model has been
developed and presented in (Lydon et al., 2019).

White-box model generated data set

The TRNSYS model simulated the building systems
in Office 1 for 360 individual days with a time step
of 30min. Each case had varying weather condi-
tions and an optimised valve opening vector u for the
TABS. This process generated a data set of 360 inde-
pendent days (in the following, a day is denoted in a
more general sense as a batch) consisting of 48 sam-
ples for each measured value. The initial condition
for the indoor temperature Ti,0 is fixed to 20 ◦C. The
TABS inlet water temperature Tws,k is set to 18 ◦C or
30 ◦C for the entire duration of the day, according to
the cooling or heating scenario, respectively. Figure 2
summarises the data set by showing the overlay of all
the batches with the corresponding mean values. On
average, during the heating scenario, the solar gains
to the room are low. This aspect, combined with a
low outdoor temperature, triggers the control system
to activate the TABS system on average in the early
hours of the day. On the contrary, during the cool-
ing scenario, the outdoor temperatures are higher, as
well as the solar gains in the afternoon, being the of-
fice oriented towards the southwest. Therefore, the
TABS system is utilised more during the second half
of the day, on average.

This data set has been generated considering compa-
rable disturbances to those of the real system. How-
ever, the RC model parameters identified on this data
can be updated when data collected from the real sys-
tem becomes available, following the same methodol-
ogy.

Grey-box model formulation

Grey-box models combine previous physical knowl-
edge and statistical knowledge extracted from data.
The physical knowledge is encoded in the model by
a system of first-order ordinary differential equations
(Li et al., 2021).

We use first-order and second-order models in our
work, but this workflow can be extended to other
model structures or more complex models. The fol-
lowing ordinary differential equation describes the
first-order model:

CiṪi = hw(To − Ti) + Q̇s + cpṁ(Tws − Ti) (2)

where: Ci is the indoor zone thermal capacitance, Ṫi

is the indoor temperature time derivative, hw is the
thermal conductance between the outside air and the
indoor temperature, cp is the specific heat capacity
of water at standard conditions. The last term rep-
resents the heat gains provided by the TAB system.
They have been approximated by using Ti instead of
the outlet water temperature. The model has a sin-
gle state Ti, while the two lumped parameters are
grouped in the vector θ1 = [hw, Ci].

We extended the model complexity by adding the ad-
ditional state Ts, which should better represent the
overall TABS dynamics. The system of ordinary dif-
ferential equations then becomes:{

CiṪi = hw(To − Ti) + Q̇s + hs(Ts − Ti)

CsṪs = hs(Ti − Ts) + cpṁ(Tws − Ts)
(3)

where: Ci and Cs are the indoor room equivalent ther-
mal capacitance, and the slab equivalent thermal ca-
pacitance, respectively, Ṫi and Ṫs are the indoor tem-
perature time derivative and slab temperature time
derivative, respectively, hw is the equivalent thermal
conductance between the outside air and the indoor
temperature, and hs is the equivalent thermal con-
ductance between the indoor air temperature and the
slab temperature. The last term in the second differ-
ential equation describes the heat gains provided by
the TAB system. They have been approximated by
using Ts instead of the outlet water temperature. The
four unknown parameters are grouped in the vector
θ2 = [hw, hs, Ci, Cs].

The models have been discretised and by means of
the forward Euler difference method. Therefore, the
first-order model can be represented by:

Ti,k+1 = m1(Ti,k, uk, θ1) (4)

while the second-order model can be represented by:[
Ti,k+1

Ts,k+1

]
= m2

([
Ti,k

Ts,k

]
, uk, θ2

)
(5)

Grey-box model identification approaches

We used three optimisation approaches to identify the
unknown parameter vectors θ1 and θ2:



• Single batch (SB) approach: The two mod-
els have been trained to each of the 360 individ-
ual batches by utilising the least square method,
which finds the optimal parameters values by
minimising the sum of squared residuals JSB of
the indoor temperature Ti,k:

JSB =

n∑
k=1

(
Ti,k − T̂i,k

)2

(6)

being n the number of time steps in the batch.
The optimisation has been carried out using
Python, particularly the scipy package’s func-
tion least squares, which implements the Trust
Region Reflective algorithm. This approach gen-
erated 360 sets of parameters with different val-
ues for each of the two models. However, this
approach leads to overfitting for the general case
and having a different model for each batch is
not in the aim of this work.

• Whole data set (WD) approach: Here, we
aim to find one model (i.e., the best θ1 and θ2
amongst all batches) that can represent all of
the 360 days well. We use two alternative meth-
ods to increase the chance of finding the global
optimum. Firstly, we simply extended the previ-
ously described approach. It consists of training
the models on a single batch to solve the least
square problem, then evaluating them on all the
other batches in a k-fold cross-validation fashion
(Refaeilzadeh et al., 2016). The model that min-
imises the cost function JWD is then chosen as
the single model representing the data set. JWD

describes the average root mean square error over
the entire data set:

JWD =
1

b

b∑
j=1

√√√√ 1

n

n∑
k=1

(
Ti,k − T̂i,k

)2


j

(7)

being n the number of time steps in the batch,
and b the number of batches in the data set.

The second method consists in training the mod-
els on all the batches at once. This is motivated
by the fact that picking the best model using
k-fold cross-validation bears to risk of being in
a local optimum for the minimisation of Equa-
tion 7. Therefore, we used a global optimisation
method to find the set of parameters that min-
imise Equation 7. In particular, we utilised the
particle swarm optimisation method (PSO) with
the Python package PySwarms (Miranda, 2018).
We maintained the default hyperparameter val-
ues, namely c1 = 0.5, c2 = 0.3, and w = 0.9.
They represent the cognitive, social and swarm
inertia parameters, respectively. The number of
particles in the swarm has been set to 100 and the
number of iterations limited to 200 ∗ nθ, where

Table 1: Identified parameter values.
Model Parameter Initial value Bounds Value LS Value PSO

m1 hw [W/K] 10 [1, 105] 1.12 1.93
Ci [J/K] 4× 105 [105, 1010] 1.17× 108 7.22× 108

m2 hw [W/K]] 10 [1, 105] 6.73 2.94
hs [W/K] 100 [1, 105] 2.21× 102 1.58× 103

Ci [J/K] 4× 105 [103, 1010] 7.01× 105 4.12× 106

Cs [J/K] 5× 106 [103, 1010] 8.41× 107 5.65× 109

nθ is the number of parameters in the vector θ1
or θ2.

1

• Clustered set (CS) approach: The last
method consists of a combination of the two pre-
vious approaches. First, we divide the data set
into groups of similar dynamics using k-means
clustering (MacQueen, 1967). Then, we opti-
mise the model parameters on these clusters us-
ing k-fold cross-validation as described in the
whole data set approach. This method reduces
the number of final models needed to approxi-
mate the original TRNSYS model down to four
models, while having significantly better results
than considering one single model for the whole
data set, as shown in the results section. This
approach is loosely inspired by (Waibel et al.,
2019).

Finally, we compared the average simulation time of
the TRNSYS model and the grey-box models. The
times reported are the times taken by Python 3.8.5 in
running 100 simulations of the zone for 24 hours on a
laptop PC with a 2.60GHz Intel Core i7-9850H CPU
with six cores and 16 GB of RAM.

Results and discussion

First, the results considering the whole data set are
described and then, we focus on the clustered ap-
proach.

Whole data set approach

Both set of RC model parameters θ1 and θ2 are iden-
tified on single batches, minimising the cost function
defined by Equation 6. The initial parameter values
and boundaries provided to the minimisation algo-
rithm start from educated guesses based on physical
values, as shown in Table 1.

The average RMSE on the training batches is
0.86 kelvin for the first-order model and 0.24 kelvin
for the second-order model. Based on these results,
we consider the second-order model complex enough
to capture the dynamics of the TRNSYS model. On
the other hand, the first-order model formulation will
not be considered for the rest of this work since its
performance in this particular case study is inferior
to the second-order model.

We ran each model on all the other batches to find
a unique model that minimises the overall average

1We have also tried CMA-ES by Hansen et al. (2003) using
default parameters and the same evaluation budget, but the
algorithm could not find satisfactory solutions.
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Figure 4: Error heat map representation on the left
side. The rows represent the identified models, while
the columns represent the batches. The values are
the RMSE achieved by the mth model on the bth

batch. The average RMSE on all the batches for each
mth model is on the right side. The star indicates
the model that has the lowest RMSE over the whole
dataset.

RMSE on the whole data set. This process resulted
in the heat map representation in Figure 4. The rows
list the 360 second-order models, while the columns
group the batches in the data set. The value of each
coordinate is the RMSE achieved by the mth iden-
tified model on the bth batch. As expected, the di-
agonal of the matrix shows the lowest RMSE values,
as the models have been identified to the respective
batch. In addition, the heat map defines some regions
that correspond to different scenarios. A model iden-
tified on a specific batch will generally perform well
also on batches with similar thermal dynamics. In
fact, models that show low RSME values during the
summer period (batches 120 to 240) perform worse
during winter (batches 0 to 120 and 240 to 360), and
vice versa. The 34th model, indicated by the star
in Figure 4, minimises Equation 7 with a value of
0.62 kelvin, and it is therefore chosen as the optimal
one.

As described in the methodology section, we used
global optimisation methods such as PSO to find
the best set of model parameters. It found a lo-
cal minimum with a JWD value of 1.32 kelvin for the
first-order model and 1.26 kelvin for the second-order
model. The Table 1 reports the optimal parameters
for the two approaches.

Although the RMSE is generally low, a closer look at
the top plot of Figure 8 shows that this method is not
achieving good results in representing the white-box
models’ dynamics. In particular, this model is not
able to capture the indoor temperature peak in the
first 12 hours of the day. Two ways are available to
enhance the results: one is to increment the model
complexity, while the other one is to divide the data
set into homogeneous clusters and identify a different
model for each cluster. We decided on the latter solu-
tion since the current model structure has proven to
be complex enough to represent the system dynamics
in the training batches.

Clustered set approach

We divided the original data set into clusters with
similar indoor temperature dynamics. First, we sep-
arated cooling and heating scenarios according to the
water supply temperature Tws value, and then we sub-
divided the heating case. We used the k-means algo-
rithm, an unsupervised learning method. K-means is
an iterative algorithm that separates the data set into
a pre-defined number of k distinct clusters where each
data point belongs to only one group. It assigns data
points to a cluster such that the chosen distance met-
ric between the data points and the cluster’s centroid
is at the minimum (Sinaga and Yang, 2020). The cen-
troids are defined by means of all points that are in
the same cluster. The algorithm first chooses random
points as centroids and then iterates, adjusting them
until full convergence.

Unlike supervised learning, which has a ground truth
for assessing model performance, clustering analysis
does not have solid metrics that can be used to eval-
uate the results of various clustering algorithms. In
addition, k-means takes the number of clusters k as
a hyperparameter. We used the elbow method to
get an intuition of how many clusters k are needed.
The elbow method computes a curve which shows the
WCSS (Within-Cluster Sum of Square) as a function
of the number of clusters. WCSS is the sum of the
squared euclidean distance between each point and
the corresponding cluster’s centroid. Figure 5 depicts
the elbow curve for the heating scenario data set.

To determine the optimal number of clusters, we se-
lected the value of k at the point after which the
WCSS starts to decrease linearly. Thus for the given
data, we determined that the optimal number of clus-
ters for the data is 3. We ran the k-means algorithm
with this setting, and the results are shown in Figure
6. This procedure divided the heating scenario data
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set into k = 3 clusters exhibiting different dynamics,
specifically in the first 12 hours. In this period, there
could be a pre-heating that is hardly modelled using
the whole-data set approach. The three heating clus-
ters, H1, H2, H3, and the cooling case C have 97, 74,
93, and 96 batches, respectively.
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Figure 6: The indoor temperature signals are assigned
to the corresponding cluster, whose centroid is repre-
sented as a bold line. Each cluster captures a differ-
ent dynamic behaviour. H1, H2, H3 are the heating
clusters identified with k-means, and C is the cooling
scenario.

We applied the model identification method described
in the methodology section to each of the four clus-
ters. This resulted in four second-order models, hav-
ing slightly different dynamics according to the re-
spective parameters. Figure 7 shows the identified
model parameter value distributions on different clus-
ters. As expected, the parameter variance is re-
duced, indicating that the optimised parameter mod-
els can better capture the system’s dynamic consid-
ering different batches. The best models of each clus-
ter can outperform the model identified on the whole
data set. The average RMSE is 0.42 kelvin for H1,

0.51 kelvin for H2, 0.41 kelvin for H3, 0.33 kelvin for
C; considerably better than 0.62 kelvin achieved by
the model trained on the whole data set , as shown in
Table 2. It is important to notice that the variance in
the parameter values in the H2 case are higher than
the ones computed for the WD approach mainly be-
cause of two factors: the smaller amount of batches
available with respect to the other scenarios; and the
almost static behaviour of the system in this cluster
case, making the optimisation task difficult. Table
2 summarises the final identified parameter values of
the second-order RC model for each cluster and for
the whole data set approach. One can notice that the
thermal capacitance of the TABS Cs in the cooling
scenario C is very high and lies at the optimisation
boundary. Therefore, the dynamic behaviour of the
TABS can be neglected and can be considered as a
static component.

Figure 8 gives a qualitative validation of the mod-
els in different scenarios. The general model per-
forms worse than the model trained on the specific
cluster but on average better than models trained on
other clusters since it approximates the average be-
haviour of the whole data set. Finally, we tested the
computation time that the TRNSYS model and the
proposed ensemble of grey box models need to sim-
ulate a day’s worth of data. The TRNSYS model
takes, on average, 0.25 second to complete this task,
while the model developed with our approach only
needs approximately 0.002 second. This comparison
confirms that our approach resulted in an extremely
lightweight low-order model, which can still approxi-
mate the original dynamics with low error.

Table 2: Identified model parameter values and
RMSE for each cluster.
Cluster hw [W/K] hs [W/K] Ci [J/K] Cs [J/K] RMSE [K]

H1 1.47× 101 6.70× 101 2.32× 106 1.14× 106 0.42
H2 7.22× 101 5.86× 102 1.74× 107 4.59× 106 0.51
H3 1.14× 101 7.43× 101 1.86× 106 1.50× 108 0.41
C 1.33× 101 1.94× 102 1.88× 106 9.99× 109 0.33

WD 6.73 2.21× 102 7.01× 105 8.41× 107 0.62

Conclusions and future work

This study presented a method for model order re-
duction of a nonlinear system whose model structure
is neither known a priori nor requires expert knowl-
edge to be operated. A set of second-order grey-box
models identified on clusters of data generated by the
white-box model can capture the dynamics with an
error ranging from 0.33K to 0.51K while reducing the
computational time by a factor of 100. The clustered
approach yields better results in terms of RMSE than
finding a single general model on the whole data set.
The proposed identification workflow can be applied
to different white-box models or to real systems, ad-
justing the input vector according to the measured
input values, and modifying the RC model structure
accordingly. The model performance will be validated
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Figure 7: Model parameter box plot. It shows the
distribution of the parameter values on different clus-
ters. The y-axis is in logarithmic scale. The outliers
are neglected for clarity.

on the data generated by the NEST HiLo unit in fu-
ture work. Moreover, a technique that determines the
cluster case based on the input vector v is under de-
velopment. Finally, this model will be used to train
a reinforcement learning policy that will be deployed
to the real building HiLo.
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ter, D. L. Vrabie, and L. Helsen (2020, Septem-
ber). All you need to know about model predictive
control for buildings. Annual Reviews in Control ,
S1367578820300584.

Duffy, M. J., M. Hiller, D. E. Bradley, W. Keilholz,
and J. W. Thornton (2009). Trnsys-features and
functionalitity for building simulation 2009 confer-
ence. In 11th International IBPSA Conference-
Building Simulation, pp. 1950–1954.

Farzaneh, A., D. Monfet, and D. Forgues (2019,
May). Review of using Building Information Mod-
eling for building energy modeling during the de-
sign process. Journal of Building Engineering 23,
127–135.

Hansen, N., S. D. Müller, and P. Koumoutsakos
(2003). Reducing the time complexity of the de-
randomized evolution strategy with covariance ma-
trix adaptation (cma-es). Evolutionary computa-
tion 11 (1), 1–18.

Li, Y., Z. O’Neill, L. Zhang, J. Chen, P. Im, and
J. DeGraw (2021, August). Grey-box modeling
and application for building energy simulations -
A critical review. Renewable and Sustainable En-
ergy Reviews 146, 111174.

Lydon, G., S. Caranovic, I. Hischier, and A. Schlueter
(2019). Coupled simulation of thermally active
building systems to support a digital twin. Energy
and Buildings 202, 109298.

MacQueen, J. (1967). Classification and analysis of
multivariate observations. In 5th Berkeley Symp.
Math. Statist. Probability, pp. 281–297. University
of California Los Angeles LA USA.

Miranda, L. J. (2018). Pyswarms: a research toolkit
for particle swarm optimization in python. Journal
of Open Source Software 3 (21), 433.



18

19

20

21

22

23

24
T i

 [
C

]
H1

TRNSYS
H1
H2
H3
C
WD

18

19

20

21

22

23

24

T i
 [

C
]

H2

TRNSYS
H1
H2
H3
C
WD

18

19

20

21

22

23

24

T i
 [

C
]

H3

TRNSYS
H1
H2
H3
C
WD

0 6 12 18 24
Time [h]

18

19

20

21

22

23

24

T i
 [

C
]

C

TRNSYS
H1
H2
H3
C
WD

Figure 8: Qualitative results showing the performance of the models on different cluster scenarios. H1, H2, H3,
C, WD refer to the model identified on the heating scenario 1, heating scenario 2, heating scenario 3, cooling
scenario, and on the whole data set.

Perera, A. and P. Kamalaruban (2021, March). Ap-
plications of reinforcement learning in energy sys-
tems. Renewable and Sustainable Energy Re-
views 137, 110618.

Refaeilzadeh, P., L. Tang, and H. Liu (2016). Cross-
Validation. In L. Liu and M. T. Özsu (Eds), Ency-
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