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Abstract. The decarbonisation of the building sector requires the development of building
components that provide energy efficiency while producing minimal environmental impact. We
investigate the potential of polymer 3D printing (3DP) for the fabrication of mono-material
translucent facade components, whose properties can be tailored according to climatic con-
ditions and functional requirements. These components bear the potential to reduce energy
consumption in buildings and, at the same time, can be fabricated with minimal environmental
impact thanks to the recyclability of the feedstock material. In this study, we explore the effect
of component geometry on the thermal insulation properties of 3DP objects with bespoke inter-
nal structures. Different prototypes are fabricated using a robotic polymer extruder, and their
thermal properties are measured following a hot-box test method. The experimental results are
then used to calibrate a heat transfer simulation model describing the joint effects of conduc-
tion, natural convection and infrared radiation through the components. We show that it is
possible to fabricate insulating polymer components providing thermal transmittance ranging
from 1.7 to 1 W/m2K only by changing the internal cavity distribution and size. This proves the
possibility of designing 3DP thermally-insulating components for different climatic conditions
and requirements. This study provides the first insights into the thermal behaviour of polymer
3DP facades on a large scale. The results suggest that this innovative manufacturing technique
is promising for application in facades and encourages further research toward performant and
low-embodied energy 3DP building components.

Keywords: polymer 3D-printing, thermal performance, facades, hot-box experiment, FE
simulations

1. Introduction
Achieving energy efficiency while minimising environmental impact is a stringent requirement
for the decarbonisation of the building sector [1]. In this context, the building facade plays
a key role as it greatly impacts the amount of energy needed to provide comfort in buildings.
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Moreover, the way facades are constructed significantly contributes to the embodied emission
impact of buildings [2]. Therefore, creating high-performance facades is imperative to achieve
the Net-zero by 2050 goals.

Advancements in large-scale 3D printing (3DP), in combination with computational design,
have shown that it is possible to fabricate building components with embedded performances
that can be tuned for their specific application [3; 4]. Thanks to 3DP, designers can not only
control the shape of an object but can also define its internal articulation using infill structures
to ensure structural integrity during printing and reduce material use [5–7]. Recent studies have
focused on the design of infill structures to achieve thermal performance in 3DP wall components,
out of earth-based materials [8; 9] and concrete [10–12]. To improve the thermal performance of
3DP concrete elements, concrete mixtures with air inclusions or low conductivity materials can
be used [13], and insulating materials can be simultaneously extruded along the concrete layer
or fill the infill cavities [14; 15]. However, the inclusion of additional materials compromises the
ease of fabrication and assembly, and recyclability.

As an alternative, thermoplastic polymers have also been proposed for the fabrication
of facade components, taking advantage of their translucency, light weight and low thermal
conductivity. Monomaterial components that integrate thermal insulation and seasonal thermal
control have been designed in [16–19]. Most thermal insulation studies investigate millimetre-
scale geometrical articulations fabricated using off-the-shelf desktop 3D printers. These infill
designs are based on periodic porous structures [20; 21], with limited scalability potential.
Recently, large-scale polymer extruders have been used to improve scalability and material
output. Those can print polymers with a material output up to 225Kg/h [22], and a generally
lower print resolution. To this date, there is little to no research on how the internal articulation
of polymer 3DP components influences thermal performance at an architectural scale. This
knowledge is required to fabricate thermally insulating 3DP facade elements efficiently.

This study investigates the integration of thermal insulation performance in 3D-printed
polymer facades by exploring the interplay of geometry and performance in infill structures.
Combining experiments and numerical simulations, we retrieve guidelines for designing thermally
insulating 3DP facade elements that provide a low environmental impact yet performant
alternative to traditional components.

2. Methods
The following chapter presents the robotic 3DP setup for the creating of bespoke, large-scale
prototypes and the design intent for the specimens. After that, we introduce the testing
apparatus used for the heat flow experiments and the steady-state method for the thermal
characterisation of building components. Finally, we present the experimental procedure, along
with the numerical simulation models used for the validation.

2.1. Samples design and 3D printing
To conduct the thermal experiments, we print three different specimens of size 500x500x150mm.
These large dimensions are chosen to allow for a 1:1 scale testing scenario. The large area
reduces edge effects during the measurements, as sensors can be placed in the centre and far
away from the borders/border conditions. The thickness of 150mm results from preliminary
studies conducted by the authors. In particular, this thickness is identified to withstand the
structural loads considered for application as a 3DP facade.

The specimens are 3D printed using a large-scale polymer extruder mounted on a 6-axis robot
(A1). The material chosen for these experiments is PETG, a glycol-modified PET thermoplastic
[23]. PETG is a well-known polymer, most often used for medical products or food applications
due to its transparency, chemical, and structural resistance [24]. Extrusion-based polymer 3D
printing (also referred to as BAAM - Big Area Additive Manufacturing or LSAM - Large Scale
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Figure 1. a. Studies on continuous print paths. Different arrangements of infill lines allow for
differentiation within the 3DP component. b. Close-up of self-intersecting print path, crossing
within the same layer forces the material to dwell and form a knot.

Additive Manufacturing) is a process where feedstock material is heated up in an extruder and
deposited successively line by line, layer by layer. The extruder used has three different heating
zones and a maximum output of 12 kg/h [25]. A 5mm nozzle was used for the fabrication of the
specimens. Considering the challenge of creating horizontal surfaces with large-scale polymer
3DP by simple bridging [26], the authors decided to seal the top and bottom surfaces of the
specimens by gluing a 3mm polystyrene sheet onto them. The samples are printed with a layer
height of 2.5mm and a line thickness of 6mm, resulting in samples between 8.75 and 12.6kg.

The specimens are designed to form a continuous 3D printing path, resulting in a continuous
extrusion of material with no start/stop. Intersections can be printed by simple crossing; this
way, the material just “dwells” on top of the previous layer, forming a small knot, see Figure
1.b. A continuous print path was chosen due to a lack of a proprietary start/stop mechanism for
the printing setup. Compared to continuous print paths, start/stop ones might result in local
discontinuities and voids in the printed object. These compromise the parts’ air-tightness and
therefore have a negative impact on the thermal performance of the object. Figure 1.a shows
3DP studies on continuous infill patterns. The chosen pattern is able to control the dimension
of air cavities along the thickness of the element without significantly increasing the amount
of material used (Figure 2). It consists of a zig-zag pattern (primary lines) and a separator
between the inner and the outer wall of the object (secondary lines). The pattern is kept as
simple as possible to ensure good printing quality and ease of study. The distance between
the base triangles (primary lines) is kept constant at 125mm, which results, depending on the
amount of separator (secondary lines), in a 10 -18% infill percentage. The separator lines divide
the air domain within the panel, creating smaller cavities to potentially increase the thermal
insulation of the component.
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Figure 2. 3D printed specimens for the experimental campaign. a. R1, one cavity approx.
15cm. Weight: 8.8kg. b. R2, two cavities approx. 7.5cm. Weight: 10.5kg. c. R3, three cavities
approx. 5cm. Weight: 12.5kg.

2.2. Hot-Box Apparatus
The tests are conducted using a hot-box apparatus, according to the hot-box heat flux meter
approach (HB-HFM) [27–29]. The HB-HFM approach is based on the steady-state method
for the thermal characterisation of building materials and envelope assemblies [30; 31]. The
method measures the heat flux through the component to be studied and the temperature
profile across it [32]. The hot-box apparatus comprises a cold chamber kept at a constant low
temperature, containing a metering chamber kept at a higher temperature. The specimen to
be tested is placed on a mounting ring at the interface between the two chambers. The air
temperature inside the metering chamber and in the cold chamber is monitored using platinum
resistance thermometers (PT100) and the specimen wall temperatures. The heat fluxes through
the specimens are measured using a heat flux transducer.

The experimental setup is in an underground laboratory room enclosed by concrete walls and
slabs, ensuring stable temperature conditions and minimal thermal disturbances. The metering
chamber consists of a box of dimensions 1 x 1 x 1m approximately (Fig 3. The chamber’s walls
are made of a thick insulation layer of two XPS panels (2 x 8 cm) and a plywood sheet (2
cm) to ensure minimal heat losses through the structure. The top side of the box consists of
a 3.5 cm concrete slab and an outer insulation layer of XPS (8 cm). The concrete slab is the
prototype of a thermally active building system (TABS), as described in [33]. It embeds water
pipes for cooling and heating through water and takes advantage of the high thermal storage
of concrete to dampen temperature peaks. Finally, the front panel comprises a double layer of
XPS insulation (22 cm) and accommodates a wooden frame to mount the testing specimen.

A total number of 35 sensors measures the state of the metering chamber (Fig 3.a). Most
sensors are placed on the floor and wall surfaces of the metering chamber and on the TABS.
Pairs of resistance temperature detectors (RTDs) of type PT100 (Omega Engineering) are placed
on each side to measure the specimen’s surface temperatures (Fig 3.b,c). Moreover, a heat
flux plate of type HFP01 (Hukseflux) is placed in the centre of the specimen’s outer surface to
measure normal one-dimensional heat flux. Infrared thermography was used to guide the correct
placement of thermocouples and heat flux transducer, minimising inaccuracies due to specimen
heterogeneity and edge effects (Fig 3.d). The data acquisition is made through a NI cDAQ-9133,
and LabView collects and records data with a one-second resolution.

2.3. Experimental Procedure
To better understand the relative effect of air buoyancy on the overall heat transfer, each
sample was measured for two different cavity orientations. One measurement is done for the
configuration with the cavities running parallel to the ground (along the x-axis, 4.b) and then
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rotated by 90 degrees (along the z-axis, 4.a) so the internal cavities allow for air movement from
top to bottom. To minimise possible air leakages and to accommodate fabrication tolerances,
the specimens are installed in the box by placing a rubber gasket around them. A total of
seven RTDs were placed on the specimen: four on the surface exposed to the room and three
on the surface exposed to the metering chamber. The sensors are placed in this way to measure
the expected extreme surface temperature conditions due to the cavities, either at a full-depth
cavity or the connection point of the primary infill lines with the contour of the specimen (4.c).

Experiments start with placing the sample in the metering chamber and activating the pump
for water circulation in the TABS at 40 °C. Measurements were performed for a minimum of
72 h to ensure steady-state conditions. For the termination of the test, it was verified that the
results obtained at the end of the test do not differ by more than ± 5% compared to the previous
24h [34]. Recorded data show that steady-state conditions are met a few hours after the test
initiation due to the elements’ low thermal mass; in most cases, the results converge before 24h,

Figure 3. a. Schematics of the hot-box setup. b. Front view of the experimental chamber
with testing specimen. c. Example of RTD and heat-flux sensor placement on testing specimen.
d. Thermographic images of a tested sample, guiding the sensors placement.

Figure 4. a,b. Schematics showing different testing directions for the 3DP samples. c.
Schematics of thermal sensor placement, measuring the sample’s surface temperatures at the
connection of contour and infill and at the middle of an air cavity.
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as in Figure 5. This suggests that the duration of the experiments could be greatly reduced.
Data are analysed using the average method [34]. Mean values for heat flow density rate and

temperature difference between the two sample’s surfaces are obtained by averaging over the
last 10h of measurement. As in [35] a value of effective thermal conductivity (λeff ) is derived
following the one-dimensional solution of Fourier’s law [36]:

q = −λeff
dT

dx
→ λeff =

qd

T1− T2
[W/mK] (1)

where q is the heat flow throughout the sample per unit area in W/m2, d is the sample’s
thickness in m, T2 is the temperature of the cold source, T1 is the temperature of the hot
source, and ∆T is the temperature difference across the sample in K. In order to retrieve
standard thermal performance indicator for building elements [34], from the effective thermal
conductivity we derive the sample’s total thermal resistance (R) and the u-value (U ):

Rtot = Rsi +
d

λeff
+Rse

[
m2K/W

]
(2)

U =
1

Rtot

[
W/m2K

]
(3)

where Rsi and Rse are the resistance of the air boundary layers at the internal and external
surface of the component, equal to 8 W/m2K and 25 W/m2K respectively. To reach appropriate
confidence, the experimental results of the testing apparatus were benchmarked by performing
measurements on a specimen with known thermal characteristics. The experimental procedure
was performed on an XPS panel of known thermal properties (λ= 0.035 W/mK). Results from
the experiment differ by less than 3% from the nominal properties of the product, which is
considered an acceptable accuracy for the experiment.

2.4. Numerical Study
Experimental results were validated against FE simulations simulating the heat transfer through
the 3DP samples under experimental conditions. The heat transfer and fluid flow modules of
COMSOL Multiphysics® [37] were used for the simulations. Conductive heat transfer happens
through the solid thermoplastic domain, with thermal conductivity λpetg equal to 0.2 W/mK
[38] and, less significantly, through the fluid domain of the air cavities (λair= 0.025 W/mK).
Convective heat transfer occurs in the cavity and is driven by buoyancy effects originating
from air density difference due to the temperature gradient. Radiative heat transfer between
the infill walls with emissivity ϵ equal to 0.9, as reported in [39]. Radiation enhances air
circulation [40] and strongly depends on the walls surface temperatures. Two heat fluxes are
imposed at the two sides of the sample, with a cold temperature (Text) of 22 °C and a hot
temperature (Tint) of 35°C, to match the experimental conditions. The boundary conditions
are summarised in Figure A2. From the 3D representations, simplified models were created to
reduce the computational effort. The models are based on a 2D representation of the samples’
geometry. They are modelled using the heat transfer in solids and fluids module, coupled
with the surface-to-surface radiation interface. Two 2D simplifications can be derived from
the model by choosing a longitudinal (Figure A2.b) or cross-section (Figure A2.a), section A-
A and B-B respectively. The cross section allows the modelling of the triangular-trapezoidal
cavities, while the longitudinal section reduces the cavity to two facing walls. For geometries
with cavity orientation along the x-axis, air convection is simulated explicitly using the laminar
flow interface and the Boussinesq approximation [41]. For geometries with cavities along the
z-axis, convection is modelled implicitly [42]. The fluid domain is still modelled for conduction,
but airflow fields and velocity are not computed. Instead, convection is accounted for by defining
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Figure 5. Recorded data during the 72h experiments. a. Measured temperatures inside the
hot-box (red) and room temperature (blue); b. Measured heat flux (green) and calculated
effective thermal conductivity (yellow).

an increased thermal conductivity based on an empirical correlation factor that depends on the
cavity dimensions and the temperature variation across the cavity. This correlation factor is
based on rectangular cavities; therefore, the triangular and trapezoidal cavities are transformed
into rectangular air cavities with the same area and aspect ratio, as explained in ISO 10077-2
[43].

3. Results
3.1. Experimental results
The results of the experiments are summarized in Figure 6. An effective thermal conductivity
in the range of 0.19 - 0.36 W/mK was observed, corresponding to a U-values from 1 to 1.7
W/m2K. These results confirm the significant effect of geometry on the heat transfer in 3DP
components with bespoke cavities. Repetition of the experiments for sample R1 in the two-cavity
alignment showed good accordance of results, with an error below 2%. Similarly to porous
media, an increase in the number of air cavities inhibits heat transfer and hence positively
correlates with thermal insulation [17; 18; 20]. In porous media, however, an increase in air
cavity numbers usually results from higher porosity and lower relative density; in our sample,
the relative density increases with the number of air cavities due to the additional separating
layers. This shows that, for large-scale cavity structures, there is a trade-off between the increase
in thermal insulation due to the introduction of air layers and the decrease of insulation due to the
enhanced buoyancy-driven effects in wider cavities [44]. Therefore, adding additional cavities in
the geometry while keeping the component’s width constant correlated to a decrease in effective
thermal conductivity, as also reported by [45]. Moreover, it was found that orientation does
not affect thermal conductivity significantly for this cavity dimensions. A slightly lower thermal
insulation is observed in R1 for the horizontal cavity arrangement, but this effect is not visible
in the other samples.
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3.2. Numerical results
The 3D FE model allowed observation of the three heat transfer modes through the 3DP
component, as shown in Figure A3. The results confirm the presence of a radiative heat exchange
between the cavity walls. Moreover, buoyancy-driven air flows develop with the cavities and
ultimately affect the thermal stratification in the components.

Results from the 3D and 2D numerical models were compared with the experimental results.
Figure 7 shows there is generally good accordance between simulations and experiments, with
deviations between 4 - 15%. Furthermore, the trends observed in the experimental study are

Figure 6. Overview of experimental results: effective thermal conductivity for the six tested
samples. Error bars represent the uncertainties of the measurements.

Figure 7. Comparison of results for experiments, 3D and 2D simulations. The error bars
represent the measurement uncertainties.
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also confirmed in the simulation results. A more significant deviation is found for the 2D model
representing section B-B. Compared to the experiments, this model overestimates the thermal
transmittance of the component R1 by 35%, assumably due to the impossibility of modelling
surface-to-surface radiation between all the cavity walls. The difference between simulated and
measured values increases with the number of cavities, which could indicate inaccuracies in the
description of the heat transfer mechanisms of multiple cavities in series. Nevertheless, the 2D
models based on section A-A can describe the physical behaviour of the system and, thanks to
the fast computation time (<1 min), can be effectively used to support the component’s design.

4. Conclusions
4.1. Design Guidelines
This study demonstrated the possibility of fabricating facade components through large-scale
3D printing of polymers. It was shown that by managing the cavities’ size and arrangement,
a reduction in thermal insulation could be achieved by up to 60%. This suggests that tailored
3DP components can be designed according to climate-specific insulation requirements. The
combination of experimental and simulation analysis enabled a first understanding of heat
transfer mechanisms into 3DP components with internal cavity structures. We observed a trade-
off between the increase in thermal insulation due to the air layers and the decrease in insulation
due to the enhanced convection effects. Therefore, partitioning the air layers into smaller cavities
has proved to decrease thermal transmittance. Moreover, the orientation (x-axis, z-axis) of the
cavities does not significantly affect the thermal properties of the components, irrespective of
the number of cavities.

Figure 8. Comparison of thermal performance of 3DP facade and traditional facade
components.

4.2. Outlook
The tested prototypes revealed good insulation properties comparable to high-performance triple
glazing (Figure 8). Compared with standard facade components, the 3DP components provide
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such insulation at a relatively low weight, making them promising for application in buildings
(e.g. for retrofits with weight constraints and buildings with lightweight bearing structures).
Considerations of the life-cycle environmental impact of 3DP components could further highlight
their potential. Compared to standard facade systems, the proposed mono-material 3DP
components would be easy to replace and recycle, while the use of recycled polymers would
significantly lower their embodied emissions [46].

Building upon this study, the thermal insulation properties of 3DP facades can be further
improved by introducing additional cavities within the element thickness. However, creating
additional cavities comes with higher weight, printing time and cost, and reduced light
transmission, and a trade-off needs to be identified. Using different layer thicknesses for the
element, thicker for the outline and thinner for the infill, could help reduce the part’s weight
while ensuring structural stability. Moreover, polymers with lower thermal conductivity could
be investigated such as ABS (λ=0.14-0.21 W/mK) and PP (λ=0.12-0.22 W/mK). Alternatively,
the cavities could be filled with a low-conductivity material reducing convective heat transfer.
However, this could significantly compromise the component’s optical transmission properties
and ease of disassembly. Low-emissivity materials/coatings could also be applied to reduce
radiative heat transfer in the cavities.

Finally, to fully characterize the performance of translucent 3DP facades, the influence of solar
radiation on the heat transfer needs to be investigated, considering the geometrical complexity
of the elements. 3D printing creates anisotropic elements with layered resolutions, resulting
in angle-dependent, directional transmission of solar radiation [47]. By coupling thermal and
optical domains, we can define seasonal/temperature-dependent solar heat gain coefficients
(SHGC) and U-values, which would better capture the component behaviour.
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Appendix A.

Figure A1. a. Robotic 3D printing setup, comprising a CEAD E25 extruder mounted on an
ABB IRB4600. b. Close-up of the polymer printing process: PETG printed with 2.5mm layer
height and 6mm layer width.
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Figure A2. Boundary conditions for the numerical models. a. 3D model of sample R1 for the
FE simulation. From this, 2D representation are derived based on the cross-section b. and the
longitudinal section
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Figure A3. FE simulation results for sample R1. The joint effects of radiative, convective and
conductive heat transfer influence the thermal stratification in the sample.


