
Assessment strategies for cross-curricular
programming in secondary education

Ana Fuentes-Mart́ınez1[0000−0002−1748−8837],
Justyna Szynkiewicz2[0000−0001−9118−0059],
Majid Rouhani2[0000−0002−9083−4409], and
Kateryna Osadcha2[0000−0003−0653−6423]

1 University West, Trollhättan, Sweden ana.fuentes-martinez@hv.se
2 Norwegian University of Science and Technology, Trondheim, Norway
{justyna.szynkiewicz, majid.rouhani, katheryna.osadcha}@ntnu.no

Abstract. The increasing integration of computer science and program-
ming into formal school education is a commendable endeavor that has
seen different implementation solutions. Sweden and Norway have opted
for a cross-curricular model, incorporating the task of teaching and learn-
ing computing into already existing subjects, mainly within STEM mod-
ules. In-service teachers often struggle with teaching programming effec-
tively and integrating acquired programming knowledge into their educa-
tional settings. Additionally, instructors need to understand and evaluate
programming learning outcomes, taking into account the new curriculum
requirements. There is a lack of clear guidance regarding how teachers
could assess students’ knowledge and skills when programming becomes
a part of their subject. This study investigates the assessment approaches
of in-service teachers who have undergone a university-level professional
development program.
The qualitative analysis of the teachers’ assessment plans reveals that
traditional assessment strategies are adjusted for the sake of program-
ming, leaning towards formative initiatives featuring discussions, presen-
tations, and student projects, and to a lesser extent, tests and exams.
With respect to programming, teachers’ assessment initiatives cover a
broad spectrum of knowledge with different degrees of abstraction and
granularity, from the particularities of coding and debugging to more
abstract issues of algorithmic thinking and even program quality such
as robustness or reliability. Higher Education courses addressing teacher
professional development in programming might therefore integrate these
strategies to support teachers’ assessment in programming.

Keywords: Programming, Computational Thinking, · Cross-curricular
Assessment · Subject integration · K-12 · ISCED2 · ISCED3.

1 Introduction

School policies in many countries have been updated to include digital profi-
ciency, computational thinking (CT), and programming in recognition of the sig-



2 A. Fuentes-Mart́ınez et al.

nificance of digitalization in modern society. Existing literature shows that teach-
ing and learning programming can be arduous and time-consuming (e.g. [11,1]).
In-service teachers, particularly those with limited time and prior programming
knowledge, often struggle to teach programming effectively and integrate their
newly acquired programming knowledge into their educational settings. This
means not only transferring programming skills and knowledge into their ac-
tual teaching practice but doing so within the curricular constraints of their
subject. Along these conditions, educators and researchers need to establish re-
liable measures to evaluate students’ learning outcomes including fundamental
programming concepts and skills.

The 2020 revision of the Norwegian curricula LK201 for ISCED0-3[18,10] fo-
cuses on digital skills alongside traditional basic skills like reading and writing
to be emphasized in all subjects. Programming is included in the curriculum for
Mathematics, Science, Music, and Arts and Crafts, with varying levels of de-
tail given in each subject’s competence goals. The curriculum for mathematics
in particular, states that students shall be able to use programming to explore
and solve mathematical problems whereas in science, students are instructed
to “explore, construct, and program technological systems with interdependent
parts” (ages 10-12) and to “utilize programming to investigate natural phenom-
ena” (ages 13–16). This perspective of programming as a tool is also found in
the curriculum for Music, Arts and Crafts, where students are encouraged to
incorporate programming into their creative processes, such as using it to create
interactive and visual expressions.

Modern learning theory makes clear that expertise is developed within spe-
cific domains and learning is situated within specific contexts where it needs
to be developed and from which it must be helped to transfer [17]. This cross-
curricular approach brings attention to the issue of integrated assessment, which
is the focus of this study. As an essential part of teaching and learning with pro-
gramming, assessment practices need to be acknowledged and understood in
the development of teacher professional programs. Therefore, in this paper, we
investigate how teachers envision assessment in their plans to implement pro-
gramming activities in their respective subjects.

The following research questions (RQ) were asked in the study:

1. Which strategies do teachers envision in their assessment of students’ pro-
gramming activities in Norwegian schools?

2. What kind of programming concepts and skills do the teachers plan to assess
in this context?

The questions address the lack of research regarding cross-curricular assess-
ment with programming in secondary education. In order to provide teachers
with the necessary guidance towards the implementation of an integrated cur-
riculum, the purpose of this paper is to surface and critically discuss the problems
and opportunities that arise when subject assessment incorporates programming.

1 Kunnskapsløftet 2020 https://www.udir.no/laring-og-trivsel/lareplanverket

https://www.udir.no/laring-og-trivsel/lareplanverket


Assessment strategies for programming in ISCED2-3 projects 3

The paper is organized into seven sections. The next section situates the in-
vestigation within the ongoing research on assessment, particularly with respect
to programming in secondary education. Section 3 describes the process of gath-
ering and analyzing data for this study. The results are presented and examined
in sections 4 and 5 and their implications are further discussed in section 6.
Section 7 finalizes the argument with overarching conclusions.

2 Background

Assessment is a crucial teaching activity because it provides insights into stu-
dents’ understanding, allowing for feedback on their progress and identifying
areas of improvement. Additionally, assessment can serve as a means of recogni-
tion and comparison, ensuring that learning goals are being met and preparing
for future academic or career endeavors [19].

Effective teaching and learning require a close alignment between the in-
tended learning outcomes, the learning activities and assessment methods, and
the content of a course (e.g. [2,5]). Thinking in terms of alignment leads to a
more focused and effective learning experience, as students are able to see the
connections between what they are learning, how they are learning it, and how
they are being evaluated. When teaching includes elements of programming and
automation, these too shall be included in the corresponding assessment to con-
vey coherence within the subject.

It is nevertheless difficult to isolate assessment from the rest of the activ-
ities that constitute teaching and learning. For the sake of this investigation,
assessment refers to those activities initiated by the teacher with the purpose
of providing information on students’ achievements with respect to the teaching
goals. It leaves out other perspectives on assessment, such as those aiming at
curriculum development, school accountability, or teacher performance. Rather,
it centers on the micro context of student work that leads the teacher to evalu-
ation, judgment, or decision on student progress and ability [19].

Particularly entangled with assessment seems to be the concept of feedback,
where the information retrieved from assessing students’ achievements is re-
turned to them in order to give the student insights into their strengths and areas
for improvement [23]. Winstone and Boud mean that assessment is the process
of evaluating a student’s performance, while feedback is the information given to
the student to help them understand their performance and make improvements
[23]. Assessment generates data that informs educators about students’ progress,
while feedback is a tool for improvement based on that assessment data, making
learning visible [16].

2.1 Assessment in Secondary Education

Providing a succinct summary of assessment practices in secondary education
has proven to be a laborious task. Hubwieser et al. [9] point out that the existence
of many different educational systems, with different types of schools, varying



4 A. Fuentes-Mart́ınez et al.

even within a single country and over time not only adds to the difficulty of
building on earlier work but obstructs a unified view on assessment [21].

Concerning the purpose of assessment, scholars distinguish summative and
formative assessment [4]. Summative assessment is generally given at the end
of a lesson, semester, or school year to “sum up” what the student knows and
has learned. It is used for evaluative purposes. On the other hand, Formative
assessment is used during the learning process in order to determine gaps in
a student’s knowledge and to adjust instruction accordingly [4, p. 36]. To this
distinction, Caffrey adds Predictive assessment, designed to determine whether
a student is on track for meeting achievement goals, and Diagnostic assessment,
which purpose is to determine a student’s academic, cognitive, or behavioral
strengths and weaknesses, and to identify students as eligible for special edu-
cation. For the purpose of this investigation, we consider assessment used to
determine what the student has learned rather than to plan instruction, predict
future achievement, or diagnose cognitive abilities.

2.2 Assessment in Programming Education

Much of the research on assessment of programming knowledge has been con-
ducted in Higher Education with a clear focus on automatic assessment tools of
evaluation and feedback (e.g. [24]). For younger students, assessment is generally
less formalized, particularly when the curriculum guidelines are vague and the
progression is not well defined.

Addressing programming and CT, Werner et al. [22] proposed an assessment
model called Game Computational Sophistication (GCS) suitable for younger
students and Moreno-León et al. constructed an analytical tool to assess pro-
gression in terms of coding and CT skills assigning complexity scores to block-
programming solutions [14]. Also, Brennan and Resnick [3] proposed a model
for measuring CT skills. They suggested a framework with three dimensions;
Computational Concepts, Computational Practices, and Computational Per-
spectives. Computational Concepts include sequences, loops, parallelism, events,
conditionals, operators, and data. The Computational Practices involve focusing
on the thinking and learning process while Computational Perspective is about
children’s “understandings of themselves, their relationships with others, and
the technological world around them” [3].

The Norwegian curriculum (LK20) offers some guidelines for assessment.
For example, the ordinance ’Competence aims and assessment’ for mathematics
(courses 1T and 1P in ISCED3) indicates that

The teacher and the pupils shall engage in dialogue about their devel-
opment in programming and strategies for solving problems. The pupils
shall have the opportunity to try and fail. With the competence the pupils
have demonstrated as the starting point, they shall have the opportunity
to express what they believe they have achieved and reflect on their de-
velopment in the subject. The teacher shall provide guidance on further
learning and adapt the teaching to enable the pupils to use the guidance



Assessment strategies for programming in ISCED2-3 projects 5

provided to develop their competence in discovering relationships between
mathematics and theoretical [or practical in 1P] applications.

The curriculum favors a student-centered view of assessment in which both
assessment strategies and feedback are mentioned, as well as self-reflection op-
portunities. In this respect, it is unclear what programming content is to be
included in the assessment, leaving it open for teachers to interpret and imple-
ment the guidelines.

2.3 Cross-curricular assessment

Cross-curricular skills are defined as general skills that can be taught and prac-
ticed in curricula across different disciplines [13]. From the early days of school
computers, programming has been seen as a cross-disciplinary method that could
foster learning in other subjects [15].

The present curriculum renews this conception of programming embedded
throughout the school experience. Research in teaching and learning with pro-
gramming has since then produced relevant results regarding cross-disciplinary
uses of programming in other subjects. Several studies that consider the trans-
fer benefits of learning programming, i.e., analyzing how learning programming
fosters learning in other subjects (e.g. [8,12]).

There is however a crucial difference between learning another subject by
means of programming and demonstrating acquired knowledge in another sub-
ject using programming. Overall, assessment in an integrated curriculum is not
without challenges, stemming not only from the variation within and across the
subjects in which programming can be implemented but also from the learning
progression that directs the different knowledge areas [6]. When examining a
cross-curricular initiative in Northern Ireland, Greenwood found that not only
lack of progression but also the difficulties in assessment were among teachers’
major concerns with the integrated curriculum [7, p. 447]

In a cross-curricular setting, when programming is used to demonstrate
knowledge on other subjects, deficiencies in programming skills might reflect
on poor results in the subject being assessed, thus undermining the conditions
of fair and relevant assessment [13]. These challenges and the lack of research
on assessment, when programming becomes an integral part of other subjects,
motivate the following investigation.

3 Method

This section presents the details on how data was gathered and analyzed in search
of cues that could shed light on the issue of assessment in programming projects.
We start by describing the course in which we conducted the study together with
the participants who provided the necessary information and conclude with the
particulars of the thematic analysis.



6 A. Fuentes-Mart́ınez et al.

3.1 Course settings

During the spring term of 2023, 148 in-service teachers from secondary schools
in Norway participated in a commissioned stand-alone 7.5 ECTS credit course
on Applied Programming (IT6204) at the Norwegian University of Science and
Technology. The course was open for teachers who had previously taken the
introductory programming course or otherwise acquired equivalent knowledge
in programming constructs, data structures, and methods for testing and trou-
bleshooting simple programs.

The participants were asked to prepare a teaching plan that incorporated pro-
gramming. In the teaching plan reports, the teachers described the competence
goals of the subject, the learning objectives of the teaching plan, the assessment,
students’ prior knowledge, approaches to learning, practical implementation, and
a time plan. For this study, teachers’ deliveries were analyzed with data from
the assessment rubric. This was also the topic of one of the lectures during the
course. Permission to use this data was granted by the participating teachers
and the researchers obtained the necessary clearance from the NSD3 for the
data management plan.

Table 1. Distribution of teachers’ programming plans according to subject and edu-
cation level: ISCED2 (Ungdomsskole) and ISCED3 (videreg̊aende).

Subject area
Nr of projects

ISCED2 ISCED3 Total

Mathematics 31 36 67

Natural Science 15 7 22

Physics - 11 11

Elective Programming 4 - 4

Chemistry - 3 3

Biology - 2 2

Information Technology and Media Production - 2 2

Norwegian Language - 1 1

Technology and Theory of Research - 1 1

Automation, Computer technology and Electronics - 1 1

Introductory Python course for mathematics - 1 1

Arts, Crafts and Design 1 - 1

Physical Education - 1 1

Total 51 66 117

3 Norwegian Centre for Research Data



Assessment strategies for programming in ISCED2-3 projects 7

Table 1 presents the subjects in which programming was to be implemented
according to the teachers’ plans. The participants were allowed to collaborate
with their colleagues on the teaching plans. Projects that involved several disci-
plines, such as those combining Mathematics and Natural Science, are counted
in each of them. This accounts for the discrepancies in tallies (148 > 117 > 98).
The projects were evenly distributed across level of education (51:66) with STEM
subjects overly prevalent in both. From the 98 reports received, as many as 67
projects focused on implementing programming in mathematics.

3.2 Data analysis

We conducted a thematic analysis of the teachers’ plans focusing on how assess-
ment was envisioned. Our approach followed a systematic framework described
in [20], which involves an exploratory bottom-up approach.

First, we immersed ourselves in the 98 teacher plans to become familiar with
the projects. Focusing on the section of the assignment that reported on assess-
ment, we distinguished two initial lines of analysis. From a pedagogical point
of view, we considered the assessment instruments that the teachers found rele-
vant for their programming projects while from the perspective of programming
knowledge, the focus was on which programming concepts and skills were in-
cluded in the assessment.

This distinction helped us to capture meaningful segments, and as we pro-
gressed, we identified recurring patterns that led us to establish category clusters.
We started by looking at a few examples together and after that decided to con-
tinue individually where one researcher focused on programming concepts and
the other on the strategies of the assessment. We defined each theme within
the category clusters, creating a clear framework for interpretation. Finally, we
cross-validated each other’s categories to ensure objectivity and reliability.

We use ’codes’ (plural) to refer to the entries that we assigned to the ideas in
the assessment section of the teacher’s work during the process of classifying the
information. This needs to be distinguished from other uses of ’code’ or ’coding’
that also appear in the paper and are specific to computer programming, i.e.
writing code or debugging code.

The following sections summarize the findings of this study structured as
envisioned assessment strategies and programming content.

4 Envisioned assessment strategies

The first question guiding the investigation asks about the assessment strategies
that the teachers plan to include along with the programming activities that
they design in their respective disciplines. The question emphasizes the mod-
els and methods by which the students will demonstrate their knowledge. It is
therefore an inquiry on how cross-disciplinary assessment is envisioned when
programming is part of another subject’s curriculum. The codes reflecting these
assessment strategies (Table 2) are organized into four categories: Teacher Re-
sponse, Deliverables, Reflective Assessment, and Task Assessment.



8 A. Fuentes-Mart́ınez et al.

4.1 Teacher Response

In this category we find codes traversing the dimension of formative-summative
assessment. Much of the teachers’ plans were devoted to explaining how assess-
ment could help students to understand their own learning and codes relating to
how students get information about their development could be found in most
excerpts under the assessment rubric. The teacher’s input is central in this cat-
egory. Most teachers believed in guiding and providing feedback for students’
programming learning, while only a few planned on giving grades or grading
based on goal achievement.

The notable gap between projects prioritizing guidance and feedback versus
grades and goal achievement might be linked to curriculum recommendations.
The curriculum emphasizes teacher-pupil dialogues and teachers’ guidance for
competence development in programming. Winstone and Boud claim that, al-
though feedback and assessment are distinct concepts, they are closely inter-
connected [23]. Our findings align with this observation, as teachers emphasized
guidance and feedback as the foremost assessment approach, rather than other
subsequent actions taken after evaluating students’ work.

4.2 Deliverables

This category refers to the various modes of presenting student work, such as
presentations, reports, products, and showcases. It captures the idea that stu-
dents can manifest their knowledge and skills in different formats, allowing for
more creativity and flexibility in assessment. This category is about the diver-
sity of methods for evaluating student performance beyond traditional tests and
exams. In their framework for assessing CT with programming, Brennan and
Resnick advocate for the integration of artifact assessment because it provides
tangible and context-rich examples for analysis [3]. Accordingly, teachers favor
this type of deliverables as instruments of assessment.

4.3 Reflective assessment

Many of the descriptions in this category encourage students to reflect on their
learning experiences, challenges, and achievements. This reflective process pro-
motes metacognition and self-awareness, helping students identify areas for im-
provement and growth. They provide a more holistic view of a student’s learning
in which the teacher’s role is less prominent, letting the students assume more
responsibility for their learning by being involved in the assessment process. This
resonates well with Brennan and Resnick’s [3] computational perspective as one
of the dimensions of assessment (see Section 2.2).

4.4 Task assessment

This last category features assessment strategies in which the task is central,
either as short exercises or longer assignments. The tasks are designed to offer a



Assessment strategies for programming in ISCED2-3 projects 9

comprehensive evaluation of students’ skills and to assess knowledge retention.
When conducted in the classroom environment, task assessment allows for real-
time monitoring and assistance. Task assessments in the form of tests and exams
are seen by teachers as valuable practice prior to the National Exams. Finding
little guidance in the curriculum, the teachers might design assessment tasks by
replicating those in the National Exams where Python programming is used.

5 Programming concepts and skills

When the teachers wrote about how they intended to assess their students,
their plans pursued a wide range of tasks, concepts, and methods. Among those
descriptions, we examine here the statements which were explicitly related to
programming. This analysis aims to inform the second research question, i.e.
what are the programming concepts and skills that the teachers intend to assess
according to their teaching plans.

The assessment ideas that the teachers proposed concerning programming
were classified into four categories, representing four dimensions of knowledge
and skills: Applications, CT. Program quality and Coding. Rather than suggest-
ing different levels of difficulty, these dimensions show possible perspectives with
different degrees of abstraction and granularity (see Table 3).

5.1 Applications: Programming as a Tool

This category encompasses codes that acknowledge the power of programming
to organize data and extract information. Students are asked to reflect on the
convenience of using programming for different tasks and even to be able to
determine whether programming can be a feasible strategy to solve a given
problem. To this category belongs also the ability to select among various pro-
gramming paradigms and reason about their advantages for different purposes.
In the case of mathematics, the curriculum states that students shall be able to
choose among different solving strategies, with or without programming, which
further reinforces this view.

Several teachers emphasize the necessity of automation to handle large data-
sets and the prevalence of programming solutions to tackle problems in real life.
The teachers provide opportunities for the students to demonstrate the results
of science experiments computationally, with self-generated plots or statistic
analysis.

Assessment in this category is mostly carried out in the form of products and
reports whereas tests and shorter exercises can prove difficult for this purpose.
Nevertheless, it is not straightforward whether statements such as ”I want the
students to see the usefulness of programming” are readily translated into the
corresponding assessment of learning, and how, in that case, this assessment
would be accomplished.



10 A. Fuentes-Mart́ınez et al.

Table 2. Assessment strategies

Codes (occurrences) Description
T
ea
ch
er

R
es
p
o
n
se

(1
2
4
) Guidance (71) Scaffolding students’ learning process. Can be given to an

individual, pair, or group of students.

Feedback (39) Similar to guidance but more structured. Written or oral.
In relation to a specific task, exercise, homework, or prod-
uct.

Goal achievement
level (8)

Summative evaluation (low, medium-, or high). Indicates
learner’s knowledge and skills level. Assessed through for
example a combination of a report, test, and presentation.

Grading (6) Summative assessment of the subject or programming af-
ter a concluded learning activity

D
el
iv
er
a
b
le
s
(1
0
2
)

Presentation (40) Can take many forms: oral, audio or video recording,
slides. Delivered individually or in groups.

Report (35) A written document describing the design of the product,
process of implementation, results, discussion, and quite
often including reflection notes.

Product (22) Can take a form of a game, a program, or a design. Often
a result of collaboration.

Showcase (5) Students demonstrate their product in the classroom. Sim-
ilar to the presentation but less comprehensive, since it
focuses on a specific task or product.

R
efl

ec
ti
v
e
a
ss
es
sm

en
t
(8
5
)

Learning
conversations (27)

Dialogue with academic content between students and the
teacher where students have the opportunity to demon-
strate their knowledge.

Logbook (17) Track-keeping journal that summarizes what students
have learned. Can include screenshots, encountered prob-
lems, solutions, and reflection notes.

Discussion (14) Less formal and structured than learning conversations.
Can involve exclusively students.

Peer response (13) Providing and receiving feedback from classmates

Self-assessment
(10)

Reflecting on one’s work. Can be supported by assessment
criteria created by teachers or in collaboration.

Defence (3) Students need to defend their project’s outcomes.

T
a
sk

a
ss
es
sm

en
t
(6
0
) Exercises and

assignments (34)
Programming tasks to be completed individually or in
group, usually in the classroom.

Tests (16) To check students’ programming skills. Before for diag-
nosis, during the activity to track progress, and after to
assess knowledge retention.

Exams (10) Summative formal method for evaluating students’ subject
knowledge, usually graded, and commonly referred to as
National Exams.



Assessment strategies for programming in ISCED2-3 projects 11

5.2 Computational Thinking

The teachers aim to address several of the concepts that belong to the compu-
tational thinking realm. This means that assessment concerns students’ under-
standing of algorithms and their capacity to approach problems systematically.

Teachers resort to high-level descriptions of algorithms or a mixture of natu-
ral language and simple programming constructs to assess their students. Testing
with pseudocode involves checking whether a written description accurately rep-
resents the intended algorithm or asking the students to develop a program from
a pseudo-code description.

Assessment in this category includes also more abstract ideas regarding code
reusability. Students are expected to know how to utilize existing code com-
ponents in new programming projects. This involves understanding how to in-
corporate functions, classes, or libraries to avoid duplicating effort and enhance
modularity.

5.3 Program Quality

At the program level, the teachers anticipate assessing the quality of students’
deliveries in terms of overall performance and value. This involves evaluating
factors like correctness, efficiency, maintainability, and adherence to coding stan-
dards.

Students’ programming projects are assessed with regard to how they han-
dle unexpected inputs, errors, and edge cases (Robustness) testing the program
with various scenarios to ensure it behaves predictably and reliably. Assessment
focuses also on the clarity and organization of a program’s code such as its struc-
ture, comments, variable naming, and indentation (Readability) making it easier
for other programmers to understand and maintain.

5.4 Coding skills

This category encompasses those elements of assessment that are most closely
linked to the code itself. Teachers aim to estimate to which extent students are
able to comprehend, manipulate, and enhance existing code. Students’ abilities
to work with code are assessed with respect to syntax and logic as well as in
their ability to identify and rectify different types of errors, create solutions from
scratch, modify existing code, and predict outcomes.

6 Further reflections

The findings above offer insights into the multifaceted nature of programming
assessment, whether it is approached from the modes of assessment or the pro-
gramming content.



12 A. Fuentes-Mart́ınez et al.

Table 3. Teachers’ assessment plans addressing programming

Categories Related codes

Applications usefulness, programming in mathematics, programming as a tool,
modeling, simulations, problem-solving when programming is one
of the possible strategies, real data, large amounts of data, plots

Computational
Thinking

algorithms, algorithmic thinking, pseudo-code, blocks, functions,
reuse code

Quality robustness, readability, effectiveness

Coding debug, syntax errors, logic errors, explain, programs, understand
programs, modify programs, tinkering, extensions, copy code, pre-
dict behavior of program, PRIMM, create code from scratch, write
code, functionality, suggest simplifications.

6.1 Assessment and Feedback

Assessment and feedback are frequently intertwined concepts within educational
contexts, leading to a complex relationship that impacts both theoretical under-
standing and practical implementation. As a result, they have become entangled
in both policy and practice, resulting in a conceptual and practical blurring of
their unique purposes. At the onset, we intended to examine assessment by it-
self, but the teachers’ plans with respect to this rubric revealed that providing
feedback was their principal concern. Whilst the same task can result in the
occurrence of both assessment and feedback, we need to pay attention to the
underlying distinction between the two processes. Clear communication is re-
quired to differentiate when the focus is on evaluating performance (assessment)
and when it is on guiding improvements (feedback). Assessment serves as a tool
for gauging learning outcomes while feedback serves as a catalyst for growth.

6.2 Assessment of programming or assessment with programming

The teachers were asked to specify whether programming would be assessed
directly or indirectly. Direct assessment entailed requesting students to solve
a programming task while Indirect assessment referred to evaluating subject
competence wherein programming was applied. This distinction aimed at estab-
lishing how programming could be used to assess subject content from other
disciplines. However, the teachers who chose to indicate their approach under-
stood it differently. They saw direct assessment as tasks where students were
asked to write code, and indirect assessment as tasks where students were given
a program and needed to explain its functionality or correct the given code. This
confusion bespeaks the difficulty of even envisioning a cross-curricular assessment
in which programming content is put at the service of measuring knowledge in
other subjects.



Assessment strategies for programming in ISCED2-3 projects 13

7 Conclusions

The findings of this study shed light on the multifaceted nature of programming
assessment in integrated curriculum settings. The analysis of the teachers’ as-
sessment plans revealed a range of strategies, including presentations, reports,
exercises, and learning conversations, which highlight the importance of forma-
tive assessment and feedback in programming education. Moreover, the study
identified four dimensions of programming knowledge and skills that teachers
aimed to assess: programming as a tool, computational thinking, program qual-
ity, and coding skills.

Taras argues that modern theories on assessment are marked by a plethora
of “unnecessary and unhelpful dichotomies [such as] formative versus summa-
tive; functions versus processes; formal versus informal assessment [. . .]” that
limit the potential for understanding and development of assessment [19, p. 2].
Distinguishing between assessment strategies and programming content is not
intended to add yet another division. Instead, the purpose of this analysis is to
understand how teachers could integrate the strategies and the content into one
single holistic assessment practice.

The results open new possibilities to include programming assessment within
the course content of university-level professional development programs for
teachers. By refining assessment strategies and promoting effective integration of
programming into the curriculum, teacher training can help educators to prepare
students for the digital age and foster their computational thinking skills.

Future studies should investigate the impact of different assessment methods
on students’ learning outcomes and engagement with programming. There are
also implications for educational policy and practice, as highlighted by the need
for clear guidance and support for in-service teachers in integrating programming
into their subjects.

References

1. Abesadze, S., Nozadze, D.: Make 21st century education: The importance of teach-
ing programming in schools. International Journal of Learning and Teaching 6(3),
6 (2020)

2. Biggs, J.: Enhancing teaching through constructive alignment. Higher education
32(3), 347–364 (1996)

3. Brennan, K., Resnick, M.: New frameworks for studying and assessing the devel-
opment of computational thinking. In: Proceedings of the 2012 annual meeting of
the American educational research association, Vancouver, Canada. vol. 1, p. 25
(2012)

4. Caffrey, E.D.: Assessment in elementary and secondary education: A primer. DI-
ANE Publishing (2009)

5. Crespo, R.M., Najjar, J., Derntl, M., Leony, D., Neumann, S., Oberhuemer, P.,
Totschnig, M., Simon, B., Gutiérrez, I., Kloos, C.D.: Aligning assessment with
learning outcomes in outcome-based education. In: IEEE EDUCON 2010 Confer-
ence. pp. 1239–1246. IEEE (2010)



14 A. Fuentes-Mart́ınez et al.

6. Fuentes Martinez, A.: Teachers’ tactics when programming and mathematics con-
verge. Ph.D. thesis, University West (2021)

7. Greenwood, R.: Subject-based and cross-curricular approaches within
the revised primary curriculum in northern ireland: teachers’ con-
cerns and preferred approaches. Education 3-13 41(4), 443–458 (2013).
https://doi.org/10.1080/03004279.2013.819618

8. Guzdial, M., Dodoo, E., Naimpour, B., Nelson-Fromm, T., Padiyath, A.: Putting
a teaspoon of programming into other subjects. Commun. ACM 66(5), 24–26 (apr
2023). https://doi.org/10.1145/3587926

9. Hubwieser, P., Armoni, M., Brinda, T., Dagiene, V., Diethelm, I., Giannakos,
M.N., Knobelsdorf, M., Magenheim, J., Mittermeir, R., Schubert, S.: Computer
science/informatics in secondary education. In: Proceedings of the 16th annual
conference reports on Innovation and technology in computer science education-
working group reports. pp. 19–38 (2011)

10. Karlsen, G.E.: Kvalifikasjonsrammeverk-virkemiddel for kvalitet eller ensretting?
Uniped (2010)

11. Lahtinen, E., Ala-Mutka, K., Järvinen, H.M.: A study of the difficulties of novice
programmers. Acm sigcse bulletin 37(3), 14–18 (2005)

12. Løken, T.K.: Computational thinking through geometric understanding: A case
study on programming in mathematics education. In: Norsk IKT-konferanse for
forskning og utdanning (2022)

13. Meijer, J., Elshout-Mohr, M., van Hout-Wolters, B.H.: An instrument for the as-
sessment of cross-curricular skills. Educational Research and Evaluation 7(1), 79–
107 (2001)

14. Moreno-León, J., Robles, G., Román-González, M.: Towards data-driven learn-
ing paths to develop computational thinking with scratch. IEEE Transactions on
Emerging Topics in Computing 8(1), 193–205 (2017)

15. Papert, S.: Mindstorms: children, computers, and powerful ideas (1980)
16. Peterson, E.R., Irving, S.E.: Secondary school students’ conceptions of assessment

and feedback. Learning and Instruction 18(3), 238–250 (2008)
17. Punie, R.V.S.K.Y.: Digcomp 2.2: The digital competence framework for citizens-

with new examples of knowledge, skills and attitudes. Tech. rep., European Com-
mission, Joint Research Centre (2022). https://doi.org//10.2760/115376

18. for Statistics, U.I.: International standard classification of education: Isced 2011.
Comparative Social Research 30 (2012)

19. Taras, M.: Assessing assessment theories. Online Educational Research Journal
3(12) (2012)

20. Terry, G., Hayfield, N., Clarke, V., Braun, V.: Thematic analysis. The SAGE hand-
book of qualitative research in psychology 2, 17–37 (2017)

21. Vahrenhold, J., Cutts, Q., Falkner, K.: Schools (k–12). In: Fincher, S.A., Robins,
A.V. (eds.) The Cambridge Handbook of Computing Education Research, p.
547–583. Cambridge Handbooks in Psychology, Cambridge University Press (2019).
https://doi.org/10.1017/9781108654555.019

22. Werner, L., Denner, J., Campe, S.: Using computer game programming to teach
computational thinking skills. Learning, education and games 1, 37–53 (2014)

23. Winstone, N.E., Boud, D.: The need to disentangle assessment and feedback in
higher education. Studies in higher education 47(3), 656–667 (2022)

24. Zhang, L., Nouri, J., Rolandsson, L.: Progression of computational thinking skills in
swedish compulsory schools with block-based programming. In: Proceedings of the
Twenty-Second Australasian Computing Education Conference. pp. 66–75 (2020).
https://doi.org/10.1145/3373165.3373173

https://doi.org/10.1080/03004279.2013.819618
https://doi.org/10.1145/3587926
https://doi.org//10.2760/115376
https://doi.org/10.1017/9781108654555.019
https://doi.org/10.1145/3373165.3373173

	Assessment strategies for cross-curricular programming in secondary education

