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A B S T R A C T   

The rising integration of offshore wind energy into the electric grid provides remarkable opportunities in terms of 
environmental sustainability and cost efficiency. However, it poses challenges to power quality (PQ) caused by 
variable operational events and power electronic devices used in wind turbines. This renders early-stage 
disturbance detection and classification tools critical for managing grid systems with renewable energy sour
ces. While existing reviews specialize in the monitoring measures of partial PQ events, this survey offers a deeper 
understanding by further exploring root causes and disturbance locations, followed by a critical discussion of 
emerging algorithmic solutions. In contrast with generalists’ stances on PQ, this work delves into the impact of 
offshore wind energy on PQ events and their early diagnosis. Moreover, the principles and applications of 
synchronized waveform measurement, a promising measurement technology for detection and classification 
processes, are highlighted. Then, evaluation metrics for detection and classification algorithms are discussed for 
the first time. Finally, a novel system-wide monitoring framework is proposed given the need for holistic 
assessment frames in this field. This review not only illustrates the challenges and future research directions in 
the level of algorithms, measurements, and frameworks, but can also serve as a guideline for real-time distur
bance analysis of offshore wind power grid connection and integration.   

1. Introduction 

Over the last decade, there has been a growing interest in renewable 
energy installations due to environmental awareness and rising fossil 
fuel energy prices. As one of the most popular renewable energy sources 
(RES), wind energy has been widely used due to its relative cost effi
ciency and matured technology [1]. According to International Energy 
Agency (IEA), the proportion of wind power is increasing worldwide and 
is expected to account for 29 % of the annual renewable energy in
stallations in 2023 [2]. Offshore wind energy, compared with the 
onshore counterpart, enables the efficient use of large capacity wind 
turbines (WTs) to generate electricity owing to its more abundant and 
stable wind resources [3,4]. It is recognized as a key driver for achieving 
long-term global climate goals worldwide. By the end of 2022, the global 
installed offshore wind capacity has hit an impressive 57.6 GW and is 
projected to experience significant growth, reaching 519 GW by 2035 
[5]. 

Despite the advantages of offshore wind, the operation of offshore 

WTs faces significant challenges due to remote connectivity needs and 
harsh weather conditions [6]. WTs often experience highly variable 
energy output, creating unpredictable levels of supply in the power 
system operation. Moreover, the extreme mechanical stress further ex
acerbates the difficulty of condition monitoring, which can lead to 
equipment failure and power outages in severe cases [7]. Due to these 
factors, along with the usage of power electronic devices and high RES 
penetration into the grid, power quality (PQ) has become a major 
concern [8]. From the renewable energy side, the intermittent nature of 
the wind, the variable operational conditions of WTs, and the usages of 
auxiliary elements inject non-stationary power signals and therefore 
introduce power quality disturbances (PQDs) to the power grid [9,10]. 
From the power grid side, solid-state switching equipment creates sig
nificant PQ challenges. 

When operating an offshore wind energy system, typical PQ concerns 
include transient, flicker, harmonics, sag, swell, and interruption [11, 
12]. These issues have become a significant focus due to their potential 
to cause inaccurate metering, premature equipment deterioration, line 
overheating, maloperation of protection devices, and interference with 
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communication circuits, which can result in heavy maintenance costs 
[13,14]. To avoid serious effects from PQ problems, an early PQ moni
toring process is necessary for the grid systems with RES, providing 
references for troubleshooting at a later stage [15]. PQ monitoring can 
assist the system operation and control strategies, contributing to reli
able and continuous power supplies. Currently, several signal processing 
algorithms and stochastic models for detecting and classifying PQD have 
been proposed [16]. However, considering grid points such as the 
connection nodes of the WTs, two major challenges exist in current PQ 
monitoring algorithms: real-time signal processing difficulties due to 
complex computational requirements, and early disturbance diagnosis 
due to lack of data fidelity. Since most of the current monitoring algo
rithms are based on a single selected site such as point of common 
coupling (PCC) [17], there is a gap in the holistic assessment of complex 
power systems, ensuring sensitivity to operational events and multi-site 
measurements encompassing both wind farm and electric grid 
components. 

To address these challenges, technologies have recently emerged to 
support PQ monitoring. Currently, synchronized waveform measure
ment (SWM) has attracted significant attention in the power system field 
given its capacity for high-resolution waveform measurements [18]. 
Due to its strict requirements for time synchronization, SWM-related 
studies were in the conception stage until recently, when its real-time 
acquisition became possible with the advances in computational pro
cessing capacity, together with their interoperable deployment [19]. It 
allows coordinated quantitative analysis at multiple locations, including 
both PCC and WT levels, with realistic network transients and dynamic 
responses, revolutionizing the measurement techniques for disturbance 
diagnosis [20]. 

In addition to effective algorithms and synchronized measurements, 
a more informative and standardized monitoring assessment process is 
required as well. Current evaluation metrics in PQD detection and 
classification studies are mostly centered on the accuracy of the pro
posed algorithms [12]. However, accuracy is limited by the quality and 
selection approach of the dataset, further neglects aspects of action
ability (such as timeliness and PQD localization), and therefore may not 

be sufficient for guiding practical applications. Based on the practical 
demands of real-time PQ monitoring, some studies introduce algorithm 
runtimes and noise parameters [21,22]. Under this context, a compre
hensive evaluation framework that encompasses multiple dimensions 
should be developed to overcome the limitations of current assessment 
strategies. 

The study of PQD has been covered by multiple reviews, with focuses 
on their underlying causes [23], source detection [24], and artificial 
intelligence (AI) based monitoring steps [25–27]. However, these papers 
have been confined to disturbance problems within the traditional 
power systems, neglecting the influence of RES grid integration on PQ 
concerns. Recently, relevant PQ challenges have been introduced in 
various reviews with the increasing installation of WTs. These discus
sions primarily revolve around PQ regulations [28], control strategies 
[29], and PQ improvement approaches [30,31]. Nevertheless, there is 
no synthesis that thoroughly explores PQ monitoring in the context of 
the grid integrating offshore wind energy from a broad systemic 
perspective. 

Given the remarkable advancements in offshore wind energy as well 
as the rapid innovations in algorithms and measurement techniques, it 
becomes imperative to undertake an in-depth and critical survey of 
relevant studies. The impact of offshore wind on PQ events, as well as 
the latest advancements in monitoring algorithms and measurements, 
have not been critically surveyed so far. To fill this gap, this review aims 
to give insights into a wide spectrum of related PQ monitoring concerns 
and explore emerging challenges and research prospects. In this study, 
Science Direct, IEEE database, and Google Scholar are used for the 
literature search, with keywords covering offshore wind energy, power 
quality monitoring, disturbance detection, disturbance classification, 
and synchronized waveforms. Furthermore, relevant standards and ac
ademic reports from recent years are recognized. The number of cita
tions, algorithmic novelty, and undertaken experimental design serve as 
evaluation indicators for the studies. Following a careful screening 
process, a total of 167 relevant papers, standards, and academic reports 
are discussed to thoroughly assess the application potentials of deep 
learning methods and SWM for PQ monitoring. Furthermore, 
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shortcomings in the evaluation frameworks at both the algorithmic and 
system levels are identified. The structure of this review is depicted in 
Fig. 1. As PQ monitoring is essential for ensuring a stable power supply 
for offshore wind-connected grids, this review introduces important 
principles to guide researchers and engineers in the analysis of real-time 
PQ events. The contributions of this work are as follows.  

• To the best knowledge of the authors, this is the first review to 
thoroughly examine PQ monitoring issues within the context of 
electric grids integrating offshore wind energy rather than conven
tional power systems. This review systematically analyzes not only 
the impact of offshore wind energy on disturbance types but also 
their root causes and necessary collection locations.  

• Studies on monitoring algorithms between 2020 and 2023 are 
carefully reviewed, providing the latest insights into signal- 
processing-based disturbance detection and machine learning- 
driven disturbance classification. Moreover, a critical analysis of 
relevant algorithms is presented to shed light on their effectiveness.  

• The principle of the emerging SWM is presented with a twofold 
purpose: exploring the advantages over other high-precision mea
surements and evaluating its application potential for different 
disturbance types and PQ monitoring.  

• This work, for the first time, highlights the weaknesses of existing 
evaluation metrics for algorithm performance, and proposes a prin
cipled diagnostic framework to achieve system-wide automatic PQ 
monitoring within grids integrating offshore wind energy. 

The remainder of this review is organized as follows. Disturbance 
events and their root causes are reviewed in Section 2. Section 3 illus
trates the monitoring algorithm procedures. Section 4 presents the uti
lization of SWM as an emerging measurement technique for PQ 
monitoring. Comprehensive evaluation metrics are introduced in Sec
tion 5. A novel system-wide monitoring framework is proposed in Sec
tion 6. Lastly, the conclusion is given in Section 7. 

2. Power quality disturbance (PQD) 

PQ contains a diverse range of electromagnetic phenomena that 
exhibit voltage and current characteristics at a certain time and location 
within electric power systems [32]. Within the context of grids inte
grating offshore wind energy, the analysis of disturbances has become 
challenging given the extent of sources with variable behavior, encom
passing environmental factors and loads. Firstly, offshore WTs often 
experience highly variable energy output due to harsh weather 

conditions, creating unpredictable levels of supply in the power system 
operation. Secondly, wind farms suffer from electromagnetic interfer
ence from diverse sources, such as nearby electrical devices, commu
nication systems, and radio frequency equipment, all of which can result 
in electromagnetic disturbances. Thirdly, nonlinear attributes inherent 
in electromagnetic equipment and components within offshore WTs can 
cause harmonic pollution. Lastly, resonance phenomena may emerge 
from electromagnetic interactions between WTs and the electric grids, 
which, in severe cases, can lead to system failures and power outages. 
Consequently, it becomes crucial to identify the relevant PQD types, 
their root causes, collection locations, and current challenges. 

2.1. PQ events 

A PQ monitoring process starts with finding out the problem cate
gory. Currently, the penetration of RES into the electric grids has 
introduced complexities to PQ analysis, impeding the identification of 
root causes and device effects. In this context, the recognition of the 
disturbance types associated with WTs or wind farms has become a 
crucial task. Table 1 presents the PQD types investigated in studies 
focusing on grids integrating wind energy between 2018 and 2022. It 
can be seen that the most concerned problems are flicker, transient 
(including impulsive and oscillatory), sag, swell, interruption, and har
monics. Further details regarding their characteristics, mathematical 
expressions, and impacts can be found in Ref. [33]. 

A disturbance problem can reveal diverse signal characteristics 
under different events. For instance, there are distinct transient re
sponses associated with active power events and reactive power events 
[48]. Consequently, to mine information from monitoring results, the 
root causes of different disturbance types should be analyzed. Fig. 2 
outlines typical PQ issues and their causes in the wind energy generation 
part (offshore) and the electric grid part (onshore). From Fig. 2, whilst 
there are common factors like switching actions resulting in PQDs 
within both the offshore and onshore parts, specific events like varia
tions in wind speed give rise to PQ issues unique to the wind energy 
generation units [38,44]. 

In conventional power grids, PQ problems arise from utility sources, 
internal sources, and power electronic sources [49]. Concerning the 
grids integrating offshore wind energy, disturbance causes can be clas
sified into internal and external factors. Internal factors primarily relate 
to the mechanical and electrical conditions of offshore wind power 
plants (OWPP) [31], while external factors refer to operational events. 
Typical operational events, listed in order of severity of impact on PQ, 
include islanding, grid synchronization, wind speed variation, and 

Fig. 1. Structured view of the surveyed contents.  
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outage [43]. Details of these operational events were summarized in 
Ref. [12]. 

2.2. Standards 

Standards serve as a comprehensive reference for measurement 
procedures, disturbance parameters, and time limits. PQ standards with 
their illustrations are outlined in Table 2. IEEE 1159, IEC 61000-4-30, 
and EN 50160 are three representative documents widely used for PQ 
monitoring [50]. Recently, along with the widespread attention on 
offshore wind energy, IEC 61400-21 has been adopted in relevant 
studies [31,34], as shown in Table 1. Specifically, IEC 61400-21-1 and 
IEC 61400-21-2 address WT level and plant level considerations, 
respectively. Moreover, IEEE 1547 discusses PQ issues and operational 
events associated with the interconnection of utility electric power 
systems and distributed energy resources (DER). 

2.3. Monitoring locations 

The selection of monitoring locations plays a crucial role in ensuring 
effective and reliable early disturbance diagnosis. Extensive studies have 
been conducted in conventional electric power systems to determine 
optimal locations for PQ monitors [51]. Nevertheless, research on 
offshore wind energy-connected grids is still in its early stages. In 
practice, early PQ diagnosis is predominantly performed at PCC [38]. To 
ensure the overall reliability of the system, it is essential to consider both 
PCC and WT levels for PQ monitoring, for the following reasons: Firstly, 
conducting PQ monitoring at a single location does not ensure the 
identification of defective WTs with poor-quality power [16]. Secondly, 
PQ issues, especially flicker and harmonics, can originate from either the 
offshore or onshore side and therefore should be evaluated from a 
system-wide perspective [52]. Lastly, PQD signals undergo variations 
during signal propagation between the WT terminals and the electric 

grid [53]. Consequently, the waveform characteristics of the same PQ 
issue detected at the WT terminals differ significantly from those 
observed in the electric grids, which necessitates acquiring voltage and 
current signals at multiple locations. 

However, multi-level disturbance monitoring has not been taken into 
account in most studies, primarily owing to the unavailability of high- 
fidelity data. Thus, there is a need to develop a novel measurement 
technique that ensures time synchronization to diagnose PQ across 
multiple locations so that the root causes of PQDs can be unearthed. 

2.4. Challenges  

• PQ definition: One of the major challenges is the need to update the 
PQ definition with the widespread usage of offshore wind energy in 
the grids. A recent development in this field is the introduction of a 
new index called energy quality (EQ), which emphasizes the quality 
of power [9]. When offshore wind energy participates in the power 
supply, the EQ may be weak despite the PQ signals exhibiting a 
perfect sinusoidal waveform. This is due to the intermittent and 
fluctuating nature of the active power generated by wind energy. In 
this context, EQ aims to capture the variations associated with RES, 
whereas the traditional PQ framework focuses on the quality of 
voltage and current waveforms. As a novel concept, EQ currently 
encompasses four principal aspects: energy spectrum, average power 
level, total power distortion, and standard power deviation. Further 
discussions and standardization efforts are needed to refine defini
tions and measurement methods for each aspect of EQ.  

• PQ assessment in direct current (DC): DC systems offer numerous 
advantages over their alternating current (AC) counterparts, 
including improved PQ, lower installation costs, and plug-and-play 
characteristics [54]. In the case of long-distance OWPP, high 
voltage direct current (HVDC) systems have witnessed significant 

Table 1 
Disturbance types in studies for electric grid integrating wind energy over last five years (2018–2022).  

Year Work PQD types RES types Referencestandard 

2022 [34] Voltage fluctuation (sag, swell, transient, interruption), 
harmonics, and flicker 

Wind farm with variable speed synchronous generators IEC 61400-21 

[35] Sag, swell, oscillatory transient, interruption, and harmonics Wind energy conversion and solar photovoltaic system connected 
to IEEE 13-bus test system via a transmission line and a 
transformer 

IEEE 1159–2009 

[36] Slow voltage variation, voltage distortion, voltage 
asymmetry, and long-term flicker 

Low voltage utility grid with high penetration of RES EN 50160 

[37] Sag, swell, interruption, flicker, and harmonics Hybrid power system in the presence of photovoltaic modules and 
a WT 

IEEE 1459 and EN 50160 

[38] Sag, swell, interruption, flicker, harmonics, oscillatory 
transient, impulsive transient, and notch 

Photovoltaic plant and double-fed induction generator (DFIG) 
based WT system 

IEEE 1159–2009 

[39] Sag, swell, interruption, flicker, harmonics, transient, notch, 
and spike 

Microgrid equipped with DER including a DFIG based wind energy 
generation 

IEEE 1159–2009 

2021 [31] Flicker, harmonics, sag, and swell Grid-connected wind power system IEC 61400–21, IEEE 1159, 
and EN 50160 

[40] Sag, swell, interruption, flicker, harmonics, oscillatory 
transient, and notch 

Microgrid equipped with three DERs including a photovoltaic 
generation system, a diesel generator, and a DFIG 

IEEE 1159–2009 

[41] Sag, swell, interruption, flicker, harmonics, oscillatory 
transient, impulsive transient, and notch 

Devices from different vendors combined to equipment such as 
wind farms, resistive loads, real-time simulators, and an amplifier 

IEEE 1159–2009 

2020 [42] Voltage fluctuation, frequency fluctuation, flicker, and 
harmonic distortion 

Grids integrating renewable distributed generation systems IEEE 929-2000 

[43] Harmonics, swell, sag, oscillatory transient, impulsive 
transient, and flicker 

IEEE 13-bus power system integrating DFIG and diesel generators IEC 61400 

2019 [44] Sag, swell, interruption, harmonics, impulsive transient, 
oscillatory transient, flicker, notch, and spike 

Typical microgrid containing distributed generators IEEE 1159–2009 

[45] Sag, swell, notch, oscillatory transient, impulsive transient, 
harmonics, and flicker 

IEEE 13-bus power system integrating two WTs – 

2018 [46] Sag, swell, interruption, harmonics, interharmonics, 
transient, flicker, notch/spike, and noise 

Microgrid test system consisting of grid-connected photovoltaic 
and wind resources 

IEEE 1159–2009 

[47] Symmetrical sag, asymmetrical sag, swell, voltage 
unbalance, voltage harmonics, notch, and momentary 
interruption 

Wind-grid model consisting of six 1.5 MW DFIG based WTs –  
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attention due to their ability to independently control active and 
reactive power [31]. DC systems can operate in islanding mode or 
interface with AC systems to absorb or transmit power. The latter 
enables bidirectional power flow in both DC and AC forms over a 
wider frequency range, transforming unidirectional power flow 
typical in AC systems [55]. Therefore, PQ problems in DC systems 
can arise from internal factors, as well as the AC grid side [56]. 
However, the absence of specialized standards has hindered the 
evaluation of PQ in DC systems [57]. There is a pressing need to 
define metrics for disturbance types, signal characteristics, and 
measurement procedures. Compared to AC-based PQ monitoring 
studies, ideally constant voltage waveforms and power electronic 
converters in DC distribution systems introduce distinct sources of 
PQ problems [58]. Therefore, it is crucial to develop appropriate 
guidelines for DC systems to ensure accurate PQ assessment and 
effective disturbance mitigation at a later stage. 

3. PQ monitoring 

In traditional PQ monitoring and analytical procedures, disturbance 
detection, feature selection, and disturbance classification are three 
major goals [59]. Feature extraction and signal decomposition aim to 
extract patterns and characteristics from the signals through advanced 
processing for subsequent disturbance analysis or knowledge acquisition 
[60]. After this processing stage, features with a measurable role for 
detecting or discriminating PQD are selected. Relevant features should 
be able to quickly respond and adapt to changes in monitoring tech
niques associated with wind energy sources, noise, and loads. Subse
quently, specific PQ events can be categorized through disturbance 
classification. The classification phase provides valuable information for 
understanding the nature and severity of PQ events, enabling appro
priate actions and interventions to be taken. In addition to these three 
key tasks, pre-processing technologies are also highlighted in some 
studies, involving data normalization [25], compression [61], recovery 
[62,63], segmentation [64] and denoising [65–67]. 

3.1. Disturbance detection 

The signals collected from WT’s condition monitoring systems 
exhibit non-linear and non-stationary characteristics [16,68]. When 
extracting features to describe PQ events, two fundamental principles 
should be considered [69]. First, the features should have the ability to 
distinguish between different disturbances. This ensures that the 
extracted features can effectively capture the unique characteristics of 
each PQ event, enabling accurate classification at a later stage. Second, 
the applied processing mechanisms, as well as the diversity of extracted 
and selected features, should ensure that the learning of downstream 
models yields a balance between descriptive power and computational 
efficiency. 

Fast Fourier transform (FFT) was widely used as a basic feature 
extraction tool in the initial stages of disturbance analysis due to its 
simple construction, but only works for stationary PQD signals [70]. To 
extract discriminative features from complex disturbance measure
ments, studies have delved into two categories of signal processing 
techniques: time-frequency domain algorithms and adaptive mode 
decomposition algorithms. 

Various time-frequency domain tools have been employed, involving 
short-time Fourier transform (STFT) [71], Gabor transform (GT) [72], 
wavelet transform [73], and Stockwell transform (ST) [74]. Wavelet 
transform can be further categorized into continuous wavelet transform 
[75], discrete wavelet transform [76], and wavelet packet transform 
[77]. As a modified version of wavelet transform, ST has been found to 
be the most powerful time-frequency domain algorithm, especially in 

Fig. 2. PQ issues with the integration of offshore wind energy into grids.  

Table 2 
International standards for PQ monitoring.  

Organization Standard Year of 
latest 
version 

Title 

IEC 61,400- 
21-2 

2023 Measurement and assessment of 
electrical characteristics - Wind power 
plants 

61,000-4- 
30 

2021 Testing and measurement techniques - 
Power quality measurement methods 

61,400- 
21-1 

2019 Measurement and assessment of 
electrical characteristics - Wind 
turbines 

61,400-4- 
15 

2010 Testing and measurement techniques - 
Flickermeter - Functional and design 
specifications 

EN 50,160 2022 Voltage characteristics of electricity 
supplied by public electricity networks 

IEEE 519 2022 IEEE standard for harmonic control in 
electric power systems 

1547 2020 IEEE standard for interconnection and 
interoperability of distributed energy 
resources with associated electric 
power systems interfaces 

1159 2019 IEEE recommended practice for 
monitoring electric power quality 

1564 2014 IEEE guide for voltage sag indices 
CIGRE C4.112 2014 Guidelines for power quality 

monitoring - measurement locations, 
processing, and presentation of data  
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noisy environments, rendering it the emphasis of detection studies in 
recent years [78,79]. In addition to time-frequency domain algorithms, 
adaptive mode decomposition methods have gained popularity given 
their highly adaptive capabilities and data-driven nature. These 
methods comprise empirical mode decomposition (EMD) [80], 
ensemble empirical mode decomposition (EEMD) [81], Hilbert Huang 
transform (HHT) [82], variational mode decomposition (VMD) [41], 
and intrinsic time-scale decomposition (ITD) [60], which offer flexibility 
and adaptability in capturing the underlying characteristics of 
non-stationary signals. Moreover, high-order statistics (HOS) [83], 
extended Kalman filter (EKF) [64], and conventional atomic decompo
sition (CAD) [84] have been adopted for feature extraction as well, 
providing alternative approaches for analyzing PQ disturbances. The 
characteristics and weaknesses of these typical signal transform methods 
are summarized in Table 3. 

In addition to traditional signal processing techniques, recent 
breakthroughs in the field of computer vision have also been applied to 
disturbance detection. Image enhancement methods [85] and visual 
attention mechanisms [86] have been introduced to enhance feature 
extraction efficiency and isolate relevant disturbance features. In 
Ref. [85], gamma correction, edge detection, and peaks and valley 
detection, as three typical image enhancement techniques, were 
employed to reconstruct feature information from gray images. In 
Ref. [86], PQD feature indices were collected through a sequence of 
procedures involving disturbance region selection, multi-scale spatial 
rarity analysis, and feature fusion applied to binary images. By 
leveraging these advancements, the detection of PQ events can benefit 
from modified feature extraction and representation, leading to more 
accurate and efficient analysis. 

Table 4 lists relevant studies on disturbance detection from 2020 to 
2023. Notably, ST has emerged as a prominent technique during this 
period with a significant focus on optimizing the parameters of the 
window function. The aim of these studies is to enhance the time- 
frequency resolution and computational efficiency of ST. 

3.2. Feature selection 

The surveyed feature extraction methods in the previous section 
produce a large number of features, particularly when considering a 
fine-grained view of the frequency spectrum and flexible windowing 
procedures producing features and different time points with varying 

durations. In this context, choosing precise features and removing 
redundant information can lower data dimensionality and enhance 
monitoring efficiency [64]. Supervised univariate filters, such as those 
based on mutual information theory, can be applied in the presence of 
PQD annotations. In addition, optimization techniques have been 
largely considered, mainly containing genetic algorithm, particle swarm 
optimization, and artificial bee colony [12]. However, these traditional 
methods often involve a time-consuming and handcrafted-tuning pro
cess, lacking a reference and struggling to achieve a balance between 
accuracy and noise robustness [105]. A research trend is to leverage 
deep learning mechanisms due to the increasing wind energy penetra
tion and the presence of complex PQ events [44]. Deep learning ap
proaches can extract abstract concepts from high-dimensional data and 
enable closed-loop feedback, achieving automatic feature extraction 
[106]. 

3.3. Disturbance classification 

Based on a large amount of grid data and complex PQD signal 
characteristics, AI based classification techniques have gained signifi
cant popularity in PQ monitoring. Machine learning classifiers are 
commonly employed in current PQ classification methods, including 
support vector machine (SVM), extreme learning machine (ELM), de
cision tree (DT), fuzzy logic (FL), k-nearest neighbor (KNN), and artifi
cial neural networks (ANN) [26]. A comparison of these machine 
learning classifiers was discussed in Ref. [107]. 

These methods require annotated data and therefore laborious 
human involvement, which increases the associated overall costs. 
Additionally, traditional machine learning techniques may face chal
lenges when dealing with complex non-linear PQD signals [108]. To 
address these issues, deep neural networks (DNN) have been widely 
employed to recognize PQ disturbances due to their capabilities to 
automatically learn and extract optimal information from 
high-dimensional data [109]. Among various DNN architectures, con
volutional neural networks (CNN) and recurrent neural networks (RNN) 
have gained significant attention in recent years for their effectiveness in 
capturing spatial and temporal dependencies, respectively. CNN is 
well-suited for extracting local patterns and features thereby suitable for 
PQ disturbance recognition tasks with temporal (1D), spatial (2D), or 
spatiotemporal (3D) dependencies. Moreover, RNNs, including variants 
such as gated recurrent unit (GRU) [69], long short term memory 

Table 3 
Typical signal transform strategies.  

Method Characteristics Weaknesses 

FFT Suitable for stationary disturbances such as harmonics Not sensitive to fine-grained changes in frequency domain statistics over 
time; Not suitable for transient 

STFT Suitable for transient disturbances due to a shifted window-based Fourier transform to 
get time and frequency information 

Fixed time-frequency resolution 

GT Phase and frequency information Inadequate time resolution and susceptibility to cross-term issues 
Wavelet 
transform 

Suitable for discontinuous and suddenly changing signals in high-grade derivatives Degraded phase information in noisy conditions 

ST Improvement and extension of STFT and Wavelet Transform; Adaptive time- 
frequency resolution 

More computation and memory overhead 

EMD Complex signals decomposed into intrinsic mode functions and adaptive time- 
frequency decomposition 

Limited decomposition performance by mode mixing and endpoint effect 

EEMD Suppressed mixing phenomenon due to Gaussian white noise with a uniform 
characteristic frequency 

Difficulty offsetting in the final reconstructed signal due to the white noise; 
More computation overhead 

HHT Time and instantaneous frequency-based features extracted with basic building blocks 
of EMD and Hilbert transform 

Frequency aliasing in the case of incomplete EMD 

VMD Adaptive signal decomposition Repeated iterations and more computation overhead; Limited 
decomposition performance due to abrupt signal onset and endpoint effect 

ITD Complex non-stationary and non-linear signals decomposed into baseline and proper 
rotation components 

Limited decomposition performance due to end- point effect and frequency 
aliasing; Bad noise immunity 

HOS Capable of handling second-order measurements and describing waveform distortion 
via probability density functions, symmetry, amplitude, and tail deviation 

Low resolution 

EKF Less time computation without signal segmentation and feature selection step Errors due to the mismatch of signals and filter model 
CAD Complex signals decomposition according to the type of PQD components with a 

sparse result 
More computation overhead; Low precision in selected sub-dictionaries  
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(LSTM) [110], and stacked auto-encoder (SAE) [111], excel at modeling 
sequential data and capturing long-term dependencies, which are 
crucial for analyzing PQD time series, including both raw signal and 
series of statistics with either univariate or multivariate order. 

Table 5 shows studies on disturbance classification from 2020 to 
2023. CNN is widely regarded as the most popular approach for classi
fying PQ events, which employs a grid-like topology of neural networks 
with convolutions to analyze PQD signals. This convolutional strategy 
exhibits three key characteristics, namely sparse interactions, parameter 
sharing, and equivariant representation [112]. Within CNN-based clas
sification algorithms, two research trends can be seen. The first trend is 
to treat the 1D sampling sequences directly as the input to the CNN 
model. Another one is to convert the 1D sampling sequences into 2D 
images and extract features by incorporating spatial-aware trans
formations to perform the classification task [113]. It is worth noting 
that some pending issues with regard to 2D CNN models need to be 
addressed, such as the instability of 2D models in noisy environments 
[114]. These issues call for further research and development to improve 
the effectiveness and robustness of CNN-based classification methods in 
the context of PQD analysis. To provide insight into how CNN models 
function in the context of disturbance classification, two examples are 
depicted in Fig. 3. Specifically, the CNN framework with 1D PQD data is 
proposed in Ref. [44], while the one handling 2D PQD data is from 
Ref. [115]. 

The stack unit construction is implemented in both examples, each 
involving 3 units [44,115]. A notable distinction arises in terms of input 

data dimensions. In Ref. [44], raw voltage and current signals are uti
lized in the form of 1D sequential data, while in Ref. [115], 2D images 
with spectral and amplitude information are fed into the CNN. These 2D 
PQD data are collected via an STFT-based data preprocessing unit. The 
input data units underscore different emphases in the CNN framework 
designs within these two examples. The 1D structure centers on the local 
temporal information within the time series and considers the correla
tion of PQD signals only exists in a single direction, whereas the 2D 
structure focuses on the alignment between input signals with the 
typical CNN model. Another difference refers to the configuration of the 
convolutional layer, where 1D and 2D filters are performed separately. 

In addition to the convolutional layer, some other layers, including 
pooling, batch normalization (BN), fully connected (FC), and softmax 
layers, are incorporated to automatically capture features from an 
extensive set of disturbance samples. The pooling layer undertakes the 
role of under-sampling, thus contributing to lowering the dimensionality 
and highlighting the disturbance features. The BN layer can mitigate 
overfitting and strengthen the generalization capacity of the CNN 
models. Subsequently, the FC layer facilitates the transformation of the 
feature space. Finally, the softmax layer, essentially a normalization 
function, calculates and outputs the disturbance class with the highest 
probability value. These two instances adhere to the conventional 
structures of CNNs. Alternative architectures, including deeper stacking 
with residual connections (such as ResNet blocks), are further expected 
to emerge in the field. 

The choice between supervised and unsupervised classification 

Table 4 
Studies on disturbance detection from 2020 to 2023.  

Group Year Work Contributions Advantages 

Wavelet 
transform 

2022 [38] Un-decimated Wavelet Transform for feature extraction Noise reduction, peak or valley detection, and high-frequency resolution at high 
frequencies 

2022 [87] Adaptive wavelet threshold based on energy ratio High efficiency of PQD identification with noisy signals 
ST 2023 [88] Window width matched with main spectrum energy interval 

to determine the standard deviation without iterative 
calculation 

Simplified multi-parameter optimization process; Improved time-frequency 
resolution and computational efficiency 

2023 [89] Improved Gaussian window function due to a frequency 
segmentation step with adjustable parameters 

Better time-frequency resolution 

2022 [90] Improved Gaussian window function due to a standard 
deviation-based detection frequency parameter 

Suitable for oscillation transients and harmonics due to better frequency 
resolution; Suitable for flicker, sag, swell, and interruption due to better 
fundamental frequency time resolution 

2022 [91] Adaptive window parameters based on energy concentration 
maximization using optimized genetic algorithm 

Optimal parameters; Better time-frequency resolution 

2022 [92] Frequency spectrum divided into low-, medium-, and high- 
frequency bands, and Gaussian window with two parameters 
in each band 

Better time-frequency resolution at different frequency bands 

2022 [93] Adaptive Kaiser window as the kernel function with the 
characteristic of inherent optimal energy concentration 

Better time resolution at the fundamental frequency 

2022 [94] Optimal parameters to generate a time-frequency domain 
contour 

Reduced interference of Gaussian noise 

2021 [95] Adaptive hyperbolic window based on the energy 
concentration measurement 

Enhanced local spectral characteristics for non-stationary PQD Signals 

2021 [96] Digital prolate spheroidal window for enhancing the time- 
frequency energy aggregation 

Suppressed influences of harmonics, nonlinear loads and the white noise on 
voltage sag estimation 

2020 [97] Optimal window parameters based on energy concentration 
maximization 

Improved time-frequency resolution 

2020 [98] Summing absolute magnitude plot in addition to ST plots High efficiency of PQD identification 
EMD 2022 [99] Kriging interpolation for replacing cubic spline interpolation Prominent features with better accuracy and speed 
EEMD 2021 [100] Screening step to remove noise and incoherent intrinsic mode 

functions by applying improved complete EEMD [101] 
Simplified detection of complex PQDs 

VMD 2021 [102] Optimal decomposition number and data-fidelity factor; 
Band-limited mode (BLM) extracted based on Kurtosis index 

Most efficient BLM from the complex PQD signals 

2020 [103] Recurrence quantification analysis to extract the statistical 
features 

No placed assumptions about the underlying dynamics; Lower computational 
burden 

2020 [104] Detrended fluctuation analysis to optimize the decomposition 
parameters of VMD 

Better accuracy and lower the computational burden 

ITD 2023 [60] Added Gaussian noise and integrated multiple 
subcomponents 

Reduced number of parameters without manually designing and screening 
features 

CAD 2022 [84] CNN-based sub-dictionary predictor added to CAD structure Reduced scope of CAD search in the dictionary and improved accuracy of the 
chosen sub-dictionaries  
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techniques depends on the availability of prior information and the 
number of categories involved. As shown in Table 5, the majority of the 
papers primarily focus on supervised learning methods, where labeled 
data is utilized for training the models. However, there are also a few 
studies that explore semi-supervised learning techniques [134], as well 
as unsupervised learning techniques [87,111]. These alternative ap
proaches provide opportunities to classify PQ issues in situations where 

labeled data may be limited or unavailable, offering potential avenues 
for further PQ monitoring analysis. In addition, it is worth noting that 
the classifier type must match with appropriate feature extraction 
methods, otherwise the performance of PQ monitoring will be degraded 
[60]. To address this issue, a new framework concept has been proposed 
that fuses disturbance detection and classification as a coherent unit 
[105,106]. 

Table 5 
Studies on disturbance classification from 2020 to 2023.  

Group Year Work Multiple 
events 

Real 
time 

Contributions Advantages 

SVM 2020 [97] Y Y Combination of kernels to classify multiple features Modified data mapping 
capabilities and discriminative 
information 

DT 2022 [116] – Y Combination of poly-exponential and random forests Reduced calculation burden due to 
fewer sample requirements 

KNN 2021 [100] Y Y Outlier exclusion step based on AdaKNN [117] Better accuracy with noisy signals 
Sparse 
classifier 

2020 [118] Y Y Combination of sparse recovery theory and a new high-dimensional convex 
hull approximation framework 

Reduced calculation burden 
without any training step 

CNN 2023 [60] Y Y ShuffleNetV2 [119] with a global depth wise convolution layer and PReLU Reduced parameter numbers and 
information loss 

2023 [89] Y – Multiclass SVM to replace the softmax of CNN based on AlexNet [120] Improved training efficiency and 
classification accuracy 

2022 [121] Y Y Instantaneous amplitude and phase converted into images by visualization 
trajectory circle, and the usage of ResNet50 [122] to recognize PQD types 

Sequence expressed as a 
visualization method 

2022 [123] – Y Combination of features from YOLO [124] and SSD [125] based on VGG-16 
architecture [126] 

More than one disturbance 
identified in a single window 

2021 [115] Y – Combination of 1D and 2D CNN to obtain both signal and image features 
simultaneously 

New framework to understand the 
dynamics of signal processing 

2021 [127] – Y Bayesian optimization algorithm to determine optimum hyper-parameters Better network architecture 
2021 [128] Y Y Multi-fusion 1D CNN framework to integrate information from different 

domains; Composite convolution and batch normalization (BN) layer to 
improve the diversity of network features and speed up training, respectively 

Shorter training time with a more 
compact structure 

2020 [129] Y – Five-layer 1-D-modified inception-residual modules to extract feature Higher convergence rate and 
stronger generalization ability 

RNN 2023 [59] Y – Red deer algorithm [130] to optimize the number of hidden layers No manual operations and less 
complexity 

2022 [131] Y Y Label-decoupling module with label-guided attention to learn label-related 
features; Bidirectional RNN to model correlations between different PQD 
labels 

Better learning of higher order 
label correlations 

2021 [132] Y Y Simple recurrent cell structure with two gates and two weight matrices Robust to vanishing gradient of 
RNN; Long-term memory 
preserved 

Deep belief 
network (DBN) 

2022 [87] Y Y Combination of an ELM and a DBN Reduced computation; Global fine- 
tuning averted 

SAE 2020 [133] – – Sparse denoising SAE combined with supervised back-propagation training Better robustness, especially with 
insufficient training samples  

Fig. 3. CNN frameworks with 1D and 2D signals.  
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3.4. Challenges  

• Real-time monitoring: While disturbance classification has been 
studied extensively in offline settings, a research challenge still exists 
to achieve real-time PQ monitoring, particularly relevant for power 
grids with offshore wind turbines. Basically, PQDs are detected at 
PCC, where the entire offshore network is connected with the 
onshore power system. Real-time PQ monitoring helps the grid 
operation, guiding the decision-making process pertaining to the 
entire energy system. Feasible future research directions involve 
obtaining discriminated features without sophisticated signal pro
cessing methods, increasing the speed of the signal processing 
methods, and evaluating the prerequisites for identifying different 
PQD types using prognostic windows. The testing efficiency of the 
classifiers should be further guaranteed for the activation of real- 
time actuators in response to PQDs. Complementary, the incremen
tal nature of the classifiers should be further considered to accom
modate unseen grid configurations and updates.  

• Data labeling: Multiple disturbance types often occur simultaneously 
in the grids integrating offshore wind energy, leading to correlation 
issues among PQD labels. The current approach, where each multiple 
disturbance is treated as a new category, essentially follows a single- 
label classification scheme [131]. Hence, failure and performance 
degradation of complex disturbance classification are prone to 
appear due to the mutual influence between PQD labels and an 
excessive number of fault categories [60]. To overcome these chal
lenges, current strategies include exploring the intrinsic relationships 
between events and minimizing the number of labels [135]. In 
addition, pre-training of models using synthetic data models, 
semi-supervised learning principles, and recent advances in 
self-supervised and multi-task learning stances can be utilized as 
effective solutions [136,137].  

• Noise tolerance: The PQD signals are susceptible to multiple sources 
of interference in noisy environments, causing difficulty in distur
bance detection and classification. Existing classifiers often exhibit 
sensitivity to noise, while convolutional network structures have 
shown promising performance in addressing this issue [129]. Future 
research trends involve combining signal processing advances with 
the subsequent automated learning of predictive models, improving 
neural processing algorithms, and innovating high-precision mea
surement techniques to enhance the accuracy of PQD signal analysis 
[138].  

• Disturbance forecasting: By harnessing the synergy between PQ 
event records and meteorological data, as well as monitoring long- 
term PQ deterioration, disturbances may be forecasted with 
considerable anticipation, promoting actionability [139]. In this 
context, disturbance forecasting pursues the modeling of event un
certainties to establish and maintain stable operational conditions 
for photovoltaic plants [140]. A prediction of severe power quality 
disturbances, such as oscillatory transients, can facilitate the time
liness of disturbance detection and further benefit the subsequent 
problem-solving phases [141]. Despite recent advancements, a 
research gap persists in the field of offshore wind energy. As offshore 
WTs become increasingly integrated into electric grids, the degra
dation of PQ introduces higher levels of uncertainty, driven by the 
influence of weather dynamics. This underscores the compelling 
need to incorporate disturbance prediction within the PQ monitoring 
process, offering essential proactive insights to the algorithmic 
models. 

4. Synchronized waveform measurement (SWM) 

The widespread deployment of RES amplifies the dynamic nature of 
modern power system behavior. In the electric systems integrating 
offshore wind energy, waveform data capturing signs of emergent sys
tem malfunctioning are anticipated to be collected at different locations 

to address system-wide PQ issues, as mentioned in Section 2.3. More
over, high-fidelity measurements are crucial for analyzing high- 
frequency disturbances originating from power converters and their 
impact on system operation. Thus, high-resolution measurements at 
multiple locations are needed for decentralized and stochastic energy 
sources to implement systematic disturbance diagnostics. Presently, 
SWM has demonstrated significant potential for conducting coordinated 
quantitative analysis across different locations, enabling the study of 
authentic transient and dynamic responses of a network. 

4.1. Characteristics 

SWM, also known as point-on-wave measurement, is witnessing a 
great deal of attention owing to the advent of high-performance sensors 
[142]. The typical SWM devices and their general hardware framework 
were presented in [143,144], respectively. Up to now, three data forms 
have been provided in these devices, namely single snapshots, multiple 
snapshots, and continuous snapshots [20], where adaptive sampling 
rates of 0.8–12.8 kHz are usually available [18,108]. 

The voltage and current signals with precise time alignment carry 
essential information about PQ phenomena, helping to understand and 
characterize disturbances [145]. Hence, for early-stage PQ diagnosis, 
voltage and current waveforms are the most suitable SWM types to 
accomplish accurate information extraction [16,20]. In addition, 
derived data have been employed in certain applications to reduce the 
burden of data transmission, with examples of time of arrival, modal 
power, and impedance [20]. The selection of the domain for derived 
data depends on the feature extraction method. 

Whilst synchrophasor measurements have been widely used for false 
identification in modern power systems in recent years, it is worth 
noting that they differ from SWM [146]. Synchrophasor measurements 
share characteristics with SWM in terms of high resolution and time 
synchronization but require a phasor and frequency estimation step, 
which involves various windowing and filtering techniques [147]. This 
additional processing can lead to measurement inconsistencies and 
inaccuracies [148]. In contrast, SWM offers several distinct benefits over 
synchrophasor measurements. Firstly, SWM provides more precise 
measurements without an estimation process. Secondly, it is more sen
sitive to non-stationary signals, allowing for better detection and anal
ysis of complex disturbances. Lastly, SWM entails fewer acquisition 
costs, making it a cost-effective solution. More details with respect to 
their differences can be found in Ref. [20]. 

4.2. Benefits for PQDs 

Many disturbance events present unique characteristics in the 
voltage and current waveforms, necessitating system-wide analysis 
through innovative measurement techniques. Four advantages of SMW 
for PQ monitoring are apparent, namely high resolution, time syn
chronization, authentic waveform, and high availability.  

• High resolution: Recording non-stationary disturbances in a timely 
manner is of utmost importance to timely detect PQDs in a real-time 
monitoring setting. It not only facilitates the detection of conven
tional disturbance events but also enables the identification of new 
high-frequency PQD types. An example is supra-harmonics, which 
typically occurs above 2 kHz and emerges in wind-integrated grids 
[31].  

• Time synchronization: SWM incorporates a time stamp based on 
Coordinated Universal Time (UTC) and therefore has an edge for 
coordinated quantitative analysis across different locations. This 
capability enables SWM to derive meaning from the system level and 
to be implemented in distributed detection frameworks [149].  

• Authentic waveform: In SWM, real sinusoidal information is directly 
sampled instead of being force-fitted through measurement estima
tion processes. As a result, the acquired voltage and current 
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measurements capture the actual network transients and dynamic 
responses without distortion. This provides reliable information 
about the events and apparatus for analyzing system-level PQ events.  

• High availability: Access to the SWM is available even in the event of 
a system outage [142]. 

Fig. 4 outlines the benefits of SWM to different PQ events, encom
passing flicker, transient, sag, swell, interruption, and harmonics. These 
issues are the key challenges within electric grids integrating wind en
ergy, as discussed in Section 2. Based on the extent of the contributions 
of SWM, Fig. 4 categorizes these events into three groups, distinguished 
by green, yellow, and red. PQ events marked in green derive specific 
benefits from SWM, those highlighted in yellow gain advantages from 
both SWM and synchrophasor measurements, while disturbances in red 
cannot receive benefits from either SWM or synchrophasor 
measurements. 

In alignment with this categorization, the left-hand side of Fig. 4 
employs different colors to denote the advantages offered by SWM as 
well. Specifically, “time synchronization” and “authentic waveform” are 
in green, underscoring their status as unique attributes of SWM. “High 
resolution” is placed in the yellow category as it is the shared feature of 
SWM and synchrophasor measurements. In addition, “high availability”, 
unrelated to high-fidelity data, is highlighted in red. 

Analyzing Fig. 4, it can be seen that harmonics, transient, and flicker 
profit from SWM, whereas sag, swell, and interruption are not affected 
by this new measurement technique. SWM enables collaborative har
monics monitoring at both WT and PCC levels, thanks to its high reso
lution, time synchronization, and authentic waveform capabilities. 
Transient, as a non-stationary signal, shows more fidelity information 
through SWM compared to high-resolution synchrophasor measure
ments. Flicker, which exhibits less frequent fluctuations than transients, 
benefits from both measurement types. Note that different PQ events 
typically occur simultaneously in offshore wind integrated grids. 
Therefore, although SWM does not exhibit significant strengths in sag, 
swell, and interruption, it facilitates the practical implementation of 
complex disturbance analysis. Furthermore, the high availability of 
SWM is independent of these disturbance types, but rather serves as a 
prerequisite for continuous PQ monitoring. 

4.3. Applications in PQ monitoring 

Due to the variable operations of WTs, disturbance extraction 
methods in the time-frequency domain are preferred given their ability 
to identify non-linear and non-stationary signals [16]. To this end, the 
time-domain transformation of SWM data can be exploited to detect 
PQDs, given their more sufficient and accurate information. SWM also 

enables noise smoothing as a pre-processing process by leveraging the 
strong temporal correlation between the sequences. However, the 
application of SWM in disturbance detection is still in its infancy. Syn
chronized Lissajous curves obtained from voltage and current wave
forms have been utilized to monitor PQ events including high 
impedance faults, capacitor bank switching, and incipient faults [150]. 
Another approach proposed is a sensor-level anomaly sequence detec
tion method using continuous SWM, in which no assumptions or pa
rameters are required for the data model [149]. These examples 
showcase the potential of SWM in PQD detection, but further research 
and development are needed to fully explore its capabilities in this 
domain. 

Experiences of PQ monitoring have shown that even abnormal 
waveform data can be overwhelming [151]. Hence, SWM-based PQ 
monitoring should rely on algorithms able to further digest 
disturbance-containing data through, for example, pattern recognition 
and characterization principles. Unlike the traditional PQ monitoring 
process, more general algorithms are needed here to identify and group 
“similar” anomalous waveforms ranging from switching transients and 
power oscillations to initial faults. The temporal synchronization prop
erties of SWM should be fully explored to improve the disturbance 
detection algorithmic framework. 

In addition to the field of disturbance detection, there is a growing 
focus on utilizing CNN architectures to extract meaningful features from 
SWM data and achieve accurate disturbance classification [150]. The 
high-resolution nature of SWM enlarges the available dataset that can be 
leveraged for disturbance classification, making it well-suited for the 
adoption of deep neural networks. In Ref. [150], synchronized Lissajous 
curves were transformed into image representations using voltage and 
current waveforms. Employing a four-layer CNN framework, distur
bances were systematically categorized based on variations in the shape 
and area of the ellipse curve. The classification process depended on a 
multitude of factors, encompassing the nature, types, locations, and 
other parameters of the PQ events. This trend underscores the effec
tiveness of CNN in handling the complex and rich information captured 
by SWM, leading to promising results in the field of PQ monitoring. 

Due to the time synchronization capability of SWM, it has become 
feasible to conduct systematic and coordinated analysis at both PCC and 
WT levels. Recurrent fault causes were assessed by evaluating the PQD 
similarity in Ref. [128]. A dual-channel CNN based method was sug
gested to identify distribution system fault causes using realistic data 
from SWM units [108]. In addition to cause identification, studies on 
SWM-based location assessment have covered various events like 
transmission faults [152], transient [153], and short-circuit faults in 
distribution networks [154]. 

Moreover, SWM has also found utilities in other fields, including 

Fig. 4. Contributions of SWM for different PQ events.  
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wideband oscillation monitoring [143], dynamic state estimation [18], 
sub-synchronous resonance (SSR) mitigation [155], and SSR source 
identification and responsibility ranking [156]. These applications 
demonstrate the versatility of SWM beyond PQ events, opening up op
portunities for its utilization in various domains for enhanced system 
analysis and performance improvement. 

4.4. Challenges 

As a relatively new measurement technique, SWM has started to be 
deployed in PQ monitoring. However, there are several research gaps 
and challenges that need to be addressed for its practical implementa
tion. The challenges of SWM technologies are threefold so far, pertaining 
to data architecture, storage, and transfer.  

• Communication protocols: One of the primary challenges of SWM is 
the development of standardized communication protocols and 
networks. Given the high data rates, updated communication pro
tocols are essential to guarantee the timeliness and reliability of data 
transmission [20]. To this end, reference can be drawn from existing 
communication protocols such as IEEE standard C37.118.2, which is 
used for wide area monitoring systems [144]. Leveraging the prin
ciples and concepts from C37.118.2 can serve as a starting point for 
developing communication protocols specifically tailored to SWM 
requirements. Another valuable resource is the NASPInet 2.0 archi
tecture proposed by the synchrophasor community, which provides a 
framework for the integration and exchange of synchrophasor data 
[20]. 

• Database capacities: The growing deployment of offshore wind en
ergy into the electric grids is associated with higher complexity at the 
system design and power equipment levels. System-wide PQ moni
toring using SWM technologies calls for more measurement devices. 
However, bottlenecks in database capacities may occur as the data 
amount soars, especially for continuous waveform recording [157]. 
Typically, access to streaming SWM data is limited to substation local 
area networks due to the high data bandwidth and storage re
quirements involved [158]. In this context, expanding database ca
pacities is crucial to accommodate the increasing data influx [143]. 
Two primary research trends have emerged in addressing the storage 
challenge. The first trend focuses on optimizing the sampling scheme 
to save data storage space. Adaptive sampling frequency techniques 
have been explored in recent papers, where the sampling frequency 
is adjusted based on different power system states [144]. In addition, 
filter-based resampling processes have been investigated to reduce 
data volume while preserving essential information [159]. The sec
ond research trend focuses on data compression techniques [157, 
160]. These techniques aim to reduce the data size while retaining 
the key features and information necessary for analysis. 

• Decentralized analysis: In PQ monitoring applications, SWM is usu
ally recorded locally and transmitted to a central location when 
needed [20]. However, with the increasing presence of distributed 
generations, there is a growing need for decentralized PQ monitoring 
and analysis systems [161]. A promising approach is to reduce the 
computational burden by using derived data instead of raw data in 
the data transfer between nodes. Moreover, the application of 
distributed learning algorithms can be considered for real-time 
disturbance identification. Distributed learning frameworks enable 
collaborative learning among multiple nodes, allowing them to 
collectively analyze PQD signals while sharing limited information in 
decentralized monitoring systems. 

5. Evaluation metrics for monitoring algorithms 

Evaluation metrics play a crucial role in optimizing and verifying 
algorithms, and have garnered wide attention in various fields, such as 
signal classification, object detection, and image segmentation [162, 

163]. Depending on different purposes, they can generally be catego
rized into three types: threshold, probability, and ranking metrics [164]. 
As one of the threshold metrics, accuracy has become the only indicator 
in most work on disturbance detection and classification. However, 
accuracy is unable to distinguish false positives from false negative 
observations and can be influenced by dataset selection and hardware 
facilities, making it insufficient for evaluating real-time algorithm effi
cacy for practical applications with noisy signals. Illustrating, consider a 
scenario where PQD detection is applied over sliding windows where the 
frequency of windows with occurring disturbances is 1 %. In such a 
scenario, negative labeling of all observations is associated with high 
accuracy levels and thus alternative metrics, such as precision, recall, 
specificity, or their combination via F-measure and receiving-operator 
or precision-recall curves should be preferred. When considering mul
tiple PQD events, accuracy alone is insufficient to assess the degree of 
efficacy to classify each of the selected events. In this context, resorting 
to low-level confusion-based matrices and scores is necessary. In this 
light, it is essential to standardize evaluation metrics to facilitate future 
advancements in monitoring algorithms. 

Performance evaluation metrics for monitoring algorithms used in 
the studies from 2021 to 2023 are shown in Table 6. Herein, only studies 
considering multiple criteria are reviewed. It can be seen that three 
factors are widely regarded as complements to accuracy, namely 
computational complexity, number of PQDs, and features.  

• Computational complexity: refers to the duration spent per sample or 
epoch on algorithm testing, which aims to examine the timeliness for 
practical monitoring applications, as well as to guarantee prognos
tication prior to critical failures. Typically, the overall running time 
is utilized to analyze complexity. In a few papers like [87,102], 
computational complexity is split into both training and testing 
processes to gain more insights.  

• Number of PQDs: represents the total count of single and complex PQ 
events analyzed. The PQ events are usually selected based on their 
frequency and severity. To be in line with the extensive applications 
of neural processing learning (e.g., CNN, RNN) in PQD classification, 
current studies generally disclose the number of events (labels), yet 
should further consider their representativity or imbalance. 

• Features: covers the number of features, as well as their discrimi
native power and extraction scheme, which help analyze redundant 
feature information. Currently, automatic feature selection has 
become the mainstream research trend and replaced the feature 
optimization process as mentioned in Section 3. Leveraging feature 
metrics, studies aim to retrieve fewer but more informative features, 
thereby lessening the computational burden of the subsequent clas
sification process. 

The metrics for disturbance detection and classification are 
compared in Table 6. For disturbance detection, reconstructed similarity 
and orthogonality are of major interest, reflecting the signal trans
formation or mapping process in different domains. Additionally, mean 
square error (MSE), mean average error (MAE), and root mean squared 
error (RMSE) are applied to penalize higher deviations from expecta
tions [90]. Meanwhile, studies on disturbance classification treat eval
uation metrics as a discriminator in order to optimize the classifier. 
Accuracy, as the key metric for classification evaluation in practice, 
lacks sufficient information and is poorly discriminated [164]. Hence, in 
the last three years, machine learning classification metrics such as 
sensitivity, specificity, precision, recall, and F1-score, have been intro
duced to evaluate the algorithmic efficacy in PQ monitoring [35,150]. 
Area under curve (AUC) has replaced accuracy in Ref. [123] to analyze 
the overall ranking performance of the classifier. 

In general, evaluation metrics should be able to assess the general
ization ability of the algorithms when working with signals collected at 
different locations, different environmental conditions, or different 
power systems. In addition, it is crucial to incorporate strategies to 
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isolate evaluation on validation folds, such as implementing early 
stopping in ANN, particularly in the presence of optimization re
quirements. Training-testing differences, objective measures of their 
capacity terms (bias-variance), and analysis of learning curves with 
varying numbers of observations should be considered during this pro
cess. This comprehensive approach helps evaluate the susceptibility of 
algorithms to overfitting and underfitting risks, providing insights into 
their generalization capabilities across different scenarios. 

Along with the timeliness and efficacy, noise tolerance is also 
important for offshore wind energy-integrated grids. A typical signal-to- 
noise ratio setting range in papers is 20–40 dB. It is worth noting that the 
noise characteristics of the virtual signal used for algorithm develop
ment should be consistent with the actual scenarios to ensure the reli
ability of the results. 

6. Discussion on system-wide monitoring framework 

This work aims to complete a review of PQ monitoring issues in the 
context of offshore wind-connected grids. In doing so, it delves into PQ 
events associated with offshore wind, recent advancements in moni
toring algorithms, the application potentials of SWM, and evaluation 
metrics at the algorithmic level. The key findings are as follows. 

• PQ monitoring plays an important role in the operation and main
tenance of the grids connecting offshore wind energy, contributing to 

stable and continuous power supplies. Despite the abundance of 
research on PQ events and standards, there is a noticeable absence of 
guidelines specifically tailored to PQ issues in offshore wind envi
ronments. In addition, most existing studies rely on the PCC level- 
based disturbance data, neglecting the critical aspect of deter
mining the optimal monitoring locations. This deficiency inhibits the 
ability to accurately evaluate the PQ health of wind farms. Specif
ically, PQ diagnosis at a single location does not guarantee the 
identification of defective WTs with poor-quality power. Conse
quently, a coordinated system-level PQ analysis framework that in
corporates multiple monitoring points is required. 

• Monitoring algorithms facilitate the timely detection and classifica
tion of perturbation events, serving as a reference for the subsequent 
PQ mitigation stage. The development of these algorithms has 
received wide attention from both academia and industry. Prominent 
trends include ST-based feature extraction and neural network 
mechanism-based disturbance classification for automatic PQ diag
nosis. However, due to the increasing penetration of offshore wind 
energy in the grids, disturbance monitoring has grown in complexity. 
The simultaneous occurrence of multiple perturbations and noise 
interference poses challenges to the accuracy and real-time perfor
mance of monitoring algorithms. To address these issues, feasible 
strategies involve pre-training of models using synthetic data 
models, semi-supervised learning principles, and recent advances in 
self-supervised and multi-task learning stances. Moreover, fusing 

Table 6 
Evaluation metrics of PQ monitoring algorithms in recent three years (2021–2023).  

Year Work Procedures Metrics Noise range 
(dB) 

2023 [60] Detection, 
classification 

Accuracy, test time per sample, number of PQDs, feature extraction scheme (manual/automatic) 10–40 

[59] Classification Accuracy, precision, recall Up to 50 
[89] Detection, 

classification 
Accuracy, number of PQDs 20–40 

[88] Detection, 
classification 

Accuracy, time, number of PQDs 10–50 

[165] Detection, 
classification 

Accuracy, number of features, number of PQDs, hardware setup 20–40 

[110] Detection, 
classification 

Accuracy, time per epoch, number of parameters, model size 20–50 

2022 [35] Detection, 
classification 

Accuracy, sensitivity, specificity, precision, F1-score, Matthews correlation coefficient 20–40 

[77] Detection Accuracy, time, reconstruction MSE, orthogonality, number of modes 15–25 
[90] Detection MSE, MAE, RMSE 20–40 
[91] Detection, 

classification 
Accuracy, test time per sample, number of PQDs, number of features 20–40 

[131] Detection, 
classification 

Accuracy, complexity (floating point operations per second, parameter number, computational time), hamming loss, 
number of PQDs, feature extraction scheme (manual/automatic) 

20–50 

[64] Detection, 
classification 

Accuracy, extracted feature types, number of samples, number of classes 20–30 

[84] Detection Accuracy, time, number of fit function calls, reconstructed similarity – 
[150] Detection, 

classification 
Accuracy, sensitivity, specificity, precision, F1-score 40–80 

[87] Detection, 
classification 

Accuracy, number of PQDs, training time, test time 20–50 

[39] Detection, 
classification 

Accuracy, number of classes, number of features, sampling rate, detection time 20–40 

[121] Detection, 
classification 

Accuracy, number of PQDs, proportion of complex PQDs 20–30 

[123] Detection, 
classification 

Precision, recall, F1-score, AUC – 

2021 [95] Detection, 
classification 

Accuracy, precision, sensitivity and false positive rate, number of PQDs, feature extraction scheme (manual/automatic) 20–40 

[102] Detection, 
classification 

Training (loss, accuracy, total time, epoch time), testing time, number of PQDs, signal source (practical/synthetic) 20–40 

[127] Detection, 
classification 

Accuracy, recall, precision, F1-score, specificity, number of PQDs, number of classes 43–57 

[41] Detection, 
classification 

Training (number of classes, samples per class, time, total trainable parameters), testing (number of classes, samples per 
class), validation accuracy, recall, precision, F1-score 

40–50  
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feature extraction and perturbation classification into a coherent unit 
also represents a research direction to streamline the surveillance 
model.  

• High-fidelity measurements are crucial for analyzing high-frequency 
disturbances originating from power converters and their impact on 
system operation. Specifically, SWM techniques provide valuable 
insights into the highly dynamic and transient characteristics of 
offshore wind-connected grids, enabling multi-location quantitative 
analysis with neural network mechanism-based monitoring methods. 
Until recently, the adoption of SWM in research was still in its in
fancy, primarily due to stringent time synchronization requirements. 
There is a pressing need for further development in communication 
protocols and data storage strategies related to SWM. Moreover, 
while SWM is currently applied primarily in conventional grids, its 
practical applicability in grids integrating offshore wind energy is yet 
to be comprehensively evaluated and verified using real waveform 
data from wind farms.  

• Evaluation metrics set out to assess the generalization ability of the 
algorithms when dealing with signals collected from different loca
tions, different environmental conditions, or different power sys
tems. While confusion-based scores, such as accuracy, are widely 
used as the principal threshold metrics, the potential information 
embedded in perturbed waveform data and monitoring results re
quires alternative performance views. Therefore, the need arises for a 
more informative and standardized evaluation framework that en
compasses multiple dimensions (e.g., time-aware detection statistics 
for preventive and reparative actions and source localization). This 
framework would address the limitations of existing assessment 
strategies and provide a deeper understanding of the real-time status 
of grids integrating offshore wind energy. 

In this context, a comprehensive assessment process is highly bene
ficial for algorithm validation and later problem-solving stages. The 
evaluation metrics can be identified at different levels, including end-to- 
end PQD event detection-and-classification performance, and the 
ongoing PQ state of the target power system. After standardizing the 
evaluation metrics, it is necessary to interpret PQD detection and clas
sification results for subsequent decision-making. As mentioned in 

Section 4, SWM has provided new insights into the behavior of power 
systems and devices, offering the capabilities for mining data-level in
formation. On this basis, a novel comprehensive monitoring framework 
is proposed in Fig. 5. 

Illustrated in Fig. 5, SWM facilitates the realization of multiple 
location monitoring at both PCC and WT levels. The raw voltage and 
current waveforms are fed into the feature extraction unit, where in
formation such as spectrum and amplitude can be derived through 
signal processing algorithms, exemplified by ST in Section 3.1. Subse
quently, the CNN-based deep learning models discussed in Section 3.3 
execute automatic perturbation classification to identify the current 
PQD type of the systems. Finally, a comprehensive PQ status of the 
power grids incorporating offshore wind energy can be obtained by 
system level evaluation metrics. The proposed monitoring framework 
leverages the potential of SWM and deep learning mechanisms for 
collaborative diagnosis and data mining, respectively. Furthermore, the 
multi-point monitoring process aligns with the requirements of electric 
grids integrating offshore wind energy. 

Nevertheless, the current evaluation metrics cannot shed light on the 
potential reasons for the performance variance in different algorithm 
frameworks. Considering this gap, explainable AI has been employed to 
measure the explainability and trustworthiness of the presented moni
toring scheme at the system level [166]. Another evaluation perspective 
relates to the comprehensive PQ status in the whole system. There are 
cogent needs for the recognition of disturbance severity as well as a 
timely alert when PQ events occur. To this end, an analytic hierarchy 
process has been implemented to benchmark the PQ performances of 
grid-integrated renewable energy systems [167]. This assessment tool 
considers the computed results of the disturbance detection, classifica
tion, and elimination processes as a holistic group to identify their 
weights. 

Real-time PQ monitoring has become the way forward for offshore 
wind energy-integrated grids, exacerbating the algorithm complexity 
and the difficulty of performance evaluation. Hitherto, both algorithm- 
level and system-level evaluation metrics are arguably incomplete. 
Thus, a promising research direction is to develop a multi-criteria 
assessment framework so as to uncover underlying actionable infor
mation and further enhance PQ monitoring strategies. Nevertheless, the 

Fig. 5. Proposed system-wide monitoring framework.  
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focus of this study is confined to algorithms and measurements with 
fixed data types, i.e., current and voltage waveforms. Moreover, it does 
not consider the specific design aspects of wind farms within the pro
posed monitoring framework. Future research endeavors may seek to 
broaden the scope to address these limitations. 

7. Conclusion 

While the integration of RES in power generation brings economic 
and environmental benefits, it also poses challenges to PQ analysis. This 
work proposes the first comprehensive review of PQ monitoring in 
electric grids incorporating offshore wind energy. Disturbance types, 
their underlying causes, necessary collection locations, and relevant 
standards are covered to explore the overall impact of offshore wind 
energy on PQ issues. Research conducted between 2020 and 2023 on 
monitoring algorithms is reviewed, offering insights into the state-of- 
the-art in signal processing-based disturbance detection and machine 
learning-based disturbance classification. The advantages and applica
tions of SWM in early PQ diagnosis are holistically discussed. Algo
rithmic evaluation metrics are described, underscoring the importance 
of attention to metric selection and PQ result interpretations. A system- 
wide monitoring framework is given to provide insights into collabo
rative PQ analysis strategy. 

For the review topic under consideration, the following remarks 
regarding PQ monitoring issues are drawn:  

• The measures, signal characteristics, and measurement procedures of 
PQ issues in offshore wind farms and DC systems are to be further 
refined and updated in the standards.  

• Stockwell transform and deep learning methods, primarily CNN and 
RNN, have become the current research focuses on disturbance 
detection and disturbance classification, respectively. Neural 
network mechanisms have demonstrated great potential in 
compensating for the deficiencies of traditional diagnostic strategies, 
including real-time monitoring, data labeling aspects, and noise 
tolerance. 

• Compared with synchrophasor measurements, SWM holds remark
able potential for PQ monitoring thanks to its advantageous features 
such as high resolution, time synchronization, authentic waveform, 
and high availability. Nevertheless, it is crucial to standardize 
communication protocols and enhance the data storage capabilities 
of SWM. To enhance the efficiency of SWM, one promising approach 
is to employ a distributed learning framework in offshore wind en
ergy connected grids, enabling collaborative analysis among multi
ple nodes, considering both PCC and WT levels. 

• Deep learning-based automation disturbance monitoring frame
works with high-fidelity data, which fuse disturbance detection and 
classification, hold significant promise as a research direction to 
extract meaningful information from monitoring results and to 
analyze the holistic status of the entire system. 

To conclude, encompassing not only the impact of offshore wind 
energy on PQ issues, this review also delves into algorithms, measure
ment techniques, evaluation metrics, and promising monitoring frame
works. This review provides valuable insights into PQ events in the 
electric grid integrating offshore wind energy and highlights emerging 
technologies and approaches that offer the potential to tackle the 
disturbance monitoring problems. Since PQ monitoring plays a pivotal 
role in securing a stable power supply for offshore wind grid-connected 
systems, the primary objective of this review is to provide a compre
hensive guideline for researchers and engineers to analyze real-time PQ 
events. As highlighted in this review, relevant standards, synchronized 
waveform applications, algorithmic evaluation strategies, and moni
toring frameworks require further attention from the academic com
munity. Studies on these aspects can greatly contribute to the efficient 
operation of the grids integrating offshore wind, and thus mitigate 

maintenance costs. 
This study is limited to PQ monitoring for disturbance response, 

mainly with a focus on the analysis of voltage and current waveform 
signals. Collaborative fault diagnosis including more types of data would 
facilitate further research on offshore wind grid integration. Further
more, additional work in this area also includes the investigation into 
the specific impact of offshore wind turbine design and wind farm to
pology on power quality concerns. 
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